
On The Insider Security of MLS

Joël Alwen1, Daniel Jost2⋆, and Marta Mularczyk1⋆⋆

1 AWS Wickr, {alwenjo,mulmarta}@amazon.com
2 New York University, daniel.jost@cs.nyu.edu

Abstract. The Messaging Layer Security (MLS) protocol is an open standard for end-to-
end (E2E) secure group messaging being developed by the IETF, poised for deployment to
consumers, industry, and government. It is designed to provide E2E privacy and authenticity
for messages in long-lived sessions whenever possible, despite the participation (at times) of
malicious insiders that can adaptively interact with the PKI at will, actively deviate from
the protocol, leak honest parties’ states, and fully control the network.
The core of the MLS protocol (from which it inherits essentially all of its efficiency and
security properties) is a Continuous Group Key Agreement (CGKA) protocol. It provides
asynchronous E2E group management by allowing group members to agree on a fresh
independent symmetric key after every change to the group’s state (e.g. when someone
joins/leaves the group).
In this work, we make progress towards a precise understanding of the insider security of MLS
(Draft 12). On the theory side, we overcome several subtleties to formulate the first notion
of insider security for CGKA (or group messaging). Next, we isolate the core components of
MLS to obtain a CGKA protocol we dub Insider Secure TreeKEM (ITK). Finally, we give a
rigorous security proof for ITK. In particular, this work also initiates the study of insider
secure CGKA and group messaging protocols.
Along the way we give three new (very practical) attacks on MLS and corresponding fixes.
(Those fixes have now been included into the standard.) We also describe a second attack
against MLS-like CGKA protocols proven secure under all previously considered security
notions (including those designed specifically to analyze MLS). These attacks highlight the
pitfalls in simplifying security notions even in the name of tractability.

⋆ Research supported by the Swiss National Science Foundation (SNF) via Fellowship no. P2EZP2 195410.
Work partially done while at ETH Zurich, Switzerland.

⋆⋆ Research supported by the Zurich Information Security and Privacy Center (ZISC). Work partially done
while at ETH Zurich, Switzerland.

Table of Contents

1 Introduction . 3
1.1 Background and Motivation . 3
1.2 Our Contribution . 4
1.3 Related Work . 4
1.4 Outline of the Rest of the Paper . 6

2 Preliminaries . 7
2.1 Notation . 7
2.2 Universal Composability . 7

3 Insider-Secure Continuous Group Key Agreement . 7
3.1 Overview . 7
3.2 PKI Setup . 9
3.3 Interfaces of the CGKA Functionality . 10
3.4 History Graph . 11
3.5 Details of the CGKA Functionality . 12

4 The Insider-secure TreeKEM Protocol . 16
5 Security of ITK . 18
6 Insider Attacks . 21

6.1 An Attack on Authenticity in Certain Modes . 22
6.2 Breaking Agreement . 22
6.3 Inadequate Joiner Security (Tree-Signing) . 23
6.4 IND-CPA Security Is Insufficient . 25

7 Sub-optimal Security of ITK . 27
A Preliminaries . 30

A.1 Notation . 30
A.2 Cryptographic Primitives . 30

B Details of the Security Model . 31
B.1 PKI Functionalities . 31
B.2 The CGKA Functionality . 31

C Details on the ITK Protocol . 31
C.1 Protocol State . 31
C.2 Setup Algorithms . 36
C.3 Protocol Algorithms . 38
C.4 Simplifications and Deviations . 44

D Proof of Theorem 1: Security of ITK . 45
D.1 ITK∗ Guarantees Consistency . 46
D.2 A New Security Notion for PKE . 47
D.3 ITK∗ Guarantees Confidentiality . 49
D.4 ITK∗ Guarantees Authenticity . 57
D.5 Stronger Security of ITK . 58

E Details on the Attacks . 59
E.1 An Attack on Authenticity in Certain Modes . 59
E.2 Breaking Agreement . 61
E.3 Inadequate Joiner Security (Tree-Signing) . 62

1 Introduction

1.1 Background and Motivation

A Continuous Group Key Agreement (CGKA) protocol allows an evolving group of parties to agree
on a continuous sequence of shared symmetric keys. Most CGKA protocols are designed to be truly
practical even when used over an adversarial network by large groups of uncoordinated parties
with little, if any, common points of trust.

CGKA protocols should be end-to-end (E2E) secure and use asynchronous communication
(in contrast to older, highly interactive, Dynamic Group Key Agreement protocols). That is, no
assumptions are made about when or for how long parties are online. Instead, an (untrusted) network
is expected only to buffer packets for each party until they come online again. As a consequence,
all actions a party might wish to take must be performed non-interactively. Moreover, protocols
cannot rely on specially designated parties (like the group managers in broadcast encryption).
To achieve E2E security, protocols shouldn’t rely on trusted third parties including the PKI that
distributes long and short term public keys.3

Intuitively, CGKA protocols encapsulate the cryptographic core necessary to build higher-level
distributed E2E secure group applications like secure messaging (not unlike how Key Encapsu-
lation captures the core of Public Key Encryption). Any change to a group’s state (e.g. parties
joining/leaving) initiates a new epoch in a CGKA session. Each epoch E is equipped with its own
uniform and independent epoch key kE , called the application secret of E, which can be derived
by all group members in E. The term “application secret” reflects the expectation that kE will
be used by a higher-level cryptographic application during E.4 For example, kE might seed a key
schedule to derive (epoch specific) symmetric keys and nonces, allowing group members in E to
use authenticated encryption for exchanging private and authenticated messages during E.

The Messaging Layer Security Protocol. Probably the most important family of CGKA
protocols today is TreeKEM. An initial version was introduced in [37]. It was soon followed by
a more precise description in [17] and the improved version [13]. Another major revision came
with the introduction of the “propose-and-commit” paradigm [16]. The product of this evolution
(implicitly) makes up most of the cryptographic core of the latest draft (Draft 12) of the Messaging
Layer Security (MLS) protocol [12]. It is this most recent version which is the main focus of this
work.

MLS is being developed under the auspices of the IETF. It aims to set an open standard
for E2E secure group messaging; in particular, for very large groups (e.g. 50K users). MLS is
being developed by an international collaboration of academic cryptographers and industry actors
including Cisco, Cloudflare, Facebook, Google, Twitter, Wickr, and Wire. Together, these already
provide messaging services to over 2 billion users across all sectors of society. The IETF is currently
soliciting more feedback from the cryptographic community in hopes of finalizing the current draft.

Insider Security. Intuitively, MLS is designed to provide security whenever possible in the face
of a weak PKI and despite potential participation by malicious insiders with very powerful adaptive
capabilities. These include full control of the network and repeatedly leaking the local states of
honest users and even choosing their random coins5. However, thus far it has remained open how
to formally capture (let alone analyze) such a security notion for CGKA/group messaging. Instead,
simplified security models have been used to analyze (various versions of) TreeKEM. See Sec. 1.3
for a thorough discussion. Most critically, none of these models let the adversary deliver arbitrary
packets; a very natural capability for a real-world attacker controlling the network. Further, they
do not let the adversary register public keys in the PKI (let alone without proving knowledge of
the corresponding secret keys) or choose all random coins of corrupt parties.

3 Concretely, the servers distributing keys are normally not trusted per se. Instead trust is established
by, say, further equipping participants with tools to perform out-of-band audits of the responses they
receive from the server.

4 In the newest draft of MLS the term “application secret” has been changed to “encryption secret”.
5 We stress that adversarially chosen coins can lead to real-world attacks, see e.g. [21].

3

1.2 Our Contribution

New Security Model. To further our understanding of how MLS behaves against such insider
attacks, we first precisely define insider security of CGKA. In our new model, the adversary has
all above-mentioned capabilities available to malicious insiders. Our notion captures correctness
as well as the following security goals: security of epoch secret keys, authenticity and agreement
on group state. Formally, our model extends the notions in [8] to capture a more accurate and
untrusted PKI (solving an open problem from [8]). E.g., in our model the adversary can register
arbitrary (even long term) public keys on behalf of parties and without proving knowledge of
corresponding secrets. Of course, security is degraded for epochs in which such keys are used but,
crucially, only those.

We note that our notion can be used to analyze different CGKA protocols and compare their
security guarantees. We believe that it should be directly applicable to (propose/commit versions
of) protocols like [10, 6, 31]. Further, in a subsequent work [30] the authors use it (after small
modification) to prove that their protocol enjoys the same security as TreeKEM.
Security of TreeKEM. Second, we isolate the core features of the full MLS protocol, Draft
12 (the most recent draft at the time of writing) sufficient for realizing an insider secure CGKA
protocol. We call the result Insider Secure TreeKEM (ITK). Specifically, ITK augments TreeKEM
with message authentication, tree-signing, confirmation keys and small parts of MLS’s key schedule.

Third, we prove that ITK is secure in our model. Our analysis unveiled three new (and quite
practical) attacks on MLS Draft 10. All attacks require the capabilities of malicious insiders,
and hence they are outside the models used so far to analyze MLS, which explains why they
went unnoticed until now. We proposed fixes for each of the three attacks. They have since been
incorporated into to the IETF standard (in Draft 11) and are already reflected in ITK. In summary,
the result of the attacks are as follows:

1. A malicious insider can invite a victim to an artificial group (that includes any number of other
honest parties) such that the adversary can continue to derive epoch secrets in the group even
after they were supposedly removed from the group by the victim.

2. A malicious insider can break agreement. That is, they can craft two packets delivering each to
a different honest user with the result that they will both accept them, agree on their next
epoch secret keys, but will in fact be out-of-sync and no longer accept each other’s messages.

3. The mode of MLS where ITK packets are not encrypted provides weaker authenticity than
intended.

The first attack is the most interesting, since it relies on the flawed design of the so-called
tree-signing mechanism, adopted due to a lack of (even just intuitive) clarity around what it should
do (which lead to differing constructions being proposed and significant debate on the topic within
the MLS working group, e.g. [35, 1, 38]). This work finally elucidates what is the goal of tree
signing.
Justifying the New Model. Finally, to justify our model and the importance of formally
capturing the complete adversarial capabilities against which CGKA protocols intend to defend,
we formally prove the following: First, for each of the three fixes for the above mentioned attacks,
ITK modified to undo the fix is not secure in our model. Second, we observe that all previous
analyses of CGKA protocols (including TreeKEM and others) in simplified models assumed CPA
security of the encryption schemes they use, implying that this is sufficient (see e.g. [6, 7, 10]).
We show that this is an oversimplification by demonstrating a practical attack on ITK modified
to use a particular (contrived) CPA secure scheme, resulting in malicious insiders being able to
compute epoch secrets after having been removed from the group. Again, we show that the above
modification of ITK is not secure in our model. (Fortunately, as implied by [5], the PKE used in
MLS is indeed CCA secure which we show to be sufficient.)

1.3 Related Work

Analyses of MLS. A summary is given in Table 1. The research on CGKA was initiated with the
introduction of the Asynchronous Ratcheting Tree (ART) protocol by Cohn-Gordon et al. in [25].

4

MLS Version Part Analyzed Adversarial Model Considers Group Splits Framework

[25] Draft 1 (ART) CGKA in static groups active yes part game-based,
part symbolic

[6] Draft 6 CGKA passive no game-based

[18] Draft 7 Messaging insider yes symbolic

[7] Draft 11 Messaging semi-active yes game-based

[20] Draft 11 Key derivation insider n/a game-based

[26] Draft 11 Multi-group messaging n/a n/a n/a

this work Draft 12 CGKA insider yes UC

Table 1: Related work: Analyses of MLS.

ART later was adopted as part of MLS Draft 1, before being replaced by TreeKEM as part of Draft
2. TreeKEM based MLS has been analyzed in the computational setting (using the game-based
approach) in the works [6, 7, 20]. The work by [6] analyzed the TreeKEM portion of MLS and, to
this end, coined the respective CGKA abstraction. On the other hand, [7] considers the full MLS
protocol and, importantly, validates the soundness of the CGKA abstraction as an intermediate
building block.

In contrast to this work, [6, 7] however used simplified security models. In [6] the adversary
is forced to deliver packets in the same order to all parties and learns nothing about the coins
of parties she has compromised. Meanwhile, [7] permits arbitrary packet delivery scheduling and
leaks the random coins of corrupt parties but still does not allow the adversary to choose corrupt
parties’ coins. Neither model allows fully active attacks. In [6], the adversary cannot modify/inject
packets at all while in [7] she may only deliver modified/injected packets to an honest party if the
party will reject the packet.

Further, [20] focuses exclusively on the pseudorandomness of secrets produced by the key
derivation process in MLS. So, unlike other works, they do not consider the general effects
malformed protocol packets can have (e.g. as part of an arbitrary active attack). Instead they focus
only on a specific set of effects such packets could have on the key derivation mechanism in MLS.
(So for example, they make no statements about authenticity.) In contrast to the other two works,
they also only allow for a limited type of adaptivity where adversaries must leak secrets at the
moment they are first derived and no later. On the other hand, [20] considers a more fine-grained
leakage model where secrets can be individually leaked rather than the whole local state of the
victim at once. Finally, the recent work of [26] considers the PCS guarantees provided by MLS in
the multi-session setting. Surprisingly, they identify significant inefficiencies in terms of the amount
of bandwidth (and computation) required by a multi-session MLS client to return to a fully secure
state after a state compromise. They present intuitive deficiencies of MLS-style constructions but
they do not define a formal security model.

Complementing the above line of work, the paper [18] analyzed the insider security of TreeKEM
as of Draft 7 in the symbolic setting (in the sense of Dolev-Yao). Their model covers most intuitive
adversary’s abilities and security properties considered in this work. Actually, they even consider a
slightly more fine-grained corruption model that allows the adversary to corrupt individual keys
held by parties. It is noteworthy, however, that [18] analyze a version of TreeKEM that does not
yet have any tree-signing mechanism. Consequently, they find an attack on TreeKEM Draft 7 (that
would also appear in our insider security model) and proposes a strong version of tree signing
(aka. “tree-hash based parent hash”) that prevents it. Unfortunately, that scheme soon became
unworkable (i.e. not correct) as it conflicts with new mechanisms in subsequent drafts of TreeKEM,
namely truncation and unmerged leaves. Thus, Draft 9 TreeKEM/MLS adopted a different, more
efficient version of tree signing. In this work, we show however that the latter version is too weak
and propose a new tree-signing mechanism providing the desired security.

Other CGKA Protocols. Numerous alternative CGKA protocols have been considered, in
various security models, as summarized in Table 2. First, the Tainted TreeKEM protocol [10]
exhibits a different complexity profile than TreeKEM, optimized for groups with a small set of
“administrators” (i.e., parties making changes to the group roster). It was shown to enjoy the same
security as TreeKEM, Draft 7, at least with regards to adaptive but passive adversaries.

5

Protocol Approach to Improving Efficiency Adversarial
Model

Considers
Group Splitting Framework

[10] Tainted TreeKEM Geared to a setting with administrators passive yes game-based

[39] Causal TreeKEM Concurrency (static groups, no PCS) passive yes game-based

[19] Concurrent Group Ratcheting Concurrency (static groups) passive
synchronous no game-based

[4] CoCoA Concurrency and partial views of the group
state (*) passive yes game-based

[3] DeCAF Concurrency and partial views of the group
state (faster PCS than CoCoA) passive yes game-based

[30] CmPKE Server-aided CGKA: better bandwidth insider yes UC

[9] SAIK Server-aided CGKA: better bandwidth active yes UC

[2] Grafting Key Trees Utilize multiple overlapping groups n/a n/a n/a

Protocol Security Goal Adversarial
Model

Considers
Group Splitting Framework

[6] RTreeKEM Stronger PCFS passive no game-based

[8] Optimally Secure Best-possible security active yes UC

[29] Membership Private ART Hiding group roster and message senders n/a n/a n/a

(*) Partial views means that parties fetch parts of their state on demand from an untrusted server.

Table 2: Related work: Other CGKA protocols. Top: protocols that improve efficiency over TreeKEM.
Bottom: protocols that improve security.

Another line of research aims for better efficiency than that of TreeKEM. First, the works
[39, 19, 4, 3] achieve this by supporting (to various degrees) concurrent changes to the group
state. Further, the works [30, 9] proposed a different communication model of CGKA: Instead
of an untrusted broadcast channel, they consider a more general (untrusted) delivery service
that processes the messages and delivers to each party only the part it needs, greatly improving
bandwidth. We note that [9] uses a simplified security model based on [8], while [30] uses the
model proposed in this work. Finally, the work [2] introduced new techniques to accommodate
for multiple intersecting groups, which may enable to get better efficiency than running several
CGKAs in parallel, partially remedying the issues uncovered by [26]. (They do not specify a CGKA
protocol.)

From a different angle, various constructions aim to improve on the security guarantees of
TreeKEM and MLS. First, the RTreeKEM construction of [6] improved on the forward secrecy
properties of the TreeKEM family of protocols, albeit by making use of non-standard (but practically
efficient) cryptographic components. Further, the three CGKA protocols in [8] eschew the constraint
of practical efficiency to instead focus on exploring new mechanisms for achieving the increasingly
stringent security notions introduced in that work. In particular, they introduce two notions of
so-called robustness for CGKA. A weakly robust CGKA ensures that if a honest party in epoch
E accepts an arbitrary packet p, then all other honest parties in epoch E either end up in the
same state as that party or reject p. In a strongly robust CGKA it is further guaranteed that then
all other parties currently in E will accept p. Note that neither ITK nor MLS (as a whole) are
strongly robust.6 A variant of strong robustness has also been considered by [27] who propose
efficient zero-knowledge proofs with which a group member can prove to the delivery server that
his message is well formed. They observe that in case the server behaves honestly, this allows the
server to prevent group splitting attacks (a type of denial-of-service) caused by malicious insiders.
Albeit, they do not introduce or analyze a full CGKA or messaging protocol. Finally, [29] presented
CGKA with novel membership hiding properties. However, no security definitions are given.

1.4 Outline of the Rest of the Paper

We define insider secure CGKA in Sec. 3. Next we specify the ITK protocol in Sec. 4. We then
formalize the exact security properties achieved by ITK and sketch the respective security proof
in Sec. 5. Finally, the four attacks are described in Sec. 6. A more detailed exposition of the proofs
(and finer details of the security definition) can be found in the appendix.

6 E.g. a malformed (commit) packet can be constructed by an insider such that part of the group accepts
it but the rest do not.

6

2 Preliminaries

2.1 Notation

We use v ← x to denote assigning the value x to the variable v and v ←$ S to denote sampling
an element u.a.r. from a set S. If V denotes a variable storing a set, then we write V +← x and
V -← x as shorthands for V ← V ∪ {x} and V ← V \ {x}, respectively. We further make use of
associative arrays and use A[i]← x and y ← A[i] to denote assignment and retrieval of element
i, respectively. Additionally, we denote by A[∗]← v the initialization of the array to the default
value v. Further, we use the following keywords: req cond denotes that if the condition cond is
false, then the current function unwinds all state changes and returns ⊥. assert cond is used
in the description of functionalities to validate inputs of the simulator. It means that if cond is
false, then the given functionality permanently halts, making the real and ideal worlds trivially
distinguishable.

2.2 Universal Composability

We use the Universal Composability (UC) framework [22].

The Corruption Model. We use the — standard for CGKA/SGM but non-standard for UC —
corruption model of continuous state leakage (transient passive corruptions) and adversarially
chosen randomness of [8].7 In a nutshell, this corruption model allows the adversary to repeatedly
corrupt parties by sending them two types of corruption messages: (1) a message Expose causes
the party to send its current state to the adversary (once), (2) a message (CorrRand, b) sets the
party’s rand-corrupted flag to b. If b is set, the party’s randomness-sampling algorithm is replaced
by the adversary providing the coins instead. Ideal functionalities are activated upon corruptions
and can adjust their behavior accordingly.

Restricted Environments. In order to avoid the so-called commitment problem caused by adaptive
corruptions in simulation-based frameworks, we restrict the environment not to corrupt parties at
certain times. (This roughly corresponds to ruling out “trivial attacks” in game-based definitions.
In simulation-based frameworks, such attacks are no longer trivial, but security against them
requires strong cryptographic tools and is not achieved by most protocols.) To this end, we use
the technique used in [8] (based on prior work by Backes et al. [11] and Jost et al. [32]) and
consider a weakened variant of UC security that only quantifies over a restricted set of so-called
admissible environments that do not exhibit the commitment problem. Whether an environment
Z is admissible or not is defined as part of the ideal functionality F: The functionality can specify
certain boolean conditions, and Z is then called admissible (for F), if it has negligible probability
of violating any such condition when interacting with F.

3 Insider-Secure Continuous Group Key Agreement

This section defines security of CGKA protocols. For better readability, we skip some less crucial
details. See App. B for the precise definition.

3.1 Overview

Security via Idealized Services. We model security and correctness of CGKA in the Universal
Composability (UC) framework [22]. At a high level, this means that a CGKA protocol is secure if
no efficient environment Z can distinguish between the following two experiments: First, in the
real world experiment, Z interacts with an instance of the CGKA protocol. It controls all parties,
i.e., it chooses their inputs and receives their outputs and the adversary, i.e., it corrupts parties.
Second, in the ideal world experiment, Z interacts with an ideal CGKA functionality Fcgka and a
simulator S. Fcgka represents the idealized “CGKA service” a CGKA protocol should provide and
7 Passive corruptions and full network control allow to emulate active corruptions.

7

is secure by design (like a trusted third party). S translates the real-world adversary’s actions into
corresponding ones in the ideal world. Since Fcgka is secure by definition, this implies that the
real-world execution cannot exhibit any attacks either. Readers not familiar with UC should think
of Z as the adversary attacking the protocol.

In our model, analogous to [8], whenever Z instructs a party to perform some group operation
(e.g. adding a new member) Fcgka simply hands back an idealized protocol message to that party —
it is then up to Z to deliver those protocol messages to the other group members, thus not making
any assumptions on the underlying network or the architecture of the delivery service.

The Attack Model. In this work, we consider a powerful adversary that (a) fully controls the network
(i.e., the delivery service), and (b) potentially colludes with malicious insiders. The former is
captured by having Z (i.e., the attacker) deliver packets. The latter is captured by giving the
adversary controlled by Z the following abilities: to register arbitrary PKI keys on behalf of any
party, to repeatedly leak parties’ states and to choose randomness used by parties. The first attack
vector is reflected in our PKI functionalities in Sec. 3.2. The latter two vectors are reflected in our
choice of UC corruption model described in Sec. 2.

We remark that additionally considering a model with malicious insider attacker but an honest
delivery infrastructure is an interesting open problem. Generally speaking, however, it appears
that in case of MLS an honest delivery server cannot prevent most of a malicious insider’s attacks
and stronger cryptographic primitives such as NIZK proofs would be needed to achieve meaningful
additional guarantees (cf. [8]).

Security Guarantees. Our model captures the following security properties: consistency, confiden-
tiality and authenticity. They are reflected in different aspects of the ideal functionality Fcgka. We
note that Fcgka maintains a symbolic representation of the group’s evolution, including corruptions,
in the form of a history graph [7], where nodes represent epochs.

Intuitively, consistency means that all parties in the same epoch agree on the group state,
including e.g. the history of the group’s evolution. This is formalized by Fcgka outputting consistent
information to all parties in the same node of the graph. Fcgka is parameterized by a predicate safe
which identifies confidential epochs, i.e., ones for which the adversary must have no information
about its group secret, for a given CGKA protocol and graph. For each confidential epoch, Fcgka
chooses a random and independent secret (and outputs it to parties who decide to fetch it) while
for other epochs the key is arbitrary, i.e., chosen by the simulator. Authenticity for a party A
and epoch E holds if Z cannot inject messages on behalf of A in E. Fcgka is parameterized by a
predicate inj-allowed which decides whether messages can be injected on behalf of the party.

The PKI. In the real-world experiment, the parties execute the protocol that furthermore interacts
with the (untrusted) PKI. The latter is modeled as two UC functionalities: Authentication Service
(AS) which manages long-term identity keys and Key Service (KS) that allows parties to upload
single-use key packages, used by group members to non-interactively add them to the group (see
Sec. 3.2 for details). Our model is agnostic to how these functionalities are realized, as long as the
behavior we describe is implemented.

The primary interaction with the PKI is not group specific and, thus, it is assumed to be
handled by the higher-level protocol embedding CGKA. Intuitively, this means that the protocol
requires that the environment registers all keys necessary for a given group operation before
performing it. As the PKI management is exposed to the environment in the real world, those
operations also need to be available in the ideal world. We achieve this by having “ideal-world
variants” of the AS and KS, which should be thought of as part of Fcgka. The ideal AS records
which keys have been exposed, which is then used to define the predicates. The actual keys in the
ideal world do not convey any particular meaning beyond serving as identifiers — thus in the ideal
world we do not run key generation, but instead allow the simulator to choose all honest keys.

Group-Splitting Attacks. The following attack is inherent to any CGKA protocol: A malicious
delivery service seletively forwards different packets to different group members, causing them to
have inconsistent views of the group’s evolution. Such members will never end up in the same
epoch again (and so they will not be able to communicate), as this would contradict the consistency
property. Our ideal functionality Fcgka accounts for this with the history graph forming a tree,
with different branches representing different partitions.

8

We remark that there is another type of splitting attack where (the delivery service may be
honest but) a malicious insider creates a message that is accepted by some but not other members
of the group. (Note that all parties accepting the commit will end up in a consistent state.) MLS
does not prevent this attack, and this is reflected in our model. We note that the only way to
prevent such attacks that we are aware of relies on zero-knowledge proofs [8, 27] which are not
widely implemented primitives MLS is constrained to use.

On the Choice of UC Security. First, the UC framework lends itself well to strong and comprehensive
security definitions. Indeed, UC definitions naturally gravitate towards strongest possible guarantees.
In fact, formalizing weak guarantees typically takes extra effort: Each of a protocol’s weaknesses
must be explicitly accounted for by providing the simulator all the necessary capabilities to emulate
the effect when interacting with the ideal functionality. In contrast, game-based notions lend
themselves well to simple definitions that focus on the core of a problem — potentially deliberately
ignoring certain attack vectors (such as active attacks in many of the secure group-messaging work)
for the sake of simplicity.

Second, the UC framework provides plenty of useful conventions and building blocks, such as
the interaction with complex setup functionalities. Third, the UC framework allows us to directly
formalize the guarantees, independent of the concrete scheme. For instance, when an active attacker
can inject messages, we care about the potential effects and not so much about which exact
bit-string the attacker might craft has which effect — which is handled by the simulator in our
UC-based notion. (Game-based formalizations, such as [7], often circumvent this by augmenting
the primitive to output additional information specially needed for formalizing the game, such as
the interpretation of a given message.)

3.2 PKI Setup

In general, we model fully untrusted PKI, where the adversary can register arbitrary keys for any
party (looking ahead, security guarantees degrade if such keys are used in the protocol). This
especially models insider attacks.8 All functionalities are formally defined in App. B.

Authentication Service (AS). The AS provides an abstract credential mechanism that maps from
user identities, e.g. phone numbers, to long-term identity keys of the given user. Different credential
mechanisms of MLS are abstracted by the functionality Fas, which maintains a set of registered
pairs (id, spk), denoting that user id registered the key spk under their identity. It works as follows:

– A party id can check if a pair (id′, spk′) is registered.
– id can register a new key. In this case, Fas generates a key pair (spk, ssk) (the key-generation

algorithm is a parameter), sends spk to id and registers (id, spk). spk can be later retrieved
at any time and then deleted.9 If id’s randomness is corrupted, the adversary provides the
key-generation randomness.

– The adversary can register an arbitrary pair (id, spk).
– When a party’s state is exposed, all secret keys it has generated but not deleted yet are leaked

to the adversary.

Key Service (KS). The KS allows parties to upload one-time key packages, used to add them to
groups while they are offline. This is abstracted by the functionality Fks. Fks maintains pairs
(id, kp), denoting a user’s identity and a registered key package. For each (id, kp), Fks stores id’s
long-term key spk which authenticates the package and for some (id, kp), it stores the secret key.
Fks works as follows:

– A party id can request a key package for another party id′. Fks sends to id a kp chosen by the
adversary in an arbitrary way, i.e. the KS is fully untrusted.

8 In particular, we do not assume so-called key-registration with knowledge. This is a significantly stronger
assumption, typically not achieved by the heuristic checks deployed in reality, and it is not needed for
security of ITK.

9 The secret key must be fetched separately, because the key is registered by the environment before the
secret key is fetched by the protocol.

9

– id can register a new key package. To this end, id specifies a long-term key pair (spk, ssk)
(reflecting that a key package may be signed), Fks generates a fresh package (kp, sk) for id (using
a package-generation algorithm that takes as input (spk, ssk)), sends kp to id and registers
(id, kp) with spk.

– id can retrieve all its secret keys (this accounts for the protocol not a priori knowing which key
package has been used to add it to the group).

– id can delete one of its secret keys. When its state is exposed, all secret keys it generated but
not deleted are leaked to the adversary.

Note that the adversary does not need to register its own packages, since it already determines all
retrieved packages.

Ideal-world variants. The ideal-world variant of AS, F iw
as , marks leaked and adversarially registered

long-term keys as exposed. The ideal-world variant of KS, F iw
ks , stores the same mapping between

key package and long-term key as Fks. Intuitively, each key package for which the long-term key
spk is exposed (according to AS) is considered exposed. (For simplicity, our ideal world abstracts
away key packages. We believe this to be a good trade-off between abstraction and fine-grained
guarantees.) Both F iw

as and F iw
ks are not parameterized by key-generation algorithms. Instead, on

key registration, the adversary is asked to provide a key pair.

3.3 Interfaces of the CGKA Functionality

This section explains different inputs to Fcgka, which defines the syntax of CGKA.

Proposals and commits. ITK is a so-called propose-and-commit variant of CGKA, where current
group members can propose to add new members, remove existing ones, or update their own
key material (for PCS) by sending out a corresponding proposal message. The proposals do not
affect the group state immediately. Rather, they (potentially) take effect upon transitioning to the
next epoch: The party initiating the transition collects a list of proposals in a commit message
broadcast to the group. Upon receiving such a message, each party applies the indicated proposals
and transitions to the new epoch. For simplicity, we delegate the buffering of proposals to the
higher-level protocol.

Identity keys. In a real-world deployment, long-term identity keys maintained by the Authentication
Service (AS) are likely to be shared across groups. Hence, we also delegate their handling to the
higher-level messaging application invoking CGKA. In general, in each group a party uses one
signing key at a time. Upon issuing an operation updating the CGKA secrets — i.e., proposing
an update or committing — the higher-level may decide to update the signing key as well. Those
operations, thus, explicitly take a signing public key spk as input.

Formal syntax. The functionality accepts the following inputs (for simplicity, we treat the party’s
identity id as implicitly known to the protocol):

– Group Creation: (Create, spk) creates a new group with id being the single member, using
the signing public key spk. (This input is only allowed once.)

– Add, Remove Proposals: p← (Propose, add-idt) (resp., p← (Propose, rem-idt)) proposes
to add (resp., remove) the party idt. It outputs a proposal message p or ⊥ if either id is not in
the group or idt already is in the group (resp., is not in the group).

– Update Proposal: p ← (Propose, up-spk) proposes to update the member’s key material,
and optionally the long-term signature verification key spk. It outputs an update proposal
message p (or ⊥ if id is not in the group).

– Commit: (c, w)← (Commit, p⃗, spk) commits the vector of proposals p⃗ and outputs the commit
message c and the (optional) welcome message w. The operation optionally updates the signing
public key of the committer.10

10 MLS considers a special type of “add-only” commits. For better clarity, we only consider them in the
full definition App. B.

10

root0 c1

c2

Alice

c3

(a) The passive case. Alice processes c1 and c2.

root0 c1

c2

Alice

c3

root1

Bob

(b) Bob joins using injected w′. We don’t know
where to connect the detached root.

root0 c1

c2

Alice

c3

root1 c4

Bob

(c) Bob (honestly) commits, creating c4 in a
detached tree.

root0 c1

c2

c3

c′
Alice

c4

Bob

(d) Alice commits with bad randomness and
re-computes c′ corresponding to w′. We attach
the root.

Fig. 1: An example execution with injections and bad randomness, and the corresponding history
graph. For simplicity, proposal nodes are excluded.

– Process: (idc, propSem) ← (Process, c, p⃗) processes the message c committing proposals p⃗
and advances id to the next epoch.11 It outputs the committer idc and a vector conveying the
semantics of the applied proposals p⃗.

– Join: (roster, idc) ← (Join, w) allows id (who is not yet a group member) to join the group
using the welcome message w. It outputs the roster, i.e. the set of identities and long-term keys
of all group members, and the identity idc of the member who committed the add proposal.

– Key: K ← Key queries the current application secret. This can only be queried once per epoch
by each group member (otherwise returning ⊥).

3.4 History Graph

The functionality Fcgka uses history graphs to symbolically represent a group’s evolution. A
history graph is a labeled directed graph. It has two types of nodes: commit and proposal nodes,
representing all executed commit and propose operations, respectively. Note that each commit node
represents an epoch. The nodes’ labels, furthermore, keep track of all the additional information
relevant for defining security. In particular, all nodes store the following values:

– orig: the party whose action created the node, i.e., the message sender;
– par: the parent commit node, representing the sender’s current epoch;
– stat ∈ {good, bad, adv}: a status flag indicating whether secret information corresponding to

the node is known to the adversary. Concretely, adv means that the adversary created this
node by injecting the message, bad means that it was created using adversarial randomness
(hence it is well-formed but the adversary knows the secrets), and good means that it is secure.

Proposal nodes further store the following value:

– act ∈ {up-spk, add-idt-spkt, rem-idt}: the proposed action. The also keeps track of the signature
keys: add-idt-spkt means that idt is added with the public key spkt, and up-spk reflects the
respective input to the update proposal.

Commit nodes further store the following values:

– pro: the ordered list of committed proposals;
– mem: the list of group members and their signature public keys;
– key: the group key;

11 For simplicity, we require that the higher-level protocol that buffers proposals also finds the list p
matching c. This is without loss of generality, since ITK uses MLSPlaintext for sending proposals, and c
includes hashes of proposals in p⃗.

11

– chall: a flag indicating whether the application secret has been challenged, i.e., chall is true if
a random group key has been generated for this node, and false if the key was set by the
adversary (or not generated);

– exp: a set keeping track of parties corrupted in this node, including whether only their secret
state used to process the next commit message or also the current application secret leaked.

3.5 Details of the CGKA Functionality

This section presents a simplified version of Fcgka. Compared to the precise definition in App. B,
we skip some less relevant border cases and details. A pseudo-code-like description is in Figs. 2
to 4 and an example history graph built by Fcgka is in Fig. 1. We next build some intuition about
how Fcgka works.

The passive case. For the start, consider environments that do not inject or corrupt randomness
(this relates to parts of the functionality not marked by [Inj] or [RndCor]). Here, Fcgka simply
builds a history graph, where nodes are identified by messages, and the root is identified by the
label root0 (see Fig. 1a). Moreover, Fcgka stores for each party id a pointer Ptr[id] to its current
history-graph node. If, for example, id proposes to add idt, Fcgka creates a new proposal node
identified by a message p chosen by the adversary, and hands p to id. Some other party can now
commit p (having received it from the environment), which, analogously, creates a commit node
identified by c. Then, if a party processes c, Fcgka simply moves its pointer. The graph is initialized
by a designated party idcreator, who creates the group with itself as a single member and can then
invite additional members.

If a party id is exposed, Fcgka records in the history graph which information inherently leaks
from its state. This will be used by the predicate safe (recall that it determines if the epoch’s key
is random or arbitrary). In particular, two points are worth mentioning. First, we require that
after outputting the group key, id removes it from its state (this is important for forward secrecy
of the higher-level messaging protocol). Fcgka uses the flag HasKey[id] to keep track of whether id
outputted the key. Second, id has to store in its state key material for updates and commits it
created in the current epoch. Accordingly, upon id’s exposure Fcgka sets the status stat of all such
nodes to bad (note that leaking secrets has the same effect as choosing them with bad randomness).

Injections. The parts of Fcgka related to injections are marked by comments containing [Inj]. As
an example, say the environment makes id process a commit message c′ not obtained from Fcgka,
and hence not identifying any node. Fcgka first asks the adversary if c′ is simply malformed and,
if this is the case, output ⊥ to id. If the message is not malformed, the functionality creates the
new commit node, allowing the adversary to interpret the sender orig′. We guarantee agreement

— if any other party transitions to this node, it will output the same committer orig′, member
set mem′, group key etc. (recall that it is contained in the output of process). Note that we also
guarantee correctness — if the input of process is an honest message c generated by Fcgka, then
the adversary cannot make the commit fail.

A more challenging scenario is when the environment injects a welcome message w′. Now
there are two possibilities. First, w′ could lead to an existing node. In this case, Fcgka asks the
adversary to provide the node c and records that w′ leads to it. We require agreement — any party
subsequently joining using w′ transitions to c.

However, in general, we cannot expect that the adversary (i.e., simulator), given an arbitrary
w′ computed by the environment, can come up with the whole commit message c′ and its position
in the history graph.12 Therefore, in this case Fcgka creates a detached root, identified by a unique
label rootrootCtr, where rootCtr is a counter. If at some later point, e.g. after an additional commit
by the newly joined party, the environment injects c′ corresponding to w′, then the root is attached
and re-labeled as c′. This scenario is depicted in Figs. 1c to 1d. We require consistency — when
creating a detached root, the adversary chooses the member set, but when it is attached, we check
that it matches the new parent.
12 For instance, say the environment computes a long chain of commits in its head and injects the last

one. It is not clear how to construct a protocol for which it is possible to identify all ancestors, without
including all their hashes in w.

12

Functionality Fcgka : Initialization

Parameters: predicate safe(c) (are group secrets in c secure), predicate inj-allowed(c, id) (is injecting allegedly
from id in c allowed), group creator’s identity idcreator.

Initialization
// Pointers, commit nodes, proposal nodes
Ptr[∗], Node[∗], Prop[∗]← ⊥
// Welcome message to commit message mapping
Wel[∗]← ⊥
RndCor[∗]← good; HasKey[∗]← false
rootCtr← 0

Input (Create, spk) from idcreator

// The group can be created only once.
req Node[root0] = ⊥ ∧ *usable-spk(idcreator, spk)
// Create the root node and transition idcreator there.
Node[root0]← commit node with orig = idcreator,

mem = {(idcreator, spk)} and stat = RndCor[idcreator].
Ptr[idcreator]← root0
HasKey[idcreator]← true

Functionality Fcgka : Propose and Commit

Input (Propose, act), act ∈ {up-spk, add-idt, rem-idt} from id
Send id and all inputs to the adv. and receive ack.
// Adv. can reject invalid inputs.
if ¬*require-correctness(‘prop′, id, act) then

req ack
// Compute the proposal node this action creates.
P ← proposal node with par = Ptr[id], orig = id,

act = act, stat = RndCor[id].
if act = add then

// Adv. can choose the key package for adds.
Receive spkt from the adversary
P.act← add-spkt

// Insert P into HG.
Receive p from the adversary.
if Prop[p] = ⊥ then

// Passive case: created a new node.
Prop[p]← P

else
// [Inj] [RndCor] Re-computing existing p.
assert *consistent-nodes(Prop[p], P)

if RndCor[id] then
// [RndCor] Signed with bad randomness.
Notify F iw

as that id’s spk is compromised.
return p

Input (Commit, p⃗, spk) from id
Send id and all inputs to the adv. and receive ack.
// Adv. can reject invalid inputs.
if ¬*require-correctness(‘comm′, id, p⃗, spk) then

req ack
// [Inj] Adv. interprets injected proposals.
for p ∈ p⃗ s.t. Prop[p] = ⊥ do

Prop[p]← proposal node with par = Ptr[id],
stat = adv, and orig and act chosen
by the adversary.

// Compute the commit node this action creates.
C ← commit node with par = Ptr[id], orig = id,

stat = RndCor[id] pro = p⃗, and
mem = *members(Ptr[id], id, p⃗, spk)

// Insert C into HG.
Receive (c, rt) from the adversary.
if Node[c] = ⊥ ∧ rt = ⊥ then

// Passive case: create new node.
Node[c]← C

else if Node[c] ̸= ⊥ then
// [Inj] [RndCor] Re-computing injected c.
assert *consistent-nodes(Node[c], C)

else
// [Inj] [RndCor] c explains a detached root.
Set Node[rootrt].par← Ptr[id] and then replace

each occurrence of rootrt in the HG by c.
assert *consistent-nodes(Node[c], C)

// [Inj] Check that inserting C does not violate authenticity and
HG-consistency.
assert *cons-invariant ∧ *auth-invariant
if RndCor[id] then

// [RndCor] Commit signed with bad rand.
Notify F iw

as that id’s current spk is compromised.
Receive w from the adversary.
if Wel[w] ̸= ⊥ then

req *consistent-nodes(Wel[w], C)
Wel[w]← c.
return (c, w)

Fig. 2: Fcgka: initialization, propose and commit. Parts related to injections and randomness
corruptions are marked by comments containing [Inj] and [RndCor], respectively.

13

Functionality Fcgka : Process and Join

Input (Process, c, p⃗) from id
Send id and all inputs to the adv. and receive ack.
// Adv. can reject invalid inputs.
if ¬*require-correctness(‘proc′, id, c, p⃗) then

req ack
// [Inj] Adv. interprets injected proposals.
for p ∈ p⃗ s.t. Prop[p] = ⊥ do

Prop[p]← proposal node with par = Ptr[id],
stat = adv, and orig and act chosen
by the adversary.

// Commit node id expects to transition to.
Receive from the adversary (orig′, spk′).
C ← commit node with par = Ptr[id], orig = orig′,

pro = p⃗ , mem = *members(Ptr[id], id, p⃗, spk′)
// [Inj] If c is injected, then assign a node to it.
if Node[c] = ⊥ then

// If c explains detached root, let adv. specify it.
Receive rt from the adversary.
if rt ̸= ⊥ then

Set Node[rootrt].par← Ptr[id] and then
replace each occurrence of rootrt in
the HG by c.

else
Node[c]← C
Node[c].stat← adv

// Check that id transitions to expected node.
assert consistent-nodes(Node[c], C)
// Transition id.
if ∃p ∈ p⃗ : Prop[p].act = rem-id then

Ptr[id]← ⊥
else

Ptr[id]← c
HasKey[id]← true

// Check that processing c does not violate
authenticity and HG-consistency.
assert *cons-invariant ∧ *auth-invariant
return *output-process(C)

Input (Join, w) from id
Send id and all inputs to the adv. and receive ack.
req ack
// [Inj] If w is injected, then assign a commit node to it.
if Wel[w] = ⊥ then

// If w leads to existing node, adv. can specify it.
Receive c from the adversary.
if c ̸= ⊥ then

Wel[w]← c
else

// Create detached root.
rootCtr++
Wel[w]← rootrootCtr
Node[rootrootCtr]← commit node with

par = ⊥, pro = ⊥, stat = adv, and orig
and mem chosen by the adv.

// Transition id.
Ptr[id]←Wel[w]
HasKey[id]← true
// Check that joining id does not violate authenticity and HG-
consistency.
assert *cons-invariant ∧ *auth-invariant
return *output-join(Node[Wel[w]])

Functionality Fcgka : Corruptions and Group Key

Input (Expose, id) from the adversary
// Record leaked information: if id is in the group, its state con-
tains:
if Ptr[id] = ⊥ then

// 1) secrets needed to process other parties’ messages and
potentially the group key
Node[Ptr[id]].exp +← (id, HasKey[id])
// 2) secrets needed to process id’s own messages
For each commit or update-proposal node with orig = id and
par = Ptr[id], set stat← bad.
// 3) the signing key
Notify F iw

as that id’s current spk is compromised.
// Whether id is in the group or not, its state contains secrets
needed to process welcome messages.
for c s.t. *can-join(Node[c], id) do

Node[c].exp +← (id, true)
// Disallow adaptive corruptions in some cases.
This input is not allowed if ∃c s.t Node[c].chall = true and ¬safe(c)

Input (CorrRand, id, b), b ∈ {good, bad} from the adversary
RndCor[id]← b

Input Key from id
// Only possible if id has the key.
req Ptr[id] ̸= ⊥ ∧ HasKey[id]
// Set the key if id is the first party fetching it in its node.
(Guarantees consistency across parties.)
if Node[Ptr[id]].key = ⊥ then

if safe(Ptr[id]) then
Set key to a fresh random key and chall to true.

else
Let the adversary choose key and set chall to false.

// id should remove the key from his state
HasKey[id]← false
return Node[Ptr[id]].key

Fig. 3: Fcgka: inputs process, join, key and corruptions. Parts related to injections are marked by
comments containing [Inj].

14

Functionality Fcgka : Helpers

helper *require-correctness(‘comm′, id, c, p⃗)

Returns true if a) c and each p ∈ p⃗ identifies a node with stat ̸=
adv, and b) Ptr[id] = Node[c].par, and c) p⃗ = Node[c].pro.

helper *require-correctness(‘proc′, id, p⃗, spk)

Returns true if *usable-spk(id, spk) and ∀p ∈ p⃗ : Prop[p] ̸= ⊥ and
the vector can be committed by id (in its current node) according
to MLS spec.

helper *require-correctness(‘prop′, id, act)

Returns true if act = up-spk and *usable-spk(id, spk) or if act =
rem-idt and removing idt is allowed according to MLS spec.

helper *usable-spk(id, spk)

Returns true if if either spk is id’s current spk, or id has the secret
key according to F iw

as .

helper *members(C, id, p⃗, spk)

Computes the member set after id, currently in C, calls commits
with inputs p⃗ and spk, according to MLS spec. For each member,
the set contains a tuples (id′, spk′), indicating the member’s iden-
tity and his identity key.

helper *can-join(C, id)

Returns true if C.pro adds id with spk and, according to F iw
ks , id

has a secret key for some key-package registered together with
spk.

helper *output-process(C)

Computes committer idc and proposal semantics propSem, re-
turned by Process when transitioning into C.

helper *output-join(C)

Computes roster and committer idc, returned when joining into
C.

helper *consistent-nodes(N, N ′)

Returns true if all values in proposal or commit nodes N and N ′

except status match.

helper *auth-invariant

Returns true if there is no proposal or commit node with stat =
adv and par s.t. inj-allowed(par, id) is false.

helper *cons-invariant

Returns true if HG has no cycles, each id is in the member set
of Ptr[id] and for each non-root c, the parent of each p in c’s pro
vector is c’s parent.

Fig. 4: Additional helpers for Fcgka.

Corrupted randomness. The relevant parts of Fcgka are marked by [RndCor]. Corrupted randomness
leads to two adverse effects. First, the adversary can make parties re-compute existing messages,
leading to the following scenarios:

– A party re-computes a message it already computed. In this case, Fcgka only checks that the
previous message was computed with the same inputs.

– A party re-computes a message previously injected by the environment. Here, Fcgka verifies
that the semantics of the existing node chosen by the adversary upon injection are consistent
with the correct semantics computed using the party’s inputs. (Technically, instead of creating
a new node, Fcgka checks that the node it would have created is consistent with the existing
one.)

– A party re-computes a commit c′ corresponding to an injected welcome message (see Fig. 1d).
In this case, Fcgka attaches the detached root, just like in case c′ was injected into process.

Second, we note that each protocol message in MLS is signed, potentially using ECDSA, which
reveals the secret key in case bad randomness is used. Therefore, every time a party id generates a
message with bad randomness, Fcgka notifies Fas, which marks all long-term keys of id as exposed.

Adaptive corruptions. Adaptive corruptions become a problem if an exposure reveals secret keys
that can be used to compute a key that has already been outputted by Fcgka at random, i.e. a
“challenge” key. Since fully adaptive security is not achieved by TreeKEM (without resorting to
programmable random oracles), we restrict the environment not to corrupt if for some nodes with
the flag chall set to true this would cause safe to switch to false.13

Remark 1 (Correctness). Having the environment deliver messages is rather non-standard for
interactive protocols. In a more “classical” UC treatment this would be done by the adversary. Our
formulation, modeling arbitrary instead of worst-case network behavior, allows us to additionally
consider correctness. In contrast, “classical” treatment typically permits trivial protocols that just
reject all messages with the simulator just not delivering them in the ideal world.
13 In game based definitions, such corruptions are usually disallowed, as they allow to trivially distinguish.

Our notion achieves the same level of adaptivity.

15

4 The Insider-secure TreeKEM Protocol

This section provides a (high-level) description of the Insider-Secure TreeKEM (ITK) protocol. A
formal description of the protocol can be found in App. C.

Distributed state. The primary object constituting the distributed state of the ITK protocol is the
ratchet tree τ . The ratchet tree is a labeled binary tree (i.e., a binary tree where nodes have a
number of named properties), where each group member is assigned to a leaf and each internal
node represents the sub-group of parties whose leaves are part of the node’s sub-tree.

To give a brief overview, each node has two (potentially empty) labels pk and sk, storing a key
pair of a PKE scheme. Leaves have an additional label spk, storing a long-term signature public
key of the leaf’s owner. The root has a number of additional shared symmetric secret keys as labels
(see below). See Fig. 5 for an example of a ratchet tree with the labels. The public part of τ consists
of the tree structure, the leaf assignment, as well as all public labels, i.e., those storing public keys.
The secret part consists of the labels storing secret keys and the symmetric keys. The ITK protocol
maintains two invariants:

Invariant (1): The public part of τ is known to all parties.
Invariant (2): The secret labels in a node v are known only to the owners of leaves in the
sub-tree rooted at v.

symmetric keys
(pkABC∗, skABC∗)

(pkAB, skAB)

(pkA, skA)
spkA

Alice

(pkB, skB)
spkB

Bob

(pkC∗, skC∗)

(pkC , skC)
spkC

Charlie

symmetric keys
(pk′

ABC∗, sk′
ABC∗)

(pkA, skA)
spkA

Alice

(pkD, skD)
spkD

Dave

(pk′
C∗, sk′

C∗)

(pk′
C , sk′

C)
spkC

Charlie

Fig. 5: (Left) An example ratchet tree τ for a group with three members. For Invariant (1), the
public labels (green) are known to all parties. For Invariant (2), the secret labels (red) in a node v
are only known to parties in v’s subtree, e.g. Bob knows skB, skAB and skABC∗. (Right) the tree
after Charlie commits removing Bob and adding Dave. The empty node is blank. Messages to
Alice and Dave are encrypted under its resolution (pkA, pkD).

Evolving the tree. Each epoch has one fixed ratchet tree τ . Proposals represent changes to τ , and a
commit chooses which changes should be applied when advancing to the next epoch.

A remove proposal represents removing from τ all keys known to the removed party (see Fig. 5).
That is, its leaf is cleared, and all keys in its direct path — i.e., the path from the party’s leaf to the
root — are blanked, meaning that all their labels are cleared. This is followed by shrinking the tree
by removing unneeded leaves from the right side of the tree.14 Note that until a blanked node gets
a new key pair assigned (as explained shortly), in order to encrypt to the respective subgroup one
has to encrypt to the node’s children instead (and recursing if either child is blanked as well). The
minimal set of non-blanked nodes covering a given subgroup is called the subgroup’s resolution.

An update proposes removing all keys currently known to the party (and hence possibly affected
by state leakage), and replacing the public key in their leaf (and possibly the long-term verification
key) by a fresh one, specified in the proposal. Hence, τ is modified as in a remove proposal, but
instead of clearing the leaf, its key is replaced.

Finally, an add proposal indicates the new member’s identity (defined on a higher application
level), its long-term public key from the AS, and an ephemeral public key from KS. It represents
the following modification: First, a leaf has to be assigned, with the public label set according to
14 The exact conditions under which truncation is performed are presented in App. C. Note that truncation

is best-effort and may not lead to a tree of optimal depth.

16

the public key from the proposal. If there exists a currently unused leaf, then this can be reused,
otherwise a new leaf is added to the tree. In order to satisfy invariant (2), the party committing
the add proposal would then have to communicate to the new member all secret keys on its direct
path. Unfortunately, it can only communicate the keys for nodes above the least common ancestor
of its and the new member’s leaves. For all other nodes, the new member is added to a so-called
unmerged leaf set, which can be accounted for when determining the node’s resolution.

Re-keying. Whenever a party commits a sequence of proposals, they additionally replace their leaf
key (providing an implicit update) and re-key their direct path. In order to maintain invariant (1)
on the group state, the committer includes all new public keys in the commit message.

To minimize the number of secret keys needed to be communicated as part of the commit
message, the committer samples the fresh key pairs along the path by “hashing up the tree”. That is,
the committer derives a sequence of path secrets si, one for each node on the path, where s0 for the
leaf is random and si+1 is derived from si using the HKDF.Expand function (cf. App. A.2). Then,
each si is expanded again (with a different label) to derive random coins for the key generation. The
secret sn for the root, called the commit secret, is not used to generate a key pair, but instead used
to derive the epoch’s symmetric keys (see below). This implies that each other party only needs to
be able to retrieve the path secret of the least common ancestor of their and the committer’s leaves.
Hence, invariant (2) can be maintained by including in the commit each path secret encrypted to
(the resolution of) the node’s child not on the direct path.

Note that for PCS, the new secret keys must not be computable using the committer’s state
from before sending the commit (we want that a commit heals the committer from a state). Hence,
the committer simply stores all new secrets explicitly until the commit is confirmed.

Key schedule. Each epoch has several associated symmetric keys, four of which are relevant for
this paper: The application secret is the key exported to the higher-level protocol, the membership
key is used for protecting message authenticity, the init secret is mixed into the next epoch’s key
schedule, and the confirmation key ensures agreement on the cryptographic material.

The epoch’s keys are derived from the commit secret computed in the re-keying process, mixed
with (some additional context and) the previous epoch’s init secret. This ensures that only parties
who knew the prior epoch’s secrets can derive the new keys. One purpose of this is improving FS:
corrupting a party in an epoch, say, 5 must not allow to derive the application secret for a prior
epoch, say, 3. As, however, some internal nodes of the ratchet tree remain unchanged between
epochs 3 and 5, it might be possible for the adversary to decrypt the commit secret of epoch
3, given the leakage from epoch 5. Mixing in the init secret of epoch 2 thus ensures that this is
information is of no value per se (unless some party in epoch 2 was already corrupted.)

Welcoming members. Whenever a commit adds new members to the group, the committer must
send a welcome message to the new members, providing them with the necessary state. First, the
welcome message contains the public group information, such as the public part of the ratchet tree.
Second, it includes (encrypted) joiner secret, which combines current commit secret and previous
init secret and allows the new members to execute the key schedule. Finally, it contains the seed to
derive the secrets on the joint path, which the committer just re-keyed. (Recall that for the other
nodes on the new party’s direct path they are simply added to the unmerged leaves set, indicating
that they do not know the corresponding secrets.) The above seeds, as well as the joiner secret,
are encrypted under the public key (obtained from KS), specified in the add proposal (which thus
serves dual purposes).

Security mechanisms. All messages intended for existing group members — commit messages and
proposals — are subject to message framing, which binds them to the group and epoch, indicates
the sender, and protects the message’s authenticity. The sender first signs the group identifier, the
epoch, his leaf index, and the message using his private signing key. This in particular prevents
impersonation by another (malicious) group member.

Since the signing key, however, is shared across groups and its replacement is also not tied
to the PCS guarantees of the group, each package is additionally authenticated using shared key
material. Proposals are MACed using the membership key, while commit messages are protected
using the confirmation tag (see below). Further, commit messages that include remove proposals
are additionally MACed using the membership key, since the confirmation tag cannot be verified

17

by the removed members. In summary, to tamper or inject messages an adversary must both know
at least the sender’s signing key as well as the epoch’s symmetric keys.

The protocol makes use of two (running) hashes on the communication transcript to authenticate
the group’s history. For authentication purposes, it uses the confirmed transcript hash, which is
computed by hashing the previous epoch’s interim transcript hash, the content of the commit
message, and its signature. The interim transcript hash is then computed by hashing the confirmed
transcript hash with the confirmation tag. Each commit message moreover contains a so-called
confirmation tag that allows the receiving members to immediately verify whether they agree on
the new epoch’s key-schedule. To this end, the committer computes a MAC on the confirmed
transcript hash under the new epoch’s confirmation key.

Finally, ITK uses a mechanism called tree signing to achieve a certain level of insider security.
We discuss this aspect in detail in Sec. 6.3.

Remark 2 (Simplifications and Deviations). While ITK closely follows the IETF MLS protocol
draft, there are some small deviations as well as some omissions. In particular, our model assumes
a fixed protocol version and ciphersuite, and omits features such as advanced meta-data protection,
external proposals and commits, exporters, preshared keys, as well as extensions. We discuss those
deviations and their implications on our results in more detail in App. C.4.

5 Security of ITK

Security of ITK is expressed by the predicates safe(c, id) and inj-allowed(c, id), where c is a
commit message identifying a history graph node and id is a party. The predicates are formally
stated in Fig. 6. They are defined using recursive deduction rules know(c, id) and know(c, ‘epoch’),
indicating that the adversary knows id’s secrets (such as the leaf secret), and that it knows the
epoch secrets (such as the init secret), respectively. In more detail:

– know(c, id) consists of three conditions, the last two being recursive. Condition a) is true if id’s
secrets in c are known to the adversary because they leaked as part of an exposure or were
injected by the adversary in id’s name (due to many attack vectors, this can happen in many
ways, see Fig. 6). The conditions b) and c) reflect that in ITK only commits sent by or affect id
(id updates, is added, or removed) are guaranteed to modify all id’s secrets. If c is not of this
type, then know(c, id) is implied by know(Node[c].par, id) (condition b)). If a child c′ of c is
not of this type, then it is implied by know(c′, id) (condition c)).

– know(c, ‘epoch’) takes into account the fact that ITK derives epoch secrets using the initSecret
from the previous epoch, and hence achieves slightly better FS compared to parties’ individual
secrets.
In particular, the adversary knows the epoch secrets in c only if it corrupted a party in c, or
knows the epoch secrets in c’s parent and knows individual secret of some party id in c. The
latter condition allows the adversary to process c using id’s protocol and is formalized by the
*can-traverse predicate.

– The only difference between ¬safe(c) and know(c, ‘epoch’) is that the application secret is not
leaked if id is exposed in c after outputting it.

Remark 3. Previous works (e.g. [6, 7]) defined a simpler safe predicate by defining the set of
history graph nodes where application secrets are affected by an exposure. Then, a node’s secret is
secure if there is no exposure that affects it. However, in our setting a set of simultaneous exposures
may leak information that is not leaked by any of the exposures alone, as illustrated in Fig. 7.

With the predicates safe and inj-allowed, we can now state the following security statement
for ITK.

Theorem 1. Assuming that PKE is IND-CCA secure, and that Sig is EUF-CMA secure, the ITK
protocol securely realizes (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model, where Fcgka uses

the predicates safe and inj-allowed from Fig. 6 and calls to HKDF.Expand, HKDF.Extract and
MAC functions are replaced by calls to the global random oracle Gro.

18

Predicate safe

Knowledge of parties’ secrets.

know(c, id) ⇐⇒
a) // id’s state leaks directly e.g. via corruption (see below):

*state-directly-leaks(c, id) ∨
b) // know state in the parent:

(Node[c].par ̸= ⊥ ∧ ¬*secrets-replaced(c, id) ∧ know(Node[c].par, id)) ∨
c) // know state in a child:

∃c′ : (Node[c′].par = c ∧ ¬*secrets-replaced(c′, id) ∧ know(c′, id))

*state-directly-leaks(c, id) ⇐⇒
a) // id has been exposed in c:

(id, ∗) ∈ Node[c].exp ∨
b) // c is in a detached tree and id’s spk is exposed

∃rt : *ancestor(rootrt, c) ∧ ∃spk : (id, spk) ∈ Node[c].mem ∧ spk ∈ Exposed ∨
c) // id’s secrets in c are injected by the adversary:

((id, spk) ∈ Node[c].mem ∧ *secrets-injected(c, id))

*secrets-injected(c, id) ⇐⇒
a) // id is the sender of c and c was injected or generated with bad randomness

(Node[c].orig = id ∧ Node[c].stat ̸= good) ∨
b) // c commits an update of id that is injected or generated with bad randomness

∃p ∈ Node[c].pro : (Prop[p].act = up- ∗ ∧ Prop[p].orig = id ∧ Prop[p].stat ̸= good) ∨
c) // c adds id with corrupted spk

∃p ∈ Node[c].pro : (Prop[p].act = add-id-spk ∧ spk ∈ Exposed)

*secrets-replaced(c, id) ⇐⇒ Node[c].orig = id ∨ ∃p ∈ Node[c].pro :
Prop[p].act ∈ {add-id-∗, rem-id} ∨ (Prop[p].act = up- ∗ ∧ Prop[p].orig = id)

Knowledge of epoch secrets.

know(c, ‘epoch’) ⇐⇒ Node[c].exp ̸= ∅ ∨ *can-traverse(c)

// Can the adversary process c using exposed individual secrets and parent’s init secret?
*can-traverse(c) ⇐⇒

a) // orphan root with a corrupted signature public key:
(Node[c].par = ⊥ ∧ (∗, spk) ∈ Node[c].mem ∧ spk ∈ Exposed) ∨

b) // commit to an add proposal that uses an exposed key package:
(∃p ∈ Node[c].pro : Prop[p].act = add-id-spk ∧ spk ∈ Exposed) ∨

c) // secrets encrypted in the welcome message under an exposed leaf key
*leaf-welcome-key-reuse(c) ∨

d) // know necessary info to traverse the edge:
(know(c, ∗) ∧ (c = root∗ ∨ know(Node[c].par, ‘epoch’)))

*leaf-welcome-key-reuse(c) ⇐⇒ ∃id, p ∈ Node[c].pro : Prop[p].act = add-id- ∗ ∧∃cd : *ancestor(c, cd)
∧ (id, ∗) ∈ Node[cd].exp ∧ no node ch with *secrets-replaced(ch, id) on c-cd path

Safe and can-inject.

safe(c) ⇐⇒ ¬
(

(∗, true) ∈ Node[c].exp ∨ *can-traverse(c)
)

inj-allowed(c, id) ⇐⇒ Node[c].mem[id] ∈ Exposed ∧ know(c, ‘epoch’)

Fig. 6: The safety and injectability predicates for the CGKA functionality reflecting the sub-optimal
security of the ITK protocol.

19

key insecure
D : rem-A

D
: up

D : rem-B
D

: up

expose A

expose B expose C

(a) The history graph.

A B C D

(b) The ratchet tree in the red node.

Fig. 7: An execution illustrating that many simultaneous corruptions leak information that cannot
be deduced from any single corruption. Exposing A reveals the initSecret. Exposing B reveals
secrets on his direct path (untouched by D’s update). Together this allows to process D’s commit
removing A and compute the next initSecret. Together with C’s exposed secrets, this allows to
process the commit removing B and compute the group key. Notice that states of A and B cannot
be used to process the last commit (they are not group members).

Proof (Sketch). We here provide the high level proof idea; the complete proof is presented in
App. D. The proof proceeds in three steps. The first step is to show that various consistency
mechanisms, such as MACing the group context, guarantee consistency of the distributed group
state. More precisely, the real world (Hybrid 1) is indistinguishable from the following Hybrid
2: The experiment includes a modified CGKA functionality, Freal

cgka, which differs from Fcgka in
that it uses safe = false and inj-allowed = true. The functionality interacts with the trivial
simulator who sets all keys and messages according to the protocol. The second step is to show that
IND-CCA of the PKE scheme guarantees confidentiality: Hybrid 2 is indistinguishable from Hybrid
3 where application and membership secrets in safe epochs are random, i.e. the original safe is
restored. The final step is to show that unforgeability of the MAC and signature schemes implies
that Hybrid 3 is indistinguishable from the ideal world, where the original inj-allowed is restored
as well. (Considering confidentiality before integrity, while somewhat unusual, is necessary, because
we must first argue secrecy of MAC keys. We note that IND-CPA would be anyway insufficient,
because some injections are inherently possible.)

In this overview, we sketch the core of our proof, which is the second step concerning confiden-
tiality. For simplicity, we do not consider randomness corruptions. We now proceed in two parts:
first, we consider only passive environments, which do not inject messages. In the second part, we
show how to modify the passive strategy to deal with active environments.

Part 1: Passive security. For simplicity, consider Frand
cgka, which uses the original safe only for

the first (safe) key it sets (think of the first step in the hybrid argument). The goal is to show
that IND-CPA security of the PKE scheme implies that Freal

cgka and Frand
cgka, both with the trivial

simulator, are indistinguishable for passive environments.
Unfortunately, already the passive setting turns out challenging for the following reason: The

path secrets in a (safe) commit c are encrypted under public keys created in another commit c′,
which contains encryptions of the corresponding secret keys under public keys created in another
commit c′′, and so on. Moreover, the keys are related by hash chains (of path secrets). Even worse,
the environment can adaptively choose who to corrupt, revealing some subset of the secret keys,
which mean that we cannot simply apply the hybrid argument to replace encryptions of secret
keys by encryptions of zeros.15

To tackle adaptivity and related keys, we adapt the techniques of [36, 10]. Namely, we define a
new security notion for PKE, called (modified) Generalized Selective Decryption (GSD),16 which
generalizes the way ITK uses PKE together with the hash function to derive its secrets. Roughly
speaking, the GSD game creates a graph, where each node stores a secret seed. The adversary can
instruct the game to 1) create a node with a random seed, 2) create a node v where the seed is a
15 Observe that at the time a ciphertext is created we do not know if the key it contains will be used to

create a safe epoch, or if some receiver will be corrupted.
16 GSD was first defined for symmetric encryption [36] and then extended to prove security of TreeKEM

[10]. Our notion is an extension of [10].

20

hash of the seed of another node u, 3) use a (different) hash of the seed in a node u to derive a key
pair, use the public key to encrypt the seed in a node v and send the public key and ciphertext
to the adversary. Each of the actions 2) and 3) creates an edge (u, v) to indicate their relation.
Moreover, the adversary can adaptively corrupt nodes and receive their seeds. For the challenge of
the game, she receives either a seed from a sink node or a random value. (See the full proof for a
precise definition.)17 It remains to be shown that 1) GSD security implies secrecy of ITK keys, and
2) IND-CPA security implies GSD security. The latter proof is adapted from [10], so we now focus
on 1).

To be a bit more concrete, assume an environment Z distinguighes between Freal
cgka and Frand

cgka
(each with the trivial simulator). We construct an adversary A against GSD security of the PKE
scheme in the standard way: A executes the code of Freal

cgka and the trivial simulator, except for all
honest commits and updates, public keys and epoch keys are created using the GSD game. If a
party is corrupted, A corrupts all GSD nodes needed to compute its state. Finally, A replaces the
first key outputted by Freal

cgka by its challenge.

Part 2: Injections. We sketch the main points of how the strategy from the passive setting can be
adapted to show that IND-CCA security of PKE implies secrecy of keys in the presence of active
environments. There are three types of messages Z can inject: proposals, commits and welcome
messages. Proposals are the least problematic. Say Z injects an update proposal p′ with public
key pk′ on behalf of Alice. Since Alice will never process a commit containing p′, allegedly from
her, that she did not send (see Fig. 15 on Page 39), all epochs created by such commits and their
descendants are not safe until Alice is removed. This also removes pk′ and any secrets encrypted to
it. So, A can generate all secrets sent to pk′ itself, as they don’t matter for any safe epoch.

Now say Z makes Bob process an injected commit c′ and assume Bob uses an honest key, i.e.,
one created in the GSD game for an uncorrupted node. Say Bob’s ciphertext in c′ is ctxt. There
are a few possible scenarios:

– A has never seen ctxt (e.g. because Z computed a commit in his head). Clearly, IND-CPA is
not sufficient here. Hence, we extend the GSD game by a decrypt oracle (which does not work
on ciphertexts that allow to trivially compute the challenge) and prove that the new notion is
implied by IND-CCA.

– A generated ctxt using the GSD game, as part of a commit message c creating a safe epoch
(note that c and c′ may differ in places other than ctxt). Now the decrypt oracle cannot be used,
but fortunately the confirmation tag comes to the rescue. Indeed, any tag accepted by Bob
allows A to extract the joiner in c from Z’s RO queries (we soon explain how) and compute
the application secret in c. Hence, A can request GSD challenge for this secret and win.
For simplicity, assume c and c′ are siblings, i.e., Bob is currently in c’s parent (see the full proof
for other cases). Recall that the tag is a MAC under the new epoch’s confirmation key over the
transcript hash, and that the transcript hash contains the whole commit message c or c′ (except
the tag). The MAC is modeled as an RO call on input (confirmation key, transcript hash), so
the only way for Z to compute a valid tag for c′ is to query the RO on input (confirmation
key in c′, transcript hash updated with c′). Moreover, the confirmation key is a hash of the
joiner secret, so A can extract the joiner secret in c′ as well (note that the joiner secret is
never encrypted). Now observe that the joiner secret is a hash of the init and commit secrets.
Moreover, the init secret is the same in c and c′, since they are siblings, as is the commit secret
due to ctxt being the same. Hence, the joiner secret of c is the same as the one extracted from
c′. ⊓⊔

6 Insider Attacks

We first discuss three insider attacks on the design of MLS Draft 10 (as it stood prior to applying
the fixes proposed as part of this work). Each is practical, yet violates the design goals of MLS.
Next, we present an insider attack on MLS made possible when its ciphersuite is replaced by a
17 The GSD game in the full proof is inherently more complex. For example, recall that joiner secret is a

hash of init and commit secrets. Accordingly, the adversary is allowed to create nodes whose seeds are
hashes of two other seeds.

21

weaker one that still meets assumptions deemed sufficient in previous analyses. Together these
attacks highlight the limitations of prior security notions. In Sec. 7 we also discuss several areas
where the security of MLS could (at least in principle) be further improved. While some of areas
will likely soon be improved upon in MLS, other areas only have either incomplete solutions or
incur significant external costs (like precluding a FIPS compliant mode for MLS).

6.1 An Attack on Authenticity in Certain Modes

MLS supports two wire formats for packets: MLSCiphertext, meant to provide extra metadata
protection by applying an extra layer of authenticated symmetric encryption, and MLSPlaintext,
allowing for additional server-assisted efficiency improvements. As part of our analysis, we realized
that an MLSCiphertext (unintentionally) provides stronger authentication guarantees than an
MLSPlaintext: Forging the latter requires only signature keys of a group member while the former
also requires knowing the current epoch’s key. This results in weaker than expected PCS since
signature keys will be rotated much less frequently than epoch keys: Despite a party having issued
an update proposal or a commit the adversary may, thus, still be able to forge certain types of
messages, such as proposals. A more complete proof of the following theorem is given in App. E.1.

Theorem 2. The ITKAtk-1 protocol that behaves like ITK but does not include membership tags
does not securely realize (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model when Fcgka uses

the predicates safe and inj-allowed from Fig. 6. That is, for every simulator S, there exists an
environment Z that has non-negligible advantage in distinguishing the ideal world from the hybrid
world with the protocol running (and the dummy adversary).

Proof (Sketch). Let S be an arbitrary simulator and consider the following environment Z that
initially sets up a group consisting of three parties A, B, and C in the same group state. In this
state, Z then corrupts party A, hence learns its signing key sskA. Then, Z instructs A to issue
a commit message c with an empty list of proposals and the old spkA. (This causes A to update
its ephemeral key and resample the compromised path in the ratchet tree, but keep its long-term
signing key.) Now, Z crafts a proposal message p∗ that removes C on behalf of A, according to
the (modified) protocol ITKAtk-1. Note that all the included values are public and thus known to
the environment, and Z can sign the proposal using the leaked sskA. (Important: note that the
environment does not instruct A do create such a proposal command, but forges it!) Finally, Z
instructs B to commit to this proposal p∗ and lets B process the respective commit message c∗. If
B accepts and outputs the correct semantics for p∗, then Z returns 1, otherwise it returns 0.

It is easy to see that Z outputs 1 when interacting with the hybrid world as p∗ is a valid proposal
created identically to how the honest party A would. Now consider the ideal world functionality
and observe that after A issues the commit c2 all parties are in the same state, which is further
marked as good, i.e., with stat = good for it is created by an honest party with good randomness.
We now observe that auth-invariant will fail at the end of B committing p∗, as inj-allowed(c, A)
(whether the adversary can inject on behalf of A) in the parent state (the one created by A’s second
commit) as know(c, ‘epoch′) will return false indicating that the adversary does not know the
symmetric key of said state. Hence, when interacting with the ideal functionality the authenticity
invariant prevents B from successfully committing to the proposal p∗, causing Z to return 0 and
hence distinguish for any simulator S. ⊓⊔

Fixing authenticity. To bring the authenticity guarantees in line, we proposed adding a MAC to
MLSPlaintexts [14].

6.2 Breaking Agreement

The way the transcript hash was computed and included in the confirmation tag in the original
proposal of MLS lead to counter-intuitive behavior, where parties think they are in-sync and agree
on all relevant state when they are not.

More concretely, the package’s signature was not included into the confirmed transcript hash,
but it was included into the interim transcript hash. Suppose that a malicious insider creates two

22

valid commit messages c and c′, which only differ in the signatures, and sends them to Alice and
Bob respectively. If both signatures check out (which for most signatures an insider can achieve)
then Alice and Bob both end up with the same confirmed transcript hash and, thus, with the same
confirmation tag. Therefore, they both transition to the new epoch, agree on all epoch secrets and
can exchange application messages. However, MLS messages Alice sends now include confirmation
tags computed using the mismatching interim transcript hash, and hence are not accepted by Bob.

In our security model this shows up as a break on the notion of a group state, as formalized by
the history graph nodes. That is, in our model each history graph node is supposed to correspond
to a well-defined and consistent group state. The way the transcript hash used to be computed
violated this property, as on the one hand parties had the same key and could exchange messages
(same state) while on the other hand parties would no longer be able to process each other’s commit
messages (different states). In particular, when processing two such related commit messages c
and c′ that only differ in the signature, in the ideal functionality Fcgka the parties end up in two
distinct states. Yet, in the real world execution the parties would still accept each other’s proposals,
which in Fcgka is ruled out by the consistency invariant.

A more complete proof of the following theorem is given in App. E.2.

Theorem 3. Assume the signature scheme Sig does not have unique signatures (this strong property
is not achieved by the schemes used by MLS). Then, the ITKAtk-2 protocol, which behaves like ITK
using Sig but does not include the package’s signature into the confirmed transcript hash, does not
securely realize (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model when Fcgka uses the predicates

safe and inj-allowed from Fig. 6. That is, for every simulator S, there exists an environment Z
that has non-negligible advantage in distinguishing the ideal world from the hybrid world with the
protocol running (and the dummy adversary).

Proof (Sketch). Let S be an arbitrary simulator and consider the following environment Z that
initially sets up a group consisting of parties A, B, and C that are in the same consistent state, as in
the previous proof. Then, the environment acts as a malicious insider A sending semi-inconsistent
commit messages to B and C. To this end, it corrupts party A and learns sskA. Afterwards it
computes a commit message c1 (to an empty proposal list) and another one c′

1 by first copying c1
and then replacing the signature by a different valid one. It delivers c1 to B and c′

1 to C. Finally, Z
instructs B to create a proposal p that removes A from the group. Moreover, instruct both B and
C to first commit to this proposal (creating commit messages c2 and c′

2, respectively) and have
each of the parties process their own commit message. If both parties successfully process their
commit messages, Z outputs 1, and 0 otherwise.

It is easy to see that when interacting with the hybrid world both B and C successfully process
their own commits, as the interim transcript hash does not affect the proposal p, making it valid
for both B and C whose views agree in everything but the interim transcript hash. In the ideal
world, however, p is associated with B’s node and as a result cannot be committed to by C, as
enforced by the consistency invariant. (In our model two different ciphertexts c1 and c′

1 cannot
point to the same node.) As a result, Z outputs 0 when interacting with the ideal world. ⊓⊔

Fixing agreement. Our fix that moves the signature into the confirmed transcript hash has been
incorporated into MLS [15].

6.3 Inadequate Joiner Security (Tree-Signing)

The role of the tree-signing mechanism of MLS is to provide additional guarantees for joiners by
leveraging the long-term signature keys distributed by the PKI. Intuitively, we may hope for the
following guarantee: A joiner (potentially invited by a malicious insider to a non-existing group)
ends up in a secure epoch once all malicious parties have been removed. A bit more precisely, a
key is corrupt if the secret key is registered by or leaked to a malicious actor.

Surprisingly, we can show that the initial tree signing mechanism introduced in MLS Draft 9
does not achieve this guarantee. Rather, it achieves something much weaker: A joiner ends up in
a secure epoch once all members with the following types of long-term signature keys have been
removed: (a) corrupt keys and (b) keys used in a different epoch that includes a key of type (a). We

23

A B

C

known
to B

(a) The ratchet tree in a real group.

A C B D

known
to B

(b) The tree created by malicious B
inviting D.

A C D

known
to B

(c) The tree after D commits remov-
ing B.

Fig. 8: The attack on the tree signing of ITKAtk-3.

believe this to be an unexpectedly weak guarantee. In particular, it means that malicious insiders
can read messages after being removed.18

The attack on tree-signing. We call ITK using the tree-signing mechanism from MLS Draft 9
ITKAtk-3. We next present a simple and highly practical attack against ITKAtk-3. It results in groups
with epochs containing no keys of type A) yet for which the epoch key is easy to compute by the
malicious insiders.

We first recall the tree signing of ITKAtk-3. It works by storing in each ratchet-tree node v a
value v.parentHash computed as follows.

if v.isroot then v.parentHash← ϵ
else v.parentHash← Hash(v.parent.pk, v.parent.parentHash)

Further, each leaf contains a signature over all its content, including its parentHash, under the
long-term key of its owner. This means that during each commit the committer signs the new
parentHash of their leaf, which binds all new PKE public keys they generated. We say that the
committer’s signature attests to the new PKE keys. Now joiners can verify that each PKE public
key in the ratchet tree they receive in the welcome message is attested to by some group member
who generated it. (The joiners check the validity of the long-term keys in the PKI.)

Intuitively, the issue is, however, that committers only attest to the key pairs they (honestly)
generated, but not to which parties they informed of the secret keys. This allows a malicious insider
to create his own ratchet tree, where they knows secrets of nodes that are not on his direct path.
Therefore, removing them from the fake group doesn’t cause removal of every key they knows,
breaking Invariant (2) of the protocol. A more formal proof of the following theorem is presented
in App. E.3.

Theorem 4. The ITKAtk-3 protocol that behaves like ITK but with the old tree-signing mechanism
does not securely realize (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model when Fcgka uses

the predicates safe and inj-allowed from Fig. 6. That is, for every simulator S, there exists an
environment Z that has non-negligible advantage in distinguishing the ideal world from the hybrid
world with the protocol running (and the dummy adversary).

Proof (Sketch). The attack is illustrated in Fig. 8. Assume that the environment Z sets up a
group with a group creator A adding parties B and C (in this order), leading in the hybrid world to
ratchet tree depicted in Fig. 8a. In this state, the adversary corrupts party B, which henceforth is
assumed to be malicious, while A and C are never corrupted and, thus, honest. In the following Z
acts on behalf of the corrupted B and builds the fake ratchet tree from Fig. 8b, meaning Z swaps
parties B and C (their public keys), then adds party D on behalf of B to the group, outputting a
respective welcome message w using B’s leaked signing key. Crucially, we observe that the ratchet
tree from Fig. 8b represents a valid one that D will accept: In Fig. 8a C’s leaf signature only
attested to C’s leaf key (the green one) as the parent hash field is empty. Second, A’s leaf signature
does not attests to B’s leaf key (but only the blue ones) as the parent hash only includes the nodes
on A’s direct path to the root. Third, Z can re-key B’s new path and attest to the fresh keys (the
red ones) using the leaked signing key.

The environment then delivers w to D, joining them to the fake group, and afterwards Z
instructs D remove B, i.e., to propose, commit, and then process the respective commit message c′.
18 It also seems to contradict the (informal) notion of the “tree-invariant” often cited on the MLS mailing

list.

24

Finally, Z queries D’s group key key and also computes the expected group key key′ by taking D’s
commit message and using the secret key known to Z marked in Fig. 8c and perform the same
computation C would in the ITKAtk-3 protocol. If key = key′, then Z outputs 1 and 0 otherwise.

It remains to convince ourselves that Z distinguishes with non-negligible probability for any
simulator S. It is easy to see that when interacting with the hybrid world Z outputs 1. Finally,
consider the ideal-world. We argue that safe(c′) = true meaning that the functionality outputs an
independent and u.a.r. key and, thus, Z outputs 0 with overwhelming probability. First, it is easy
to see that S has to join D to a detached root as no other group state matches, e.g,. none has D as a
member. Next, observe that D has not been corrupted implying that the node created by D’s commit
is marked with Node[c′].stat = good and has no direct exposures, i.e., Node[c′].exp = ∅. As a result,
we have safe(c′) = ¬*can-traverse(c′) while *can-traverse(c′) = false as clearly only case (d)
might apply but know(c′, id) = false for all id ∈ {A, B, C, D} for the following reasons: First, A,
C, and D have never been corrupted, in particular implying *state-directly-leaks(c′, id) = false
and know(root1, id) = false, where root1 denotes the detached root to which D joined. Second, for
B, observe that *state-directly-leaks(c′, B) = false as B /∈ Node[c′].mem and B /∈ Node[c′].exp
while *secrets-replaced(c′, B) = true as B has been removed from that state. Thus, we can deduce
that safe(c′) = true, concluding the proof. ⊓⊔

Fixing tree signing. In essence, we can prevent the attack by modifying the parent hash such that
committers attest to the key pairs they generated and to which parties were informed about the
secret keys. In general, we can achieve this by computing the parent hash as v.parentHash ←
Hash(w.pk, w.parentHash, w.memberCert) where w is v’s parent and memberCert attests to the set
of parties informed about the w.sk. It is left to find a good candidate for memberCert; one that is
secure and easy to compute. We next discuss 3 candidates for memberCert.

The first candidate is called the leaf parent hash. This is the most direct solution which simply
sets w.memberCert to the list of all leaves in the subtree of v.sibling that are not unmerged at w.
Observe that, by Invariant (2) of ITK, the owners of these leaves, and only they, were informed
about w.sk (recall that the unmerged leaves are defined as those that do not know w.sk). One
disadvantage of the leaf hash is that it is not very implementation-friendly.

The second candidate, called the tree parent hash, has been initially considered for MLS [38]. It
basically sets w.memberCert to the tree hash of v.sibling with the unmerged leaves omitted (recall
that ITK computes the tree hash as the Merkle hash of the ratchet tree). Observe that the tree hash
binds strictly more than the leaf hash. The tree hash would be more straightforward to compute.
Unfortunately, it is not workable due to other mechanisms of MLS.19

Therefore, we propose a new candidate called the resolution parent hash. It improves upon the leaf
hash in 2 ways: it is more implementation-friendly and it has slightly better deniability properties.20

The resolution hash sets memberCert to the PKE public keys of nodes in u.origChildResolution
where u.origChildResolution is the resolution of u with the unmerged leaves of u.parent omitted.
Observe that u.origChildResolution is the resolution of u at the time the last committer in the
subtree of v generated the key pair of w.

The reason this works is less direct than in the case of leaf and tree hashes. Intuitively, assume
all long-term keys in the subtree of w are uncorrupted. The honest committer who generated w’s
key pair attests to w.pk and all PKE keys in u.origChildResolution, i.e. those they encrypted w.sk
to. These PKE keys are in turn attested to by the honest members in their subtrees who generated
them. Applying this argument recursively and relying on the security of the encryption scheme, we
can conclude that all key pairs in the ratchet tree remain secure.

6.4 IND-CPA Security Is Insufficient

Many prior analysis of MLS only assume IND-CPA security of the PKE scheme it uses. However,
there are PKE schemes that are IND-CPA secure but that make MLS clearly insecure against active
19 With adds and removes, the subtree of v can grow or shrink since the last commit, changing the tree

hash. It is not clear how to revert these changes.
20 With the leaf hash, members sign each other’s credentials, thus attesting to being in a group together.

The resolution hash gets rid of this side effect.

25

attackers — despite MLS employing signatures and MACs to protect authenticity — highlighting
the inadequacies of those works’ simplified security models to account for all relevant aspects (and
the danger of analyzing too piecemeal protocols without considering their composition in general).

Consider the protocol ITKcpa which behaves like ITK but replaces its PKE scheme with PKE∗.
PKE∗ is IND-CPA secure and has the following property: a ciphertext ctx containing a message m
can be modified into ctxi, s.t. decrypting ctxi outputs ⊥ if and only if the i-th bit of m is 0, and
otherwise decrypting ctxi outputs m.21 The following attack shows that ITKcpa is clearly insecure
in the setting with active attackers. In particular, a malicious insider can decrypt messages after
being removed from the group. Let κ denote the length of a path secret used by MLS. The attack
proceeds as follows:

1. An honest execution leads to an epoch E1 where the group has N = 4κ members P1, . . . , PN ,
ordered according to their leaves from left to right. Further, the ratchet tree has no blanks.

2. The adversary corrupts P1 and PN .
3. P1 (honestly) sends a commit c1, creating an epoch E2. PN−1 transitions to E2, and sends a

commit c2 that removes PN , creating epoch E3.
The expectation is that E3 is secure due to PCS and removing all corrupted members. The
adversary will next compute group key in E3.

4. The adversary has the following information: P1’s signing key ssk1 (the same in all epochs),
the secret key sk of the right child of the root in E1 (corrupted PN knows sk), the init secret
in E1 and the ciphertexts ctxRoot and ctxLchild encrypting P1’s two last path secrets in c1.
The adversary shouldn’t know the path secret s encrypted in ctxLchild, since this breaks the
tree invariant. He will next learn s it bit by bit.

5. The members who will decrypt ctxLchild are Pκ+1 to P2κ. For i = 1 to κ, the adversary injects
to Pκ+i the packet c1 modified as follows:
(a) Replace ctxLchild by ctxLchildi obtained using the PKE∗ property.
(b) Update the confirmation tag accordingly: 1) Decrypt ctxRoot using sk. The result is the

next path secret s′ after s. 2) Use s′ to compute the commit secret. 3) Compute the new
key schedule using the init secret in E1 and the commit secret from 2). 4) Compute the
tag.

(c) Update the signature using ssk1.
6. Clearly, if Pκ+i accepts, then the i-th bit of s is 0, else 1.

Now the adversary uses s to compute the key in E3.
7. Using s, the adversary derives the secret key for the left child of the root in E2. Since this node

is in the copath of PN−1, the adversary can use it to decrypt the commit secret from c2. The
adversary then computes the init secret in E2 by honestly running PN ’s protocol and mixes it
with the commit to derive the key schedule in E3.

Clearly, however, the safe predicate of our Fcgka functionality considers the resulting key from
epoch E3 as secure. Hence, we get the following result.

Theorem 5. The ITKcpa protocol that behaves like ITK does not securely realize (F iw
as ,F iw

ks ,Fcgka)
in the (Fas,Fks,Gro)-hybrid model when Fcgka uses the predicates safe and inj-allowed from
Fig. 6.

Proof. We show that for every simulator S, there exists an environment Z that has non-negligible
advantage in distinguishing the ideal world from the real world with ITKcpa. Let S be any simulator.
The environment Z executes the attack described above, i.e., it gives appropriate instructions to
honest parties and performs the adversary’s attacks. Let key′ denote the group key computed at
the end by the adversary. Z fetches the group key key in E3 (via the Key query to say P5). If
key = key′, it outputs 1 else 0.

We will show that safe is true in E3. Given this, we can conclude the proof with the following
observations: Clearly, in the real world, Z always outputs 1 (for simplicity we assume perfect
correctness). In the ideal world, since safe is true, key is chosen by Fcgka random and independent of
21 PKE∗ can be easily obtained as a straightforward adaptation of the artificial symmetric encryption

scheme by Krawczyk [33] (used to show that the authenticate-then-encrypt paradigm is not secure in
general) to the public key setting.

26

S. Since key′ is computed by Z only from information given to S, this means that with overwhelming
probability key ̸= key′, and hence Z outputs 0.

It remains to show that safe is true. Informally, the only corruptions are of P1 and PN in E1.
Transitioning to E1 “heals” from P1’s corruption, since this is an honest commit from them, and
transitioning to E3 heals from PN ’s corruption, since they are removed.

Formally, we establish that know is false for all parties in E3. To this end, we observe that
*can-traverse(c2) = false (by inspection, all other conditions that can make it true do not occur).
Hence, safe is true in E3.

Observe that know can only be true for P1 and PN , since *state-directly-leaks is only true for
these parties in E1. First, *secrets-replaced(c1, P1) is true, since None[c1].orig = P1. Therefore,
know(c1, P1) = false and by recursion know(c2, P1) = false. Second, *secrets-replaced(c2, P2)
is true, since it includes a proposal with act = rem-PN . Therefore, know(c1, P1) = false. ⊓⊔

7 Sub-optimal Security of ITK

Our analysis uncovered a couple of aspects where security of ITK could be improved, but the
changes were not adopted by MLS for non-cryptographic reasons.

Forward-secrecy. Forward-secrecy of ITK is sub-optimal for two reasons. First, when adding a party
idt, the same key pair is used for the leaf of idt and to encrypt idt’s secrets in the welcome message.
As a result, if idt is exposed before it updates its leaf, the key can be used to process the welcome
message and recover secrets for all past epochs. (Using separate key pairs for the two tasks is a
simple and cheap solution to this issue.)

Second, since a committer refreshes only keys on their direct path, exposing a party allows to
recover past commit secrets. Now leaking a past init secret (e.g. by exposing some other party
that is later removed) allows to recover past epoch secrets. Using a key-updatable encryption
scheme would improve this [6] but doing this would require first designing a compatible tree-signing
mechanism.

Protection against bad randomness. ITK supports ECDSA signatures, which leak the secret key in
case randomness is reused. Independently, the effect of bad randomness on all operations can be
(partly) mitigated by a so-called randomness pool, mixing the fresh randomness with the secret
state. Then, bad randomness would not compromise a previously secure state but just hamper
PCS. Unfortunately, not supporting ECDSA would leave MLS with no FIPS compliant mode
which can be problematic in practice. 22

Multi-group security. We prove security of ITK for a single group. In particular, this means that
re-using PKI keys between groups is outside of our model. Interestingly, our statement would imply
multi-group security by composition if we used a global PKI functionality in the sense of [23].
Unfortunately, this does not work for ITK for two reasons. First, GUC was envisioned to formalize
strong deniability, where protocol executions can be simulated without the secret PKI keys and
hence do not constitute a proof of participation. However, the fact that ITK signs messages makes
it non-deniable.23 Moreover, the typical techniques used to cope with non-deniable protocols in
GUC (e.g. [24]) rely on strict domain separation on the cryptographic primitives, e.g., a values
signed during the execution of one protocol instance cannot be used in another instance. However,
this is not true for ITK, where for example, signed key packages can be used across groups. We
leave proving or disproving multi-group security of ITK as an important open problem.

References

[1] Messagying layer security (mls) wg - meeting minutes for interim 2020-1, January 2020. https:
//datatracker.ietf.org/doc/minutes-interim-2020-mls-01-202001110900/.

22 The non-FIPS compliant ciphersuites do not suffer from this issue and so, somewhat ironically, using
them may result in a more secure insanitation than the FIPS ones.

23 Encrypting the signatures would not help, as corrupted parties leak decryption keys.

27

https://datatracker.ietf.org/doc/minutes-interim-2020-mls-01-202001110900/
https://datatracker.ietf.org/doc/minutes-interim-2020-mls-01-202001110900/

[2] Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Karen Klein, Guillermo
Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Grafting key trees: Efficient key management
for overlapping groups. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part III, volume
13044 of LNCS, pages 222–253. Springer, Heidelberg, November 2021.

[3] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez, and
Krzysztof Pietrzak. DeCAF: Decentralizable continuous group key agreement with fast healing.
Cryptology ePrint Archive, Report 2022/559, 2022. https://eprint.iacr.org/2022/559.

[4] Joël Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein, Guillermo Pascual-Perez, Krzysztof
Pietrzak, and Michael Walter. CoCoA: Concurrent continuous group key agreement. In Orr Dunkelman
and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 815–844.
Springer, Heidelberg, May / June 2022.

[5] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and Doreen Riepel. Analysing
the HPKE standard. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 87–116. Springer, Heidelberg, October 2021.

[6] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security analysis and improve-
ments for the IETF MLS standard for group messaging. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 248–277. Springer, Heidelberg, August
2020.

[7] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modular design of secure
group messaging protocols and the security of MLS. In Giovanni Vigna and Elaine Shi, editors, ACM
CCS 2021, pages 1463–1483. ACM Press, November 2021.

[8] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous group key agreement
with active security. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551
of LNCS, pages 261–290. Springer, Heidelberg, November 2020. Full version: https://eprint.iacr.
org/2020/752.pdf.

[9] Joël Alwen, Dominik Hartmann, Eike Kiltz, and Marta Mularczyk. Server-aided continuous group
key agreement. Cryptology ePrint Archive, Report 2021/1456, 2021. https://eprint.iacr.org/
2021/1456.

[10] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen Klein, Guillermo Pascual-
Perez, Krzysztof Pietrzak, and Michael Walter. Keep the dirt: Tainted treekem, adaptively and
actively secure continuous group key agreement. In 2021 IEEE Symposium on Security and Privacy,
S&P, pages 268–284, 2021. Full version: https://eprint.iacr.org/2019/1489.

[11] Michael Backes, Markus Dürmuth, Dennis Hofheinz, and Ralf Küsters. Conditional reactive simulata-
bility. In Dieter Gollmann, Jan Meier, and Andrei Sabelfeld, editors, ESORICS 2006, volume 4189 of
LNCS, pages 424–443. Springer, Heidelberg, September 2006.

[12] R. Barnes, B. Beurdouche, , J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert. The messaging
layer security (mls) protocol (draft-ietf-mls-protocol-12). Technical report, IETF, Mar 2020. https:
//datatracker.ietf.org/doc/draft-ietf-mls-protocol/12/.

[13] Richard Barnes. Subject: [MLS] Remove without double-join (in TreeKEM). MLS
Mailing List, 06 August2018 13:01UTC. https://mailarchive.ietf.org/arch/msg/mls/
Zzw2tqZC1FCbVZA9LKERsMIQXik.

[14] Richard Barnes. MLS Protocol Pull Requests #396: Authenticate group membership in MLSPlaintext,
18 August 2020. https://github.com/mlswg/mls-protocol/pull/396.

[15] Richard Barnes. MLS Protocol Pull Requests #416: Inlclude the signature in the confirmation tag,
18 August 2020. https://github.com/mlswg/mls-protocol/pull/416.

[16] Richard Barnes. Subject: [MLS] Proposal: Proposals (was: Laziness). MLS Mailing List, 22 August
2019 22:17UTC. https://mailarchive.ietf.org/arch/msg/mls/5dmrkULQeyvNu5k3MV_sXreybj0/.

[17] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asynchronous Decentralized
Key Management for Large Dynamic Groups, May 2018. Published at https://mailarchive.ietf.
org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8.

[18] Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad Naldurg. Formal Models and Verified
Protocols for Group Messaging: Attacks and Proofs for IETF MLS. Research report, Inria Paris,
December 2019.

[19] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of concurrency in group
ratcheting protocols. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume
12551 of LNCS, pages 198–228. Springer, Heidelberg, November 2020.

[20] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Security analysis of the mls key derivation. In
2022 IEEE Symposium on Security and Privacy, S&P, pages 595–613, Los Alamitos, CA, USA, may
2022. IEEE Computer Society.

[21] Bushing, Marcan, Segher, and Sven. Console hacking 2010 — PS3 epic fail. In 27th Chaos Com-
munication Congress — 27C3, 2010. https://fahrplan.events.ccc.de/congress/2010/Fahrplan/
events/4087.en.html.

28

https://eprint.iacr.org/2022/559
https://eprint.iacr.org/2020/752.pdf
https://eprint.iacr.org/2020/752.pdf
https://eprint.iacr.org/2021/1456
https://eprint.iacr.org/2021/1456
https://eprint.iacr.org/2019/1489
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/12/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/12/
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik
https://github.com/mlswg/mls-protocol/pull/396
https://github.com/mlswg/mls-protocol/pull/416
https://mailarchive.ietf.org/arch/msg/mls/5dmrkULQeyvNu5k3MV_sXreybj0/
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html

[22] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[23] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with
global setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 61–85. Springer,
Heidelberg, February 2007.

[24] Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authentication and key-
exchange with global PKI. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages 265–296. Springer, Heidelberg, March
2016.

[25] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner. On ends-to-ends
encryption: Asynchronous group messaging with strong security guarantees. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1802–1819. ACM
Press, October 2018.

[26] Cas Cremers, Britta Hale, and Konrad Kohbrok. The complexities of healing in secure group messaging:
Why cross-group effects matter. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021, pages 1847–1864. USENIX Association, August 2021.

[27] Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. MLS group messaging: How zero-knowledge
can secure updates. In Elisa Bertino, Haya Shulman, and Michael Waidner, editors, ESORICS 2021,
Part II, volume 12973 of LNCS, pages 587–607. Springer, Heidelberg, October 2021.

[28] Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tessaro. To hash or not to hash
again? (In)differentiability results for H2 and HMAC. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 348–366. Springer, Heidelberg, August 2012.

[29] Keita Emura, Kaisei Kajita, Ryo Nojima, Kazuto Ogawa, and Go Ohtake. Membership privacy
for asynchronous group messaging. Cryptology ePrint Archive, Report 2022/046, 2022. https:
//eprint.iacr.org/2022/046.

[30] Keitaro Hashimoto, Shuichi Katsumata, Eamonn Postlethwaite, Thomas Prest, and Bas Westerbaan. A
concrete treatment of efficient continuous group key agreement via multi-recipient pkes. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pages 1441–1462,
2021.

[31] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-optimal guarantees for
secure messaging. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 159–188. Springer, Heidelberg, May 2019.

[32] Daniel Jost, Ueli Maurer, and Marta Mularczyk. A unified and composable take on ratcheting. In
Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 180–210.
Springer, Heidelberg, December 2019.

[33] Hugo Krawczyk. The order of encryption and authentication for protecting communications (or: How
secure is SSL?). In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 310–331. Springer,
Heidelberg, August 2001.

[34] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Tal Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer, Heidelberg, August 2010.

[35] Matthew A. Miller. Messaging layer security (mls) wg - meeting minutes for ietf105, August 2019.
https://datatracker.ietf.org/doc/minutes-105-mls/.

[36] Saurabh Panjwani. Tackling adaptive corruptions in multicast encryption protocols. In Salil P.
Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 21–40. Springer, Heidelberg, February 2007.

[37] Eric Rescorla. Subject: [MLS] TreeKEM: An alternative to ART. MLS Mailing List, 03 May 2018
14:27UTC. https://mailarchive.ietf.org/arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no.

[38] Nick Sullivan. Subject: [MLS] Virtual interim minutes. MLS Mailing List, 29 January 2020 21:39UTC.
https://mailarchive.ietf.org/arch/msg/mls/ZZAz6tXj-jQ8nccf7SyIwSnhivQ/.

[39] Matthew Weidner. Group messaging for secure asynchronous collaboration. MPhil Dissertation, 2019.
Advisors: A. Beresford and M. Kleppmann, 2019. https://mattweidner.com/acs-dissertation.pdf.

29

https://eprint.iacr.org/2022/046
https://eprint.iacr.org/2022/046
https://datatracker.ietf.org/doc/minutes-105-mls/
https://mailarchive.ietf.org/arch/msg/mls/WRdXVr8iUwibaQu0tH6sDnqU1no
https://mailarchive.ietf.org/arch/msg/mls/ZZAz6tXj-jQ8nccf7SyIwSnhivQ/
https://mattweidner.com/acs-dissertation.pdf

A Preliminaries

A.1 Notation

We denote the security parameter by κ and all our algorithms implicitly take 1κ as input. For an
algorithm A, we write A(·; r) to denote that A is run with explicit randomness r. We use v ← x to
denote assigning the value x to the variable v and v ←$ S to denote sampling an element u.a.r.
from a set S.

Data structures. If V denotes a variable storing a set, then we write V +← x and V -← x as
shorthands for V ← V ∪ {x} and V ← V \ {x}, respectively. For vectors x := (x1, . . . , xn) and
y := (y1, . . . , ym) we denote the concatenation by x ++ y = (x1, . . . , xn, y1, . . . , ym) and use
x ++← v as a shorthand for x ← x ++ (v). Moreover, let x.reverse() := (xn, xn−1, . . . , x1) and let
x.indexof(z) denote the smallest i ∈ N such that xi = z (or ⊥ if not such i exists). Finally, let
zip(x, y) := ((x1, y1), . . . , (xn, yn)) if n = m, or ⊥ otherwise. We further make use of associative
arrays and use A[i]← x and y ← A[i] to denote assignment and retrieval of element i, respectively.
Additionally, we denote by A[∗] ← v the initialization of the array to the default value v. In a
slight abuse of notation, for sets of tuples S ⊆ X × Y, we define S[x] := {y | (x, y) ∈ S}, akin to
associative arrays.

For simplicity we moreover use wildcard notation when dealing with sets of tuples and multi-
argument associative arrays. For instance, for an array with domain I × J , we write A[∗, j] :=
{A[i, j] | i ∈ I} and for a set S ⊆ I × J we write (i, ∗) ∈ S as a shorthand for the condition
∃j ∈ J : (i, j) ∈ S.

Keywords. In the pseudocode, we use the following keywords:

– req cond denotes that if the condition cond is false, then the current function unwinds all state
changes and immediately returns ⊥.

– parse (m1, . . . , mn)← m denotes an attempt to parse a message m as a tuple. If m is not of
the correct format, the current function unwinds all state changes and immediately returns ⊥.

– try y ← ∗func(x) is a shorthand notation for calling a helper ∗func and executing req y ̸= ⊥.
– assert cond is only used to describe functionalities. It denotes that if cond is false, then the

given functionality permanently halts, making the real and ideal worlds trivially distinguishable
(this is used to validate inputs of the simulator).

A.2 Cryptographic Primitives

We introduce the basic cryptographic primitives used throughout this work.

Signature Scheme. A signature scheme is a tuple of PPT algorithms Sig := (Sig.kg, Sig.sign, Sig.vrf).
For a public/secret key pair (spk, ssk)← Sig.kg() from the key-generation algorithm, we denote
signing by sig← Sig.sign(ssk, m), and the verification by Sig.vrf(spk, sig, m). We require the standard
existential unforgeability under chosen message attacks (EUF-CMA) notion.

Public Key Encryption. A public key encryption scheme is a tuple of algorithms PKE := (PKE.kg,
PKE.enc, PKE.dec). For a public/secret key pair (pk, sk)← pk() from the key-generation algorithm,
we denote encryption byc← PKE.enc(pk, m), and decryption by m← PKE.dec(sk, c). We require
the standard indistinguishability under chosen ciphertext (IND-CCA2) notion.

Message Authentication Code. A message authentication code (MAC) scheme is a tuple of algorithms
MAC := (MAC.tag, MAC.vrf). For a uniformly random key k, we denote by t← MAC.tag(k, m) the
tagging algorithm and by MAC.vrf(k, t, m) the respective verification algorithm.

Proving ITK secure requires two non-standard assumptions on the MAC: extractability and
collision resistance. The first assumption means that from a valid tag, it is possible to extract the
corresponding message and key (in the sense of a proof of knowledge). The second assumption
means that an adversary should not be able to come up with any collision MAC.tag(k1, m1) =
MAC.tag(k2, m2) for (k1, m1) ̸= (k2, m2). Neither assumption is implied by EUF-CMA security.

To this end, we model the MAC in the random oracle model (ROM). That is, in the security
proof we simply replace all calls to MAC.tag(k, m) by invocations of RO(k, m) and MAC.vrf simply

30

comparing the tags. Note that for HMAC, as used by MLS, this assumption is valid if the underlying
compression function is assumed to be a random oracle [28].

HKDF. The HMAC-based Extract-and-Expand Key Derivation Function is a tuple of algorithms
HKDF = (HKDF.Extract, HKDF.Expand). The extraction algorithm k ← HKDF.Extract(s0, s1)
outputs a u.a.r key if either s0 or s1 has high min-entropy. The expansion algorithm klbl ←
HKDF.Expand(k, lbl), given a key k, outputs an independent u.a.r. key for each (public) label lbl.

We model its security in the ROM. Note that MLS’s requirement of the extraction being secure
if either input has high (conditional) min-entropy anyway deviates from the HKDF RFC and the
respective standard security notion [34].

Hash Function. Finally, we use a generic hash function Hash, mapping from an arbitrary input
space to a fixed length output. For security, we use the ROM as well.

B Details of the Security Model

B.1 PKI Functionalities

The formal description of the Authentication Service and Keypackage Service functionalities can
be found in Fig. 9.

Note that the ideal-world version of the Authentication Service, F iw
as , the adversary gets to

provide both the secret and public keys, whenever a party requests to register a spk. This reflects
that those keys in the ideal world merely function as identifiers and do not convey any significance
with respect to security. Indeed, whether a key is considered secure or not, is tracked via the Exposed
set, which reflects whether a given key is known to the adversary in the real world (e.g., having
leaked or having been sampled with bad randomness). Moreover, observe that the functionality
treats keys registered by the adversary conservatively: it only treats keys from other honest parties
as secure (e.g., when registering the spk of id, that has never leaked, also for id′) and assumes for
all other keys that the adversary might know the corresponding secret key.

For the Keypackage Service, observe that in the using an ssk to register a key package with
bad randomness is assumed to leak ssk. As a result, the Authentication Service is notified of this
leakage, and (in the real world) ssk is handed to the adversary. (In the ideal world, the adversary
chose ssk in the first place.) This behavior reflects that the key package is (potentially) signed
using ssk and that MLSallows to use of ECDSA that exhibits this leakage.

B.2 The CGKA Functionality

The formal description of the Fcgka functionality is depicted in Figs. 10 to 12. We refer to
Sec. 3.5 for a high-level description thereof. One difference from Sec. 3.5 we would like to highlight
is the functionality related to so-called “add-only” mode of commits in MLS. That is, if the
committed proposal vector contains only adds (and is not empty), then MLS permits skipping the
implicit update of the committer. We model this with the force-rekey flag inputted to commit: if
force-rekey = false, then an add-only commit does not do the implicit update, whereas if either
force-rekey = true or there are non-add proposals, then the implicit update is performed. (Skipping
the update also implies ignoring the new spk.)

C Details on the ITK Protocol

C.1 Protocol State

The ratchet tree. Formally, the ratchet tree τ is a left-balanced binary tree with n nodes, LBBTn.

Definition 1 (Left-Balanced Binary Tree). For n ∈ N the nth left-balanced binary tree
is denoted by LBBTn. Specifically, LBBT1 is the tree consisting of one node. Furthermore, if
m = mp2(n) := max{2p : p ∈ N ∧ 2p < n}, then LBBTn is the (undirected) tree whose root has left
and right subtrees LBBTm and LBBTn−m.

31

Functionality Fas and F iw
as

The functionality is parameterized by a key generation algorithm gen-sk().

Initialization

Registered← ∅ // registered identity-public
key pairs
Exposed← ∅ // exposed public keys
SSK[∗, ∗]← ⊥ // honestly generated secret
keys
RndCor[∗]← good

Inputs from a party id

Input (register-spk)
if RndCor[id] = good then

(spk, ssk)←$ gen-sk()
else

Send (rnd, id) to the adversary and receive
r.
(spk, ssk)←$ gen-sk(r)

Send (sample-ssk, id) to the adversary and
receive (spk, ssk).
if RndCor[id] ̸= good then

Exposed +← spk
SSK[id, spk]← ssk
Registered +← (id, spk)
Send (register-spk, id, spk) to the adversary.
Send spk to the party id.

Input (verify-cert, id′, spk)
Send (id′, spk) ∈ Registered to id.

Input (get-ssk, spk)
Send SSK[id, spk] to the party id.

Input (del-ssk, spk)
SSK[id, spk]← ⊥

Inputs from the adversary

Input (register-spk, id, spk)
if (∗, spk) /∈ Registered then

Exposed +← spk
Registered +← (id, spk)

Input (expose, id)
Exposed +← {spk |

SSK[id, spk] ̸= ⊥}
Send SSK[id, ∗] to the adversary.

Input (corRand, id, b),
b ∈ {good, bad}

RndCor[id]← b

Inputs from Fks.

Input (exposed, id, spk)
Exposed +← spk
Send SSK[id, spk] to the adversary.

Inputs from Fcgka.

Input (has-ssk, spk, id)
Send SSK[id, spk] ̸= ⊥ to Fcgka.

Functionality Fks and F iw
ks

The functionality is parameterized by a key-package generation algorithm gen-kp(id, spk, ssk).

Initialization

SK[∗, ∗], SPK[∗, ∗]← ⊥ // secret keys and spk’s corresponding to
honestly generated keys
RndCor[∗]← good

Inputs from a party id

Input (register-kp, spk, ssk)
if RndCor[id] = good then

(kp, sk)←$ gen-kp(id, spk, ssk)
if kp = ⊥ then return

else
Send (rnd, id) to the adversary and receive r.
(kp, sk)← gen-kp(id, spk, ssk; r)
if kp = ⊥ then return
Send (exposed, id, spk) to Fas.
Send ssk to the adversary.

Send (sample-sk, id, spk, ssk) to the adversary and receive
(kp, sk, ack).
if ¬ack then return
if RndCor[id] ̸= good then

Send (exposed, id, spk) to Fas.
SK[id, kp]← sk
SPK[id, kp]← spk
Send (register-pk, id, spk, kp) to the adversary.
Send kp to the party id.

Input get-sks
Send {(kp, SK[id, kp]) | SK[id, kp] ̸= ⊥} to id.

Input (get-kp, id′)
Send (get-kp, id, id′) to the adversary and receive kp.
Send kp to id.

Input (del-sk, spk)
SK[id, kp]← ⊥

Inputs from the adversary

Input (expose, id)
Send SK[id, ∗] to the adversary.

Input (corRand, id, b), b ∈ {good, bad}
RndCor[id]← b

Fig. 9: The Authentication and Key Service functionalities Fas and Fks, and their ideal-world
counterparts F iw

as and F iw
ks . Code marked by solid or dashed boxes are executed only by the

respective version, whereas code outside those boxes is shared by both variants.

32

Functionality Fcgka

The functionality expects as part of the instance’s session identifier sid the group creator’s identity idcreator. It is
parameterized in the predicates safe(c), specifying which keys are confidential, and inj-allowed(c, id), specifying
when authenticity is not guarantees.

Initialization

Ptr[∗], Node[∗], Prop[∗], Wel[∗]← ⊥
RndCor[∗]← good; HasKey[∗]← false
rootCtr← 0

Inputs from idcreator

Input (Create, spk)
req Node[root0] = ⊥ ∧ *valid-spk(idcreator, spk)
mem← {idcreator, spk}
Node[root0]← *create-root(idcreator, mem, RndCor[idcreator])
HasKey[idcreator]← true; Ptr[idcreator]← root0

Inputs from a party id

Input (Propose, act), act ∈ {up-spk, add-idt, rem-idt}
req Ptr[id] ̸= ⊥
Send (Propose, id, act) to the adversary and

receive (p, spkt, ack).
if ¬*req-correctness(‘prop′, id, act) then req ack
if act = up-spk then assert*valid-spk(id, spk)
if act = add-idt then act← add-idt-spkt

if Prop[p] = ⊥ then
Prop[p]← *create-prop(Ptr[id], id, act, RndCor[id])

else
*consistent-prop(p, id, act, RndCor[id])

if RndCor[id] = bad then
Send (exposed, id, spk) to Fas.

return p

Input (Commit, p⃗, spk, force-rekey)
req Ptr[id] ̸= ⊥
Send (Commit, id, p⃗, spk, force-rekey) to the adversary

and receive (ack, c, w, rt).
if ¬*req-correctness(‘comm′, id, p⃗, spk, force-rekey) then req ack
*fill-props(id, p⃗)
if ¬force-rekey ∧ *only-adds(p⃗) then

spk← Node[Ptr[id]].mem[id]
assert *valid-spk(id, spk)
mem← *members(Ptr[id], id, p⃗, spk)
assert mem ̸= ⊥ ∧ (id, spk) ∈ mem
if Node[c] = ⊥ ∧ rt = ⊥ then

if ¬force-rekey ∧ *only-adds(p⃗) then
stat← bad

else stat← RndCor[id]
Node[c]← *create-child(Ptr[id], id, p⃗, mem, stat)

else
if Node[c] = ⊥ then c′ ← rootrt

else c′ ← c
*consistent-comm(c′, id, p⃗, mem)
if c ̸= c′ then *attach(c, c′, id, p⃗)

assert w ̸= ⊥ iff ∃p ∈ p⃗ : Node[p].act = add-∗
if w ̸= ⊥ then

assert Wel[w] ∈ {⊥, c}
Wel[w]← c

assert cons-invariant ∧ auth-invariant
if RndCor[id] = bad then

Send (exposed, id, Node[Ptr[id]].mem[id]) to Fas.
return (c, w)

Input Key
req Ptr[id] ̸= ⊥ ∧ HasKey[id]
if Node[Ptr[id]].key = ⊥ then *set-key(Ptr[id])
HasKey[id]← false
return Node[Ptr[id]].key

Input (Process, c, p⃗)
Send (Process, id, c, p⃗) to the adversary and

receive (ack, rt, orig′, spk′).
if ¬*req-correctness(‘proc′, id, c, p⃗) then

req ack
*fill-props(id, p⃗)
if Node[c] = ⊥ ∧ rt = ⊥ then

mem← *members(Ptr[id], orig′, p⃗, spk′)
assert mem ̸= ⊥ ∧ inj-allowed(Ptr[id], id)
Node[c]← *create-child(Ptr[id], orig′, p⃗, mem, adv)

else
if Node[c] = ⊥ then c′ ← rootrt

else c′ ← c
idc ← Node[c′].orig
spkc ← Node[c′].mem[idc]
mem← *members(Ptr[id], idc, p⃗, spkc)
assert mem ̸= ⊥
*valid-successor(c′, id, p⃗, mem)
if c ̸= c′ then *attach(c, c′, id, p⃗)

if ∃p ∈ p⃗ : Prop[p].act = rem-id then
Ptr[id]← ⊥

else
assert id ∈ Node[c].mem
Ptr[id]← c
HasKey[id]← true

assert cons-invariant ∧ auth-invariant
return *output-proc(c)

Input (Join, w)
Send (Join, id, w) to the adversary and

receive (ack, c′, orig′, mem′).
req ack
c←Wel[w]
if c = ⊥ then

if Node[c′] ̸= ⊥ then c← c′

else
rootCtr++
c← rootrootCtr
Node[c]← *create-root(orig′, mem′, adv)

Wel[w]← c
Ptr[id]← c
HasKey[id]← true
assert id ∈ Node[c].mem ∧ cons-invariant

∧ auth-invariant
return *output-join(c)

Corruptions

Input (Expose, id)
if Ptr[id] ̸= ⊥ then

Node[Ptr[id]].exp +← (id, HasKey[id])
*update-stat-after-exp(id)
Send (exposed, id, Node[Ptr[id]].mem[id]) to Fas.

Send (get-sk) to Fks and receive SK and SPK.
for each kp s.t. SK[id, kp] ̸= ⊥ ∧ SPK[id, kp] = spk do

for each c s.t. ∃p ∈ Node[c].pro :
Prop[p].act = add-id-spk do

Node[c].exp +← (id, true)
This input is disallowed if ∃c : Node[c].chall ∧ ¬safe(c)

Input (CorrRand, id, b), b ∈ {good, bad}
RndCor[id]← b

Fig. 10: The CGKA functionality. The helper functions are defined in Figs. 11 and 12. The safety
predicates for ITK are defined in Fig. 6.

33

Functionality Fcgka : Bookkeeping Helpers

// Creating nodes
helper *create-child(c, id, p⃗, mem, stat)

return new node with par← c, orig← id, pro← p⃗,
mem← mem, stat← stat.

helper *create-root(id, mem, stat)

return new node with par← ⊥, orig← id,
pro← ⊥, mem← mem, stat← stat.

helper *create-prop(c, id, act, stat)

return new proposal with par← c, orig← id,
act← act, stat← stat.

helper *fill-props(id, p⃗)

for p ∈ p⃗ s.t. Prop[p] = ⊥ do
Send (Proposal, p) to the adversary and receive (orig, act).
Prop[p]← *create-prop(Ptr[id], orig, act, adv)

// Does the vector of proposals create an add-only commit?
helper *only-adds(p⃗)

return p⃗ ̸= () ∧ ∀p ∈ p⃗ : Prop[p] ̸= ⊥ ∧ Prop[p].act = add-∗

// Output of process and join
helper *output-proc(c)

(∗, propSem)← *apply-props(c, Node[c].pro)
return (Node[c].orig, propSem)

helper *output-join(c)

return (Node[c].mem, Node[c].orig)

// Is the (new) spk′ valid for update or commit?
helper *valid-spk(id, spk′)

spk← Node[Ptr[id]].mem[id]
if spk ̸= ⊥ ∧ spk′ = spk then return true
Send (has-ssk, spk′, id) to Fas and receive ack
return ack

// Generating the group key (secure or insecure)
helper *set-key(c)

if ¬safe(c) then
Send (Key, id) to the adversary and receive I.
Node[c].key← I
Node[c].chall← false

else
Node[c].key←$ I
Node[c].chall← true

// Corruptions
helper *update-stat-after-exp(id)

for each p s.t. Prop[p] ̸= ⊥ and
(a) Prop[p].par = Ptr[id] and
(b) Prop[p].orig = id and
(c) Prop[p].act = up

do Prop[p].stat← bad
for each c s.t. Node[c] ̸= ⊥ and

(a) Node[c].par = Ptr[id] and
(b) Node[c].orig = id

do Node[c].stat← bad

Functionality Fcgka : Consistency Helpers

helper *consistent-prop(p, id, act, stat)

// Preexisting p valid for id proposing act?
assert Prop[p].orig = id ∧ Prop[p].act = act

∧ Prop[p].par = Ptr[id]

helper *valid-successor(c, id, p⃗, mem)

// Preexisting node valid for id processing (c, p⃗)?
assert Node[c] ̸= ⊥ ∧ Node[c].mem = mem
∧ Node[c].pro ∈ {⊥, p⃗} ∧ Node[c].par ∈ {⊥, Ptr[id]}

helper *consistent-comm(c, id, p⃗, mem)

// Preexisting c valid for id committing p⃗?
assert *valid-successor(c, id, p⃗, mem)
assert RndCor[id] ̸= good ∧ Node[c].orig = id

helper *attach(c, c′, id, p⃗)

// Attach detached root c′ under new name c as successor of id’s node.
assert c′ ̸= root0
Node[c′].par← Ptr[id]; Node[c′].pro← p⃗; Node[c]← Node[c′]; Node[c′]← ⊥
for w : Wel[w] = c′ do Wel[w]← c

Functionality Fcgka : Correctness Helpers

helper *req-correctness(‘comm′, id, p⃗, spk, force-rekey)

return *apply-props(id, p⃗, spk) ̸= ⊥ // p is valid
∧

(
*valid-spk(id, spk) ∨ (*only-adds(p⃗) ∧ ¬force-rekey)

)
// spk is usable, unless it’s an add-only commit

helper *req-correctness(‘proc′, id, c, p⃗)

return Node[c] ̸= ⊥ ∧ Node[c].par = Ptr[id]
∧ Node[c].pro = p⃗ ∧ Node[c].stat ̸= adv ∧ ∀p ∈ p⃗ : Prop[p].stat ̸= adv

helper *req-correctness(‘prop′, id, act)

if act = rem-idt then
return idt ∈ Node[Ptr[id]].mem

else if act = up-spk then
return *valid-spk(id, spk)

else // Adv can always deliver bad key package
return false

Functionality Fcgka : Invariants

// No injections when authenticity guaranteed.
helper auth-invariant
return true iff
a) ∀c with cp = Node[c].par and id = Node[c].orig,

if Node[c].stat = adv then inj-allowed(cp, id) and
b) ∀p with cp = Prop[p].par and id = Prop[p].orig,

if Prop[p].stat = adv then inj-allowed(cp, id).

// The history graph is consistent.
helper cons-invariant
return true iff
a) ∀c s.t. Node[c].par ̸= ⊥: Node[c].pro ̸= ⊥ and

∀p ∈ Node[c].pro : Prop[p].par = Node[c].par and
b) ∀id s.t. Ptr[id] ̸= ⊥ : id ∈ Node[Ptr[id]].mem and
c) the graph contains no cycles

Fig. 11: The helper functions for Fcgka.

34

Functionality Fcgka : Group State Helpers

helper *members(c, idc, p⃗, spkc)

(G, ∗)← *apply-props(idc, p⃗, spkc)
if (G, ∗) = ⊥ then return ⊥
else return G

helper *apply-props(c, idc, p⃗, spkc)

// Returns group members G and proposal semantics P resulting
from applying p⃗ to state Node[c], or ⊥ if p⃗ is invalid.
req Node[c] ̸= ⊥ ∧ (idc, ∗) ∈ Node[c].mem
req ∀p ∈ p⃗ : Prop[p] ̸= ⊥ ∧ Prop[p].par = c
req p⃗ = p⃗up ++ p⃗rem ++ p⃗add for some p⃗up, p⃗rem, p⃗add

with ∀act ∀p ∈ p⃗act : Node[p].act = act-∗
G← Node[c].mem; G -← (idc, ∗); G +← (idc, spkc)
L← {idc} // set of updated parties

for p ∈ p⃗up do
(ids, up-spk)← (Prop[p].orig, Prop[p].act)
req ids ∈ G \ L
G -← (ids, ∗); G +← (ids, spk)
L +← ids

for p ∈ p⃗rem do
(ids, rem-idt)← (Prop[p].orig, Prop[p].act)
req ids ∈ G ∧ idt ∈ G \ L
G -← (idt, ∗)

for p ∈ p⃗add do
(ids, add-idt-spkt)← (Prop[p].orig, Prop[p].act)
req ids ∈ G ∧ idt /∈ G
G +← (idt, spkt)

P ← ((Prop[p].orig, Prop[p].act) : p ∈ p⃗)
return (G, P)

Fig. 12: The helper functions for Fcgka.

7

3

1

0 2

5

4 6

9

8 10

Fig. 13: The tree LBBT6 with node indices.

We use the following indexing of nodes (see Fig. 13 for an example): all nodes are numbered
left to right — i.e., according to an in-order depth-first traversal of the tree — starting with 0.

For a node v of a LBBT τ , we use standard object oriented notation as outlined in Table 3.
(Observe that every internal node always has both children.)

τ.root Returns the root.
τ.nodes Returns the set of all nodes in the tree.
v.isroot Returns true iff v = τ.root.
v.isleaf Returns true iff v has no children.
v.parent Returns the parent node of v (or ⊥ if v.isroot).
v.lchild Returns the left child of v (or ⊥ if v.isleaf).
v.rchild Returns the right child of v (or ⊥ if v.isleaf).
v.sibling Returns the unique node u ̸= v s.t. of u.parent = v.parent.

v.nodeIdx Returns the node index of v.

Table 3: Object oriented notation for LBBTs.

A basic operation of ITK requires adding leaves to (data structures that represent) LBBTs. We
describe the algorithm addLeaf which takes as input an LBBT and a new leaf inserting it to obtain
an output tree LBBTn+1.

Definition 2 (addLeaf). The algorithm addLeaf(τ, v) takes input a tree τ with root r and a fresh
leaf v and returns a new tree τ ′. Let τL and τR be the left and right subtrees of r.

– If τ = FTn (for some n ∈ N) then create a new root r′ for τ ′. Attach r as the left child and v
as the right child.

– Otherwise let τ ′ = τ except that τR is replaced by addLeaf(τR, v).

35

Lemma 1 (from [6]). τ = LBBTn =⇒ addLeaf(τ, v) = LBBTn+1.

Moreover, observe that addLeaf preserves node indices and, thus, in particular also leaf indices.
This will turn out to be a crucial property for the ITK protocol, which addresses group members
by leaf indices.

Second, ITK occasionally truncates the tree by pruning the right-most leaf, using the following
operation.

Definition 3 (pruneRightmost). The algorithm pruneRightmost(τ) takes input a tree τ with right-
most node vmax and returns a new tree τ ′ in which vmax is removed and its parent vmax.parent
replaced by the parent’s former left child vmax.parent.lchild.

Lemma 2. τ = LBBTn =⇒ pruneRightmost(τ) = LBBTn−1.

Proof. This follows by realizing that pruneRightmost essentially undoes addLeaf.

Node Labels. Recall that each node v of the LBBT has several labels associated. They are outlined
in Table 4. To simplify the protocol’s description, we will furthermore make use of the helper
methods from Table 5. Observe that the direct path of a leaf consists of the (ordered list) of all
nodes on the path from the leaf to the root, without the leaf itself. The co path, on the other hand,
consists of the children of the direct path’s nodes that are not on the direct path themselves. That
is, for every node on the direct path its sibling node is on the co path. Note that the co path
contains the sibling leaves but not the root and, thus, is of equal length to the direct path. The
resolution of a node v is the minimal set of descendant non-blank nodes that covers the whole
sub-tree rooted at v, i.e., such that for every descendant u of v there exists node w in the resolution
such that w is non-blank and w an ancestor of u.

Additional State. The protocol’s state γ consists of the ratchet tree γ.τ and a number of additional
variables, listed in Table 6 (recall that the protocol implicitly knows the party’s identity id).

There are two aspects worth mentioning. First, the state contains three hashes: the tree hash
of the LBBT’s public part and two transcript hashes called confirmed transcript hash and interim
transcript hash. The latter additionally contains the authentication data of the last commit message,
which the confirmed transcript hash cannot contain yet to avoid cyclic dependencies. Second, if the
member issued an update proposal or commit message that did not get confirmed by the delivery
service yet, then the corresponding secret keys are stored in the γ.pendUp and γ.pendCom maps,
respectively.

The so-called group context is comprised of the group id, the epoch number, the tree hash, and
the confirmed transcript hash together. The corresponding helper method is defined in Table 7.

C.2 Setup Algorithms

Figure 14 depicts the algorithms gen-sk and gen-kp, which are used by the Authentication Service
and Key Service functionalities Fas and Fks, respectively.

v.pk The public key of a public-key encryption scheme.
v.sk The corresponding secret key.

v.parentHash A hash value binding the node to all of its ancestors.
v.unmergedLvs The set of leaf indices rooted below v, for which the corresponding party does not know

v.sk.
v.id If v.isleaf: the identity associated with that leaf.

v.leafId If v.isleaf: a unique identifier of the leaf (set by the protocol).
v.spk If v.isleaf: an associated verification key of a signature scheme.
v.sig If v.isleaf: A signature of the leaf’s labels under the signing key corresponding to v.spk.

Table 4: The node labels of the LBBTs.

36

τ.clone() Returns and (independent) copy of τ .
τ.public() Returns a copy of τ for which all private labels (v.sk) are set to ⊥.
τ.roster() Returns the identities of all parties in the tree.

τ.leaves[leafId] Returns the leaf with identifier leafId.
τ.leafof(id) Returns the leaf identifier of the v for which v.id = id.

τ.allotLeaf(newId) Checks that no leaf with id newId exists (otherwise fails). Then, finds the leaf v
with the lowest nodeIdx for which ¬v.inuse(), or adds a new leaf v using addLeaf.
Finally, assigns v.leafId← newId.

τ.directPath(leafId) Returns the direct path, excluding the leaf, as an ordered list from the leaf to root.
τ.coPath(leafId) Returns the co-path to τ.directPath(leafId) as an ordered list.

τ.lca(leafId1, leafId2) Returns the least common ancestor of the two leafs.
τ.blankPath(leafId) Calls v.blank() on all v ∈ τ.directPath(leafId).

τ.mergeLeaves(leafId) Sets v.unmergedLvs← ∅ for all v ∈ τ.directPath(leafId)
τ.unmergeLeaf(leafId) Sets v.unmergedLvs +← leafId for all v returned by τ.directPath(leafId)

v.kp() Returns (v.id, v.pk, v.spk, v.parentHash, v.sig) (undefined if ¬v.isleaf).
v.assignKp(kp) Sets (v.id, v.pk, v.spk, v.parentHash, v.sig) from kp (only allowed if v.isleaf).

v.inuse() Returns false iff all labels except parentHash are ⊥.
v.blank() Sets all labels except parentHash to ⊥.

v.resolution() Return

(v) ++ v.unmergedLvs if v.inuse()
v.lchild.resolution()

++ v.lchild.resolution()
else if ¬v.isleaf

() else.

v.resolvent(u) For a descendant u of v, returns the (unique) node in v.resolution() which is an
ancestor of u.

Table 5: Helper methods defined on the LBBT nodes.

γ.groupId An identifier of the group.
γ.epoch The current epoch number.

γ.τ The labeled left-balanced binary tree.
γ.treeHash A hash of (the public part) of τ .

γ.confTransHash The confirmed transcript hash.
γ.interimTransHash The interim transcript hash for the next epoch.

γ.ssk The current signing key.
γ.certSpks[∗] A mapping associating the set of validated signature verification keys to each party

id′.
γ.pendUp[∗] A mapping associating the secret keys for each pending update proposal issued by id.

γ.pendCom[∗] A mapping associating the new group state for each pending commit issued by id.
γ.appSecret The current epoch’s CGKA key.
γ.membKey The key used to MAC packages.
γ.initSecret The next epoch’s init secret.

Table 6: The protocol state.

γ.leafId() Returns γ.τ.leafof(id).leafId.
γ.groupCtxt() Returns (γ.groupId, γ.epoch, γ.treeHash, γ.confTransHash).

Table 7: Helper method on the protocol state.

37

The algorithm gen-sk generates a new key pair of a signature scheme. The algorithm gen-kp
samples a fresh key pair of a PKE scheme and outputs the secret-key and a so-called key package.
The key package is a signed tuple consisting the party’s identity id, the PKE public key pk, and
the verification key spk. As the same key package format is also used as the data structure stored
in leaves, it can optionally also contain a parent hash. We model this here as an optional input
which is set to ϵ if not provided — in the MLS protocol draft, the parent hash is an extension of
the key package.

Protocol ITK : Setup Algorithms

Algorithm gen-sk
(spk, ssk)← Sig.kg()
return(spk, ssk)

Algorithm gen-kp(id, spk, ssk, parentHash = ϵ)
(pk, sk)← PKE.kg()
sig← Sig.sign(ssk, (id, pk, spk, parentHash))
kp← (id, pk, spk, parentHash, sig)
return (kp, sk)

Fig. 14: The algorithms gen-sk and gen-kp, used by Fas and Fks, respectively.

C.3 Protocol Algorithms

The main (UC) protocol is depicted in Fig. 15. The helper functions are depicted in Figs. 16 to 18.
In contrast to the main protocol they handle state explicitly, clearly indicating what state they
rely on (as input) and what state they modify (as return value).

Group creation. The group can be created (by the designated group creator idcreator in our UC model)
using the input (Create, spk).This input sets up the state of a group with a single member, whose
initial signature public key spk to be used is specified as part of the input. The creator then fetches
the respective signing key ssk from the setup Fas using the helper method *fetch-ssk-if-nec
from Fig. 17.

Proposals. To create an update proposal, the protocol generates a fresh key package kp together
with the respective secret key sk. The key package kp is used as the proposal, whereas sk is stored
in γ.pendUp to be used once the proposal is applied. In case a new signing key ssk is passed, the
protocol furthermore fetches the respective secret key from Fas. To create an add proposal, the
protocol fetches a key package for the added party from Fks. The proposal then simply consists
of the key package, which includes the party’s identity. A remove proposal simply consists of the
removed party’s leaf index.

All proposals are then framed using *frameProp (see Fig. 18). Framing first signs the proposal
P together with the string ‘proposal′, the group context, the group id, the epoch index, and the
sender’s leaf index to bind it to the current cryptographic context. This in particular prevents
impersonation by another (malicious) group member. Since the signing key, however, is shared
across groups and its replacement is also not tied to the PCS guarantees of the group, everything
(including the signature) is additionally MACed using the membership key. In summary, to tamper
or inject messages an adversary must both know at least the sender’s signing key as well as the
epoch’s symmetric keys. The actual proposal package p then consists of everything except the
group context.

Commit. Upon an input (Commit, p⃗, spk, force-rekey), the protocol initializes the next epoch’s state
by copying the current one. It then proceeds to apply the proposals using *apply-props (see
Fig. 16). Alongside, it verifies the validity of each proposal, in particular their MACs and signatures.

If it is not an add-only commit (i.e, not all proposals are adds or force-rekey is true) the
protocol then re-keys its direct path using the helper method *rekey-path. The keys are derived
bottom to top using the HKDF.Expand function (cf. App. A.2) with the labels ‘node′ and ‘path′ for
key’s randomness and the next seed, respectively. The seeds are then encrypted to the resolution
of the respective child in the co-path.

38

Protocol ITK

Input (Create, spk)
req γ = ⊥ ∧ id = idcreator
γ.groupId, γ.initSecret←$ {0, 1}κ

γ.epoch← 0
γ.interimTransHash← ϵ
γ.certSpks[∗], γ.pendUp[∗], γ.pendCom[∗]← ⊥
γ.τ ← new LBBT1
try γ.ssk← *fetch-ssk-if-nec(γ, spk)
(kp, sk)←$ gen-kp(id, spk, ssk, ϵ)
γ.τ.leaves[0].leafId← Hash(kp)
γ.τ.leaves[0].assignKp(kp)
γ.τ.leaves[0].sk← sk

Input (Propose, up-spk)
req γ ̸= ⊥
try ssk← *fetch-ssk-if-nec(γ, spk)
(kp, sk)←$ gen-kp(id, spk, ssk, ϵ)
P ← (‘upd′, kp)
p← *frameProp(γ, P)
γ.pendUp[p]← (ssk, sk)
return p

Input (Propose, add-idt)
req γ ̸= ⊥ ∧ idt /∈ γ.τ.roster()
kpt ← query (get-pk, idt) to Fks
try γ ← *validate-kp(γ, kpt, idt, ϵ)
P ← (‘add′, kpt)
p← *frameProp(γ, P)
return p

Input (Propose, rem-idt)
req γ ̸= ⊥ ∧ idt ∈ γ.τ.roster()
leafIdt ← γ.τ.leafof(itt)
P ← (‘rem′, leafIdt)
p← *frameProp(γ, P)
return p

Input (Commit, p⃗, spk, force-rekey)
req γ ̸= ⊥
γ′ ← *init-epoch(γ)
try (γ′, upd, rem, add)← *apply-props(γ, γ′, p⃗)
req (∗, ‘rem′-id) /∈ rem ∧ (id, ∗) /∈ upd
if force-rekey ∨ p⃗ = () ∨ upd ̸= () ∨ rem ̸= () then

try (γ′, commitSec, updatePath, pathSecs)
← *rekey-path(γ′, id, spk)

else
commitSec← 0; updatePath← ϵ
pathSecs[∗]← ϵ

propIDs← ()
for p ∈ p⃗ do

propIDs ++← Hash(p)
C ← (propIDs, updatePath)
sig← *signCommit(γ, C)
γ′ ← *set-conf-trans-hash(γ, γ′, γ.leafId(), C, sig)
(γ′, confKey, joinerSec)

← *derive-keys(γ, γ′, commitSec)
confTag← *conf-tag(γ′, confKey)
if rem ̸= () then

membTag← MAC.tag(γ.membKey, C)
else membTag← ⊥
c← *frameCommit(γ, C, confTag, sig, membTag)
if add ̸= () then

(γ′, w)← *welcome-msg(γ′, add, joinerSec,
pathSecs, confTag)

else w ← ⊥
γ′ ← *set-interim-trans-hash(γ′, confTag)
γ.pendCom[c]← (γ′, p⃗, upd, rem, add)
return (c, w)

Input (Process, c, p⃗)
req γ ̸= ⊥
(senderId, C, confTag, sig, membTag)

← *unframeCommit(γ, c, sig)
idc ← γ.τ.leaves[senderId].ID
if senderId = γ.leafId() then

parse (γ′, p⃗′, upd, rem, add)← γ.pendCom[c]
req p⃗ = p⃗′

return (idc, upd ++ rem ++ add)
parse (propIDs, updatePath)← C
req ∀i ∈ [

∣∣p⃗∣∣] : Hash(p⃗[i]) = propIDs[i]
γ′ ← *init-epoch(γ)
try (γ′, upd, rem, add)← *apply-props(γ, γ′, p⃗)
req (∗, idc) /∈ rem ∧ (idc, ∗) /∈ upd
if (∗, ‘rem′-id) ∈ rem then

req MAC.vrf(γ.membKey, c)
γ ← ⊥

else
if updatePath ̸= ϵ then

(γ′, commitSec)
← *apply-rekey(γ′, senderId, updatePath)

else
req p⃗ ̸= () ∧ upd = () ∧ rem = ()
commitSec← 0

γ′ ← *set-conf-trans-hash(γ, γ′, senderId, C, sig)
(γ′, ∗)← *derive-keys(γ, confKey, γ′, commitSec)
req *vrf-conf-tag(γ′, confKey, confTag)
γ′ ← *set-interim-trans-hash(γ′, confTag)

return (idc, upd ++ rem ++ add)

Input (Join, w)
req γ = ⊥
parse (encGroupSecs, groupInfo)← w
γ.certSpks[∗], γ.pendUp[∗], γ.pendCom[∗]← ⊥
parse (groupInfoTBS, sig)← groupInfo
parse (γ.groupId, γ.epoch, γ.treeHash, γ.confTransHash,

γ.interimTransHash, γ.τ, confTag, senderId)
← groupInfoTBS

req Sig.vrf(γ.τ.leaves[senderId].spk, sig, groupInfoTBS)
try γ ← *vrf-tree-state(γ)
v ← γ.τ.leaves[γ.leafId()]
try γ.ssk← *fetch-ssk-if-nec(γ, v.spk)
kbs← query get-sks to Fks
joinerSec, pathSec← ⊥
for e ∈ encGroupSecs do

parse (hash, cipher)← e
for (kp, sk) ∈ kbs do

if hash = Hash(kp) then
v.sk← sk
req v.kp() = kp
parse (joinerSec, pathSec)← PKE.dec(sk, cipher)

req joinerSec ̸= ⊥
if pathSec ̸= ϵ then

v ← γ.τ.lca(γ.leafId(), senderId)
while v ̸= ⊥ do

nodeSec← HKDF.Expand(pathSec, ‘node′)
(sk, v.sk)← PKE.kg(nodeSec)
req v.sk = sk
pathSec← HKDF.Expand(pathSec, ‘path′)
v ← v.parent

(γ, confKey)← *derive-epoch-keys(γ, joinerSec)
req *vrf-conf-tag(γ, confKey, confTag)
return (γ.τ.roster(), γ.τ.leaves[senderId].id)

Input Key
req γ ̸= ⊥
(k, γ.appSecret)← (γ.appSecret,⊥)
return k

Fig. 15: The (UC) protocol ITK as run by party id. The group creator’s identity idcreator is encoded
a part of the instance’s session identifier.

39

Protocol ITK : Commit. Process, and Join Helpers

helper *init-epoch(γ)
γ′ ← γ.clone()
γ′.epoch← γ′.epoch + 1
γ′.pendUp[∗], γ′.pendCom[∗]← ⊥
return γ′

helper *rekey-path(γ′, id, spk)
directPath← γ′.τ.directPath(γ′.leafId())
coPath← γ′.τ.coPath(γ′.leafId())
updatePathNodes← ()
pathSecs[∗]← ⊥
leafSec←$ {0, 1}κ

leafNodeSec← HKDF.Expand(leafSec, ‘node′)
pathSec← HKDF.Expand(leafSec, ‘path′)
for (v, c) ∈ zip(directPath, coPath) do

pathSecs[v]← pathSec
nodeSec← HKDF.Expand(pathSec, ‘node′)
(v.pk, v.sk)← PKE.kg(nodeSec)
encPathSecs← ()
for t← c.resolution() do

encPathSecs ++← PKE.enc(t.pk, pathSec)
updatePathNodes ++← (v.pk, encPathSecs)
pathSec← HKDF.Expand(pathSec, ‘path′)

commitSec← pathSec
γ′.τ.mergeLeaves(γ′.leafId())
γ′ ← *set-parent-hash(γ′, γ′.leafId())
try ssk← *fetch-ssk-if-nec(γ′, spk)
v ← γ′.τ.leaves[γ′.leafId()]
r ← leafNodeSec
(kp, sk)← gen-kp(id, spk, ssk, v.parentHash; r)
req γ′.τ.leaves[Hash(kp)] = ⊥
v.leafId← Hash(kp)
v.assignKp(kp)
v.sk← sk
γ′ ← *set-tree-hash(γ′)
updatePath← (kp, updatePathNodes)
return (γ′, commitSec, updatePath, pathSecs)

helper *apply-rekey(γ′, senderId, updatePath)
parse (kp, updatePathNodes)← updatePath
directPath← γ′.τ.directPath(senderId)
coPath← γ′.τ.coPath(senderId)
lca← γ′.τ.lca(γ′.leafId(), senderId)
for (v, c, updatePathNode) ∈ zip(directPath,

coPath, updatePathNodes) do
parse (v.pk, encPathSecs)← updatePathNode
if v = lca then

r ← c.resolvent(γ′.τ.leaves[γ′.leafId()])
i← c.resolution().indexofr
pathSec← PKE.dec(r.sk, encPathSecs[i])

if pathSec ̸= ⊥ then
nodeSec← HKDF.Expand(pathSec, ‘node′)
(pk, v.sk)← PKE.kg(nodeSec)
req v.pk = pk
pathSec← HKDF.Expand(pathSec,)

commitSec← pathSec
γ′.τ.mergeLeaves(senderId)
γ′ ← *set-parent-hash(γ′, senderId)
v ← γ′.τ.leaves[senderId]
try γ′ ← *validate-kp(γ′, kp, v.id, v.parentHash)
req γ′.τ.leaves[Hash(kp)] = ⊥
v.leafId← Hash(kp)
v.assignKp(kp)
γ′ ← *set-tree-hash(γ′)
return (γ′, commitSec)

helper *truncate-tree(γ′)
v ← γ′.τ.leaves[

∣∣γ′.τ.leaves
∣∣− 1]

if ¬v.inuse()
∧ (¬v.parent.inuse() ∨ v.parent = γ′.τ.root) then

γ′.τ ← τ.pruneRightmost()
γ′ ← *truncate-tree(γ′)

return γ′

helper *apply-props(γ, γ′, p⃗)
upd, rem, add← ()
for p ∈ p⃗ do

try (senderId, P)← *unframeProp(γ, p)
ids ← γ.τ.leaves[senderId].id
parse (type, val)← P
if type = ‘upd′ then

req (ids, ∗) /∈ upd ∧ rem = () ∧ add = ()
try γ′ ← *validate-kp(γ′, val, ids, ϵ)
γ′.τ.leaves[senderId].assignKp(val)
γ′.τ.blankPath(senderId)
if senderId = γ.leafId() then

parse (ssk, sk)← γ.pendUp[p]
γ′.τ.leaves[senderId].sk← sk
γ′.ssk← ssk

spk← γ′.τ.leaves[senderId].spk
req γ′.τ.leaves[Hash(kp)] = ⊥
γ′.τ.leaves[senderId].leafId← Hash(kp)
upd ++← (ids, ‘upd′-spk)

else if type = ‘rem′ then
idt ← γ.τ.leaves[val].id
req val ̸= senderId ∧ γ′.τ.leaves[val] ̸= ⊥
req γ′.τ.leaves[val].inuse() ∧ (idt, ∗) /∈ upd ∧ add = ()
γ′.τ.leaves[val].blank()
γ′.τ.leaves[val].blankPath(val)
γ′ ← *truncate-tree(γ′)
rem ++← (ids, ‘rem′-idt)

else if type = ‘add′ then
parse (idt, ∗, spk, ∗, ∗)← val
req idt /∈ γ′.τ.roster()
try γ′ ← *validate-kp(γ′, val, idt, ϵ)
newId← Hash(val)
try γ′.τ.allotLeaf(newId)
γ′.τ.leaves[newId].assignKp(val)
γ′.τ.unmergeLeaf(newId)
add ++← (ids, ‘add′-idt-spk)

else return ⊥
return (γ′, upd, rem, add)

helper *welcome-msg(γ, γ′, add, joinerSec, pathSecs, confTag)
groupInfoTBS← (γ′.groupId, γ′.epoch, γ′.treeHash,

γ′.confTransHash, γ′.interimTransHash,
γ′.τ.public(), confTag, γ′.leafId())

sig← Sig.sign(γ′.ssk, groupInfoTBS)
groupInfo← (groupInfoTBS, sig)
encGroupSecs← ()
for (∗, ‘add′-idt-spkt) ∈ add do

leafIdt ← γ′.τ.leafof(idt)
vt ← γ′.τ.leaves[leafIdt]
lca← γ′.τ.lca(γ′.leafId(), leafIdt)
encGroupSec← PKE.enc(vt.pk, (joinerSec, pathSecs[lca]]))
encGroupSecs ++← (Hash(vt.kp), encGroupSec)

w ← (encGroupSecs, groupInfo)
return (γ′, w)

helper *vrf-tree-state(γ′)
req γ′.treeHash = *tree-hash(γ′.τ.root)
for v ∈ γ′.τ.nodes : v.inuse() ∧ ¬v.isleaf do

lchild← v.lchild
rchild← *origRChild(v.rchild)
phr← *parent-hash-cochild(v, v.rchild)
phl← *parent-hash-cochild(v, v.lchild)
req (lchild.inuse ∧ lchild.parentHash = phr)

∨ (rchild.inuse ∧ rchild.parentHash = phl)
mem← ∅
for v ∈ γ′.τ.nodes : v.inuse() ∧ v.isleaf do

req v.id /∈ mem
mem +← v.id
try γ′ ← *validate-kp(γ′, v.kp(), v.id, v.parentHash)

return γ′

helper *origRChild(v)
if v.inuse ∨ v.isleaf then return v
else return *origRChild(v.lchild)

Fig. 16: The helper methods related to creating and processing the commit and welcome messages.

40

Protocol ITK : Confirmation-Tag

helper *conf-tag(γ′, confKey)
return MAC.tag(confKey, γ′.confTransHash)

helper *vrf-conf-tag(γ′, confKey, confTag)
return MAC.vrf(confKey, confTag, γ′.confTransHash)

Protocol ITK : Tree-Hash

helper *set-parent-hash(γ′, leafId)
path← γ′.τ.directPath(leafId)
path← path.reverse()
path ++← γ′.τ.leaves[leafId]
for v ∈ path do

if v.isroot then
v.parentHash← ϵ

else
v.parentHash←

*parent-hash-cochild(v.parent, v.sibling)
return γ′

helper *parent-hash-cochild(v, u)
origChildResolution← u.resolution() \

u.parent.unmergedLvs
return Hash(v.pk, v.parentHash, origChildResolution)

helper *set-tree-hash(γ′)
γ′.treeHash← *tree-hash(γ′.τ.root)
return γ′

helper *tree-hash(v)
if v.isleaf then

return Hash(v.nodeIdx, v.kp())
else

leftHash← *tree-hash(v.lchild)
rightHash← *tree-hash(v.rchild)
return Hash(v.nodeIdx, v.pk, v.unmergedLvs,

v.parentHash, leftHash, rightHash)

Protocol ITK : Transcript-Hash

helper *set-conf-trans-hash(γ, γ′, senderId, C, sig)
commitContent← (γ.groupId, γ.epoch, senderId,

‘commit′, C, sig)
γ′.confTransHash← Hash(γ.interimTransHash,

commitContent)
return γ′

helper *set-interim-trans-hash(γ′, confTag)
γ′.interimTransHash← Hash(γ′.confTransHash, confTag)
return γ′

Protocol ITK : Key-Schedule

helper *derive-keys(γ, γ′, commitSec)
s← HKDF.Extract(γ.initSecret, commitSec)
joinerSec← HKDF.Expand(s, γ′.groupCtxt())
(γ′, confKey)← *derive-epoch-keys(γ′, joinerSec)
return (γ′, confKey, joinerSec)

helper *derive-epoch-keys(γ′, joinerSec)
s← HKDF.Expand(γ.joinerSec, ‘member′)
memberSec← HKDF.Extract(s, 0)
e← HKDF.Expand(memberSec, ‘epoch′)
epSec← HKDF.Extract(e, γ′.groupCtxt())
confKey← HKDF.Expand(epSec, ‘confirm′)
γ′.appSecret← HKDF.Expand(epSec, ‘app′)
γ′.membKey← HKDF.Expand(epSec, ‘membership′)
γ′.initSecret← HKDF.Expand(epSec, ‘init′)
return (γ′, confKey)

Protocol ITK : Setup Interaction

helper *fetch-ssk-if-nec(γ, spk)
if γ.τ.leaves[γ.leafId()].spk ̸= spk then

ssk← query (get-ssk, spk) to Fas
else

ssk← γ.ssk
return ssk

helper *validate-kp(γ, kp, id, parentHash)
parse (id′, pk, spk, parentHash′, sig)← kp
req id = id′ ∧ parentHash = parentHash′

if spk /∈ γ.certSpks[id] then
succ← query (verify-cert, id′, spk) to Fas
req succ
γ.certSpks[id] +← spk

req Sig.vrf(spk, sig, (id, pk, spk, parentHash))
return γ

Fig. 17: Various helper methods for the protocol ITK.

41

Protocol ITK : Message-Framing

helper *signCommit(γ, C)
tbs← (γ.groupCtxt(), γ.groupId, γ.epoch, γ.leafId(),

‘commit′, C)
sig← Sig.sign(γ.ssk, tbs)
return sig

helper *frameCommit(γ, C, confTag, sig, membTag)
return (γ.groupId, γ.epoch, γ.leafId(), ‘commit′, C,

confTag, sig, membTag)

helper *unframeCommit(γ, c)
parse (groupId, epoch, senderId, contentType, C,

confTag, sig, membTag)← c
req contentType = ‘commit′ ∧ groupId = γ.groupId
reqepoch = γ.epoch
tbs← (γ.groupCtxt(), groupId, epoch, senderId,

‘commit′, C)
req γ.τ.leaves[senderId] ̸= ⊥

∧ γ.τ.leaves[senderId].inuse()
∧ Sig.vrf(γ.τ.leaves[senderId].spk, sig, tbs)

return (senderId, C, confTag, sig, membTag)

helper *frameProp(γ, P)
tbs← (γ.groupCtxt(), γ.groupId, γ.epoch, γ.leafId(),

‘proposal′, P)
sig← Sig.sign(γ.ssk, tbs)
tbm← (tbs, sig)
membTag← MAC.tag(γ.membKey, tbm)
return (γ.groupId, , γ.epoch, γ.leafId(), ‘proposal′, P,

sig, membTag)

helper *unframeProp(γ, p)
parse (groupId, epoch, senderId, contentType, P, sig,

membTag)← p
req contentType = ‘proposal′ ∧ groupId = γ.groupId

∧ epoch = γ.epoch
tbs← (γ.groupCtxt(), groupId, epoch, senderId,

‘proposal′, P)
tbm← (tbs, sig)
req γ.τ.leaves[senderId] ̸= ⊥

∧ γ.τ.leaves[senderId].inuse()
∧ Sig.vrf(γ.τ.leaves[senderId].spk, sig, tbs)
∧ MAC.vrf(γ.membKey, membTag, tbm)

return (senderId, P)

Fig. 18: The helper methods related to message framing.

To complete the implicit update, the protocol furthermore generates a new leaf key package.
This leaf key package gets bound to its ancestor nodes (i.e., the committers freshly sampled direct
path) by including a parent hash which is computed top to bottom by each node storing a hash
of its parent node (see *set-parent-hash from Fig. 17). This process is called tree signing. It is
supposed to guarantee newly joining parties that each internal node has been sampled by one of
the parties contained in its subtree. As a consequence, once all malicious parties have been removed
from (an arbitrary) group, all keys have been generated by the remaining honest parties.

Next, ITK prepares a preliminary commit message C including hashes of the applied proposals
and the updated direct path (including the leaf). This commit message is then signed alongside
the cryptographic context (using *signCommit) analogous to the framing of proposals. Afterwards,
the protocol computes the so-called confirmation tag (see *conf-tag) — a MAC on the confirmed
transcript hash updated by C and the signature (see *set-conf-trans-hash) under the new
epoch’s confKey. The confirmation tag also serves the purpose of a MAC included in framing of
proposals.

Observe that removed members cannot verify confTag, because they do not know the new
epoch’s confKey. Therefore, if some members are removed, ITK additionally MAC’s the commit
message under the current epoch’s membership key. The MAC is only verified by the removed
members and serves the purpose of the MAC insluded in framing of proposals.

If new members were added, ITK generates a welcome message for them using *welcome-msg.
The welcome message contains the public group state — the group identifier, the current epoch,
the public part of the ratchet tree, and the confirmed and interim transcript hashes — as well as
for each party an encryption of the joiner secret (to derive the epoch secrets) and seed of the least
common ancestor of the party and the committer.

Finally, ITK computes the next epoch’s interim transcript hash by hashing the confirmed
transcript hash and the confirmation tag. Moreover, the next epoch’s state is stored in γ.pendCom.

Process. Consider an input (Process, c, p⃗). If the party created this commit message c (and the
proposals match), then the protocol can simply retrieve the new epoch’s state from γ.pendCom.
Otherwise, it proceeds as follows.

First, the protocol “unframes” the message, i.e., it verifies the signature and checks that it
belongs to the correct group and epoch. Next, it verifies that p⃗ match the proposals mentioned in
c and, if so, applies them using *apply-props.

Afterwards, ITK applies the re-key using *apply-rekey (see Fig. 16). That is, it updates all
the public keys and decrpyts the least common ancestor’s seed to derive the secret keys shared
between the direct paths of the committer and the processing party. Moreover, this updates the

42

A ratchet tree with four members.

Alice Bob Charlie Dave

After Alice committed the removal of Dave.

Alice Bob Charlie

Fig. 19: An example of the tree-signing mechanism. In the left configuration, the keys in blue,
red, green, and purple nodes have been sampled and certified by Alice, Bob, Charlie, and Dave,
respectively. When Alice now commits the removal of Dave, first Dave’s direct path gets blanked
(including the root). Then Alice re-keys her direct path. Her leaf now contains a signature of the
hash of the following things about the internal node shared with Bob: (1) the internal node’s
public-key, the list of public-keys to whom the corresponding secret key has been encrypted (in
this case Bob’s public key), and (3) the internal node’s respective parent hash (of the root) binding
the leaf to the entire direct path.
At this point, the parent hash of Charlie’s leaf no longer matches the now blanked parent node,
for which now neither child node has a valid parent hash. Note however that ITK always blanks a
party’s entire direct path. Hence, for each non-blank node, the binding child node is still in the tree.
Thus, each non-blank internal node and the set of public key knowing its corresponding secret key
is always bound by its child sampled by the same party, ultimately certified by the corresponding
leaf node.

parent hash on the re-keyed path and in particular verifies that the one signed as part as the new
leaf’s key package matches.

The protocol then derives the new epoch’s key schedule by first computing the confirmed
transcript hash and then deriving the keys. Based on the new schedule, the confirmation tag is
then verified. Finally, it completes the new epoch’s state with the interim transcript hash.

Join. Upon input (Join, w), ITK sets up a new state and copies the public group information from
the welcome message. This state is then verified by first verifying the sender’s signature on the
group information as well as verifying the public part of the ratchet tree.

Crucially, this entails verifying the tree-signing mechanism. Intuitively, we would like to maintain
the following invariant:

Invariant: For each non-blank internal node v, either of its children is non-blank and has
a parent hash (with co-path) stored that matches the *parent-hash-cochild(v, u), where u
denotes the other child.

See Fig. 19 for an explanation of the tree-signing mechanism and the invariant in particular.
Unfortunately, the above invariant is too idealistic for the following reason. If adding a member

results in adding a leaf to v’s subtree, v’s right child u may be replaced by a fresh blank node u′ —
in which case u, storing v’s parent hash, becomes the left child of u′ — without re-keying v. (Recall
the definition of left-balanced binary trees.) To account for this possibility, *vrf-tree-state first
(see Fig. 16) first searches for the “real” right child of v using the helper *origRChild.

For each leaf, *vrf-tree-state furthermore verifies the signature on the key package, which
includes the parent hash. Overall, this mechanism ensures that each internal node has been sampled
by one of the parties in the respective sub-tree (or the party’s signing key has been compromised).

ITK then proceeds by decrypting the private information — the joiner secret and the seed
of the least common ancestor — from the welcome message. To this end, it fetches all its key-
package/secret-key pairs (kp, sk) from Fks and determines the one that has been used for the
welcome message based on the hash of kp.

Analogous to Process it then derives the secret keys on the common path segment to the root
and finally the next epoch’s key schedule. It moreover also verifies the confirmation tag.

Key. The input Key outputs the current epoch’s application secret and then deletes it from the
local state.

43

C.4 Simplifications and Deviations

While ITK closely follows the IETF MLS protocol draft, there are a number of small deviations
and omissions.

Omitted modes and optional features. The ITK protocol omits the following modes and
optional features of the MLS protocol draft.

Protocol versions and ciphersuites. In the MLS draft, each group has a protocol version and
a ciphersuite associated. Our analysis, on the other hand, simply assumes a single protocol
version with a fixed set of underlying primitives. As they are specified upon group initialization
by the group creator (rather than negotiated) and remain unchanged over the group’s lifetime,
we do not, a priori, see any major potential for downgrade and other attacks. Additionally,
those parameters are incorporated into the key schedule, ensuring agreement. However, we
leave a more complete analysis for future work.

Meta-data protection. The MLS draft supports two message framing formats: encrypted MLSCi-
phertexts and unencrypted MLSPlaintexts. While using the former is mandatory for protecting
application messages’ confidentiality, it is only recommended for handshake message to thwart
basic meta-data analysis. Since we only consider handshake messages (not application messages)
and do not take meta-data protection into account, we fix all frameing to be MLSPlaintexts. In
particular, it is immediate that additionally encrypting the packets (as done by MLSCiphertext
framing) does not undermine any of the security properties analyzed for MLSPlaintexts in this
work.

External proposals. The MLS protocol draft allows for non-members to propose adding themselves
to an existing group, and also allows for pre-provisioned parties to send (arbitrary) proposals,
e.g., for a server to remove stale members. In both cases, it is up to the group policy to decide
on the validity of such external proposals. We did not take either mechanism into consideration.

Extensions. Similar to the TLS protocol, the MLS protocol draft is extensible in a number of
places. We did not analyze any extensions.

Preshared keys. Groups which have an out-of-band mechanism to agree upon pre-shared keys can
incorporate these into the MLS key schedule for additional security. We did not analyze this
mechanism.

Exporters. The MLS key schedule provides a mechanism to export additional secrets to higher-level
applications. As they are derived from the key schedule similarly to the application secret (and
are otherwise unused by the protocol), their security should follow analogously.

Minor simplifications. Furthermore, our model of the protocol deviates from the draft in a
number of minor aspects.

No membership MAC on commits that do not include removes. ITK uses an explicit MAC to ensure
the authenticity of proposals. The MLS protocol also includes the MAC for commits (when
using MLSPlaintext) [14]. For the security properties considered in this work this inclusion
is redundant in case the commit does not include remove proposals, as the confTag already
provides the same (and more) authenticity guarantees. But in practical terms, the MAC can
provide somewhat better denial-of-service mitigation than relying only on confTag. In particular,
verifying the MAC may allow quickly rejecting malformed commit packets without needing
to first derive the next epoch’s key schedule (a comparatively costly computation) needed to
verify the confTag.

Simplified primitives. While the MLS protocol draft imposes a particular use of HKDF for key
derivation (ExpandWithLabel), our model simply uses HKDF directly, not mixing in the same
amount of context as in the spec. We note that this modification can only weaken security. So
our results carry over to the more inclusive version in the RFC. For our analysis we treated
HKDF’s expand and extract functions as a random oracle. Moreover, in lieu of explicitly
imposing the KEM-DEM paradigm (with the HPKECiphertext structure in commit messages)
we simply model this as public-key encryption. Thus, formally speaking, it remains to show
that HPKE, in the mode used in by MLS, implements a PKE scheme as modeled in our work

44

(from reasonable assumptions). (Given the simplicity of that mode of HPKE we believe this to
be quite straight forward.)

Expiration of key packages and certificates. Key packages are mandated to have explicit lifetimes,
which we do not account for. Neither does our model of the Authentication Service account for
the expiration of certificates.

Simplified welcome message format. The protocol in the MLS draft always encrypts the (public)
group context in welcome messages, analogously to MLSCiphertexts and not offering a mode
analogous to MLSPlaintexts. As we do not take meta-data protection into account, our model
forgoes this additional complexity. In particular, all of our results carry trivially cary over to
the MLS variant that performs the extra encryption. Additionally, we always put the public
part of the ratchet tree as part of the welcome message, not taking into account alternative
means of delivery (e.g. via the DS). But here too, our model implies security for such delivery
methods. Indeed, we use an insecure network (modeled by the environment) which means our
model provides no guarantees on what is ultimately delivered to new joining members. Instead,
it is up to the protocol to extract an guarantees from whatever packet is delivered.

More restrictive proposal lists. Our analysis assumes that the proposal vectors inside a commit
message follow a strict ordering of first update proposals, then remove proposals, and finally
add proposals. The current MLS draft (no longer) imposes such a restriction on the vector, but
requires them to be applied respecting this order, i.e., not necessarily in the order specified.
(We believe our techniques carry over essentially unchanged to this more permissive version of
MLS.)

D Proof of Theorem 1: Security of ITK

Theorem 1. Assuming that PKE is IND-CCA secure, and that Sig is EUF-CMA secure, the ITK
protocol securely realizes (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model, where Fcgka uses

the predicates safe and inj-allowed from Fig. 6 and calls to HKDF.Expand, HKDF.Extract and
MAC functions are replaced by calls to the global random oracle Gro.

The proof is structured as follows. First, in Apps. D.2 to D.4 we prove that ITK∗ which behaves
like ITK but uses the weak tree-signing scheme from Draft 9 (called ITKAtk-3 in Sec. 6) realizes
Fcgka with a worse safety predicate safe∗. Then, in App. D.5 we extend the proof to show full
security of ITK. The reason for this split is historical — we first attempted to prove full security
of ITK∗ but the proof failed and we discovered the attack on weak tree signing. At the time of
writing it was still not clear if our fix would be incorporated.

Formally, safe∗ differs from the original predicate in that condition b) of *state-directly-leaks
(cf. Fig. 6) is replaced by

b) // c is in a detached tree and id’s spk appears in some exposed node:
(∃ca : *ancestor(ca, c) ∧ Node[ca].par = ⊥ ∧ (id, spk) ∈ Node[c].mem

∧ (spk ∈ Exposed ∨ ∃ce : (∗, spke) ∈ Node[ce].mem ∧ spke ∈ Exposed)

The proof that ITK∗ realizes the weakened Fcgka proceeds in a sequence of hybrids, transitioning
from the real world to the ideal world. The simulator is introduced gradually together with the
hybrids. Each hybrid introduces a different security property provided by ITK∗: the first hybrid
is the real world, the second hybrid introduces consistency, the third – confidentiality and the
fourth – authenticity. The fourth hybrid is the ideal world. Intuitively, if two consecutive hybrids
are indistinguishable then ITK∗ provides the introduced security property. Formally, we have

Hybrid 1. This is the real world. We make a syntactic change: the simulator S1 interacts with a
dummy functionality Fdummy, which routs all inputs and outputs through S1, who executes
ITK∗.

Hybrid 2. This hybrid introduces consistency. Fdummy is replaced by F iw
as , F iw

ks and Fcgka, except
safe∗(·) = false and inj-allowed(·, ·) = true. That is, all application secrets are set by the
simulator and injections are always allowed. The simulator S2 still sets all messages and keys
according to the protocol.

45

Hybrid 3. This hybrid introduces confidentiality. Fcgka uses the original safe∗ predicate. The
simulator S3 sets only those application secrets for which safe∗ is false.

Hybrid 4. This hybrid introduces authenticity. Fcgka uses the original inj-allowed. The simulator
remains the same. This is the ideal world.

In Apps. D.2 to D.4 we prove that each pair of consecutive hybrids is indistinguishable.

D.1 ITK∗ Guarantees Consistency

Claim. Hybrids 1 and 2 are indistinguishable, that is ITK∗ guarantees consistency.

To prove the claim, we describe in detail the simulator S2, and argue that it does not violate
any statements executed by Fcgka within assert, and that the outputs of ITK and Fcgka are the
same. Observe that S2 knows the whole history graph, including the application secrets (since
safe∗ is false in Hybrid 2). Moreover, each history graph node has a unique confTransHash, because
the transcript hash includes all messages c leading to it, i.e., all parents (except the last confTag,
but this is uniquely determined by the last c).

Proposals. When Fcgka sends (Propose, id, add) to S2, the simulator executes the ITK protocol
to obtain the packet p. Recall that for proposals adding idt, ITK fetches the key package kpt

for idt from Fks, and that Fks asks Z to provide kpt. S2 executes the code of both ITK and
Fks, which means it uses kpt provided by Z.
If p = ⊥, S2 sends to Fcgka ack = false. Else, it sends (p, spkt, true), where spkt is taken
from kpt (by inspection, the protocol guarantees that kpt is well formed and contains spkt).
Assert statements: The only assert statement executed on proposals is a part of *consistent-
prop, which enforces that proposals computed by id in node c are different than those
computed in node c′ (even if id can never get to these nodes). This is guaranteed by including in
proposals membTag — a MAC, modeled as a random oracle,24 over groupCtxt, which includes
confTransHash (c.f. framing in Fig. 18).25

Commits. S2 computes the packets c and w according to ITK and sets ack = false if c = ⊥. If
ack = true, it first checks if c corresponds to a detached root — if Node[c] = ⊥ and there
exists a w such that Wel[w] = rootrt and confTransHash in w (included as a part of groupInfo)
matches that in c (the latter can be computed), sends rt to Fcgka (alongside c and w).
Then, Fcgka runs *fill-props. For each proposal p without a node, S2 sets orig and act
according p (the basic checks executed by ITK guarantee that p is well formed).
Assert statements: *consistent-comm succeeds for the same reason as *consistent-prop.
All other asserted statements trivially hold by inspection and the fact that all messages include
a MAC over the transcript hash (note that in the invariant, inj-allowed is false in these
hybrids).

Process. S2 executes the protocol to check if the receiver would accept the inputs and sends
ack = false if this is not the case. Else, it checks if c corresponds to a detached root exactly as
in Commits above. If c creates a new node (i.e., there was no detached root and Node[c] = ⊥,
S2 retrieves orig′ and spk′ from c (the latter can be found in the committer’s key package in
the updatePath.
The fact that all statements in assert are true follows easily by inspection. To see why the
outputs of ITK and Fcgka are the same, observe first that since a commit contains hashes of all
proposals, with overwhelming probability, for each c there is only one p⃗ such that (Process, c, p⃗).
Second, the output of process is determined by p⃗ and the member set in c’s parent (moreover,
this output is computed the same way by ITK and *output-proc in Fcgka). By the standard
hybrid argument, this implies that outputs are the same.

24 The claim is not implied by any standard security notion for MAC’s. What we would need is that even
given the secret key, it is hard to find two messages with the same tags. While possible to formalize,
for simplicity we instead model the MAC as the RO (this is anyway necessary for the MAC used to
compute the confirmation tag).

25 Note that the epoch counter is not unique — it is in fact the same for all commit nodes with the same
depth.

46

Join. When a party id joins using a welcome message w, S2 first executes id’s protocol to determine
if joining succeeds and sets the ack flag accordingly. If ack = false, or if Wel[w] ̸= ⊥, then S2
simply sends (ack,⊥,⊥,⊥) to Fcgka. Note that in the latter case, Fcgka already knows the
semantics of w and ignores any values received from the simulator other than ack. Else, S2
sends to Fcgka values c′, orig′ and mem′ that interpret the (injected) w. It computes them as
follows.
First, S2 parses w = (encGroupSecs, groupInfo) (if w was not of this format, joining would have
failed) and determines orig′ and mem′ based on groupInfo. Then, S2 chooses c′ as the history
graph node for which confTransHash matches that in groupInfo, or sets c′ = ⊥ if no such node
exists (if c′ = ⊥, Fcgka creates a new detached root).
It is left to argue that the joiner id ends up in a state that is consistent with the state of any
other party id′ transitioning into c′ via process or join. For this, recall that both id and id′

verify the confirmation tag, for which they derive the key from the joiner secret combined
with the group context. This guarantees (assuming collision resistance) that they agree on the
context, which in particular includes the tree hash and the confirmed transcript hash. The
tree hash binds the whole ratchet tree, including its structure, spk’s of all members and all
public keys. In particular, this implies agreement on the member set mem′. Agreement on
the transcript hash implies agreement on the history, including the last committer orig′. The
agreement is maintained in descendants of c′, since parties agree on the ratchet tree in c′. ⊓⊔

D.2 A New Security Notion for PKE

Our proofs that ITK∗ provides confidentiality and authenticity rely on security of the PKE scheme
(for authenticity, PKE protects the MAC keys). In the setting with adaptive corruptions, reducing
ITK∗ security to the standard IND-CCA security is difficult for the following reason. Recall that
ITK∗ generates key pairs (pki, ski) and encrypts ski under different pkj (without creating cycles). Say
a secret message m is encrypted under pk1. To argue that IND-CCA security implies confidentiality
of m, we would have to first introduce a sequence of hybrids that replace encryptions of secret keys
that allow to compute ski via a chain of decryptions by encryptions of some unrelated messages. It
is important to replace only those, since replacing others allows to distinguish the experiments by
corrupting secret keys. However, with adaptive adversaries we do not know if an encryption should
be replaced at the moment it is created. Guessing this for each encryption incurs exponential loss.

To deal with this, we follow the strategy of [10] and define a stronger security notion for PKE,
called (Modified) Generalized Selective Decryption (GSD). In contrast to [10], our version considers
active attackers and takes into account the full key schedule. We then prove that IND-CCA security
implies GSD security in the (non-programmable but observable) ROM. The proof is an adaptation
of the proof in [10] showing that IND-CPA implies their weaker version of GSD.

The modified GSD game. GSD security is formalized by the game defined in Fig. 20. It
is parameterized by a hash function Hash and a number N . In essence, the game maintains a
(hyper)graph with N vertices, where each vertex u stores a seed su (initially ⊥), from which a
key pair can be derived by running key generation with randomness set to the hash of su. Edges
correspond to dependencies between seeds: one seed being a hash of another or being encrypted
under a key derived from another. In general, if a vertex is a source of an edge, then the public key
is known to the adversary (note that an outputted ciphertext may already reveal it). Otherwise,
the public key is secret and the seed should be indistinguishable from random. (Note that a secure
seed can be used as a symmetric key.) To put the definition in the context of a ITK execution, the
GSD hypergraph created by a ITK commit is given in Fig. 21.

We now describe the GSD oracles in more detail.

– Enc(u, v) creates an edge from u to v with label e and outputs an encryption of the seed sv

under the public key derived from su. This query also, if necessary, initializes su and sv to
random values. (ITK context: encrypting path secrets during rekey.)

– Hash(u, v, lbl) creates an edge from u to v with label lbl and computes v as Hash(su, lbl). Since
the hash is deterministic, we require that sv is not initialized yet and no other seed has been
computed from su using lbl. (ITK context: hash chain of path secrets.)

47

Game GSDA

The game is parameterized by the number of vertices N , the security parameter κ and a hash function Hash.

(V, E)← ([N],∅) // GSD graph
Corr, Ctxt← ∅ // corrupted vertices, ciphertexts
su, pku, sku ← ⊥ for each u ∈ [N] // keys for vertex u
u← ⊥ // challenge vertex
b←$ {0, 1}
s′ ←$ {0, 1}κ

b′ ← AEnc,Dec,Corr,Chal,Hash,Join-Hash
PKE

if (V, E) acyclic ∧ u is a sink ∧ ¬gsd-exp(u) then
return b = b′

else return false

Oracle Chal(u)

req u = ⊥
u← u
if b = 0 then return su

else return s′

Oracle Hash(u, v, lbl)

req sv = ⊥ ∧ (u, ∗, h-lbl) /∈ E // hash is deterministic
gen-key-if-nec(u)
sv ← Hash(su, lbl)
gen-key-if-nec(v)
E +← (u, v, h-lbl)
return pku

Oracle Corr(u)

req su ̸= ⊥
Corr +← u
return su

Oracle Join-Hash(u, u′, v, lbl)

req sv = ⊥ ∧ ((u, u′, lbl), ∗, h-lbl) /∈ E
gen-key-if-nec(u); gen-key-if-nec(u′)
sv ← Hash(su, su′ , lbl)
gen-key-if-nec(v)
E +← ((u, u′), v, h-lbl)
return (pku, pku′)

Oracle Enc(u, v)

gen-key-if-nec(u); gen-key-if-nec(v)
E +← (u, v, e)
c← PKE.enc(pku, sv)
Ctxt +← (u, c)
return (pku, c)

Oracle Dec(u, c)

req su ̸= ⊥ ∧ u not a sink
req (u, c) /∈ Ctxt
return PKE.dec(sku, c)

gen-key-if-nec(u)
if su = ⊥ then su ←$ {0, 1}κ

(pku, sku)← PKE.kg(Hash(su, node))
// in ITK, the label “node” is used for key generation

gsd-exp(u)
return u ∈ Corr
∨ ∃(v, u, ∗) ∈ E : gsd-exp(v)
∨ ∃((v, v′), u, ∗) ∈ E : gsd-exp(v) ∧ gsd-exp(v′)

Fig. 20: The GSD game, modified to explain ITK executions.

– Join-Hash(u, u′, v, lbl) is similar to Hash, but instead of su, it uses the pair (su, su′). (ITK
context: joiner secret is the hash of init and commit secrets.)

– Dec and Chal oracles are analogous to those in the IND-CCA game, except the restrictions
which nodes can be queried. The Corr oracle outputs the seed and records it in the Corr set.

The crucial aspect of the game is the gsd-exp(u) function, which determines if the seed in a
vertex u is exposed due to corruptions, or its secrecy is guaranteed. That is, gsd-exp for vertices is
analogous to ¬safe∗ for application secrets. Specifically, u is exposed if it is corrupted, or if there
is an edge to u that can be traversed. The latter is true iff all sources of the edge are exposed.
(Notice the similarity to how our safe∗ is defined.)

Definition 4. Let AdvGSD
PKE,A := 2 Pr[GSDPKE,A = true] − 1 denote the advantage of A against

the game defined in Fig. 20. A scheme PKE is GSD secure, if for all PPT adversaries A, AdvGSD
PKE,A

is negligible in κ.

IND-CCA security implies GSD security. We next show the following theorem.

Theorem 6 (adapted from [10]). If PKE is IND-CCA secure and Hash is modeled as a (ob-
servable, non-programmable) random oracle, then PKE is GSD secure.

Proof. The proof is adapted from [10]. There, the authors first show that IND-CPA implies in the
ROM the standard GSD security, GSD−, i.e., the notion formalized by the game from Fig. 20
without the Hash, Join-Hash and Dec oracles. This proof solves the main technical challenges,
and we refer the reader to [10] for the details. Then, [10] includes a proof sketch showing that the
reduction for GSD− can be easily modified to account for certain additional hash queries, namely,
the ones that in our game correspond to Hash queries with a fixed label lbl = 1. (While the proof
sketch of [10] involves programming of the RO, we believe this is not necessary.) We show that
additional Hash, Join-Hash and Dec queries do not affect (the modification of) the reduction.

48

Decryption. While [10] considers IND-CPA security, we note that their reduction generates the
seeds in all GSD vertices except one “challenge” vertex itself. Hence, answers to decrypt queries
for non-challenge vertices can simply be computed, and for the challenge vertex — sent to the
IND-CCA oracle (requiring (u, c) /∈ Ctxt makes sure that the IND-CCA challenge is valid).

Hash and Join-Hash. Here we need a bit more details of the reduction from [10]. Assume Agsd is a
GSD adversary. The authors define an event E on the GSD execution with Agsd as follows (here
adapted to our setting)

Event E. At some point, Agsd queries RO on a value that contains a seed su for a non-challenge
vertex u for which gsd-exp is false (at the time of the RO query).

Then, [10] presents two reductions: the reduction (1) constructs an IND-CCA adversary Acca, given
a GSD adversary A¬E

gsd that triggers E with small probability, and the reduction (2) constructs a
GSD adversary A¬E

gsd that triggers E with small probability, given a GSD adversary AE
gsd which

triggers E with large probability.

Reduction (1). We first argue that in the reduction (1), Acca can easily deal with the additional
hash edges in the GSD experiment it simulates for A¬E

gsd . In essence, Acca defined in [10] guesses an
edge (v, u, e), where u is the GSD challenge issued by A¬E

gsd (for now, just assume the edge is given;
see [10] for details). Then, Acca samples seeds for all vertices except u itself, replaces the public
key in v by its challenge key pk (unrelated to v’s seed), and embeds the IND-CCA challenge in the
encryption query creating the (v, u, e) edge. (The IND-CCA challenge is queried on two random
seeds, and A¬E

gsd ’s challenge is answered with the first one.)
Clearly, any hash query that does not involve u or v can be simulated by evaluating the RO.

Any query involving v is simulated by evaluating the RO on v’s seed. Since u is a challenge and
there is a v-u edge, gsd-exp is false for v. Hence, the fact that A¬E

gsd does not trigger E implies
that it does not query RO on v’s seed and hence cannot verify that it is inconsistent with the
public key. Finally, if u is created via a hash query (note that as a challenge, u is a sink), Acca can
simply ignore this edge (i.e., choose u at random instead). Again, the inconsistency of this edge
cannot be verified without triggering E. (Note that if u is created via join-hash of u, u′, then for
gsd-exp to be false in u, it must be false for at least one of u, u′. Since verifying the hash requires
querying the RO on both u and u′, it triggers E.)

Reduction(2). Second, consider the reduction (2). Given a GSD adversary AE
gsd that triggers E,

[10] defines A¬E
gsd that does not trigger E roughly as follows. A¬E

gsd simulates the experiment for
AE

gsd using its oracles, and halts as soon as E turns true (it can realize that E is true by checking
each RO query of AE

gsd against all public keys). Moreover, it guesses the vertex v corresponding to
the RO query that makes E true. The idea is to challenge v as soon as its seed is defined (since
now v must be a sink in A¬E

gsd ’s game, outgoing edges from v and its public key are simulated using
a special vertex N + 1), obtain a seed s and search for s in AE

gsd’s RO queries. If s is the real
seed (and the guess for v is correct), then it is queried to the RO and A¬E

gsd outputs 0. Else, if s

is random, then it is independent of AE
gsd’s view, so with high probability it is not queried and,

accordingly, A¬E
gsd outputs 1 (when E is triggered for a different node, or AE

gsd halts).
We only need to argue that the additional (join-)hash queries do not affect the simulation

before E is triggered, as afterwards the reduction halts. The reason this holds is analogous to the
reasoning for the reduction (1) — the only inconsistency is in the vertex v, where edges (u, v, ∗)
are generated using v’s actual seed, and edges (v, u, ∗) are generated using the special vertex N + 1.
However, this inconsistency cannot be verified without querying the RO on the seed from v or
N + 1. As for both of these vertices gsd-exp is false (for v by assumption that the guess was
correct, and for N + 1 since it is a source and cannot be corrupted, as it does not appear in AE

gsd’s
game), such query would trigger E. ⊓⊔

D.3 ITK∗ Guarantees Confidentiality

Claim. If PKE is GSD secure, then Hybrids 2 and 3 are indistinguishable, that is, ITK∗ guarantees
confidentiality.

49

ucom

uini

uapp

umem
uconf

uini

ucom

uini

uapp

umem
uconf

v2

ucom

uini

uapp

umem
uconf

u3

u2

u1

v4

node cc’s parentc’s grandparent

ucom

u3

u2

v2 u1

v3

v4

Fig. 21: An example commit creating a node c: (right) the ratchet tree in c and its parent, (left)
the corresponding GSD graph created by the reduction A. The sinks and sources are marked
by and , respectively. The continuous and dashed edges denote hash and encryption edges,
respectively. The rightmost gray area is created upon the commit. The committer id first generates
a sequence of path secrets, while A creates vertices u1, ..., ucom connected by hash edges. Then id
derives next-epoch secret from joinerSec obtained by combining commitSec and previous initSecret.
Accordingly, A creates ujoi as the destination of a join-hash edge from ucom and uini. Finally, id
encrypts ui under vi, while A obtains ciphertexts from encryption edges (v4 was created in a
previous commit).

We define two sequences of hybrids: HappSecret
i and HmembKey

i for i ∈ [N]. HappSecret
i is the same

as Hybrid 2, except the first i application secrets chosen by Fcgka are sampled as in Hybrid 3, i.e.
they are random if safe∗ is true. HmembKey

i is the same as HappSecret
N , except the first i membership

keys used by the simulator are as in Hybrid 3, i.e. they are random if safe∗ is true. In the following,
we show that HappSecret

i−1 and HappSecret
i are indistinguishable. The proof for HmembKey

i is analogous.
Assume that an environment Z has a non-negligible advantage in distinguishing between

hybrids HappSecret
i−1 and HappSecret

i , and let M be an upper bound on the number of secret keys
(including PKE secret keys and symmetric keys) created in an execution with Z. We construct an
adversary A against the GSD game with M nodes as follows. On a high level, A emulates for Z
the interaction with Fcgka, F iw

ks , F iw
as and the simulator. In particular, A executes the code of all

these functionalities and the simulator as defined in HappSecret
i−1 , except secure PKE key pairs are

generated with the help of GSD oracles and the i-th group key embeds the GSD challenge. Note
that if for the i-th application secret safe∗ is false, then the challenge is not embedded, but in this
case the hybrids proceed exactly the same.

We now explain in detail how A modifies the code of the functionalities and the simulator. First,
instead of storing a separate state for each party (as the simulator executing the protocol would),
A keeps a single group state for each commit node and a separate state for each proposal. Relevant
to the reduction, the group state contains a ratchet tree τ with a key pair in each node and a
number of symmetric keys, such as memberSec and appSecret. A proposal node’s state contains a
key package. In general, a secret key (symmetric or asymmetric) can have one of three values: (1)
if it is unknown to Z, then it is equal to (gsd, u), where u ∈ N is a GSD vertex, (2) if it is known
to both Z and A, then it is set to the actual value, and (3) if it known to Z but unknown to A
(e.g. an injected public key), then it is set to ⊥.

For bookkeeping, A keeps a counter uctr (initially 1), denoting the largest vertex in the GSD
game used so far. We write pk ← *get-pk(u) to denote that A obtains the public key pk for a
vertex u by calling the oracle Enc(u, 0) (the special vertex 0 is only used here).

The remainder of the proof consists of three steps. First, we consider the simplified setting,
where Z never injects messages or key packages, and never corrupts randomness. In the next two
steps, we remove the former and the latter assumption, respectively.

50

Step 1: No Injections, No Bad Randomness We describe how A modifies the code of the
functionalities and the simulator. First, unlike F iw

ks and F iw
as , it does not delete secret keys (but

records the deletion event). Then, it processes different inputs as follows.

Key-package registration. When Z instructs a party id to register a key package in the
emulated F iw

ks , A creates a new GSD vertex by executing pk ← *get-pk(uctr). It uses pk to
generate the public part of the key package kp, sets the secret key SK[id, kp] to (gsd, uctr), and
sets uctr++.

Proposal add-idt from id. Recall that whenever the protocol requests a key package for idt from
F iw

ks , Z gets to choose it. Accordingly, A stores in the new proposal node the pk taken from
the key package chosen by Z.

Proposal up from id. Analogous to registering key packages, A creates the new key pair as
*get-pk(uctr) and (gsd, uctr), stores it in the new proposal node and uses it to compute the
message. It sets uctr++.

Applying proposals. The only difference from *apply-props (executed by the simulator as
part of the protocol) is that for each update proposal, the leaf’s secret key is set to the value
stored in the proposal node, and for each add proposal, its set to the value in the SK array.

Commit from id. After applying the proposals, A emulates *rekey-path as follows (see Fig. 21
for an example). First, consider the case where for all public keys used by id in *rekey-path,
the secret keys stored in the ratchet tree are of the form (gsd, ∗).
1. Add vertices to the GSD graph: A adds the following vertices: u1, . . . , un (path secrets), ujoi

(joiner secret), uapp, umem, uconf (their values are set to uctr, uctr+1, ... and uctr is incremented).
The vertices are created as follows: for each i ∈ [n− 1], query Hash(ui, ui+1, path). Then,
query Join-Hash(upar-ini, un, .), where (gsd, upar-ini) is stored in the initSecret of Ptr[id]. For
lbl ∈ app, mem, ini, conf, query Hash(ujoi, ulbl, lbl).

2. Create the packet:A creates encryptions of path secrets by creating corresponding encryption
edges. Then, it corrupts umem and stores the result as the memberSec of the new node.
Finally, it corrupts uconf, which completes the set of values needed to compute the commit
packet.

3. Create the welcome message: The welcome message contains, for each new member idt, the
encryptions of joinerSec and idt’s pathSec under the key in idt’s leaf in the new epoch’s
ratchet tree (obtained from KS by the party adding idt).26 Let ui be the GSD vertex
corresponding to the pathSec sent to idt. If idt’s leaf key is of the form (gsd, u), A obtains
the encryptions by creating encryption edges from u to ujoi and from u to ui. Else, it
corrupts ui and ujoi and encrypts the values itself.

Now assume that for some key used in *rekey-path, the secret key is not (gsd, ∗). Let ui be
the smallest that should be encrypted under such key. After adding the vertices, A corrupts ui

and uses it to compute ui+1, ..., un and encrypts ui, ..., un itself. It creates the packet as before.
Key in node c. A modifies the *set-key as follows. Assume this is the j-th call to *set-key.

If safe∗(c) is true and j < i, output a random value. Else, if safe∗(c) is true and j = i, let
(gsd, uapp) be the value stored in appSecret of c. Query challenge on uapp and output the result.
Else, output the real group key, corrupting the GSD node if necessary.

Expose id. The state of id’s contains the following secrets: 1) the secret key for each ratchet tree
node on id’s direct path such that id is not in unmerged leaves of this node, 2) epoch secrets,
and 3) the key packages secret keys generated by id. For each of the above secrets, if the secret
key that is equal to (gsd, u), A corrupts u. Then, for each vertex v s.t. gsd-exp(v) becomes
true, A replaces all occurrences of (gsd, v) by the seed sv, computed using previously obtained
ciphertexts and corrupted seeds.

If a history graph node c stores a symmetric key (gsd, ulbl), we refer to the GSD vertex as (c, ulbl).
Assume A queries challenge on a vertex (c, uapp) (if A does not query a challenge, i.e. safe∗(c) is
flase, then the hybrids are exactly the same, so Z’s advantage is 0). We now show that in the GSD
execution with A, safe∗(c) implies that gsd-exp((c, uapp)) is false, and hence A can win the game
by outputting whatever Z outputs.
26 ITK actually encrypts both secrets together in one ciphertext, but without loss of generality here we

treat them as two separate ciphertexts.

51

We first observe that for any commit c′ with corresponding welcome message w′, each party
who could join using w′ is equivalent to a current group member who already processed c′ (ignoring
encryptions of joinerSec in w′, which we will consider separately). This is for the following reason:
recall that for any joining idt, w′ contains the encryption of the pathSec that idt would receive as
part of c′, was he a member in the parent epoch of c′ with the ratchet tree leaf as in c′. Moreover,
when idt is corrupted, he is immediately added to the corrupt set of any node where he could
join,27 including c′ (see the “for each” loop in the Expose input). This is the same as if idt was
a current group member, transitioned to c′ and was corrupted. Therefore, we now only consider
current group members.

Recalling the definition of gsd-exp (Fig. 20) and the GSD graph created by A (Fig. 21),
gsd-exp((c, uapp)) can only be true in one of the three cases:

(a) A corrupts the vertex (c, uapp). This happens iff A computes the state of a party exposed in c,
which immediately implies ¬safe∗(c).

(b) A corrupts the vertex (c, ujoi). This happens iff A computes a welcome message for a party idt

added with an exposed key bundle. Recall that if idt is exposed, Fcgka adds it to the exposed
set exp of each node where it can join using a currently held key package (the “for each” loop
of input expose). Hence, idt must be in the exp set of c and safe∗ is false.

(c) Both gsd-exp((c, ucom)) and gsd-exp((Node[c].par, uini)) are true. For this case, we show
below that gsd-exp((c, ucom)) implies know(c, ∗). Then, the claim follows by condition d) of
*can-traverse.

– It is easy to see (c.f. Fig. 21) that gsd-exp((c, ucom)) is true if and only if gsd-exp((c, ui))
is true for some path secret ui created by A when generating c. This, in turn, is true iff
either
(1) during the commit, A corrupts ui, or
(2) during the commit, A calls the Enc oracle to encrypt ui under a key in (c, u) and
gsd-exp((c, u)),
(3) during an exposure of an id storing ui’s secret (after processing the commit).

– For Case (3), notice that any action of id removes ui’s secret from its state (it is blanked
for id’s proposals and rekeyed for its commits). Hence, if id is corrupted in c’s descendant
c′ while still storing ui’s secret, we clearly have know(c′, id) and ¬*secrets-replaced(c′′, id)
for each c′′ on the c-c′ path.

– Next, we consider Cases (1) and (2). Observe that (1) happens only if for some key used
in *rekey-path to encrypt ui, the secret key stores a seed. This means that this key was
created as a GSD node (c, u) and then set during exposure, because gsd-exp((c, u)) became
true (c.f. A’s behavior on expose). Hence, we only have to show that gsd-exp((c, u)) for
some (c, u) stored in a vertex used in *rekey-path implies know(c, ∗).

– Let τ.v be the ratchet tree node that stores the exposed vertex (c, u) and let id1, . . . , idn

be the parties with leaves in τ.v’s subtree. Consider the subgraph G of the history graph
containing all commit nodes (with incoming edges) where (c, u) is stored in τ.v. Since there
are no injections and no bad randomness, G is a tree (c.f. the example in Fig. 22).

– First, consider the case where τ.v is not a leaf. Then, the root of G is the commit that
inserts (c, u) into the ratchet tree, i.e., the first ancestor of c where an idi is the committer.
The leaves of G are commits that remove (c, u), i.e., any commits sent by an idi or commits
that remove an idi.
There are two possible reasons for which (c, u) is exposed. First, this happens if some
idi is exposed in a node ce in G and A has to compute its secret state. In this case,
observe that by the definition of *secrets-replaced, for each idi, every non-leaf node in
G is reachable from c via recursive evaluation of know(c, id). Moreover, we clearly have
*state-directly-leaks(ce, idi).
Second, this can happen if gsd-exp((c′, u′)) is true for some u′ used to encrypt the seed in
(c, u). If τ.v′ is not a leaf, we repeat the above reasoning for (c′, u′) and the ratchet tree
node τ.v′ storing (c′, u′) (the procedure terminates, since the protocol guarantees that τ.v′

is in τ.v’s subtree of τ.v, so the subtree of τ.v′ is smaller).
27 Note that he cannot join to epochs where he was added using an old, deleted spkt.

52

A : up D : up
C : up

D : up
D : rem-C

B : up

B : up

node c:
A holding
(c, u) exposed

τ.v : (c, u)

A B C D

Fig. 22: An illustration for the proof that gsd-exp((c, u)) implies know(c, ∗): the history graph
(left) and the ratchet tree in the exposed node c (right). The history graph subtree G is marked by

and the leafs are marked by . In the root of G, the committer A inserts (c, u) as one of the path
secrets created during the commit. The leaves of G remove (c, u) by either B replacing it during
the commit, or D blanking it to remove C.

– Now consider the case where τ.v is a leaf and let id be its owner. Only id’s actions affect τ.v.
In particular, the root of G is a commit by id or one that includes a proposal updating or
adding it. Similarly, leaves of G are commits by id, or ones that include proposals updating or
removing it. In other words, these are exactly commits c′ for which *secrets-replaced(c′, id)
is true.28 This means that G is exactly those nodes that are reachable from c via the
recursive condition of know(·, id).
Now a leaf secret is always a source in the GSD graph (which A generates when id updates,
commits, or registers a key package), and A only corrupts id’s leaf when id holds the secret
key (note that this secret is not encrypted during a commit), i.e. when id is in a node of
G. Hence, there is a node c′ in G where id is exposed, making *state-directly-leaks(c′, id)
true.

Step 2: Allowing Injections We extend A to deal with different types of injected messages as
follows.

Injected proposals. A creates the new node using the public keys from the message and the
secret key set to ⊥ (even if the public key is already stored somewhere else). Note that for add
proposals, the secret key stored in the SK array may be ⊥.

Applying proposals. This works exactly the same, i.e. a secret key equal to ⊥ is copied to the
ratchet tree leaf.
Note that a party id never enters a node where its leaf’s key is injected (i.e., the secret is ⊥),
as ITK trivially detects this situation. Hence, storing ⊥ has no effect, for leaf keys only being
used by the party itself.

Commit from id. A proceeds the same as before. Secret keys equal to ⊥ are treated the same as
those with known seeds, i.e, A corrupts the smallest ui that is encrypted under a public key,
where the secret key is a seed or ⊥.

Commits injected to process. Assume Z makes id process an injected commit c from idc ̸= id,
and that id accepts it. A attempts to build the new commit node’s state as follows. First, it
applies proposals (copying the ⊥ keys if necessary) to the ratchet tree in id’ node. Then, it
normally applies the rekey operation, except for each ciphertext ctxt that id would decrypt
with keys in a ratchet-tree node v. To apply the rekey for those ciphertexts ctxt, A then does
as follows.
• If the secret in v is not a GSD node, A simply decrypts ctxt. (Observe that the secret seed

in v is not ⊥, as id’s (real-world) protocol would reject c in that case.)
• If the secret is (gsd, u) and ctxt can be queried to the decrypt oracle, A decrypts it this

way.
• The only reason why decrypting would not be possible, is that ctxt must had been copied

from an “honest” commit c′, generated earlier by A, for which the GSD node u associated
28 Note that a leaf of G cannot add id, since its already in the group, and similarly the root cannot remove

id.

53

to appSecret is still a valid challenge. (Recall that upon exposure, A immediately computes
all secrets it can given the new information.) We now argue that this situation cannot
occur due the the (valid) confirmation tag included in c and, in fact, show that id accepting
such a c would allow A to win the GSD game. To this end, let A challenge the GSD node
u; and extract the correct seed from Z’s random oracle calls as follows.
1. Observe that appSecret can be derived from joinerSec, which in turn is computed as

joinerSec = Hash(initSecret, commitSec, .), modeling HKDF as a RO. Moreover, observe
that commitSec must be the same in c and c′, due to the shared (honestly generated)
ctxt accepted in both states.

2. We now proceed towards extracting joinerSec of c′. Recall to this end that the tag
is a MAC, modeled as RO, of confKey and confTransHash, and that confTransHash
includes the whole message c except the confirmation tag itself and the membership
tag. Since the latter two are unique given the rest of c, confTransHash is unique for c
as well. Hence, the only way for Z to compute a valid confirmation tag is to query RO
on (confKey, confTransHash), and A can extract confKey. Analogously, as confKey is
derived by hashing joinerSec with an appropriate label, it can extract joinerSec (of c)
from the queries as well.

3. Now consider two cases. First, if initSecret is the same in c and c′, then joinerSec =
Hash(initSecret, commitSec, .) is the same in c and c′ (by commitSec being the same).
Second, if initSecret is different, then joinerSec in c is the hash of an honestly generated
commitSec with a different initSecret. Since the protocol only uses commitSec once
with the correct initSecret, the only way for Z to compute the joiner is to query the
RO, and commitSec can be extracted from the queries. Now A corrupts initSecret in c′

and combines it with commitSec to compute joinerSec. Note that this does not affect
u being a valid challenge, since the node corresponding to commitSec (of c′) is not
exposed.
In either case, A can now compute appSecret and compare it to the result from the
GSD challenge to determine the bit b.

Injected welcome messages. In case Z makes id process an injected welcome message w =
(encGroupSecs, groupInfo), A does as follows.
1. Join to an existing node. If there exists a node c with confTransHash matching that in

groupInfo, A searches for a key package kp such that SK[id, kp] ̸= ⊥ and Hash(kp) matches
an entry e ∈ encGroupSecs.
If e is copied from a welcome message generated by A while creating a commit node c and
SK[id, kp] is a GSD node, A moves id to c. Else, it uses either the secret in SK[id, kp] or
the GSD decrypt oracle to check if id would process the message and moves id if this is the
case.

2. Join a new node: create the public part. If no c with matching transcript hash is found,
and id accepts the message, A creates the new node with labels taken from groupInfo and
the ratchet tree set to the public part of τ from groupInfo. Then, for any node of τ with a
public key for which it has a secret key stored (in another ratchet tree or in SK), it copies
the secret into τ (other secrets remain ⊥).

3. Join a new node: decrypt the secrets. A searches for a key package kp such that SK[id, kp] ̸=
⊥ and Hash(kp) matches an entry e ∈ encGroupSecs and aborts if no such kp exists.
Similarly to injected commit messages, id will not accept e if it is copied from a welcome
message generated by A while creating a commit node c and SK[id, kp] is a GSD node. To
this end, observe that A could then use confTag from w to compute appSecret in c and
win the GSD game as follows. Recall that confTag = Hash(confKey, confTransHash), where
confKey is derived from joinerSec id decrypts and confTransHash is taken from w. Since e
is copied, joinerSec used (implicitly) for the tag is the same as in c. On the other hand,
confTransHash in w and c differ (else, id would have joined to c). Hence, joinerSec inn c can
be extracted from Z’s RO queries and used to compute appSecret in c.
Otherwise, A can obtains the encrypted joinerSec and pathSec using the stored secret or
the Dec oracle. It updates ratchet tree secrets to those derived from pathSec (if any secret
key was set to a GSD node, A uses pathSec to win the game), and computes the epoch
secrets from joinerSec.

54

We argue that with the above changes, A’s GSD challenge (c, uapp) is still valid, as long as safe∗(c)
is true. Assume towards a contradiction that gsd-exp((c, uapp)) is true.

The main tree. The proof is almost the same as in Step 1 (no injections). The only difference is in
case (c), where we show that gsd-exp((c, ucom)) implies know(c, ∗). We modify the proof of (c) as
follows.

– gsd-exp((c, ui)) is true for some ui in one of 3 cases:
(a) During an exposure of an id who (supposedly) stores ui’s secret,
(b) (As in Step 1) the secret key in some ratchet tree node τ.v used in *rekey-path stores a

seed from a GSD vertex (c, u) with gsd-exp((c, u)),
(c) The secret in τ.v is ⊥.
We show that all cases imply know(c, ∗).

– Case (a). Assume id is exposed in a commit node c′ and a ratchet tree node τ ′.v′ on its direct
path has ui’s public key pki. This can occur in 2 cases. First, if id processed c and has not
performed any action — in this case, the reasoning is the same as in Step 1.
Second, pki can be injected into τ ′.v′. We claim that this case cannot occur, since id will never
process a commit that injects an honestly generated (as part of c) key into its direct path.
Indeed, if τ ′.v′ is id’s leaf, then the only way to inject pki is via update or commit sent by
id, or by adding id. However, id’s protocol does not accept proposals or commits from id that
were not actually sent (the corresponding secrets are indexed by the whole messages), and id
does not join a group with a key package it did not generate. If, on the other hand, τ ′.v′ is an
internal node, then pk must be a part of an injected commit. If any party in the subtree of
τ ′.v′ accepts such commit A can use the confirmation tag to win the GSD game.

– Case (b). Similar to Step 1, we consider the subgraph G of the history graph, containing all
commit nodes where τ.v stores (c, u)’s public key pk.
Using the exact same argument as in Case (a), we can argue that (c, u) is not exposed in any
commit node outside of G. Hence, we use the same analysis as in Step 1.

– Case (c). The secret in τ.v is set by A to ⊥ only when the public key pk in τ.v is injected
during a commit c′, i.e., if (a) Z injects c′ on behalf of a party id in τ.v’s subtree, or (b) τ.v is
id’s leaf and c′ commits an update injected on behalf of id, (c) τ.v is id’s leaf and c′ commits
an add proposal that uses an injected key package (either injected to KS, or directly to an
injected commit).
The first two cases exactly correspond to the respective cases a) and b) of the predicate
*secrets-injected(c′, id). In case (c), the add proposal must contain a key package for id with
pk not generated by id. Since key packages are signed using id’s spk (and the signature is always
validated on process by *validate-kp), this means that spk is exposed (or Z can be used to
break EUF-CMA), implying condition c) of *secrets-injected(c′, id).
Moreover, any commit c′′ that heals id replaces all keys in its direct path, including τ.v. Hence,
c′ is reachable from c via the recursive evaluation of know.

Orphan trees. Assume A challenges (c, uapp) for a node c in a detached tree rooted at rootrt. We
show that if safe∗(c) true, then the GSD challenge is valid.

First, observe that in a detached tree, safe∗ is true only if no spk of a group member in c
is exposed. This is because know(rootrt, ‘epoch’) is true (c.f. condition a) of *can-traverse) and
know(c′, id) is true for any c′ in the detached tree as soon as id’s spk is exposed (c.f. condition b)
of *state-directly-leaks).

Second, we show that safe∗(c), in particular clause b) of *state-directly-leaks, implies that
each secret key in the ratchet tree τ of c stores a GSD vertex. With this, it is easy to see that
gsd-exp((c, uapp)) implies know(c, ∗), where the argument is the same as for the main tree.

Take any node τ.v in c’s ratchet tree. If τ.v is a leaf, then its public key is set to a value only
if (1) its owner (with current spk) is corrupted or (2) a message (an update, a commit or a key
package sent to KS) is injected on behalf of the owner. In case (1) the spk is explicitly marked as
exposed. In case (2), it must have been marked as exposed, or Z can be used to break EUF-CMA.

If τ.v is an internal node, then its public key pk is included in the parentHash stored in the
leaf of the party idc in τ.v’s subtree whose commit introduced pk. (There is such leaf, since the
protocol rejects any welcome or commit that introduces a ratchet tree without it. Note that idc is

55

still in the group, since otherwise τ.v would have been blanked by the commit removing idc.) Let
spkc denote idc current signature key. This parentHash is signed by idc and (assuming safe∗) spkc

is not exposed, pk was generated by A as a GSD vertex for idc’s (honest) commit cc (or Z can be
used to break EUF-CMA). Such pk is set to a value only in two situations:

1. A party ide is corrupted in a descendant ce of cc before idc performs any action (in which
case its direct path, including pk, would be blanked). In this case, ce’s group contains idc with
(unchanged) spkc and ide with exposed spke, making *state-directly-leaks true in c.

2. A secret key for a ratchet tree node τc.vc (in cc) involved in *rekey-path executed while
generating cc is not a GSD node. In this case, τe.ve’s tree must have been injected by, or leaked
upon corruption of a party ide in τe.ve’s subtree. Moreover, ide is still in the group and has
not performed any action, else τe.ve would have been blanked or replaced. This means that
his key spke in cc is exposed (it must have been exposed to enable the injection, or marked as
exposed on corruption). Hence, cc contains idc with spkc and ide with exposed spke, making
*state-directly-leaks true in c.

Step 3: Allowing Bad Randomness Finally, we modify A to deal with actions executed using
bad randomness as follows.

Proposal from id. A computes the proposal message p (and, in case of an update, the new key
package (kp, sk)) using the randomness provided by Z, the current membKey and the id’s spk
(all of which are always known to A). If p does not identify an existing node A creates it. In
case of an update proposal, it sets the secret key in p’s node to sk.

Commit from id. Given the randomness provided by Z, A computes the commit and welcome
messages, and the secrets in the new commit node, as follows.
1. A uses Z’s randomness to execute *rekey-path and obtains: all path secrets, the

commitSec, and the intermediate commit packet C. Then, it signs C using id’s spk (and,
again, Z’s randomness) and sets the confirmed transcript hash accordingly.

2. A computes the new joinerSec, which is a hash of the current initSecret and the freshly
computed commitSec: If initSecret stores a GSD node u, A queries Hash with input
(u, uctr, commitSec), corrupts uctr, sets joinerSec to the result and increments uctr. Else, if
initSecret stores a value, A computes joinerSec itself.

3. Using joinerSec and the transcript hash from Step 1, A runs the key schedule, computes the
confirmation tag, and finishes computing the commit message c and the welcome message
w.

We claim that the above changes do not affect validity of A’s challenge (c, uapp). First, observe
that a corruption of the GSD node needed to compute joinerSec during a commit c′ with bad
randomness does not affect (c, uapp). This is because by condition a) of *secrets-injected, safe∗ is
false in all descendants of c′ until a commit is executed with good randomness. For this honest
commit, commitSec corresponds to a GSD node with gsd-exp false, and hence gsd-exp is false
for the joinerSec as well.

Second, we modify the proof that gsd-exp((c, ucom)) implies know(c, ∗). For this, observe that
now gsd-exp((c, ui)) can be true also if the secret in a ratchet tree node τ.v used in *rekey-path
stores a seed s generated during an action executed with bad randomness. Consider the commit c′

that inserts s into τ.v.

– If c′ is generated by id with bad randomness, then by condition a) of *secrets-injected,
know(c′, id) if true. Moreover, since any commit c′′ with *secrets-replaced(c′′, id) would replace
the key in τ.v, there is no such c′′ on the c′-c path and know(c, id) is true.

– If τ.v is id’s leaf and c′ commits id’s update executed with bad randomness, by condition b) of
*secrets-injected, know(c′, id) is true and, for the same reason as above, know(c, id) is true as
well.

– Finally, assume τ.v is id’s leaf and c′ adds id using a key package kp generated with bad
randomness. When kp was generated with bad randomness, F iw

ks marked the used spk as exposed.
Hence, c′ must be adding id with an exposed spk, which, by condition c) of *secrets-injected,
implies that know(c′, id) is true. As before, this implies that know(c, id) is true as well.

56

Finally, we note that any action executed with bad randomness marks the used spk as exposed,
and hence we no longer guarantee security in commit nodes in detached trees where the group
contains a member with spk. Hence, the simulation becomes trivial in such nodes even if Z learns
ssk and injects arbitrary messages.

D.4 ITK∗ Guarantees Authenticity

Claim. If Sig and MAC are EUF-CMA secure and PKE is GSD secure, then Hybrids 3 and 4 are
indistinguishable, that is ITK∗ guarantees authenticity.

Observe that the hybrids are identical unless in there exists an injected history graph node in
Fcgka for which inj-allowed requires authenticity. (In Hybrid 3, the functionality ignores such
nodes, while in Hybrid 4 it halts forever as soon as any such node appears.) More precisely, the
hybrids are identical unless the following happens:

Event Bad. There exists a (commit or proposal) node with stat = adv and inj-allowed(c, id) =
false for its parent c and creator id.

Further, recall that (see Fig. 6) inj-allowed(c, id) is false if either id’s signature public key spk
in c is not exposed, or the adversary “does not know” the epoch key in c. Accordingly, we define
two sub-events of Bad:

Event Badsig. There exists a (commit or proposal) node with stat = adv and Node[c].mem[id] /∈
Exposed for its parent c and creator id.
Event BadMAC. There exists a (commit or proposal) node with stat = adv and ¬know(c, ‘epoch’)
for its parent c.

We next show that if Sig is secure, then the probability of Badsig is negligible. Further, if PKE is
secure, then the probability of BadMAC is negligible (recall that the PKE is used to encrypt MAC
keys). In both statements, MAC is modeled as an RO.

Lemma 3. For any environment Z, there exists a reduction Asig who wins the EUF-CMA game
with probability only polynomially smaller than the probability that Z triggers Badsig.

Lemma 4. For any environment Z, there exist reductions AMAC and APKE such that the probability
that Z triggers BadMAC is upper bounded by p · (ϵMAC + ϵPKE), where p is a polynomial, ϵMAC is the
advantage of AMAC against the security of MAC and ϵPKE is the advantage of APKE against the
GSD security of PKE.

Proof (of Lemma 3). Let Z be any environment. Asig emulates the functionalities and the simulator
for Z as in their definitions, except it embeds its challenge spk as one of the public keys honestly
created during the experiment. To emulate commits and proposals signed under the challenge ssk,
Asig uses the sign oracle. When Badsig occurs, Asig stops the experiment and sends to its challenger
the forgery consisting of the signature sig′ and the signed content tbs′ from the injected node c′.
We assume c′ is a commit node; the proof for proposals is analogous. We claim that Badsig occurs
and spk = Node[c].mem[id], then Asig wins. Indeed, we have:

– sig′ as a valid signature over tbs′. The reason is that the injected node was created when some
party accepted c′, which means that it verified sig′ under spk = Node[c].mem[id].

– Asig simulates the experiment perfectly until Badsig occurs. Indeed, the only situation in which
the simulation differs from the experiment is when spk = Node[c].mem[id] is corrupted. This
does not happen, since the event guarantees spk = Node[c].mem[id] /∈ Exposed.

– Asig did not query (sig′, tbs′) to the sign oracle. Indeed, assume that (sig′, tbs′) is the same
as (sig∗, tbs∗) queried by Asig to the sign oracle for c∗. We will show that this implies c′ = c∗.
Since c′ is injected and c∗ is honestly generated by Asig, this is a contradiction.
Recall that c′ contains (groupId′, epoch′, senderId′, ‘commit′, C ′, confTag′, sig′, membTag′) and
tbs′ contains (groupCtxt′, groupId′, epoch′, leafId′, ‘commit′, C ′), and c∗ contains analogous
values. This means that c′ and c∗ can only differ on confTag′ ̸= confTag∗ or membTag′ ≠
membTag∗.

57

Recall further that by definition it holds that membTag′ = MAC.tag(membKey′, C ′) and
membTag∗ = MAC.tag(membKey∗, C∗). We have C ′ = C∗, because they are included in
tbs′ = tbs∗. Moreover, tbs′ = tbs∗ includes groupCtxt′ = groupCtxt∗. Since the group context
uniquely determines the epoch and key schedule, it follows that membKey′ = membKey∗.
Therefore, membTag′ = membTag∗. We can prove analogously that confTag′ = confTag∗.

⊓⊔

Proof (of Lemma 4). We consider the case where the injected packet triggering BadMAC is a
commit and that it does not remove any party, i.e., all receivers verify the MAC tag confTag and
not membTag. The case for proposals and the removed parties who verify membTag is analogous.

Let Z be any environment. The reduction AMAC first guesses the node c that makes BadMAC
occur. Further, it runs Z, emulating the UC experiment exactly, except instead of the MAC key
membKey in epoch c, it uses its oracles in the MAC EUF-CMA game. If BadMAC occurs for parent
node c and injected child c′, AMAC stops the experiment and outputs the forgery (confTag′, tbm′),
denoting, respectively, the confirmation MAC tag and the MAC’ed content from c′. We claim that

1. The difference between the probability of BadMAC occurring for c in the experiment emulated
by AMAC’s and in Hybrid 3 (or 4) is upper-bounded by the advantage of a reduction APKE in
the GSD game.

2. If BadMAC occurs for c, then AMAC wins with (confTag′, tbm′).

For the first claim, observe that BadMAC for c implies that safe∗(c) is true until the event and no
party in c is exposed. Therefore, we can construct APKE the same way as in the proof that ITK∗

guarantees confidentiality (indistinguishability of Hybrids 2 and 3). In particular, APKE embeds
the challenge in the MAC key membKey in c and emulates the experiment as described in that
proof, until BadMAC occurs for c. Then, it stops the experiment, since the rest of it has no effect on
the probability of the event.29

For the second claim, we know that confTag′ is a valid tag on tbm′, because it was verified by a
party accepting the injected c′. It is left to show that (confTag′, tbm′) was not queried by AMAC
to the MAC oracle. Assume towards a contradiction that (confTag′, tbm′) = (confTag∗, tbm∗),
where (confTag∗, tbm∗) was queried by AMAC to the oracle when it honestly generated a packet
c∗. Recall that tbm′ and tbm∗ are equal to the confirmed transcript hashes confTransHash′ and
confTransHash∗. If confTransHash′ and confTransHash∗, then c′ = c∗, because the transcript is
computed by hashing the last message. This is a contradiction, since c∗ is honest and c′ is injected.

⊓⊔

D.5 Stronger Security of ITK

Notice that the only difference between safe and safe∗ concerns how detached history-graph nodes
are handled, so it suffices to consider these. Specifically, for a detached node c, safe only guarantees
that the epoch doesn’t include an exposed signing key spk. We argue that this implies that no
node in the entire ratchet tree of c contains an exposed key pk (that is, the secret key to pk was
not leaked to, or chosen by, the environment). In particular, that would mean that no ciphertext in
the most recent commit (and/or welcome messages) leading to the epoch can be decrypted by the
environment. (More formally, the plaintexts are indistinguishable from random to the environment.)
Thus, the environment is essentially unable to query the RO at the points it would need to compute
the new application secret, meaning it too would look random, meaning the epoch is indeed secure.

It remains to argue that safe returning true for epoch c implies that no node τ.v in the epoch’s
ratchet tree τ contains an exposed key pk. The proof is by (strong) induction on the height of τ.v.
We showed already in the proof of Theorem 1 that when τ.v is a leaf with an exposed pk then spk
29 Note that afterwards the emulation may be easily distinguishable. Indeed, if a party in the parent of c, i.e.,

one who can compute the real confKey used to authenticate c′, is corrupted, then its state is inconsistent
with the random key in the experiment emulated by APKE. In the proof of indistinguishability of Hybrids
2 and 3, such corruptions would be disallowed, in order to avoid the commitment problem. Here we can
prove a stronger statement without restrictions, since the experiment after the event doesn’t matter.

58

at v must also have been exposed, which contradicts safe. Now take any internal node τ.v and
assume that for any node in τ with height smaller than the height of τ.v, the pk is not exposed.

We first argue that all signatures in τ must verify. Note that by definition for a history-graph
node introduced by the simulator to exist, it must be that at least one party has accepted either a
commit or welcome message leading to that node. Let ca be the ancestor epoch of c referenced in
the first two clauses of b) in safe. Since the node exists it must be that a party accepted a welcome
message leading to the node.30 Thus, it must be that all signatures at the leaves of ca verify. For
each of the subsequent epochs up to and including c, each new signature inserted into the group
state not present in the previous epoch must have been verified, at least once; namely, by the party
that accepted a commit message causing the epoch’s history-graph node to be created. Thus, we
can conclude that all signatures in τ verify.

A similar argument lets us conclude that the parent hash of τ.v is included (via a hash chain)
in the parentHash value signed at some leaf in the subtree rooted at τ.v. Let ids denote the owner
of this leaf. (We can assume that ids is in τ.v’s subtree, as otherwise no party would have accepted
the commit or welcome message leading to this epoch.) Let τ.u and τ.w denote τ.v’s children,
where ids is in τ.u’s subtree. The parent hash of τ.v includes τ.v.pk and τ.w.origChildResolution.

By assumption ids’s signature public key spks is not exposed so (due to the unforgeability of
the signature scheme) τ.v.pk was generated honestly by ids as part of some commit message cs

(possibly for a different session). Moreover, committing with bad randomness would expose spks,
so cs was generated with good randomness. This means that the secret key τ.v.sk is not chosen by
the environment. Therefore, the only way τ.v.pk can be exposed is if ids used an exposed public
key to encrypt a path secret for a node on the path from ids’s leaf to τ.v.31

Let τs denote the tree in epoch cs. Due to unforgeability of the signature scheme, the path
from ids’s leaf to τ.v is the same in τs and τ . Similarly, the origChildResolution of τ.w (including
τ.w) in τ is equal to τs.w’s resolution in τs (note that τs.v has no unmerged leaves in τs.)

Encrypting a path secret for a node on the path from ids’s leaf to τ.u under an exposed key
would expose pk at τ.u, which contradicts the induction hypothesis (since τ.u is below τ.v). The only
remaining path secret is the one for τ.v, encrypted by ids under all keys in τ.w’s origChildResolution.
However, exposing any of these nodes again contradicts the induction hypothesis. (Note that the
induction hypothesis concerns only nodes in τ , so we used unforgeability of the signature scheme
to argue that the relevant nodes in τ are the same as those in τs, actually used by ids. Note also
that without the signature, we would not be able to assume anything about the height of nodes
used by ids.)

E Details on the Attacks

In this section, we expand on the attacks presented in Sec. 6.

E.1 An Attack on Authenticity in Certain Modes

First, we consider the (unintentionally) provides stronger authentication guarantees than an
MLSPlaintext provided before our fix [14] to bring them in line with those of MLSCiphertext.

Let ITKAtk-1 denote the protocol that behaves like ITK but does not include membership tags
as part of the message framing process. See Fig. 23 for the modified message-framing algorithms
compared to ITK.

Theorem 7. The ITKAtk-1 protocol, which behaves like ITK but does not include membership tags,
does not securely realize (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model when Fcgka uses

the predicates safe and inj-allowed from Fig. 6. That is, for every simulator S, there exists an
environment Z that has non-negligible advantage in distinguishing the ideal world from the hybrid
world with the protocol running (and the dummy adversary).
30 Since ca has no parent no party accepted a commit message leading to ca which only leaves a welcome

message as having triggered the creation of ca.
31 Note that after cs is sent, τ.v’s secret key never leaves the local state of any party who knows it, that is

any party in τ.v’s subtree. This easily follows by inspection, for example, any commit by such party
replaces τ.v’s key pair.

59

Protocol ITKAtk-1 : Message-Framing

helper *signCommit(γ, C)
tbs← (γ.groupCtxt(), γ.groupId, γ.epoch,

γ.leafId(), ‘commit′, C)
sig← Sig.sign(γ.ssk, tbs)
return sig

helper *frameCommit(γ, C, confTag, sig)
return (γ.groupId, γ.epoch, γ.leafId(), ‘commit′,

C, confTag, sig)

helper *unframeCommit(γ, c)
parse (groupId, epoch, senderId, contentType,

C, confTag, sig)← c
req contentType = ‘commit′ ∧ groupId = γ.groupId
req epoch = γ.epoch
tbs← (γ.groupCtxt(), groupId, epoch, senderId,

‘commit′, C)
req γ.τ.leaves[senderId] ̸= ⊥

∧ γ.τ.leaves[senderId].inuse()
∧ Sig.vrf(γ.τ.leaves[senderId].spk, sig, tbs)

return (senderId, C, confTag, sig)

helper *frameProp(γ, P)
tbs← (γ.groupCtxt(), γ.groupId, γ.epoch, γ.leafId(),

‘proposal′, P)
sig← Sig.sign(γ.ssk, tbs)
return (γ.groupId, , γ.epoch, γ.leafId(), ‘proposal′, P, sig)

helper *unframeProp(γ, p)
parse (groupId, epoch, senderId, contentType,

P, sig)← p
req contentType = ‘proposal′ ∧ groupId = γ.groupId
req epoch = γ.epoch
tbs← (γ.groupCtxt(), groupId, epoch, senderId, ‘proposal′, P)
req γ.τ.leaves[senderId] ̸= ⊥

∧ γ.τ.leaves[senderId].inuse()
∧ Sig.vrf(γ.τ.leaves[senderId].spk, sig, tbs)

return (senderId, P)

Fig. 23: The modified message framing of ITKAtk-1.

Proof. Let S be an arbitrary simulator. Consider the following environment Z and let A be the
group creator.

Group setup: First, the environment Z instructs A to create the group (providing a valid signing
public-key spkA fetched from the PKI). Then, it instructs A to add parties B and C to the group
by creating two respective proposals pB and pC and issuing a commit c1 with the respective
welcome message w1. It then delivers the commit message c1 to A and w1 to B and C. It checks
that all parties accept the respective message and output the correct creator of the new epoch
(party A) as well as semantics for the two proposals; otherwise Z returns 0 and aborts.

Corruption: The environment now corrupts party A (via the dummy adversary) to learn its
signing key sskA. It verifies that the key matches with the public-key spkA; otherwise Z returns
0 and aborts.

PCS: Next, Z instructs A to issue a commit command with an empty list of proposals and the
old spkA. (This causes A to update its ephemeral key and resample the compromised path in
the ratchet tree, but keep its long-term signing key.) It instructs A, B, and C to process the
resulting commit message c2 and verifies that they move to the expected state (by verifying
that the process succeeds and outputs A as the commit’s originator). Otherwise Z returns 0
and aborts.

Breaking authenticity: Now, Z crafts a proposal message p∗ that removes C on behalf of A,
according to the (modified) protocol ITKAtk-1. Note that all the included values (such as the
group context) are public and thus known to the environment, and Z can sign the proposal
using the leaked sskA. (Important: note that the environment does not instruct A do create
such a proposal command, but forges it!) Finally, Z instructs B to commit to this proposal
p∗ and lets B process the respective commit message c3. If B accepts and outputs the correct
semantics for p∗, then Z returns 1, otherwise it returns 0.

We now argue that when interacting with the hybrid world, Z outputs 1 with overwhelming
probability. To this end, simply observe that from the viewpoint of B and C, this corresponds to a
regular execution in which A creates the group, adds B and C, and then proposes to again remove
C that party B successfully commits. Hence, by correctness of ITKAtk-1 the environment outputs 1.

Finally, we consider Z interacting with the ideal world and S. First, observe that after successfully
adding B and C, the history graph consists of two nodes, irrespective of the simulators actions: the
root root0 and a successor node Node[c1], since the honest action by A creates a new node Node[c1]
and each commit message uniquely identifies a node. Similarly, after A honestly committing (hence
implicitly updating their state) and all processing the respective c2, the history graph consists

60

of three nodes with all parties being in Node[c2], which has parent Node[c1]. Note that since A
honestly created the commit message, Node[c2].stat = good, i.e., the node is marked as good.

When B commits p∗, the simulator is asked to interpret the proposal. In order for Z to not
output 0 upon B outputting the respective semantics when processing c3, S must put the right
semantics (removal of C issued by A). This also means that S has to choose pA and pB to be
different from p∗ as each proposal message uniquely identifies a proposal node that has fixed
semantics. Moreover, this clearly means that Prop[p∗] is a fresh node, not created by an honest
action. As a result, the proposal is marked as adversarially created, i.e., Prop[p∗].stat = adv.

This, however, causes auth-invariant to fail at the end of B committing p∗, meaning that no
matter what S does, Z always outputs 0 when interacting with the ideal world: Since Prop[p∗].par =
c2 and Prop[p∗].orig = idA, we have that auth-invariant checks inj-allowed(c2, idA), i.e, whether
the adversary can inject messages on behalf of A in the state reached after processing c2. The
predicate inj-allowed(c2, idA) in turn checks know(c2, ‘epoch′), i.e., only returns true if the adver-
sary knows the associated symmetric key. It remains to argue that know(c2, ‘epoch′) returns false.
First, note that *state-directly-leaks(c2, idA) is false, since A has been compromised in Node[c1]
and not Node[c2], Node[c2] is not a detached node, and A’s secrets have not been injected by
the adversary. Second, while the adversary knows the state in the parent Node[c1], we have that
*secrets-replaced due to the implicit update (Node[c2].orig = idA). Finally, there is no child state
in the history graph. Hence, *state-directly-leaks(c2, idA) = false causing Z to distinguish for
all simulators. ⊓⊔

E.2 Breaking Agreement
The way the transcript hash was computed and included in the confirmation tag — before our fix
[15] — lead to counter-intuitive behavior, where parties think they are in-sync and agree on all
relevant state when they are not.

Let ITKAtk-2 denote the protocol that behaves like ITK but where the commit message’s signature
hasn’t been included into the confirmed transcript hash but into the interim transcript hash instead.
See Fig. 24 for a detailed description of the modified algorithms compared to ITK.

Protocol ITKAtk-2 : Committing and Transcript Hashes

Input (Commit, p⃗, spk, force-rekey)
req γ ̸= ⊥
γ′ ← *init-epoch(γ)
...
[Apply proposals, rekey, and prepare commit]
...
C ← (propIDs, updatePath)
γ′ ← *set-conf-trans-hash(γ, γ′, γ.leafId(), C)
(γ′, confKey, joinerSec)

← *derive-keys(γ, γ′, commitSec)
confTag← *conf-tag(γ′, confKey)
if rem ̸= () then

membTag← MAC.tag(γ.membKey, C)
else

membTag← ⊥
sig← *signCommit(γ, C)
c← *frameCommit(γ, C, confTag, sig, membTag)
if add ̸= () then

(γ′, w)← *welcome-msg(γ′, add, joinerSec,
pathSecs, confTag)

else w ← ⊥
γ′ ← *set-interim-trans-hash(γ′, confTag, sig)
γ.pendCom[c]← (γ′, p⃗, upd, rem, add)
return (c, w)

helper *set-conf-trans-hash(γ, γ′, senderId, C)
commitContent

← (γ.groupId, γ.epoch, senderId, ‘commit′, C)
γ′.confTransHash

← Hash(γ.interimTransHash, commitContent)
return γ′

helper *set-interim-trans-hash(γ′, confTag, sig)
γ′.interimTransHash

← Hash(γ′.confTransHash, confTag, sig)
return γ′

Fig. 24: The modified transcript hash computation of the ITKAtk-2 protocol. (The processing is
modified accordingly.)

61

Theorem 8. Assume the signature scheme Sig does not have unique signatures (this strong property
is not achieved by the schemes used by MLS). Then, the ITKAtk-2 protocol, which behaves like ITK
using Sig but not include the package’s signature into the confirmed transcript hash, does not securely
realizes (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model when Fcgka uses the predicates safe

and inj-allowed from Fig. 6. That is, for every simulator S, there exists an environment Z that
has non-negligible advantage in distinguishing the ideal world from the hybrid world with the protocol
running (and the dummy adversary).

Proof. Let S be an arbitrary simulator. We next construct an environment Z such that has
non-negligible advantage in distinguishing the ideal world with S from the hybrid world with
the protocol running (and the dummy adversary). Let A denote the group creator. Z behaves as
follows.

Group setup: The environment Z lets A create a group consisting of A, B, and C just as in the
previous proof, letting all the parties end up in the same state having either processed the
commit message c1 (in case of A) or the respective welcome message w1 (in case of B and C).

Corruption: The environment now corrupts party A (via the dummy adversary) to learn its
signing key sskA. It verifies that the key matches with the public-key spkA; otherwise Z returns
0 and aborts.

Breaking agreement: Now Z computes a commit message c2 (to an empty proposal list). Further,
it computes the commit message c′

2 by first copying c2 and then replacing the signature by a
different valid one (e.g. by re-signing using different randomness). It delivers c2 to B and c′

2 to
C.

Causing inconsistencies: Next, Z instructs B to create a proposal p that removes A from the
group. Moreover, instruct both B and C to first commit to this proposal (creating commit
messages c3 and c′

3, respectively) and have each of the parties process their own commit message.
If both parties successfully process their commit messages, Z outputs 1, and 0 otherwise.

Next, we establish that when interacting with the hybrid world, Z always outputs 1. (Assuming
perfect correctness of the scheme.) To this end, observe that in ITKAtk-2, the confirmed transcript
hash does not depend on the most recent signature. As a consequence, neither the confirmation tag
nor any of the derived keys (e.g., membKey) does, and as a result neither does the group context.
Hence, the states in with B and C are (after processing c2 and c′

2, respectively) agree in everything
except for the interim transcript hash, leading to C considering B’s proposal p valid (the proposal
would be exactly the same had B processed c′

2) and hence both parties end up in states (but
different ones!) where A is removed.

Finally, consider the ideal world. First, we observe that B and C actually do end up in two
distinct history graph nodes. By the consistency checks we know that the simulator S must have
chosen c1 such that c1 ̸= c2 and c′

2 (since the original commit has a parent in which neither B nor
C has been a member). Moreover, the two commit messages also cannot correspond to the initial
root (the only root) as this would create a cycle. Hence, when processing the two messages, the
functionality ends up creating two distinct fresh nodes. When creating p, the functionality then
records Prop[p].par = c2. Having the party C successfully commit p, and process the respective
commit message, would thus clearly violate the consistency invariant that requires Prop[p].par = c′

2,
causing the environment to output 0, irrespective of the simulator’s choices. ⊓⊔

E.3 Inadequate Joiner Security (Tree-Signing)

Let ITKAtk-3 denote the protocol that behaves like ITK but with the tree-signing mechanism from
MLS Draft 9, i.e., where the parent hash only attests the nodes up the direct path. See Fig. 25 for
the modified parent-hashing algorithms compared to ITK.

Theorem 4. The ITKAtk-3 protocol that behaves like ITK but with the old tree-signing mechanism
does not securely realize (F iw

as ,F iw
ks ,Fcgka) in the (Fas,Fks,Gro)-hybrid model when Fcgka uses

the predicates safe and inj-allowed from Fig. 6. That is, for every simulator S, there exists an
environment Z that has non-negligible advantage in distinguishing the ideal world from the hybrid
world with the protocol running (and the dummy adversary).

62

Protocol ITKAtk-3 : Tree-Hash

helper *set-parent-hash(γ′, leafId)
path← γ′.τ.directPath(leafId)
path← path.reverse()
path ++← γ′.τ.leaves[leafId]
for v ∈ path do

if v.isroot then
v.parentHash← ϵ

else
v.parentHash← *parent-hash(v.parent)

return γ′

helper *parent-hash(v)
return Hash(v.pk, v.unmergedLvs, v.parentHash)

helper *vrf-tree-state(γ′)
req γ′.treeHash = *tree-hash(γ′.τ.root)
for v ∈ γ′.τ.nodes : v.inuse() ∧ ¬v.isleaf do

lchild← v.lchild
rchild← *origRChild(v.rchild)
parentHash← *parent-hash(v)
req (lchild.inuse ∧ lchild.parentHash = parentHash)
∨ (rchild.inuse ∧ rchild.parentHash = parentHash)

mem← ∅
for v ∈ γ′.τ.nodes : v.inuse() ∧ v.isleaf do

req v.id /∈ mem
mem +← v.id
try γ′ ← *validate-kp(γ′, v.kp(), v.id, v.parentHash)

return γ′

Fig. 25: The modified transcript hash computation of the ITKAtk-2 protocol and the respective
verification by a joiner.

Proof. Recall the illustration of the in Fig. 8 on Page 24. Let S be an arbitrary simulator. We next
construct an environment Z such that has non-negligible advantage in distinguishing the ideal
world with S from the hybrid world with the protocol running (and the dummy adversary). Let A
denote the group creator. Z behaves as follows.

Group setup: The environment Z lets A create a group consisting of A, B, and C just as in the
previous proof, letting all the parties end up in the same state having either processed the
commit message c1 (in case of A) or the respective welcome message w1 (in case of B and C).
In addition to verify that all parties end up in the desired state, Z further checks that the
public ratchet tree included in w1 matches the expected one from Fig. 8a (with respect to keys,
parent hashes and leaf signatures) and aborts outputting 0 otherwise.

Corruption: The environment now corrupts party B (via the dummy adversary) to learn its
signing key sskB . It verifies that the key matches with the public-key spkB ; otherwise Z returns
0 and aborts.

Forging a welcome messgage: In the following Z forges a welcome message w that joins D on
behalf of B to the group, but with the modified ratchet tree from Fig. 8b. That is, Z swaps
parties B and C (their public keys), then adds party D on behalf of B to the group by adding
D’s leaf and re-keying B’s new direct path. Z instructs D to join the group using w. If D does
not accept the welcome message or not end up in the correct state (i.e., in a state that doesn’t
have the right group members) then Z aborts and outputs 0.

Removing B: Next, Z instructs D to remove B by creating a respective proposal p′, commit to
this proposal and process the respective commit message c′. Z verifies that D ends up in the
expected state and otherwise aborts and outputs 0.

Comparing Keys: Finally, Z queries for D’s group key key. At the same time, Z also computes
the expected group key key′ by taking D’s commit message c′ and using the secret key known
to Z marked in Fig. 8c and perform the same computation C would in the ITKAtk-3 protocol.
If the keys match, i.e., key = key′, then Z outputs 1 and 0 otherwise.

It remains to convince ourselves that the attack does work, i.e., Z distinguishes with non-
negligible probability for any simulator S. First, we observe that in the hybrid world the ratchet
tree from Fig. 8b represents a valid one that D will accept: In Fig. 8a C’s leaf signature only
attested to C’s leaf key (the green one) as the parent hash field is empty. Second, A’s leaf signature
does not attests to B’s leaf key (but only the blue ones) as the parent hash only includes the nodes
on A’s direct path to the root. Third, Z can re-key B’s new path and attest to the fresh keys (the
red ones) using the leaked signing key. By correctness of the protocol, thus, D accepts w to join
the fake group. Further, by correctness D accepts c′ and key = key′. Hence, when interacting with
the hybrid world then Z outputs 1.

Finally, consider the ideal-world. First, we can observe that in order for Z not to abort and
output 1 the party D must be joined to a detached root root1 as no other state matches to correct

63

members. The root will moreover remain detached for the rest of the operation as neither A,B,
nor C create or process any further commit messages. We now argue that safe(c′) = true. First,
it is easy to see that S has to join D to a detached root as no other group state matches, e.g,.
none has D as a member. (Z can easily detect such a mismatch and simply output 0.) Next,
observe that D has not been corrupted implying that the node created by D’s commit is marked
with Node[c′].stat = good and has no exposures, i.e., Node[c′].exp = ∅. As a result, we have
safe(c′) ⇐⇒ ¬*can-traverse(c′). Moreover, clearly only case (d) of *can-traverse(c′) applies as
c′ has a parent state and no party has been added in the respective commit. Finally, we argue that
know(c′, id) = false for all id ∈ {idA, idB , idC , idD}:

– For A, observe that A has never been corrupted, i.e., (A, ∗) /∈ Node[c′]. exp and spkA /∈ Exposed.
Moreover, *secrets-injected(c′, idA) = false as A ̸= Node[c′].orig, no update or add proposal
belongs to c′ (i.e, Prop[p].act ≠ up-∗ and Prop[p].act ̸= add-idA-∗ for all pro ∈ Node[c′].pro).
Thus, we obtain *state-directly-leaks(c′, idA) = false, excluding branch (a). For branch (b)
we observe that by the same argument *secrets-injected(root1, idA) = false (where root1
denotes the detached node D has joined) which in turn implies know(root1, idA) = false as
root1 has no parent node. Finally, we observe that c′ does not have a child node, trivially
excluding branch (c).

– know(c′, idC) = false and know(c′, idD) = false follow analogously.
– For B, observe that B /∈ Node[c′].mem and, thus, B /∈ Node[c′].exp. (Recall that Node[c′].exp

only tracks direct corruptions in the given state.) As a result, *state-directly-leaks(c′, idB) =
false. Further, since B has been removed from that state, i.e., there exists p ∈ Node[c′].pro
with p.act = rem-idB we obtain *secrets-replaced(c′, idB) = true.

Thus, we can conclude that when Z interacts with the ideal-world functionality and any arbitrary
simulator S, that after D processes the final commit message c′ and Z queries for their key, it
holds that safe(c′) = true. Thus, the functionality samples Node[c′].key fresh and uniformly at
random, resulting in key ̸= key′ and hence Z outputting 0 with overwhelming probability. ⊓⊔

64

	Introduction
	Background and Motivation
	Our Contribution
	Related Work
	Outline of the Rest of the Paper

	Preliminaries
	Notation
	Universal Composability

	Insider-Secure Continuous Group Key Agreement
	Overview
	PKI Setup
	Interfaces of the CGKA Functionality
	History Graph
	Details of the CGKA Functionality

	The Insider-secure TreeKEM Protocol
	Security of ITK
	Insider Attacks
	An Attack on Authenticity in Certain Modes
	Breaking Agreement
	Inadequate Joiner Security (Tree-Signing)
	IND-CPA Security Is Insufficient

	Sub-optimal Security of ITK
	Preliminaries
	Notation
	Cryptographic Primitives

	Details of the Security Model
	PKI Functionalities
	The CGKA Functionality

	Details on the ITK Protocol
	Protocol State
	Setup Algorithms
	Protocol Algorithms
	Simplifications and Deviations

	Proof of Theorem 1: Security of ITK
	ITK* Guarantees Consistency
	A New Security Notion for PKE
	ITK* Guarantees Confidentiality
	ITK* Guarantees Authenticity
	Stronger Security of ITK

	Details on the Attacks
	An Attack on Authenticity in Certain Modes
	Breaking Agreement
	Inadequate Joiner Security (Tree-Signing)

