
On The Insider Security of MLS

Joël Alwen1, Daniel Jost2?, and Marta Mularczyk3??

1 Wickr, jalwen@wickr.com
2 New York University, daniel.jost@cs.nyu.edu

3 ETH Zurich, Switzerland, mumarta@inf.ethz.ch

Abstract. The Messaging Layer Security (MLS) protocol is a new complex
open standard for end-to-end (E2E) secure group messaging being developed
by the IETF. Its primary security goal is to provide E2E privacy and authen-
ticity for messages in long lived sessions whenever possible. This, despite the
participation (at times) of malicious insiders that can interact with the PKI at
will, actively deviate from the protocol, leak honest parties’ states, and fully
control the network.

The cryptographic core of the MLS protocol (from which it inherits essen-
tially all of its efficiency and security properties) is a Continuous Group Key
Agreement (CGKA) protocol. CGKA protocols provide asynchronous E2E
secure group management by allowing group members to agree on a fresh
independent symmetric key after every change to the group’s state (e.g. when
someone joins/leaves the group).

In this work, we make progress towards a precise understanding of the
insider security of MLS in the form of 3 contributions. On the theory side, we
overcome several subtelties to formulate the first notion of insider security for
a CGKA (or group messaging) protocol. Next, we isolate the core components
of MLS to obtain a CGKA protocol we dubbed Insider Secure TreeKEM
(ITK). Finally, we give a rigorous proof that ITK provides (adaptive) insider
security. In particular, this work also initiates the study of insider secure
CGKA protocols, a primitive of interest in its own right.

? Research supported by the Swiss National Science Foundation (SNF) via Fellowship no. P2EZP2 195410.
Work partially done while at ETH Zurich, Switzerland.

?? Research supported by the Zurich Information Security and Privacy Center (ZISC).

Table of Contents

1 Introduction . 3
1.1 Background and Motivation . 3
1.2 Our Contribution . 4
1.3 Related Work . 7

2 Preliminaries . 8
2.1 Notation . 8
2.2 Universal Composability . 9
2.3 Primitives . 9

3 Continuous Group Key Agreement . 10
3.1 CGKA Syntax . 10
3.2 The Security Model . 11
3.3 PKI Setup . 12
3.4 History Graph . 14
3.5 The CGKA Functionality . 14

4 The Insider-secure TreeKEM Protocol . 18
4.1 Protocol Overview . 18
4.2 Protocol State . 20
4.3 Setup Algorithms . 22
4.4 Protocol Algorithms . 24
4.5 Simplifications and Deviations . 29

5 Security of ITK . 30
5.1 The Safety Predicate for ITK . 30
5.2 Security Statement . 32

6 Proof of Theorem 1: Security of ITK . 33
6.1 Modified GSD Security . 34
6.2 Indistinguishability of Hybrids 3 And 4 . 37
6.3 The Rest of the Hybrids . 43

7 Different Tree-Signing Methods . 45
7.1 Tree Signing of ITK is Suboptimal . 45
7.2 Alternative Tree-Signing: ITK∗ . 45
7.3 Security of ITK∗ . 46

A Preliminaries: Cryptographic Primitives . 50

1 Introduction

1.1 Background and Motivation

A Continuous Group Key Agreement (CGKA) protocol allows an evolving group of users to agree
on a continuous sequence of shared symmetric keys. CGKA protocols are designed to be truly
practical even when used over an adversarial network by large groups of uncoordinated parties
with little, if any, common points of trust.

Therefore, in contrast to older Dynamic Group Key Agreement (DGKA) protocols, CGKA
protocols rely only on asynchronous communication. No assumptions are made about when or for
how long parties are online. Instead, the (untrusted) network is expected only to buffer packets for
each party until they come online again. Thus, all actions the party might wish to take must be
performed non-interactively. What’s more, in contrast to Broadcast Encryption, a CGKA protocol
cannot rely on specially designated parties (like group managers) or trusted third parties (like
a trusted broadcast channel). The only exception is a trusted PKI that binds identities to their
public keys.4

Intuitively, CGKA protocols encapsulate the cryptographic core necessary to build higher-level
distributed and end-to-end (E2E) secure group applications. To this end, any change to the state
of a group (e.g. group members) initiates a new epoch for the session. Each epoch E is equipped
with a fresh, uniform and independent epoch key kE , called the application secret of E, which can
be computed by all group members in E.5 The term “application secret” reflects the expectation
that kE will be used by a higher-level cryptographic application during E. For example, kE might
seed a key schedule to derive (epoch specific) symmetric keys and nonces, allowing group members
in E to use authenticated encryption for exchanging private and authenticated messages during E.
In light of this paradigm, CGKA encapsulates the basic cryptographic task of managing group
membership by providing a continuous stream of private and authenticated symmetric key material
to current group members to build upon.
The Messaging Layer Security Protocol. Probably the most important family of CGKA
protocols today is TreeKEM. An initial version was introduced in [29] followed by a later, more
precise, description in [13]. This was followed by the improved TreeKEMv2 [7]. Finally, the most
recent “propose-and-commit” variant (henceforth: TreeKEMv3) [12] encapsulates much of the
cryptographic core of (the most recent version of) the Messaging Layer Security (MLS) protocol [6].

The MLS protocol is being developed by the IETF and aims to define an open standard for
end-to-end (E2E) secure group messaging, in particular for very large groups (e.g. 50K users).6 MLS
is being developed as a collaboration between cryptographers at numerous academic institutions
around the world as well industry actors including Cloudflare, Cisco, Facebook, Google, Twitter,
Wickr and Wire. Together, they already provide secure messaging services to over 2 billion
users. Moreover, the IETF is currently explicitly soliciting more feedback from the cryptographic
community.
The Security Goal Of MLS. Intuitively, MLS aims to allow for private and authenticated
group communication in the face of a fully adversarial network coordinating with malicious group
members, aka. insiders. We call this (quite ambitious) security goal insider security and, in some
sense, it sets the bar for what we would like to prove for MLS. The goal of this work is to make
substantial progress in this direction.

Clearly, there are limits to what can be achieved against insiders. We can hardly hope for
privacy from a malicious group member as long as they explicitly remain part of the group. Thus,
a more nuanced security goal is to prevent all but the “unavoidable” attacks. Once the insider
has been removed from the group it is reasonable to once again ask for privacy for future epochs.
Similarly, we can still hope for privacy for epochs before they ever explicitly joined the group.
4 In practice, the server distributing idenity/key bindings is often not considered trusted per se. Instead a

trusted PKI is implemented by further equipping participants with tools to perform out-of-band audits
of the responses they receive from the server.

5 In the newest draft of MLS the term “application secret” has been changed to “encryption secret”.
6 More than that though, it serves as a proof-of-concept of the power and practicality of the CGKA-based

protocol design paradigm described above.

3

Passive Security. Due to its complexity, formal analyses of (the different versions of) MLS
have focused on the underlying CGKA protocols. Specifically, the above intuition has given rise to
the (collection of) formal notions known as Forward Secrecy (FS) and Post Compromise Security
(PCS) [21]. FS denotes security of a current epoch despite future compromises while PCS denotes
security of a current epoch despite past compromises. Recently, [1] formalized Post Compromise
Forward Security (PCFS) as the (strictly stronger) combination of the two holding simultaneously;
a current epoch remains secure despite both past and future compromises.

The authors of [1] went on to show that TreeKEMv2 has significantly less than optimal FS. That
is, privacy for a current epoch E can be violated via the compromise of a group member’s local state
during any one of a number of subsequent epochs. Unfortunately, this translates directly into poorer
than hoped for PCFS for MLS. (Their FS/PCFS attacks easily extend to TreeKEMv3/MLS.)

On a more positive note, [1] showed that TreeKEMv2 does satisfy (an obviously sub-optimal)
flavour of PCFS; albeit only against a class of weakly passive adversaries. These may (repeatedly)
leak group members’ local protocol states (including all their key material). However, the network
behaves more or less honestly with the adversary unable to modify or inject packets, and required
to delivery packets in the same order to all parties. That is, he at most may globally delay, drop,
or re-order packets.

A somewhat stronger model was considered by [2] who showed that TreeKEMv2 enjoys PCFS
even against adaptive and strongly passive adversaries. In fact, their adversaries can even learn
(but not modify) the random coins of parties, albeit only in conjunction with a state leakage. An
“adaptive” adversary can decide on its next action depending on its view of the execution thus
far. [2] introduces a general technique for proving adaptive security of TreeKEM-like protocols
(including TreeKEMv2 and TreeKEMv3) with polynomial loss (in the random oracle model).
Moreover, the “strongly passive” adversaries of [2] can leak group members’ states just as in [1]
but can freely re-order, delay, and drop packets per recipient while en-route.7 Still, even in [2] the
network remains authenticated in that the adversary may not modify or inject packets.
Active Security. An active adversary is one which has full control over the network; i.e. it can
inject, modify and delete packets. Even just rigorously defining active security for CGKA protocols
(let alone for group messaging protocols like MLS), has proven to be surprisingly challenging.

The first step in this direction was only recently made in [4]. In particular, they provide 2
real/ideal style definitions capturing adaptive active adversaries that can additionally set the
random coins of honest (and corrupt) parties. (They also consider a third, passively secure notion.)
The active security notions guarantee (slightly different versions of) robustness. More precisely,
weak robustness which ensures that all honest parties accepting some (potentially adversarially
produced) packet p will transition to compatible states; in other words they end up in the same
epoch.

However, as opposed to [2], the notion of [4] also requires optimal security in the intuitive
sense that an adversary should only be able to break the security of epoch keys that the parties it
corrupted could trivially compute themselves. Unfortunately, it is clear that neither TreeKEMv2
nor TreeKEMv3 (nor MLS itself) are optimally secure in this sense 8. (Indeed, to meet their
notions, [4] goes on to introduce 3 new, but impractical, CGKA protocols.)
Insider Security. Active adversaries (as captured in [2]) can choose the coins of corrupt parties
and send arbitrary network packets on their behalf. Yet, there remains one more capability available
to a malicious insider: interacting with the PKI on behalf of the corrupt parties. Thus, security
against active attackers (regardless of details) does not tell us a complete story about insider
security.

1.2 Our Contribution

In a nutshell, this work contains three high-level contributions.
7 Such attacks are sometimes called splitting or forking attacks as they (unavoidably) can be used to

partition the group into subsets that evolve independently of each other.
8 For instance, they allow so-called cross-group attacks where the adversary uses state leakage from one

branch after a forking attack to target another branch.

4

1. On the theory side, we close the gap between active and insider adversaries by formulating the
first security notion considering the latter. Along the way we also provide the strongest security
guarantees to date for new members joining a (potentially adversarially generated) session.

2. Second, we isolate the core features of the full MLS protocol sufficient for encapsulating an
insider secure CGKA protocol which we call Insider Secure TreeKEM (ITK). In particular,
ITK augments TreeKEMv3, with message authentication, “tree-signing”, confirmation keys
and a small part of the MLS’s key schedule.

3. Finally, we formulate and prove the accurate security guarantees provided by ITK in the
presence of malicious insiders and adaptive corruptions, giving strong evidence for the type of
insider security guaranteed by MLS. Along the way we identified three places where security of
MLS (at the time of writing) could be improved by small protocol changes. Fixes for the first
two issues are already incorporated into the standard, and hence included in ITK. The fix for
the last issue related to tree-signing affects deniability, and hence we analyze the improved
security it provides separately.

Defining Insider Security. Though incomplete for our purposes, the notion of weakly robust,
adaptive and active security in [4] serves as a helpful starting point for defining insider security.
Indeed, we extend it to formalize adversaries that can either act as malicious insiders, active
attackers, or attackers leaking state. Technically, capturing the PCS guarantees against the latter
two types is more challenging than one might think at first glance.

To model malicious insiders, one might begin with a model like the one in [28], where temporary
corruption of a party lets the adversary dictate how that party behaves during the corruption. The
issue is that during the corruption the adversary can arbitrary alter the party’s local state. Hence,
at the end of a corruption it would not be clear if and when we can expect the party to return to a
secure state via continued honest protocol execution; a feature mandated by the PCS property
targeted by MLS.9 In other words, modeling insiders this way makes it difficult simultaneously
provide non-trivial PCS guarantees.

Thus we follow [4] by modeling the moment an honest party P becomes a malicious insider P ∗
using an adversary that leaks P ’s state, fully controls honest P ’s network access, can choose P ’s
randomness coins, and (new to this work) can interact with the PKI on behalf of P . Formally, P
continues to be a part of the execution as an honest party, as does P ∗, albeit within the adversary.
This resolves the above conflict, because on the one hand we can now meaningfully ask for a return
to a secure state if/when the adversary lets P participate in the execution again. On the other
hand, we also effectively capture security against P ∗ because we have endowed the adversary with
every possible capability P ∗ could have made use of if we were to make P ∗ more explicit.

With this technique in mind, it remains to flesh out the adversaries interaction with the PKI.
In contrast to prior works, we have opted for a much more detailed and faithful modeling of
MLS’s PKI as described in its architecture document [27]. In more detail, MLS uses two distinct
PKI services: the Authentication Service (AS) for binding identities to their long-term (signature)
keys and the Key Service (KS) which maintains ephemeral public Key Packages that are used to
non-interactively add new members to a group while they are offline. We model the KS as little
more than an untrusted database. For the AS, although we also let the adversary register arbitrary
public keys on behalf of parties, we, intuitively, only expect security for epochs that involve keys
exclusively registered by honest parties (and that have not been leaked to the adversary in the
meantime).

ITK: The Insider Secure CGKA Underpinning MLS. Armed with the above security
notion, we turned to extending TreeKEMv3 with the extra cryptographic machinery applied to
it in MLS. Thus we obtain the insider secure CGKA protocol ITK, implicit in MLS. For this,
we used MLS in its “MLSPlaintext” common packet framing mode; that is where packets are
authenticated and sent over the wire in the clear. Intuitively, the alternative mode (MLSCiphertext)
only improves in terms of meta-data hiding which is outside the scope of this work. Moreover,
9 Indeed, it is not even clear what continued execution would mean when starting from an arbitrary local

state.

5

one can assume that if a protocol is secure when packets are authenticated but sent in the clear
then the same security is obtained by additionally encrypting those packets; the converse being of
course much less clear.

ITK contains the following machinery on top of TreeKEMv3 not analyzed in prior work.

Key Schedule: TreeKEMv3, like any CGKA, provides a stream of symmetric keys. MLS
combines those keys using in a continuous key schedule mixing in the outputs of TreeKEMv3.
ITK includes the core of this key schedule. Intuitively, this serves to translate FS guarantees of
TreeKEMv3 into PCFS guarantees for ITK.

Confirmation Tag: To both guarantee weak robustness and authenticate TreeKEMv3 packets
that initiate a new epoch, ITK extends those packets to include a confirmation tag: a MAC of
the entire CGKA transcript up to and including that packet. The MAC key is derived from
the new epoch’s key schedule, proving knowledge thereof to the receiver (which in turn also
implies knowing the old epoch’s key schedule).

Packet MACing: To extend the same type of authenticity to the remaining protocol packets,
ITK requires them to be MACed using a key derived from the current epoch’s key schedule.

Packet Signing: To authenticate a sender’s identity to a receiver ITK includes singing keys
for each group member as part of the group’s cryptographic state. Protocol packets must be
signed by their sender.

Tree Signing: Tree-singing is a critical (and previously unexplored) part of how MLS tries to
provide meaningful security guarantees to new members when they join a group. In a nutshell,
tree-signing demands that all new public keys added to an ongoing session’s distributed
cryptographic state are signed under a long-term key of the party introducing them. The
signatures are included in the state and are verified by the new member when they join. The
idea is that if a long-term signature key does not belong (or leak) to an insider, then the signed
public keys are honestly generated and we can give additional guarantees to a joining party,
even if they are invited by a malicious insider to an artificial group.

Accurate Security Guarantees of ITK. Our goal was to prove a strong security statement
about the ITK protocol as-is. Below we briefly summarize our main findings.
Issues with MLS with Fixes Incorporated Into the Standard. We discovered two issues,
the fixes for which are now incorporated into MLS [9, 10]:

1. An MLSCiphertext implicitly, via authenticated encryption, provided stronger authentication
than an MLSPlaintext: Forging the former requires the epoch secrets, while forging the latter
requires only the signing key of some member (which may leak in a different context). To bring
the authenticity guarantees in line, we proposed adding a MAC to MLSPlaintexts.

2. The way the transcript hash was computed and included in the confirmation tag lead to
counter-intuitive behavior, where parties think they are in-sync and agree on all current-epoch
secrets, but in fact they are out-of-sync, meaning that they will never progress to the same
next epoch. Our fix has been incorporated into MLS.

Security Guarantees For New Group Members. One of the explicit goals of ITK, in part
achieved by tree-signing, is to provide non-trivial security guarantees to new members joining a
group regardless of who sent the invitation packet. Expressing such guarantees is considered out of
scope in [4], where security is only extended to an (adversarial) epoch E if (roughly speaking) at
least one honest party already in a group accepted the (adversary’s) protocol packet transitioning
to E. Hence, we improve on their definition and formalize the security gained by tree signing.
Tree Signing. In more detail, we prove that the tree-signing mechanism provides the following
security property: a new member P that joins a group (even if invited by a malicious insider)
ends up in a secure epoch if all members with the following types of long-term signature keys are
removed from the group. Either A) the keys are corrupted (i.e., registered by an insider or leaked),
or B) are being used in a different group that itself includes a corrupted signing key.

We believe this to be an unexpectedly weak guarantee. In particular, one might hope that in
any group all epochs without type A) keys are secure. (After all, ITK does mandate that any
secrets introduced into a group’s state be freshly and independently sampled.) Surprisingly, that

6

is not the case. Indeed, requiring the removal of keys of type B) to ensure security is not just an
artifact of our proof. It is relatively easy to construct a scenario where an insider in a real group
G1 with other honest parties and cryptographic state s1 can construct a state s2 for a fake group
G2 such that A) G2 only contains honest members of G1 and B) s2 consists only of a subset of
values introduced to s1 by those honest parties. The upshot is that s2 contains no keys of type A).
Nonetheless, as a member of G1 it is not difficult for the insider to learn some (if not even all) the
secrets in s2.

Intuitively, the reason for this is that (in an effort to achieve better deniability properties) the
signatures in MLS’s/ITK’s tree-signing mechanism authenticate only the introduced public keys,
but nothing about the context they were created for. Crucially, the signatures do not authenticate
which other group members were explicitely sent each new secret key. This leaves the adversary
wiggle room to “cut-and-paste” parts of the group state from different existing groups to produce
plausible (but otherwise artificial) new group states. To mount an attack, the adversary can copy
over keys from a “real” group that were sampled and signed by honest parties who then sent the
corresponding secret keys to the adversary. But in the artificial group state, the adversary instead
arranges things in a way that (erroneously) indicate they were not sent the secret keys. Thus
removing the adversary from that group wont result those keys being refreshed. In other words, the
adversary remains aware of secret keys used by the group even after being kicked out of the group.
Modified Tree Signing. Interestingly, an alternative tree-signing method has been considered
for MLS [30], but rejected due to having worse deniability properties but providing an “unclear” (at
the time) benefit for other security properties. We revisit that method to prove that ITK modified
accordingly does achieve the expected security, namely, all epochs without type A) keys are secure.
Precise PC/FS Guarantees. Following previous works on the security of CGKA [2, 1, 4], we
formalize the precise PCS/FS guarantees provided using a so-called safe predicate — a predicate
that, given a symbolic representation of a CGKA execution and an epoch E, decides whether
the key kE is secure. However, as previous works considered weaker types of adversaries and/or
analyzed protocols with stronger security properties, they got away with formalizing relatively
simple safe predicates of the form “kE is secure if it is not leaked by any single exposure of a party
in epoch E′”. Unfortunately, this is no longer possible for insider security of ITK. In particular, a
combination of exposures might allow computing other keys that were not explicitly leaked. Hence,
our safe predicate takes the form of recursive “deduction rules”, reflecting the adversary collecting
information from different exposures.
Multi-Group Security. Based on [4], our security definition is phrased in the Universal
Composability (UC) framework [17], and it considers a single group, i.e., a single session of ITK.
Intuitively, one would expect that multi-session security follows by the UC composition theorem
if the PKI is modeled as a global (i.e., shared) functionality [18]. Unfortunately, we believe that
(both of the) tree-signing methods considered in this work preclude any hope of using a general
composition theorem this way. In particular, both methods call for parties to sign cryptographic
data without sufficient (or any) binding to the session the material belongs to. This leads to the
potential for reusing said material in concurrent sessions in a way where events in one session
directly affect the security of the other. Therefor we believe multi-session security may instead
have to be (formally) dealt more directly e.g. by considering a multi-session security game. We
leave this for future work.

1.3 Related Work

To date, little formal analysis of (components of) MLS have been made public. Beyond the results
in [2, 1] discussed in the introduction, the only other example we are aware of is the recent work
of [22] analyzing PCS guarantees provided by MLS in the multi-session setting. Surprisingly, they
identify significant inefficiencies in terms of the amount of bandwidth (and computation) required
by a multi-session MLS client to return to a fully secure state after a state leakage. They then
explore the design space of alternative solutions to remedy this issue. 10

10 We are also aware of the work [14] described on https://hal.inria.fr/hal-02425229 analyzing MLS
using automated verification tools but are unfortunately unable to find a public copy of the paper.

7

https://hal.inria.fr/hal-02425229

Besides those implicit in (various versions of) MLS, several other CGKA constructions have
been proposed. The first construction, known as the Asynchronous Ratcheting Tree (ART) protocol,
was introduced by Cohn-Gorden et al. in [20]. The authors showed that (at least for a group with
fixed membership) ART is secure against adaptive and strongly passive adversaries. The security
loss in their proof is exponential in the group size. 11

Not long after ART, the TTKEM protocol was introduced in [2] where it was shown to
enjoy the same security as TreeKEMv2 (at least with regards to adaptive and strongly passive
adversaries). TTKEM is motivated by exhibiting an different computation and cost trade profile
to TreeKEMv2. The authors run experiments comparing TreeKEM variants with TTKEM that
show TTKEM enjoying significant efficiency advantages in some plausible use cases especially
for larger groups (e.g. when groups are managed by a small set of “administrators” in charge
of adding/removing members). Meanwhile, the rTreeKEM construction of [1] greatly improves
on the forward secrecy properties of the TreeKEM family of protocols, albeit by making use of
non-standard (but practically efficient) cryptographic components. The Causal TreeKEM protocol
of Weidner [31] supports concurrent changes to the group state (although it lacks a formal security
analysis). Similarly, the protocol of [15] supports a certain types of concurrency with in a session,
albeit only for groups with fixed membership and in a synchronous communication model.

While the above constructions generally aim for practical efficiency, the three CGKA protocols
in [4], eschew this constraint to instead focus on exploring new mechanisms for achieving the
increasingly stringent security notions introduced in that work. As discussed above, up until results
in our work, the later two were the only constructions known to enjoy security of any kind against
active adversaries. Moreover, along with weak robustness they also introduce the notion of strong
robustness. A strongly robust is a weakly robust CGKA with the following additional property. As
long as one honest party in an epoch E accepts an arbitrary packet p then all other honest parties
currently in E will also accept p (assuming they receive p before some other acceptable packet).
Neither ITK (nor MLS) are strongly robust.12

All CGKA protocols mentioned here lack an analogue of the tree-signing mechanism used by
MLS/ITK.

2 Preliminaries

2.1 Notation

We denote the security parameter by κ and all our algorithms implicitly take 1κ as input. For an
algorithm A, we write A(·; r) to denote that A is run with explicit randomness r. We use v ← x to
denote assigning the value x to the variable v and v ←$ S to denote sampling an element u.a.r.
from a set S.

Data structures. If V denotes a variable storing a set, then we write V +← x and V -← x as
shorthands for V ← V ∪ {x} and V ← V \ {x}, respectively. For vectors x := (x1, . . . , xn) and
y := (y1, . . . , ym) we denote the concatenation by x ++ y = (x1, . . . , xn, y1, . . . , ym) and use
x ++← v as a shorthand for x ← x ++ (v). Moreover, let x.reverse() := (xn, xn−1, . . . , x1) and let
x.indexof(z) denote the smallest i ∈ N such that xi = z (or ⊥ if not such i exists). Finally, let
zip(x, y) := ((x1, y1), . . . , (xn, yn)) if n = m, or ⊥ otherwise. We further make use of associative
arrays and use A[i]← x and y ← A[i] to denote assignment and retrieval of element i, respectively.
Additionally, we denote by A[∗] ← v the initialization of the array to the default value v. In a
slight abuse of notation, for sets of tuples S ⊆ X × Y, we define S[x] := {y | (x, y) ∈ S}, akin to
associative arrays.

For simplicity we moreover use wildcard notation when dealing with sets of tuples and multi-
argument associative arrays. For instance, for an array with domain I × J , we write A[∗, j] :=
{A[i, j] | i ∈ I} and for a set S ⊆ I × J we write (i, ∗) ∈ S as a shorthand for the condition
∃j ∈ J : (i, j) ∈ S.
11 Typically, a quantitative similar security statement with polynomial loss against non-adaptive adversaries

can be inferred using the technique of complexity leveraging.
12 E.g. a malformed (commit) packet can constructed by an insider such that part of the group accepts it

but the rest do not.

8

Keywords. In the pseudocode, we use the following keywords:

– req cond denotes that if the condition cond is false, then the current function unwinds all state
changes and immediately returns ⊥.

– parse (m1, . . . ,mn)← m denotes an attempt to parse a message m as a tuple. If m is not of
the correct format, the current function unwinds all state changes and immediately returns ⊥.

– try y ← ∗func(x) is a shorthand notation for calling a helper ∗func and executing req y 6= ⊥.
– assert cond is only used to describe functionalities. It denotes that if cond is false, then the

given functionality permanently halts, making the real and ideal worlds trivially distinguishable
(this is used to validate inputs of the simulator).

2.2 Universal Composability

We formalize security in the generalized universal composability (GUC) framework [18], an extension
to the UC framework [17]. We moreover use the modification of responsive environments introduced
by Camenisch et al. [16] to avoid artifacts arising from seemingly local operations (such as sampling
randomness or producing a ciphertext) to involve the adversary.

The (G)UC framework requires a real-world execution of the protocol to be indistinguishable
from an ideal world, to an an interactive environment. The real-world experiment consists of the
group members executing the protocol (and interacting with the PKI setup). In the ideal world,
on the other hand, the protocol gets replaced by dummy instances that just forward all inputs and
outputs to an ideal functionality characterizing the appropriate guarantees.

The functionality interacts with a so-called simulator, that translates the real-world adversary’s
actions into corresponding ones in the ideal world. Since the ideal functionality is secure by
definition, this implies that the real-world execution cannot exhibit any attacks either.

The Corruption Model. We use the — standard for CGKA/SGM but non-standard for UC —
corruption model of continuous state leakage (transient passive corruptions) and adversarially
chosen randomness of [4].13 In a nutshell, this corruption model allows the adversary to repeatedly
corrupt parties by sending them two types of corruption messages: (1) a message Expose causes
the party to send its current state to the adversary (once), (2) a message (CorrRand, b) sets the
party’s rand-corrupted flag to b. If b is set, the party’s randomness-sampling algorithm is replaced
by the adversary providing the coins instead. Ideal functionalities are activated upon corruptions
and can adjust their behavior accordingly.

Restricted Environments. In order to avoid the so-called commitment problem, caused by adaptive
corruptions in simulation-based frameworks, we restrict the environment not to corrupt parties at
certain times. (This roughly corresponds to ruling out “trivial attacks” in game-based definitions.
In simulation-based frameworks, such attacks are no longer trivial, but security against them
requires strong cryptographic tools and is not achieved by most protocols.) To this end, we use the
technique introduced in [4] (based on prior work by Backes et al. [5] and Jost et al. [24]). More
concretely, we consider a weakened variant of UC security that only quantifies over a restricted set
of so-called admissible environments that do not exhibit the commitment problem. Whether an
environment is admissible or not is defined by the ideal functionality F with statements of the
form restrict cond and an environment is called admissible (for F), if it has negligible probability
of violating any such cond when interacting with F.

2.3 Primitives

The protocol ITK makes use of standard cryptographic primitives. For completeness, we outline
them in Appendix A.

13 As explained in the introduction, passive corruptions together with full network control allow to emulate
active corruptions.

9

3 Continuous Group Key Agreement

This section defines syntax and security of Continuous Group Key Agreement (CGKA) protocols.
The security definition is quite generic — different PS/FS guarantees of protocols can be expressed
by specifying different safe predicates. We define the predicates for MLS’s ITK and its version with
more secure tree signing ITK∗ after explaining the protocols in Sections 5 and 7, respectively.

3.1 CGKA Syntax

Proposals and commits. TreeKEMv3 is a so-called propose-and-commit variant of CGKA, where
current group members can propose to add new members, remove existing ones, or update their
own key material (for PCS) by sending out a corresponding proposal message. The proposals do
not affect the group state immediately. Rather, they (potentially) take effect upon transitioning
to the next epoch: The party initiating the transition selects a list of proposals and indicates it
in a commit message. Upon receiving such message, a party applies the indicated proposals and
transitions to the new epoch.

It is generally up to the higher-level protocol to decide which subsets of proposals are deemed
to be legal in a commit as part of a group policy. Akin to MLSv9, we however require that the
proposal vector must first contain all updates, then all removes, and finally all adds. For simplicity,
we delegate the buffering of proposals to the higher-level protocol as well.

Handling of identity keys. In a real-world deployment, long-term identity keys maintained by the
Authentication Service (AS) are likely to be shared across groups. Hence, we also delegate their
handling to the higher-level messaging application invoking CGKA. In general, in each group a
party uses one signing key at a time. Upon issuing an operation updating the CGKA secrets —
i.e., proposing an update or committing — the higher-level may decide to update the signing key
as well. Those operations, thus, explicitly take a signing public key spk as input.

The formal syntax. We consider a stateful protocol for a single group that accepts the following
inputs. For simplicity, we treat the party’s identity id as implicitly known to the protocol.

– Group Creation: (Create, spk) initializes a new group with id being the single member, using
the signing public key spk. (In our model, this input is only allowed once.)

– Add, Remove Proposals: p← (Propose, add-idt) (resp., p← (Propose, rem-idt)) proposes
to add (resp., remove) the party idt. It outputs a proposal message p or ⊥ if either id is not in
the group or idt already is in the group (resp., is not in the group).

– Update Proposal: p ← (Propose, up-spk) proposes to update the member’s key material,
and optionally the long-term signature verification key spk. It outputs an update proposal
message p (or ⊥ if id is not in the group).

– Commit: (c, w)← (Commit, ~p, spk, force-rekey) commits the vector of proposals ~p and outputs
the commit message c. If the proposals contain at least one add, then it also outputs a single
welcome message w that is sent to all freshly added members. The operation optionally updates
the signing public key of the committer. The flag force-rekey forces an implicit update of the
committer (see below).

– Process: (idc, propSem)← (Process, c, ~p) processes the message c, committing the proposals
~p and advances id to the next epoch.14 It outputs the committer’s identity idc as well as a
vector conveying the semantics of the applied proposals ~p.

– Join: (roster, idc) ← (Join, w) allows id (who is not yet a group member) to join the group
using the welcome message w. It outputs the roster, i.e. the set of identities and long-term keys
of all group members, and the identity idc of the member who committed the add proposal.

– Key: K ← Key queries the current application secret. This can only be queried once per epoch
by each group member (otherwise returning ⊥).

14 For simplicity, we require that the higher-level protocol that buffers proposals also finds the list p
matching c. This is without loss of generality, since ITK uses MLSPlaintext for sending proposals, and c
includes hashes of proposals in ~p.

10

Add-only commits. Our syntax reflects the special “add-only” mode of commits in MLS. That is, if
~p only contains add proposals (and is not empty), then MLS permits skipping the implicit update
of the committer. We model this with the force-rekey flag: if force-rekey = false, then an add-only
commit does not do the implicit update, whereas if either force-rekey = true or there are non-add
proposals, then the implicit update is performed. (Skipping the update also implies ignoring the
new spk.)

3.2 The Security Model

Security via Idealized Services. Analogous to [4], we consider an ideal CGKA functionality that
represents an idealized “CGKA service” agnostic to the usage of the protocol. That is, whenever a
party performs a certain group operation (e.g. creating a proposal or commit) the functionality
simply hands back an idealized protocol message to that party — it is then up to the environment
to deliver those protocol messages to the other group members, thus not making any assumptions
on the underlying network or the architecture of the delivery service. Additionally, this also allows
us to consider correctness and robustness guarantees, in contrast to more “classical” UC treatments
that let the adversary deliver the messages. (Such models typically permit trivial protocols that
just reject all messages with the simulator just not delivering them in the ideal world.)

The Real-World Experiment. In the real-world experiment, the parties execute the protocol that
furthermore interacts with the Authentication Service and Key Service PKI functionalities. The
primary interaction with the PKI, i.e., managing the keys, is not group specific and, thus, it is
assumed to be handled by the higher-level protocol embedding CGKA. We reflect this by the
protocol transparently forwarding those queries from the environment to the PKI. For instance, the
environment can instruct the Authentication Service (via the party’s protocol) to register a new
key for a party. As a result, the AS generates a new key pair for the party and hands the public
key to the environment, making the secret key available to the party’s protocol upon request. The
PKI is defined in detail in the next section.

The Ideal World. The ideal world formalizes the security guarantees via the ideal functionality
Fcgka, which internally maintains a so-called history graph. History graphs were introduced as a
core technique to define security of CGKA in [3] and first used in [4]. The history graph is a labeled
directed graph that acts as a symbolic representation of a group’s evolution. It has two types
of nodes: commit and proposal nodes, representing all executed commit and propose operations,
respectively. Note that each commit node represents an epoch. The nodes’ labels, furthermore,
keep track of all the additional information relevant for defining security. For instance, proposal
nodes have a label that stores the proposed action, and commit nodes have labels that store the
epoch’s application secret and the set of parties corrupted in the given epoch.

Security of the application secrets is then formalized by the functionality choosing a random and
independent key for each commit node whenever security is guaranteed; otherwise the simulator
gets to choose the key. Whether security is guaranteed in given node, is determined via an explicit
safe predicate on the node and the history graph. In addition to the secrecy of the keys, the
functionality also formalizes authenticity by appropriately disallowing injections.

As the PKI management is exposed to the environment in the real world, those operations also
need to be available in the ideal world. We achieve this by having “ideal-world variants” of the AS
and KS interacting with Fcgka. Those variants essentially record which keys have been exposed,
which in turn is then used to define the safe predicate. The actual keys in the ideal world do not
convey any particular meaning beyond serving as identifiers — thus in the ideal world we can leak
all secret keys to the simulator (they are necessary to simulate signatures on protocol messages).
We note that this roughly corresponds to treating the PKI setup as local rather than global (in
the sense UC versus GUC).

A remark on multi-group security. Our security definition considers a single group. Ideally, we
would model a proper global PKI (that does not reveal keys to the simulator) which would imply
multi-group security by composition. Unfortunately, a number of obstacles make being able to use
composition unlikely.

11

Functionality Fas

The functionality is parameterized by a key generation algorithm gen-sk().

Initialization

Registered← ∅ // registered identity-public key pairs
Exposed← ∅ // exposed public keys
SSK[∗, ∗]← ⊥ // honestly generated secret keys
RndCor[∗]← good

Inputs from a party id

Input (register-spk)
if RndCor[id] = good then

(spk, ssk)←$ gen-sk()
else

Send (rnd, id) to the adversary and receive r.
(spk, ssk)←$ gen-sk(r)
Exposed +← spk

SSK[id, spk]← ssk
Registered +← (id, spk)
Send (register-spk, id, spk, ssk) to the adversary.
Send spk to the party id.

Input (get-ssk, spk)
Send SSK[id, spk] to the party id.

Input (verify-cert, id′, spk)
Send (id′, spk) ∈ Registered to id.

Input (del-ssk, spk)
SSK[id, spk]← ⊥

Inputs from the adversary

Input (register-spk, id, spk)
if (∗, spk) /∈ Registered then

Exposed +← spk
Registered +← (id, spk)

Input (expose, id)
Exposed +← {spk | SSK[id, spk] 6= ⊥}
Send SSK[id, ∗] to the adversary.

Input (corRand, id, b), b ∈ {good, bad}
RndCor[id]← b

Inputs from Fks.

Input (exposed, id, spk)
Exposed +← spk
Send SSK[id, spk] to the adversary.

Inputs from Fcgka.

Input (has-ssk, spk, id)
Send SSK[id, spk] 6= ⊥ to Fcgka.

Fig. 1: The Authentication Service Fas and its ideal-world variant F iw
as .

First, GUC was envisioned to formalize strong deniability, where protocol executions can be
simulated without the secret PKI keys and hence do not constitute a proof of participation. However,
the fact that ITK signs messages makes it non-deniable.15 Moreover, the typical techniques used
to cope with non-deniable protocols in GUC (e.g. [19]) rely on strict domain separation on the
cryptographic primitives, e.g., a values signed during the execution of one protocol instance cannot
be used in another instance. However, this is not true for ITK, where signed key packages can be
used across groups.

Second, the composition theorem of UC assumes that parties have pre-agreement on the session
id (i.e., the group identifier). Models [26] more akin to ITK, where parties simply get the group
identifier upon joining the group (without pre-agreement), suffer from significantly diminished
composition guarantees.

3.3 PKI Setup

In general, we model fully untrusted PKI, where the adversary can register arbitrary keys for any
party (looking ahead, security guarantees degrade if such keys are used in the protocol). This
especially models insider attacks.16

Authentication Service (AS). The AS provides an abstract credential mechanism that maps from
user identities, e.g. phone numbers, to long-term identity keys of the given user. The functionality
Fas, defined in Fig. 1, can be seen as an abstraction of the different credential mechanisms of MLS.

The functionality Fas allows a party, identified by id (e.g., a phone number) to register a fresh
key pair and verify if a public key spk has been registered by another party (input verify-cert).
On registration, the new key pair is generated for the party id by Fas. If id’s randomness is currently
corrupted, Fas asks the adversary to provide key-generation randomness. The output of id is the
new public key spk. The secret key can be retrieved by it at any time with an additional command
get-ssk. The secret key can also be deleted, in which case it does not leak upon corruption of id.

The adversary can register arbitrary public keys in the name of any party. Moreover, when a
party’s state is exposed, all secret keys it generated but not deleted are leaked to the adversary.
15 Encrypting the signatures would not help, as corrupted parties leak decryption keys.
16 In particular, we do not assume so-called key-registration with knowledge. This is a significantly stronger

assumption, typically not achieved by the heuristic checks deployed in reality, and it is not needed for
security of ITK.

12

Functionality Fks

The functionality is parameterized by a key-package generation algorithm gen-kp(id, spk, ssk).

Initialization

SK[∗, ∗], SPK[∗, ∗]← ⊥ // secret keys and spk’s corresponding to
honestly generated keys
RndCor[∗]← good

Inputs from a party id

Input (register-kp, spk, ssk)
if RndCor[id] = good then

(kp, sk)←$ gen-kp(id, spk, ssk)
if kp = ⊥ then return

else
Send (rnd, id) to the adversary and receive r.
(kp, sk)← gen-kp(id, spk, ssk; r)
if kp = ⊥ then return
Send (exposed, id, spk) to Fas.
Send ssk to the adversary.

SK[id, kp]← sk
SPK[id, kp]← spk
Send (register-pk, id, spk, kp, sk) to the adversary.
Send kp to the party id.

Input get-sks
Send {(kp, SK[id, kp]) | SK[id, kp] 6= ⊥} to id.

Input (get-kp, id′)
Send (get-kp, id, id′) to the adversary and receive kp.
Send kp to id.

Input (del-sk, spk)
SK[id, kp]← ⊥

Inputs from the adversary

Input (expose, id)
Send SK[id, ∗] to the adversary.

Input (corRand, id, b), b ∈ {good, bad}
RndCor[id]← b

Fig. 2: The Key Service Fks and its ideal-world variant F iw
ks that leaks all secrets.

Security is then modeled by having in the ideal-world a variant of Fas, called F iw
as , that marks leaked

and adversarially registered keys as exposed (see parts in boxes). Looking ahead, the guarantees of
Fcgka will depend on whether a certain key has been exposed or not.

Furthermore, Fas allows the KS functionality Fks to signal that a certain ssk leaked. (Formally,
Fas and Fks can be understood as a joint functionality.) The role of this command will become
clear when we describe Fks. Finally, F iw

as always leaks all secret keys to the simulator. (Recall that
this does not affect security, but simply means Fcgka is a local functionality only.)

Key Service (KS). The KS allows parties to upload one-time key packages, used to add them to
groups while they are offline.17

The KS is formalized by the functionality Fks, defined in Fig. 2. Similar to Fas, a party id can
register a fresh key package, which is generated by Fks using the algorithm gen-kp(id, spk, ssk),
which takes as input the party’s identity and a long-term signature key pair (reflecting that a key
package may be signed) and outputs a key package public key and secret key. If id’s randomness
is corrupted, the randomness is taken from the adversary. Moreover, using the signature secret
key ssk with bad randomness may leak ssk.18 Hence, the functionality signals to Fas that spk is
exposed and sends ssk to the adversary.

A party id can request another party’s key package (input get-kp). The returned key fully is
specified by the adversary. The party can also retrieve all its (not yet deleted) secrets alongside
the respective key packages using the input get-sks. (This accounts for the protocol not a priori
knowing which key package has been used to add it to the group.) The other inputs are analogous
to Fas.

Remark 1. Unlike F iw
as , F iw

ks does not keep track of exposed key packages. The reason is that our
security definition abstracts away key packages and is only aware of long-term keys from AS. This
makes the security guarantees simpler and more comprehensible. On the other hand, we do not

17 In MLS, the KS is implemented as part of the Delivery Service, and in Signal it is called the Key
Distribution Center.

18 This is true e.g. for ECDSA, which is one of the schemes allowed by MLS.

13

guarantee security in some border cases where it would be provided.19 We believe this to be a good
trade-off between abstraction and fine-grained guarantees.

3.4 History Graph

We now proceed by formally defining the history graph used by Fcgka. Recall that the history
graph is a labeled directed acyclic graph, in our case, a forest, with nodes, representing sent or
received messages. We first list the nodes’ labels. All nodes in the history graph store the following
values:

– orig: the party whose action created the node, i.e., the message sender;
– par: the parent commit node, representing the sender’s current epoch;
– stat ∈ {good, bad, adv}: a status flag indicating whether secret information corresponding to

the node is known to the adversary. Concretely, adv means that the adversary created this
node by injecting the message, bad means that it was created using adversarial randomness
(hence it is well-formed but the adversary knows the secrets), and good means that it is secure.

Proposal nodes further store the following value:
– act ∈ {up-spk, add-idt-spkt, rem-idt}: the proposed action. The history graph here also keeps

track of the signature public key spk: add-idt-spkt means that idt is added with the public key
spkt, and up-spk reflects the respective input to the add proposal.

Commit nodes further store the following values:
– pro: the ordered list of committed proposals;
– mem: the list of group members and their signature public keys;
– key: the group key;
– chall: a flag indicating whether the application secret has been challenged, i.e., chall is true if

a random group key has been generated for this node, and false if the key was set by the
adversary (or not generated);

– exp: a set keeping track of parties corrupted in this node, including whether only their secret
state used to process the next commit message or also the current application secret leaked.

3.5 The CGKA Functionality

Having introduced the history graphs and the PKI, we are ready to define the ideal functionality
Fcgka, formally defined in Fig. 3, with helper functions outsourced to Figs. 4 to 6 Fcgka is
parameterized by predicates safe and inj-allowed, specifying which application secrets are secure,
and when authenticity is guaranteed, respectively. The predicates are defined (for ITK) in Fig. 15.

State. The functionality maintains the session’s history graph. It addresses proposal nodes by the
(idealized) proposal message p and non-root commit nodes by the (idealized) commit message c.
The root node corresponding to session initialization is addressed by the label root0. Moreover,
other roots may be created without a commit message, e.g. when a party uses an injected welcome
message to join an adversarially created epoch, not directly related to the main group. Such roots
are addressed by labels rooti for i > 0 and their trees are called detached.

The functionality also stores for each party id a pointer Ptr[id] to its current history graph node,
or Ptr[id] = ⊥ for parties who currently are not in the group.

Interfaces. Fcgka offers interfaces for creating the group, creating a proposal, committing a list
of proposals, processing a commit, joining, and retrieving the current group key. The designated
party idcreator (specified as part of the session id) initially creates the group with itself as a single
member, to which he can then invite additional members.20 All interfaces except create and join
are for group members only (i.e., parties for which Ptr[id] 6= ⊥).
19 For example, if id’s long-term key ssk leaks, but then id manages to generate an honest key package kp

using ssk, kp is considered exposed. In our abstraction, kp cannot be distinguished from key packages
generated by the adversary using ssk.

20 Note that parties might join adversarially generated group states before idcreator created the real group.

14

Functionality Fcgka

The functionality expects as part of the instance’s session identifier sid the group creator’s identity idcreator. It is
parameterized in the predicates safe(c), specifying which keys are leaked via corruptions and inj-allowed(c, id),
specifying when authenticity is not guarantees.

Initialization

Ptr[∗],Node[∗],Prop[∗],Wel[∗]← ⊥
RndCor[∗]← good; HasKey[∗]← false
rootCtr← 0

Inputs from idcreator

Input (Create, spk)
req Node[root0] = ⊥ ∧ *valid-spk(idcreator, spk)
mem← {idcreator, spk}
Node[root0]← *create-root(idcreator,mem,RndCor[idcreator])
HasKey[idcreator]← true
Ptr[idcreator]← root0

Inputs from a party id

Input (Propose, act), act ∈ {up-spk, add-idt, rem-idt}
Send (Propose, id, act) to the adversary and

receive (p, spkt, ack).
req ack
if act = up-spk then req*valid-spk(id, spk)
if act = add-idt then act← add-idt-spkt
if Prop[p] = ⊥ then

Prop[p]← *create-prop(Ptr[id], id, act,RndCor[id])
else

*consistent-prop(p, id, act,RndCor[id])
if RndCor[id] = bad then

Send (exposed, id, spk) to Fas.
return p

Input (Commit, ~p, spk, force-rekey)
req Ptr[id] 6= ⊥
Send (Commit, id, ~p, spk, force-rekey) to the adversary

and receive (ack, c, w, rt).
req*should-succeed-comm(id, ~p, spk, force-rekey) ∨ ack
*fill-props(id, ~p)
if ¬force-rekey ∧ *only-adds(~p) then

spk← Node[Ptr[id]].mem[id]
req *valid-spk(id, spk)
mem← *members(Ptr[id], id, ~p, spk)
assert mem 6= ⊥ ∧ (id, spk) ∈ mem
if Node[c] = ⊥ ∧ rt = ⊥ then

if ¬force-rekey ∧ *only-adds(~p) then stat← bad
else stat← RndCor[id]
Node[c]← *create-child(Ptr[id], id, ~p,mem, stat)

else
if Node[c] = ⊥ then c′ ← rootrt
else c′ ← c
*consistent-comm(c′, id, ~p,mem)
if c 6= c′ then *attach(c, c′, id, ~p)

assert w 6= ⊥ iff ∃p ∈ ~p : Node[p].act = add-∗
if w 6= ⊥ then

assert Wel[w] ∈ {⊥, c}
Wel[w]← c

assert cons-invariant ∧ auth-invariant
if RndCor[id] = bad then

Send (exposed, id,Node[Ptr[id]].mem[id]) to Fas.
return (c, w)

Input Key
req Ptr[id] 6= ⊥ ∧ HasKey[id]
if Node[Ptr[id]].key = ⊥ then *set-key(Ptr[id])
HasKey[id]← false
return Node[Ptr[id]].key

Input (Process, c, ~p)
Send (Process, id, c, ~p) to the adversary and

receive (ack, rt, orig′, spk′).
req *should-succeed-proc(id, c, ~p) ∨ ack
*fill-props(id, ~p)
if Node[c] = ⊥ ∧ rt = ⊥ then

mem← *members(Ptr[id], orig′, ~p, spk′)
assert mem 6= ⊥ ∧ inj-allowed(Ptr[id], id)
Node[c]← *create-child(Ptr[id], orig′, ~p,mem, adv)

else
if Node[c] = ⊥ then c′ ← rootrt
else c′ ← c
idc ← Node[c′].orig
spkc ← Node[c′].mem[idc]
mem← *members(Ptr[id], idc, ~p, spkc)
assert mem 6= ⊥
*valid-successor(c′, id, ~p,mem)
if c 6= c′ then *attach(c, c′, id, ~p)

if ∃p ∈ ~p : Prop[p].act = rem-id then
Ptr[id]← ⊥

else
assert id ∈ Node[c].mem
Ptr[id]← c
HasKey[id]← true

assert cons-invariant ∧ auth-invariant
return *output-proc(c)

Input (Join, w)
Send (Join, id, w) to the adversary and

receive (ack, c′, orig′,mem′).
req ack
c←Wel[w]
if c = ⊥ then

if Node[c′] 6= ⊥ then c← c′

else
rootCtr++
c← rootrootCtr
Node[c]← *create-root(orig′,mem′, adv)

Wel[w]← c
Ptr[id]← c
HasKey[id]← true
assert id ∈ Node[c].mem ∧ cons-invariant

∧ auth-invariant
return *output-join(c)

Corruptions

Input (Expose, id)
if Ptr[id] 6= ⊥ then

Node[Ptr[id]].exp +← (id,HasKey[id])
*update-stat-after-exp(id)
Send (exposed, id,Node[Ptr[id]].mem[id]) to Fas.

Send (get-sk) to Fks and receive SK and SPK.
for each c, kp s.t. SK[id, kp] 6= ⊥ ∧ SPK[id, kp] = spk
∧ ∃p ∈ Node[c].pro : Prop[p].act = add-id-spk do

Node[c].exp +← (id, true)
restrict ∀c, if Node[c].chall = true then safe(c)

Input (CorrRand, id, b), b ∈ {good, bad}
RndCor[id]← b

Fig. 3: The CGKA functionality. The helper functions and the safe predicate are defined in Figs. 4
to 6 and Fig. 15, respectively.

15

Functionality Fcgka : Bookkeeping Helpers

// Creating nodes
helper *create-child(c, id, ~p,mem, stat)

return new node with par← c, orig← id, pro← ~p, mem← mem, stat← stat.

helper *create-root(id,mem, stat)

return new node with par← ⊥, orig← id, pro← ⊥, mem← mem, stat← stat.

helper *create-prop(c, id, act, stat)

return new proposal with par← c, orig← id, act← act, stat← stat.

helper *fill-props(id, ~p)

for p ∈ ~p s.t. Prop[p] = ⊥ do
Send (Proposal, p) to the adversary and receive (orig, act).
Prop[p]← *create-prop(Ptr[id], orig, act, adv)

// Output of process and join
helper *output-proc(c)

(∗, propSem)← *apply-props(c,Node[c].pro)
return (Node[c].orig, propSem)

helper *output-join(c)

return (Node[c].mem,Node[c].orig)

// Does the vector of (existing) proposals create an add-only commit?
helper *only-adds(~p)

return ~p 6= () ∧ ∀p ∈ ~p : Prop[p] 6= ⊥ ∧ Prop[p].act = add-∗

// Is the (new) spk′ valid for update or commit?
helper *valid-spk(id, spk′)

spk← Node[Ptr[id]].mem[id]
if spk 6= ⊥ ∧ spk′ = spk then return true
Send (has-ssk, spk′, id) to Fas and receive ack
return ack

// Generating the group key (secure or insecure)
helper *set-key(c)

if ¬safe(c) then
Send (Key, id) to the adversary and receive I.
Node[c].key← I
Node[c].chall← false

else
Node[c].key←$ I
Node[c].chall← true

// Corruptions
helper *update-stat-after-exp(id)

for each p s.t. Prop[p] 6= ⊥ and
(a) Prop[p].par = Ptr[id] and
(b) Prop[p].orig = id and
(c) Prop[p].act = up

do Prop[p].stat← bad
for each c s.t. Node[c] 6= ⊥ and

(a) Node[c].par = Ptr[id] and
(b) Node[c].orig = id

do Node[c].stat← bad

Fig. 4: The helper functions for creating and maintaining the history graph.

Proposals. When a party id wants to create a proposal, Fcgka notifies the adversary, who then
provides a flag ack, a node identifier (i.e., a message) p and a public key spkt. Sending ack = false
allows the adversary to specify that the proposal fails, i.e., the output is ⊥ (e.g. because an already
existing member is being added). If the proposal succeeds, and if no node with identifier p exists,
then Fcgka creates it with status set according to whether id’s randomness is currently corrupted.
For add proposals, it additionally extends the action by the long-term public key spkt (specified by
the adversary) of the added party idt. (Note that in the real world, spkt is a part of a key package
for idt, retrieved by id from Fks that allows the adversary to choose the package.)

In certain situations, a proposal may not create a new node. For example, this can happen
if id proposes to remove the same party twice within the same epoch. Another such situation
is when the adversary uses id’s leaked state to generate a proposal itself, makes another party
commit it (this creates the proposal node) and then id proposes the same action using corrupted
randomness. In such cases, the adversary can specify the preexisting p. Fcgka then enforces, using
*consistent-prop of Fig. 6, that the values stored in the existing node match the expected ones.

Finally, the proposal identifier p is returned to the calling party.

Commits. To create a commit, a party id specifies a list of proposals ~p, a (possibly fresh) signature
public key spk and a flag force-rekey. If, as determined by force-rekey and ~p, the commit is add-only,
then the new spk is ignored. Then, Fcgka forwards all inputs to the adversary and receives identifiers
c and w of commit and welcome nodes, respectively, as well as an ack flag. For correctness, we
require that committing a valid proposal list — as specified by *should-succeed-comm from
Fig. 5 — succeeds. Otherwise the adversary can make the commit fail by specifying ack = false.
If the commit succeeds, Fcgka first asks the adversary to interpret those proposals in ~p for which
no node has been created, i.e., the injected proposals. It then computes the member set resulting
from applying ~p by calling *members from Fig. 6 (which returns ⊥ if ~p is invalid).

Then, analogously to creating proposals, Fcgka either creates a new node, or verifies that the
existing node is consistent. The randomness status is set analogously to the proposals. Note that
add-only commits have status bad, reflecting that they never heal the committer. It may happen
that the existing node is the root of a detached tree. In such case, Fcgka attaches it to id’s current

16

Functionality Fcgka : Consistency Helpers

helper *consistent-prop(p, id, act, stat)

// Preexisting p valid for id proposing act?
assert Prop[p].orig = id ∧ Prop[p].act = act

∧ Prop[p].par = Ptr[id]

helper *valid-successor(c, id, ~p,mem)

// Preexisting node valid for id processing (c, ~p)?
assert Node[c] 6= ⊥ ∧ Node[c].mem = mem

∧ Node[c].pro ∈ {⊥, ~p}
∧ Node[c].par ∈ {⊥,Ptr[id]}

helper *consistent-comm(c, id, ~p,mem)

// Preexisting c valid for id committing ~p?
assert *valid-successor(c, id, ~p,mem)
assert RndCor[id] 6= good ∧ Node[c].orig = id

helper *attach(c, c′, id, ~p)

// Attach (detached) root c′ under new name c as successor of id’s
current node.
assert c′ 6= root0
Node[c′].par← Ptr[id]; Node[c′].pro← ~p
Node[c]← Node[c′]; Node[c′]← ⊥
for w : Wel[w] = c′ do Wel[w]← c

Functionality Fcgka : Correctness Helpers

helper *should-succeed-comm(id, ~p, spk, force-rekey)

return *apply-props(id, ~p, spk) 6= ⊥ // p is valid
∧
(
*valid-spk(id, spk) ∨ (*only-adds(~p) ∧ ¬force-rekey)

)
// spk is usable, unless it’s an add-only commit

helper *should-succeed-proc(id, c, ~p)

return Node[c] 6= ⊥ ∧ Node[c].par = Ptr[id]
∧ Node[c].pro = ~p ∧ Node[c].stat 6= adv
∧ ∀p ∈ ~p : Prop[p].stat 6= adv

Fig. 5: The additional helper functions. Consistency Helpers ensure that preexisting history graph
nodes correspond to the expected actions.

node using *attach. This helper also now assigns c as the proper identifier of the node, replacing
the temporary rooti identifier. This ensures weak robustness — a detached root can be attached
to at most one parent, and all parties transitioning into it (both from the main group and using
injected welcome messages) end up in consistent states. Moreover, once attached, the root’s tree
enjoys the same (extended) security guarantees as the main tree. Since attaching an orphan node
changes the history graph, Fcgka also enforces two invariants: cons-invariant enforcing that the
graph remains consistent, and auth-invariant enforces the authenticity guarantees.

Finally, in case add proposals are committed, Fcgka records that the new welcome message
leads to the created commit node.

Processing commits. To process a commit, a party id specifies the commit message c and the list
of committed proposals ~p. (Recall that we require the higher-level protocol to buffer and match
them.) We require that processing a valid commit and the matching proposal list succeeds, and
otherwisethe adversary can make processing fail using the ack flag.

If processing succeeds, the adversary first interprets messages for which nodes do not exist:
proposals p are interpreted as in creating a commit, and c is interpreted by specifying the committer
orig′ and its (possibly fresh) public key in the new group spk′. If Node[c] already exists, Fcgka
enforces that it is a valid successor of id’s current node and, if it is an orphan node, attaches it.

Finally, depending on whether c removes id, Fcgka either moves id’s pointer to the new node,
or sets the pointer to ⊥. The committer’s identity and the semantics of the applied proposals are
returned to the calling party.

Joining. A party can join the group using a welcome message w and a key package kp. As usual,
Fcgka enforces that joining with valid inputs succeeds. Then, it identifies the commit c = Wel[w]
corresponding to w. If this is the first time Fcgka sees w, i.e. Wel[w] = ⊥, the adversary chooses c
(we require that afterwards all parties joining with w end up in c). If the commit node for c does
not exist, it is created as an orphan node with all stored values chosen by the adversary (if the
node is attached to a parent, Fcgka enforces that these values are consistent). The functionality
returns to id the state of the joined group.

Group Keys and Corruptions. The current group key can be fetched via the input Key. Keys for
which the protocol guarantees secrecy, as identified by the safe predicate, are chosen at random, and

17

Functionality Fcgka : Group State Helpers

helper *members(c, idc, ~p, spkc)

(G, ∗)← *apply-props(idc, ~p, spkc)
if (G, ∗) = ⊥ then return ⊥
else return G

helper *apply-props(c, idc, ~p, spkc)

// Returns group members G and proposal semantics P resulting
from applying ~p to state Node[c], or ⊥ if ~p is invalid.
req Node[c] 6= ⊥ ∧ (idc, ∗) ∈ Node[c].mem
req ∀p ∈ ~p : Prop[p] 6= ⊥ ∧ Prop[p].par = c
req ~p = ~pup ++ ~prem ++ ~padd for some ~pup, ~prem, ~padd

with ∀act ∀p ∈ ~pact : Node[p].act = act-∗
G← Node[c].mem; G -← (idc, ∗); G +← (idc, spkc)
L← {idc} // set of updated parties

for p ∈ ~pup do
(ids, up-spk)← (Prop[p].orig,Prop[p].act)
req ids ∈ G \ L
G -← (ids, ∗); G +← (ids, spk)
L +← ids

for p ∈ ~prem do
(ids, rem-idt)← (Prop[p].orig,Prop[p].act)
req ids ∈ G ∧ idt ∈ G \ L
G -← (idt, ∗)

for p ∈ ~padd do
(ids, add-idt-spkt)← (Prop[p].orig,Prop[p].act)
req ids ∈ G ∧ idt /∈ G
G +← (idt, spkt)

P ← ((Prop[p].orig,Prop[p].act) : p ∈ ~p)
return (G,P)

Functionality Fcgka : Invariants

// No injections when authenticity guaranteed.
helper auth-invariant
return true iff
a) ∀c with cp = Node[c].par and id = Node[c].orig,

if Node[c].stat = adv then inj-allowed(cp, id) and
b) ∀p with cp = Prop[p].par and id = Prop[p].orig,

if Prop[p].stat = adv then inj-allowed(cp, id).

// The history graph is consistent.
helper cons-invariant
return true iff
a) ∀c s.t. Node[c].par 6= ⊥: Node[c].pro 6= ⊥ and

∀p ∈ Node[c].pro : Prop[p].par = Node[c].par and
b) ∀id s.t. Ptr[id] 6= ⊥ : id ∈ Node[Ptr[id]].mem and
c) the graph contains no cycles

Fig. 6: The helper functions to determine the group state after applying a commit and the history
graph invariants.

insecure keys are set by the simulator. The predicate safe uses information related to corruptions,
which is recorded by Fcgka as follows. When the state of a current group member id is exposed,
the functionality records leakage of the following information:

– Any key material necessary to process future control messages, as well as the group key, if not
retrieved yet. This is recorded by adding the pair (id,HasKey[id]) to the exposed set of id’s
node, where the flag HasKey[id] indicates if id currently stores the group key.

– The key material for updates and commits created by id in the current epoch. This is recorded
by setting the status of all child nodes created by id to bad, indicating they no longer heal id.

In addition, exposure of a party id that is not a group member reveals key material that can be
used to process welcome messages. Accordingly, Fcgka adds id to the exposed sets of all nodes
where id can join.

Adaptive corruptions. Adaptive corruptions become a problem if an exposure reveals secret keys
that can be used to compute a key that has already been outputted by Fcgka at random, i.e. a
“challenge” key. Since fully adaptive security is not achieved by TreeKEM (without resorting to
programmable random oracles), we restrict the environment not to corrupt if for some nodes with
the flag chall set to true this would cause safe to switch to false.21

4 The Insider-secure TreeKEM Protocol

4.1 Protocol Overview

Distributed state. The primary object constituting the distributed state of the ITK protocol is the
ratchet tree τ . The ratchet tree is a labeled binary tree (i.e., a binary tree where nodes have a
21 In game based definitions, such corruptions are usually disallowed, as they allow to trivially distinguish.

Our notion achieves the same level of adaptivity.

18

number of named properties), where each group member is assigned to a leaf and each internal
node represents the sub-group of parties whose leaves are part of the node’s sub-tree.

To give a brief overview, each node has two (potentially empty) labels pk and sk, storing a key
pair of a PKE scheme. Leaves have an additional label spk, storing a long-term signature public
key of the leaf’s owner. The root has a number of additional shared symmetric secret keys as labels
(see below). See Fig. 7 for an example of a ratchet tree with the labels. The public part of τ consists
of the tree structure, the leaf assignment, as well as all public labels, i.e., those storing public keys.
The secret part consists of the labels storing secret keys and the symmetric keys. The ITK protocol
maintains two invariants:

Invariant (1): The public part of τ is known to all parties.
Invariant (2): The secret labels in a node v are known only to the owners of leaves in the
sub-tree rooted at v.

symmetric keys
(pkABC∗, skABC∗)

(pkAB, skAB)

(pkA, skA)
spkA

Alice

(pkB, skB)
spkB

Bob

(pkC∗, skC∗)

(pkC , skC)
spkC

Charlie

symmetric keys
(pk′ABC∗, sk

′
ABC∗)

(pkA, skA)
spkA

Alice

(pkD, skD)
spkD

Dave

(pk′C∗, sk
′
C∗)

(pk′C , sk
′
C)

spkC

Charlie

Fig. 7: (Left) An example ratchet tree τ for a group with three members. For Invariant (1), the
public labels (green) are known to all parties. For Invariant (2), the secret labels (red) in a node v
are only known to parties in v’s subtree, e.g. Bob knows skB, skAB and skABC∗. (Right) the tree
after Charlie commits removing Bob and adding Dave. The empty node is blank. Messages can
now be encrypted to Alice and Dave by encrypting them to the resolution of the blank node, in
this case pkA and pkD.

Evolving the tree. Each epoch has one fixed ratchet tree τ . Proposals represent changes to τ , and a
commit chooses which changes should be applied when advancing to the next epoch.

A remove proposal represents removing from τ all keys known to the removed party (see Fig. 7).
That is, its leaf is cleared, and all keys in its direct path — i.e., the path from the party’s leaf to the
root — are blanked, meaning that all their labels are cleared.22 Note that until a blanked node gets
a new key pair assigned (as explained shortly), in order to encrypt to the respective subgroup one
has to encrypt to the node’s children instead (and recursing if either child is blanked as well). The
minimal set of non-blanked nodes covering a given subgroup is called the subgroup’s resolution.

An update proposes removing all keys currently known to the party (and hence possibly affected
by state leakage), and replacing the public key in their leaf (and possibly the long-term verification
key) by a fresh one, specified in the proposal. Hence, τ is modified as in a remove proposal, but
instead of clearing the leaf, its key is replaced.

Finally, an add proposal indicates the new member’s identity (defined on a higher application
level), its long-term public key from the AS, and an ephemeral public key from KS. It represents
the following modification: First, a leaf has to be assigned, with the public label set according to
the public key from the proposal. If there exists a currently unused leaf, then this can be reused,
otherwise a new leaf is added to the tree. In order to satisfy invariant (2), the party committing
the add proposal would then have to communicate to the new member all secret keys on its direct
path. Unfortunately, it can only communicate the keys for nodes above the least common ancestor
22 The leaf is simply marked as unused, implying that the tree does not actually shrink. Hence, the

protocol’s efficiency is potentially logarithmic in the maximum group size rather than the current group
size. Shrinking the tree has been proposed but is not considered in this work.

19

of its and the new member’s leaves. For all other nodes, the new member is added to a so-called
unmerged leaf set, which can be accounted for when determining the node’s resolution.23

Re-keying. Whenever a party commits a sequence of proposals, they additionally replace their leaf
key (providing an implicit update) and re-keys their direct path. In order to maintain invariant (1)
on the group state, the committer includes all new public keys in the commit message.

To minimize the number of secret keys needed to be communicated as part of the commit
message, the committer samples the fresh key pairs along the path by “hashing up the tree”. That is,
the committer derives a sequence of path secrets si, one for each node on the path, where s0 for the
leaf is random and si+1 is derived from si using the HKDF.Expand function (cf. Appendix A). Then,
each si is expanded again (with a different label) to derive random coins for the key generation. The
secret sn for the root, called the commit secret, is not used to generate a key pair, but instead used
to derive the epoch’s symmetric keys (see below). This implies that each other party only needs to
be able to retrieve the path secret of the least common ancestor of their and the committer’s leaves.
Hence, invariant (2) can be maintained by including in the commit each path secret encrypted to
(the resolution of) the node’s child not on the direct path.

Note that for PCS, the new secret keys must not be computable using the committer’s state
from before sending the commit (we want that a commit heals the committer from a state). Hence,
the committer simply stores all new secrets explicitly until the commit is confirmed.

Key schedule. Each epoch has several associated symmetric keys, four of which are relevant for
this paper: The application secret is the key exported to the higher-level protocol, the membership
key is used for protecting message authenticity, the init secret is mixed into the next epoch’s key
schedule, and the confirmation key ensures agreement on the cryptographic material.

The epoch’s keys are derived from the commit secret computed in the re-keying process, mixed
with (some additional context and) the previous epoch’s init secret. This ensures that only parties
who knew the prior epoch’s secrets can derive the new keys. One purpose of this is improving FS:
corrupting a party in an epoch, say, 5 must not allow to derive the application secret for a prior
epoch, say, 3. As, however, some internal nodes of the ratchet tree remain unchanged between
epochs 3 and 5, it might be possible for the adversary to decrypt the commit secret of epoch
3, given the leakage from epoch 5. Mixing in the init secret of epoch 2 thus ensures that this is
information is of no value per se (unless some party in epoch 2 was already corrupted.)

Welcoming members. Whenever a commit adds new members to the group, the committer must
send a welcome message to the new members, providing them with the necessary state. First, the
welcome message contains the public group information, such as the public part of the ratchet tree.
Second, it includes (encrypted) joiner secret, which combines current commit secret and previous
init secret and allows the new members to execute the key schedule. Finally, it contains the seed to
derive the secrets on the joint path, which the committer just re-keyed. (Recall that for the other
nodes on the new party’s direct path they are simply added to the unmerged leaves set, indicating
that they do not know the corresponding secrets.) The above seeds, as well as the joiner secret,
are encrypted under the public key (obtained from KS), specified in the add proposal (which thus
serves dual purposes).

Security mechanisms. The protocol uses a number of additional security features, such as transcript
hashes to agree on a common history, confirmation tags to ensure key confirmation, and tree signing
to provide some guarantees to newly joint parties. We will discuss those as part of the more formal
protocol description.

4.2 Protocol State

The ratchet tree. Formally, the ratchet tree τ is a left-balanced binary tree with n nodes, denoted
LBBTn.

23 Another solution would be to blank the new member’s direct path, however, this would negatively
impact efficiency.

20

7

3

1

0

(0)

2

(1)

5

4

(2)

6

(3)

9

8

(4)

10

(5)

Fig. 8: The tree LBBT6 with node indices (next to each node) and leaf indices (below the leaves).

Definition 1 (Left-Balanced Binary Tree). For n ∈ N the nth left-balanced binary tree
is denoted by LBBTn. Specifically, LBBT1 is the tree consisting of one node. Furthermore, if
m = mp2(n) := max{2p : p ∈ N ∧ 2p < n}, then LBBTn is the (undirected) tree whose root has left
and right subtrees LBBTm and LBBTn−m.

We use the following indexing of nodes (see Fig. 8 for an example): all nodes are numbered left
to right — i.e., according to an in-order depth-first traversal of the tree — starting with 0. We
additionally index leafs from left to right, starting with (0). Observe that for LBBTs this means
that leaf indices are equal to their node indices divided by two.

For a node v of a LBBT τ , we use standard object oriented notation as outlined in Table 1.
(Observe that every internal node always has both children.)

τ.root Returns the root.
τ.nodes Returns the set of all nodes in the tree.
v.isroot Returns true iff v = τ.root.
v.isleaf Returns true iff v has no children.
v.parent Returns the parent node of v (or ⊥ if v.isroot).
v.lchild Returns the left child of v (or ⊥ if v.isleaf).
v.rchild Returns the right child of v (or ⊥ if v.isleaf).
v.nodeIdx Returns the node index of v.
v.leafIdx Returns the leaf index of v (or ⊥ if ¬v.isleaf).

Table 1: Object oriented notation for LBBTs.

A basic operation of ITK requires adding leaves to (data structures that represent) LBBTs. We
describe the algorithm addLeaf which takes as input an LBBT and a new leaf inserting it to obtain
an output tree LBBTn+1.

Definition 2 (addLeaf). The algorithm addLeaf(τ, v) takes input a tree τ with root r and a fresh
leaf v and returns a new tree τ ′. Let τL and τR be the left and right subtrees of r.

– If τ = FTn (for some n ∈ N) then create a new root r′ for τ ′. Attach r as the left child and v
as the right child.

– Otherwise let τ ′ = τ except that τR is replaced by addLeaf(τR, v).

Lemma 1 (from [1]). τ = LBBTn =⇒ addLeaf(τ, v) = LBBTn+1.

Moreover, observe that addLeaf preserves node indices and, thus, in particular also leaf indices.
This will turn out to be a crucial property for the ITK protocol, which addresses group members
by leaf indices.

Node Labels. Recall that each node v of the LBBT has several labels associated. They are outlined
in Table 2. To simplify the protocol’s description, we will furthermore make use of the helper
methods from Table 3. Observe that the direct path of a leaf consists of the (ordered list) of all
nodes on the path from the leaf to the root, without the leaf itself. The co path, on the other hand,

21

consists of the children of the direct path’s nodes that are not on the direct path themselves. That
is, for every node on the direct path its sibling node is on the co path. Note that the co path
contains the sibling leaves but not the root and, thus, is of equal length to the direct path. The
resolution of a node v is the minimal set of descendant non-blank nodes that covers the whole
sub-tree rooted at v, i.e., such that for every descendant u of v there exists node w in the resolution
such that w is non-blank and w an ancestor of u.

Additional State. The protocol’s state γ consists of the ratchet tree γ.τ and a number of additional
variables, listed in Table 4 (recall that the protocol implicitly knows the party’s identity id).

There are two aspects worth mentioning. First, the state contains three hashes: the tree hash
of the LBBT’s public part and two transcript hashes called confirmed transcript hash and interim
transcript hash. The latter additionally contains the authentication data of the last commit message,
which the confirmed transcript hash cannot contain yet to avoid cyclic dependencies. Second, if the
member issued an update proposal or commit message that did not get confirmed by the delivery
service yet, then the corresponding secret keys are stored in the γ.pendUp and γ.pendCom maps,
respectively.

The so-called group context is comprised of the group id, the epoch number, the tree hash, and
the confirmed transcript hash together. The corresponding helper method is defined in Table 5.

4.3 Setup Algorithms

Figure 9 depicts the algorithms gen-sk and gen-kp, which are used by the Authentication Service
and Key Service functionalities Fas and Fks, respectively.

The algorithm gen-sk generates a new key pair of a signature scheme. The algorithm gen-kp
samples a fresh key pair of a PKE scheme and outputs the secret-key and a so-called key package.
The key package is a signed tuple consisting the party’s identity id, the PKE public key pk, and
the verification key spk. As the same key package format is also used as the data structure stored
in leaves, it can optionally also contain a parent hash. We model this here as an optional input
which is set to ε if not provided — in the MLS protocol draft, the parent hash is an extension of
the key package.

Protocol ITK : Setup Algorithms

Algorithm gen-sk
(spk, ssk)← Sig.kg()
return(spk, ssk)

Algorithm gen-kp(id, spk, ssk, parentHash = ε)
(pk, sk)← PKE.kg()
sig← Sig.sign(ssk, (id, pk, spk, parentHash))
kp← (id, pk, spk, parentHash, sig)
return (kp, sk)

Fig. 9: The algorithms gen-sk and gen-kp, used by Fas and Fks, respectively.

v.pk The public key of a public-key encryption scheme.
v.sk The corresponding secret key.

v.parentHash A hash value binding the node to all of its ancestors.
v.unmergedLvs The set of leaf indices rooted below v, for which the corresponding party does not know

v.sk.
v.id If v.isleaf: the identity associated with that leaf.
v.spk If v.isleaf: an associated verification key of a signature scheme.
v.sig If v.isleaf: A signature of the leaf’s labels under the singing key corresponding to v.spk.

Table 2: The node labels of the LBBTs.

22

τ.clone() Returns and (independent) copy of τ .
τ.public() Returns a copy of τ for which all private labels (v.sk) are set to ⊥.
τ.roster() Returns the identities of all parties in the tree.

τ.leaves[leafIdx] Returns the leaf with leaf index leafIdx.
τ.leafof(id) Returns the leaf index of the v for which v.id = id.
τ.getLeaf() Returns the leaf v with the lowest leafIdx for which ¬v.inuse(). If no such leaf

exists, adds a new leaf using addLeaf and returns that.
τ.directPath(leafIdx) Returns the direct path, excluding the leaf, as an ordered list from the leaf to root.
τ.coPath(leafIdx) Returns the co-path to τ.directPath(leafIdx) as an ordered list.

τ.lca(leafIdx1, leafIdx2) Returns the least common ancestor of the two leafs.
τ.blankPath(leafIdx) Calls v.blank() on all v ∈ τ.directPath(leafIdx).
τ.mergeLeaves(leafIdx) Sets v.unmergedLvs← ∅ for all v ∈ τ.directPath(leafIdx)
τ.unmergeLeaf(leafIdx) Sets v.unmergedLvs +← leafIdx for all v returned by τ.directPath(leafIdx)

v.kp() Returns (v.id, v.pk, v.spk, v.parentHash, v.sig) (undefined if ¬v.isleaf).
v.assignKp(kp) Sets (v.id, v.pk, v.spk, v.parentHash, v.sig) from kp (only allowed if v.isleaf).

v.inuse() Returns false iff all labels except parentHash are ⊥.
v.blank() Sets all labels except parentHash to ⊥.

v.resolution() Return


(v) ++ v.unmergedLvs if v.inuse()
v.lchild.resolution()

++ v.lchild.resolution()
else if ¬v.isleaf

() else.
v.resolvent(u) For a descendant u of v, returns the (unique) node in v.resolution() which is an

ancestor of u.

Table 3: Helper methods defined on the LBBT nodes.

γ.groupId An identifier of the group.
γ.epoch The current epoch number.
γ.τ The labeled left-balanced binary tree.

γ.leafIdx The party’s leaf index in τ .
γ.treeHash A hash of (the public part) of τ .

γ.confTransHash The confirmed transcript hash.
γ.interimTransHash The interim transcript hash for the next epoch.

γ.ssk The current signing key.
γ.certSpks[∗] A mapping associating the set of validated signature verification keys to each party

id′.
γ.pendUp[∗] A mapping associating the secret keys for each pending update proposal issued by id.
γ.pendCom[∗] A mapping associating the new group state for each pending commit issued by id.
γ.appSecret The current epoch’s CGKA key.
γ.membKey The key used to MAC packages.
γ.initSecret The next epoch’s init secret.

Table 4: The protocol state.

γ.groupCtxt() Returns (γ.groupId, γ.epoch, γ.treeHash, γ.confTransHash).

Table 5: Helper method on the protocol state.

23

4.4 Protocol Algorithms

The main (UC) protocol is depicted in Fig. 10. The helper functions are depicted in Figs. 11 to 13.
In contrast to the main protocol they handle state explicitly, clearly indicating what state they
rely on (as input) and what state they modify (as return value).

Group creation. The group can be created (by the designated group creator idcreator in our UC model)
using the input (Create, spk).This input sets up the state of a group with a single member, whose
initial signature public key spk to be used is specified as part of the input. The creator then fetches
the respective signing key ssk from the setup Fas using the helper method *fetch-ssk-if-nec
from Fig. 12.

Proposals. To create an update proposal, the protocol generates a fresh key package kp together
with the respective secret key sk. The key package kp is used as the proposal, whereas sk is stored
in γ.pendUp to be used once the proposal is applied. In case a new signing key ssk is passed, the
protocol furthermore fetches the respective secret key from Fas. To create an add proposal, the
protocol fetches a key package for the added party from Fks. The proposal then simply consists
of the key package, which includes the party’s identity. A remove proposal simply consists of the
removed party’s leaf index.

All proposals are then framed using *frameProp (see Fig. 13). Framing first signs the proposal
P together with the string ‘proposal′, the group context, the group id, the epoch index, and the
sender’s leaf index to bind it to the current cryptographic context. This in particular prevents
impersonation by another (malicious) group member. Since the signing key, however, is shared
across groups and its replacement is also not tied to the PCS guarantees of the group, everything
(including the signature) is additionally MACed using the membership key. In summary, to tamper
or inject messages an adversary must both know at least the sender’s signing key as well as the
epoch’s symmetric keys. The actual proposal package p then consists of everything except the
group context.

Commit. Upon an input (Commit, ~p, spk, force-rekey), the protocol initializes the next epoch’s state
by copying the current one. It then proceeds to apply the proposals using *apply-props (see
Fig. 11). Alongside, it verifies the validity of each proposal, in particular their MACs and signatures.

If it is not an add-only commit (i.e, not all proposals are adds or force-rekey = true) the
protocol then re-keys its direct path using the helper method *rekey-path. The keys are derived
bottom to top using the HKDF.Expand function (cf. Appendix A) with the labels ‘node′ and ‘path′
for key’s randomness and the next seed, respectively. The seeds are then encrypted to the resolution
of the respective child in the co-path.

To complete the implicit update, the protocol furthermore generates a new leaf key package.
This leaf key package gets bound to its ancestor nodes (i.e., the committers freshly sampled direct
path) by including a parent hash which is computed top to bottom by each node storing a hash
of its parent node (see *set-parent-hash from Fig. 12). This process is called tree signing. It is
supposed to guarantee newly joining parties that each internal node has been sampled by one of
the parties contained in its subtree. As a consequence, once all malicious parties have been removed
from (an arbitrary) group, all keys have been generated by the remaining honest parties.

Next, ITK prepares a preliminary commit message C including hashes of the applied proposals
and the updated direct path (including the leaf). This commit message is then signed alongside
the cryptographic context (using *signCommit) analogous to the framing of proposals. Afterwards,
the protocol computes the so-called confirmation tag (see *conf-tag) — a MAC on the confirmed
transcript hash updated by C and the signature (see *set-conf-trans-hash) under the new
epoch’s confKey. The confirmation tag also serves the purpose of a MAC included in framing of
proposals.

If new members were added, ITK generates a welcome message for them using *welcome-msg.
The welcome message contains the public group state — the group identifier, the current epoch,
the public part of the ratchet tree, and the confirmed and interim transcript hashes — as well as
for each party an encryption of the joiner secret (to derive the epoch secrets) and seed of the least
common ancestor of the party and the committer.

Finally, ITK computes the next epoch’s interim transcript hash by hashing the confirmed
transcript hash and the confirmation tag. Moreover, the next epoch’s state is stored in γ.pendCom.

24

Protocol ITK

Input (Create, spk)
req γ = ⊥ ∧ id = idcreator
γ.groupId, γ.initSecret←$ {0, 1}κ
γ.epoch← 0
γ.interimTransHash← ε
γ.certSpks[∗], γ.pendUp[∗], γ.pendCom[∗]← ⊥
γ.τ ← new LBBT1
γ.leafIdx ← 0
try ssk← *fetch-ssk-if-nec(γ, spk)
γ.ssk← ssk
(kp, sk)←$ gen-kp(id, spk, ssk, ε)
γ.τ.leaves[0].assignKp(kp)
γ.τ.leaves[0].sk← sk

Input (Propose, up-spk)
req γ 6= ⊥
try ssk← *fetch-ssk-if-nec(γ, spk)
(kp, sk)←$ gen-kp(id, spk, ssk, ε)
P ← (‘upd′, kp)
p← *frameProp(γ, P)
γ.pendUp[p]← (ssk, sk)
return p

Input (Propose, add-idt)
req γ 6= ⊥ ∧ idt /∈ γ.τ.roster()
kpt ← query (get-pk, idt) to Fks
try γ ← *validate-kp(γ, kpt, idt, ε)
P ← (‘add′, kpt)
p← *frameProp(γ, P)
return p

Input (Propose, rem-idt)
req γ 6= ⊥ ∧ idt ∈ γ.τ.roster()
leafIdxt ← γ.τ.leafof(itt)
P ← (‘rem′, leafIdxt)
p← *frameProp(γ, P)
return p

Input (Commit, ~p, spk, force-rekey)
req γ 6= ⊥
γ′ ← *init-epoch(γ)
try (γ′, upd, rem, add)← *apply-props(γ, γ′, ~p)
req (∗, ‘rem′-id) /∈ rem ∧ (id, ∗) /∈ upd
if force-rekey ∨ ~p = () ∨ upd 6= () ∨ rem 6= () then

try (γ′, commitSecret, updatePath, pathSecrets)
← *rekey-path(γ′, id, spk)

else
commitSecret← 0
updatePath← ε
pathSecrets[∗]← ε

propIDs← ()
for p ∈ ~p do

propIDs ++← Hash(p)
C ← (propIDs, updatePath)
sig← *signCommit(γ,C)
γ′ ← *set-conf-trans-hash(γ, γ′, γ.leafIdx, C, sig)
(γ′, confKey, joinerSecret)← *derive-keys(γ, γ′, commitSecret)
confTag← *conf-tag(γ′, confKey)
c← *frameCommit(γ,C, confTag, sig)
if add 6= () then

(γ′, w)← *welcome-msg(γ′, add, joinerSecret,
pathSecrets, confTag)

else
w ← ⊥

γ′ ← *set-interim-trans-hash(γ′, confTag)
γ.pendCom[c]← (γ′, ~p, upd, rem, add)
return (c, w)

Input (Process, c, ~p)
req γ 6= ⊥
(senderIdx, C, confTag, sig)← *unframeCommit(γ, c, sig)
idc ← γ.τ.leaves[senderIdx].ID
if (senderIdx = γ.leafIdx) then

parse (γ′, ~p′, upd, rem, add)← γ.pendCom[c]
req ~p = ~p′

return (idc, upd ++ rem ++ add)
parse (propIDs, updatePath)← C
for i← 1, . . . ,

∣∣~p∣∣ do
req Hash(~p[i]) = propIDs[i]

γ′ ← *init-epoch(γ)
try (γ′, upd, rem, add)← *apply-props(γ, γ′, ~p)
req (∗, idc) /∈ rem ∧ (idc, ∗) /∈ upd
if (∗, ‘rem′-id) ∈ rem then

γ ← ⊥
else

if updatePath 6= ε then
(γ′, commitSecret)← *apply-rekey(γ′, senderIdx, updatePath)

else
req ~p 6= () ∧ upd = () ∧ rem = ()
commitSecret← 0

γ′ ← *set-conf-trans-hash(γ, γ′, senderIdx, C, sig)
(γ′, ∗)← *derive-keys(γ, confKey, γ′, commitSecret)
req *vrf-conf-tag(γ′, confKey, confTag)
γ′ ← *set-interim-trans-hash(γ′, confTag)

return (idc, upd ++ rem ++ add)

Input (Join, w)
req γ = ⊥
parse (encGroupSecrets, groupInfo)← w
γ.certSpks[∗], γ.pendUp[∗], γ.pendCom[∗]← ⊥
parse (groupInfoTBS, sig)← groupInfo
parse (γ.groupId, γ.epoch, γ.treeHash, γ.confTransHash,

γ.interimTransHash, γ.τ, confTag, senderIdx)← groupInfoTBS
req Sig.vrf(γ.τ.leaves[senderIdx].spk, sig, groupInfoTBS)
try γ ← *vrf-tree-state(γ)
γ.leafIdx ← γ.τ.leafof(id)
v ← γ.τ.leaves[γ.leafIdx]
try γ.ssk← *fetch-ssk-if-nec(γ, v.spk)
kbs← query get-sks to Fks
joinerSecret, pathSecret← ⊥
for e ∈ encGroupSecrets do

parse (hash, cipher)← e
for (kp, sk) ∈ kbs do

if hash = Hash(kp) then
v.sk← sk
req v.kp() = kp
parse (joinerSecret, pathSecret)← PKE.dec(sk, cipher)

req joinerSecret 6= ⊥
if pathSecret 6= ε then

v ← γ.τ.lca(γ.leafIdx, senderIdx)
while v 6= ⊥ do

nodeSecret← HKDF.Expand(pathSecret, ‘node′)
(sk, v.sk)← PKE.kg(nodeSecret)
req v.sk = sk
pathSecret← HKDF.Expand(pathSecret, ‘path′)
v ← v.parent

(γ, confKey)← *derive-epoch-keys(γ, joinerSecret)
req *vrf-conf-tag(γ, confKey, confTag)
return (γ.τ.roster(), γ.τ.leaves[senderIdx].id)

Input Key
req γ 6= ⊥
k ← γ.appSecret
γ.appSecret← ⊥
return k

Fig. 10: The (UC) protocol ITK as run by party id. The group creator’s identity idcreator is encoded
a part of the instance’s session identifier.

25

Protocol ITK : Commit. Process, and Join Helpers

helper *init-epoch(γ)
γ′ ← γ.clone()
γ′.epoch← γ′.epoch + 1
γ′.pendUp[∗], γ′.pendCom[∗]← ⊥
return γ′

helper *rekey-path(γ′, id, spk)
directPath← γ′.τ.directPath(γ′.leafIdx)
coPath← γ′.τ.coPath(γ′.leafIdx)
updatePathNodes← ()
pathSecrets[∗]← ⊥
leafSecret←$ {0, 1}κ
leafNodeSecret← HKDF.Expand(leafSecret, ‘node′)
pathSecret← HKDF.Expand(leafSecret, ‘path′)
for (v, c) ∈ zip(directPath, coPath) do

pathSecrets[v]← pathSecret
nodeSecret← HKDF.Expand(pathSecret, ‘node′)
(v.pk, v.sk)← PKE.kg(nodeSecret)
encPathSecrets← ()
for t← c.resolution() do

encPathSecrets ++← PKE.enc(t.pk, pathSecret)
updatePathNodes ++← (v.pk, encPathSecrets)
pathSecret← HKDF.Expand(pathSecret, ‘path′)

commitSecret← pathSecret
γ′.τ.mergeLeaves(γ′.leafIdx)
γ′ ← *set-parent-hash(γ′, γ′.leafIdx)
try ssk← *fetch-ssk-if-nec(γ′, spk)
v ← γ′.τ.leaves[γ′.leafIdx]
(kp, sk)← gen-kp(id, spk, ssk, v.parentHash; leafNodeSecret)
v.assignKp(kp)
v.sk← sk
γ′ ← *set-tree-hash(γ′)
updatePath← (kp, updatePathNodes)
return (γ′, commitSecret, updatePath, pathSecrets)

helper *apply-rekey(γ′, senderIdx, updatePath)
parse (kp, updatePathNodes)← updatePath
directPath← γ′.τ.directPath(senderIdx)
coPath← γ′.τ.coPath(senderIdx)
lca← γ′.τ.lca(γ′.leafIdx, senderIdx)
for (v, c, updatePathNode)

∈ zip(directPath, coPath, updatePathNodes) do
parse (v.pk, encPathSecrets)← updatePathNode
if v = lca then

r ← c.resolvent(γ′.τ.leaves[γ′.leafIdx])
i← c.resolution().indexofr
pathSecret← PKE.dec(r.sk, encPathSecrets[i])

if pathSecret 6= ⊥ then
nodeSecret← HKDF.Expand(pathSecret, ‘node′)
(pk, v.sk)← PKE.kg(nodeSecret)
req v.pk = pk
pathSecret← HKDF.Expand(pathSecret,)

commitSecret← pathSecret
γ′.τ.mergeLeaves(senderIdx) γ′ ←
*set-parent-hash(γ′, senderIdx)
v ← γ′.τ.leaves[senderIdx]
try γ′ ← *validate-kp(γ′, kp, v.id, v.parentHash)
v.assignKp(kp)
γ′ ← *set-tree-hash(γ′)
return (γ′, commitSecret)

helper *apply-props(γ, γ′, ~p)
upd, rem, add← ()
for p ∈ ~p do

try (senderIdx, P)← *unframeProp(γ, p)
ids ← γ.τ.leaves[senderIdx].id
parse (type, val)← P
if type = ‘upd′ then

req (ids, ∗) /∈ upd ∧ rem = () ∧ add = ()
try γ′ ← *validate-kp(γ′, val, ids, ε)
γ′.τ.leaves[senderIdx].assignKp(val)
γ′.τ.blankPath(senderIdx)
if senderIdx = γ.leafIdx then

parse (ssk, sk)← γ.pendUp[p]
γ′.τ.leaves[γ.leafIdx].sk← sk
γ′.ssk← ssk

spk← γ′.τ.leaves[senderIdx].spk
upd ++← (ids, ‘upd′-spk)

else if type = ‘rem′ then
idt ← γ.τ.leaves[val].id
req val 6= senderIdx ∧ γ′.τ.leaves[val] 6= ⊥

∧ γ′.τ.leaves[val].inuse() ∧ (idt, ∗) /∈ upd ∧ add = ()
γ′.τ.leaves[val].blank()
γ′.τ.leaves[val].blankPath(val)
rem ++← (ids, ‘rem′-idt)

else if type = ‘add′ then
parse (idt, ∗, spk, ∗, ∗)← val
req idt /∈ γ′.τ.roster()
try γ′ ← *validate-kp(γ′, val, idt, ε)
newIdx ← γ′.τ.addLeaf()
γ′.τ.leaves[newIdx].assignKp(val)
γ′.τ.unmergeLeaf(newIdx)
add ++← (ids, ‘add′-idt-spk)

else
return ⊥

return (γ′, upd, rem, add)

helper *welcome-msg(γ, γ′, add, joinerSecret, pathSecrets, confTag)
groupInfoTBS← (γ′.groupId, γ′.epoch, γ′.treeHash,

γ′.confTransHash, γ′.interimTransHash,
γ′.τ.public(), confTag, γ′.leafIdx)

sig← Sig.sign(γ′.ssk, groupInfoTBS)
groupInfo← (groupInfoTBS, sig)
encGroupSecrets← ()
for (∗, ‘add′-idt-spkt) ∈ add do

leafIdxt ← γ′.τ.leafof(idt)
vt ← γ′.τ.leaves[leafIdxt]
lca← γ′.τ.lca(γ′.leafIdx, leafIdxt)
encGroupSecret← PKE.enc(vt.pk, (joinerSecret, pathSecrets[lca]]))
encGroupSecrets ++← (Hash(vt.kp), encGroupSecret)

w ← (encGroupSecrets, groupInfo)
return (γ′, w)

helper *vrf-tree-state(γ′)
req γ′.treeHash = *tree-hash(γ′.τ.root)
for v ∈ γ′.τ.nodes : v.inuse() ∧ ¬v.isleaf do

parentHash← *parent-hash(v)
req (v.lchild.inuse() ∧ v.lchild.parentHash = parentHash)
∨ (v.rchild.inuse ∧ v.rchild.parentHash = parentHash)

mem← ∅
for v ∈ γ′.τ.nodes : v.inuse() ∧ v.isleaf do

req v.id /∈ mem
mem +← v.id
try γ′ ← *validate-kp(γ′, v.kp(), v.id, v.parentHash)

return γ′

Fig. 11: The helper methods related to creating and processing the commit and welcome messages.

26

Protocol ITK : Confirmation-Tag

helper *conf-tag(γ′, confKey)
return MAC.tag(confKey, γ′.confTransHash)

helper *vrf-conf-tag(γ′, confKey, confTag)
return MAC.vrf(confKey, confTag, γ′.confTransHash)

Protocol ITK : Tree-Hash

helper *set-parent-hash(γ′, leafIdx)
path← γ′.τ.directPath(leafIdx)
path← path.reverse()
path ++← γ′.τ.leaves[leafIdx]
for v ∈ path do

if v.isroot then v.parentHash← ε
else v.parentHash← *parent-hash(v.parent)

return γ′

helper *parent-hash(v)
return Hash(v.pk, v.unmergedLvs, v.parentHash)

helper *set-tree-hash(γ′)
γ′.treeHash← *tree-hash(γ′.τ.root)
return γ′

helper *tree-hash(v)
if v.isleaf then

return Hash(v.leafIdx, v.kp())
else

leftHash← *tree-hash(v.lchild)
rightHash← *tree-hash(v.rchild)
return Hash(v.nodeIdx, v.pk, v.unmergedLvs,

v.parentHash, leftHash, rightHash)

Protocol ITK : Transcript-Hash

helper *set-conf-trans-hash(γ, γ′, senderIdx, C, sig)
commitContent← (γ.groupId, γ.epoch, senderIdx, ‘commit′, C, sig)
γ′.confTransHash← Hash(γ.interimTransHash, commitContent)
return γ′

helper *set-interim-trans-hash(γ′, confTag)
γ′.interimTransHash← Hash(γ′.confTransHash, confTag)
return γ′

Protocol ITK : Key-Schedule

helper *derive-keys(γ, γ′, commitSecret)
joinerSecret← HKDF.Extract(γ.initSecret, commitSecret)
(γ′, confKey)← *derive-epoch-keys(γ′, joinerSecret)
return (γ′, confKey, joinerSecret)

helper *derive-epoch-keys(γ′, joinerSecret)
s← HKDF.Expand(γ.joinerSecret, ‘member′)
memberSecret← HKDF.Extract(s, 0)
e← HKDF.Expand(memberSecret, ‘epoch′)
epSecret← HKDF.Extract(e, γ′.groupCtxt())
confKey← HKDF.Expand(epSecret, ‘confirm′)
γ′.appSecret← HKDF.Expand(epSecret, ‘app′)
γ′.membKey← HKDF.Expand(epSecret, ‘membership′)
γ′.initSecret← HKDF.Expand(epSecret, ‘init′)
return (γ′, confKey)

Protocol ITK : Setup Interaction

helper *fetch-ssk-if-nec(γ, spk)
if γ.τ.leaves[γ.leafIdx].spk 6= spk then

ssk← query (get-ssk, spk) to Fas
else

ssk← γ.ssk
return ssk

helper *validate-kp(γ, kp, id, parentHash)
parse (id′, pk, spk, parentHash′, sig)← kp
req id = id′ ∧ parentHash = parentHash′
if spk /∈ γ.certSpks[id] then

succ← query (verify-cert, id′, spk) to Fas
req succ
γ.certSpks[id] +← spk

req Sig.vrf(spk, sig, (id, pk, spk, parentHash))
return γ

Fig. 12: Various helper methods for the protocol ITK.

27

Protocol ITK : Message-Framing

helper *signCommit(γ,C)
tbs← (γ.groupCtxt(), γ.groupId, γ.epoch, γ.leafIdx, ‘commit′, C)
sig← Sig.sign(γ.ssk, tbs)
return sig

helper *frameCommit(γ,C, confTag, sig)
return (γ.groupId, γ.epoch, γ.leafIdx, ‘commit′, C, confTag, sig)

helper *unframeCommit(γ, c)
parse (groupId, epoch, senderIdx, contentType, C, confTag, sig)← c
req contentType = ‘commit′ ∧ groupId = γ.groupId

∧ epoch = γ.epoch
tbs← (γ.groupCtxt(), groupId, epoch, senderIdx, ‘commit′, C)
req γ.τ.leaves[senderIdx] 6= ⊥

∧ γ.τ.leaves[senderIdx].inuse()
∧ Sig.vrf(γ.τ.leaves[senderIdx].spk, sig, tbs)

return (senderIdx, C, confTag, sig)

helper *frameProp(γ, P)
tbs← (γ.groupCtxt(), γ.groupId, γ.epoch, γ.leafIdx, ‘proposal′, P)
sig← Sig.sign(γ.ssk, tbs)
tbm← (tbs, sig)
membTag← MAC.tag(γ.membKey, tbm)
return (γ.groupId, , γ.epoch, γ.leafIdx, ‘proposal′, P, sig,membTag)

helper *unframeProp(γ, p)
parse (groupId, epoch, senderIdx, contentType, P, sig,membTag)← p
req contentType = ‘proposal′ ∧ groupId = γ.groupId

∧ epoch = γ.epoch
tbs← (γ.groupCtxt(), groupId, epoch, senderIdx, ‘proposal′, P)
tbm← (tbs, sig)
req γ.τ.leaves[senderIdx] 6= ⊥

∧ γ.τ.leaves[senderIdx].inuse()
∧ Sig.vrf(γ.τ.leaves[senderIdx].spk, sig, tbs)
∧ MAC.vrf(γ.membKey,membTag, tbm)

return (senderIdx, P)

Fig. 13: The helper methods related to message framing.

Process. Consider an input (Process, c, ~p). If the party created this commit message c (and the
proposals match), then the protocol can simply retrieve the new epoch’s state from γ.pendCom.
Otherwise, it proceeds as follows.

First, the protocol “unframes” the message, i.e., it verifies the signature and checks that it
belongs to the correct group and epoch. Next, it verifies that ~p match the proposals mentioned in
c and, if so, applies them using *apply-props.

Afterwards, ITK applies the re-key using *apply-rekey (see Fig. 11). That is, it updates all
the public keys and decrpyts the least common ancestor’s seed to derive the secret keys shared
between the direct paths of the committer and the processing party. Moreover, this updates the
parent hash on the re-keyed path and in particular verifies that the one signed as part as the new
leaf’s key package matches.

The protocol then derives the new epoch’s key schedule by first computing the confirmed
transcript hash and then deriving the keys. Based on the new schedule, the confirmation tag is
then verified. Finally, it completes the new epoch’s state with the interim transcript hash.

Join. Upon input (Join, w), ITK sets up a new state and copies the public group information from
the welcome message. This state is then verified by first verifying the sender’s signature on the
group information as well as verifying the public part of the ratchet tree.

Crucially, this entails verifying the tree signing mechanism. To this end *vrf-tree-state (see
Fig. 11) first validates the parent hashes using the following invariant:

Invariant: For each non-blank internal node v, there exists exactly one non-blank child node,
whose parent hash refers to v.

See Fig. 14 for an explanation of the tree-signing mechanism and the invariant in particular. For
each leaf, *vrf-tree-state furthermore verifies the signature on the key package, which includes
the parent hash. Overall, this mechanism ensures that each internal node has been sampled by one
of the parties in the respective sub-tree (or the party’s signing key has been compromised).

ITK then proceeds by decrypting the private information — the joiner secret and the seed
of the least common ancestor — from the welcome message. To this end, it fetches all its key-
package/secret-key pairs (kp, sk) from Fks and determines the one that has been used for the
welcome message based on the hash of kp.

Analogous to Process it then derives the secret keys on the common path segment to the root
and finally the next epoch’s key schedule. It moreover also verifies the confirmation tag.

Key. The input Key outputs the current epoch’s application secret and then deletes it from the
local state.

28

4.5 Simplifications and Deviations

While ITK closely follows the IETF MLS protocol draft, there are a number of small deviations
and omissions.

Omitted modes and optional features. The ITK protocol omits the following modes and
optional features of the MLS protocol draft.

Protocol versions and ciphersuites. In the MLS draft, each group has a protocol version and
a ciphersuite associated. Our analysis, on the other hand, simply assumes a single protocol
version with a fixed set of underlying primitives. As they are specified upon group initialization
by the group creator (rather than negotiated) and remain unchanged over the group’s lifetime,
we do not, a priori, see any major potential for downgrade and other attacks. Additionally,
those parameters are incorporated into the key schedule, ensuring agreement. However, we
leave a more complete analysis for future work.

Meta-data protection. The MLS draft supports two message framing formats: encrypted MLSCi-
phertexts and unencrypted MLSPlaintexts. While using the former is mandatory for protecting
application messages’ confidentiality, it is only recommended for handshake message to thwart
basic meta-data analysis. Since we only consider handshake messages (not application messages)
and do not take meta-data protection into account, we fix all frameing to be MLSPlaintexts. In
particular, it is immediate that additionally encrypting the packets (as done by MLSCiphertext
framing) does not undermine any of the security properties analyzed for MLSPlaintexts in this
work.

External proposals. The MLS protocol draft allows for non-members to propose adding themselves
to an existing group, and also allows for pre-provisioned parties to send (arbitrary) proposals,
e.g., for a server to remove stale members. In both cases, it is up to the group policy to decide
on the validity of such external proposals. We did not take either mechanism into consideration.

Extensions. Similar to the TLS protocol, the MLS protocol draft is extensible in a number of
places. We did not analyze any extensions.

Preshared keys. Groups which have an out-of-band mechanism to agree upon pre-shared keys can
incorporate these into the MLS key schedule for additional security. We did not analyze this
mechanism.

Exporters. The MLS key schedule provides a mechanism to export additional secrets to higher-level
applications. As they are derived from the key schedule similarly to the application secret (and
are otherwise unused by the protocol), their security should follow analogously.

A ratchet tree with four members.

Alice Bob Charlie Dave

After Alice committed the removal of Dave.

Alice Bob Charlie

Fig. 14: An example of the tree-signing mechanism. In the left configuration, the keys in blue,
red, green, and purple nodes have been sampled and certified by Alice, Bob, Charlie, and Dave,
respectively. When Alice now commits the removal of Dave, first Dave’s direct path gets blanked
(including the root). Then Alice re-keys her direct path. Her leaf now contains a signature on the
hash of the internal node shared between her and Bob, which in turn includes a hash of the new
root, thus binding the leaf to the entire direct path. At this point, the parent hash of Charlie’s
leaf no longer matches the now blanked parent node, for which now neither child node has a valid
parent hash. Note however that ITK always blanks a party’s entire direct path. Hence, for each
non-blank node, the binding child node is still in the tree. Thus, each non-blank internal node is
always bound by its child sampled by the same party, ultimately certified by the corresponding
leaf node.

29

Minor simplifications. Furthermore, our model of the protocol deviates from the draft in a
number of minor aspects.

No membership MAC on commits. ITK uses an explicit MAC to ensure the authenticity of
proposals. The MLS protocol also includes the MAC for commits (when using MLSPlaintext)
[9]. For the security properties considered in this work this inclusion is redundant as the confTag
already provides the same (and more) authenticity guarantees. But in practical terms, the
MAC can provide somewhat better denial-of-service mitigation than relying only on confTag. In
particular, verifying the MAC may allow quickly rejecting malformed commit packets without
needing to first derive the next epoch’s key schedule (a comparatively costly computation)
needed to verify the confTag.

Simplified primitives. While the MLS protocol draft imposes a particular use of HKDF for key
derivation (ExpandWithLabel), our model simply uses HKDF directly, not mixing in the same
amount of context as in the spec. We note that this modification can only weaken security. So
our results carry over to the more inclusive version in the RFC. For our analysis we treated
HKDF’s expand and extract functions as a random oracle. Moreover, in lieu of explicitly
imposing the KEM-DEM paradigm (with the HPKECiphertext structure in commit messages)
we simply model this as public-key encryption. Thus, formally speaking, it remains to show
that HPKE, in the mode used in by MLS, implements a PKE scheme as modeled in our work
(from reasonable assumptions). (Given the simplicity of that mode of HPKE we believe this to
be quite straight forward.)

Expiration of key packages and certificates. Key packages are mandated to have explicit lifetimes,
which we do not account for. Neither does our model of the Authentication Service account for
the expiration of certificates.

Simplified welcome message format. The protocol in the MLS draft always encrypts the (public)
group context in welcome messages, analogously to MLSCiphertexts and not offering a mode
analogous to MLSPlaintexts. As we do not take meta-data protection into account, our model
forgoes this additional complexity. In particular, all of our results carry trivially cary over to
the MLS variant that performs the extra encryption. Additionally, we always put the public
part of the ratchet tree as part of the welcome message, not taking into account alternative
means of delivery (e.g. via the DS). But here too, our model implies security for such delivery
methods. Indeed, we use an insecure network (modeled by the environment) which means our
model provides no guarantees on what is ultimately delivered to new joining members. Instead,
it is up to the protocol to extract an guarantees from whatever packet is delivered.

More restrictive proposal lists. Our analysis assumes that the proposal vectors inside a commit
message follow a strict ordering of first update proposals, then remove proposals, and finally
add proposals. The current MLS draft (no longer) imposes such a restriction on the vector, but
requires them to be applied respecting this order, i.e., not necessarily in the order specified.
(We believe our techniques carry over essentially unchanged to this more permissive version of
MLS.)

5 Security of ITK

5.1 The Safety Predicate for ITK

The predicate, formally stated in Fig. 15, is defined using recursive deduction rules know(c, id)
and know(c, ‘epoch’), indicating that the adversary knows id’s secrets (such as the leaf secret), and
that it knows the epoch secrets (such as the init secret), respectively. In more detail:

– know(c, id) consists of three conditions, the last two being recursive. Condition a) is true if id’s
secrets in c are known to the adversary because they leaked as part of an exposure or were
injected by the adversary in id’s name (due to many attack vectors, this can happen in many
ways, see Fig. 15). The conditions b) and c) reflect that in ITK only commits sent by or affect
id (id updates, is added, or removed) are guaranteed to modify all id’s secrets. If c is not of
this type, then know(c, id) is implied by know(Node[c].par, id) (condition b)). If a child c′ of c
is not of this type, then it is implied by know(c′, id) (condition c)).

30

Predicate safe

Knowledge of parties’ secrets.

know(c, id) ⇐⇒
a) // id’s state leaks directly e.g. via corruption (see below):

*state-directly-leaks(c, id) ∨
b) // know state in the parent:

(Node[c].par 6= ⊥ ∧ ¬*secrets-replaced(c, id) ∧ know(Node[c].par, id)) ∨
c) // know state in a child:
∃c′ : (Node[c′].par = c ∧ ¬*secrets-replaced(c′, id) ∧ know(c′, id))

*state-directly-leaks(c, id) ⇐⇒
a) // id has been exposed in c:

(id, ∗) ∈ Node[c].exp ∨
b) // c is in a detached tree and id’s spk appears in some exposed node:

(∃ca : *ancestor(ca, c) ∧ Node[ca].par = ⊥ ∧ (id, spk) ∈ Node[c].mem
∧ (spk ∈ Exposed ∨ ∃ce : (∗, spke) ∈ Node[ce].mem ∧ spke ∈ Exposed) ∨

c) // id’s secrets in c are injected by the adversary:
((id, spk) ∈ Node[c].mem ∧ *secrets-injected(c, id))

*secrets-injected(c, id) ⇐⇒
a) // id is the sender of c and c was injected or generated with bad randomness

(Node[c].orig = id ∧ Node[c].stat 6= good) ∨
b) // c commits an update of id that is injected or generated with bad randomness
∃p ∈ Node[c].pro : (Prop[p].act = up- ∗ ∧ Prop[p].orig = id ∧ Prop[p].stat 6= good) ∨

c) // c adds id with corrupted spk
∃p ∈ Node[c].pro : (Prop[p].act = add-id-spk ∧ spk ∈ Exposed)

*secrets-replaced(c, id) ⇐⇒ Node[c].orig = id ∨ ∃p ∈ Node[c].pro :
Prop[p].act ∈ {add-id-∗, rem-id} ∨ (Prop[p].act = up- ∗ ∧ Prop[p].orig = id)

Knowledge of epoch secrets.

know(c, ‘epoch’) ⇐⇒ Node[c].exp 6= ∅ ∨ *can-traverse(c)

// Can the adversary process c using exposed individual secrets and parent’s init secret?
*can-traverse(c) ⇐⇒

a) // orphan root with a corrupted signature public key:
(Node[c].par = ⊥ ∧ (∗, spk) ∈ Node[c].mem ∧ spk ∈ Exposed) ∨

b) // commit to an add proposal that uses an exposed key package:
(∃p ∈ Node[c].pro : Prop[p].act = add-id-spk ∧ spk ∈ Exposed) ∨

c) // secrets encrypted in the welcome message under an exposed leaf key
*leaf-welcome-key-reuse(c) ∨

d) // know necessary info to traverse the edge:
(know(c, ∗) ∧ (c = root∗ ∨ know(Node[c].par, ‘epoch’)))

*leaf-welcome-key-reuse(c) ⇐⇒
∃id, p ∈ Node[c].pro : Prop[p].act = add-id- ∗ ∧∃cd : *ancestor(c, cd) ∧

(id, ∗) ∈ Node[cd].exp ∧ no node ch with *secrets-replaced(ch, id) on c-cd path

Safe and can-inject.

safe(c) ⇐⇒ ¬
(

(∗, true) ∈ Node[c].exp ∨ *can-traverse(c)
)

inj-allowed(c, id) ⇐⇒ Node[c].mem[id] ∈ Exposed ∧ know(c, ‘epoch’)

Fig. 15: The safety predicate for the CGKA functionality, defined in Fig. 3, reflecting the sub-optimal
security of the ITK protocol.

31

key insecureD : rem-A
D

: up

D : rem-B
D

: up

expose A

expose B expose C A B C D

Fig. 16: An execution illustrating that many simultaneous corruptions leak information that cannot
be deduced from any single corruption alone: the history graph (left) and the ratchet tree at
the beginning (right). Exposing A reveals the initSecret. Exposing B reveals secrets on his direct
path (untouched by D’s update), which, together with the initSecret from A, allow to process D’s
commit removing A. In particular, this reveals the next initSecret, which, together with C’s secrets,
allows to process the commit removing B. Notice that states of A and B cannot be used to process
the last commit, since afterwards they are not group members.

– know(c, ‘epoch’) takes into account the fact that ITK derives epoch secrets using the initSecret
from the previous epoch, and hence achieves slightly better FS compared to parties’ individual
secrets.
In particular, the adversary knows the epoch secrets in c only if it corrupted a party in c, or
knows the epoch secrets in c’s parent and knows individual secret of some party id in c. The
latter condition allows the adversary to process c using id’s protocol and is formalized by the
*can-traverse predicate.

– The only difference between ¬safe(c) and know(c, ‘epoch’) is that the application secret is not
leaked if id is exposed in c after outputting it.

Let us highlight some aspects of safe, which make security of ITK suboptimal:

– Weak FS. The fact that know(c, id) is implied by knowledge of id’s secrets in a child of c is not
inherent. For instance, RTreeKEM [1] improves this with almost no efficiency loss.

– One encryption key per key package. When adding a party idt, ITK uses the same key pair for
the leaf of idt and to encrypt secrets in the welcome message to idt. As a result, if idt is exposed
before it updates its leaf, the key can be used to decrypt epoch secrets from the welcome
message, effectively removing the FS added by initSecret. This is reflected by condition c) of
*can-traverse.

– Weak protection against bad randomness. In ITK, the effect of updating or committing with bad
randomness is essentially the same as corrupting the sender. This is reflected in conditions a)
and b) of *secrets-injected. This could however be (partly) mitigated by a so-called randomness
pool, mixing the freshly sampled randomness with the secret state. Then, bad randomness
would not compromise a previously secure state but just hamper PCS.

– Signature schemes not resistant to bad randomness. ITK supports ECDSA signatures, which
leak the secret key in case randomness is reused. Accordingly, the signature key spk is marked
by Fcgka as corrupted each time an action that may use it is executed with bad randomness.

Remark 2. Previous works [2, 1] defined a simpler safe predicate by defining the set of history
graph nodes where application secrets are affected by an exposure. Then, a node’s secret is secure
if there is no exposure that affects it. However, in our setting a set of simulatneous exposures may
leak information that is not leaked by any of the exposures alone, as illustrated in Fig. 16.

5.2 Security Statement

In Section 6 we prove the following theorem.

Theorem 1. Assuming that PKE is IND-CCA secure, and that Sig is EUF-CMA secure, the ITK
protocol securely realizes (F iw

as ,F iw
ks ,Fcgka), where Fcgka uses the predicate safe from Fig. 15, in

the (Fas,Fks,Gro)-hybrid model, where calls to HKDF.Expand, HKDF.Extract and MAC functions
are replaced by calls to the global random oracle Gro.

32

Remark 3 (Modeling HKDF and MAC as Random Oracle). Our proof uses techniques of [2], which
require that HKDF.Expand, usually modeled as a PRF, is instead modeled as a (non-programmable
but observable) random oracle. Modeling HKDF.Extract as a random oracle as well is necessary to
extend the techniques of [2] to account for mixing the init secret into the key schedule. We note,
however, that the standard security requirement for HKDF.Extract [25] is anyway not applicable to
the way MLS uses it.24

Finally, we need non-standard assumptions on the MAC: extractability (a tag proves knowledge
of the corresponding message and key) and collision-resistance (it is hard to produce two message-
key pairs with the same tag). Both assumptions hold if MAC is modeled as a random oracle (and
it is unlikely to achieve extractability under weaker assumptions).25

6 Proof of Theorem 1: Security of ITK

We introduce the simulator gradually, with a sequence of hybrids.

Hybrid 1. This is the real world. We make a syntactic change: the simulator S1 interacts with a
dummy functionality Fdummy, which routs all inputs and outputs through S1, who executes the
protocol.

Hybrid 2. This change concerns consistency guarantees. Fdummy is replaced by (F iw
as ,F iw

ks ,Fcgka),
except safe(·) = false and inj-allowed(·, ·) = true, that is, all application secrets are set by
the simulator and injections are always allowed. The simulator S2 sets all messages and keys
according to the protocol.

Hybrid 3. This change concerns encrypting welcome messages. Whenever a party id commits,
and safe is true in the resulting commit node, the simulator S3 replaces the ciphertexts in the
welcome message by encryptions of 0 and computes the initial state of the new members using
the information that would be encrypted directly.

Hybrid 4. This change concerns the confidentiality of epoch secrets. Fcgka uses the original
safe predicate. The simulator S4 sets only those application secrets for which safe is false. In
addition, S4 replaces the membership keys for nodes c with safe(c) = true by random values,
independent of the protocol.

Hybrid 5. This change concerns authenticity. Fcgka uses the original inj-allowed. The simulator
remains the same. This is the ideal world.

On a high level, to argue indistinguishability of Hybrids 1 and 2, we use the fact that the group
context is included in all messages during framing. Indistinguishability of Hybrids 2 and 3 follows
easily from IND-CCA security of PKE. (Note that as soon as a party with exposed key package is
added, safe is false, and in particular the condition b) of *can-traverse is true), and for Hybrids
4 and 5 we use unforgeability of signatures and the MAC (note that the MAC key is already
random in Hybrid 4). These proofs are rather standard and can be found in Section 6.3. The most
challenging part of the proof is showing that indistinguishability of Hybrids 3 and 4 follows from
IND-CCA of PKE, and this is what we focus on first, in Sections 6.1 and 6.2.

In general, our proof follows the strategy of [2], where the authors prove security of (Tainted)
TreeKEM in the passive setting, assuming IND-CPA security of PKE. The major difficulty in the
reduction is that a TreeKEM execution creates “encryption chains”, where a public key is used
to encrypt the next secret key, the last key is used to encrypt a challenge, and the adversary can
adaptively choose which keys to corrupt. In order to tame the adaptivity, the authors of [2] use the
intermediate notion of Generalized Selective Decryption (GSD), which is, roughly, the standard
IND-CPA game, which additionally allows the adversary to create encryption chains. They prove
that TreeKEM security is implied by (slightly modified) GSD security of PKE, and then that GSD
24 The standard notion is that of a computational extractor. This does not imply security of MLS, which

requires that the extractor’s output looks random even if the salt (used for the init secret) is secret and
the input (used for the commit secret) is fixed. See also Appendix A.

25 Extractability is needed for the confirmation tag to prove knowledge of the key schedule in the next
epoch. Collision resistance is needed so that the adversary cannot produce a proposal accepted by parties
in 2 different epochs (recall that a proposal includes a MAC over the transcript hash, which uniquely
identifies an epoch, but not the transcript hash itself).

33

is implied by IND-CPA, where the latter reduction is in the (non-programmable but observable)
ROM.26

In the following, we build on their proof to reduce distinguishing of Hybrids 3 and 4. In
particular, in Section 6.1 we introduce a GSD game modified to fit ITK executions and adapt the
proof of [2] to show that our modified GSD security is implied by IND-CCA. Then, in Section 6.2
we show that GSD security implies indistinguishability of the hybrids (the reduction uses a lemma
implied by unforgeability of the signature scheme used to sign parentHash in leaves).

6.1 Modified GSD Security

This section first explains the Generalized Selective Decryption (GSD) security notion for public-
key encryption, modified to include additional capabilities of the adversary, given to it in ITK
executions.27 Then, we it proves that the modified GSD security is implied by IND-CCA security
in (observable) ROM, by extending the proof of [2].

GSD security is formalized by the game defined in Fig. 17. It is parameterized by a hash
function Hash and a number N . In essence, the game maintains a (hyper)graph with N vertices,
where each vertex u stores a seed su (initially ⊥), from which a key pair can be derived by running
key generation with randomness set to the hash of su. Edges correspond to dependencies between
seeds: one seed being a hash of another or being encrypted under a key derived from another. In
general, if a vertex is a source of an edge, then the public key is known to the adversary (note that
an outputted ciphertext may already reveal it). Otherwise, the public key is secret and the seed
should be indistinguishable from random. (Note that a secure seed can be used as a symmetric
key.) To put the definition in the context of a ITK execution, the GSD hypergraph created by a
ITK commit is given in Fig. 18.

We now describe the GSD oracles in more detail.

– Enc(u, v) creates an edge from u to v with label e and outputs an encryption of the seed sv
under the public key derived from su. This query also, if necessary, initializes su and sv to
random values. (ITK context: encrypting path secrets during rekey.)

– Hash(u, v, lbl) creates an edge from u to v with label lbl and computes v as Hash(su, lbl). Since
the hash is deterministic, we require that sv is not initialized yet and no other seed has been
computed from su using lbl. (ITK context: hash chain of path secrets.)

– Join-Hash(u, u′, v, lbl) is similar to Hash, but instead of su, it uses the pair (su, su′). (ITK
context: joiner secret is the hash of init and commit secrets.)

– Dec and Chal oracles are analogous to those in the IND-CCA game, except the restrictions
which nodes can be queried. The Corr oracle outputs the seed and records it in the Corr set.

The crucial aspect of the game is the gsd-exp(u) function, which determines if the seed in a
vertex u is exposed due to corruptions, or its secrecy is guaranteed. That is, gsd-exp for vertices
is analogous to ¬safe for application secrets. Specifically, u is exposed if it is corrupted, or if there
is an edge to u that can be traversed. The latter is true iff all sources of the edge are exposed.
(Notice the similarity to how our safe is defined.)

Definition 3. Let AdvGSD
PKE,A := 2 Pr[GSDPKE,A = true] − 1 denote the advantage of A against

the game defined in Fig. 17. A scheme PKE is GSD secure, if for all PPT adversaries A, AdvGSD
PKE,A

is negligible in κ.

Theorem 2 (adapted from [2]). If PKE is IND-CCA secure and Hash is modeled as an observ-
able (non-programmable) random oracle, then PKE is GSD secure.

Proof. The proof is adapted from [2]. There, the authors first show that IND-CPA implies in the
ROM the standard GSD security, GSD−, i.e., the notion formalized by the game from Fig. 17
26 Proving GSD security turns out very challenging and no polynomial reduction in the standard model is

known. Before [2], no efficient reduction was known, even in ROM.
27 [2] already modifies the standard GSD notion, allowing for keys to be derived via hash chains, like in an

ITK commit. We additionally allow the hash to take two inputs, like in computing the joinerSecret, and
add a decryption oracle.

34

Game GSDA

The game is parameterized by the number of vertices N , the security parameter κ and a hash function Hash.

(V,E)← ([N],∅) // GSD graph
Corr,Ctxt← ∅ // corrupted vertices, ciphertexts
su, pku, sku ← ⊥ for each u ∈ [N] // keys for vertex u
u∗ ← ⊥ // challenge vertex
b←$ {0, 1}
s′ ←$ {0, 1}κ
b′ ← AEnc,Dec,Corr,Chal,Hash,Join-Hash

PKE
if (a) (V,E) acyclic and

(b) u∗ sink and
(c) ¬gsd-exp(u∗)

then return b = b′

else return false

Oracle Chal(u)

req u∗ = ⊥
u∗ ← u
if b = 0 then return su
else return s′

Oracle Hash(u, v, lbl)

req sv = ⊥ ∧ (u, ∗, h-lbl) /∈ E // hash is deterministic
gen-key-if-nec(u)
sv ← Hash(su, lbl)
gen-key-if-nec(v)
E +← (u, v, h-lbl)
return pku

Oracle Corr(u)

req su 6= ⊥
Corr +← u
return su

Oracle Join-Hash(u, u′, v, lbl)

req sv = ⊥ ∧ ((u, u′, lbl), ∗, h-lbl) /∈ E
gen-key-if-nec(u); gen-key-if-nec(u′)
sv ← Hash(su, su′ , lbl)
gen-key-if-nec(v)
E +← ((u, u′), v, h-lbl)
return (pku, pku′)

Oracle Enc(u, v)

gen-key-if-nec(u); gen-key-if-nec(v)
E +← (u, v, e)
c← PKE.enc(pku, sv)
Ctxt +← (u, c)
return (pku, c)

Oracle Dec(u, c)

req su 6= ⊥ ∧ u not a sink
// keys must not be used for sinks (possible challenges)

req (u, c) /∈ Ctxt
return PKE.dec(sku, c)

gen-key-if-nec(u)
if su = ⊥ then su ←$ {0, 1}κ
(pku, sku)← PKE.kg(Hash(su, node))

// in ITK, the label “node” is used for key generation

gsd-exp(u)
return u ∈ Corr
∨ ∃(v, u, ∗) ∈ E : gsd-exp(v)
∨ ∃((v, v′), u, ∗) ∈ E : gsd-exp(v) ∧ gsd-exp(v′)

Fig. 17: The GSD game, modified to explain ITK executions.

35

without the Hash, Join-Hash and Dec oracles. This proof solves the main technical challenges,
and we refer the reader to [2] for the details. Then, [2] includes a proof sketch showing that the
reduction for GSD− can be easily modified to account for certain additional hash queries, namely,
the ones that in our game correspond to Hash queries with a fixed label lbl = 1. (While the proof
sketch of [2] involves programming of the RO, we believe this is not necessary.) We show that
additional Hash, Join-Hash and Dec queries do not affect (the modification of) the reduction.
Decryption. While [2] considers IND-CPA security, we note that their reduction generates the
seeds in all GSD vertices except one “challenge” vertex itself. Hence, answers to decrypt queries
for non-challenge vertices can simply be computed, and for the challenge vertex — sent to the
IND-CCA oracle (requiring (u, c) /∈ Ctxt makes sure that the IND-CCA challenge is valid).
Hash and Join-Hash. Here we need a bit more details of the reduction from [2]. Assume Agsd is a
GSD adversary. The authors define an event E on the GSD execution with Agsd as follows (here
adapted to our setting)

Event E. At some point, Agsd queries RO on a value that contains a seed su for a non-challenge
vertex u for which gsd-exp is false (at the time of the RO query).

Then, [2] presents two reductions: the reduction (1) constructs an IND-CCA adversary Acca, given
a GSD adversary A¬Egsd that triggers E with small probability, and the reduction (2) constructs a
GSD adversary A¬Egsd that triggers E with small probability, given a GSD adversary AEgsd which
triggers E with large probability.
Reduction (1). We first argue that in the reduction (1), Acca can easily deal with the additional
hash edges in the GSD experiment it simulates for A¬Egsd . In essence, Acca defined in [2] guesses
an edge (v∗, u∗, e), where u∗ is the GSD challenge issued by A¬Egsd (for now, just assume the edge
is given; see [2] for details). Then, Acca samples seeds for all vertices except u∗ itself, replaces
the public key in v∗ by its challenge key pk (unrelated to v∗’s seed), and embeds the IND-CCA
challenge in the encryption query creating the (v∗, u∗, e) edge. (The IND-CCA challenge is queried
on two random seeds, and A¬Egsd ’s challenge is answered with the first one.)

Clearly, any hash query that does not involve u∗ or v∗ can be simulated by evaluating the RO.
Any query involving v∗ is simulated by evaluating the RO on v∗’s seed. Since u∗ is a challenge and
there is a v∗-u∗ edge, gsd-exp is false for v∗. Hence, the fact that A¬Egsd does not trigger E implies
that it does not query RO on v∗’s seed and hence cannot verify that it is inconsistent with the
public key. Finally, if u∗ is created via a hash query (note that as a challenge, u∗ is a sink), Acca
can simply ignore this edge (i.e., choose u∗ at random instead). Again, the inconsistency of this
edge cannot be verified without triggering E. (Note that if u∗ is created via join-hash of u, u′, then
for gsd-exp to be false in u∗, it must be false for at least one of u, u′. Since verifying the hash
requires querying the RO on both u and u′, it triggers E.)
Reduction(2). Second, consider the reduction (2). Given a GSD adversary AEgsd that triggers E, [2]
defines A¬Egsd that does not trigger E roughly as follows. A¬Egsd simulates the experiment for AEgsd
using its oracles, and halts as soon as E turns true (it can realize that E is true by checking each
RO query of AEgsd against all public keys). Moreover, it guesses the vertex v∗ corresponding to the
RO query that makes E true. The idea is to challenge v∗ as soon as its seed is defined (since now
v∗ must be a sink in A¬Egsd ’s game, outgoing edges from v∗ and its public key are simulated using
a special vertex N + 1), obtain a seed s∗ and search for s∗ in AEgsd’s RO queries. If s∗ is the real
seed (and the guess for v∗ is correct), then it is queried to the RO and A¬Egsd outputs 0. Else, if s∗

is random, then it is independent of AEgsd’s view, so with high probability it is not queried and,
accordingly, A¬Egsd outputs 1 (when E is triggered for a different node, or AEgsd halts).

We only need to argue that the additional (join-)hash queries do not affect the simulation
before E is triggered, as afterwards the reduction halts. The reason this holds is analogous to the
reasoning for the reduction (1) — the only inconsistency is in the vertex v∗, where edges (u, v∗, ∗)
are generated using v∗’s actual seed, and edges (v∗, u, ∗) are generated using the special vertex
N + 1. However, this inconsistency cannot be verified without querying the RO on the seed from
v∗ or N + 1. As for both of these vertices gsd-exp is false (for v∗ by assumption that the guess
was correct, and for N + 1 since it is a source and cannot be corrupted, as it does not appear in
AEgsd’s game), such query would trigger E. ut

36

6.2 Indistinguishability of Hybrids 3 And 4

To prove inditinguishability, we define two sequences of hybrids: HappSecret
i and HmembKey

i for i ∈ [N].
HappSecret
i is the same as Hybrid 3, except the first i application secrets chosen by Fcgka are sampled

as in Hybrid 4, i.e. they are random if safe is true. HmembKey
i is the same as HappSecret

N , except the
first i membership keys used by the simulator are as in Hybrid 4, i.e. they are random if safe is
true. In the following, we show that HappSecret

i−1 and HappSecret
i are indistinguishable. The proof for

HmembKey
i is analogous.

Assume that an environment Z has a non-negligible advantage in distinguishing between
hybrids HappSecret

i−1 and HappSecret
i , and let M be an upper bound on the number of secret keys

(including PKE secret keys and symmetric keys) created in an execution with Z. We construct an
adversary A against the GSD game with M nodes as follows. On a high level, A emulates for Z
the interaction with Fcgka, F iw

ks , F iw
as and the simulator. In particular, A executes the code of all

these functionalities and the simulator as defined in HappSecret
i−1 , except secure PKE key pairs are

generated with the help of GSD oracles and the i-th group key embeds the GSD challenge. Note
that if for the i-th application secret safe is false, then the challenge is not embedded, but in this
case the hybrids proceed exactly the same.

We now explain in detail how A modifies the code of the functionalities and the simulator.
First, instead of storing a separate state for each party (as the simulator executing the protocol
would), A keeps a single group state for each commit node and a separate state for each proposal.
Relevant to the reduction, the group state contains a ratchet tree τ with a key pair in each node
and a number of symmetric keys, such as memberSecret and appSecret. A proposal node’s state
contains a key package. In general, a secret key (symmetric or asymmetric) can have one of three
values: (1) if it is unknown to Z, then it is equal to (gsd, u), where u ∈ N is a GSD vertex, (2)
if it is known to both Z and A, then it is set to the actual value, and (3) if it known to Z but
unknown to A (e.g. an injected public key), then it is set to ⊥.

For bookkeeping, A keeps a counter uctr (initially 1), denoting the largest vertex in the GSD
game used so far. We write pk ← *get-pk(u) to denote that A obtains the public key pk for a
vertex u by calling the oracle Enc(u, 0) (the special vertex 0 is only used here).

The remainder of the proof consists of three steps. First, we consider the simplified setting,
where Z never injects messages or key packages, and never corrupts randomness. In the next two
steps, we remove the former and the latter assumption, respectively.

Step 1: No Injections, No Bad Randomness We describe how A modifies the code of the
functionalities and the simulator. First, unlike F iw

ks and F iw
as , it does not delete secret keys (but

records the deletion event). Then, it processes different inputs as follows.

Key-package registration. When Z instructs a party id to register a key package in the
emulated F iw

ks , A creates a new GSD vertex by executing pk ← *get-pk(uctr). It uses pk to
generate the public part of the key package kp, sets the secret key SK[id, kp] to (gsd, uctr), and
sets uctr++.

Proposal add-idt from id. Recall that whenever the protocol requests a key package for idt from
F iw

ks , Z gets to choose it. Accordingly, A stores in the new proposal node the pk taken from
the key package chosen by Z.

Proposal up from id. Analogous to registering key packages, A creates the new key pair as
*get-pk(uctr) and (gsd, uctr), stores it in the new proposal node and uses it to compute the
message. It sets uctr++.

Applying proposals. The only difference from *apply-props (executed by the simulator as
part of the protocol) is that for each update proposal, the leaf’s secret key is set to the value
stored in the proposal node, and for each add proposal, its set to the value in the SK array.

Commit from id. After applying the proposals, A emulates *rekey-path as follows (see Fig. 18
for an example). First, consider the case where for all public keys used by id in *rekey-path,
the secret keys stored in the ratchet tree are of the form (gsd, ∗).
1. Add vertices to the GSD graph: A adds the following vertices: u1, . . . , un (path secrets), ujoi

(joiner secret), uapp, umem, uconf (their values are set to uctr, uctr+1, ... and uctr is incremented).
The vertices are created as follows: for each i ∈ [n− 1], query Hash(ui, ui+1, path). Then,

37

ucom

uini

uapp

umem
uconf

uini

ucom

uini

uapp

umem
uconf

v2

ucom

uini

uapp

umem
uconf

u3

u2

u1

v4

node cc’s parentc’s grandparent

ucom

u3

u2

v2 u1

v3

v4

Fig. 18: An example commit creating a node c: (right) the ratchet tree in c and its parent, (left)
the corresponding GSD graph created by the reduction A. The sinks and sources are marked
by and , respectively. The continuous and dashed edges denote hash and encryption edges,
respectively. The rightmost gray area is created upon the commit. The committer id first generates
a sequence of path secrets, while A creates vertices u1, ..., ucom connected by hash edges. Then
id derives next-epoch secret from joinerSecret obtained by combining commitSecret and previous
initSecret. Accordingly, A creates ujoi as the destination of a join-hash edge from ucom and uini.
Finally, id encrypts ui under vi, while A obtains ciphertexts from encryption edges (v4 was created
in a previous commit).

query Join-Hash(upar-ini, un, .), where (gsd, upar-ini) is stored in the initSecret of Ptr[id]. For
lbl ∈ app,mem, ini, conf, query Hash(ujoi, ulbl, lbl).

2. Create the packet:A creates encryptions of path secrets by creating corresponding encryption
edges. Then, it corrupts umem and stores the result as the memberSecret of the new node.
Finally, it corrupts uconf, which completes the set of values needed to compute the commit
packet.

3. Create the welcome message: If for some new member idt, the leaf key secret is not of
the form (gsd, ∗), A corrupts the vertex ujoi and uses the revealed joinerSecret to compute
the ciphertexts. Else, it outputs an encryption of 0. (Note that if safe is true for the new
commit node, then in Hybrid 3 the welcome message is replaced by an encryption of 0.)

Now assume that for some key used in *rekey-path, the secret key is not (gsd, ∗). Let ui be
the smallest that should be encrypted under such key. After adding the vertices, A corrupts ui
and uses it to compute ui+1, ..., un and encrypts ui, ..., un itself. It creates the packet as before.

Key in node c. A modifies the *set-key as follows. Assume this is the j-th call to *set-key.
If safe(c) is true and j < i, output a random value. Else, if safe(c) is true and j = i, let
(gsd, uapp) be the value stored in appSecret of c. Query challenge on uapp and output the result.
Else, output the real group key, corrupting the GSD node if necessary.

Expose id. The state of id’s contains the following secrets: 1) the secret key for each ratchet tree
node on id’s direct path such that id is not in unmerged leaves of this node, 2) epoch secrets,
and 3) the key packages secret keys generated by id. For each of the above secrets, if the secret
key that is equal to (gsd, u), A corrupts u. Then, for each vertex v s.t. gsd-exp(v) becomes
true, A replaces all occurrences of (gsd, v) by the seed sv, computed using previously obtained
ciphertexts and corrupted seeds.

If a history graph node c stores a symmetric key (gsd, ulbl), we refer to the GSD vertex as (c, ulbl).
Assume A queries challenge on a vertex (c, uapp) (if A does not query a challenge, i.e. safe(c) is
flase, then the hybrids are exactly the same, so Z’s advantage is 0). We now show that in the GSD
execution with A, safe(c) implies that gsd-exp((c, uapp)) is false, and hence A can win the game
by outputting whatever Z outputs.

Recalling the definition of gsd-exp (Fig. 17) and the GSD graph created by A (Fig. 18),
gsd-exp((c, uapp)) can only be true in one of the three cases:

38

(a) A corrupts the vertex (c, uapp). This happens iff A computes the state of a party exposed in c,
which immediately implies ¬safe(c).

(b) A corrupts the vertex (c, ujoi). This happens iff A computes a welcome message for a party idt
added with an exposed key bundle. Recall that if idt is exposed, Fcgka adds it to the exposed
set exp of each node where it can join using a currently held key package (the “for each” loop
of input expose). Hence, idt must be in the exp set of c and safe is false.

(c) Both gsd-exp((c, ucom)) and gsd-exp((Node[c].par, uini)) are true. For this case, we show
below that gsd-exp((c, ucom)) implies know(c, ∗). Then, the claim follows by condition d) of
*can-traverse.

– It is easy to see (c.f. Fig. 18) that gsd-exp((c, ucom)) is true if and only if gsd-exp((c, ui))
is true for some path secret ui created by A when generating c. This, in turn, is true iff
either
(1) during the commit, A corrupts ui, or
(2) during the commit, A calls the Enc oracle to encrypt ui under a key in (c, u) and
gsd-exp((c, u)),
(3) during an exposure of an id storing ui’s secret (after processing the commit).

– For Case (3), notice that any action of id removes ui’s secret from its state (it is blanked
for id’s proposals and rekeyed for its commits). Hence, if id is corrupted in c’s descendant
c′ while still storing ui’s secret, we clearly have know(c′, id) and ¬*secrets-replaced(c′′, id)
for each c′′ on the c-c′ path.

– Next, we consider Cases (1) and (2). Observe that (1) happens only if for some key used
in *rekey-path to encrypt ui, the secret key stores a seed. This means that this key was
created as a GSD node (c, u) and then set during exposure, because gsd-exp((c, u)) became
true (c.f. A’s behavior on expose). Hence, we only have to show that gsd-exp((c, u)) for
some (c, u) stored in a vertex used in *rekey-path implies know(c, ∗).

– Let τ.v be the ratchet tree node that stores the exposed vertex (c, u) and let id1, . . . , idn
be the parties with leaves in τ.v’s subtree. Consider the subgraph G of the history graph
containing all commit nodes (with incoming edges) where (c, u) is stored in τ.v. Since there
are no injections and no bad randomness, G is a tree (c.f. the example in Fig. 19).

– First, consider the case where τ.v is not a leaf. Then, the root of G is the commit that
inserts (c, u) into the ratchet tree, i.e., the first ancestor of c where an idi is the committer.
The leaves of G are commits that remove (c, u), i.e., any commits sent by an idi or commits
that remove an idi.
There are two possible reasons for which (c, u) is exposed. First, this happens if some
idi is exposed in a node ce in G and A has to compute its secret state. In this case,
observe that by the definition of *secrets-replaced, for each idi, every non-leaf node in
G is reachable from c via recursive evaluation of know(c, id). Moreover, we clearly have
*state-directly-leaks(ce, idi).
Second, this can happen if gsd-exp((c′, u′)) is true for some u′ used to encrypt the seed in
(c, u). If τ.v′ is not a leaf, we repeat the above reasoning for (c′, u′) and the ratchet tree
node τ.v′ storing (c′, u′) (the procedure terminates, since the protocol guarantees that τ.v′
is in τ.v’s subtree of τ.v, so the subtree of τ.v′ is smaller).

– Now consider the case where τ.v is a leaf and let id be its owner. Only id’s actions affect τ.v.
In particular, the root of G is a commit by id or one that includes a proposal updating or
adding it. Similarly, leaves of G are commits by id, or ones that include proposals updating or
removing it. In other words, these are exactly commits c′ for which *secrets-replaced(c′, id)
is true.28 This means that G is exactly those nodes that are reachable from c via the
recursive condition of know(·, id).
Now a leaf secret is always a source in the GSD graph (which A generates when id updates,
commits, or registers a key package), and A only corrupts id’s leaf when id holds the secret
key (note that this secret is not encrypted during a commit), i.e. when id is in a node of
G. Hence, there is a node c′ in G where id is exposed, making *state-directly-leaks(c′, id)
true.

28 Note that a leaf of G cannot add id, since its already in the group, and similarly the root cannot remove
id.

39

A : up D : up
C : up

D : up
D : rem-C

B : up

B : up

node c:
A holding
(c, u) exposed

τ.v : (c, u)

A B C D

Fig. 19: An illustration for the proof that gsd-exp((c, u)) implies know(c, ∗): the history graph
(left) and the ratchet tree in the exposed node c (right). The history graph subtree G is marked by

and the leafs are marked by . In the root of G, the committer A inserts (c, u) as one of the path
secrets created during the commit. The leaves of G remove (c, u) by either B replacing it during
the commit, or D blanking it to remove C.

Step 2: Allowing Injections We extend A to deal with different types of injected messages as
follows.

Injected proposals. A creates the new node using the public keys from the message and the
secret key set to ⊥ (even if the public key is already stored somewhere else). Note that for add
proposals, the secret key stored in the SK array may be ⊥.

Applying proposals. This works exactly the same, i.e. a secret key equal to ⊥ is copied to the
ratchet tree leaf.
Note that a party id never enters a node where its leaf’s key is injected (i.e., the secret is ⊥),
as ITK trivially detects this situation. Hence, storing ⊥ has no effect, for leaf keys only being
used by the party itself.

Commit from id. A proceeds the same as before. Secret keys equal to ⊥ are treated the same as
those with known seeds, i.e, A corrupts the smallest ui that is encrypted under a public key,
where the secret key is a seed or ⊥.

Commits injected to process. Assume Z makes id process an injected commit c from idc 6= id,
and that id accepts it. A attempts to build the new commit node’s state as follows. First, it
applies proposals (copying the ⊥ keys if necessary) to the ratchet tree in id’ node. Then, it
normally applies the rekey operation, except for each ciphertext ctxt that id would decrypt
with keys in a ratchet-tree node v. To apply the rekey for those ciphertexts ctxt, A then does
as follows.
• If the secret in v is not a GSD node, A simply decrypts ctxt. (Observe that the secret seed

in v is not ⊥, as id’s (real-world) protocol would reject c in that case.)
• If the secret is (gsd, u) and ctxt can be queried to the decrypt oracle, A decrypts it this

way.
• The only reason why decrypting would not be possible, is that ctxt must had been copied

from an “honest” commit c′, generated earlier by A, for which the GSD node u∗ associated
to appSecret is still a valid challenge. (Recall that upon exposure, A immediately computes
all secrets it can given the new information.) We now argue that this situation cannot
occur due the the (valid) confirmation tag included in c and, in fact, show that id accepting
such a c would allow A to win the GSD game. To this end, let A challenge the GSD node
u∗; and extract the correct seed from Z’s random oracle calls as follows.
1. Observe that appSecret can be derived from joinerSecret, which in turn is computed

as joinerSecret = Hash(initSecret, commitSecret, .), modeling HKDF as a RO. Moreover,
observe that commitSecret must be the same in c and c′, due to the shared (honestly
generated) ctxt accepted in both states.

2. We now proceed towards extracting joinerSecret of c′. Recall to this end that the tag
is a MAC, modeled as RO, of confKey and confTransHash, and that confTransHash
includes the whole message c except the confirmation tag itself and the membership
tag. Since the latter two are unique given the rest of c, confTransHash is unique for c
as well. Hence, the only way for Z to compute a valid confirmation tag is to query RO
on (confKey, confTransHash), and A can extract confKey. Analogously, as confKey is

40

derived by hashing joinerSecret with an appropriate label, it can extract joinerSecret
(of c) from the queries as well.

3. Now consider two cases. First, if initSecret is the same in c and c′, then joinerSecret =
Hash(initSecret, commitSecret, .) is the same in c and c′ (by commitSecret being the
same).
Second, if initSecret is different, then joinerSecret in c is the hash of an honestly generated
commitSecret with a different initSecret. Since the protocol only uses commitSecret once
with the correct initSecret, the only way for Z to compute the joiner is to query the
RO, and commitSecret can be extracted from the queries. Now A corrupts initSecret in
c′ and combines it with commitSecret to compute joinerSecret. Note that this does not
affect u∗ being a valid challenge, since the node corresponding to commitSecret (of c′)
is not exposed.
In either case, A can now compute appSecret and compare it to the result from the
GSD challenge to determine the bit b.

Injected welcome messages. In case Z makes id process an injected welcome message w =
(encGroupSecrets, groupInfo), A does as follows.
1. Join to an existing node. If there exists a node c with confTransHash matching that in

groupInfo, A searches for a key package kp such that SK[id, kp] 6= ⊥ and Hash(kp) matches
an entry e ∈ encGroupSecrets.
If e is copied from a welcome message generated by A while creating a commit node c and
SK[id, kp] is a GSD node, A moves id to c. Else, it uses either the secret in SK[id, kp] or
the GSD decrypt oracle to check if id would process the message and moves id if this is the
case.

2. Join a new node: create the public part. If no c with matching transcript hash is found,
and id accepts the message, A creates the new node with labels taken from groupInfo and
the ratchet tree set to the public part of τ from groupInfo. Then, for any node of τ with a
public key for which it has a secret key stored (in another ratchet tree or in SK), it copies
the secret into τ (other secrets remain ⊥).

3. Join a new node: decrypt the secrets. A searches for a key package kp such that SK[id, kp] 6=
⊥ and Hash(kp) matches an entry e ∈ encGroupSecrets and aborts if no such kp exists.
Similarly to injected commit messages, id will not accept e if it is copied from a welcome
message generated by A while creating a commit node c and SK[id, kp] is a GSD node. To
this end, observe that A could then use confTag from w to compute appSecret in c and
win the GSD game as follows. Recall that confTag = Hash(confKey, confTransHash), where
confKey is derived from joinerSecret id decrypts and confTransHash is taken from w. Since
e is copied, joinerSecret used (implicitly) for the tag is the same as in c. On the other hand,
confTransHash in w and c differ (else, id would have joined to c). Hence, joinerSecret inn c
can be extracted from Z’s RO queries and used to compute appSecret in c.
Otherwise, A can obtains the encrypted joinerSecret and pathSecret using the stored secret
or the Dec oracle. It updates ratchet tree secrets to those derived from pathSecret (if any
secret key was set to a GSD node, A uses pathSecret to win the game), and computes the
epoch secrets from joinerSecret.

We argue that with the above changes, A’s GSD challenge (c, uapp) is still valid, as long as safe(c)
is true. Assume towards a contradiction that gsd-exp((c, uapp)) is true.

The main tree. The proof is almost the same as in Step 1 (no injections). The only difference is in
case (c), where we show that gsd-exp((c, ucom)) implies know(c, ∗). We modify the proof of (c) as
follows.

– gsd-exp((c, ui)) is true for some ui in one of 3 cases:
(a) During an exposure of an id who (supposedly) stores ui’s secret,
(b) (As in Step 1) the secret key in some ratchet tree node τ.v used in *rekey-path stores a

seed from a GSD vertex (c, u) with gsd-exp((c, u)),
(c) The secret in τ.v is ⊥.
We show that all cases imply know(c, ∗).

41

– Case (a). Assume id is exposed in a commit node c′ and a ratchet tree node τ ′.v′ on its direct
path has ui’s public key pki. This can occur in 2 cases. First, if id processed c and has not
performed any action — in this case, the reasoning is the same as in Step 1.
Second, pki can be injected into τ ′.v′. We claim that this case cannot occur, since id will never
process a commit that injects an honestly generated (as part of c) key into its direct path.
Indeed, if τ ′.v′ is id’s leaf, then the only way to inject pki is via update or commit sent by
id, or by adding id. However, id’s protocol does not accept proposals or commits from id that
were not actually sent (the corresponding secrets are indexed by the whole messages), and id
does not join a group with a key package it did not generate. If, on the other hand, τ ′.v′ is an
internal node, then pk must be a part of an injected commit. If any party in the subtree of
τ ′.v′ accepts such commit A can use the confirmation tag to win the GSD game.

– Case (b). Similar to Step 1, we consider the subgraph G of the history graph, containing all
commit nodes where τ.v stores (c, u)’s public key pk.
Using the exact same argument as in Case (a), we can argue that (c, u) is not exposed in any
commit node outside of G. Hence, we use the same analysis as in Step 1.

– Case (c). The secret in τ.v is set by A to ⊥ only when the public key pk in τ.v is injected
during a commit c′, i.e., if (a) Z injects c′ on behalf of a party id in τ.v’s subtree, or (b) τ.v is
id’s leaf and c′ commits an update injected on behalf of id, (c) τ.v is id’s leaf and c′ commits
an add proposal that uses an injected key package (either injected to KS, or directly to an
injected commit).
The first 2 cases correspond exactly to cases a) and b) of *secrets-injected(c′, id). In case
(c), the add proposal must contain a key package for id with pk not generated by id. Since
key packages are signed using id’s spk (and the signature is always validated on process by
*validate-kp), this means that spk is exposed (or Z can be used to break EUF-CMA),
implying condition c) of *secrets-injected(c′, id).
Moreover, any commit c′′ that heals id replaces all keys in its direct path, including τ.v. Hence,
c′ is reachable from c via the recursive evaluation of know.

Orphan trees. Assume A challenges (c, uapp) for a node c in a detached tree rooted at rootrt. We
show that if safe(c) true, then the GSD challenge is valid.

First, observe that in a detached tree, safe is true only if no spk of a group member in c
is exposed. This is because know(rootrt, ‘epoch’) is true (c.f. condition a) of *can-traverse) and
know(c′, id) is true for any c′ in the detached tree as soon as id’s spk is exposed (c.f. condition b)
of *state-directly-leaks).

Second, we show that safe(c), and in particular condition b) of *state-directly-leaks, implies
that each secret key in the ratchet tree τ of c stores a GSD vertex. With this, it is easy to see that
gsd-exp((c, uapp)) implies know(c, ∗), where the argument is the same as for the main tree.

Take any node τ.v in c’s ratchet tree. If τ.v is a leaf, then its public key is set to a value only
if (1) its owner (with current spk) is corrupted or (2) a message (an update, a commit or a key
package sent to KS) is injected on behalf of the owner. In case (1) the spk is explicitly marked as
exposed. In case (2), it must have been marked as exposed, or Z can be used to break EUF-CMA.

If τ.v is an internal node, then its public key pk is included in the parentHash stored in the
leaf of the party idc in τ.v’s subtree whose commit introduced pk. (There is such leaf, since the
protocol rejects any welcome or commit that introduces a ratchet tree without it. Note that idc is
still in the group, since otherwise τ.v would have been blanked by the commit removing idc.) Let
spkc denote idc current signature key. This parentHash is signed by idc and (assuming safe) spkc is
not exposed, pk was generated by A as a GSD vertex for idc’s (honest) commit cc (or Z can be
used to break EUF-CMA). Such pk is set to a value only in two situations:

1. A party ide is corrupted in a descendant ce of cc before idc performs any action (in which
case its direct path, including pk, would be blanked). In this case, ce’s group contains idc with
(unchanged) spkc and ide with exposed spke, making *state-directly-leaks true in c.

2. A secret key for a ratchet tree node τc.vc (in cc) involved in *rekey-pathexecuted while
generating cc is not a GSD node. In this case, τe.ve’s tree must have been injected by, or leaked
upon corruption of a party ide in τe.ve’s subtree. Moreover, ide is still in the group and has
not performed any action, else τe.ve would have been blanked or replaced. This means that

42

his key spke in cc is exposed (it must have been exposed to enable the injection, or marked as
exposed on corruption). Hence, cc contains idc with spkc and ide with exposed spke, making
*state-directly-leaks true in c.

Step 3: Allowing Bad Randomness Finally, we modify A to deal with actions executed using
bad randomness as follows.

Proposal from id. A computes the proposal message p (and, in case of an update, the new key
package (kp, sk)) using the randomness provided by Z, the current membKey and the id’s spk
(all of which are always known to A). If p does not identify an existing node A creates it. In
case of an update proposal, it sets the secret key in p’s node to sk.

Commit from id. Given the randomness provided by Z, A computes the commit and welcome
messages, and the secrets in the new commit node, as follows.
1. A uses Z’s randomness to execute *rekey-path and obtains: all path secrets, the

commitSecret, and the intermediate commit packet C. Then, it signs C using id’s spk
(and, again, Z’s randomness) and sets the confirmed transcript hash accordingly.

2. A computes the new joinerSecret, which is a hash of the current initSecret and the freshly
computed commitSecret: If initSecret stores a GSD node u, A queries Hash with input
(u, uctr, commitSecret), corrupts uctr, sets joinerSecret to the result and increments uctr. Else,
if initSecret stores a value, A computes joinerSecret itself.

3. Using joinerSecret and the transcript hash from Step 1, A runs the key schedule, computes
the confirmation tag, and finishes computing the commit message c and the welcome
message w.

We claim that the above changes do not affect validity of A’s challenge (c, uapp). First, observe
that a corruption of the GSD node needed to compute joinerSecret during a commit c′ with bad
randomness does not affect (c, uapp). This is because by condition a) of *secrets-injected, safe is
false in all descendants of c′ until a commit is executed with good randomness. For this honest
commit, commitSecret corresponds to a GSD node with gsd-exp false, and hence gsd-exp is false
for the joinerSecret as well.

Second, we modify the proof that gsd-exp((c, ucom)) implies know(c, ∗). For this, observe that
now gsd-exp((c, ui)) can be true also if the secret in a ratchet tree node τ.v used in *rekey-path
stores a seed s generated during an action executed with bad randomness. Consider the commit c′
that inserts s into τ.v.

– If c′ is generated by id with bad randomness, then by condition a) of *secrets-injected,
know(c′, id) if true. Moreover, since any commit c′′ with *secrets-replaced(c′′, id) would replace
the key in τ.v, there is no such c′′ on the c′-c path and know(c, id) is true.

– If τ.v is id’s leaf and c′ commits id’s update executed with bad randomness, by condition b) of
*secrets-injected, know(c′, id) is true and, for the same reason as above, know(c, id) is true as
well.

– Finally, assume τ.v is id’s leaf and c′ adds id using a key package kp generated with bad
randomness. When kp was generated with bad randomness, F iw

ks marked the used spk as exposed.
Hence, c′ must be adding id with an exposed spk, which, by condition c) of *secrets-injected,
implies that know(c′, id) is true. As before, this implies that know(c, id) is true as well.

Finally, we note that any action executed with bad randomness marks the used spk as exposed,
and hence we no longer guarantee security in commit nodes in detached trees where the group
contains a member with spk. Hence, the simulation becomes trivial in such nodes even if Z learns
ssk and injects arbitrary messages.

6.3 The Rest of the Hybrids

Claim. Hybrids 1 and 2 are indistinguishable.

Proof: To prove the claim, we describe in detail the simulator S2, and argue that it does not violate
any statements executed by Fcgka within assert, and that the outputs of ITK and Fcgka are the

43

same. Observe that S2 knows the whole history graph, including the application secrets (since safe
is false in Hybrid 2). Moreover, each history graph node has a unique confTransHash, because the
transcript hash includes all messages c leading to it, i.e., all parents (except the last confTag, but
this is uniquely determined by the last c).

Proposals. When Fcgka sends (Propose, id, add) to S2, the simulator executes the ITK protocol
to obtain the packet p. Recall that for proposals adding idt, ITK fetches the key package kpt
for idt from Fks, and that Fks asks Z to provide kpt. S2 executes the code of both ITK and
Fks, which means it uses kpt provided by Z.
If p = ⊥, S2 sends to Fcgka ack = false. Else, it sends (p, spkt, true), where spkt is taken
from kpt (by inspection, the protocol guarantees that kpt is well formed and contains spkt).
Assert statements: The only assert statement executed on proposals is a part of *consistent-
prop, which enforces that proposals computed by id in node c are different than those
computed in node c′ (even if id can never get to these nodes). This is guaranteed by including in
proposals membTag — a MAC, modeled as a random oracle,29 over groupCtxt, which includes
confTransHash (c.f. framing in Fig. 13).30

Commits. S2 computes the packets c and w according to ITK and sets ack = false if c = ⊥. If
ack = true, it first checks if c corresponds to a detached root — if Node[c] = ⊥ and there
exists a w such that Wel[w] = rootrt and confTransHash in w (included as a part of groupInfo)
matches that in c (the latter can be computed), sends rt to Fcgka (alongside c and w).
Then, Fcgka runs *fill-props. For each proposal p without a node, S2 sets orig and act
according p (the basic checks executed by ITK guarantee that p is well formed).
Assert statements: *consistent-comm succeeds for the same reason as *consistent-prop.
All other asserted statements trivially hold by inspection and the fact that all messages include
a MAC over the transcript hash (note that in the invariant, inj-allowed is false in these
hybrids).

Process. S2 executes the protocol to check if the receiver would accept the inputs and sends
ack = false if this is not the case. Else, it checks if c corresponds to a detached root exactly as
in Commits above. If c creates a new node (i.e., there was no detached root and Node[c] = ⊥,
S2 retrieves orig′ and spk′ from c (the latter can be found in the committer’s key package in
the updatePath.
The fact that all statements in assert are true follows easily by inspection. To see why the
outputs of ITK and Fcgka are the same, observe first that since a commit contains hashes of all
proposals, with overwhelming probability, for each c there is only one ~p such that (Process, c, ~p).
Second, the output of process is determined by ~p and the member set in c’s parent (moreover,
this output is computed the same way by ITK and *output-proc in Fcgka). By the standard
hybrid argument, this implies that outputs are the same.

Join. To process an injected welcome message w = (encGroupSecrets, groupInfo) (non-injected
messages are handled by Fcgka without interaction with S2), S2 searches for a node c′ with
confTransHash matching that in groupInfo. If such node exists, it sends c′ to Fcgka. Else, it
sends to Fcgka the sender orig′ and the group members mem′ retrieved from groupInfo (and
Fcgka creates a new detached root). �

Claim. Assuming PKE is IND-CCA secure, Hybrids 2 and 3 are indistinguishable.

Proof: We use the standard hybrid argument, where in the i-th hybrid, the first i welcome messages
generated for commits with safe true, are real, and the rest are random. The (multi-user) IND-CCA
adversary A, given an environment Z distinguishing hybrids i − 1 and i, embeds its challenge
in the i-th welcome message and generates the rest of the welcome messages itself. It uses the
decryption oracle to deal with injected welcome messages.
29 The claim is not implied by any standard security notion for MAC’s. What we would need is that even

given the secret key, it is hard to find two messages with the same tags. While possible to formalize,
for simplicity we instead model the MAC as the RO (this is anyway necessary for the MAC used to
compute the confirmation tag).

30 Note that the epoch counter is not unique — it is in fact the same for all commit nodes with the same
depth.

44

Finally, due to the restriction on Z, A never has to reveal the secrets encrypted in its welcome
message, or the secret key that can be used to decrypt it. The reason is that A would only have
to do this if a party idt added to a node c with safe true, and then corrupted while holding the
decryption key for the welcome message. The latter is true iff idt has not processed its welcome
message yet, or if it has not updated its leaf key after joining. The former is disallowed by the “for
each” loop in Expose, and the latter — by the *leaf-welcome-key-reuse condition in safe. �

Claim. Assuming Sig and MAC are EUF-CMA secure, Hybrids 4 and 5 are indistinguishable.

Proof: Since the memberSecret is replaced by an independent random string in Hybrid 4, this proof
is straightforward. �

7 Different Tree-Signing Methods

In this section, we first explain why the tree-signing mechanism used by the ITK protocol provides
unexpectedly weak security, and then show that the expected level of security is achieved by the
protocol ITK∗, which uses an alternative tree-signing mechanism. The tree signing of ITK∗ was
discussed once on the MLS mailing list [30], but it was rejected for worse deniability (we note that
deniability is outside the scope of this work).

7.1 Tree Signing of ITK is Suboptimal

Recall that tree signing of ITK works by including in each leaf a signature on the leaf’s parentHash.
This way, each (honest) committer, say Alice, certifies that she (honestly) generated a number of
keys above her leaf. Intuitively, the goal is to allow a party, say Dave, invited to a (fake) group by
a malicious insider, say Bob, to meaningfully remove Bob. Unfortunately, this is not necessarily
the case, as illustrated by the attack in Fig. 20. Intuitively, the problem is that Alice’s signature
certifies that the key pairs were (honestly) generated by her, but not that the set of parties who
know the secret keys (for Invariant (2) of ITK) matches the one in Alice’s ratchet tree. This allows
Bob to create a fake ratchet tree, where he knows secrets of nodes that are not on his direct path.
Therefore, removing him from the fake group doesn’t cause a refresh of every key he knows.

7.2 Alternative Tree-Signing: ITK∗

In essence, ITK∗ fixes the problem of ITK by signing not only public keys on the direct path, but
also the identities of all parties the secret keys were revealed to.31 This is achieved by, first, storing
in each node the treeHash of its subtree. Then, the order of computing tree and parent hashes is
reversed and treeHash is included in the (signed) parentHash.

More specifically, the following modifications are made compared to ITK. First, ITK∗ computes
treeHash from the bottom up followed by the parentHash from the top back down again. For ratchet
tree γ.τ and node v ∈ γ.τ we write v.data := (v.nodeIdx, v.pk, v.unmergedLvs) to denote a (unique
prefix free encoding of) all public labels of node v except for the parentHash label and, at a leaf,
the signature. We recursively define parentHash and treeHash as follows:

if v.isleaf then
v.treeHash← Hash(v.data)

else
v.treeHash← Hash(v.data, v.lchild.treeHash, v.rchild.treeHash)

31 One reason this hurts deniability is because MLS allows that the public part of the ratchet tree is
communicated to joining members not as part of the welcome message, but via an untrusted server (this
increases efficiency in certain scenarios, e.g. it decreases the amount of data sent by the committer).
Signing parties’ identities (with undeniable signing keys) means that now they can no longer deny having
being part of some group together with that party.

45

The ratchet tree in a real group.

Alice Bob

Charlie

known to Bob

The ratchet tree created by malicious Bob inviting Dave.

Alice Charlie Bob Dave

known to Bob

The ratchet tree after Dave commits removing Bob.

Alice Charlie Dave

known to Bob

Fig. 20: An attack showing that tree signing of ITK is suboptimal. Alice and Charlie are honest,
and Bob is a malicious insider. The keys in blue, red and green nodes are certified by Alice’s,
Bob’s and Charlie’s signatures, respectively. Bob copies two lowest nodes on Alice’s direct path
and Charlie’s leaf, and builds the ratchet tree for a fake group, where he invites Dave (note that
the copied signatures are still valid for sub-paths). After Dave removes Bob, the group contains
only honest parties. However, the new application secret is known to Bob, because, due to the
invariant (2) of ITK in the real group, he knows some secret key generated by Alice.

if v.isroot then
v.parentHash← 0

else
v.parentHash← Hash(v.parent.treeHash, v.parent.parentHash)

That is, to avoid circular dependencies the parent hash is no longer included in the tree hash.
Second, observe that to implement this in ITK∗, we need to tweak the gen-kp abstraction for

*rekey-path a bit, separating the sampling of the keys from the signing process: The signature
includes the updated parent hash, which depends on the updated tree hashes, which in turn
depend on the new public key kp. In short, we first have to sample the new key pair, then invoke
*set-tree-hash and *set-parent-hash, and finally prepare and sign the key package.

7.3 Security of ITK∗

ITK∗ provides the security guarantees one would intuitively expect from tree signing — removing
all parties using corrupt signing keys results in a secure epoch, even if the group is fake. Formally,
we show the following theorem.

Theorem 3. Let F∗cgka be analogous to Fcgka but with an improved safe predicate safe∗, where
the condition b) of *state-directly-leaks (cf. Fig. 15) is replaced by

b∗) ∃ca : *ancestor(ca, c) ∧ Node[ca].par = ⊥ ∧ (id, spk) ∈ Node[c].mem ∧ spk ∈ Exposed.

Assuming that PKE is IND-CCA secure, and that Sig is EUF-CMA secure, the ITK∗ protocol then
securely realizes (F iw

as ,F iw
ks ,F∗cgka) in the (Fas,Fks,Gro)-hybrid model, where calls to HKDF.Expand,

HKDF.Extract and MAC functions are replaced by calls to the global random oracle Gro.

Recall that safe∗ returns false, i.e., epoch c is not secure, whenever *state-directly-leaks returns
true. Intuitively, the new condition in can be understood of as follows. The first two clauses ensure
that c is the result of an adversarially created session. The last two clauses check whether c contains
any exposed keys. While we could omit the first two clauses to still obtain a correct theorem
statement it would also be a needlessly weak one. That is because for honestly generated sessions
we are able to show that, under the right conditions, even an epoch c containing exposed keys can
still be secure. Thus we handle such epochs using other conditions in the safe predicate.

46

Proof. Notice that the only difference between safe and the new safe∗ concerns how detached
history-graph nodes are handled so it suffices to consider these. Specifically, for detached node c
safe∗ only guarantees that the epoch doesn’t include an exposed signing key spk. We argue this
implies that no node in the entire ratchet tree of c contains an exposed key pk (that is the secret
key to pk was not leaked to, or chosen by, the environment). In particular, that would mean that
no ciphertext in the most recent commit (and/or welcome messages) leading to the epoch can be
decrypted by the environment. (More formally, the plaintexts are indistinguishable from random
to the environment.) Thus, the environment is essentially unable to query the RO at the points it
would need to compute the new application secret, meaning it too would look random, meaning
the epoch is indeed secure.

It remains to argue that safe∗ returning true for epoch c implies that no node in the epoch’s
ratchet tree τ contains a leaked key pk. Suppose, for the sake of contradiction, that node τ.v does
contain a leaked key pk. We showed already in the proof of Theorem 1 that when τ.v is a leaf with
an exposed pk then spk at v must also have been exposed. As that contradicts safe∗ being true we
take v to be an internal node instead.

We first argue that all signatures in τ must verify. Note that by definition for a history-graph
node introduced by the simulator to exist, it must be that at least one party has accepted either a
commit or welcome message leading to that node. Let ca be the ancestor epoch of c referenced in
the first two clauses of safe∗. Since the node exists it must be that a party accepted a welcome
message leading to the node.32 Thus it must be that all signatures at the leaves of ca verify. For
each of the subsequent epochs up to and including c, each new signature inserted into the group
state no present in the previous epoch must have been verified, at least once; namely by the party
that accepted a commit message causing the epoch’s history-graph node to be created. Thus we
can conclude that all signatures in τ verify.

A similar argument lets us conclude that each public key at an internal node of τ must be
included in parent hash value that is then signed (along with other data) at some leaf in τ . Let ids
denote the party whose leaf in τ.v includes a signature authenticating pk. (We can assume that
ids is in the subtree rooted at τ.v as otherwise no party would have accepted the commit and or
welcome message leading to this epoch.)

The signature in ids’s leaf includes not just pk but also the complete tree hash at τ.v. Once
again, we can assume that this tree hash matches the data in the ratchet tree for that subtree since
otherwise no party would ever reach epoch c. By assumption ids’s signature public key spks is not
exposed so pk was generated honestly (and with good randomness) by ids as part of some commit
message cs (possibly for a different session). However (due the unforgeability of the signature
scheme) we can conclude that the ratchet tree for epoch cs must have contained an identical subtree
as the subtree of c rooted at τ.v (except for the parent hash values and signatures the leaves).

Now in the proof of Theorem 1, we already argued that for pk to have been leaked it must be
that the subtree in epoch cs rooted at the node with pk contained a party ide with an exposed spke.
But since the two subtrees are the same, this implies that τ in epoch c also contains an exposed
key which is a contradiction to safe∗ returning true.

ut

References

[1] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security analysis and improve-
ments for the IETF MLS standard for group messaging. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 248–277. Springer, Heidelberg, August
2020.

[2] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen Klein, Guillermo Pascual-
Perez, Krzysztof Pietrzak, and Michael Walter. Keep the dirt: Tainted treekem, an efficient and
provably secure continuous group key agreement protocol. Cryptology ePrint Archive, Report
2019/1489, 2019. https://eprint.iacr.org/2019/1489.

[3] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modular design of secure
group messaging. Private communication, 2020.

32 Since ca has no parent no party accepted a commit message leading to ca which only leaves a welcome
message as having triggered the creation of ca.

47

https://eprint.iacr.org/2019/1489

[4] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous group key agreementwith
active security. In Theory of Cryptography — TCC 2020 (to appear), 2020. Full version: https:
//eprint.iacr.org/2020/752.pdf.

[5] Michael Backes, Markus Dürmuth, Dennis Hofheinz, and Ralf Küsters. Conditional reactive simulata-
bility. In Dieter Gollmann, Jan Meier, and Andrei Sabelfeld, editors, ESORICS 2006, volume 4189 of
LNCS, pages 424–443. Springer, Heidelberg, September 2006.

[6] R. Barnes, B. Beurdouche, , J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert. The messaging
layer security (mls) protocol (draft-ietf-mls-protocol-latest). Technical report, IETF, Oct 2020.
https://messaginglayersecurity.rocks/mls-protocol/draft-ietf-mls-protocol.html.

[7] Richard Barnes. Subject: [MLS] Remove without double-join (in TreeKEM). MLS
Mailing List, 06 August2018 13:01UTC. https://mailarchive.ietf.org/arch/msg/mls/
Zzw2tqZC1FCbVZA9LKERsMIQXik.

[8] Richard Barnes. Subject: Re: [MLS] Include signature in the confirmed transcript hash? MLS Mailing
List, 17 September 2020 22:22UTC. https://mailarchive.ietf.org/arch/msg/mls/w0XK93yXZ_
dFzApbxroKJggxmZk/.

[9] Richard Barnes. MLS Protocol Pull Requests #396: Authenticate group membership in MLSPlaintext,
18 August 2020. https://github.com/mlswg/mls-protocol/pull/396.

[10] Richard Barnes. MLS Protocol Pull Requests #416: Inlclude the signature in the confirmation tag,
18 August 2020. https://github.com/mlswg/mls-protocol/pull/416.

[11] Richard Barnes. Subject: Re: [MLS] MLSPlaintext packets aren’t authenticated using symmetric
key schedule. MLS Mailing List, 18 August 2020 15:26UTC. https://mailarchive.ietf.org/arch/
msg/mls/MO7syaR7pS_z-dcXTNoiN73WiQ8/.

[12] Richard Barnes. Subject: [MLS] Proposal: Proposals (was: Laziness). MLS Mailing List, 22 August
2019 22:17UTC. https://mailarchive.ietf.org/arch/msg/mls/5dmrkULQeyvNu5k3MV_sXreybj0/.

[13] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asynchronous Decentralized
Key Management for Large Dynamic Groups, May 2018. Published at https://mailarchive.ietf.
org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8.

[14] Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg. Formal Models and Verified
Protocols for Group Messaging: Attacks and Proofs for IETF MLS. Research report, Inria Paris,
December 2019.

[15] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of concurrency in group
ratcheting protocols. Cryptology ePrint Archive, Report 2020/1171, 2020. https://eprint.iacr.
org/2020/1171.

[16] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel Rausch. Universal
composition with responsive environments. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 807–840. Springer, Heidelberg, December
2016.

[17] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[18] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with
global setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 61–85. Springer,
Heidelberg, February 2007.

[19] Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authentication and key-
exchange with global PKI. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages 265–296. Springer, Heidelberg, March
2016.

[20] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. On ends-to-ends
encryption: Asynchronous group messaging with strong security guarantees. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1802–1819. ACM
Press, October 2018.

[21] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-compromise security. In IEEE
29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016,
pages 164–178. IEEE Computer Society, 2016.

[22] Cas Cremers, Britta Hale, and Konrad Kohbrok. Efficient post-compromise security beyond one
group. Cryptology ePrint Archive, Report 2019/477, 2019. https://eprint.iacr.org/2019/477.

[23] Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tessaro. To hash or not to hash
again? (In)differentiability results for H2 and HMAC. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 348–366. Springer, Heidelberg, August 2012.

[24] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A unified and composable take on ratcheting. In
Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 180–210.
Springer, Heidelberg, December 2019.

48

https://eprint.iacr.org/2020/752.pdf
https://eprint.iacr.org/2020/752.pdf
https://messaginglayersecurity.rocks/mls-protocol/draft-ietf-mls-protocol.html
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik
https://mailarchive.ietf.org/arch/msg/mls/w0XK93yXZ_dFzApbxroKJggxmZk/
https://mailarchive.ietf.org/arch/msg/mls/w0XK93yXZ_dFzApbxroKJggxmZk/
https://github.com/mlswg/mls-protocol/pull/396
https://github.com/mlswg/mls-protocol/pull/416
https://mailarchive.ietf.org/arch/msg/mls/MO7syaR7pS_z-dcXTNoiN73WiQ8/
https://mailarchive.ietf.org/arch/msg/mls/MO7syaR7pS_z-dcXTNoiN73WiQ8/
https://mailarchive.ietf.org/arch/msg/mls/5dmrkULQeyvNu5k3MV_sXreybj0/
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://eprint.iacr.org/2020/1171
https://eprint.iacr.org/2020/1171
https://eprint.iacr.org/2019/477

[25] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Tal Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer, Heidelberg, August 2010.

[26] Ralf Küsters and Max Tuengerthal. Composition theorems without pre-established session identifiers.
In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, ACM CCS 2011, pages 41–50. ACM
Press, October 2011.

[27] E. Omara, B. Beurdouche, E. Rescorla, S. Inguva, A. Kwon, and A. Duric. The messaging layer
security (mls) architecture (draft-ietf-mls-architecture-05). Technical report, IETF, Jul 2020. https:
//datatracker.ietf.org/doc/draft-ietf-mls-architecture/.

[28] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended abstract). In
Luigi Logrippo, editor, Proceedings of the Tenth Annual ACM Symposium on Principles of Distributed
Computing, Montreal, Quebec, Canada, August 19-21, 1991, pages 51–59. ACM, 1991.

[29] Eric Rescorla. Subject: [MLS] TreeKEM: An alternative to ART. MLS Mailing List, 03 May 2018
14:27UTC. https://mailarchive.ietf.org/arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no.

[30] Nick Sullivan. Subject: [MLS] Virtual interim minutes. MLS Mailing List, 29 January 2020 21:39UTC.
https://mailarchive.ietf.org/arch/msg/mls/ZZAz6tXj-jQ8nccf7SyIwSnhivQ/.

[31] Matthew Weidner. Group messaging for secure asynchronous collaboration. MPhil Dissertation, 2019.
Advisors: A. Beresford and M. Kleppmann, 2019. https://mattweidner.com/acs-dissertation.pdf.

49

https://datatracker.ietf.org/doc/draft-ietf-mls-architecture/
https://datatracker.ietf.org/doc/draft-ietf-mls-architecture/
https://mailarchive.ietf.org/arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no
https://mailarchive.ietf.org/arch/msg/mls/ZZAz6tXj-jQ8nccf7SyIwSnhivQ/
https://mattweidner.com/acs-dissertation.pdf

A Preliminaries: Cryptographic Primitives

We introduce the basic cryptographic primitives used throughout this work.

Signature Scheme. A signature scheme is a tuple of PPT algorithms Sig := (Sig.kg,Sig.sign,Sig.vrf).
For a public/secret key pair (spk, ssk)← Sig.kg() from the key-generation algorithm, we denote
signing by sig← Sig.sign(ssk,m), and the verification by Sig.vrf(spk, sig,m). We require the standard
existential unforgeability under chosen message attacks (EUF-CMA) notion.

Public Key Encryption. A public key encryption scheme is a tuple of algorithms PKE := (PKE.kg,
PKE.enc,PKE.dec). For a public/secret key pair (pk, sk)← pk() from the key-generation algorithm,
we denote encryption byc← PKE.enc(pk,m), and decryption by m← PKE.dec(sk, c). We require
the standard indistinguishability under chosen ciphertext (IND-CCA2) notion.

Message Authentication Code. A message authentication code (MAC) scheme is a tuple of algorithms
MAC := (MAC.tag,MAC.vrf). For a uniformly random key k, we denote by t← MAC.tag(k,m) the
tagging algorithm and by MAC.vrf(k, t,m) the respective verification algorithm.

Proving ITK secure requires two non-standard assumptions on the MAC: extractability and
collision resistance. The first assumption means that from a valid tag, it is possible to extract the
corresponding message and key (in the sense of a proof of knowledge). The second assumption
means that an adversary should not be able to come up with any collision MAC.tag(k1,m1) =
MAC.tag(k2,m2) for (k1,m1) 6= (k2,m2). Neither assumption is implied by EUF-CMA security.

To this end, we model the MAC in the random oracle model (ROM). That is, in the security
proof we simply replace all calls to MAC.tag(k,m) by invocations of RO(k,m) and MAC.vrf simply
comparing the tags. Note that for HMAC, as used by MLS, this assumption is valid if the underlying
compression function is assumed to be a random oracle [23].

HKDF. The HMAC-based Extract-and-Expand Key Derivation Function is a tuple of algorithms
HKDF = (HKDF.Extract,HKDF.Expand). The extraction algorithm k ← HKDF.Extract(s0, s1)
outputs a u.a.r key if either s0 or s1 has high min-entropy. The expansion algorithm klbl ←
HKDF.Expand(k, lbl), given a key k, outputs an independent u.a.r. key for each (public) label lbl.

We model its security in the ROM. Note that MLS’ requirement of the extraction being secure
if either input has high (conditional) min-entropy anyway deviates from the HKDF RFC and the
respective standard security notion [25].

Hash Function. Finally, we use a generic hash function Hash, mapping from an arbitrary input
space to a fixed length output. For security, we use the ROM as well.

50

	Introduction
	Background and Motivation
	Our Contribution
	Related Work

	Preliminaries
	Notation
	Universal Composability
	Primitives

	Continuous Group Key Agreement
	CGKA Syntax
	The Security Model
	PKI Setup
	History Graph
	The CGKA Functionality

	The Insider-secure TreeKEM Protocol
	Protocol Overview
	Protocol State
	Setup Algorithms
	Protocol Algorithms
	Simplifications and Deviations

	Security of ITK
	The Safety Predicate for ITK
	Security Statement

	Proof of Theorem 1: Security of ITK
	Modified GSD Security
	Indistinguishability of Hybrids 3 And 4
	The Rest of the Hybrids

	Different Tree-Signing Methods
	Tree Signing of ITK is Suboptimal
	Alternative Tree-Signing: ITK*
	Security of ITK*

	Preliminaries: Cryptographic Primitives

