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Abstract. All academic methods to secure software implementations
of block ciphers against adversaries with full control of the device have
been broken. Despite the huge progress in the cryptanalysis of these
white-box implementations, no recent progress has been made on the
design side. Most of the white-box designs follow the CEJO framework,
where each round is encoded by composing it with small random permu-
tations. While several generic attacks have been proposed on the CEJO
framework, no generic analysis has been performed on self-equivalence
encodings, a different design where only the affine layer of each round is
encoded with random self-equivalences of the S-box layer, that is, affine
permutations commuting with the non-linear layer.

In this work, we analyse the security of white-box implementations based
on self-equivalence encodings for a broad class of SPN ciphers. First, we
characterize the self-equivalence groups of S-box layers, and we prove
that all the self-equivalences of a cryptographically strong S-box layer
have a diagonal shape. Then, we propose the first generic attack on self-
equivalence encodings. Our attack, based on affine equivalence problems,
identifies the connection between the security of self-equivalence encod-
ings and the self-equivalence structure of the cipher components. While
we show that traditional SPN ciphers with cryptographically strong S-
box layers cannot be secured with self-equivalence encodings, our analy-
sis shows that self-equivalence encodings resist the generic attack if the
cipher components satisfy several conditions, revealing the potential of
self-equivalence encodings to secure other types of ciphers.
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1 Introduction

Traditional black-box cryptography assumes that the endpoints of the commu-
nication are secured. However, in some real-word scenarios, the adversaries can
access the endpoints and tamper with the cryptographic device. While several
hardware-based countermeasures have been proposed to preclude grey-box at-
tacks, such as side-channel and fault attacks, some applications (e.g., DRM or
mobile banking) demand software-only solutions against adversaries with full
control of the cryptographic device.



To model this powerful adversary from a cryptographic point of view, Chow
et al. proposed the white-box model [13], where the adversary has full control of
the cryptographic device. In particular, the adversary can observe and modify
at will the intermediate values in the execution of the cryptographic algorithm.

In the same seminal work, Chow et al. proposed the first white-box im-
plementation of a block cipher, a software implementation of AES designed to
resist key-extraction attacks in the white-box model. Although their method
only focused on key-extraction resistance, omitting other white-box threats such
as code lifting orattacks inverting the functionality, it was the first practical
approach considering a cryptographic adversary, as opposed to other heuristic
countermeasures such as software obfuscation or software tamper-resistance.

The method by Chow et al., also called the CEJO framework, represents the
cryptographic computation as a network of look-up tables and randomizes each
look-up table by composing it with random encodings. To preserve the function-
ality, the output encoding of one step cancels the input encoding of the next
step. Thus, the resulting white-box implementation is functionally equivalent to
the original cipher up to the first and last encodings, which are not cancelled.
Without these external encodings, the method is trivially insecure.

The white-box implementation by Chow et al. was broken by the BGE at-
tack, and all the subsequent CEJO implementations [14,30,38,25,31,35,3] have
also been broken [24,37,22,33,16,27,3,12,17,29]. Lastly, McMillion et al. consid-
ered a white-box implementation of AES based on self-equivalences encodings
and showed it was insecure [32]. As opposed to CEJO implementations, self-
equivalence encodings randomize only the affine part of each round, by compos-
ing with random self-equivalences of the S-box layer SL, that is, affine permuta-
tions (A,B) such that SL = B ◦ SL ◦A.

Due to the complexity of designing secure white-box implementations and
the practical limitations introduced by external encodings, several commercial
white-box implementations have been designed without external encodings but
whose security relies on the secrecy of their design. Apart from the drawbacks
of security by obscurity, several white-box attacks based on grey-box techniques
have been proposed that do not require knowledge of the design, such as [10,5,34].
The effectiveness of these attacks was shown in the WhibOx Contest [36], a
competition where participants submitted white-box implementations of AES
and broke other participants’ submissions. In the first edition all the submissions
were broken, and in the second edition 3 implementations stayed unbroken during
the attack period of the competition, but they were broken afterwards [23].

Apart from white-box implementations of existing block ciphers, other white-
box constructions have been published, such as white-box implementations of
ciphers with secret S-boxes [11,4] or incompressible white-box ciphers [7,9]. The
latter constructions are dedicated ciphers designed to preclude code lifting at-
tacks by relying on a huge implementation such that an adversary with partial
access cannot find an equivalent implementation with significantly less size.

In this work we address the challenging problem of designing white-box im-
plementations of block ciphers in the white-box model proposed by Chow et al.,



that is, where the specifications of the design are public and the security re-
lies on the secrecy of the internal and external encodings. While there has been
outstanding progress in adapting grey-box techniques to attack white-box im-
plementations relying on secret designs, these techniques do not pose a threat to
white-box implementations relying on external encodings yet, as long as the ex-
ternal encodings are chosen carefully [2]. Thus, grey-box techniques are outside
the scope of this paper, and we focus instead on the design side of white-box
implementations, for which no significant progress has been made recently.

Apart from the CEJO implementations and the white-box AES implemen-
tation based on self-equivalence encodings, no more white-box implementations
following this model have been published. Some generic attacks have been pro-
posed on the CEJO framework [33,3,17], showing that CEJO implementations
are not suitable for a broad class of SPN ciphers. However, self-equivalence en-
codings have only been considered for AES, and the security of this type of
encodings has not been analysed for other ciphers.

Contributions. In this paper, we analyse the security of self-equivalence en-
codings in white-box implementations of SPN ciphers. We first formalize self-
equivalence implementations, a class of white-box implementations that hide
the round key material in random-looking affine permutations built from self-
equivalences of the S-box layer. We also illustrate how CEJO implementations
can be efficiently transformed into self-equivalence implementations.

Then, we study the self-equivalence group of an S-box layer, on which the
security of self-equivalence encodings is based. To this end, we introduce diagonal
self-equivalences; given a permutation F built from the concatenation of smaller
permutations, a diagonal self-equivalence of F is a self-equivalence that can also
be decomposed as the concatenation of smaller permutations. We prove that
in order to have non-diagonal self-equivalences, F needs to have additive self-
equivalences, linear components and several linear structures, or equivalently,
differential and linear approximations of probability one. As a result, S-box layers
of SPN ciphers employing cryptographically strong S-boxes have only diagonal
self-equivalences. Our characterization of diagonal self-equivalences can be of
independent interest. For example, it can be applied to count the number of
solutions (A,B) of an affine equivalence problem G = B ◦ F ◦ A where the
central map F is given as the concatenation of smaller permutations.

Finally, we propose the first generic attack on self-equivalence implementa-
tions of SPN ciphers with cryptographically strong S-boxes. Our attack partially
recovers the self-equivalence encodings up to some unknown affine permutations
belonging to a small subgroup of the self-equivalence group; the key is then re-
covered by a brute force search over the small subgroup. The attack is based on
affine and linear equivalence problems and its complexity depends on the self-
equivalence groups of the linear layer blocks and the S-boxes. Our analysis shows
that if these self-equivalence groups satisfy some properties, a self-equivalence
implementation is secure against the generic attack. While traditional SPN ci-
phers such as AES do not satisfy these properties, our analysis provides the
foundations to secure a different class of ciphers with self-equivalence encodings.



Outline. In Sect. 2, the notation and the preliminaries are introduced. The
CEJO framework is described Sect. 3 and self-equivalence implementations are
introduced in Sect. 4. Diagonal self-equivalences are characterized in Sect. 5, and
the generic attack on self-equivalence encodings is described in Sect. 6. Section 7
presents the conclusions and the future work.

2 Preliminaries

2.1 Basics

In this document, capital letters are used for functions (e.g., F,G), lower letters
for values (e.g., x, y), and calligraphic letters for sets of functions (e.g., F ,G).

Let Fq be the finite field with q elements. The vector space of n-bit values is
denoted by Fn

2 , and the addition in Fn
2 by ⊕. A function F : Fn

2 7→ Fm
2 is called

an (n,m)-bit function, or just n-bit function if n = m. Given two functions F
and G, their composition is denoted by F ◦G and their concatenation by F ∥ G,
that is, (F ∥ G)(x, y) = (F (x), G(y)). The n-bit identity function is denoted by
Idn(x) = x, and the addition by a constant is denoted by ⊕a(x) = x⊕ a.

Given an affine function A, we denote its linear part by Lin(A), that is,
A = ⊕a ◦Lin(A) for some constant a. If L : (Fn

2 )
m → (Fn

2 )
m is a linear function,

we denote by {Li,j : 1 ≤ i, j ≤ m} the n-bit linear functions associated with the
blocks of L seen as a block matrix, that is, in matrix notation

L×

x1

...
xm

 =

L1,1 · · · L1,m

...
. . .

Lm,1 Lm,m

×

x1

...
xm

 .

The general linear group consisting of all n-bit linear permutations is denoted
by GLn, and the affine general linear group of Fn

2 is denoted by AGLn.
The cardinality of a set F is denoted by |F| and the Cartesian product of

sets F and G is denoted by F × G. We translate the inversion, concatenation
and composition of functions to set operations as follows:

F−1 = {F−1 : F ∈ F} ,
F ∥ G = {F ∥ G : F ∈ F , G ∈ G} ,
F ◦ G = {F ◦G : F ∈ F , G ∈ G} .

Moreover, given a set of affine permutations A, we denote its linear part by
Lin(A) = {Lin(A) : A ∈ A}. When a set contains a single element {F}, we de-
note F ◦ G = {F} ◦ G and F ∥ G = {F} ∥ G with a slight abuse of notation.

SPN ciphers. Given an n-bit iterated block cipher, we denote the encryption

function for a fixed key k by Ek = E
(nr)

k(nr) ◦ · · · ◦ E
(1)

k(1) , where E
(r)

k(r) denotes the

rth round function and k(r) denotes the rth round key. For ease of notation,



we omit the round-key subscript of the round functions. An SPN (Substitution-
Permutation Network) cipher is an iterated block cipher where the rth round
function is defined by

E(r) = LL ◦ SL ◦ ⊕k(r) ,

where LL is the n-bit linear layer, SL = S1 ∥ · · · ∥ Sρ is the S-box layer composed
of m-bit S-boxes Si, and k(r) is the rth round key. In some cases, the first and
last rounds are defined in a different way. Figure 1 depicts the round function of
an SPN cipher.

S1

Sρ⊕kρ

LL

⊕k1

...
...

S2⊕k2

Fig. 1. The round function of an SPN cipher.

2.2 Self-Equivalences

In this section, we introduce the notion of self-equivalence [8] and some of its
properties for n-bit functions.

Definition 1. Let F be an n-bit function. A pair of n-bit affine permutations
(A,B) such that F = B ◦ F ◦A is called an (affine) self-equivalence of F .

We also say A (resp. B) is a right (resp. left) self-equivalence of F . If A and
B are linear, (A,B) is called a linear self-equivalence, and if (A,B) = (⊕a,⊕b)
are constants, (A,B) is called an additive self-equivalence.

Definition 2. Two n-bit functions F and G are said to be affine (resp. linear)
equivalent if there exists a pair of n-bit affine (resp. linear) permutations (A,B)
such that G = B ◦ F ◦A.

The notion of (affine) self-equivalence arises from the affine equivalence relation.
This equivalence relation induces a partition on the set of n-bit functions, where
a function belongs to the affine class containing all its affine equivalent functions.

We denote the set of self-equivalences of F by SE(F ), the set of left self-
equivalences by LSE(F ), and the set of right self-equivalences by RSE(F ), i.e.,

SE(F ) = {(A,B) ∈ AGLn ×AGLn : F = B ◦ F ◦A} ,
RSE(F ) = {A : ∃B s.t. (A,B) ∈ SE(F )} ,
LSE(F ) = {B : ∃A s.t. (A,B) ∈ SE(F )} .



The next lemma recalls the well-known fact that the self-equivalences form a
group, which can be easily proved by noticing that SE(F ) is the stabilizer of a
group action where AGLn ×AGLn acts over the set of n-bit functions [20,28].

Lemma 1. SE(F ) is a subgroup of AGLn ×AGLn, and LSE(F ) and RSE(F )
are subgroups of AGLn. Moreover, if G is a function affine equivalent to F , i.e.,
G = B ◦F ◦A, then the self-equivalence groups of F and G are conjugates, that
is, RSE(G) = A−1 ◦ RSE(F ) ◦A and LSE(G) = B ◦ LSE(F ) ◦B−1.

If F is a permutation, each right self-equivalence corresponds to a unique
left self-equivalence. In this case, SE(F ),LSE(F ) and RSE(F ) have the same
cardinality, which is a divisor of the number of affine permutations. In particular,
|SE(F )| = |AGLn | if F is an n-bit affine permutation. For a non-invertible
function, a right self-equivalence can correspond to several left self-equivalences,
and vice-versa. If F is non-invertible but affine, the cardinality of SE(F ) can be
computed, which depends on the rank of its matrix representation over F2 [28].

2.3 Affine Equivalence Problems

Self-equivalences are strongly related to the solutions of affine and linear equiv-
alence problems, on which many white-box implementations are based.

Definition 3. An affine (resp. linear) equivalence problem is a functional equa-
tion of the form G = Y ◦ F ◦X where F and G are known n-bit functions and
(X,Y ) are unknown affine (resp. linear) permutations.

Given any solution (X0, Y0) of the affine equivalence problem G = Y ◦F ◦X,
the solution set can be seen as the subgroup S = {(A ◦ X0, Y0 ◦ B) : (A,B) ∈
SE(F )} of AGLn ×AGLn. Thus, the number of solutions is equal to the num-
ber of self-equivalences of F . If the unknowns (X,Y ) are restricted to given
subgroups (A,B), then the solution set can be seen as the subgroup

S = {(A ◦X0, Y0 ◦B) : (A,B) ∈ SE(F ) ∩ (A× B)} .

Several algorithms have been published for finding a solution of an equiva-
lence problem. For n-bit permutations, Biryukov et al. proposed an O(n32n) al-
gorithm to solve the linear case and anO(n322n) algorithm to solve the affine case
[8], whereas Dinur recently proposed an O(n32n) algorithm to solve the affine
case for random permutations [18]. Since we will mostly consider affine equiv-
alence problems involving permutations with several self-equivalences, which is
fairly rare in the random case, in this document we will assume O(n322n) to be
the complexity of solving an affine equivalence problem with n-bit permutations.

For n-bit functions F = F1 ∥ · · · ∥ Fρ composed of m-bit cryptographic
S-boxes1 Fi, Derbez et al. obtained an algorithm to solve the affine equivalence

1 The algorithm by Derbez et al. assumes that the S-boxes do not have non-trivial
linear components, i.e., there does not exist a non-zero (m, 1)-bit linear function B
such that (B ◦ S)(x) =

∑
biS(x)i is a linear function. Most SPN ciphers employ

cryptographically strong S-boxes satisfying this requirement.



problem with time complexity O(2mn3 + n4/m+22mmn2) [17]. For n-bit affine
functions F , the affine equivalence problem can be represented as a linear system
of n + 1 equations and solved with Gaussian elimination in time O((n + 1)ω),
where 2 < ω < 3 is the matrix multiplication constant.

While several efficient algorithms have been proposed for finding a solution of
an equivalence problem, no efficient techniques have been proposed to count its
number of solutions. In general, the algorithm by Biryukov et al. can be applied
to find all the solutions by repeating the algorithm for each possible initial guess.
The work factor of this approach is at least 22n for the linear case and 23n for
the affine case, and it is also lower bounded by the number of solutions.

A particular class of problems for which we can characterize the solution
set is the class of univariate linear equivalence problem G = X−1 ◦ Mα ◦ X
where Mα is the n-bit linear permutation corresponding to the multiplication
by the finite field element α ∈ F2n . For an n-bit function F , let C(F ) = {A ∈
GLn : A ◦ F = F ◦ A} be the centralizer of F , that is, the subgroup of linear
permutations commuting with F . Then, the solution set of G = X−1 ◦Mα ◦X
is S = C(Mα) ◦X0, for any particular solution X0. If α has multiplicative order
d (i.e., the minimum exponent such that αd = 1), then C(Mα) is isomorphic to
the set of invertible n

d × n
d matrices over F2d [21]. In particular, C(Mα) = {Mγ :

0 ̸= γ ∈ F2n} if α is a primitive element.

3 CEJO Implementations

In this section we introduce CEJO implementations and the generic cryptanalysis
of the CEJO framework. CEJO implementations are a particular class of white-
box implementations based on encoded round functions.

Definition 4 ([13]). Let F be an (n,m)-bit function and let (I,O) be a pair of
n-bit and m-bit permutations, respectively. The function F = O ◦ F ◦ I is called
an encoded F , and I and O are called the input and output encoding, respectively.

Definition 5. Let Ek = E(nr) ◦E(nr−1) ◦ · · · ◦E(1) be the encryption2 function
of an iterated n-bit cipher with fixed key k. An encoded implementation of Ek is
an encoded Ek composed of encoded round functions, that is,

Ek = E(nr) ◦ · · · ◦ E(1) = (O(nr) ◦ E(nr) ◦ I(nr)) ◦ · · · ◦ (O(1) ◦ E(1) ◦ I(1)) ,

for some n-bit permutations (I(i), O(i)) satisfying I(i+1) =
(
O(i)

)−1
for i =

1, 2, . . . , nr − 1.

In other words, an encoded implementation is the composition of encoded round
functions where the intermediate encodings are cancelled out, that is, Ek =
O(nr)◦Ek ◦I(1). The intermediate encodings are also called the round encodings,

2 In this paper we focus on white-box implementations of encryption functions; the
definitions for decryption functions are similar.



and the encodings (I(1), O(nr)) are called the external encodings. The round en-
codings are sampled at random from a group E herein called the round encoding
space, which varies from implementation to implementation.

All the white-box implementations of block ciphers published in the litera-
ture are encoded implementations following the so-called CEJO framework [14].
CEJO implementations employ round encoding spaces composed of small non-
linear permutations and wider linear functions.

Definition 6. Let Nmn be the set of mn-bit non-linear permutations. A CEJO
implementation with mn-bit non-linear encodings and ml-bit linear encodings is
an encoded implementation of an SPN cipher with round encoding space

E = (Nmn ∥ · · · ∥ Nmn) ◦ (GLml
∥ · · · ∥ GLml

) .

Figure 2 depicts an CEJO encoded round function with the usual parameters
2mn = ml = m, where m is the bit-size of the S-box. For example, the encoded
AES implementation proposed by Chow et al. employs 4-bit non-linear encodings
and 8-bit linear encodings.

Internally, a CEJO encoded round function is implemented in software as a
network of look-up tables, requiring roughly O(2max(2mn,ml,m)) bits of memory.
Since white-box attacks to CEJO implementations only require black-box access
to the encoded round functions, we will omit the internal description of a CEJO
encoded round function and refer to [14,3] for more details.

S1

Sρ

I1

Iρ ⊕kρ

O1

Oρ

LL

⊕k1

...
...

...
...

S2⊕k2I2 O2

Fig. 2. A CEJO encoded round function with m
2
-bit non-linear encodings and m-bit

linear encodings. Each m-bit function Ii and Oi consists of the concatenation of two
m
2
-bit non-linear permutations composed with an m-bit linear permutation.

3.1 Security of CEJO Implementations

The white-box implementation by Chow et al. and the subsequent CEJO im-
plementations were designed to prevent key-extraction attacks in the white-box
model, that is, an attacker with full control on the implementation should not be
able to recover the key; the specifications of the cipher and the implementation
are public, but the key and the encodings are unknown to the adversary.



CEJO implementations do not aim to prevent attacks inverting the imple-
mentation. In some scenarios (e.g., DRM), inverting the functionality is not a
threat. Note that designing a white-box implementation preventing both key-
extraction and inversion attacks is a much harder problem, since it would turn
a symmetric cipher into a public-key encryption scheme.

Informally, the security of CEJO implementations relies on a disambiguation
problem; for a given encoded round function, many pairs of round keys and
round encodings result in the same encoded round function. While encoded
round functions are individually secure, all CEJO implementations have been
broken by analysing few consecutive rounds.

Key-extraction attacks on CEJO implementations typically consists of two
main steps: reducing the round encoding space and guessing the round keys.
First, the adversary obtains new encoded round functions with the same under-
lying round keys but with round encodings restricted to a smaller encoding space.
Then, the adversary performs an exhaustive search over the reduced round en-
coding space to recover the round keys. For most SPN ciphers, the key schedule
can be inverted and few round keys can uniquely determine the master key.

The crucial step is the reduction of the round encoding space. While several
reduction attacks to CEJO implementations have been published, only three
generic reduction attacks (i.e., considering a broad class of ciphers) have been
proposed. Michiels et al. proposed the first reduction attack [33], composed of one
algorithm to remove the non-linear part of the encodings and another algorithm
to partially recover the remaining affine encodings. Baek et al. generalized the
algorithm to remove the non-linear part of the encodings [3] and Derbez et al.
improved the recovering of the affine encodings by an efficient algorithm to
solve affine equivalence problems of S-box layers [17]. The following proposition
illustrates the reach of current generic reduction attacks, proved in Appendix A.

Proposition 1. Let Ek be the encryption function of an n-bit SPN cipher with
linear layer LL and S-box layer SL consisting of m-bit cryptographic S-boxes,
and let Ek be a CEJO implementation of Ek with mn-bit non-linear encodings
and ml-bit linear encodings. Given black-box access to three consecutive encoded

round functions E(r−2), E(r−1) and E(r), one can find another encoded E(r) with
round encoding space LL ◦ LSE(SL), i.e.,

Ê(r) = Ô ◦ E(r) ◦ Î , Î , Ô−1 ∈ LL ◦ LSE(SL) ,

in time O
(
(n/mn)2

3mn + 2mn3 + n4/m+ 22mmn2
)
.

As a result, given a CEJO implementation of an SPN cipher, we can find
another encoded implementation where the round encoding space has been re-
duced to LL ◦ LSE(SL). This reduction attack is efficient for practical CEJO
implementations, since the complexity of Proposition 1 is similar to the memory
complexity of a CEJO implementation.

For white-box implementations of AES, several reduction attacks have been
proposed that reduced the round encoding space to a single element [6,27,17].



However, no generic attack has been proposed reducing the round encoding space
further than Proposition 1. This round encoding space is strongly related to the
self-equivalence set of the S-box layer. In the next section, we introduce a class of
white-box implementations where the round encodings are sampled at random
from the self-equivalences set of the S-box layer and analyse their security.

4 Self-Equivalence Implementations

In [32], McMillion et al. considered a white-box implementation of AES where the
round encodings were self-equivalences of the S-box layer and showed it was inse-
cure. However, this type of encodings has not been considered for other ciphers,
nor their generic security have been addressed. In this section, we introduce and
analyse self-equivalence implementations, a particular class of white-box imple-
mentations based on self-equivalence encodings.

As opposed to encoded implementations, self-equivalence implementations
only encode the affine part of the round function. Given an encryption function
Ek = E(nr) ◦ · · ·E(1) of an SPN cipher with round function E(r) = LL ◦ SL ◦ ⊕k(r) ,
we define the intermediate affine layers by

AL(r) = ⊕k(r) ◦ LL , r = 2, . . . , nr

and the first and last layer affine layers by AL(1) = ⊕k(1) and AL(nr+1) =
LL. Although affine layers depends on the round keys, we omit the round-key
subscript for ease of notation. Note that the rth affine layer includes the round
key of the rth round but the linear layer of the previous round. The first and
last affine layers might be defined differently if the SPN cipher defines the first
and last round in a different way.

Definition 7. Let Ek be the encryption function of an SPN cipher. A self-
equivalence implementation is an encoded Ek given by

Ek = AL(nr+1) ◦ SL ◦AL(nr) ◦ SL ◦AL(nr−1) ◦ · · · ◦AL(2) ◦ SL ◦AL(1) ,

where the intermediate encodings of the affine layers are self-equivalences of the
S-box layer, i.e.,

AL(r) = O(r) ◦AL(r) ◦ I(r) , (O(r), I(r+1)) ∈ SE(SL) ,

and the external encodings (I(1), O(nr)) are affine permutations.

The last affine layer is not encoded since it is not key-dependent. The inter-
mediate encodings are cancelled due to the self-equivalence property, i.e.,

AL(r+1) ◦ SL ◦AL(r) = O(r+1) ◦AL(r+1) ◦ (I(r+1) ◦ SL ◦O(r)) ◦AL(r) ◦ I(r)

= O(r+1) ◦AL(r+1) ◦ SL ◦AL(r) ◦ I(r) .



Similar to encoded implementations, the intermediate encodings are called the
round encodings, and the subgroup of self-equivalences from which the round
encodings are sampled at random is called the round encoding space E ≤ SE(SL).

Self-equivalence implementations can be implemented in software in a simple
and efficient way. An encoded affine layer can be implemented by a single n× n
binary matrix and an n-bit constant, requiring O(n2 + n) bits of memory and
O(n2/ log2 n) bit operations to evaluate [1]. In addition, the S-box layer does not
need to be protected, and there are no restrictions on the bit-size of the S-boxes.

A CEJO implementation can be efficiently transformed into a self-equivalence
implementation following Proposition 1, and a self-equivalence implementation
can be considered as a CEJO implementation with n-bit linear encodings by
defining the encoded round function as

E(r) = SL ◦AL(r) =
(
LL ◦ I(r+1)

)−1

◦ E(r) ◦ (LL ◦ I(r))

While the memory complexity of a CEJO implementation is exponential in terms
of the bit-size of the encodings, self-equivalence implementations can be effi-
ciently implemented in all cases. Therefore, practical CEJO implementations
can be efficiently translated to self-equivalence implementations, but the latter
ones cannot be efficiently transformed to practical CEJO implementations if the
self-equivalences of the S-box layer are not composed of smaller affine permu-
tations. In the next section, we study the self-equivalences of S-box layers and
analyse the case when all the self-equivalences are composed of smaller permu-
tations.

5 Diagonal Self-Equivalences

Let F = F1 ∥ · · · ∥ Fρ be an arbitrary n-bit permutation composed of smaller
m-bit permutations Fi. If (Ai, Bi) is a self-equivalence of Fi for i = 1, . . . , ρ,
then (A1 ∥ · · · ∥ Aρ, B1 ∥ · · · ∥ Bρ) is a self-equivalence of F . In addition, if two
of the smaller permutations (Fi, Fj) are the same, then the transposition (i, j)
is also a self-equivalence of the S-box layer.

Definition 8. A (m× ρ)-bit linear permutation P is called an [m, ρ]-block per-
mutation if P (x1, . . . , xρ) = (xπ(1), . . . , xπ(ρ)) for some permutation π of {1, . . . , ρ}.
We denote the set of block permutations by Pm,ρ.

In particular, if all the small permutations Fi are the same, then the set

D =

{(
(A1 ∥ · · · ∥ Aρ) ◦ P, P−1 ◦ (B1 ∥ · · · ∥ Bρ)

)
:
(Ai, Bi) ∈ SE(Fi)

P ∈ Pm,ρ

}
is a subgroup of SE(F ). In some cases, the set D contains all the self-equivalences
of F . For example, De Mulder et al. [16] computed all the linear self-equivalences
of S ∥ S, where S is the AES S-box, and found that all the right (resp. left)
linear self-equivalences have a diagonal shape of the form(

A1 0
0 A2

)
,

(
0 A1

A2 0

)
,



where A1 and A2 are right (resp. left) linear self-equivalence of S.
Unfortunately, it is not known in which cases the subgroup D is the total

self-equivalence group SE(F ). To consider also functions F = F1 ◦ · · · ◦ Fρ with
different permutations Fi, we define diagonal self-equivalences as follows.

Definition 9. Let F = F1 ∥ · · · ∥ Fρ be an n-bit permutation composed of m-bit
permutations Fi. An (affine) diagonal self-equivalence (A,B) of F is a pair of
n-bit affine permutations (A,B) ∈ SE(F ) such that

A = (A1 ∥ · · · ∥ Aρ) ◦ P , B = P−1 ◦ (B1 ∥ · · · ∥ Bρ) ,

for some m-bit functions Ai and Bi and some [m, ρ]-block permutation P .

The set of diagonal self-equivalences is a subgroup of SE(F ), and it includes
D when all Fi are the same. Moreover, if (A,B) is a diagonal self-equivalence,
then Ai and Bi are permutations and the matrices corresponding to Lin(A) and
Lin(B) are diagonal block matrices up to some permutation of the blocks, i.e.,

Lin(A) =

Lin(A1)
. . .

Lin(Aρ)

× P .

The property of having non-diagonal self-equivalences is not invariant in the
affine class. However, if we consider the subgroup of affine permutations Q =
{Q1 ∥ · · · ∥ Qρ : Qi ∈ AGLm}, then F has non-diagonal self-equivalences if and
only if Q′ ◦ F ◦Q has non-diagonal self-equivalences, for all Q,Q′ ∈ Q.

The main result of this section is Theorem 1, which shows that in order
to have non-diagonal self-equivalences a function F must have additive self-
equivalences, linear components and several linear structures. We first introduce
these concepts before stating the theorem.

Given an (n,m)-bit function G, we denote by (G1, . . . , Gm) the canonical
or coordinate components of G, that is, G(x) = (G1(x), . . . , Gm(x)). The set of
(Boolean) components of G can be defined as the set of n-bit Boolean functions
given by the linear combinations of the canonical components of G, i.e.,{

m∑
i=1

aiGi | (a1, . . . , am) ∈ Fm
2

}
.

Excluding the trivial component defined by (a1, . . . , am) = (0, . . . , 0), we say that

r components
∑

i a
(1)
i Gi, . . . ,

∑
i a

(r)
i Gi are linear independent if the F2-vectors

(a(1), . . . , a(r)) are linear independent.
An additive self-equivalence of an (n,m)-bit function G is a pair of functions

(⊕a,⊕b), where a is an n-bit constant and b is an m-bit constant, such that
G = ⊕b ◦G ◦⊕a. For Boolean functions, this notation coincides with the notion
of linear structure [19], while for vectorial Boolean functions the notion of linear
structure is weaker.



Definition 10. Let G : Fn
2 → F2 be a Boolean function. An n-bit vector a is

called a linear structure of G if there exists a bit b such that ⊕b ◦G = G ◦ ⊕a.

Definition 11. Let G be an (n,m)-bit function. An n-bit vector a is a linear
structure of G if a is a linear structure of some canonical component of G.

Any (vectorial) Boolean function has the trivial linear structure a = 0 and
the trivial additive self-equivalence (⊕0,⊕0). We are now ready to state the main
result of this section.

Theorem 1. Let F = F1 ∥ · · · ∥ Fρ be an n-bit permutation, where each Fi is
an m-bit permutation. If F has a non-diagonal self-equivalence, then F contains
three permutations (Fi, Fj , Fh), j ̸= h, such that

(a) Fi has a non-trivial additive self-equivalence.
(b) Fj has a non-trivial linear component.
(c) Fh has 2m−r linear structures that are common to r linear independent com-

ponents, for some 0 < r < m.

The proof of Theorem 1 is presented in Appendix B. Note that if Fi = Fh,
then the condition (c) is redundant since (a) would imply (c). However, if Fi = Fj

neither (a) implies (b) nor vice-versa.
We checked for each 4-bit affine class Ci whether Ci ∥ Ci has a non-diagonal

self-equivalence. Using the list of 4-bit affine classes by De Cannière [15], we
found that only the last 8 classes C293, C294, . . . , C301 have non-diagonal self-
equivalences when concatenated with themselves. These classes are actually the
only ones that have both additive self-equivalences and linear components, show-
ing that the necessary conditions of Theorem 1 are also sufficient for this case.

Cryptographically strong S-boxes do not have non-trivial linear components
or additive self-equivalences, since they correspond to linear approximations and
differentials with probability one, respectively. Most SPN ciphers employ S-box
layers SL given by the concatenation of a single cryptographically strong S-box
S, and for this case we can characterize the self-equivalence group of SL as
follows.

Corollary 1. Let S be an m-bit permutation without non-trivial additive self-
equivalences or linear components, and consider the (m × ρ)-bit permutation
SL = S ◦ · · · ◦ S. Then, the self-equivalence group of SL is given by

SE(SL) =

{(
(A1 ∥ · · · ∥ Aρ) ◦ P, P−1 ◦ (B1 ∥ · · · ∥ Bρ)

)
:
(Ai, Bi) ∈ SE(S)

P ∈ Pm,ρ

}
.

In addition, |SE(SL)| = ρ!× | SE(S)|ρ.

While we apply the study of diagonal self-equivalences and Theorem 1 for
the security analysis of self-equivalence implementations, they can also be of
independent interest. For example, Theorem 1 can be used to characterize and
count the number of solutions of affine equivalence problems G = Y ◦ F ◦ X
where F is given by the concatenation of cryptographically strong S-boxes.



6 Security of Self-Equivalence Implementations

In this section, we analyse the security of self-equivalence implementations against
key-extraction attacks in the white-box model. Similar to CEJO implementa-
tions, self-equivalence implementations do not aim to prevent attacks inverting
the implementation. Moreover, it is assumed that the specifications of the block
cipher and the self-equivalence implementation are public, but the key and the
encodings are unknown to the adversary.

In a self-equivalence implementation the round key material is hidden in the
encoded affine layer, given as a binary constant and a binary matrix; the binary
constant masks the round key with the round encodings and the binary matrix
masks the linear part of the input and output encodings with each other. If many
pairs of round keys and self-equivalences lead to the same encoded affine layer,
each encoded affine layer is individually secure and the adversary is forced to
solve a disambiguation problem involving several rounds.

Since CEJO encodings can be reduced to self-equivalence encodings, several
white-box attacks [6,27,17] on CEJO implementations of AES contain steps to
disambiguate diagonal self-equivalence encodings. However, they exploit specific
properties of AES, and no generic attack on self-equivalence encodings, or even
diagonal encodings, have been proposed this far.

To analyse the security of self-equivalence encodings, we describe the first
generic attack on self-equivalence implementations. Since this is the first generic
analysis, we focus on the class of SPN ciphers where the S-box layer does not
have both a non-trivial additive self-equivalence and a linear component. Oth-
erwise, the S-box layer will have a differential and a linear approximation with
probability one, which are usually avoided in most SPN designs.

As most white-box attacks, our generic attack is a reduction attack. In other
words, we describe a method to obtain new encoded affine layers for which
the round encodings are restricted to a smaller encoding space. Afterwards,
the key can be recovered by performing an exhaustive search over the reduced
encoding space and filtering wrong candidates using the key schedule. Thus, the
complexity of the key-recovery attack is given by the complexity to reduce the
round encoding space and the complexity to brute force the reduced encoding
space, where the latter step is lower bounded by the cardinality of the reduced
encoding space.

The reduction step is based on equivalence problems involving the linear
part of the round encodings with small solution sets, inspired from the white-
box attacks on AES [6,27,17]. These equivalence problems consider unknowns
restricted to some self-equivalence subgroup of the S-boxes, and estimating the
complexity of these problems highly depends on the structure of the subgroup.
Thus, our complexity metric is the cardinality of the reduced round encoding
space, which provides a lower bound of the complexity of the whole attack.

Before we describe the attack, we recall the notation and the components
of a self-equivalence implementation. Let Ek be the encryption function for a
fixed key k of an arbitrary SPN cipher whose S-box layer SL does not have a
non-trivial additive self-equivalence or a linear component. Let Ek be a self-



equivalence implementation of Ek with encoded affine layers AL(1), . . . , AL(nr).

Recall the rth intermediate encoded affine layer is defined by AL(r) = O(r) ◦
(⊕k(r) ◦ LL) ◦ I(r) , where k(r) is the rth round key, LL is the linear layer and
(I(r), O(r)) are the round encodings satisfying (O(r), I(r+1)) ∈ SE(SL).

For this class of SPN ciphers all the self-equivalences of the S-box layer
are diagonal, following Theorem 1. For ease of explanation, we will consider
diagonal self-equivalences without block permutations, since they do not signif-
icantly impact the reduction step. In this case, the round encoding space of the
self-equivalence implementation is SE(S1) ∥ · · · ∥ SE(Sρ). Figure 3 depicts an
intermediate encoded affine layer with this type of round encoding space.

I1

Iρ ⊕kρ

O1

Oρ

LL

⊕k1

...
...

...

⊕k2I2 O2

Fig. 3. An encoded affine layer with diagonal self-equivalence encodings.

Given an intermediate3 encoded affine layer AL(r), the core step in the re-
duction attack is to obtain another encoded affine layer differing only in the ith
block of the output encoding, i.e.,

ÂL(r) = O′(r) ◦AL(r) ◦ I(r) , O
′(r)
h = O

(r)
h ∀h ̸= i ,

such that Lin(O
′(r)
i ) belongs to a proper subgroup of Lin(RSE(Si)). The encoding

space of the whole round encoding (I(r), O(r)) can be then reduced by applying

this step for all output encoding blocks of AL(r) and AL(r−1) and using the
self-equivalence property SL = I(r) ◦ SL ◦O(r−1).

The reduction of the linear part of the output encoding is based on equiva-
lence problems, and we do not reduce the constant part of the round encodings
to avoid equivalence problems dependent on the round key. Recall an affine (resp.
linear) equivalence problem is a functional equation G = Y ◦F ◦X where F and
G are given n-bit functions and (X,Y ) are unknown n-bit affine (resp. linear)
permutations. In our case, the unknowns (X,Y ) are restricted to some given
subgroup A× B; given any solution (X0, Y0) the solution set is the group

S = {(A ◦X0, Y0 ◦B) : (A,B) ∈ SE(F ) ∩ (A× B)} .
3 The attack does not target the external encodings, which are assumed to be random
affine permutations. Note that a self-equivalence implementation without external
encodings is trivially insecure.



We will describe two generic classes of equivalence problems that contain the
output round encoding as a particular solution, and we will reduce the round en-
coding space to their solution sets. These two classes of equivalence problems, the
centralizer and the asymmetric problems, can be combined and do not assume
any particular structure in the self-equivalences groups of the S-boxes. However,
other equivalence problems can be considered by exploiting specific properties
of the self-equivalence groups. As an example, we will also describe a class of
linear equivalence problems for S-boxes with only linear self-equivalences.

6.1 The Centralizer Problems

The centralizer problems are a class of univariate linear equivalence problems
that allow reducing the round encoding space to the centralizer of linear layer
blocks. Since these equivalence problems only involve the encoded affine layer of
one round, we omit the round superscript for these problems.

Given an (m×ρ)-bit linear function A, recall that we denote by Ai,j the (i, j)
m-bit block of A seen as a block matrix. Moreover, the centralizer of an n-bit
function F is defined as C(F ) = {A ∈ GLn : A ◦ F = F ◦ A}. The centralizer
problems are based on the following proposition, which is proved in Appendix C.

Proposition 2. Let AL = O ◦AL ◦ I be the encoded affine layer of an interme-
diate round and consider the linear layer block L = LLi,j ◦

(
LL−1

)
j,i
. Then, the

univariate linear equivalence problem,

Lin
(
AL

)
i,j

◦ Lin
(
AL

−1
)
j,i

= X ◦ L ◦X−1 , X ∈ Lin(RSE(Si)) , (1)

contains X0 = Lin(Oi) as a solution. In particular, its solution set is given by

S = Lin(Oi) ◦
(
C(L) ∩ Lin(RSE(Si))

)
.

Without the restriction X ∈ Lin(RSE(Si)), a solution of Eqn. (1) could be
easily obtained with complexity O(mω), for 2 < w < 3. However, the restric-
tion makes the complexity harder to estimate, which strongly depends on the
structure of Lin(RSE(Si)). In general, one can perform an exhaustive search over
Lin(RSE(Si)) using the algorithm of Biryukov et al. [8]; the complexity of this
approach is at least 23m and is also lower bounded by |Lin(RSE(Si))|.

Let X0 = Lin(Oi)◦H be an arbitrary solution of Eqn. (1), for some unknown
H ∈ C(L) ∩ Lin(RSE(Si)). Since X0 ∈ Lin(RSE(Si)), there exists an m-bit
constant x0 such that ⊕x0

◦X0 ∈ RSE(Si). Let C = (C1 ∥ · · · ∥ Cρ) be the right
self-equivalence of SL where Ci = (⊕x0

◦X0)
−1 and Ch = Id ∀h ̸= i. Then, we

can obtain another encoded affine layer

ÂL = C ◦AL = O′ ◦AL ◦ I , O′
h = Oh ∀h ̸= i ,

with (unknown) self-equivalences as round encodings and that only differs in the
ith block of the output encoding. In addition, the linear part of O′

i is restricted
to the subgroup Lin(RSE(Si)) ∩ C(L).



In other words, the centralizer problem given by Eqn. (1) allows reducing the
encoding space associated to the linear part of the ith output encoding block,
Lin(RSE(Si)), to the subgroup Lin(RSE(Si))∩C(L). Note that this subgroup is
related to the self-equivalences of the linear layer blocks, showing that the secu-
rity of self-equivalence implementations not only depends on the self-equivalences
of the S-box layer but also on the self-equivalence structure of the linear layer.

If L is the identity or its matrix representation over F2 has low rank, its
centralizer contains too many elements and the reduction is not significant. Nev-
ertheless, we can consider similar equivalence problems involving other blocks of
AL and LL. In general, any sequence of the form

A = Ai1,j1Aj1,i2 · · ·Ais,jsAjs,is+1 , i1 = is+1

Aih,jh ∈
{
Lin(AL)ih,jh ,

(
Lin

(
AL−1

)
ih,jh

)−1
}

Ajh,ih+1
∈
{
Lin

(
AL−1

)
jh,ih+1

,
(
Lin(AL)ih+1,jh

)−1
}

leads to a centralizer problem of the form A = Lin(Oi1) ◦ L ◦ Lin(Oi1)
−1, for

some L composed of blocks of LL. In Appendix E we provide an example of
a centralizer problem to reduce the round encoding space of a self-equivalence
implementation of AES.

6.2 The Asymmetric Problems

The asymmetric problems are a class of affine equivalence problems that allow
reducing the round encoding space to the intersection between the right and left
self-equivalence groups of the S-boxes. As in the centralizer problems, we omit
the round superscript for ease of notation. The asymmetric problems are based
on the following proposition, whose proof is given in Appendix D.

Proposition 3. Let AL = O ◦AL ◦ I be the encoded affine layer of an interme-
diate round. Then, the affine4 equivalence problem

Lin
(
AL

)
i,j

◦ Sj = X ◦ LLi,j ◦ Sj ◦ Y , Lin(X) ∈ Lin(RSE(Si)) (2)

contains a solution (X0, Y0) such that Lin(X0) = Lin(Oi). In particular, the
linear part of the set of X-solutions SX is given by the GLn-subgroup

Lin (SX) = Lin (Oi) ◦
(
Lin(LSE(LLi,j ◦ Sj)) ∩ Lin(RSE(Si))

)
.

As in the previous case, the complexity to obtain a solution of Eqn. (2)
is harder to estimate and strongly depends on Lin(RSE(Si)). In general, the
algorithm by Biryukov et al. can be used to perform an exhaustive search over
Lin(RSE(Si)) with complexity lower bounded by max(23m, |Lin(RSE(Si))|).

Let (X0, Y0) be an arbitrary solution of Eqn. (2). Then, there exists an H ∈
Lin(LSE(LLi,j ◦ Sj)) ∩ Lin(RSE(Si) satisfying Lin(X0) = Lin (Oi) ◦ H. Let x0

4 If Ij is linear and Sj(0) = 0, then Eqn. (2) is a linear equivalence problem.



be an m-bit constant such that ⊕x0
◦ Lin(X0) ∈ RSE(Si) and consider C =

(C1 ∥ · · · ∥ Cρ) ∈ SE(SL) such that Ci = (⊕x0
◦Lin(X0))

−1 and Ch = Id, ∀h ̸= i.
Then, we can obtain another encoded affine layer with self-equivalence encodings,

ÂL = C ◦AL = O′ ◦AL ◦ I , O′
h = Oh ∀h ̸= i ,

that only differs in the ith block of the output encoding. Moreover, while Lin(RSE(Si))
was the encoding space of Lin(Oi), the encoding space of Lin(O′

i) has been re-
duced to Lin(LSE(LLi,j ◦ Sj)) ∩ Lin(RSE(Si)).

If LLi,j is invertible, note that Lin(LSE(LLi,j ◦ Sj)) is the conjugate of
Lin(LSE(Sj)) by LLi,j , i.e., Lin(LSE(LLi,j ◦Sj)) = LLi,j ◦Lin(LSE(Sj))◦LL−1

i,j .
Thus, this equivalence problem allows reducing the encoding space of the linear
part of the ith output encoding block to the intersection between Lin(RSE(Si))
and a conjugate group of LSE(Sj) by a linear layer block. In Appendix F we
show how an asymmetric problem can completely break a self-equivalence im-
plementation of AES by reducing the encoding space to a set of one element.

Other equivalence problems. The centralizer and the asymmetric problems are
generic equivalence problems that can be considered for any self-equivalence
implementation. However, other equivalence problems can be considered, either
by combining these two or by exploiting specific properties of the self-equivalence
structure of the cipher components.

For example, if all the self-equivalences of the S-box layer are linear, we can
combine the centralizer and the asymmetric problems to obtain

A
(r)
i,i ◦ Si ◦A(r−1)

i,j ◦B(r−1)
j,i ◦ S−1

i ◦B(r)
i,i =

O
(r)
i ◦ LLi,i◦Si ◦ LLi,j ◦

(
LL−1

)
j,i

◦ S−1
i ◦

(
LL−1

)
i,i

◦
(
O

(r)
i

)−1

,

where A(r) = Lin
(
AL(r)

)
and B(r) = Lin

(
AL(r)

)−1

. By considering X = O
(r)
i

as the unknown, we obtain an univariate linear equivalence problem that reduces

the encoding space associated to O
(r)
i to

RSE(Si) ∩ C(LLi,i ◦ Si ◦ LLi,j ◦ (LL−1)j,i ◦ S−1
i ◦ (LL−1)i,i) .

This class of linear equivalence problems can be extended to any number of
rounds, leading to many potential significant reductions.

7 Conclusion

In this document, we analysed the security of self-equivalence encodings. We de-
scribed how a CEJO implementation can be transformed into a self-equivalence
implementation, we characterized the self-equivalences of an S-box layer, and we
propose a generic attack on a self-equivalence implementation of an SPN cipher
with a cryptographically strong S-box layer.



Our generic attack shows that if the cipher components satisfy some prop-
erties, namely linear layer blocks with low rank or with big centralizers and
S-boxes with plenty of affine self-equivalences and with similar left and right
self-equivalences, a self-equivalence implementation resists the generic attack.

While traditional SPN ciphers with cryptographically strong S-box layers,
such as AES, do not satisfy these strong requirements, our analysis reveals the
potential of self-equivalence encodings to secure other types of ciphers. In par-
ticular, our analysis identifies future research directions that can lead to secure
white-box implementations, namely non-diagonal self-equivalence encodings and
self-equivalences implementations of ciphers with weaker round functions.
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A Proof of Proposition 1

Proposition 1. Let Ek be the encryption function of an n-bit SPN cipher with
linear layer LL and S-box layer SL consisting of m-bit cryptographic S-boxes,
and let Ek be a CEJO implementation of Ek with mn-bit non-linear encodings
and ml-bit linear encodings. Given black-box access to three consecutive encoded

round functions E(r−2), E(r−1) and E(r), one can find another encoded E(r) with
round encoding space LL ◦ LSE(SL), i.e.,

Ê(r) = Ô ◦ E(r) ◦ Î , Î , Ô−1 ∈ LL ◦ LSE(SL) ,

in time O
(
(n/mn)2

3mn + 2mn3 + n4/m+ 22mmn2
)
.

Proof. We apply first the algorithm by Baek et al. [3, Theorem 1 and 2] to recover

the non-linear part of the output encodings of E(i), for i ∈ {r−2, r−1, r}. Each
mn-bit non-linear function is recovered up to an affine transformation in time
O
(
(n/mn)2

3mn
)
. As a result, new encoded round functions are obtained,

Ẽ(i) = Õ(i) ◦ E(i) ◦ Ĩ(i) , i ∈ {r − 1, r} , (3)

where the input and output round encodings are unknown affine permutations.

Since Ẽ(r−1) and Ẽ(r) are affine equivalent to the S-box layer SL, the corre-
sponding affine equivalence problems can be solved with the algorithm by Derbez
et al. in time O(2mn3 + n4/m+ 22mmn2) [17, Algorithm 1]. Thus, two pairs of
affine permutations, (A(r−1), B(r−1)) and (A(r), B(r)), are obtained such that

Ẽ(i) = B(i) ◦ SL ◦A(i) , i ∈ {r − 1, r} . (4)

https://whibox-contest.github.io/
https://whibox-contest.github.io/


Combining Eqns. (3) and (4) leads to the functional equation

B(i) ◦ SL ◦A(i) = (Õ(i) ◦ LL) ◦ SL ◦ (⊕k(i) ◦ Ĩ(i)) .

Note that (A(i), B(i)) is not necessarily equal to (⊕k(i) ◦ Ĩ(i), Õ(i) ◦ LL). Never-
theless, there exists a self-equivalence (C(i), D(i)) ∈ SE(SL) such that

A(i) = C(i) ◦ ⊕k(i) ◦ Ĩ(i) ,

B(i) = Õ(i) ◦ LL ◦D(i) .

Finally, by composing Ẽ(r) with the key-independent permutations B(r−1) and
B(r), we can obtain an encoded E(r) with round encoding space LL ◦ LSE(SL),

Ê(r) =
(
B(r)

)−1

◦ Ẽ(r) ◦B(r−1) = (LL ◦D(r))−1 ◦ E(r) ◦ (LL ◦D(r−1)) .

⊓⊔

B Proof of Theorem 1

First, we will introduce some concepts and lemmas connecting the notions of
additive self-equivalences, linear structures and linear components.

Lemma 2. Let G be an n-bit function. Then (⊕a,⊕b) is an additive self-equivalence
of G if and only if a is a linear structure of all canonical components of G.

Proof. The lemma immediately follows from the definition of additive self-equivalence
and linear structure. If (⊕a,⊕b) ∈ SE(G), then ⊕b ◦G = G ◦⊕a, which is equiv-
alent to ⊕bi ◦Gi = Gi ◦ ⊕a for i = 1, . . . , n. ⊓⊔

Given an n-bit Boolean function G, we say that G is independent of the jth
input xj if xj does not appear in the Algebraic Normal Form (ANF) of G, i.e.,
the unique representation of G as an n-variable polynomial over F2. Similarly,
we say that G is linear in xj if all the ANF terms that contains xj are of degree
one. The next lemma shows the connection between independent variables and
additive self-equivalences, previous analysed in [26].

Lemma 3. Let G be an n-bit function and consider the jth canonical n-bit

vector e(j), where e
(j)
i = 0 if and only if i ̸= j. If each canonical component

of G is linear in the jth input xj or independent of xj, then there exists an n-bit
value b such that (⊕e(j) ,⊕b) is an additive self-equivalence of G.

Proof. Let Gi be a canonical component of G. If Gi is linear in xj , note that
Gi(x+ e(j)) = Gi(x)⊕Gi(e

(j)), that is, ⊕Gi(e(j)) ◦Gi = Gi ◦ ⊕e(j) and e(j) is a

linear structure of Gi. Similarly, if Gi is independent of xj , Gi(x+ e(j)) = Gi(x)
and e(j) is also a linear structure of Gi. Therefore, e

(j) is a linear structure of all
canonical components, and by Lemma 2 G has an additive self-equivalence with
e(j) as the right equivalence. ⊓⊔



The last lemma required by the proof of Theorem 1 is the follwing technical
lemma to obtain a “normal form” of block matrices.

Lemma 4. Let A1 and A2 be two m-bit matrices where 0 < rank(A1) ≤ rank(A2).
Let A = (A1|A2) be the block matrix composed of one block row and two block
columns. Then, there exists an invertible (m,m)-bit matrix DA and a block ma-
trix

CA =

(
CA,1 0
0 CA,2

)
,

where CA,1 and CA.2 are invertible (m,m)-bit matrices, such that A′ = DA ×
A× CA is of the form

A′ =

 Idrank(A1)

0
MA

00 Idr 0
0 0


where r = rank(A)−rank(A1) and MA is a (rank(A1), rank(A2))-bit matrix with
full rank, i.e., rank(MA) = rank(A1).

Proof. We will show that we can obtain A′ by doing elementary row operations
(represented by DA) and elementary column operations (represented by CA).
Due to the block diagonal shape of CA, column operations involving both left
columns and right columns are not allowed. Thus, we will employ left (resp. right)
column operations, i.e., elementary column operations only involving the first
(resp. last) m columns. The sequence of elementary operations is the following.

1. With left column operations we can make the last m − rank(A1) columns
on the left side zero. Similarly, on the right side we can make the last m −
rank(A2) columns zero with right column operations, ∗ 0 ∗ 0

∗ 0 ∗ 0
∗ 0 ∗ 0

 .

2. With row operations we can make the last m− rank(A) rows zero, ∗ 0 ∗ 0
∗ 0 ∗ 0
0 0 0 0

 .

3. With row operations we can make the rows (rank(A1) + 1, rank(A)) in the
left part zero, obtaining  A′

1 0 ∗ 0
0 0 ∗ 0
0 0 0 0


where A′

1 is an invertible rank(A1)-bit matrix.



4. With row operations and left column operations, we can replace A′
1 by

Idrank(A1) and obtain  Idrank(A1) 0 ∗ 0
0 0 A′

2 0
0 0 0 0


where A′

2 is a (r, rank(A2))-bit matrix with rank r = rank(A)− rank(A1).
5. With right column operations and row operations involving only the middle

rows, we can replace A′
2 by (Idr |0), Idrank(A1) 0 ∗ 0

0 0 Idr 0 0
0 0 0 0

 .

6. Finally, with right column operations and by adding middle rows to the first
rows, we can obtain  Idrank(A1) 0 MA 0

0 0 Idr 0 0
0 0 0 0


where MA is a (rank(A1), rank(A2))-bit matrix with full rank. ⊓⊔

We are now ready to start with the proof of Theorem 1. The conducting
idea of the proof is that F has a non-diagonal self-equivalence (A,B) if and only
if there is a function F ′, Q-affine equivalent to F , such that F ′ has a simpler
non-diagonal self-equivalence (A′, B′), where many blocks of A′ and B′ are the
identity. We will extract some Q-invariant necessary conditions to have a non-
diagonal self-equivalence from F ′, and we will translate them to F .

Theorem 1. Let F = F1 ∥ · · · ∥ Fρ be an n-bit permutation, where each Fi is
an m-bit permutation. If F has a non-diagonal self-equivalence, then F contains
three permutations (Fi, Fj , Fh), j ̸= h, such that

(a) Fi has a non-trivial additive self-equivalence.
(b) Fj has a non-trivial linear component.
(c) Fh has 2m−r linear structures that are common to r linear independent com-

ponents, for some 0 < r < m.

Proof. Let (A,B−1) be an arbitrary non-diagonal self-equivalence of F . Then,
B ◦ F = F ◦ A and Lin(A) contains two non-zero blocks in the same row, i.e.,
Lin(A)i,j and Lin(A)i,h for some i, j, h. Note that i could be equal to j or h but
j ̸= h.

By evaluating B ◦ F = F ◦ A at (x1, . . . , xρ), where xk = 0, ∀k ̸= j, h, we
obtain the following equations for the ith row:

c′ ⊕ Lin(B)i,j(Fj(xj)) = Fi(Lin(A)i,j(xj)⊕ c) , ∀xj ∈ Fm
2 ,

c′′′ ⊕ Lin(B)i,h(Fj(xh)) = Fi(Lin(A)i,h(xh)⊕ c′′) , ∀xh ∈ Fm
2 ,



for some constants c, c′, c′′, c′′′. Thus, it is easy to see that Lin(B)i,j and Lin(B)i,h
have the same rank as Lin(A)i,j and Lin(A)i,h, respectively.

We will consider two cases depending on whether the blocks Lin(A)i,j and
Lin(A)i,h have full rank.

Case 1: Lin(A)i,j and Lin(A)i,h are invertible. In this case, consider a diagonal
self-equivalence (C,D−1) = (C1 ∥ · · · ∥ Cρ, D

−1
1 ∥ · · · ∥ D−1

ρ ) ∈ SE(F ) satisfying

(Lin(Cj),Lin(Dj)) = (Lin(A)−1
i,j ,Lin(B)−1

i,j ) ,

(Lin(Ch),Lin(Dh)) = (Lin(A)−1
i,h ,Lin(B)−1

i,h) ,

Ck = Dk = Id , ∀k ̸= j, h .

Thus, (A ◦ C,D−1 ◦B−1) is a non-diagonal self-equivalence which satisfies

Lin(A ◦ C)i,j = Lin(A ◦ C)i,h = Lin(B ◦D)i,j = Lin(B ◦D)i,h = Id .

By evaluating (B ◦D)◦F = F ◦ (A◦C) at (x1, . . . , xρ), where xk = 0, ∀k ̸= j, h,
we obtain the following equation for the ith row:

c′ + Fj(xj)⊕ Fh(xh) = Fi(xj + xh + c) , ∀xj , xh ∈ Fm
2 , (5)

for some constants c, c′. Equation 5 implies that Fi is linear, since the left-hand
side of the equation does not contain ANF terms multiplying xj and xh bits.
But then Fj and Fh are also linear, and the conditions (a), (b), and (c) hold for
Case 1.

Case 2: Lin(A)i,j or Lin(A)i,h is non-invertible. Consider the block matrices

A† = (Lin(Ai,j)|Lin(Ai,h)) ,

B† = (Lin(Bi,j)|Lin(Bi,h)) .

Without loss of generality, we assume 0 < rank(Lin(A)i,j) ≤ rank(Lin(A)i,h) and
rank(A†)−Lin(A)i,j > 0. Let rj and rh be the rank of Ai,j and Ai,h, respectively,
and let r = rank(A†)− rj .

According to Lemma 4 there exist invertible m-bit matrices DA and DB and
2m-bit block matrices CA and CB such that

A′ = DA ×A† × CA =

 Idrj
0

MA

00 Idr 0
0 0


B′ = DB ×B† × CB =

 Idrj
0

MB

00 Idr 0
0 0


where MA and MB are (rj , rh)-bit matrices with full rank.



By evaluating B ◦ F = F ◦ A at (x1, . . . , xρ), where xk = 0, ∀k ̸= j, h, we
obtain the following equation for the ith row:

c′ +B†(Fj(xj), Fh(xh)) = Fi

(
A†(xj , xh) + c

)
, ∀xj , xh ∈ Fm

2 ,

for some constants c and c′. For ease of notation, we will consider the constants
c and c′ to be zero; the generalization of the proof for arbitrary values of c and
c′) is straightforward.

By substituting A† = D−1
A ×A′×C−1

A , B† = D−1
B ×B′×C−1

B and (xj , xh) =
CA(x

(j), x(h)), we obtain

B′((C−1
B,1 ◦ Fj ◦ CA,1)(x

(j)), (C−1
B,2 ◦ Fh ◦ CA,2)(x

(h))
)

= (DB ◦ Fi ◦D−1
A )(A′(x(j), x(h)))

∀x(j), x(h) ∈ Fm
2 .

Let F (i), F (j) and F (h) be the m-bit permutations affine equivalent to Fi, Fj

and Fj , respectively, given by

F (i) = DB ◦ Fi ◦D−1
A

F (j) = C−1
B,1 ◦ Fj ◦ CA,1

F (h) = C−1
B,2 ◦ Fh ◦ CA,2 .

Then, we can rewrite the previous equation as follows,

B′(F (j)(x(j)), F (h)(x(h))
)
= F (i)

(
A′(x(j), x(h))

)
, ∀x(j), x(h) ∈ Fm

2 . (6)

Given an m-bit function G with canonical components (G1, G2, . . . , Gm), let
Ga,b be the (m, b−a+1)-bit function given by Ga,b = (Ga, Ga+1, . . . , Gb). Simi-
larly, given anm-bit variable x = (x1, . . . , xm) we denote xa,b = (xa, xa+1, . . . , xb).
Then, Eqn. (6) can be decomposed into the following three equations:

F
(j)
1,rj

(x(j)) + MB

(
F

(h)
1,rh

(x(h))
)
= F

(i)
1,rj

(y) , (7a)

0 + F
(h)
1,r (x

(h)) = F
(i)
rj+1,rj+r(y) , (7b)

0 + 0 = F
(i)
rj+r+1,m(y) . (7c)

where y = A′(x(j), x(h)) = (x
(j)
1,rj

+MA(x
(h)
1,rh

), x
(h)
1,r , 0). Note that MA(x

(h)
1,rh

) fully

spans Frj
2 and that the first rj bits of y contain bits from both x(j) and x(h).

In Eqn. (7a) the left-hand side does not contain ANF terms multiplying x(j)

and x(h) bits. Therefore, F
(i)
1,rj

is linear in the first rj inputs, which implies that

F
(j)
1,rj

is linear.

From Eqn. (7b) and Eqn. (7c) we can deduce that F
(i)
rj+1,m is independent of

the first rj input bits. Therefore, F (i) has at least 2rj additive self-equivalences
by Lemma 3.



Finally, Eqn. (7b) also implies that F
(h)
1,r is independent of the last m − r

inputs. Equivalently, F (h) has at least 2m−r linear structures that are common
to r independent components following Lemmas 2 and 3.

As a result, if F has a non-diagonal self-equivalence, we have obtained the
following necessary conditions, for 1 ≤ rj , r < m.

– F (i) has at least 2rj additive self-equivalences.

– F (j) has at least rj linear independent components that are linear.

– F (h) has at least 2m−r linear structures that are common to r independent
components.

It is easy to see that these three properties are invariant in the class Q ◦ F ◦ Q.
Therefore, Fi, Fj and Fh verify the same properties, which concludes the proof.

⊓⊔

C Proof of Proposition 2

Proposition 2. Let AL = O ◦AL ◦ I be the encoded affine layer of an interme-
diate round and consider the linear layer block L = LLi,j ◦

(
LL−1

)
j,i
. Then, the

univariate linear equivalence problem,

Lin
(
AL

)
i,j

◦ Lin
(
AL

−1
)
j,i

= X ◦ L ◦X−1 , X ∈ Lin(RSE(Si)) ,

contains X0 = Lin(Oi) as a solution. In particular, its solution set is given by

S = Lin(Oi) ◦
(
C(L) ∩ Lin(RSE(Si))

)
.

Proof. Note that the linear blocks of the encoded affine layer are defined as

Lin
(
AL

)
i,j

= Lin(Oi) ◦ LLi,j ◦ Lin(Ij) .

The input encoding can be removed by composing with the inverse of the encoded
affine layer, obtaining the equation

Lin
(
AL

)
i,j

◦ Lin
(
AL

−1
)
j,i

= Lin(Oi) ◦ LLi,j ◦
(
LL−1

)
j,i

◦ Lin(Oi)
−1

where the only secret information is Lin(Oi). Thus, the univariate linear equiv-
alence problem

Lin
(
AL

)
i,j

◦ Lin
(
AL

−1
)
j,i

= X ◦ LLi,j ◦
(
LL−1

)
j,i

◦X−1

with unknown X ∈ Lin(RSE(Si)) has Lin(Oi) as particular solution. ⊓⊔



D Proof of Proposition 3

Proposition 3. Let AL = O ◦AL ◦ I be the encoded affine layer of an interme-
diate round. Then, the affine equivalence problem

Lin
(
AL

)
i,j

◦ Sj = X ◦ LLi,j ◦ Sj ◦ Y , Lin(X) ∈ Lin(RSE(Si))

contains a solution (X0, Y0) such that Lin(X0) = Lin(Oi). In particular, the
linear part of the set of X-solutions SX is given by the GLn-subgroup

Lin (SX) = Lin (Oi) ◦
(
Lin(LSE(LLi,j ◦ Sj)) ∩ Lin(RSE(Si))

)
.

Proof. Let AL = AL(r) be the encoded affine layer of the rth round. From the
definition of encoded affine layer and the self-equivalence property

I
(r)
j ◦ Sj = Sj ◦

(
O

(r−1)
j

)−1

,

it is easy to show that there exists a constant c such that

Lin
(
AL(r)

)
i,j

◦ Sj = ⊕c ◦ Lin
(
O

(r)
i

)
◦ LLi,j ◦ Sj ◦

(
O

(r−1)
j

)−1

.

Thus, we can consider the affine equivalence problem

Lin
(
AL(r)

)
i,j

◦ Sj = X ◦ LLi,j ◦ Sj ◦ Y .

whereX and Y are unknown affine permutations such that Lin(X) ∈ Lin(RSE(Si)).
If (X0, Y0) is an arbitrary solution, then the solution set S is given by

S = {(X0 ◦B,A ◦ Y0) : (A,B) ∈ SE(LLi,j ◦ Sj), Lin(B) ∈ Lin(RSE(Si))} .

Since ⊕c ◦ Lin(O
(r)
i ) is a particular X-solution, the linear part of the set of

X-solutions is given by the GLn-subgroup

Lin (SX) = Lin
(
O

(r)
i

)
◦
(
Lin(LSE(LLi,j ◦ Sj)) ∩ Lin(RSE(Si))

)
. ⊓⊔

E Example of the Centralizer Problem

We will show the application of a centralizer problem to reduce the round en-
coding space of a self-equivalence implementation of AES.

Let F28 be the finite field used in AES and let Pd be the 8-bit function
corresponding to the power function x 7→ xd in F28 and Mα be the 8-bit function
corresponding to the multiplication x 7→ α× x by an F28-constant α. The AES
S-box is an 8-bit function given by S(x) = L(P254(x)) + c, for some linear
permutation L and constant c. Since we can push the S-box constant to the



round key, we can redefine the S-box as S = L ◦ P254, whose self-equivalences
are given by [8]

RSE(S) = {Mα ◦ P2i : 0 ̸= α ∈ F28 , i ∈ {0, . . . , 7}} ,
LSE(S) = {L ◦ (Mα254 ◦ P2i)

−1 ◦ L−1 : 0 ̸= α ∈ F28 , i ∈ {0, . . . , 7}} .

Note that RSE(S) and LSE(S) only consist of linear permutations.

For ease of explanation, we consider the round function restricted to a column
state and omit the action of ShiftRows. Thus, the linear layer LL corresponds
to the action of MixColumns on a column, and its block matrix representation
with 8-bit blocks is given by

LL =


M2 M3 M1 M1

M1 M2 M3 M1

M1 M1 M2 M3

M3 M1 M1 M2

 ,

where M1 denotes the 8-bit identity, and M2 and M3 corresponds to the multi-
plication by 2 and 3 in F28 , respectively.

Let AL = O ◦ ⊕k ◦ LL ◦ I be an intermediate encoded affine layer, where
O = O1 ∥ O2 ∥ O3 ∥ O4 ∈ RSE(S)4. To reduce the encoding space of O1, we can
consider the centralizer problem

Lin
(
AL

)
1,2

◦
(
Lin

(
AL

)
2,1

)−1

= X ◦M3 ◦M−1
1 ◦X−1, X ∈ RSE(S)

with solution set S = O1 ◦ (C(M3) ∩ RSE(S)) following Proposition 2. Since
3 is a primitive element in F28 , the centralizer of M3 is the set of functions
corresponding to the multiplication by non-zero F28 -elements, i.e.,

C(M3) = {Mα : 0 ̸= α ∈ F28} < RSE(S) .

The set RSE(S) only contains 2040 elements, and we can simply brute force
RSE(S) to obtain an arbitrary solution X0 = O1 ◦Mγ , for some unknown Mγ .
Composing C = (X−1

0 ∥ Id ∥ Id ∥ Id) with AL leads to a new encoded AL,

ÂL = C ◦ ÂL = (Mα ∥ O2 ∥ O3 ∥ O4) ◦AL ◦ I ,

where the encoding space of the first block of the output encoding has been
reduced to {Mα : 0 ̸= α ∈ F28}.

While the centralizer problem does not provide a drastic reduction in this
case, it shows how the self-equivalence structure of the linear layer also influences
the success of the reduction. Thus, even if the AES S-box is replaced with another
S-box with more self-equivalences, we can still reduce the encoding space of each
block to {Mα : 0 ̸= α ∈ F28} thanks to the centralizers of the MixColumns
blocks.



F Example of the Asymmetric Problem

We will show how the asymmetric problem can completely break a self-equivalence
implementation of AES by reducing the encoding space to a set of one element.
For ease of explanation, we will apply the asymmetric problem to the reduced
self-equivalence implementation obtained in the previous example, where we ap-
plied the centralizer problem to reduce the encoding space corresponding to the
first block of the output encoding to {Mα : 0 ̸= α ∈ F28}.

Let AL be an intermediate encoded affine layer restricted to a column,

AL = (O1 ∥ O2 ∥ O3 ∥ O4) ◦ ⊕k ◦ LL ◦ (I1 ∥ I2 ∥ I3 ∥ I4) ,

such that O1 ∈ {Mα : 0 ̸= α ∈ F28} < RSE(S). To reduce the encoding space of
O1, we consider the asymmetric problem

Lin
(
AL

)
1,3

◦ S = X ◦M1 ◦ S ◦ Y, X ∈ {Mα : 0 ̸= α ∈ F28}

that contains the particular X-solution O1 according to Proposition 3. It is
easy to see that this asymmetric problem is a linear equivalence problem, since
S(0) = 0 and all the right self-equivalences of S are linear. Thus, the X-solution
set is given by

SX = O1 ◦ (LSE(S) ∩ {Mα : 0 ̸= α ∈ F28}) .

Since this intersection is trivial, i.e., LSE(S) ∩ {Mα : 0 ̸= α ∈ F28} = {Id}, the
asymmetric problem only has one solution.

We can simply perform an exhaustive search over the set {Mα : 0 ̸= α ∈ F28}
containing 255 elements to obtain the unique solution X0 = O1, fully recovering
the first block of the output encoding. Proceeding similarly with the rest of the
output encoding blocks, we can reduce the round encoding space of AL to a
set of one element. Afterwards, the round encodings and the master key can be
recovered easily.
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