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Abstract

This paper initiates a new direction of research for searchable symmetric encryption
(SSE). We provide comprehensive security models and notions for SSE in the simulation
tradition that encompass leakage from the whole SSE system, including accesses to
encrypted indices and the encrypted database documents themselves. We provide static
and dynamic SSE constructions targeting our new notions. Our constructions involve a
combination of novel techniques: bucketization to hide volumes of responses to queries;
delayed, pseudorandom write-backs to disrupt access patterns; and indistinguishable
search and update operations. The oblivious operations make it easy to establish strong
versions of forward and backward security for our dynamic SSE scheme and rule out
file-injection attacks. Our implementation of the dynamic SSE scheme demonstrates
that it offers very strong security against general classes of leakage-abuse attack with
moderate overhead. Our schemes scale smoothly to databases containing hundreds of
thousand of documents and millions of keyword-document pairs.

1 Introduction

The advent of cloud computing potentially allows individuals and organizations to outsource
storage and processing of large volumes of data to third party cloud servers. However, this
ability to harness external storage and processing capabilities comes with privacy concerns.
Ongoing threats from malicious insiders and external attackers had led to a situation where
clients no longer trust cloud service providers to respect the confidentiality of their data.

A simple and efficient solution for ensuring the privacy of client data is to encrypt it us-
ing some conventional encryption algorithm (for instance, using the Advanced Encryption
Standard (AES) block cipher in some appropriate mode) before offloading it to the cloud
server. This solution guarantees privacy of data at rest and in transit. At the same time,
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this solution renders the server incapable of performing computations on the data without
decrypting it first.

Searchable Symmetric Encryption (SSE). The goal of Searchable Symmetric En-
cryption (SSE) [41, 17, 12, 9, 8] is two-fold: (a) to allow a server to execute keyword search
queries directly on a collection of a client’s encrypted documents in an efficient manner,
and (b) to ensure client privacy by minimizing the amount of information “leakage” to the
server in the process. Existing proposals for SSE in the literature can be broadly divided
into two categories – static SSE schemes that support keyword searches for a fixed collection
of documents [12, 9, 33], and dynamic SSE schemes that also allow for updates of encrypted
document collections [11, 27, 8, 4, 24, 6, 10].

Leakage vs Efficiency. The main challenge in designing SSE schemes is ensuring an ap-
propriate balance between information leakage and efficiency. For instance, the most general
notion of SSE with optimal security guarantees (wherein little or no information is leaked to
the server) can be achieved using techniques like fully homomorphic encryption (FHE) [16]
and Oblivious RAM (ORAM) [18]. However, these techniques today incur significant com-
putational and/or communication overheads. So designers of SSE currently opt for better
practical performance at the cost of leaking some information to the server [12, 9, 8, 24].
Types of leakage widely seen in the SSE literature include access pattern (which locations
of a data structure are accessed for a given query), equality pattern (whether two queries
correspond to the same underlying keyword), volume pattern (how many documents match
a given keyword query), result pattern (which documents match a given keyword query)
and intersection pattern (which documents are common to the result pattern of two or more
queries). Given the current state-of-the-art in SSE, such leakage seems necessary in order
to obtain reasonable performance

Leakage-Abuse Attacks. Leakage from SSE schemes (both static and dynamic) can be
exploited by an adversarial server to infer sensitive client information. Islam et al. [23] and
Cash et al. [7] gave query recovery attacks that exploit access pattern leakages and prior
knowledge about the database. Zhang et al. [47] proposed active “file injection attacks”,
that completely break the query privacy guarantees of existing SSE schemes by exploiting
their access pattern and result pattern leakages. SSE schemes supporting range queries can
be broken by attacks exploiting either access pattern leakages [32, 20] or volume leakages [28,
19, 21].

Leakage Mitigation Challenges. Defending SSE schemes against leakage-abuse at-
tacks while maintaining acceptable search performance is difficult. The state-of-the-art
is represented by recent work [26, 13] giving SSE schemes that provably leak little or no
information to the adversarial server. Kamara and Moataz [26] achieve this via a novel
data structure called a volume-hiding encrypted multi-map. This provides better search
performance compared to näıve padding. Demertzis et al. [13] propose a technique called
“adjustable leakage” which uses a combination of ORAM-like techniques with padding to
selectively hide access pattern and volume leakages, while maintaining reasonable search
performance. A common feature underlying these recent proposals (and indeed the ma-
jority of prior work) is that they only consider leakage from the encrypted search index, a
specialized data structure allowing the client to recover the document identifiers matching
a given query.
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Surprisingly, however, these proposals ignore leakage from the final step in processing a
query, in which the client actually fetches the encrypted documents from the server. This
omission is understandable when the leakage from the search index already subsumes the
leakage from the final processing step, as is the case in many existing SSE schemes [12,
9, 8, 6, 33]. But it can no longer be ignored for more recent schemes in [26, 13] because
they do succeed in reducing the encrypted search index leakage to the point where leakage
from other system components becomes dominant. Concretely, it is straightforward to
transfer existing leakage-abuse attacks based on co-occurrence patterns or volumes to the
document level, thereby breaking the schemes in [26, 13] when properly viewed in the system
context. It is currently unclear whether known leakage mitigation techniques that work for
the encrypted search index can be scaled to the overall encrypted database. In particular,
existing techniques tend to rely on introducing redundancies in the search index in order to
reduce leakage. Such redundancy-based approaches are likely to be prohibitively expensive
when applied to the entire encrypted database.

1.1 Our Contributions

These observations motivate a change of perspective. Instead of focussing on individual
components of a system using SSE, such as the encrypted search index, we need to take
a system-wide view of SSE and its leakage. In this paper, we propose a new approach
to designing and analyzing leakage-minimal yet efficient SSE schemes supporting keyword
searches over both static and dynamic databases. Crucially, we include in our models,
constructions and analysis for SSE the client’s interactions with both the (encrypted) index
and the data storage component of a searchable encryption system. We expand on these
contributions below.

System-wide Security Definitions. We propose new security definitions for both static
and dynamic SSE schemes that take into account the system-level leakage during setup,
searches, and updates. As is standard, our definitions are for an honest-but-curious server
and we use the real world/ideal world simulation paradigm with leakage profiles to model
security. Security consists of showing that, for every adversary, there is a simulator that
given only the leakage profile, can provide an ideal world view for the adversary that is
indistinguishable from what it would observe in the real world. Informally, this means
that the adversary only gains information from the leakage profile. In contrast to previous
analysis, we take a system-wide view, including in our execution model and leakage profile
the action of retrieving encrypted documents from the data storage component as well as
the leakage from the encrypted search index.

Oblivious Operations. For dynamic SSE, we introduce a new system-wide security
notion called “obliviousness of operations”, which requires that search and update query
operations should be computationally indistinguishable to the server. This security notion
has several advantages. First of all, it naturally implies that search and update operations
incur computationally indistinguishable leakages. This allows for a unified security definition
with respect to searches and updates for dynamic SSE schemes, as opposed to separate
definitions in the existing literature.
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Obliviousness of operations also yields stronger notions of forward and backward privacy
than in [4, 6, 10]. For instance, it yields a notion of forward privacy that requires update
operations (both inserts and deletes) to hide not only the content but also the size (in
terms of number of keywords) of the document(s) being updated, something not addressed
in previous work. It also rules out a very strong class of file injection attacks [47] that can
otherwise compromise Type-1 [6] (and all other weaker notions of) backward privacy. In
fact, obliviousness of operations implies a notion of backward privacy that requires searches
to completely hide both the result pattern and the update history associated with the
underlying keyword. This is far stronger than Type-1 backward privacy, the strongest
notion of backward privacy achieved by existing SSE constructions.

New Construction Techniques. We propose new SSE constructions, giving both static
and dynamic schemes (named static SWiSSSE and dynamic SWiSSSE). Dynamic SWiSSSE
supports keyword searches and updates (insertions and deletions); both operations require
two rounds of communication between the client and the server. We prove that static and
dynamic SWiSSSE are adaptively secure under our new system-wide security definitions
with respect to well-defined leakage profiles. At the heart of our new constructions are two
techniques, keyword frequency bucketization and delayed, pseudorandom write-backs.

Keyword frequency bucketization refers to dividing the list of all keywords across multiple
buckets such that each keyword in a given bucket is “padded” to have the same frequency
as the most frequent keyword in that bucket. This mitigates volume leakage. Unlike worst
case padding which either imposes a linear search overhead [25] or a quadratic storage
complexity, our technique imposes a search overhead proportional to the frequency of the
most frequent keyword in each bucket, while retaining linear storage complexity. The volume
leakage incurred by our strategy is a function of the number of buckets used and the relative
distribution of keywords across them. Indeed, there is an interplay between the bucketization
strategy, the padding overhead, and the security that we obtain. We explore this in detail
in the main body.

To mitigate access pattern leakage, we use a delayed, pseudorandom write-back strategy.
After each search or update operation involving a given keyword, we update all locations
pertaining to the keyword and the documents which contain it, throughout the entire en-
crypted search index and the encrypted database, in a pseudorandom manner. To limit the
leakage from this “write-back” step, we store the information in a stash on the client side
and flush a pseudorandomly chosen fraction of it back to the server at regular intervals.
In this way, data pertaining to multiple keywords gets mixed during the write-backs. This
ensures that the server cannot correlate search and update operations through write-backs.
Now, for correctness, search and update operations must also be done over the stash, since
the server storage at a given moment no longer fully captures the state of the system. We
design our schemes such that the latency of online operations (searches and updates) is not
affected by the latency of write-back operations, which occur independently. All operations
in our static and dynamic schemes require exactly two rounds of online communication.
This contrasts with the polylogarithmic round complexity of previous SSE schemes using
ORAM-style techniques [6, 10].

Of course, delayed write-backs have been used in the context of other cryptographic protocols
such as ORAM [18], anonymous communication and anonymous blockchain transactions.
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But this is, to our knowledge, their first use for leakage mitigation in SSE.

Leakage Analysis. We formally prove the security of static and dynamic SWiSSSE with
respect to our system-wide security definitions and specific leakage profiles. This leaves
the question: what is the impact of that leakage? To answer that question, we perform a
detailed cryptanalysis. In particular, we show that the known leakage abuse attacks fail
against our schemes. We also introduce a significantly more powerful version of the IKK
attack [23] and show that it fails, provided we choose an appropriate bucketization strategy.
We have made the cryptanalysis of our own schemes as “unfriendly” as possible but of course
welcome further analysis from the community.

Implementation. We provide a Java implementation of dynamic SWiSSSE and evaluate
its performance. We used Redis [1] as the underlying database system. For comparability
with previous research in SSE, we use the Enron email corpus [46] for our experiments.
We experimented with a range of subsets of this corpus to gauge performance for different
database and keyword set sizes. As a flavor of our results, for a database of 400K docu-
ments which corresponds to 1.3 GB of uncompressed plaintext storage, the client storage
used by our scheme is less than 50 MB and the storage used by the server is about 3 GB;
the throughput of our scheme is 1.77 documents per millisecond (ms) for setup, 2.85 docu-
ments per ms for search queries, and 1.14 documents per second for an average insertion or
deletion.1

Organization. Section 2 provides essential preliminaries and background material on
SSE. Section 3 introduces the core ideas behind static SWiSSSE; Sections 4 and 5 develop
these into our full proposal for static SWiSSSE and prove its security. Section 6 presents
the cryptanalysis of the proven leakage of static SWiSSSE. Section 7 presents the dynamic
version of SWiSSSE and presents a detailed discussion of its security properties, including its
forward and backward privacy guarantees. Section 8 presents an asymptotic performance
analysis of SWiSSSE in both the static and dynamic cases. Finally, Section 9 describes
our prototype implementation of SWiSSSE and its evaluation. Additional details on our
cryptanalysis experiments and on the database used for our performance evaluation can be
found in the appendices.

2 Preliminaries and Background

In this section, we introduce notations and preliminary background material. We present
definitions of basic cryptographic primitives used in the paper, as well as background ma-
terial on SSE.

1The query response time for insertions and deletions depends on the minimum keyword frequency of
the document; here we are reporting the average case.
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2.1 Notation

Throughout the paper, λ is the security parameter and negl(λ) denotes a negligible function

in λ. If X be a set or list, then we write x
k←−$ X to mean uniformly randomly sample k

elements from X without replacement. We omit k from the notation when k = 1.

We note that the keys for cryptographic functions are sometimes omitted from our notation
for readability. So, if F is a pseudorandom function we simply write F (x) for the result of
applying F to x – how and when the key is sampled will be obvious from context. We use
a similar convention for symmetric encryption. For a pseudorandom function F we write
AdvPRF,tF,A for the advantage of an adversary A in distinguishing between F and a truly
random function with at most t queries.

2.2 Key-value Stores

The basic data structure used by all our constructions is a “key-value store”. This data
structure implements an associative array abstract data type that maps (non-cryptographic)
keys to values. The data structure supports efficient execution of the following operations:

• init : takes no input and initialises an empty key-value store.

• get : takes as input a key k and returns the value associated to the key. We abuse the
notation and use get for getting the values for a set of keys too.

• put : takes as input a key-value pair (k, v) and sets the value associated to k to v. We
abuse the notation and use put for putting a set of key-value pairs too.

• contains : takes as input a key k and returns a boolean which indicates if k is one of
the keys in the key-value store.

• del: takes as input a set of keys I and remove the key-value pairs with the keys in I
from the key-value store.

• pop: takes as input a natural number n. It selects n uniformly random key-value
pairs from the store, removes them from the store and returns them as the result of
the call.

We do not explicitly distinguish between the name of the data structure and its state. For
example, if S is a key-value store we write S.get(k) for the result returned by get(k) on the
current state of S.

2.3 Basic Cryptographic Primitives

This section presents the definitions and security notions for various cryptographic primitives
used in the paper.

Pseudorandom functions. A pseudorandom function (PRF) is a polynomial-time com-
putable function

F : {0, 1}λ × {0, 1}` −→ {0, 1}`
′
,
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such that for all PPT algorithms A, we have∣∣∣Pr
[
AF (K,·) = 1

]
− Pr

[
AG(·) = 1

]∣∣∣ ≤ negl(λ),

where K
R←− {0, 1}λ and G is uniformly sampled from the set of all functions that map

{0, 1}` to {0, 1}`′ .

Symmetric-Key Encryption. A symmetric-key encryption scheme SKE consists of the
following polynomial-time algorithms:

• KGen(λ): A probabilistic algorithm that takes the security parameter λ as input and
outputs a secret-key sk.

• Enc(sk, x): A probabilistic algorithm that takes as input a key sk and a plaintext x.
Outputs a ciphertext c.

• Dec(sk, c): A deterministic algorithm that takes as input a key sk and a ciphertext c.
Outputs the decrypted plaintext x.

A symmetric-key encryption scheme is said to be CPA-secure if for all PPT algorithms A
and any two arbitrary plaintext messages x0 and x1, we have

|Pr [A (Enc(sk, x0)) = 1]− Pr [A (Enc(sk, x1)) = 1]| ≤ negl(λ),

where sk ← KGen(λ).

2.4 Searchable Symmetric Encryption

We recall the syntax of searchable symmetric encryption (SSE) below. We consider a setting
where a client wants to outsource a database DB = {di} to a remote server, which it can later
query using keywords. We omit a fully formal treatment of unencrypted databases, which is
reasonably straightforward. We only make some conventions which are helpful to formalize
our results. We write DB[i] to mean the i-th document in the database. We assume that
each document d has a unique document identifier id(d). For simplicity, we assume that the
document identifiers runs from 0 to |DB|−1. For each document d we write W (d) for the set
of keywords contained in the document d. We write W {DB} for the multiset of keywords
in the collection of documents DB. We write DB(w) to mean the set of documents which
contains keyword w, so a search for keyword w should return DB(w). The formal treatment
below covers the case of dynamic databases where documents can be added and/or removed.
The case of static databases is a particular case.

Syntax. An SSE scheme Σ consists of four protocols Setup, KWQuery, Insert and
Delete between a client and a server. A query q from the client to the server takes the form
(op, args) where op is the operation of the query, and args are the additional arguments
required for the query. We say that Σ is static if only Setup and KWQuery are supported,
and dynamic if all four operations are supported.
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• Setup(1λ, DB) = (Clt.Setup(1λ, DB), Svr.Setup(EDB)) is a protocol between the client
and the server. The client takes as input a security parameter 1λ and a database DB,
and outputs (EDB, stClt), where EDB is an encrypted database and stClt is the client’s
internal state. The client sends EDB to the server and the server runs Svr.Setup(EDB)
to setup the encrypted database.

• KWQuery(sk, q, stClt; EDB) = (Clt.KWQuery(sk, q, stClt), Svr.KWQuery(EDB))
is a protocol between the client and server to support single-keyword query. The query
q in this case looks like (KWQuery, w), where w is the target keyword of the query.
The client takes as input a secret key sk, a search query q, and his internal state stClt.
The server takes as input the encrypted database EDB. The client and server interact
with each other and by the end of the interaction, the client gets (r, stClt) where r
is the result of the single-keyword query and stClt is the new state of the client; the
server state EDB may also be modified following the execution.

• Insert(sk, q, stClt; EDB) = (Clt.Insert(sk, q, stClt),
Svr.Insert(EDB)) is a protocol between the client and server to support update on
the database. An insertion query q takes the form (Insert, {w} , d), where d is the
document to be inserted and {w} are the keywords associated to the document. The
client takes as input a secret key sk, an update query q, and his internal state stClt.
The server takes as input the encrypted database EDB. The client and server interact
with each other and by the end of the interaction, the client gets (r, stClt) where r is
the response from the server and stClt is the new state of the client; the server gets
EDB where EDB is the encrypted database after the insertion operation.

• Delete(sk, q, stClt; EDB) = (Clt.Delete(sk, q, stClt),
Svr.Delete(EDB)) is a protocol between the client and server to support update on the
database. An insertion query q takes the form (Delete, d), where d is the document
to be deleted. The client takes as input a secret key sk, an update query q, and his
internal state stClt. The server takes as input the encrypted database EDB. The client
and server interact with each other and by the end of the interaction, the client gets
(r, stClt) where r is the response from the server and stClt is the new state of the
client; the server gets EDB where EDB is the encrypted database after the insertion
operation.

Correctness and Security. We now define correctness and security for SSE schemes.
We start with the latter, and then use some of the formalism to define correctness. As usual,
we formulate the security of an SSE scheme in terms of a leakage function which captures
the information an adversary can unavoidably learn. A scheme is secure with respect to a
leakage function if no adversary can distinguish between the real execution of the scheme
and an execution simulated given only the leakage of the real execution. It is helpful to
distinguish between the different places where leakage can occur, so we formally define a
leakage function as a quadruple L = (LSetup,LKWQuery,LInsert,LDelete).

The security definition below is parametric in the type of queries the adversary is allowed:
if these are only search queries then we are in the static setting whereas if they also include
update queries then we are in the dynamic scenario. Furthermore, we can distinguish
between non-adaptive and adaptive adversaries, depending on how they chose their queries.
In both cases the adversary attempts to distinguish between a real world (where it interacts
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with the real scheme) and an ideal world (where it interacts with a simulator which can
only access the leakage from the real execution).

Definition 1 (Security of SSE schemes). Let Σ = (Setup,KWQuery, Insert,Delete) be
an SSE scheme and consider the following probabilistic experiment where A is a stateful
adversary, S is a stateful simulator and L be the leakage function.

RealΣ,A(1λ) :

1. The adversary A selects a database DB and gives it to the challenger C.

2. The challenger C generates a key sk, and encrypts the database as EDB← Setup(1λ, sk, DB).
The challenger C sends the encrypted database EDB to the adversary A.

3. The adversary picks a polynomial number of queries q1, . . . , qpoly(λ). For each query,
the challenger C interacts with the adversary A to execute the query protocol, where
the challenger plays the client and the adversary plays the server.

4. Finally, the adversary A outputs a bit b ∈ {0, 1}.

IdealΣ,A,S(1λ) :

1. The adversary A selects a database DB and gives LSetup(DB) to the simulator S.

2. Using LSetup(DB), the simulator S generates an encrypted database EDB and return it
to the adversary A.

3. The adversary picks a polynomial number of queries q1, . . . , qpoly(λ). For each query,
the simulator S computes the transcript of the query using the appropriate component
of the leakage function L, and sends it to the client.

4. Finally, the adversary A outputs a bit b ∈ {0, 1}.

We say that Σ is L-secure, if there exists a probabilistic polynomial-time (PPT) simulator
S such that for all PPT adversary A,∣∣Pr

[
RealΣ,A(1λ) = 1

]
− Pr

[
IdealΣ,A,S(1λ) = 1

]∣∣ ≤ negl(λ).

We say that Σ is non-adaptively secure if the adversary A chooses the queries before exe-
cuting them. We say that Σ is adaptively secure if the adversary A can choose his queries
based on the past transcripts.

Correctness. To define correctness, we use the game RealΣ,A(1λ) above, which models
the execution of the protocol against an arbitrary adversary A. We define correctness by
considering the same execution but only against the class of honest-but-curious adversaries
who execute the protocol honestly. We say that such an adversary A wins the correctness
game, if at any point during the execution of a single-keyword search query q for which the
data returned to the client is not the same as the data obtained by executing the queries
against the unencrypted database. For an adversary A which makes at most k queries, we
define its advantage in breaking correctness, Advcorr,kΣ,A (1λ), as the probability of this event.
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Forward and Backward Privacy. One of the drawbacks of the definition above is that
security with respect the notion above only guarantees security against passive adversaries.
In a recent line of work, powerful file-injection attacks have been discovered [47, 38] which
are devastating if the attacker is able to insert a set of documents with keywords of his
choice. On a high level, the attacks work by abusing the information leaked from the
maliciously inserted documents. For example, if the adversary inserts a document with
keywords w1 and w2 and the token of keyword w1 can be linked to the other tokens of the
same keyword, then the adversary learns the number of documents associated to keyword w1.
Even worse, if a single-keyword query is executed on keyword w1 and the list of document
identifiers associated to w1 is leaked by the scheme, then the adversary learns the exact set
of documents that contains w1.

In the light of this powerful attack, forward [43, 15, 5, 4] and backward private SSE schemes
[6] are proposed to limit the exposure of the schemes to file-injection attacks. Intuitively, a
scheme is forward private if an update on the database only leaks the number of keywords
inserted but not the keywords themselves. This means the first attack described above does
not work against forward-private schemes. Backward privacy is a bit more involved, but on
a high level, a scheme is said to satisfy backward privacy if a single-keyword search with
keyword w on the database only leaks some information about keyword w itself and no
the other keywords. This means the second attack described above still works, but at least
information regarding keyword w2 is not leaked at that point in that.

3 Static SWiSSSE: Warm-Up

To highlight some of the key techniques underlying SWiSSSE, we start by considering a
highly simplified setting where we have a static database in which each document contains
precisely one searchable keyword. We explain how to extend this approach to the general
case of arbitrarily many keywords per document in Section 5.

Server Storage. Our SSE scheme offloads the storage of two encrypted data structures to
the server – an encrypted lookup table that is indexed by the set of keywords in the database,
and an encrypted document array, which is indexed by the documents. For each keyword,
the corresponding entry in the lookup table stores (in encrypted form) pointers to the
corresponding entries in the document array. For each document, the document array stores
(again in encrypted form) the contents of the document, the list of keywords it contains,
and some auxiliary information necessary for searches. Both indices are implemented as
key-value stores where keys are calculated using a pseudorandom function, and values are
encryptions under a symmetric key owned by the client.

Bucketization. To limit keyword frequency leakage (i.e. in how many documents a
keyword appears), we use a frequency bucketization strategy, i.e., we pad the outsourced
database with fake occurrences of keywords as well as with additional fake documents. For
each entry in the keyword lookup index we store a mix of pointers pointing to “real” and
“fake” documents in the document array. Bucketization inherently introduces a tradeoff
between security and efficiency, since the work done by the server is now proportional to
the “bucket frequency” as opposed to the true frequency of the keyword. We expand more
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on this in Section 4.

Local Stash and Write-backs. If the server-side data structures use static addresses (mean-
ing that a given address in the keyword lookup index and/or the document array always
corresponds to a fixed keyword and/or document), then the scheme inherently suffers from
“access pattern leakage”. To prevent such leakage (and hence the known attacks exploiting
them), we ensure that all accesses, even those involving the same keyword, “touch” differ-
ent parts of the server state. We achieve this through a delayed, pseudorandom write-back
technique: after each operation involving a keyword we update the addresses of the keyword
and of all documents containing it across the encrypted data structures stored at the server.

More concretely, we first “locally stash” all the information returned by a server in response
to a keyword search query at the client. This information includes the list of documents,
the number of times the keyword has been accessed, and the number of times each doc-
ument containing the keyword has been accessed. Then, at a later time, the client issues
a “write-back operation”, wherein it flushes out this information from its stash onto the
encrypted data structures at the server, using fresh encryptions and to a new, pseudoran-
domly generated set of addresses. The next time the client issues a search query involving
the same keyword, the server will access the new set of addresses in both the lookup in-
dex and the document array, and will observe only the fresh encryptions of the same (or
updated) content.

Note that addresses as described above correspond to keys in the server’s key-value stores.
The client need only assume that the server provides a correct implementation of the key-
value store and avoid using colliding addresses/keys. We defer a formal description of the
stashing and write-back procedure to Section 5. Note also that, intuitively, a larger client
stash leads to a larger storage requirement on the client, but lowers the frequency with which
the client needs to flush its stash and trigger write-back operations. This allows flexibility
in trading-off client storage with bandwidth requirements.

Garbage Collection. Observe that each write-back operation uses up newly generated
addresses (keys) in the encrypted keyword lookup index and the encrypted document array.
The corresponding “old addresses” are never used in the future and can be garbage-collected
by the server after handling a query. This avoids the required server-side storage growing
linearly with the number of queries. Of course, at this point, the data read is already stored
in the stash of the client, so there is no data loss on account of the garbage collection.

Search Queries. A search query involving a keyword w proceeds as follows:

1. The client first checks its private stash to see if the transcript of a previous query
involving w already exists in its stash. If yes, it directly obtains the search result from
the stash and does not initiate any further interaction with the server. Otherwise, the
client sends a search token to the server and receives back the entry corresponding to
w in the encrypted lookup index.

2. Next, the client decrypts the entry received from the server and retrieves the list of
pointers to addresses in the encrypted document array, which it sends across to the
server. The server retrieves the corresponding entries from the encrypted document
array and sends these back to the client.
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Figure 1: An illustration of the operations related to keyword search and delayed write-backs corresponding
to two keywords w1 (which occurs in documents d1 and d2) and w2 (which occurs in documents d3 and d4).
The query on w2 is executed before the query on w1. The figure on the left shows the status of the client
stash and the encrypted data structures before the query on w1. As soon as the query on w1 is made, the
corresponding entries in the encrypted data structures are deleted by the server, while the client stash gets
updated with the same information. The figure in the middle reflects this. The figure on the right illustrates
a delayed write-back operation for w2.

3. Upon receiving the encrypted entries from the server, the client decrypts them, dis-
cards any fake documents and retains the real ones.

4. Finally, the client caches the whole transcript of the search operation in its local stash,
so that its contents may be written-back at a later point in time.

Figure 1 illustrates with an example how keyword searches and delayed write-backs affect
the client stash and the state of the encrypted data structures at the server. Note that
write-backs are only triggered intermittently by the client whenever its private stash is filled
to capacity and needs to be flushed. Hence, the search latency is not affected by the latency
of write-back operations.

System-Wide Leakages. There are two kinds of system-wide leakages potentially in-
curred by SWiSSSE – access-pattern leakages and write-back leakages. We provide here an
informal overview of what the server can infer from these leakages. We defer the formal
leakage profile enumeration and its cryptanalysis to Sections 5 and 6.

Observe that across both encrypted data structures, the server accesses any given address
at most twice, once during a write-back and once during a subsequent read operation (the
entry is subsequently deleted and the corresponding address is never re-used). Hence, unlike
most existing SSE schemes, including those in [12, 9, 8, 24, 33], the access-pattern leakage
in our simplified schemes does not allow the server to immediately infer whether the same
keyword was queried twice. It also does not immediately reveal if the same document
identifier appears across searches pertaining to different keyword queries.

The other potential source of leakage is the write-back operations. In order to make it hard to
correlate write-back operations relating to the same search operation, we use a “randomized”
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write-back strategy. More specifically, write-backs corresponding to multiple queries are
randomly interspersed in time and do not follow any specific ordering: what is written back
during a particular write-back operation is pseudorandomly selected from everything sitting
in the stash. Thus write-backs “mix and match” across multiple queries from the client’s
stash. Hence, each individual write-back that occurs at time t may correspond to more than
one query executed prior to time t, and an adversarial server will find it hard to correlate a
write-back operation to the query to which it corresponds.

Intuitively, the ease with which the leakage can be exploited grows with the frequency of
write-back operations, and hence inversely with the size of the local stash at the client.
This provides yet another source of security-efficiency tradeoff that we discuss in detail
subsequently.

4 Bucketization in SWiSSSE

As mentioned in Section 3, we mitigate volume leakages in SWiSSSE through a frequency
bucketization strategy over the set of keywords in the document collection. At a high level,
this entails dividing the list of all keywords across multiple buckets such that each keyword
in the same bucket is “padded” to have the same frequency as the most frequent keyword
in that bucket (also referred to as “bucket frequency”). The core aim of bucketization is
to prevent generic volume/frequency leakage-based attacks on SSE. A prominent example
is [23], wherein Islam et al. exploited the correlations across frequency leakage from multiple
queries to launch query recovery attacks on SSE schemes.

In this section, we detail the bucketization strategy used in our constructions, and its impact
on the efficiency of our construction. Section 6, presents the results of cryptanalysis showing
the effectiveness of our bucketization approaches.

Worst-case padding. Note that a trivial bucketization strategy is “worst-case padding”
where every keyword is padded to have the same frequency. Although theoretically free
of volume leakage, this approach is extremely inefficient and either imposes a linear search
overhead [25] or a quadratic storage complexity, which we wish to avoid. Hence we opt
for strategies that, while theoretically less secure, offer significantly better leakage versus
efficiency tradeoffs in practice.

Fixed and Variable Bucket Sizes. We propose two strategies for bucketing keywords
using buckets of fixed and variable sizes, respectively. In the first strategy, we arrange the
keywords in decreasing order of frequency and divide them into equal-sized buckets (of size
B say). We then pad with fake data so as to equalise the frequency of all keywords in each
bucket. Hence, the adversary can guess the queried keyword with probability at most 1/B.
The tradeoff here is that a larger B (i.e. larger but fewer buckets) incurs lower leakage but
more padding and so greater search overheads. This strategy yields good search efficiency in
practice for document collections following a Zipf power distribution [34], wherein frequency
of ranked keywords decays exponentially. The guessing probability of the adversary is
independent of the frequency of the queried keyword.
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In the second strategy, we place the keywords (arranged in decreasing order of frequency)
in increasingly larger buckets; in particular, each bucket is double the size of the previous
bucket. Note that the adversary’s probability of guessing a keyword correctly decays ex-
ponentially with decreasing frequency of the queried keyword. Since in practice, most of
the queried keywords typically have low frequency, this strategy achieves lower leakage in
practice as compared to the first strategy. However, due to the larger bucket sizes, it is
typically less efficient for queries involving low frequency keywords.

We provide in Section 6 an empirical evaluations of the security offered by these strategies
against co-occurrence leakage-based cryptanalysis over real-world databases, as well as their
impacts on the storage and communication overheads of SWiSSSE.

Padding Strategies. Bucketization of keywords requires padding the original database
with fake data. A natural padding strategy is to add “fake occurrences” of each keyword
across the existing documents, such that the keyword frequencies grow to the desired bucket
frequency. This approach incurs only moderate additional storage overheads at the server
since the number of documents remains the same, and only the encrypted lookup index
grows in size. Indeed this suffices for the static version of SWiSSSE.

However, we choose to additionally insert fake documents containing uniformly random
keywords into the database, subject to the constraints imposed by the bucketization strategy.
While this requires more storage on the server, it supports dynamic databases more elegantly,
since once can perform document insertion by “transforming” the slot for a fake document
into a slot for a real one in a computationally indistinguishable manner (see the dynamic
version of SWiSSSE in Section 7 for details).

Parameter Choices. In SWiSSSE, we used fixed bucket sizes, and pad with fake keyword
occurrences such that the minimum ratio between the padded keyword frequency and the
original keyword frequency is 2. We also insert as many fake documents as real documents.
With respect to our dynamic construction (described in Section 7), this effectively allows for
doubling the number of documents in the database via document insertions (by incremen-
tally transforming fake documents into real ones), and for (at most) doubling the number
of documents containing a given keyword w without changing its bucket frequency. In Sec-
tion 6, we experimentally show that for these choices of parameters, the success rate of a
highly refined query recovery attack remains low against SWiSSSE, even in the presence of
true co-occurrence information of the padded database as auxiliary leakage.

5 Static SWiSSSE: Detailed

In this section, we formally describe SWiSSSE for general but static databases, where each
document in the database contains multiple searchable keywords. The main technical chal-
lenge compared to the simplified case described in Section 3 is that each time we update
a document address (during a write-back) we must also update all pointers to that new
address for the multiple keywords that appear in that document. We handle this using
auxiliary write-backs.
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We begin with an overview of the key changes from the simplified case, and then provide the
formal description. The formal description adheres to the definitions for SSE in Section 2.4.

5.1 Changes from the Simplified Case

Auxiliary Write-Backs. At a high level, we opt for the following strategy in the case
of general databases: whenever a document d` is scheduled to be flushed from the client’s
stash and written back to the encrypted document array, the client additionally schedules
an auxiliary write-back for each keyword wi occurring in d`.

To understand why auxiliary write-backs ensure search correctness, consider the following
three scenarios:

1. Suppose that a query on wi is issued before d` is written back. At this point, the
client can directly retrieve d` from its private stash.

2. Next, suppose that a query on wi is issued after d` has been written back but before
the auxiliary write-back for wi is executed. In this case, the pointer in the lookup
index is invalid, but client can refer to its stash to check if an auxiliary write-back for
wi is scheduled. This allows it to recover the new pointer and use it for the search
operation.

3. Finally, suppose that a query on wi is issued after the auxiliary write-back for wi has
been executed. This again does not affect search correctness because the entry for wi
in the keyword lookup index now points to the “new” address for d` in the document
array.

Moreover, these write-backs impose no extra bookkeeping overhead at the client, since they
do not need to be executed in sync with the original write-back for the document.

Restructuring the Keyword Lookup Index. To support auxiliary write-backs, we
restructure the keyword lookup index. For simplicity of presentation, we present a simpli-
fied version of the restructuring. This incurs some undesirable leakage, which we address
subsequently.

Instead of storing a single entry for each keyword wi, we now store an entry for each keyword-
document pair (wi, d`) such that d` contains wi. The address for this entry is generated
as F (K,wi||j||cntwi), where F is a PRF with key K, j is a counter that runs from 0 to
|DB(wi)| − 1 (where DB(wi) denotes the set of documents containing keyword wi), and cntwi

is a per-key word counter held in the client’s stash which records how many times wi has
appeared in search queries. Each entry stores a ciphertext encrypting a single pointer to
the address of some d` in the document array.

In keeping with our “frequency bucketization strategy”, we also create and store in the
lookup index additional “fake” entries of the form (wi, d̃`), where d̃` is a fake document.
The address for each such fake entry is generated as F (K,wi||j′||cntwi), where j′ is a counter
that runs from |DB(wi)| to one less than the bucket size for wi. Each such entry again stores

a single ciphertext, now encrypting a pointer from wi to the fake document d̃`.
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Figure 2: An illustration of the operations related to keyword search and delayed normal/auxiliary write-
backs corresponding to keyword w3 (which occurs in the document d3) and document d2 (which contains
multiple keywords, including w1 and w2), respectively. The figure on the left shows the client stash and the
encrypted data structures before the query on w3. As soon as the query on w3 is made, the corresponding
entries in the encrypted data structures are deleted by the server, while the client stash gets updated with
the same information. The figure in the middle reflects this. Finally, the figure on the right illustrates a
delayed auxiliary write-back operation for d2. Observe that d2 gets written back (in encrypted form) to a
pseudorandomly generated location in the document array. Additionally, as part of the auxiliary write-backs
associated with d2, the keyword-document pairs (w1, d2) and (w2, d2) get written back (in encrypted form)
to pseudorandomly generated locations in the keyword lookup index.

This makes the lookup index amenable to auxiliary write-backs. In particular, the auxiliary
write-back for a keyword wi occurring in d` targets the address F (K,wi||j||cntwi

), and
updates specifically the pointer from wi to d`.

Leakage to the Server. Note that each auxiliary write-back corresponding to a keyword-
document pair (wi, d`) causes the server to overwrite an existing entry in the keyword lookup
index. This is never the case for “normal” write-back operations, since they target freshly
generated pseudorandom addresses. This leaks some information to the server. In particular,
the server is able to correlate each auxiliary write-back involving a certain keyword wi with
the last normal write-back involving wi (since both sets of write-back operations target the
same addresses in the lookup index). This leaks the following information: (a) whether wi
was the subject of a previous query, and if yes, (b) that wi must have been queried at some
point in time prior to the corresponding normal write-back operation.

Auxiliary Addresses for Auxiliary Write-Backs. To prevent the server from cor-
relating auxiliary write-backs to the last normal write-back involving the same keyword, we
choose to dissociate the two sets of addresses. More concretely, we generate separate sets of
addresses for normal and auxiliary write-backs involving the same keyword:

addrnorm(wi, d`, cntwi) = F (K,wi||j||(2 ∗ cntwi)),
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addraux(wi, d`, cntwi) = F (K,wi||j||(2 ∗ cntwi + 1)),

where j is again a counter that runs from 0 to |DB(wi)| − 1 and cntwi
is again the per-key

word counter held in the client’s stash which records how many times wi has appeared in
search queries. Similarly, for the fake documents associated with wi, we generate separate
sets of addresses for normal and auxiliary write-backs:

addrnorm(wi, d̃`, cntwi) = F (K,wi||j||(2 ∗ cntwi)),

addraux(wi, d̃`, cntwi) = F (K,wi||j||(2 ∗ cntwi + 1)),

where j′ is a counter that runs from |DB(wi)| to one less than the bucket size for wi.

Ensuring Search Correctness. Finally, to ensure that a search query on the keyword
wi correctly takes into account all auxiliary write-backs involving wi, the client now requests
the server to access both sets of write-back addresses for wi – normal and auxiliary – in the
keyword lookup index. If both sets of addresses exist for a particular document, the client
uses the pointer stored in the auxiliary write-back address; otherwise it uses the pointer
stored in the normal write-back address.

Figure 2 illustrates with an example how keyword searches and delayed normal/auxiliary
write-backs affect the client stash and the state of the encrypted data structures at the
server in the general version of static SWiSSSE.

5.2 Formal Description of Static SWiSSSE

We now turn the aforementioned ideas into a formal description of static SWiSSSE.

SWiSSSE.Setup. Algorithm 1 describes the setup procedure of static SWiSSSE. The
description uses a symmetric encryption scheme (KGen1,Enc,Dec) and a pseudorandom
function F with key generation algorithm KGen2. Note that for readability, we omit
explicitly describing the keys used by these cryptographic functions.

Note that the server stores an encrypted lookup table Svr.EI (to store the map between the
keywords and the document addresses in the encrypted form) and an encrypted document
array Svr.EA (to store the map between the document addresses and the actual documents
in encrypted form). The addressing mechanism and encrypted contents for these data
structures are as described above.

Similarly, the client stores in its local stash a plaintext lookup index Clt.I (to store the map
between the keywords and where they are in the encrypted document array before they are
written back to the server), and a plaintext document array Clt.A (to store the map between
the document identifiers and the documents). In particular, the plaintext document array
is used to store the documents retrieved from the previous queries and randomly select an
appropriate number of documents for auxiliary write-backs.

To implement the keyword bucketization strategy, the client creates a “padded version” DB′

of the original database DB before encrypting and offloading it to the server. More concretely,
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Algorithm 1 Static SWiSSSE.Setup

1: procedure Clt.Setup(1λ, DB)
2: /* Key generation */
3: Clt.sk1 ← KGen1(1λ)
4: Clt.sk2 ← KGen2(1λ)
5: Generate map G : W → N
6: Clt.G← G

7: /* Generate fake documents */
8: DB′ ← Fake Doc Gen(DB, Clt.G)
9: Clt.N ← |DB′|

10: /* Clt.N allows the client to locally maintain the size of the padded database. This
is used subsequently in the keyword search algorithm. */

11: EI, EA← {}
12: for i ∈ 1, . . . , |DB′| do
13: /* Get the set of keywords with counters */
14: x← {(w, Clt.KWCtr[w]) | w ∈W (DB′[i])}
15: /* Update the lookup index */
16: /* In the following expression, W (DB′[i]) denotes the set of keywords in the i-th

document of the padded database. */
17: for w ∈W (DB′[i]) do
18: j ← Clt.KWCtr[w]
19: EI← EI ∪ (F (w||j||0),Enc(id(DB′[i])))
20: /* Note that the zero at the end of the PRF input essentially indicates that

the number of search operations involving w is initially 0 at setup */
21: Clt.KWCtr[w]← Clt.KWCtr[w] + 1

22: /* Insert the encrypted document */
23: EA← EA ∪ (F (i||0),Enc(x||DB′[i]))
24: /* Reset the keyword counter */
25: for w ∈W (DB′) do
26: Clt.KWCtr[w]← 0

27: /* Initialise the stash */
28: Clt.I.init()
29: Clt.A.init()
30: Send (EI, EA) to the server

31: procedure Svr.Setup(EI, EA)
32: Svr.EI.init()
33: Svr.EA.init()
34: Svr.EI.put(EI)
35: Svr.EA.put(EA)

the client selects a map G : W → N. This map assigns each keyword to a bucket, such that
all keywords in the same bucket have the same frequency in the padded database DB′.

Let |DB(w)| and |DB′(w)| denote the frequency of the keyword w in the original and padded
databases, respectively. The map G allows the client to determine a padding procedure
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Algorithm 2 Static SWiSSSE.KWQuery: Address Retrieval Sub-Routine

1: procedure Clt.TokenGen(w)
2: L← {}
3: /* Generate all the possible addresses for the keyword */
4: for j ∈ 0, . . . , Clt.G(w)− 1 do
5: L← L ∪ {F (w||j||2 ∗ Clt.KWCtr[w])}
6: L← L ∪ {F (w||j||2 ∗ Clt.KWCtr[w] + 1)}
7: /* Roll forward the counter corresponding to w in preparation for the next query on
w */

8: Clt.KWCtr[w]← Clt.KWCtr[w] + 1
9: Send L to the server

10: procedure Svr.Index Lookup(L)
11: Send Svr.EI.get(L) to the client

Algorithm 3 Static SWiSSSE.KWQuery: Encrypted Document Retrieval Sub-Routine

1: procedure Clt.Document Retrieval(w,EL)
2: L← the latest addresses of the keywords from Dec(EL) if they are not in Clt.I
3: Add random document identifiers between 0 and Clt.N −1 that are not in the stash

to L until |L| = 2 · Clt.G(w)
4: M ← {}
5: for id ∈ L do
6: /* Compute the document addresses */
7: M ←M ∪ F (id||Clt.ArrCtr[id])
8: /* Increase the counters */
9: Clt.ArrCtr[id]← Clt.ArrCtr[id] + 1

10: Send M to the server

11: procedure Svr.Document Retrieval(M)
12: Send Svr.EA.get(M) to the client

Fake Doc Gen; the procedure pads the input database DB with “fake” documents to obtain
a padded version DB′ such that |DB′(w)| = G(w) for each keyword w. The client may use any
padding strategy to achieve the desired keyword frequencies as specified by G.

Additionally, to suppress volume leakages, the document addresses and the document con-
tents are padded to fixed lengths `0 and `1 respectively (both assumed to be public pa-
rameters) prior to encryption. Note, however, that we do not perform worst-case document
padding, which would potentially incur huge storage and communication overheads. Instead
we use a fragmentation strategy where each document is fragmented into sub-documents of
size `1; so we only really perform padding for the last fragment in case it has size less than
`1. We avoid these details in Algorithm 1 for the sake of readability.

SWiSSSE.KWQuery. We now describe the keyword query procedure for SWiSSSE. For
ease of representation, SWiSSSE.KWQuery is broken up into three sub-routines described
in Algorithms 2, 3 and 4. Again, for readability, we omit explicitly describing the keys used
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by the cryptographic functions in these algorithms.

These algorithms formally depict the following steps taken by the client during a keyword
query:

• Algorithm 2: The client generates a search token to look up both the normal and
auxiliary write-back addresses for wi in the encrypted keyword lookup index, receives
the corresponding encrypted entries from the server, and decrypts the results locally
to identify the relevant entries in the encrypted document array. It also updates the
counter keeping track of the number of search operations involving wi (this helps
generate the new write-back address for wi in the encrypted keyword lookup index).

• Algorithm 3: The client then generates a search token and retrieves the corre-
sponding encrypted documents from the encrypted document array at the server, and
decrypts the results locally to filter out the fake documents. For each accessed doc-
ument, the client updates the local counter keeping track of the number of times the
document has been addressed (this helps generate the new write-back address for wi
in the encrypted document array).

• Algorithm 4: Finally, the client updates its local stash with the documents retrieved
in the previous step. These will be written back to the encrypted document array at
the server via normal auxiliary write-backs at a later point of time. Each write-back
operation involves the client randomly sampling a certain proportion of the documents
and half of the lookup indices from its local stash (created over multiple search op-
erations in the past), and writing them back to the corresponding encrypted data
structures at the server. For the specific instance described in Algorithm 4, this frac-
tion is set to one-half; however this can also be a parameter input to the write-back
sub-routine.

5.3 Correctness

The scheme as described does not have perfect correctness: the addresses where various
information is stored are generated with a PRF and so the client may generate repeated
addresses unintentionally and overwrite the encrypted document addresses or the encrypted
documents. Worse still, it is possible that the queries are adversarially controlled to maxi-
mize the failure probability.

The following theorem establishes an upper bound on the advantage of any adversary against
the correctness of our scheme. The probability is upper-bounded by negligible terms which
account for collisions in the outputs of the PRF used in the construction, and the security
of the PRF itself.

Theorem 1. [Correctness of Static SWiSSSE] Let |DB| and |W {DB}| denote the total num-
ber of documents and document-keyword pairs, respectively, in the database DB, and let l
denote the output length of the PRF F used in static SWiSSSE. Then the advantage of any
adversary A, which issues at most k queries, in breaking the correctness of static SWiSSSE
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Algorithm 4 Static SWiSSSE.KWQuery: Auxiliary Write-Back Sub-Routine

1: procedure Clt.Write Back(M, w̄)
2: UA← {}
3: /* Get random documents from the stash, bi is a bit to indicate if wi was the leading

keyword */
4: D ← Clt.A.pop(b|Clt.A|/2c)
5: for ({(wi, ji, bi)} , d) ∈ D do
6: /* Encrypt the new documents */
7: UA← UA ∪ {(F (id(d)||Clt.ArrCtr[id(d)]), Enc({(wi, ji)} ||d))}
8: /* Update the stash for the lookup index */
9: for (w, j, b) ∈ {(wi, ji, bi)} do

10: Clt.I.put((F (w||j||Clt.KWCtr[w] + b),Enc(id(d))))

11: /* Decrypt the documents retrieved and insert them into the document array */
12: Clt.A.put(Dec(M))
13: Send (Clt.I.pop(b|Clt.I|/2c), UA)

14: procedure Svr.Write Back((UI, UA))
15: Svr.EI.put(UI)
16: Svr.EA.put(UA)

over the database DB is at most:(
|DB|2 + 4t0|DB|+ 4|W {DB}|2 + 8t1|W {DB}|

)
2l+1

+Adv
PRF,|DB|+2t0
F,B +Adv

PRF,2|W{DB}|+2t1
F,C ,

where t0 = k · maxw |DB(w)|, t1 = k · maxw |w {DB(w)}|, and B and C denote probabilistic
polynomial-time adversaries in independent security experiments against the PRF F .

Proof. We use standard game-hopping to reduce the correctness game G to finding a pair
of collisions in a game where the adversary interacts with truly random functions. Let
game G2 be the game where the PRF used to generate the addresses for the encrypted
documents is replaced by a truly random function. The number of addresses used for the
encrypted documents with k queries is at most |DB|+ 2k ·maxw |DB(w)|, so the difference in

the advantages between game G and G2 is Adv
PRF,|DB|+2k·maxw |DB(w)|
F .

In our static construction, for database DB, we use |DB| addresses to store the encrypted
documents during initialisation, which means the probability of a pair of collisions is upper-
bounded by |DB|2 · 2−(l+1).

In the subsequent write-backs, the number of active addresses in the encrypted document
array is at most |DB| and the number of new addresses we generate is upper bounded by
maxw |DB(w)|. This means that there are at most |DB| · maxw |DB(w)| new potential pairs
of collisions for each query. Using the birthday bound, the probability of finding a collision
in the addresses of the encrypted document array in each write-back is upper bounded by
|DB| ·maxw |DB(w)| · 2−l.
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Similarly, we define game G3 be the game where the PRF used to generate the addresses
for the encrypted lookup table is replaced with a truly random function. The number of
addresses used for the encrypted lookup table is at most 2|W{DB}|+2 maxw |DB {w}|, so the

difference in the advantages between game G2 and G3 is Adv
PRF,2W{DB}+2 maxw |DB{w}|
F .

Using a similar argument as above, the probability of a pair of collision in the addresses
for the encrypted lookup table during initialisation is at most 4|W{DB}|2 · 2−(l+1), and the
probability of a pair of collision for the encrypted lookup table for each query is at most
4|W{DB}| ·maxw |DB {w}| · 2l.

Combining everything together with a union bound on all k queries, we conclude that the
failure probability of the construction is at most(

|DB|2 + 4t0|DB|+ 4|W {DB}|2 + 8t1|W {DB}|
)
· 2−(l+1)

+Adv
PRF,|DB|+2t0
F +Adv

PRF,2W{DB}+2t1
F ,

where t0 = k ·maxw |DB(w)| and t1 = k ·maxw |w {DB(w)}|.

5.4 Formal Leakage Description

We now formally describe the leakage profile for SWiSSSE with respect to static databases.
Following the approach introduced by previous works on SSE (such as [12] and [9]), we use a
simulation-based framework where a PPT adversary is required to distinguish between the
real world (where the adversary interacts with a real execution of SWiSSSE that uses the
secret key) and the ideal world (where the adversary interacts with a simulator that only
has access to the described leakage profile for SWiSSSE). We say that the enumeration is
provably sound if no PPT adversary can distinguish between these two worlds with non-
negligible advantage over a random guess.

We formally describe the leakage of static SWiSSSE. Unlike most prior SSE constructions,
the leakage function for SWiSSSE is stateful. This follows naturally from the fact that the
search protocol in SWiSSSE makes abundant usage of random address accesses across the
encrypted data structures at the server. We use a stateful definition to capture the leakages
from such random accesses.

Leakages at Setup. At setup, the client offloads the encrypted lookup index and the en-
crypted document array to the server. These data structures are essentially key-value stores
with pseudorandomly generated keys/addresses and values/entries that are encrypted under
an IND-CPA secure encryption scheme. Hence, at setup, the server learns no information
about the original database DB other than the number of documents in the padded database
DB′ (including both real and fake documents), and the total number of keyword-document
pairs post-bucketization. Formally, we have:

LSetup
Σ (DB, G) = (|DB′|, |W {DB′}|,StL),

where Σ denotes a concrete instance of static SWiSSSE.
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Note that the leakage function is stateful; it maintains in StL a realisation of the padded
database which is used later by the leakage function for the search queries.

Leakages during Searches and Write-Backs. At a high level, each search query
reveals the following to the server:

1. The set of normal and auxiliary write-back addresses in the encrypted keyword lookup
index corresponding to the queried keyword (but not precisely which of these are
normal and which of these are auxiliary).

2. The set of addresses in the encrypted document array for the real and fake docu-
ments containing the queried keyword (but not precisely the document identifiers, or
even which of the addresses correspond to real documents and the fake documents,
respectively).

Similarly, each write-back operation reveals to the server the set of addresses in the encrypted
keyword lookup index and the encrypted document array that are written to using content
from the stash.

We capture these leakages using a probabilistic and stateful leakage function, described
formally in Algorithm 5, again for an instance Σ of the static SWiSSSE scheme. The state
of the leakage function contains a realisation of the padded database, everything in the
stash of the client, and two data structures, namely the lookup history IndHist and the
array-access history ArrHist, which we describe formally below.

Lookup and Array-Access Histories. We define the lookup history IndHist and
the array-access history ArrHist to be lists of records corresponding to operations on the
encrypted keyword lookup index and the encrypted document array, respectively. These
capture the access pattern information leakaged during searches in SWiSSSE.

Formally, each lookup (respectively, array-access) record is of the form (i, b, t), where i is a
unique identifier associated with the index (respectively, array) address being operated on, b
is a bit which indicates whether the entry corresponds to a read operation (b = 0) or a write
operation (b = 1), and t is the timestamp of the query that resulted in the operation. We
also overload notation and let IndHist [{ij}] and ArrHist [{ij}] be the sets of all records
corresponding to a given set {ij} of index/array addresses, i.e.,

IndHist [{ij}] = {(i, b, t) | (i, b, t) ∈ IndHist ∧ i ∈ {ij}} .

ArrHist [{ij}] = {(i, b, t) | (i, b, t) ∈ ArrHist ∧ i ∈ {ij}} .

The following theorem formalizes the security of SWiSSSE.

Theorem 2 (Security of Static SWiSSSE). Let LSetup
Σ and LKWQuery

Σ be the leakage func-

tions defined above. Then the instance Σ of the static SWiSSSE scheme is
(
LSetup

Σ ,LKWQuery
Σ

)
-

secure.

Proof. The proof proceeds with a hybrid argument. Let DB be a database and q1, . . . , qk be
the set of single-keyword queries with the leading keywords w1, . . . , wk. Let AdvPRF,tF (λ)
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Algorithm 5 Static SWiSSSE: Leakage Function for Searches and Write-Backs

1: procedure LKWQuery
Σ (q,StL)

2: (KWQuery, w)← query
3: I, A, I′, A′, KWCtr, ArrCtr, IndHist,ArrHist← StL
4: /* Leakage from the query tokens */
5: IndHist← IndHist ∪ {(T(w̄, i, 2 ∗ KWCtr[w̄1]), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
6: IndHist← IndHist ∪ {(T(w̄, i, 2 ∗ KWCtr[w̄1] + 1), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
7: KWCtr[w]← KWCtr[w] + 1
8: /* Leakage from document array access */
9: L← I[w]

10: while |L| < 2 · Clt.G(w) do
11: id← Rand(|A|)
12: if id /∈ {id(d) | d ∈ A′} then
13: L← L ∪ id
14: ArrCtr[L]← ArrCtr[L] + 1
15: ArrHist← ArrHist ∪ {(T(l, ArrCtr[l]), 0, k) | l ∈ L}

16: /* Leakage from write-back */
17: UI ← I′.pop(|I′|/2)
18: IndHist← IndHist ∪ {(i, 1, k) | i ∈ UI}
19: UA← A′.Pop(b|UA|/2c)
20: ArrHist← ArrHist ∪ {(T(id(d), ArrCtr[id(d)]), 1, k) | ({wi, ji, bi} , d) ∈ UA}

21: /* Update the stash for consistency */
22: I′ ← I′ ∪ Index(UA, KWCtr)
23: A′ ← A′ ∪Retrieve(A[L], w)
24: StL ← (I, A, I′, A′, KWCtr, ArrCtr, IndHist,ArrHist)
25: Return (IndHist,ArrHist),StL

26: procedure Index(UA, KWCtr)
27: I← {}
28: for ({wi, ji, bi} , d) ∈ UA do
29: I← I ∪ {T(w, j, KWCtr[w] + b) | (w, j, b) ∈ {wi, ji, bi}}
30: Return I

31: procedure Retrieve(A, w)
32: A′ ← {}
33: for ({wi, ji} , d) ∈ A do
34: A′ ← A′ ∪ {wi, ji, (wi = w)} , d)

35: Return A′

be the PRF advantage of the PRF F with at most t evaluations used in the construction
and AdvIND−CPAΣ′ (λ) be the IND-CPA advantage of the scheme Σ′ used for lookup address
encryption and document content encryption. Finally, we assume the plaintext of the lookup
addresses is padded to `0 and the plaintext of the document contents is padded to `1. The
simulator has access to `0 and `1 as they are public parameters.
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Algorithm 6 Game G1 (static construction). Only the setup step is changed.

1: procedure Clt.Setup(DB)

2: (N, p,StL)← LSetup
Σ (DB, G)

3: EI, EA← [ ]
4: /* Generate the encrypted documents */
5: for i = 0, . . . , N − 1 do
6: EA.Insert(RF(2i),Enc(0l0))

7: /* Generate the encrypted document addresses */
8: for i = 0, . . . , 2p do
9: EI.Insert(RF(2i+ 1),Enc(0l1))

10: Send (EI, EA) to the server

Algorithm 7 Game G2 (static construction).

1: procedure Clt.KWQuery(q)

2: (IndHist,ArrHist),StL ← LKWQuery
Σ (DB, q,StL)

3: /* Encrypted document array address retrieval */
4: L← {}
5: t′ ← the number of single-keyword queries executed
6: for i ∈ {i | (i, b, t) ∈ IndHist, b = 0, t = t′} do
7: L← L ∪RF(2i+ 1)

8: Send L to the server

9: /* Encrypted document retrieval */
10: L← {}
11: for i ∈ {i | (i, b, t) ∈ ArrHist, b = 0, t = t′} do
12: L← L ∪RF(2i)

13: Send L to the server

14: /* Write-back */
15: UI, UA← {}
16: for i ∈ {i | (i, b, t) ∈ IndHist, b = 1, t = t′} do
17: UI ← UI ∪ (RF(2i+ 1),Enc(0l0))

18: for i ∈ {i | (i, b, t) ∈ ArrHist, b = 1, t = t′} do
19: UA← UA ∪ (RF(2i),Enc(0l1))

20: Send (UI, UA) to the server

(Game 0.) Let the real execution of the scheme on the database DB with queries q1, . . . , qk
be game G0. Then we have that for any adversary A, Pr

[
RealΣ,A(1λ) = 1

]
= Pr[G0 = 1].

(Game 1.) We define game G1 by letting the leakage function generate the padded database
and replace the addresses in the encrypted lookup index and the encrypted documents with
outputs generated from a truly random function RF with output length l. We omit the
conversion between an integer to a string of appropriate length in the use of the random
function for simplicity. In addition, the encryptions of the document addresses and the
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documents themselves are replaced with encryptions of zeros of length `0 and `1 respectively.

The number of addresses that needs to be generated in the initialisation step is equal to t0 =
2
∑
w G(w) + |DB|, and an equal number of encryptions need to be created, so the difference

in advantages between G0 and G1 is upper-bounded by AdvPRF,t0F + t0 ·AdvIND−CPAΣ′ (λ).

(Game 2.) In game G2, we replace the single-keyword query algorithm with a simulator
that has access to the output of the leakage function only. As before, the addresses are
generated by applying the truly random function RF on the indices provided by the leakage
function. The encrypted documents and the encrypted document addresses are generated
with encryptions of zeros of appropriate length. The way the addresses are generated is
consistent with game G1 as the only difference between the two games is that the leakage
function is responsible for randomising the write-backs.

The number of addresses the algorithm has to generate is upper-bounded by t1 = 2
∑
i G(W (qi))+

2
∑
i |DB(W (qi))|, and the number of encryptions needs to be created is upper-bounded by

the same t1. This means the difference in advantages between G1 and G2 is upper-bounded
by AdvPRF,t1F + t1 ·AdvIND−CPAΣ′ (λ).

(Conclusion.) By combining the two games above, we see that the difference in advantages

between G0 and G2 is at most AdvPRF,t0+t1
F +(t0 + t1) ·AdvIND−CPAΣ′ (λ).

6 Cryptanalysis of the Leakage

Having established the precise leakage of static SWiSSSE, we now turn to its cryptanalysis.
For a corresponding analysis of dynamic SWiSSSE, see Section 7. We begin by briefly argu-
ing that SWiSSSE is resilient to most well-known cryptanalytic techniques in the literature,
including the query recovery attacks proposed in [23, 7], the document recovery attacks
proposed in [7] and the file-injection attacks proposed in [47]. We then present a highly
refined cryptanalytic technique based on system-level leakages with a much stronger at-
tack model than assumed by these existing attacks, and demonstrate that for appropriately
chosen bucketization parameters, SWiSSSE manages to resist even this attack.

Query and Document Recovery Attacks. Existing query recovery attacks (such as
those proposed in [23] and [7]) and document recovery attacks (such as those proposed in [7])
typically rely on a combination of three kinds of deterministic leakage – volume/frequency
leakage (i.e., the adversary deterministically recovers the number of documents matching a
given query), document access pattern leakage (i.e., the adversary deterministically recovers
which (encrypted) document identifiers are accessed across two or more queries), and query
equality leakage (i.e., the adversary recovers whether two or more queries correspond to the
same underlying keyword).

Through the use of keyword bucketization, SWiSSSE makes it possible to suppress vol-
ume leakages sufficiently to prevent these attacks (we subsequently discuss in detail the
appropriate bucket-sizes needed). Similarly, the use of delayed pseudorandom write-backs
corresponding to each query prevents the adversary from deterministically learning the doc-
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ument access patterns and the query equality patterns across multiple queries. In summary,
existing cryptanalytic techniques for query and document recovery cannot be applied di-
rectly to cryptanalyze the leakage profile for SWiSSSE.

File-Injection Attacks. File-injection attacks [47] are an extremely powerful class of
query recovery attacks in which the adversary has the power to inject maliciously crafted
files into the database. The adversary uses the occurrences of these files in query outputs
to identify the keyword(s) underlying a given query. Once again, query recovery via file-
injection relies crucially on the document access pattern leakage. In particular, it requires
the adversary to identify which of the maliciously crafted files appear in the outcome of a
given query (either from accesses to the search index or to the encrypted document array).

In SWiSSSE, this leakage is not available during search queries as the document identifiers
matching a given query are never revealed in the clear, and the locations of documents in
the encrypted document array change with every write-back operation (making it hard for
the adversary to trace the occurrence of malicious documents across queries). Hence, file-
injection attacks cannot be applied directly to cryptanalyze the leakage profile for SWiSSSE.

Stronger Attacks from Refined Leakages. Since SWiSSSE resists the known crypt-
analytic attacks, we tested its resistance against an even stronger query recovery attack in
which we give the attacker access to a highly refined co-occurrence leakage. This setting
strengthens that of [23]. Although it is unlikely that such leakages would be available from a
real-world implementation of SWiSSSE we use this strong attack model to establish settings
for various design parameters for SWiSSSE, and to compare the pros and cons of the various
bucketization strategies discussed earlier.

Attack Assumption. Let M : W ×W → N to be a two-dimensional “co-occurrence”
matrix that maps pairs of keywords to the number of documents containing them both.
Formally, we have

M [wi, wj ] = |DB(wi) ∩ DB(wj)|.

It is important to note that this matrix is defined with respect to the original database (be-
fore padding/bucketization). We assume here that at the beginning of the attack, the
attacker has an exact copy of matrix M . This is a very strong assumption, because it is
not obvious how the attacker might infer this information from just the leakage profile of
SWiSSSE.

We also simulate an “observed” co-occurrence matrix M̄ as follows: let M ′ be the “co-
occurrence” matrix for the padded version of the database. We simulate M̄ [wi, wj ] as a
value sampled according to a binomial distribution as follows:

M̄ [wi, wj ]← Binom(M ′[wi, wj ], 1/q),

where 1/q is a parameter of SWiSSSE denoting the fraction of the local stash flushed out
by the client in each write-back operation (we use q = 2 for our cryptanalysis experiments
in keeping with the description in Section 5.2). We assume that the attacker has access to

a randomly permuted version of M̄ , which we denote as ˜̄M .
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Again, this is a very strong assumption, because inferring the matrix ˜̄M from the leakage
profile of SWiSSSE is highly non-trivial. As already discussed, the intermittent and pseu-
dorandom nature of the write-back operations corresponding to each search query makes it
very hard for the attacker to identify if the same document appears across multiple search
queries. Even in an ideal scenario where the client flushes out its stash after every q search
queries, the attacker can guess any given entry M̄ with probability at most 1/q. In an actual
implementation, the client only partially flushes its stash each time and writes-back docu-
ments from multiple search queries in a single batch, making such inferences even harder.

Attack Strategy. The goal of the attacker is to identify the most likely assignment of

keywords to rows in ˜̄M . Note that the randomized nature of write-backs in SWiSSSE rules
out the deterministic approaches in previous works, such as count-based approaches [7] and
matrix/graph matching-based approaches [23, 39]. We opt for a simulated annealing-based
approach [2] to search for the most likely keyword assignment. See Section ?? for the details
of this approach.

Cryptanalysis Results. We run our simulated-annealing based attack against the Enron
email corpus [46]. Incidentally, this was also the target of cryptanalysis by the authors of [23].
We generated a sample co-occurrence matrix with representative keywords from different
frequency ranges. Specifically, we arranged the keywords in decreasing order of frequency
and (randomly) chose 800 of the most frequent keywords and 800 of the keywords with the
75-th, 50-th and 25-th percentile frequencies, respectively. We constructed the co-occurrence
matrices M and M̄ with varying bucket sizes (in the range of 50 to 400) for each of these
keyword sets. We repeated the attack for 100 times with freshly generated M̄ matrices, and
the average recovery rates are as reported in Figure 3.

We observed that it was easier to recover the keywords with higher frequencies and smaller
bucket sizes. The keywords with the highest frequency could be recovered with nearly
100% accuracy when a bucket size of 50 was used, but the recovery rate degraded steadily
to around 20% once the bucket size increased to 400. Interestingly, our results indicate
that a larger bucket size should be used for the keywords in the 50-th percentile, which
we believe is specific to the Enron database. We re-iterate that these recovery rates hold
under an extremely strong attacker model; the recovery rate for SWiSSSE is expected to be
significantly lower.

Implications for Bucketization Strategy. It is natural ask what these cryptanalysis
results tell us about the bucketization strategies discussed earlier in Section 4. There we
considered bucketing keywords using buckets of either fixed or variable sizes. For either
bucketization strategy, our cryptanalysis experiments seem to indicate that we should choose
an initial bucket size that is “safe” for the most frequent keywords (e.g., 400 with the
Enron database). In the fixed bucketization strategy, we would use this bucket size for all
keywords, which is also “safe” as our experiments revealed that for the same bucket size,
keywords with lower frequency are generally less vulnerable to the recovery attack. In the
variable bucketization strategy, we gradually double the bucket size, which is obviously more

28



Figure 3: The average recovery rate over 100 executions of our simulated-annealing based cryptanalytic
attack for keywords in various frequency percentiles. The recovery rate is measured as the fraction of
keywords guessed correctly across all buckets in a single execution of the attack. We use the fixed bucket
size strategy.

secure but incurs potentially greater storage requirements and communication bandwidth
requirements.

Security Versus Efficiency Tradeoffs. Our experiments also reveal some interesting
insights into the security versus efficiency tradeoffs associated with choosing the initial
bucket-size. For example, we saw earlier that a bucket size of 50 for the most frequent
keywords leads to almost 100% recovery, while a bucket size of 400 reduces this to around
20%. But what is the implication of using a larger bucket-size on the storage requirements
and communication bandwidth requirements for SWiSSSE?

In Figure 4, we demonstrate through concrete figures how variations in bucket sizes affect
the storage and communication overheads of our construction. The results are presented for
both the fixed and variable bucket-size based strategies discussed in Section 4. In general,
the total number of (real and fake) keyword-document pairs grows essentially linearly with
the bucket size. This in turn implies that the storage overheads also grow linearly with
the bucket size. The second bucketization strategy, where the bucket size increases as the
keyword frequency decreases, naturally incurs greater overheads as compared to the fixed-
size bucketization strategy.

Interestingly, for increasing bucket sizes, the growth in overhead is more gradual when
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Figure 4: Overheads incurred by different bucketization strategies and bucket sizes. For the doubling
bucket strategy, “bucket size” refers to the size of the first (smallest) bucket.

compared to the fall in recovery rate. For example, in the fixed-size bucketization strategy,
when the initial bucket size varies from 50 to 800, the storage overhead varies between 1×
and 1.75×. On the other hand, as demonstrated earlier, the keyword recovery rate falls from
100% to below 20%. A similar observation holds for the variable-size bucketization strategy
as well. This indicates that it is preferable to opt for a larger initial bucket size, since it
provides significantly stronger resistance to cryptanalysis while incurring only moderately
larger overheads.

Setting Parameters in Practice.Our cryptanalysis experiments seem to suggest that
for a given database, it is preferable to carefully optimise the bucketization strategy and
the bucket size parameters for SWiSSSE to attain a desirable tradeoff between security and
efficiency. In practice, this is not easily deployable. Recall however that we assumed a very
optimistic attack setting where the attacker has access to refined co-occurrence leakage. In
practice, the leakage profile of SWiSSSE is significantly more “noisy”; it is not at all obvious
how the attacker might obtain access to such refined leakage from a real implementation.
Hence, we suggest that a pragmatic choice of bucket size 400 should be adequate for typical
applications.

At the same time, we acknowledge the need for further cryptanalysis of the leakage profile
of SWiSSSE and welcome such studies from the community.
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7 Dynamic SWiSSSE

7.1 Overview of Our Approach

In this section, we present an overview of how we extend SWiSSSE to handle dynamic
databases. We refer the reader to Section 7.2 for the detailed formal description.

We consider two kinds of updates to the database – document insertion and document
deletion; a document update can be simulated via: (a) a deletion operation on the old
document, followed by (b) an insertion operation on the modified document. We first present
a simple idea for handling document insertions. At a high level, we use a technique similar
to the auxiliary write-backs used in our static construction. This incurs some undesirable
leakage, which we address subsequently.

Handling Insertions—Simple Version. When a document d` is to be inserted, the
client simply schedules: (a) a normal document write-back for d` targeting a set of “insert
write-backs” for every keyword wi ∈ d`. As with auxiliary write-backs, insert write-backs
target a separate set of addresses to avoid any correlation with prior write-backs (normal
and auxiliary) corresponding to the same keyword. More concretely, we now generate three
separate sets of addresses for normal, auxiliary and update write-backs involving the same
keyword:

addrnorm(wi, d`, cntwi) = F (K,wi||j||(3 ∗ cntwi)),

addraux(wi, d`, cntwi
) = F (K,wi||j||(3 ∗ cntwi

+ 1)),

addrinsert(wi, d`, cntwi
) = F (K,wi||j||(3 ∗ cntwi

+ 2)),

where F is a PRF with key K, j is a counter that runs from 0 to |DB(wi)|− 1 (where DB(wi)
denotes the set of documents containing keyword wi), and cntwi

is a per-key word counter
held in the client’s stash which records how many times wi has appeared in search and
insertion queries.

In other words, during the time interval between the tth and (t + 1)th queries on key-
word wi, we use three sets of write-back addresses – {addrnorm(wi, d`, j)} for normal write-
backs, {addraux(wi, d`, j)} for auxiliary write-backs, and {addrinsert(wi, d`, j)} for insert
write-backs. The insert write-backs happen intermittently and can be randomly interspersed
with normal and auxiliary write-backs involving other keywords and documents.

During a search query involving wi, the client now requests the server to access all three
sets of write-back addresses – normal, auxiliary and insert – in the keyword lookup index.
The entries corresponding to the normal and insert write-back addresses allow the client
to recover the pointers to already existing documents and freshly inserted documents, re-
spectively, that contain wi. The entries corresponding to the auxiliary write-back addresses
allow the client to identify if any of these pointers have been updated subsequently due to
searches involving other keywords. Thus, search correctness is ensured. Finally, as before,
we use additional pointers to fake documents to hide the exact frequency of the keyword
wi, and reveal its bucket size instead.

Leakage. The solution outlined above leaks that a new document has been inserted:
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when the client executes a normal document write-back operation for the newly inserted
document d`, the total number of actual and dummy addresses in the encrypted document
array increases by one. While this leakage is currently incurred by all existing dynamic SSE
schemes, it has some repercussions with respect to file injection attacks [47]. For this attack
vector to work, the adversary needs to infer exactly when an insert operation corresponding
to a maliciously constructed file occurs, as well as the effect of this insertion on subsequent
keyword search operations.

This motivates hiding the occurrences of inserts from the server, and hence, masking the
aforementioned leakage. We describe how to achieve this next.

Handling Insertions—Modified Version. An effective way to mask when a document
is inserted, is to avoid creating a fresh entry in the encrypted document array. Instead, we
simply convert an (already existing) dummy entry into a real one.

Concretely, to insert a fresh document d`, the client first identifies a “leading keyword” w∗

in d`. We assume without loss of generality that w∗ is the keyword in d` with the smallest
occurrence frequency in the database. Next, the client issues a search query on w∗ and
retrieves a list of pointers to real and dummy locations in the document array. To insert
the new document, the client schedules a normal document write-back targeting one of the
dummy addresses, as opposed to a newly generated address. The insert write-backs are
scheduled exactly as described in the simple version above, except they now encapsulate a
pointer to the dummy address as opposed to some newly generated address.

Handling Deletions. Finally, deletions are handled in a manner that is complementary
to the insertion procedure described above. Namely, when a document is to be deleted, we
convert the real entry corresponding to this document in the document array into a dummy
entry with some garbage ciphertext. More concretely, the client again issues a search query
on w∗, and schedules a dummy document write-back targeting the address corresponding to
the document to be deleted. The insert write-backs are scheduled exactly as for the insert
operations, except they now encapsulate pointers to random addresses in the document
array.

Note that in the above strategy, there is the possibility that we run out of dummy addresses
in the document array after a certain number of insert operations. For simplicity of pre-
sentation and analysis, we implicitly assume a cap (determined at setup) on the maximum
number of new document insertions supported by the system. We refer the reader to Sec-
tion 7.2 for a more detailed discussion on how to generalize the above proposal to support
an uncapped number of insertions.

7.2 Detailed Description

We now translate the informal presentation of our approach into a formal description of the
various protocols involved in dynamic SWiSSSE.

Setup. The setup procedure for the dynamic construction is very similar to the static one.
The only differences are that the client has to initialise an array Clt.InsCtr to keep track
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Algorithm 8 Dynamic SWiSSSE.Setup

1: procedure Clt.Setup(DB)
2: /* Generate fake documents */
3: DB′ ← Fake Doc Gen(DB, Clt.G)
4: Clt.N ← |DB′|
5: EI, EA← {}
6: for i = 1, . . . , |DB′| do
7: /* Get the set of keywords with counters */
8: x← {(w, Clt.KWCtr[w]) | w ∈W (DB′[i])}
9: /* Update the lookup index */

10: for w ∈W (DB′[i]) do
11: EI← EI ∪ (F (w||Clt.KWCtr[w]||0), Enc(id(DB′[i])))
12: Clt.KWCtr[w]← Clt.KWCtr[w] + 1

13: /* Insert the encrypted document */
14: EA← EA ∪ (F (i||0),Enc(x||DB′[i]))
15: /* Reset the keyword counter */
16: for w ∈W (DB′) do
17: Clt.KWCtr[w]← 0

18: /* Initialise the stash */
19: Clt.I.init()
20: Clt.A.init()
21: Send (EI, EA) to the server

22: procedure Svr.Setup(EI, EA)
23: Svr.EI.init()
24: Svr.EA.init()
25: Svr.EI.put(EI)
26: Svr.EA.put(EA)

of the number of insertions for each keyword since the last time they have been queried as
the leading keywords.

SWiSSSE.{KWQuery, Insert,Delete}. We now describe the keyword query, insert and
delete procedures for dynamic SWiSSSE. For ease of representation, these procedures broken
up into smaller sub-routines described subsequently.

Encrypted Document Array Address Retrieval. This sub-routine is the same for
a search query, document insertion or document deletion, and is described in Algorithm 9,
and is very similar to the corresponding sub-routine for document array address retrieval
in the static version of SWiSSSE.KWQuery, except that the client now fetches three
sets of addresses - normal, auxiliary and insert. For document insertion, the client simply
queries the first keyword in the document he wants to insert. For document deletion, the
client queries the first keyword in the document he wants to delete. As the index for the
inserted keywords are stored by the server, the client has to compute some additional virtual
addresses to retrieve the documents.
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Algorithm 9 Dynamic SWiSSSE.{KWQuery, Insert,Delete}: Encrypted Document Ar-
ray Address Retrieval

1: procedure Clt.TokenGen(w)
2: L← {}
3: for j ∈ 0, . . . , Clt.G(w)− 1 do
4: L← L ∪ {F (w||j||3 ∗ Clt.KWCtr[w])},
5: L← L ∪ {F (w||j||3 ∗ KWCtr[w] + 1)},
6: L← L ∪ {F (w||j||3 ∗ Clt.KWCtr[w]) + 2}.
7: /* Roll forward the counter for the next query */
8: Clt.KWCtr[w]← Clt.KWCtr[w] + 1
9: Send L to the server

10: procedure Svr.Index Lookup(L)
11: Send Svr.EI.get(L) to the client

Algorithm 10 Dynamic SWiSSSE.KWQuery: Write-Back Sub-Routine

1: procedure Clt.Write Back Keyword Query(M, w̄)
2: Replace the lookup addresses of the newly inserted documents which contain w̄ with

the addresses used for the fake documents.
3: UA← {}
4: /* Get random documents from the stash */
5: D ← Clt.A.pop(|Clt.A|)
6: for ({(wi, ji, bi)} , d) ∈ UA do
7: /* Encrypt the new document addresses and documents */
8: UA← UA ∪ {(F (id(d)||Clt.ArrCtr[id(d)]), Enc({(wi, ji)} ||d))}
9: /* Update the stash for the lookup index */

10: for (w, j, b) ∈ {(wi, ji, bi)} do
11: Clt.I.put((F (w||j||Clt.KWCtr[w] + b),Enc(id(d))))

12: /* Decrypt the documents retrieved and insert them into the document array */
13: Clt.A.put(Dec(M))
14: Send (Clt.I.pop(b|Clt.I|/2c), UA)

15: procedure Svr.Write Back((UI, UA))
16: Svr.EI.put(UI)
17: Svr.EA.put(UA)

Encrypted Document Retrieval. The sub-routine is again identical for a search query,
document insertion and document deletion, and works in the same way as the corresponding
sub-routine for the static version of SWiSSSE (see Algorithm 3 in Section 5.2 for the details
of how this sub-routine works).

The final set of sub-routines are the write-back sub-routines corresponding to search queries,
insertions and deletions. Unlike the previous sub-routines, write-backs are executed differ-
ently for each query type. We describe these next.

Write-Back for search query. The write-back sub-routine under dynamic SWiSSSE.KWQuery
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Algorithm 11 Dynamic SWiSSSE.Insert: Write-Back Sub-Routine

1: procedure Clt.Write Back Insertion(M, {w̄j} , d̄)
2: Replace the lookup addresses of the newly inserted documents which contain w̄ with

the addresses used for the fake documents.
3: UA← {}
4: /* Get random documents from the stash */
5: D ← Clt.A.pop(|Clt.A|)
6: for ({(wi, ji, bi)} , d) ∈ UA do
7: /* Encrypt the new document addresses and documents */
8: UA← UA ∪ {(F (id(d)||Clt.ArrCtr[id(d)]), Enc({(wi, ji)} ||d))}
9: /* Update the stash for the lookup index */

10: for (w, j, b) ∈ {(wi, ji, bi)} do
11: Clt.I.put((F (w||j||Clt.KWCtr[w] + b),Enc(id(d))))

12: /* Decrypt the documents retrieved and insert them into the document array */
13: Clt.A.Insert(Dec(M))
14: Insert document d̄ with keywords {w̄j} into Clt.A
15: Send (Clt.I.pop(b|Clt.I|/2c), UA)

16: procedure Svr.Write Back((UI, UA))
17: Svr.EI.put(UI)
18: Svr.EA.put(UA)

is described in Algorithm 10. Technically, it is very similar to that under static SWiSSSE.KWQuery (Al-
gorithm 4, Section 5.2), except that the client has to perform some maintenance on the
lookup index for the queried keyword to relocate the addresses for the document insertions
to the ones used for fake documents.

More explicitly, recall that during the encrypted document array address retrieval phase,
we have obtained all the normal write-back addresses of the form F (w||j||3 ∗ KWCtr[w]), the
auxiliary write-back addresses of the form F (w||j||3 ∗ KWCtr[w] + 1) and insertion write-
back addresses of the form F (w||j||3 ∗ KWCtr[w] + 2). Our goal is to remove the additional
insertion addresses of the form F (w||j||KWCtr[w] + 2) by making use of the fake documents
that contain the keyword w. In terms of the documents, this means for each newly inserted
document, we find a fake document that contains w, remove the keyword from the fake
document, and allocate it to the newly inserted document. We omit the low-level details of
the procedure for readability.

Write-Back for Document Insertion. The write-back sub-routine under dynamic
SWiSSSE.Insert is described in Algorithm 11. Technically, it is essentially identical to
the corresponding sub-routine under dynamic SWiSSSE.KWQuery except that the client
has to insert the document locally. This is done by scanning the query response for fake
documents, and replace one of them by the document that is to be inserted. The keyword
pointers are updated so as to maintain correctness of future searches.

Write-Back for Document Deletion. The write-back sub-routine under dynamic
SWiSSSE.Delete is described in Algorithm 12. Technically, it is again essentially identi-
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Algorithm 12 Dynamic SWiSSSE.Delete: Write-Back Sub-Routine

1: procedure Clt.Write Back Deletion(M, d̄)
2: Replace the lookup addresses of the newly inserted documents which contain w̄ with

the addresses used for the fake documents.
3: UA← {}
4: /* Get random documents from the stash */
5: D ← Clt.A.pop(|Clt.A|)
6: for ({(wi, ji, bi)} , d) ∈ UA do
7: /* Encrypt the new document addresses and documents */
8: UA← UA ∪ {(F (id(d)||Clt.ArrCtr[id(d)]), Enc({(wi, ji)} ||d))}
9: /* Update the stash for the lookup index */

10: for (w, j, b) ∈ {(wi, ji, bi)} do
11: Clt.I.put((F (w||j||Clt.KWCtr[w] + b),Enc(id(d))))

12: /* Decrypt the documents retrieved and insert them into the document array */
13: Clt.A.put(Dec(M))
14: Turn d̄ into a fake document in Clt.A
15: Send (Clt.I.pop(b|Clt.I|/2c), UA)

16: procedure Svr.Write Back((UI, UA))
17: Svr.EI.put(UI)
18: Svr.EA.put(UA)

cal to the corresponding sub-routine under dynamic SWiSSSE.KWQuery except that the
client has to overwrite the target document to a fake document in the stash.

Supporting uncapped number of insertions. As one can clearly see from the buck-
etization strategy and the fake document generation procedure in our construction, there
is a limit on how many documents the client can insert into the database. One possible
work-around is to instantiate a new encrypted database every time the maximum quota is
hit. This may not be practical for some systems as the client storage grows linearly in the
number of instances of encrypted databases.

As an alternative, we can extend our dynamic construction to support uncapped document
insertions at the cost of additional leakages. Without loss of generality, suppose that the
client wants to store a documents more. He can simply insert a fake documents in the stash
and redirect some of the pointers of the fake keywords (which he can obtain from normal
queries) to these new fake documents. These new fake documents can then be written
back to the server just like the normal documents. If the client wants to store a additional
documents for a particular keyword w, he can make a search query on w to retrieve the
documents associated to w, increase the address space of w by a keywords, and generate a
fake documents and point the newly generated keyword pointers to the new fake documents.
These pointers and documents can then be written-back to the server with normal write-
back operations. On a side note, the client should choose a such that the new bucket size
of w corresponds to the bucket size of some other keyword, so that the volume leakage does
not trivially leak the identity of w in the future queries.
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We leave it as an interesting future work to formalize the storage expansion process, and to
analyze the additional leakages thereof.

7.3 Correctness

Similar to the static case, there is a possibility for our dynamic construction to fail if the
client generates repeated addresses. We provide an upper bound of the failure probability
of our dynamic construction with adversarially chosen queries below. As the proof is almost
identical to the static case, we omit the proof from the paper.

Theorem 3. [Correctness of Dynamic SWiSSSE]

Let |DB| and |W {DB}| denote the total number of documents and document-keyword pairs,
respectively, in the database DB at any given point of time, and let l denote the output length
of the PRF F used in static SWiSSSE. Then the advantage of any adversary A, which issues
at most k queries, in breaking the correctness of static SWiSSSE over the database DB is at
most: (

|DB|2 + 4t0|DB|+ 9|W {DB}|2 + 18t1|W {DB}|
)

2l+1

+Adv
PRF,|DB|+2t0
F,B +Adv

PRF,2|W{DB}|+2t1
F,C ,

where t0 = k · maxw |DB(w)|, t1 = k · maxw |w {DB(w)}| and B and C denote probabilistic
polynomial-time adversaries in independent security experiments against the PRF F .

7.4 Security

Setup. At setup, the client offloads the encrypted lookup index and the encrypted doc-
ument array to the server. These data structures are essentially key-value stores with
pseudorandomly generated keys/addresses and values/entries that are encrypted under an
IND-CPA secure encryption scheme. Hence, at setup, the server learns no information about
the original database DB other than the number of documents in the padded database DB′

(including both real and fake documents), and the total number of keyword-document pairs
post-bucketization. Formally, we have:

LSetup
Σ (DB, G) = (|DB′|, |W {DB′}|,StL).

Keyword Queries. As we have introduced virtual addresses for the inserted documents,
the insertion history will be revealed by the keyword queries. As in the static case, we
capture these leakages using a probabilistic and stateful leakage function, described formally
in Algorithm 13.

Document Insertion. The leakage of a document insertion is identical to a single-keyword
query except that the inserted document is processed in the state of the leakage. We capture
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Algorithm 13 Dynamic SWiSSSE: Leakage Function for Keyword Queries

1: procedure LKWQuery(q,StL)
2: (KWQuery, w̄)← q
3: I′, A′, KWCtr, ArrCtr← StL
4: IndHist← IndHist ∪ {(T(w̄, i, 3 ∗ KWCtr[w̄1]), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
5: IndHist← IndHist ∪ {(T(w̄, i, 3 ∗ KWCtr[w̄1] + 1), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
6: IndHist← IndHist ∪ {(T(w̄, i, 3 ∗ KWCtr[w̄1] + 2), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
7: KWCtr[w̄1]← KWCtr[w̄] + 1
8: L← I[w̄]
9: while |L| < 2 · Clt.G(w) do

10: id← Rand(|A|)
11: if id /∈ {id(d) | d ∈ A′} then
12: L← L ∪ id
13: ArrCtr[L]← ArrCtr[L] + 1
14: ArrHist← ArrHist ∪ {(T(l, ArrCtr[l]), 0, k) | l ∈ L}

15: UI ← I′.pop(|I′|/2)
16: IndHist← IndHist ∪ {(i, 1, k) | i ∈ UI}
17: State UA← A′.Pop(b|UA|/2c)
18: ArrHist← ArrHist ∪ {(T(id(d), ArrCtr[id(d)]), 1, k) | ({wi, ji, bi} , d) ∈ UA}
19: A′ ← A′ ∪Merge Index(A[L], w̄)
20: StL ← (I′, A′, KWCtr, ArrCtr)
21: Return (IndHist,ArrHist),StL

these leakages using a probabilistic and stateful leakage function, described formally in
Algorithm 14.

Document Deletion. The leakage of a document deletion is identical to a single-keyword
query except that the target document to be deleted is marked as fake in the state of
the leakage.We capture these leakages using a probabilistic and stateful leakage function,
described formally in Algorithm 15.

Finally, we are ready to state the security of our dynamic construction and prove it.

Theorem 4 (Security of Dynamic SWiSSSE). Let Σ be our proposed dynamic SSE scheme.

Let LSetup
Σ and LKWQuery

Σ , LInsert, and LDelete be the leakage functions defined above, then

Σ is (LSetup
Σ , LKWQuery

Σ ,LInsert,LDelete)-secure.

Proof. We use a game-based argument to prove the security of the dynamic construction.

(Game 0) Let the real execution of the scheme on the database DB with queries q1, . . . , qk
be game G0. Then we have that for any adversary A, Pr

[
RealΣ,A(1λ) = 1

]
= Pr[G0 = 1].

(Game 1) Let game G1 be the same game as G0 except that the execution of the setup
step is replaced by the simulator. Clearly the simulator works the same way as the static
case, so the difference in advantages between G0 and G1 is upper-bounded by AdvPRF,t0F +
t0 ·AdvIND−CPAΣ′ (λ), where t0 = 2

∑
w G(w) + |DB|.
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Algorithm 14 Dynamic SWiSSSE: Leakage Function for Insertion Queries

1: procedure LInsert(q,StL)
2: (Insert, {w̄i} , d̄)← q
3: I′, A′, KWCtr, ArrCtr← StL
4: IndHist← IndHist ∪ {(T(w̄, i, 3 ∗ KWCtr[w̄1]), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
5: IndHist← IndHist ∪ {(T(w̄, i, 3 ∗ KWCtr[w̄1] + 1), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
6: IndHist← IndHist ∪ {(T(w̄, i, 3 ∗ KWCtr[w̄1] + 2), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
7: KWCtr[w̄1]← KWCtr[w̄1] + 1
8: L← I[w]
9: while |L| < 2 · Clt.G(w) do

10: id← Rand(|A|)
11: if id /∈ {id(d) | d ∈ A′} then
12: L← L ∪ id
13: ArrCtr[L]← ArrCtr[L] + 1
14: ArrHist← ArrHist ∪ {(T(l, ArrCtr[l]), 0, k) | l ∈ L}

15: UI ← I′.pop(|I′|/2)
16: IndHist← IndHist ∪ {(i, 1, k) | i ∈ UI}
17: UA← A′.Pop(b|UA|/2c)
18: ArrHist← ArrHist ∪ {(T(id(d), ArrCtr[id(d)]), 1, k) | ({wi, ji, bi} , d) ∈ UA}
19: I′ ← I′ ∪ Index(UA, KWCtr)
20: M ← Insert(A[L], {w̄i} , d))
21: A′ ← A′ ∪Merge Index(M, w̄1)
22: StL ← (I′, A′, KWCtr, ArrCtr)
23: Return (IndHist,ArrHist),StL

(Game 2) In game G2, we replace the query algorithms with the simulator. The algorithms
look the same for all query types so we only show the one for the single-keyword query. The
simulator looks the same as game G2 in the proof of security for the static case, but the
lookup index tokens in the dynamic construction includes the addresses generated by the
insertion queries too.

The number of addresses the algorithm has to generate is upper-bounded by t1 = 2
∑
i G(W (qi))+

2
∑
i |DB(W (qi))|, and the number of encryptions needs to be created is upper-bounded by

the same t1. This means the difference in advantages between G1 and G2 is upper-bounded
by AdvPRF,t1F + t1 ·AdvIND−CPAΣ′ (λ).

(Conclusion.) By combining the two games above, we see that the difference in advantages

between G0 and G2 is at most AdvPRF,t0+t1
F + (t0 + t1) ·AdvIND−CPAΣ′ (λ).

7.5 Oblivious Operations

We introduce here a new notion of security for dynamic SSE schemes called “oblivious
operations”. Informally, a dynamic SSE scheme supports oblivious operations if document
updates and keyword searches are computationally indistinguishable to an adversarial server.
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Algorithm 15 Dynamic SWiSSSE: Leakage Function for Deletion Queries

1: procedure LDelete(q,StL)
2: (Delete, {w̄i} , d̄)← q
3: I′, A′, KWCtr, ArrCtr← StL
4:

5: IndHist← IndHist ∪ {(T(w̄, i, 3 ∗ KWCtr[w̄1]), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
6: IndHist← IndHist ∪ {(T(w̄, i, 3 ∗ KWCtr[w̄1] + 1), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
7: IndHist← IndHist ∪ {(T(w̄, i, 3 ∗ KWCtr[w̄1] + 2), 0, k) | i ∈ 0, . . . , G(w̄1)− 1}
8: KWCtr[w̄1]← KWCtr[w̄1] + 1
9: L← I[w]

10: while |L| < 2 · Clt.G(w) do
11: id← Rand(|A|)
12: if id /∈ {id(d) | d ∈ A′} then
13: L← L ∪ id
14: ArrCtr[L]← ArrCtr[L] + 1
15: ArrHist← ArrHist ∪ {(T(l, ArrCtr[l]), 0, k) | l ∈ L}

16: UI ← I′.pop(|I′|/2)
17: IndHist← IndHist ∪ {(i, 1, k) | i ∈ UI}
18: UA← A′.Pop(b|UA|/2c)
19: ArrHist← ArrHist ∪ {(T(id(d), ArrCtr[id(d)]), 1, k) | ({wi, ji, bi} , d) ∈ UA}
20: I′ ← I′ ∪ Index(UA, KWCtr)
21: M ← Delete(A[L], d̄))
22: A′ ← A′ ∪Merge Index(M, w̄1)
23: StL ← (I′, A′, KWCtr, ArrCtr)
24: Return (IndHist,ArrHist),StL

Algorithm 16 Game G1 (dynamic construction). Only the setup step is changed.

1: procedure Clt.Setup(DB)

2: (N, p,StL)← LSetup
Σ (DB, G)

3: EI, EA← [ ]
4: /* Generate the encrypted documents */
5: for i = 0, . . . , N − 1 do
6: EA.Insert(RF(2i),Enc(0l0))

7: /* Generate the encrypted document addresses */
8: for i = 0, . . . , 2p do
9: EI.Insert(RF(2i+ 1),Enc(0l1))

10: Send (EI, EA) to the server

The formal definition is presented below.

Definition 2 (Oblivious Operations). Let Σ be a dynamic SSE scheme. Let DB be a
database, G be the bucketization parameter, q1, . . . , qk−1 be a sequence of queries, and qk
and q′k be two queries such that W (qk) = W (q′k). Let `0,St

0
L ← L

Setup
Σ (DB) and `i,St

i
L ←

L∗Σ(qi,St
i−1
L ) for 0 < i ≤ k where L∗Σ is the appropriate leakage function for the query qi,

and `′k,St
′k
L ← L∗Σ(q′k,St

k−1
L ).
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Algorithm 17 Game G2 (dynamic construction).

1: procedure Clt.KWQuery(q)

2: (IndHist,ArrHist),StL ← LKWQuery
Σ (DB, q,StL)

3: /* Encrypted document array address retrieval */
4: L← {}
5: t′ ← the number of single-keyword queries executed
6: for i ∈ {i | (i, b, t) ∈ IndHist, b = 0, t = t′} do
7: L← L ∪RF(2i+ 1)

8: Send L to the server

9: /* Encrypted document retrieval */
10: L← {}
11: for i ∈ {i | (i, b, t) ∈ ArrHist, b = 0, t = t′} do
12: L← L ∪RF(2i)

13: Send L to the server

14: /* Write-back */
15: UI, UA← {}
16: for i ∈ {i | (i, b, t) ∈ IndHist, b = 1, t = t′} do
17: UI ← UI ∪ (RF(2i+ 1),Enc(0l0))

18: for i ∈ {i | (i, b, t) ∈ ArrHist, b = 1, t = t′} do
19: UA← UA ∪ (RF(2i),Enc(0l1))

20: Send (UI, UA) to the server

We say that Σ supports oblivious operations if `k is computationally indistinguishable from
`′k for any choice of DB, G, q1, . . . , qk and q′k.

Note that the definition of oblivious operations only requires the outputs of the leakage
functions (at the point where the query is executed) to be indistinguishable. It does not,
however, require the states of the leakage function to be indistinguishable. This makes
sense because the leakage output is available to the adversary as soon as the corresponding
operation is executed, which makes for an easy mapping task. On the other hand, the
information contained in the state of the leakage function may be revealed to the adversary
at a later point of time (for instance, via delayed pseudorandom write-backs in our scheme),
and it is computationally hard for the adversary to map it back in time to the exact query
it corresponds to.

Our dynamic SSE scheme naturally satisfies the aforementioned definition of oblivious oper-
ations. Both keyword searches and document updates involve reading a set of entries from
the encrypted data structures, followed by delayed write-backs. The only functional differ-
ences between searches and updated are reflected in how the client locally manages/updates
its stash. From the point of view of the server, the output of the leakage function at the point
of query are simply the accesses made to the encrypted data structures, which is uncondi-
tionally indistinguishable for searches and updates. This allows us to state the following
theorem.
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Theorem 5 (Oblivious Operations). The dynamic variant SWiSSSE described above sup-
ports oblivious operations.

7.6 Forward and Backward Privacy of Dynamic SWiSSSE

In this subsection, we describe the notions of forward and backward privacy achieved by
dynamic SWiSSSE, and compare these with the notions of forward and backward privacy
achieved by existing SSE constructions. In particular, we stress the fact that SWiSSSE is the
first dynamic SSE scheme in the literature to achieve strong backward privacy guarantees
against system-wide leakages.

Forward Privacy. Forward private SSE was introduced by Chang and Mitzenmacher
in [11], and has been subsequently studied in [43, 5, 4, 15, 29, 6, 14, 42]. An SSE scheme
is said to be forward private if insertion and deletion operations computationally hide the
set of keywords in the underlying document. Forward privacy has received much attention
in light of leakage-abuse and file injection attacks [7, 47], which are potentially devastating
for SSE schemes that try to support updates without being forward private.

Observe that combining Theorems 4 and 5 allows us to claim that our dynamic SSE
scheme achieves stronger forward privacy guarantees than existing constructions in the lit-
erature, including those based on computation/communication-intensive techniques such as
ORAM [15, 4, 6, 10]. In particular, existing definitions of forward privacy do not hide the
number of keywords an inserted/deleted document contains, which is potentially sensitive
information. Our construction, on the other hand, achieves the stronger notion of forward
privacy in which we also hide from the server the number of keywords in a document which
is inserted/deleted.

We now present a more detailed argument. By Theorem 5, our dynamic SSE scheme satisfies
indistinguishability of operations. Hence, the output of the leakage function for updates
is computationally indistinguishable from the output of the leakage function for keyword
searches. Next, by Theorem 4, the leakage function output for searches is the set of accesses
made to the encrypted data structures at the server, which reveals no information to a
computationally bounded adversary about the underlying keywords and documents Hence,
at the point of an update operation, our dynamic scheme not only computationally hides
the actual keywords in the target document, but also the number of keywords. As discussed
later, this has important repercussions with respect to security against leakage-abuse and
file-injection attacks.

Backward Privacy. The notion of backward privacy for dynamic SSE is comparatively
more recent, and was first formalized by Bost et al. in [6]. Subsequently, Chamani et
al. [10] and Sun et al. [44] proposed SSE schemes supporting single keyword search that are
backward private under various leakage profiles. The strongest notion of backward privacy
formalized in [6] is called Type-1 backward privacy [6]. A dynamic SSE scheme is said
to be Type-1 backward private if a search query on a keyword w reveals no information
to the adversary beyond result pattern for w and the timestamps at which the documents
containing w were inserted into the database. The only constructions to achieve this strong
notion of backward privacy adopt ORAM-style techniques and require polylogarithmically
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Figure 5: An illustration of the operations related to a document d in our construction. At time i, the
document d is retrieved by a query. The document is in the stash and ready to be written back at time
i + 1. The document itself is written back at time i + t0, where t0 is a random delay due to randomised
write-backs. The encrypted document addresses associated to d will be updated randomly in time later than
i + t0.

many communication rounds for searches [6, 10].

Once again, Theorem 4 allows us to claim that our dynamic SSE scheme achieves stronger
than Type-1 backward privacy guarantees. This is particularly notable given that our
construction only require two rounds of communication between the client and the server
for searches.

To begin with, observe that as per Theorem 4 the leakage function output at the point
of searches in our construction hides the result pattern and the update history for the
underlying keyword from the server. If the adversary could monitor the state of the leakage
function from the beginning of time up until the point of query, it could potentially learn the
update history associated with a keyword. However, in the actual scheme, the adversary
can only glean this through observing the delayed write-backs. However, given that the
write-backs are mixed and matched and target pseudorandom locations, it is difficult for a
computationally bounded adversary to trace each encrypted document it accesses during a
search query at timestamp t back to the timestamp t′ < t when the document was originally
inserted.

In the discussion below, we expand some more on delayed write-backs and their impact
on the leakage of our dynamic scheme using an example. An illustration of the same is
presented in Figure 5.

Encrypted document write-back. Without loss of generality, let DB be the database
and (q1, . . . , qk) be the sequence of queries on the database. Let d be one of the documents
retrieved in query qi where 1 ≤ i < k. We are interested in the distribution of t0 for which
query qi+t0 triggers the write-back of document d. As half of the documents are written
back from the stash after each query, t0 clearly follows a shifted geometric distribution with
parameter 1

2 , unless that there is a query qi+j that retrieves d. In the latter case, the
write-back of document d will happen at query qi+j+t0 with t0 following a shifted geometric
distribution with parameter 1

2 .

Encrypted document address write-back. Under the same setting as above, let d be
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Storage
Stash O(maxw G(w) + maxw |W{DB(w)})|)
EDB/DB O(

∑
w G(w) + |DB|)

Time
complexity

Document retrieval O(G(w))
Write-back O(maxw G(w) + maxw |W{DB(w)}|)

Communication
volume

Document retrieval O(G(w))
Write-back O(maxw G(w) + maxw |W{DB(w)}|)

Figure 6: A summary of the performance parameters. Here, w denotes the leading keyword of a query, G(w)
is the bucket size of keyword w, |W{DB}| is the total number of keyword-document pairs, and |W{DB(w)}|
is the total number of keyword-document pairs for the documents that contain w.

one of the documents retrieved in query qi where 1 ≤ i < k and w be one of the keywords of
d. We are interested in the distribution of t1 for which query qi+t1 triggers the write-back of
the encrypted document address associated to keyword w. Recall that the write-backs for
the encrypted document addresses are scheduled after the respective documents are written
back to the server, and half of the encrypted document addresses are written back to the
server in each query, this means that t1 follows the sum of a shifted geometric distribution
and a geometric distribution both parameterized by 1

2 , or equivalently, one plus a negative
binomial distribution with parameter (2, 1

2 ). As before, if the document d is retrieved by
another query qi+j before it is written back, then we will write the encrypted document
address in query qi+j+t1 .

Resistance to Cryptanalysis. Finally, for appropriate parameter choices (e.g., bucket
sizes and bucketization strategies), dynamic SWiSSSE achieves strong enough backward pri-
vacy guarantees in practice to resist a wide range of cryptanalytic attacks based on system-
wide leakages, such as access pattern and query equality pattern based attacks [23, 7], file
injection attacks [47], and attacks based on highly refined leakages (such as the correlation-
leakage based attack described in Section 6). Also noteworthy is the fact that SWiSSSE
achieves such strong guarantees without compromising significantly on search/update per-
formance and communication overheads. This makes it an attractive candidate for deploy-
ment in typical applications involving outsourced databases.

8 SWiSSE: Performance Evaluation

In this section, we provide an asymptotic performance analysis of SWiSSSE in both the
static and dynamic cases. A summary of the key performance characteristics can be found
in Figure 6 and some concrete numbers are presented subsequently.

Size of the stash. For search queries, recall that the half of the stash is flushed every
iteration and filled with the response from the latest query. Since the number of documents
retrieved by any query is less than 2 · maxw G(w) (half of that comes from randomly gen-
erated document addresses), there are at most 4 ·maxw G(w) documents in the stash. The
documents are padded to a constant size, which means the storage of the documents in the
stash requires O(maxw G(w)) space. For document insertion queries, the documents to be
inserted are processed with the responses, so the same analysis on the space complexity
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applies.

The stash also stores a local lookup index. For a search query on keyword w, the number of
lookup index locations that need to be updated is equal to the number of keyword-document
pairs in the query response, or |W{DB(w)}|. Consider a document insertion query with
document d and keywords {w1, . . . , wk}. Without loss of generality, assume that w1 is the
leading keyword. Then the number of lookup index locations that need to be updated is at
most |W{DB(w1)}|+ k− 1. Since the number of keywords in the document is much smaller
than |W{DB(w1)}|, it is reasonable to treat k as a constant in the asymptotic analysis.
Recalling that half of the lookup index stored in the stash is flushed to the server after each
query, it is not hard to see that the maximum number of lookup index locations stored by
the client is O(maxw |W{DB(w)}|).

In addition, the client needs to store three arrays of integers, namely an array for the
groupings of the keywords, an array for the number of insertions of the keywords, and
an array for the counters used to generate the document array addresses. These arrays
are all small and of constant size, so they do not contribute to the asymptotic size of the
stash. Combining everything together, we get that the size of the stash is O(maxw G(w) +
maxw |W{DB(w)}|).

Size of the encrypted database. The server stores an encrypted lookup index and an
encrypted document array. The size of the encrypted lookup index is proportional to the
total number of keyword-document pairs whereas the size of the encrypted document array
is proportional to the number of documents. Hence, the size of the encrypted database
is O(

∑
w G(w) + |DB|). Note that this order-of-magnitude calculation ignores the overhead

from padding all documents to a constant size,

Time complexity and communication volume of a query. Suppose that the leading
keyword for the query is w. In our construction, a query consists of three rounds of inter-
action. In the first round, the client computes the encrypted lookup index addresses for the
query. This involves O(G(w)) computation and communication, as there are at most 3 ·G(w)
addresses involved. The server then takes O(G(w)) time to retrieve the encrypted document
array addresses and send them to the client. This means that the overall communication
volume is O(G(w)) for the first round.

Upon receiving the O(G(w)) encrypted document array addresses, the client processes them
and retrieves 2 · G(w) encrypted documents from the server. The client decrypts the docu-
ments and filters the results locally to obtain the query response. The time complexity for
the overall process is O(G(w)). The communication volume and the time complexity for the
server are straight-forwardly O(G(w)).

Finally, after receiving the encrypted documents from the previous step, the client decrypts
them in O(G(w)) time. If the query is a document insertion query, the client has to do
at most O(G(w)) amount of work to turn one of the fake documents into the document
intended for insertion. After that, the client randomly picks at most 2·maxw G(w) documents
from the stash, encrypts them and uploads them to the server. He also randomly picks
half of the lookup indices stored in the stash, encrypts them, and uploads them to the
server. Using the analysis of the stash size above, we conclude that the time complexity
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and communication volume for this step is O(maxw G(w) + maxw |W{DB(w)}|). This means
the overall time complexity of this step for the client and the communication volume is
O(maxw G(w) + maxw |W{DB(w)}|). Similarly, we conclude that the time complexity of this
step for the server is O(maxw G(w) + maxw |W{DB(w)}|).

Combining the analyses above together, we conclude that the time complexity of a query for
both the client and the server is O(maxw G(w) + maxw |W{DB(w)}|), while the communica-
tion volume of a query is O(maxw G(w) + maxw |W{DB(w)}|). We note that stash handling
is not relevant to the retrieval of documents and it can be performed whenever the client is
free. With regards to document retrieval only, the time complexity for the client and the
server is O(G(w)) and the communication volume is O(G(w)).

Alternative Parameters. There are three parameters we have fixed when we first
introduced the construction, namely the number of fake documents, the number of dummy
documents retrieved per query and the write back rate. These parameters can be changed
to achieve different trade-off between efficiency and security.

The number of fake documents we initialise the database with affects the number of in-
sertion queries we can make on the database. By using a larger number, the database can
support more insertion queries, but as the fake documents have to be initialised with dummy
documents during the setup, the time required to initialise the database is longer and the
storage on the server takes more space. Maybe unexpectedly, more fake documents implies
less noise in the co-occurrence leakage, as each document contains fewer keywords. This
may mean that a more aggressive padding parameter or padding strategy has to be used to
prevent attacks based on co-occurrence leakage.

Recall that in our construction, every time when the client wants to retrieve some documents,
he retrieves an equal number of dummy documents by generating addresses at random.
This helps to introduce noise in the co-occurrence leakage and prevents an attacker from
identifying the set of retrieved documents exactly. However, if the user is willing to leak the
document access pattern then he can set the number of dummy document retrievals to zero,
as long as the resultant keyword co-occurrence leakage does not lead to a query recovery
attack.

In the write-back phase, we set the number of keyword-document pairs and documents to
be written back to half of the size of the stash. The client can opt to write back a different
fraction of the stash, whenever the stash is full, or after a random number of queries each
time. The choice affects the client storage, the probability of leaking the search pattern and
the level of noise in the keyword co-occurrence leakage. For example, if the client decides
to flush everything in the stash every 4 iterations, the worst-case client storage doubles, the
probability of leaking the search pattern is upper-bounded by 25%, and the signal-to-noise
ratio in the keyword co-occurrence leakage quarters.

9 Experimental Evaluation

In this section, we benchmark a prototype implementation of SWiSSSE that supports both
static and dynamic databases. The dynamic version of SWiSSSE additionally supports
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insert and delete in a manner that makes them indistinguishable from search queries. Full
details of dynamic SWiSSSE are presented in Appendix 7. An asymptotic performance
evaluation of SWiSSSE can be found in Appendix 8.

Overview. As target database we chose the Enron email corpus [46]. It contains over
500K emails and over 30M keyword-document pairs which makes it a perfect database to
experiment with the scalability of our SSE schemes. Details of the database metadata and
the pre-processing procedure we used on the database can be found in Appendix B. We
run experiments on sub-databases of different sizes ranging from 50K documents to 400K
documents. For each database, we test the performance of search queries by querying 1000
keywords in the database, and we test the performance of document insertion by initialising
a database with 100K documents that is full of fake documents and then inserting 1000 real
documents.

Experimental Setup. We instantiated the PRF in our construction with HMAC-SHA-
256 [31] and the encryption function with AES-GCM [36, 35]. Hence our keys for the
key-value stores are 32-byte values. We implemented the client in Java [45], using the Java
Cryptography Extension [37] as the underlying cryptographic library; AES-NI was enabled
in our implementation. We chose to use a single-thread implementation as it provides the
most accurate measurements of performance. We implemented the server in Java with Redis
[1] as the underlying database system.

We ran our experiments on an Intel i7-7700K CPU clocked at 4.7 GHz, 32 GB DDR4
memory clocked at 2400 MHz, and 1 TB NAND SSD with 660 MBps drive transfer rate.
For all of our experiments, we used a fixed bucketization strategy with bucket size equal to
200. We ran the server and client on the same machine over localhost to simulate a LAN
environment.

Benchmarks. We benchmarked keyword search queries over databases with 50K doc-
uments to 400K documents and query the first 1000 keywords in alphabetical order. We
report the setup time of the databases and the average write-back time for the queries in Ta-
ble 1 and the average document retrieval time in Figure 7. The setup time naturally grows
linearly with the size of the database, while the online query response timegrows linearly
in the response size. The offline write-back time also grows linearly in the response size (of
previously retrieved documents).

To benchmark insertions, we inserted 1000 documents in a database with 100K documents.
The performance of an insertion query is on par with that of a search query. As a concrete
example, the latency for keyword search is 0.0250 ms, while the latency for insertion is 0.105
ms.

The relatively large response sizes for insertion queries are due to the initial read operations
performed by the client. We view this as a tradeoff that allows us to achieve strong security
guarantees – in particular, oblivious operations (indistinguishable searches and updates; see
Appendix 7 for details).

Comparison with Plaintext database. We have also implemented a simple plaintext
database and compared its performance to its SSE counterpart. The performance on search
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Raw Padded Storage (MB) Performance (ms)
Documents Storage (MB) Documents KDP Stash Server Setup Write-back

50000 132.1 139634 6755996 10.8 (0.18) 449.9 266044 2304
100000 338.0 282708 13587084 15.4 (0.36) 906.7 597279 5204
200000 590.3 578738 23480196 21.5 (0.53) 1657.7 1010530 6901
400000 1321.6 1125590 42801316 47.0 (0.88) 3092.8 2254622 12192

Table 1: Experimental results for search queries. Size of the stash is shown as the worst-case size, with the
average-case size in brackets. KDP denotes the number of keyword-document pairs. The write-back times
reported are averaged over all queries.

Figure 7: Query response times for search queries and insertion queries on databases and responses of
different sizes. Query response time is defined to be the time between the start of the query to when the
client receives the unencrypted documents. Write-backs are not included in the timing. Both axes are log
scale; there is a clear linear relationship between query response time and response size, independent of
database size.

queries can be seen in Figure 7. Our SSE scheme is around 10x slower than the plaintext
implementation.

Discussion. While our experiments already demonstrate that SWiSSSE scales well in
practice to very large databases, an implementation in a low-level language (such as C)
should significantly improve efficiency. Other potential optimizations include switching to
AES-CTR in place of AES-GCM and to a specialised PRF such as SipHash [3] in place of
HMAC-SHA-256. A larger client stash would also allow batching the write-backs together
to further improve efficiency.

We conducted our experiments locally rather than over a network; further work is needed
to characterise the impact of network latency on query response times. However, we remind
the reader that each serach/insertion operation only involves two round trips; in addition,
our experiments do take into account latencies due to communication through localhost.
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A Co-occurrence Leakage Attack: Details

The Simulated-Annealing Process. We present here the details of the simulated an-
nealing algorithm [2] used to search for the most likely assignment of keywords to the rows
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Algorithm 18 Co-occurrence Leakage Attack based on Simulated Annealing

1: Random Permutation(): generate a random permutation on the keywords of M̄ .
2: temperature(T, i): computes new temperature based on the current temperature and

the iteration.
3: neighbour(P ): randomly generate a permutation that is close to P .

4: procedure Attack(M̄,M, T0, tmax)
5: P ← Random Permutation(M̄)
6: T ← T0

7: for i← 0, . . . , tmax do
8: T ← temperature(T, i)
9: Pnew ← neighbour(P )

10: if Pr
[
Pnew | M̄,M

]
− Pr

[
P | M̄,M

]
> −T then

11: P ← Pnew

12: return P

of the observed co-occurrence matrix M̄ . The algorithm takes in four inputs, namely the
observed co-occurrence matrix M , the observed co-occurrence matrix M̄ , a real number T0

which is known as the initial temperature, and an integer k which specifies the number of
iterations of the algorithm.

On a high level, the algorithm works as follows. The algorithm begins by generating a
random assignment of keywords s and set the temperature T to T0. For the subsequent
iterations, the algorithm decreases T and randomly permutes two of the keywords in s to
get a new assignment s′. The likelihoods scores of the new assignment is computed and
compared to that given by s. If the likelihood score has improved, then the algorithm
replaces s with s′. On the other hand, if the likelihood score decreased, then the new
assignment is used to replace the old one if the difference of likelihood is less than T , and
the old assignment is kept otherwise. The pseudocode of the algorithm is shown in Algorithm
18.

Next, we derive the likelihood function used in the simulated annealing process.

Notation. Let M ∈ Rn×n be the real co-occurrence matrix where n is the number of
keywords. Let K be a vector of n keywords associated to M , i.e. Mi,j corresponds to
|DB(Ki) ∩ DB(Kj)|. Let M̄ ∈ Rn×n be the observed co-occurrence matrix where n is the
number of keywords. Let K′ be a vector of n keywords associated to M̄ . Let P : {1, . . . , n} →
{1, . . . , n} be a permutation such that KP (i) = K′i for all i ∈ {1, . . . , n}. Then the goal of
our attack is to find P given M and M̄ .

Overview of the Derivation. The ultimate goal of the derivation is to find Pr
[
P |M, M̄

]
,

the probability that the permutation applied on the real co-occurrence matrix is P before
deriving the observed co-occurrence matrix M̄ . As an abuse of notation, we apply P as a
permutation matrix on M̄ directly and write Pr

[
PM̄P t |M

]
to mean Pr

[
P |M,M̄

]
. Let
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M ′ be a co-occurrence matrix after padding, then we can write the probability as

Pr
[
PM̄P t |M

]
=

∑
M ′∈Rn×n

Pr
[
PM̄P t,M ′ |M

]
=

∑
M ′∈Rn×n

Pr
[
PM̄P t |M ′

]
· Pr [M ′ |M ] .

The first term in the product is the probability of observing the co-occurrence counts in M̄
given that P is the permutation and M ′ is the co-occurrence matrix after padding is applied.
The second term is the probability that M ′ is the padded co-occurrence matrix given that
M is the co-occurrence matrix before padding. It remains to derive the expressions for the
two probabilities.

Derivation of the First Probability. We assume that the entries of the observed co-
occurrence counts are independently generated. As half of the documents are written back
in each iteration, the count observed in position (i, j) of PM̄P t is distributed according to
Binom([M ′]i,j , 0.5) for all i 6= j. Hence, we can write the probability as:

Pr
[
PM̄P t |M ′

]
=
∏
i<j

Pr
[
[PM̄P t]i,j | [M ′]i,j

]
=
∏
i<j

Pr
[
Binom([M ′]i,j , 0.5) = [PM̄P t]i,j

]
.

Derivation of the Second Probability. The second probability represents the likeli-
hood that each of the entry in M is padded to M ′. As before, we assume that the process
is independent for each pair of keywords. Without loss of generality, consider the i-th and
j-th keywords of the database. Suppose the i-th keyword is padded to ci from Mi,i and
the j-th keyword is padded to cj from Mj,j . Our goal is to find the probability that the
co-occurrence count with the two keywords increases from Mi,j to M ′i,j .

There are three ways a fake keyword pair can appear. Firstly, it can be the case that there
is a document with the i-th keyword and the j-th keyword is added to it. Secondly, it can
be the case that both the i-th and j-th keywords are added to the same document that did
not have them before. Finally, it can be the case that there is a document with the j-th
keyword and the i-th keyword is added to it. Let d be the total number of documents after
padding, then the number of co-occurrence counts generated by each way can be expressed
as a hypergeometric distribution with parameters,

(d−Mi,j ,Mi,i −Mi,j , M̄j,j −Mj,j),

(d−Mi,j , M̄i,i −Mi,i, M̄j,j −Mj,j),

(d−Mi,j ,Mj,j −Mi,j , M̄i,i −Mi,i)

respectively. Call the three variables Xi,j,1, Xi,j,2 and Xi,j,3 respectively, we can write the
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likelihood as a product of convolutions as:

Pr [M ′ |M ]

=
∏
i<j

Pr

[
3∑
k=1

Xi,j,k = M ′i,j −Mi,j

]
.

Computational Approximations and Optimisations. The likelihood function derived
above has two computational problems. First of all, there are infinitely many M ′ in the
summation and there is no closed form for the infinite sum. To tackle the problem, we
propose to sum over a small range where Pr

[
PM̄P t |M ′

]
is reasonably large. For each

[PM̄P t]i,j , we compute the 95% confidence interval for n of Binom(n, 0.5) assuming that
[PM̄P t]i,j is drawn from it, and use it as the range for M ′i,j .

Secondly, there are three nested summations in the likelihood expression. The first one comes

from the sum overM ′ and the other two comes from the convolution in Pr
[∑3

k=1Xi,j,k = M ′i,j −Mi,j

]
.

This means it is time consuming to compute a likelihood score and hence, within a given
time, less iterations can be performed, which leads to a less optimal solution. To solve the
problem, we decided to approximate the fake co-occurrence counts with a single hypergeo-
metric distribution with parameters (d−Mi,j , M̄i,i −Mi,j , M̄j,j −Mi,j).

Finally, we note that if we only change two rolls in the permutation P , then only the
corresponding rows and columns of the likelihood within the summation are affected. This
means that we can store the score as an n by n matrix, and recompute the affected rows
and columns only.

B Description of Experimental Database

In this appendix we describe the Enron email corpus used in our experiments, and the steps
we took to process the emails and extract the keywords. We also provide general statistics
of the database.

The Enron email corpus. The Enron email corpus is a collection of over 600K emails
generated by 158 employees of the Enron Corporation and acquired by the Federal Energy
Regulatory Commission (FERC) during its investigation of the Enron scandal. At the
conclusion of the investigation, and upon the issuance of the FERC staff report, the email
corpus is released to the public for historical research and academic purposes. The version
of the email corpus used in our paper can be freely accessed from [46]. The database has
slightly less emails, about 500K of them, as some messages have been deleted ”as part of a
redaction effort due to requests from affected employees”. The email corpus is widely used
in research fields such as studies on social networking [22] and computer analysis of language
[30], and more recently, it has been a popular choice of experimental database used in the
searchable encryption literature [47, 38].

Email processing and keyword extraction. We implemented our email processing
and keyword extraction script in python using the Natural Language Toolkit [40] module as
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# documents 480228
# keywords 33372
# keyword-document pairs 17428755
Max. keyword rank 23998
Min. keyword rank 1
Mean keyword rank 522.3
Max. # keywords per document 3483
Min. # keywords per document 1
Mean # keywords per document 36.3

Figure 8: General statistics of the Enron email corpus after pre-processing.

Figure 9: Histogram of the keyword frequency.

the tokeniser. The headers of the emails are not used in the keyword extraction process. We
decided to convert all the keywords to the lower case but this is not necessary in general.
The English stop words and the keywords with frequency higher than 5% are removed
from the set of keywords for each email. The emails with no keyword after this step are
removed from the database. The content of the emails are compressed with Java’s built-in
GZIP compression algorithm. The compressed emails that are larger than 1KB are then
partitioned into chunks of 1KB files.

General Statistics. We provide some general statistics of the database in Figure 8 and
the histogram of the keyword ranks in Figure 9.
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