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Abstract. In a threshold symmetric-key encryption (TSE) scheme, en-
cryption/decryption is performed by interacting with any threshold num-
ber of parties who hold parts of the secret-keys. Security holds as long as
the number of corrupt (possibly colluding) parties stay below the thresh-
old. Recently, Agrawal et al. [CCS 2018] (alternatively called DiSE) ini-
tiated the study of TSE. They proposed a generic TSE construction
based on any distributed pseudorandom function (DPRF). Instantiat-
ing with DPRF constructions by Naor, Pinkas and Reingold [Eurocrypt
1999] (also called NPR) they obtained several efficient TSE schemes with
various merits. However, their security models and corresponding analy-
ses consider only static (and malicious) corruption, in that the adversary
fixes the set of corrupt parties in the beginning of the execution before
acquiring any information (except the public parameters) and is not al-
lowed to change that later.
In this work we augment the DiSE TSE definitions to the fully adaptive
(and malicious) setting, in that the adversary is allowed to corrupt parties
dynamically at any time during the execution. The adversary may choose
to corrupt a party depending on the information acquired thus far, as
long as the total number of corrupt parties stays below the threshold. We
also augment DiSE’s DPRF definitions to support adaptive corruption.
We show that their generic TSE construction, when plugged-in with
an adaptive DPRF (satisfying our definition), meets our adaptive TSE
definitions.
We provide an efficient instantiation of the adaptive DPRF, proven se-
cure assuming decisional Diffie-Hellman assumption (DDH), in the ran-
dom oracle model. Our construction borrows ideas from Naor, Pinkas and
Reingold’s [Eurocrypt 1999] statically secure DDH-based DPRF (used
in DiSE) and Libert, Joye and Yung’s [PODC 2014] adaptively secure
threshold signature. Similar to DiSE, we also give an extension satis-
fying a strengthened adaptive DPRF definition, which in turn yields a
stronger adaptive TSE scheme. For that, we construct a simple and ef-
ficient adaptive NIZK protocol for proving a specific commit-and-prove
style statement in the random oracle model assuming DDH.

1 Introduction

Symmetric-key encryption is an extremely useful cryptographic technique to se-
curely store sensitive data. However, to ensure the purported security it is of



utmost important to store the key securely. Usually this is handled by using se-
cure hardware like HSM, SGX, etc. This approach suffers from several drawbacks
including lack of flexibility (supports only a fixed operation), being expensive,
prone to side-channel attacks (e.g. [KHF+20, LSG+20]) etc. Splitting the key
among multiple parties, for example, by using Shamir’s Secret Sharing [Sha79]
provide a software-only solution. While this avoids a single-point of failure, many
enterprise solutions, like Vault [vau], simply reconstructs the key each time an
encryption/decryption is performed. This leaves the key exposed in the memory
in the reconstructed form.

Threshold cryptography, on the other hand, ensures that the key is dis-
tributed at all time. A few recent enterprise solutions, such as [dya, por, sep],
use threshold cryptographic techniques to provide software-only solutions with-
out reconstruction for different applications. While studied extensively in the
public-key setting [DF90, DDFY94, GJKR96, CG99, DK01, AMN01, SG02,
Bol03, BBH06, GHKR08, BD10], threshold symmetric-key encryption has been
an understudied topic in the literature. This changed recently with the work
by Agrawal et al. [AMMR18a], that initiated the formal study of threshold
symmetric-key encryption scheme (TSE). Their work, alternatively called DiSE,
defines, designs and implements threshold (authenticated) symmetric-key en-
cryption.

They put forward a generic TSE scheme based on any distributed pseudoran-
dom function (DPRF). They provided two main instantiations of TSE based on
two DPRF constructions from the work of Naor Pinkas and Reingold [NPR99]
(henceforth called NPR):

(i) One (DP-PRF) based on any pseudorandom function, which is asymptot-
ically efficient as long as O(

(
n
t

)
) is polynomial in the security parameter

(when n is the total number of parties and t is the threshold).
(i) Another one (DP-DDH) based on DDH assumption (proven secure in the

random oracle model) and is efficient for any n, t(t ≤ n). By adding spe-
cialized NIZK to it, they constructed a stronger variant of DPRF– when
plugged-in to the generic construction, a stronger TSE scheme is obtained.

A shortcoming of the DiSE TSE schemes is that they are secure only in a static
(albeit malicious) corruption model, in that the set of corrupt parties is de-
cided in the beginning and remains unchanged throughout the execution.1 This
is unrealistic in many scenarios where the adversary may corrupt different par-
ties dynamically throughout the execution. For instance, an attacker may just
corrupt one party and actively takes part in a few executions and based on
the knowledge acquired through the corrupt party, decides to corrupt the next
party and so on. Of course, the total number of corruption must stay below the
threshold t, as otherwise all bets are off.

1 We note that, DiSE’s definition has a weak form of adaptivity, in that the corrupt
set can be decided depending on the public parameters (but nothing else). Moreover,
we do not have an adaptive attack against their scheme; instead their proof seems
to rely crucially on the non-adaptivity.
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Our contribution. In this paper we augment DiSE to support adaptive corrup-
tion.2 Our contributions can be summarized as follows:

1. We augment the security definitions of TSE, as presented in DiSE [AMMR18a],
to support adaptive corruption. Like DiSE, our definitions are game-based.
While some definitions (e.g. adaptive correctness, Def. 7) extend straight-
forwardly, others (e.g. adaptive authenticity, Def. 9) require more work.
Intuitively, subtleties arise due to the dynamic nature of the corruption,
which makes the task of tracking “the exact information” acquired by the
attacker harder.

2. Similarly, we also augment the DPRF security definitions (following DiSE)
to support adaptive corruption. We show that the generic DiSE construc-
tion satisfies our adaptive TSE definitions when instantiated with any such
adaptively secure DPRF scheme. The proof of the generic transformation
for adaptive corruption works in a fairly straightforward manner.

3. We provide new instantiations of efficient and simple DPRF constructions.
Our main construction is based on the NPR’s DDH-based DPRF (DP-DDH,
as mentioned above) and the adaptive threshold signature construction by
Libert, Joye and Yung [LJY14] (henceforth called LJY). It is proven secure
assuming DDH in the random oracle model. The proof diverges significantly
from DiSE’s proof of DP-DDH. Rather, it closely follows the proof of the
LJY’s adaptive threshold signature. Similar to DiSE, we also provide a
stronger DPRF construction by adding NIZK proofs – this yields a stronger
version of TSE via the same transformation. However, in contrast to DiSE,
we need the NIZK to support adaptive corruption. We provide a construc-
tion of adaptive NIZK for a special commit-and-prove style statement from
DDH in the random oracle model – this may be of an independent interest.
Finally, we observe that the adaptively secure construction obtained via a
standard complexity leveraging argument on DP-PRF is asymptotically op-
timal. So, essentially the same construction can be used to ensure security
against adaptive corruption without any additional machinery.

Efficiency compared to DiSE. Though we do not provide implementation bench-
marks, it is not too hard to see the performance with respect to DiSE. Our DDH-
based DPRF scheme is structurally very similar to DP-DDH– the only difference
is in the evaluation, which requires two exponentiation operations instead of one
used in DiSE. So, we expect the overall throughput of the TSE scheme may
degrade by about a factor of 2. However, the communication remains the same
because in our construction, like DP-DDH, only one group element is sent by
each party.

2 We remark that adaptive security is generically achieved from statically secure
schemes using a standard complexity leveraging argument, in particular, just by
guessing the corrupt set ahead of time. When

(
n
t

)
is super-polynomial (in the se-

curity parameter), this technique naturally incurs a super-polynomial blow-up, for
which super-polynomially hard assumptions are required. In contrast, all our con-
structions are based on polynomially hard assumptions.
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For the stronger (NIZK-added) version, we expect again a factor of 2 slow
down when instantiated with our adaptive NIZK construction (c.f. Sec 9) – we
have 8 exponentiations as compared to DiSE’s 4 in this case. In this case, how-
ever, there are also some degradation (around a factor of 2) in the communication
due to presence of two additional elements of Zp in the NIZK proof, compared
to the (publicly verifiable) DiSE instantiation (Figure 5 of [AMMR18b]).3

Roadmap. We discuss related works in Sec 2 and technical overview in Sec. 3.
After providing some basic notations and preliminaries in Sec. 4, we put for-
ward our adaptive DPRF definitions in Sec. 5 and adaptive TSE definitions in
Sec. 6. We give our DPRF constructions in Sec. 7. The full proof of our main
construction is deferred to Supp B. In Appendix. 9 we provide our adaptive
NIZK construction. Our TSE construction, that extends fairly straightforwardly
from DiSE, is deferred to Supp 8. Supp A contains definitions etc. of additional
cryptographic building blocks, mostly taken verbatim from DiSE.

2 Related Work

Threshold cryptography may be thought of as a special-case of general-purpose
secure multiparty computation (MPC). Specific MPC protocols for symmetric
encryption has been proposed in the literature [DK10, GRR+16, RSS17, dya],
that essentially serve the same purpose. While they adhere to the standard-
ized schemes, such as AES, their performance often falls short of the desired
level. Theoretical solutions, such as universal thresholdizers [BGG+18] resolve
the problem of threshold (authenticated) symmetric-key encryption generically,
but are far from being practical. For a detailed discussion on threshold cryptog-
raphy literature, and comparison with other approaches such as general MPC
we refer to DiSE.

Adaptive DPRF has been constructed from lattice-based assumption by [LST18].
Their construction has an advantage of being in the standard model apart from
being post-quantum secure. However, their construction is quite theoretical and
is therefore not suitable for constructing practical TSE schemes. Our construc-
tion can be implemented within the same framework as DiSE with minor adjust-
ments and will be similarly efficient (only with a factor of up to 2 degradation
in the throughput, which is a reasonable price to pay for ensuring adaptive se-
curity).

Our approach to construct adaptive DPRF is similar to and inspired by the
adaptive threshold signature scheme of LJY [LJY16]. Our proof strategy follows
their footsteps closely. In fact, the LJY construction was mentioned as a plausible
approach to construct adaptively secure DPRF in [LST18]. However, the thresh-
old signature construction, as presented in LJY, becomes more cumbersome due
to the requirement of public verification. In particular, it additionally requires

3 A privately verifiable version, similar to Fig. 6 of [AMMR18b] can be constructed
analogously with similar efficiency. We do not elaborate on that.
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bilinear maps and therefore is not suitable for using in the adaptive TSE set-
ting. In this paper we provide a clean and simple exposition of the DPRF (that
largely resembles the DiSE’s), formalize the arguments and apply it to construct
efficient adaptive TSE. Furthermore, we go one step further to combine it with
adaptive NIZK to obtain a stronger version of adaptive DPRF and subsequently
a stronger adaptive TSE.

3 Technical Overview

Technical Overview. Our main technical contribution is twofold: (i) definitions
and (ii) constructions. DiSE definitions are game-based and hence they crucially
rely on “tracking the exact amount of information” acquired by an attacker
via playing security games with the challenger. In other words, the attacker is
“allowed” to receive a certain amount of information and is only considered a
“winner” if it is able to produce more than that. For standard (non-interactive)
schemes, like CCA-secure encryption this is captured simply by requiring the
adversary to submit challenge ciphertexts that are not queried to the decryp-
tion oracle (in other words the attacker is allowed to receive decryption of any
ciphertexts that are not challenge ciphertexts). In the interactive setting this
becomes challenging as already elaborated in DiSE. In the adaptive case this
becomes even trickier as the corrupt set is not known until the very end.4 Our
general strategy is to “remember everything” (in several lists) the adversary has
queried so far. Later in the final phase, when the entire corrupt set is known, the
challenger “extracts” the exact amount of information learned by the adversary
from the list and decides whether the winning condition is satisfied based on
that.

Our DDH-based adaptive DPRF construction, inspired by the adaptive thresh-
old signature of LJY, is based on a small but crucial tweak to the NPR’s DP-
DDH construction. Recall that, NPR’s DP-DDH construction simply outputs
y := DPk(x) = H(x)k on input x, when k is the secret-key and H : {0, 1}? → G
is a hash function (modeled as a random oracle) mapping to a cyclic group G; k
is shared among n parties by a t-out-of-n Shamir’s secret sharing scheme. Each
party i outputs yi := H(x)ki where ki is the i-th share of k. The reconstruction is
a public procedure, that takes many yi’s from a set S (of size at least t) and com-

putes
∏
i∈S y

λi,S

i = H(x)
∑

i∈S λi,Ski = y where λi,S is the Lagrange coefficient
for party i for set S. The DPRF pseudorandomness requires that, despite learn-
ing multiple real outputs DPk(x1),DPk(x2), . . . (xi’s are called non-challenge
inputs), the value H(x?)k on a fresh x? 6= xi remains pseudorandom.

To prove security, the key k must not be known to the reduction (as it
would be replaced by a DDH challenge) except in the exponent (that is gk);

4 Note that, we assume a stronger erasure-free adaptive model, in that each party keeps
its entire history from the beginning of execution in its internal state. Therefore,
when the adversary corrupts a party, it gets access to the entire history. This compels
the reduction to “explain” its earlier simulation of that party, before it was corrupt.
In a weaker model, that assumes erasure, parties periodically removes their history.
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the reduction may sample at most (t−1) random ki’s which leaves k completely
undetermined. Let us assume a relatively simpler case when the attacker corrupts
exactly (t− 1) parties. In this case, a static adversary declares the corrupt set C
ahead of time and the reduction may pick only those ki such that i ∈ C, which
are given to the adversary to simulate corruption. The evaluation queries on non-
challenge inputs are easily simulated using DDH challenges and extrapolating
adequately in the exponent (those (t − 1) keys and the DDH challenge fully
determines the key in the exponent). However, in the adaptive case the reduction
can not do that because it does not know C until the very end– in the mean-time
it has to simulate evaluation queries on non-challenge inputs. If the reduction
tries to simulate them by sampling any (t−1) keys, it may encounter a problem.
For example, the reduction may end up simulating a party i’s response yi on
a non-challenge input on an extrapolated key ki, which is only known to the
reduction in the exponent as gki . Later, an adaptive adversary may corrupt
party i, when the reduction has to return ki– which is not known in the “clear”.

The tweak we employ here is very similar to the one used in the adaptive
threshold signature scheme of LJY [LJY14]. The DPRF construction will now
have two keys u and v and the output on x will be DPu,v(x) := wu1w

v
2 where

H(x) = (w1, w2) ∈ G × G. The main intuition is that the value wu1w
v
2 is not

revealing enough information on (u, v). In our proof we program the random
oracle on non-challenge inputs such that they are answered byH(x) = (gsj , gwsj )
for the same w. This change is indistinguishable to the attacker as long as DDH
is hard. Once we are in this hybrid, information theoretically it is possible to
argue that the attacker only gets information {s1(u+ vw), s2(u+ vw), . . .}– this
basically leaves (u, v) undetermined except u+vw = k for given k and w. Hence,
it is possible to handle adaptive queries as the original keys u, v are always known
to the reduction.

For the case when the attacker corrupts ` < t−1 parties, the DiSE DP-DDH
proof becomes significantly more complex. This is due to the fact that, in that
case the attacker may ask evaluation queries on the challenge x? too, albeit up
to g = (t− 1− `) many of them (otherwise the attacker would have enough in-
formation to compute DPk(x?)). Now, it becomes hard to simulate the challenge
and non-challenge evaluation queries together from the DDH challenge if it is not
known ahead of time which g evaluation queries would be made on x?. To handle
that, the DiSE proof first makes the non-challenge evaluation queries indepen-
dent of the challenge evaluation queries– they went through q hybrids, where q
is the total number of distinct evaluation queries. Each successive hybrids are
proven indistinguishable assuming DDH; in each of these reductions the knowl-
edge of C plays a crucial role. Our construction, on the other hand, takes care of
this setting already due to the adaptive nature. Specifically, when we switch all
the random oracle queries on any no-challenge input x to H(x) = (gsj , gwsj ) for
the same w, the answers to the evaluation queries on x? (that are still being pro-
grammed with H(x) = (gsjgtj ) for uniform tj) becomes statistically independent
of them. So, no additional effort is needed to handle the case ` < t− 1.
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Similar to DiSE, we provide a stronger version of DPRF with a stronger
adaptive correctness property; plugging-in with the generic DiSE construction
we obtain a stronger variant of TSE scheme that too achieves adaptive correct-
ness. Our stronger DPRF is obtained by adding a commit-and-prove technique
similar to DiSE. However, in contrast to DiSE, which relies on trapdoor com-
mitments, we only require statistically hiding commitment scheme. This is due
to the fact that DiSE DPRF definition supports a weak form adaptivity that
allows the adversary to choose the corrupt set based on the public parameters.
The public parameters contain the commitments. Therefore, the reduction needs
to produce the commitments in an “equivocal manner” before knowing C – when
C is known, the reduction picks up the shares for corrupt parties and uses the
trapdoor to open them to the committed values. Our construction, on the other
hand, tackles adaptivity in a different way and hence trapdoors are not required.
However, we need adaptive NIZKs for this strengthened construction. We provide
a simple and efficient adaptive NIZK construction for the specific commit-and-
prove statement in Appendix 9 based on Schnorr’s protocol and Fiat-Shamir,
which may be of independent interest.

4 Preliminaries

In this paper, unless mentioned otherwise, we focus on specific interactive proto-
cols that consist of only two-rounds of non-simultaneous interactions: an initiat-
ing party (often called an initiator) sends messages to a number of other parties
and gets a response from each one of them. In particular, the parties contacted
do not communicate with each other. Our security model considers adaptive and
malicious corruption.

Common notation. We use notations similar to DiSE. Let N denote the set of
positive integers. We use [n] for n ∈ N to denote the set {1, 2, . . . , n}. A function
f : N→ N is negligible, denoted by negl, if for every polynomial p, f(n) < 1/p(n)
for all large enough values of n. We use D(x) =: y or y := D(x) to denote that
y is the output of the deterministic algorithm D on input x. Also, R(x)→ y or
y ← R(x) denotes that y is the output of the randomized algorithm R on input
x. R can be derandomized as R(x; r) =: y, where r is the explicit random tape
used by the algorithm. For two random variables X and Y we write X ≈comp Y
to denote that they are computationally indistinguishable and X ≈stat Y to
denote that they are statistically close. Concatenation of two strings a and b is
either denoted by (a‖b) or (a, b). Throughout the paper, we use n to denote the
total number of parties, t to denote the threshold, and κ to denote the security
parameter. We make the natural identification between players and elements of
{1, . . . , n}.

We will use Lagrange interpolation for evaluating a polynomial. For any poly-
nomial P , the i-th Lagrange coefficient for a set S to compute P (j) is denoted
by λj,i,S . Matching the threshold, we will mostly consider (t− 1)-degree polyno-
mials, unless otherwise mentioned. In this case, at least t points on P are needed
to compute any P (j).
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Inputs and outputs. We write [j : x] to denote that the value x is private to
party j. For a protocol π, we write [j : z′] ← π([i : (x, y)], [j : z], c) to denote
that party i has two private inputs x and y; party j has one private input z;
all the other parties have no private input; c is a common public input; and,
after the execution, only j receives an output z′. We write [i : xi]∀i∈S or more
compactly JxKS to denote that each party i ∈ S has a private value xi.

Network model. We assume that all the parties are connected by point-to-point
secure and authenticated channels. We also assume that there is a known upper-
bound on the time it takes to deliver a message over these channels.

Cryptographic primitives. We need some standard cryptographic primitives to
design our protocols like commitments, secret-sharing, adaptive non-interactive
zero-knowledge proofs, etc. For completeness we provide the formal definitions,
mostly taken verbatim from DiSE, in Supp A.

5 Distributed Pseudo-random Functions: Definitions

We now present a formal treatment of adaptively secure DPRF. First we
present the DPRF consistency which is exactly the same as in DiSE [AMMR18a]
and is taken verbatim from there as it does not consider any corruption.

Definition 1 (Distributed Pseudo-random Function). A distributed pseudo-
random function (DPRF) DP is a tuple of three algorithms (Setup,Eval,Combine)
satisfying a consistency property as defined below.

– Setup(1κ, n, t) → ((sk1, . . . , skn), pp). The setup algorithm generates n se-
cret keys (sk1, sk2, . . ., skn) and public parameters pp. The i-th secret key
ski is given to party i.

– Eval(ski, x, pp) → zi. The Eval algorithm generates pseudo-random shares
for a given value. Party i computes the i-th share zi for a value x by running
Eval with ski, x and pp.

– Combine({(i, zi)}i∈S , pp) =: z/⊥. The Combine algorithm combines the par-
tial shares {zi}i∈S from parties in the set S to generate a value z. If the
algorithm fails, its output is denoted by ⊥.

Consistency. For any n, t ∈ N such that t ≤ n, all ((sk1, . . . , skn), pp) generated
by Setup(1κ, n, t), any input x, any two sets S, S′ ⊂ [n] of size at least t, there
exists a negligible function negl such that

Pr[Combine({(i, zi)}i∈S , pp) =

Combine({(j, z′j)}j∈S′ , pp) 6= ⊥] ≥ 1− negl(κ),

where zi ← Eval(ski, x, pp) for i ∈ S, z′j ← Eval(skj , x, pp) for j ∈ S′, and the
probability is over the randomness used by Eval.
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Next we define the adaptive security of DPRF. This differs from the definition
provided in DiSE as for both correctness and pseudorandomness adaptive cor-
ruption is considered.

Definition 2 ((Strong)-adaptive security of DPRF). Let DP be a dis-
tributed pseudo-random function. We say that DP is adaptively secure against
malicious adversaries if it satisfies the adaptive pseudorandomness requirement
(Def. 3). Also, we say that DP is strongly-adaptively-secure against malicious
adversaries if it satisfies both the adaptive pseudorandomness and adaptive
correctness (Def. 4) requirements.

A DPRF is adaptively pseudorandom if no adaptive adversary can guess
the PRF value on an input for which it hasn’t obtained shares from at least t
parties. It is adaptively correct if no adaptive adversary can generate shares
which lead to an incorrect PRF value. We define these properties formally below.

Definition 3 (Adaptive pseudorandomness). A DPRF DP := (Setup, Eval,
Combine) is adaptively pseudorandom if for all PPT adversaries A, there exists
a negligible function negl such that

|Pr [PseudoRandDP,A(1κ, 0) = 1] −
Pr [PseudoRandDP,A(1κ, 1) = 1]| ≤ negl(κ),

where PseudoRand is defined below.

PseudoRandDP,A(1κ, b):

− Initialization. Run Setup(1κ, n, t) to get ((sk1, . . . , skn), pp). Give pp to A.
Initialize the state of party-i as sti := {ski}. The state of each honest party
is updated accordingly– we leave it implicit below. Initialize a list L := ∅ to
record the set of values for which A may know the PRF outputs. Initialize
the set of corrupt parties C := ∅.

− Adaptive corruption. At any point receive a new set of corrupt parties C̃ from
A. Give the states {sti}i∈C̃ of these parties to A and update C := C ∪ C̃.
Repeat this step as many times as A desires.

− Pre-challenge Evaluation. In response to A’s evaluation query (Eval, x, i)
return Eval(ski, x, pp) to A. Repeat this step as many times as A desires.
Record all these queries.

− Build lists. For each evaluation query on an input x, build a list Lx contain-
ing all parties contacted at any time in the game.

− Challenge. A outputs (Challenge, x?, S?, {(i, z?i )}i∈U?) such that |S?| ≥ t
and U? ∈ S?∩C. Let zi ← Eval(ski, x

?, pp) for i ∈ S?\U? and z? := Combine
({(i, zi)}i∈S\U ∪ {(i, z?i )}i∈U , pp). If z? = ⊥, return ⊥. Else, if b = 0, return
z?; otherwise, return a uniformly random value.

− Post-challenge evaluation and corruption. Exactly same as the pre-challenge
corruption and evaluation queries.

− Guess. When A returns a guess b′ then do as follows:
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− if the total number of corrupt parties, |C| ≥ t then output 0 and stop;
− if the challenge x? has been queried for evaluation for at least g := t−|C|

honest parties, that is if Lx? ∩ ([n] \ C) ≥ g then output 0 and stop;
− otherwise output b′.

Remark 1 (Difference with static security [AMMR18a]). The main differ-
ences with the static version, given in DiSE, are in the “Corruption” and
the “Guess” phase. Corruption takes place at any time in the security game
and the set of all corrupt parties is updated correspondingly. Now, we need
to prevent the adversary to win trivially. For that, we maintain lists corre-
sponding to each evaluation input (in DiSE definition only one list suffices)
and in the end check that whether the adversary has sufficient information
to compute the DPRF output itself. This becomes slightly trickier than the
static case due to constant updating of the list of corrupt parties.

Remark 2 (Comparing with definition of [LST18]). Our pseudorandomness
definition is stronger than the definition of Libert et al. [LST18], in that a
malicious adversary is not allowed to supply malformed partial evaluations
during the challenge phase. We handle this by attaching NIZK proofs.

Next we define adaptive correctness, which is very similar to the static case
with necessary adjustment in the “Corruption” phase.

Definition 4 (Adaptive correctness). A DPRF DP := (Setup, Eval, Combine)
is adaptively correct if for all PPT adversariesA, there exists a negligible function
negl such that the following game outputs 1 with probability at least 1−negl(κ).

− Initialization. Run Setup(1κ, n, t) to get ((sk1, . . . , skn), pp). Give pp to A.
Initialize the state of party-i as sti := {ski}. The state of each honest party is
updated accordingly– we leave it implicit below. Initialize the set of corrupt
parties C := ∅.

− Adaptive Corruption. At any time, receive a new set of corrupt parties C̃
from A, where |C ∪ C̃| < t. Give the secret states {sti}i∈C̃ of these parties

to A and update C := C ∪ C̃. Repeat this step as many times as A desires.
− Evaluation. In response to A’s evaluation query (Eval, x, i) for some i ∈

[n] \ C, return Eval(ski, x, pp) to A. Repeat this step as many times as A
desires.

− Guess. Receive a set S of size at least t, an input x?, and shares {(i, z?i )}i∈S∩C
from A. Let zj ← Eval(skj , x

?, pp) for j ∈ S and z′i ← Eval(ski, x
?, pp) for

i ∈ S\C. Also, let z := Combine({(j, zj)}j∈S , pp) and z? := Combine({(i, z′i)}i∈S\C∪
{(i, z?i )}i∈S∩C , pp). Output 1 if z? ∈ {z,⊥}; else, output 0.

6 Threshold Symmetric-key Encryption: Definitions

In this section, we provide the formal definitions of threshold symmetric-key
encryption (TSE). We start by specifying the algorithms that constitute a TSE
scheme, which is taken verbatim from DiSE [AMMR18a].
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Definition 5 (Threshold Symmetric-key Encryption). A threshold symmetric-
key encryption scheme TSE is given by a tuple (Setup,DistEnc,DistDec) that
satisfies the consistency property below.

– Setup(1κ, n, t) → (JskK[n], pp) : Setup is a randomized algorithm that takes
the security parameter as input, and outputs n secret keys sk1, . . . , skn and
public parameters pp. The i-th secret key ski is given to party i.

– DistEnc(JskK[n], [j : m,S], pp)→ [j : c/⊥] : DistEnc is a distributed protocol
through which a party j encrypts a message m with the help of parties in a
set S. At the end of the protocol, j outputs a ciphertext c (or ⊥ to denote
failure). All the other parties have no output.

– DistDec(JskK[n], [j : c, S], pp)→ [j : m/⊥] : DistDec is a distributed protocol
through which a party j decrypts a ciphertext c with the help of parties in
a set S. At the end of the protocol, j outputs a message m (or ⊥ to denote
failure). All the other parties have no output.

Consistency. For any n, t ∈ N such that t ≤ n, all (JskK[n], pp) output by

Setup(1κ), for any message m, any two sets S, S′ ⊂ [n] such that |S|, |S′| ≥ t,
and any two parties j ∈ S, j′ ∈ S′, if all the parties behave honestly, then there
exists a negligible function negl such that

Pr
[
[j′ : m]← DistDec(JskK[n], [j

′ : c, S′], pp) |

[j : c]← DistEnc(JskK[n], [j : m,S], pp)
]
≥ 1− negl(κ),

where the probability is over the random coin tosses of the parties involved in
DistEnc and DistDec.

Next we define the security of a TSE scheme in presence of an adaptive and
malicious adversary.

Definition 6 ((Strong)-Adaptive Security of TSE). Let TSE be a thresh-
old symmetric-key encryption scheme. We say that TSE is (strongly)-adaptively
secure against malicious adversaries if it satisfies the (strong)-adaptive cor-
rectness (Def. 7), adaptive message privacy (Def. 8) and (strong)-adaptive
authenticity (Def. 9) requirements.

6.1 Adaptive Correctness

The adaptive correctness definition barely changes from the static version in
DiSE, except the required adjustment in the corruption phase.

Definition 7 (Adaptive Correctness). A TSE scheme TSE := (Setup, DistEnc,
DistDec) is adaptively correct if for all PPT adversaries A, there exists a negli-
gible function negl such that the following game outputs 1 with probability at
least 1− negl(κ).
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− Initialization. Run Setup(1κ) to get (JskK[n], pp). Give pp to A. Initialize the

state of party-i as sti := {ski}. The state of each honest party is updated
accordingly– we leave it implicit below. Initialize the set of corrupt parties
to C := ∅.

− Adaptive Corruption. At any time receive a new set of corrupt parties C̃
from A, where |C ∪ C̃| < t. Give the secret-states {sti}i∈C̃ to A. Repeat
this as many times as A desires.

− Encryption. Receive (Encrypt, j,m, S) from A where j ∈ S \C and |S| ≥ t.
Initiate the protocol DistEnc from party j with inputs m and S. If j outputs
⊥ at the end, then output 1 and stop. Else, let c be the output ciphertext.

− Decryption. Receive (Decrypt, j′, S′) from A where j′ ∈ S′ \C and |S′| ≥ t.
Initiate the protocol DistDec from party j′ with inputs c, S′ and pp.

− Output. Output 1 if and only if j′ outputs m or ⊥.

A strongly-adaptively-correct TSE scheme is a correct TSE scheme but with a
different output step. Specifically, output 1 if and only if:

− If all parties in S′ behave honestly, then j′ outputs m; or,
− If corrupt parties in S′ deviate from the protocol, then j′ outputs m or ⊥.

Remark 3. Note that, an adaptive adversary may corrupt a party j right after
the encryption phase such that the condition j ∈ S \ C does not hold anymore.
However, this does not affect the winning condition, because we just need the
party j, who makes the encryption query, to output a legitimate ciphertext im-
mediately – for which we need that party to be honest only within the encryption
phase.

6.2 Adaptive Message privacy

Similar to DiSE our definition is a CPA-security style definition additionally
accompanied by an indirect decryption access to the attacker. However, due to
adaptive corruption, handling indirect decryption queries become more subtle.
We provide the formal definition below.

Definition 8 (Adaptive message privacy). A TSE scheme TSE := (Setup,
DistEnc,DistDec) satisfies message privacy if for all PPT adversaries A, there
exists a negligible function negl such that∣∣Pr

[
MsgPrivTSE,A(1κ, 0) = 1

]
−

Pr
[
MsgPrivTSE,A(1κ, 1) = 1

]∣∣ ≤ negl(κ),

where MsgPriv is defined below.

MsgPrivTSE,A(1κ, b):

− Initialization. Run Setup(1κ, n, t) to get (JskK[n], pp). Give pp to A. Initialize

the state of party-i as sti := {ski}. The state of each honest party is updated
accordingly– we leave it implicit below. Initialize a list Ldec := ∅.

12



− Adaptive Corruption. Initialize C := ∅ At any time receive a new set of
corrupt parties C̃ from A, where |C∪ C̃| < t. Give the secret-states {sti}i∈C̃
to A. Repeat this as many times as A desires.

− Pre-challenge encryption queries. In response toA’s encryption query (Encrypt,
j,m, S), where j ∈ S and |S| ≥ t, run an instance of the protocol DistEnc
with A5. If j /∈ C, then party j initiates the protocol with inputs m and
S, and the output of j is given to A. Repeat this step as many times as A
desires.

− Pre-challenge indirect decryption queries. In response to A’s decryption
query (Decrypt, j, c, S), where j ∈ S \ C and |S| ≥ t, party j initiates
DistDec with inputs c and S. Record j in a list Ldec. Repeat this step as
many times as A desires.

− Challenge. A outputs (Challenge, j?,m0,m1, S
?) where |m0| = |m1|, j? ∈

S? \C and |S?| ≥ t. Initiate the protocol DistEnc from party j? with inputs
mb and S?. Give c? (or ⊥) output by j? as the challenge to A.

− Post-challenge encryption queries. Repeat pre-challenge encryption phase.
− Post-challenge indirect decryption queries. Repeat pre-challenge decryption

phase.
− Guess. Finally, A returns a guess b′. Output b′ if and only if (i) j? 6∈ C and

(ii) Ldec ∩ C = ∅; otherwise return a random bit.

Remark 4. The main difference from the non-adaptive setting comes in the
Guess phase, in that, the winning condition requires that neither (i) the initiator
of the challenge query, (ii) nor any of the initiator of an indirect decryption query
is corrupt. To handle the later we introduce a list Ldec which records identities
of all parties who made an indirect decryption query.

6.3 Adaptive Authenticity

Similar to DiSE, our authenticity definition follows a one-more type notion. To
adapt the authenticity definition into the adaptive setting, we need to make
sure to exactly track the information gained by adversary which is sufficient to
produce valid ciphertexts. This leads to some subtleties in the adaptive case.
We incorporate that below by “delaying” the counting of the number of honest
responses per query.

Definition 9 (Adaptive authenticity). A TSE scheme TSE := (Setup, DistEnc,
DistDec) satisfies authenticity if for all PPT adversaries A, there exists a negli-
gible function negl such that

Pr [AUTHTSE,A(1κ) = 1] ≤ negl(κ),

where AUTH is defined below.

AUTHTSE,A(1κ):

5 Note that j can be either honest or corrupt here. So both types of encryption queries
are captured.
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− Initialization. Run Setup(1κ, n, t) to get (JskK[n], pp). Give pp to A. Initialize

the state of party-i as sti := {ski}. The state of each honest party is updated
accordingly– we leave it implicit below. Initialize counter ct := 0 and ordered
lists Lact, Lctxt := ∅. Below, we assume that for every query, the (j, S) output
by A are such that j ∈ S and |S| ≥ t. Initialize C := ∅.

− Adaptive Corruption. At any time receive a new set of corrupt parties C̃
from A, where |C ∪ C̃| < t. Give the secret-states {sti}i∈C̃ to A. Repeat
this as many times as A desires.

− Encryption queries. On receiving (Encrypt, j,m, S) from A, run the pro-
tocol DistEnc with m,S as the inputs of j. Append (j, S) into list Lact. If
j ∈ C, then also append the ciphertext into the list Lctxt.

− Decryption queries. On receiving (Decrypt, j, c, S) from A run the protocol
DistDec with c, S as the inputs of j. Append (j, S) into the list Lact.

− Targeted decryption queries. On receiving (TargetDecrypt, j, `, S) from A
for some j ∈ S \ C, run DistDec with c, S as the inputs of j, where c is the
`-th ciphertext in Lctxt. Append (j, S) into Lact.

− Forgery. For each j ∈ C, for each entry (there can be multiple entries,
which are counted as many times) (j, S) ∈ Lact increment ct by |S \ C|.
Define g := t − |C| and k := bct/gc. A outputs ((j1, S1, c1), (j2, S2, c2),
. . ., (jk+1, Sk+1, ck+1)) such that j1, . . . , jk+1 /∈ C and cu 6= cv for any
u 6= v ∈ [k + 1] (ciphertexts are not repeated). For every i ∈ [k + 1], run an
instance of DistDec with ci, Si as the input of party ji. In that instance, all
parties in Si behave honestly. Output 0 if any ji outputs ⊥; else output 1.

A TSE scheme satisfies strong-authenticity if it satisfies authenticity but with a
slightly modified AUTH: In the forgery phase, the restriction on corrupt parties
in Si to behave honestly is removed (for all i ∈ [k + 1]).

Remark 5. The above definition has some important differences with the static
case [AMMR18a], because tracking the exact amount of information acquired by
the adversary throughout the game for producing legitimate ciphertexts becomes
tricky in presence of adaptive corruption. To enable this we keep track of pairs
(j, S) for any encryption or decryption query made at any time irrespective
of whether j is honest or corrupt at that time. This is because, an adaptive
adversary may corrupt j at a later time. In the forgery phase, when the whole
corrupt set C is known, then for each such pair the corresponding number of
maximum possible honest responses |S\C| for that query is computed. For static
corruption this issue does not come up as the corrupted set C is known in the
beginning.

7 Our DPRF constructions

In this section we provide several DPRF constructions against adaptive attack-
ers. In Section 7.1 we provide our main DPRF construction. In Sec. 7.2, we
provide an extension which is strongly adaptively secure. Finally in Sec. 7.3 we
briefly argue the adaptive security naturally achieved by the DP-PRF construc-
tion.
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7.1 Adaptively-secure DPRF

Our DDH-based DPRF is provided in Fig. 1. We prove the following theorem
formally.

Parameters: Let G = 〈g〉 be a multiplicative cyclic group of prime order p in which
the DDH assumption holds and H{0, 1}∗ → G2 be a hash function modeled as a
random oracle. Let SSS be Shamir’s secret sharing scheme (Def. 11).

− Setup(1κ, n, t) → (JskK[n], pp) : Sample (u, v) ←$ Z2
p and get (u1, . . . , un) ←

SSS(n, t, p, u) and (v1, . . . , vn)← SSS(n, t, p, v). Set pp := (p, g,G) and ski :=
(ui, vi) and give (ski, pp) to party i, for i ∈ [n].

− Eval(ski, x, pp) → zi : Parse (ui, vi) := ski; compute (w1, w2) := H(x) and
hi := wui

1 wvi2 ; then output hi.
− Combine({(i, hi)}i∈S , pp) =: z/⊥ : If |S| < t, output ⊥. Else output∏

i∈S h
λ0,i,S

i .

Fig. 1. An adaptively secure DPRF protocol Πadap based on DDH.

Theorem 1. Protocol Πadapin Figure 1 is an adaptively secure DPRF under the
DDH assumption in the random oracle model.

Proof sketch. We need to show that the construction given in Fig. 1 satisfies
the consistency and adaptive pseudorandomness. The consistency is straight-
forward from the construction. So below we only focus on adaptive pseudoran-
domness. In particular, we show that if there exists a PPT adversary A which
breaks the adaptive pseudorandomness game, then we can build a polynomial
time reduction that breaks the DDH assumption. The formal proof is provided
in Suppl B. We give a sketch below.

Somewhat surprisingly our proof is significantly simpler than DiSE. This is
because, since our construction is purposefully designed to protect against adap-
tive corruption, we can easily switch to a hybrid where the information obtained
by the adverasry through all non-challenge evaluation queries are simulated using
a key, that is statistically independent from the actual key. In contrast, DiSE’s
proof needs to carefully make the non-challenge evaluation query independent
to reach a similar hybrid by crucially relying on the knowledge of corrupt set
from the beginning.

For any PPT adversary A and a bit b ∈ {0, 1} we briefly describe the hybrids
below:

PseudoRandA(b). This is the real game in that the challenger chooses random
(si, ti)←$Z2

p for simulating the i-th random oracle query on any xi as H(xi) :=
(gsi , gti).

Hyb1A(b) In the next hybrid experiment Hyb1A(b) the only change we make is:
the challenger guesses the challenge input x? randomly (incurring a 1/qH loss for
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qH = poly(κ) distinct random oracle queries) and simulates the random oracle
query on all xi 6= x? as H(xi) := (gsi , gωsi) where ω, s1, s2, . . . are each sampled
uniformly random from Zp. This implicitly sets ti := ωsi. Note that, each query
has the same ω, but a different si – this way the challenger ensures that the
attacker does not learn any new information by making more queries. However,
for x? the random oracle is programmed as usual by sampling random s?, t?

values as H(x?) := (gs
?

, gt
?

).

Claim. Assuming DDH is hard in group G, we have that PseudoRandA(b) ≈comp

Hyb1A(b).

Given a DDH challenge gα, gβ , gγ where γ is either is equal to αβ or uniform
random in Zp the reduction set gsi := gµi · gαbi for uniform random µi, σi ∈ Z2

p

and gti := gµiβ · gγσi . Now, if γ = αβ, then implicitly (in the exponent) the
challenger sets si := µi + σiα and ti := β(µi + σiα), which implies that ω := β
and ti := siω. So Hyb1 is perfectly simulated. On the other hand, when γ is
uniform random, then ti := µiβ + σiγ which is uniform random in Zp – this
perfectly simulates Hyb0.

Hyb2A(b). In this hybrid we do not make any change from Hyb1A(b) except that all
non-challenge evaluation queries are responded with a key k←$Zp sampled uni-
formly at random, whereas the corruption query for party j are answered using
randomly sampled uj , vj subject to uj + ωvj = kj where kj is the j-th Shamir’s
share of k. In particular, for a non-challenge evaluation query Eval(xi, j), the
challenger returns gsikj where H(xi) = (gsi , gωsi). The challenge query and the
evaluation queries on x? are answered similar to Hyb1A(b).

Claim. We have that: Hyb1A(b) ≈stat Hyb
2
A(b)

Note that, this statement is information theoretic and hence we assume that
the adversary here can be unbounded. First we notice that, in both the hybrids
an unbounded adversary learns values {s1, s2, . . .}, ω from the random oracle
responses. Furthermore, it learns at most t− 1 pairs {uj , vj}i∈C where |C| < t,
given which (u, v) remains statistically hidden. Now, the only difference comes
in the non-challenge evaluation queries. In Hyb1A(b), the adversary learns {u +
ωv} from them whereas in Hyb2A(b) it learns a random k. Now, we note that
conditioned on the common values, u + vω is uniformly random for randomly
chosen u, v, because it is basically a universal hash function where ω is the input
and (u, v) are uniform random keys. Hence the two distributions are statistically
close.

Now, once we are in Hyb2A(b), it is easy to observe that the response to the
challenge query is uniformly random irrespective of b, which in turn implies that
Hyb2A(0) ≈stat Hyb

2
A(1), which concludes the proof of the theorem.

We provide the full proof in detail in Suppl B.

ut
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7.2 Strongly-adaptively secure DPRF

Adding adequate NIZK proofs and commitments we obtain an adaptively-secure
DPRF which satisfies adaptive correctness too. However, we need to rely on sta-
tistically hiding and a specific adaptive NIZK6 argument [GOS12] for a commit-
and-prove style statement. We also provide a simple and efficient construction of
adaptive NIZK argument system for the particular commit-and-prove statement
in Appendix 9 based on Schnorr’s protocol and Fiat-Shamir’s transformation,
which may be of independent interest. The protocol is proven secure assuming
DDH in the random oracle model. The construction is provided in Fig. 2.

Formally we prove the following theorem. We skip the full proof as it is quite
similar to the proof of Theorem 1 with the adequate changes. Instead we provide
a sketch below remarking on the changes needed.

Theorem 2. Protocol Πstr-adapin Figure 2 is a strongly adaptively secure DPRF
under the DDH assumption in the random oracle model.

Proof sketch. For strong adaptive security we need to show (i) adaptive pseu-
dorandomness and (ii) adaptive correctness. First we discuss adaptive correct-
ness.

The proof of adaptive correctness is very similar to the one provided in DiSE
for the non-adaptive case except adequate changes in the the statement of the
NIZK proof. Recall that, the main idea of the construction (Fig. 2) is to use
commitments using which the Setup procedure publishes commitments of every-
one’s secret key. Later, when queried for an evaluation, each party, in addition
to the evaluation, sends a NIZK proof stating that the evaluation is correctly
computed using the actual keys (those are committed before). So, to violate
adaptive correctness the attacker must break either the simulation-soundness of
NIZK or the binding of the commitment scheme– rendering its task infeasible.
Note that, the adversary does not gain anything by being adaptive in this case.

The adaptive pseudorandomness proof follows the footstep of the proof of
Theorem 1. However, due to presence of the commitments and NIZKs some
adjustments are required. In particular, we need to ensure that neither the com-
mitments, nor the proofs give away more information, for which statistical hiding
and adaptive zero-knowledge properties of them will be used respectively. We
describe the hybrids below and highlight the changes in red from the proof of
Theorem 1.

For any PPT adversary A and a bit b ∈ {0, 1} we briefly describe the hybrids
below:

PseudoRandA(b). This is the real game in that the challenger chooses random
(si, ti)←$Z2

p for simulating the i-th random oracle query on any xi as H(xi) :=
(gsi , gti).

6 Groth et al. [GOS12] alternatively calls them zero-knowledge in erasure-free model.
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Hyb1A(b) In the next hybrid experiment Hyb1A(b) the only change we make is:
the challenger guesses the challenge input x? randomly (incurring a 1/qH loss for
qH = poly(κ) distinct random oracle queries) and simulates the random oracle
query on all xi 6= x? as H(xi) := (gsi , gωsi) where ω, s1, s2, . . . are each sampled
uniformly random from Zp. This implicitly sets ti := ωsi. Note that, each query
has the same ω, but a different si – this way the challenger ensures that the
attacker does not learn any new information by making more queries. However,
for x? the random oracle is programmed as usual by sampling random s?, t?

values as H(x?) := (gs
?

, gt
?

).

Claim. Assuming DDH is hard in group G, we have that PseudoRandA(b) ≈comp

Hyb1A(b).

This claim follows analogously to Theorem 1.

Hyb1.5A (b). In this hybrid the only changes made are in the NIZK proofs– the
challenger sends simulated NIZK proofs instead of the actual NIZK proofs to the
attacker for all honest evaluation/challenge requests. Hence, the NIZK proofs
are made independent of the witnesses (ui, vi, ρ

1
i , ρ

2
i ).

From the adaptive zero-knowledge property of NIZK we conclude that Hyb1A(b)
≈comp Hyb1.5A (b). Note that, adaptive zero-knowledge is crucial here as the at-
tacker may corrupt a party, on behalf of which a simulated proof has already
been sent earlier. The corruption request is simulated by providing a randomness
along with the witnesses ((ui, vi, ρ

1
i , ρ

2
i ) for party i in this case) to explain the

simulated proof.

Hyb2A(b). In this hybrid we do not make any change from Hyb1A(b) except that all
non-challenge evaluation queries are responded with an independent key k←$Zp
sampled uniformly at random, whereas the corruption query for party j are
answered using randomly sampled uj , vj subject to uj + ωvj = kj where kj is
the j-th Shamir’s share of k. In particular, for a non-challenge evaluation query
Eval(xi, j), the challenger returns gsikj where H(xi) = (gsi , gωsi). Challenge
queries and the evaluation query on x? are answered similar to Hyb1A(b).

Claim. We have that: Hyb1A(b) ≈stat Hyb
2
A(b)

To prove this information theoretic claim we use that the fact that the com-
mitments are statistically hiding and hence they do not reveal any additional
information. Furthermore, in both the hybrids the proofs are simulated and
hence they are too statistically independent of the witnesses. The rest of argu-
ment follows analogous to the proof of Theorem 1, and therefore we omit the
details.

7.3 PRF-based Construction.

The PRF-based construction of NPR (also used in DiSE) can be easily shown to
be adaptive secure using complexity leveraging, just by guessing the corrupt set
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ahead of time in the security game. This, of course, incurs a loss proportional
to O(

(
n
t

)
) in the security as there are that many possible corrupt sets. How-

ever, since the complexity of this scheme is anyway proportional to O(
(
n
t

)
), this

natural solution is asymptotically optimal in this case. As a result the DP-PRF
construction can be used to protect against adaptive corruption readily without
any change in certain settings, in particular when

(
n
t

)
is a polynomial in the

security parameter.
ut

Parameters: Let G = 〈g〉 be a multiplicative cyclic group of prime order p in which
the DDH assumption holds, H : {0, 1}∗ → G2 and H′ : {0, 1}∗ → {0, 1}poly(κ) be
two hash functions modeled as random oracles. Let SSS be Shamir’s secret sharing
scheme (Def. 11), SCom := (Setupcom,Com) be a statistically hiding commitment

scheme (Def. 10) and adaptive NIZK := (ProveH
′
,VerifyH

′
) be a simulation-sound

adaptive NIZK proof system (Def. 12).

− Setup(1κ, n, t) → (JskK[n], pp). Sample (u, v) ←$ Z2
p and get (u1, . . . , un) ←

SSS(n, t, p, u) and (v1, . . . , vn)← SSS(n, t, p, v). Run Setupcom(1κ) to get ppcom.
Compute commitments γi := Com(ui, ppcom; ρ1i ) and δi := Com(vi, ppcom; ρ2i )
by picking ρ1i , ρ

2
i at random. Set pp = (p, g,G, (γ1, δ1) . . . , (γn, δn), ppcom),

ski := (ui, vi, ρ
1
i , ρ

2
i ) and give ski to party i, for i ∈ [n].

− Eval(ski, x, pp) → zi. Compute w1, w2 := H(x) and hi := wui
1 wvi2 . Run

ProveH
′

with the statement stmti: {∃ui, vi, ρ1i , ρ2i s.t. hi = wui
1 wvi2 ∧ γi =

Com(ui, ppcom; ρ1i ) ∧ δi = Com(vi, ppcom; ρ2i )} and witness (ui, vi, ρ
1
i , ρ

2
i ) to ob-

tain a proof πi. Output ((w1, w2, hi), πi).
− Combine({(i, zi)}i∈S , pp) =: z/⊥. If |S| < t, output ⊥. Else, parse zi as

((w1, w2, hi), πi) and check if VerifyH
′
(stmti, πi) = 1 for all i ∈ S. If check

fails for any i, output ⊥. Else, output
∏
i∈S h

λ0,i,S

i .

Fig. 2. A strongly adaptively secure DPRF protocol Πstr-adapbased on DDH. Differences
from Πadapare highlighted in blue.

8 Adaptively secure TSE Construction

In this section, we show that, plugging in any adpatively-secure (strong) DPRF
to the DiSE TSE construction one can obtain an adaptively secure (strongly-
correct) TSE scheme. A full description of the DiSE construction is provided
verbatim in Figure 3 for completeness. Our result can be formalized in the fol-
lowing theorem. The proof is very similar to the non-adaptive case and therefore
we just mention the adjustments needed to augment it to the adaptive setting
and skip the details.

Theorem 3. The TSE scheme DiSE of Figure 3 is (strongly)-adaptive-secure
if the underlying DPRF DP is (strongly)-adaptive-secure.

Proof. We show each property of DiSE separately.
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Ingredients:

− An (n, t)-DPRF protocol DP := (DP.Setup,Eval,Combine) (Def. 1).
− A pseudorandom generator PRG of polynomial stretch.
− A commitment scheme Σ := (Σ.Setup,Com)

Setup(1κ, n, t)→
(
JskK[n], pp

)
: Run DP.Setup(1κ, n, t) to get ((rk1, . . . , rkn), ppDP) and

Σ.Setup(1κ) to get ppcom. Set ski := rki for i ∈ [n] and pp := (ppDP, ppcom).

DistEnc(JskK[n], [j : m,S], pp)→ [j : c/⊥]: To encrypt a message m with the help of

parties in S:

− Party j computes α := Com(m, ppcom; ρ) for a randomly chosen ρ and sends α to
all parties in S.

− For every i ∈ S, party i runs Eval(ski, j‖α, pp) to get zi, and sends it to party j.
− Party j runs Combine({(i, zi)}i∈S , pp) to get w or ⊥. In the latter case, it outputs
⊥. Otherwise, it computes e := PRG(w)⊕ (m‖ρ) and then outputs c := (j, α, e).

DistDec(JskK[n], [j
′ : c, S], pp)→ [j′ : m/⊥]: To decrypt a ciphertext c with the help of

parties in S:

− Party j′ first parses c into (j, α, e). Then it sends j‖α to all the parties in S.
− For i ∈ S, party i receives x and checks if it is of the form j?‖α? for some j? ∈ [n].

If not, then it sends ⊥ to party j′. Else, it runs Eval(ski, x, pp) to get zi, and sends
it to party j′.

− Party j′ runs Combine({(i, zi)}i∈S , pp) to get w or ⊥. In the latter case, it outputs
⊥. Otherwise, it computes m‖ρ := PRG(w)⊕e and checks if α = Com(m, ppcom; ρ).
If the check succeeds, it outputs m; otherwise, it outputs ⊥.

Fig. 3. DiSE: our threshold symmetric-key encryption protocol.

Consistency. Consistency remains unchanged from the static case.

Lemma 1 ((Strong)-adaptive-correctness). DiSE is an adaptively correct
TSE scheme.

Proof sketch. The adaptive (strong)-correctness definition of TSE (Def. 7) is
very similar to the static case. The only change takes place in the corruption,
where an adaptive adversary may dynamically corrupt parties. Adaptive corrup-
tion does not alter the proof of correctness which relies on the binding of the
commitment scheme. For the strong correctness we need to rely on the adaptive
correctness of the underlying DPRF scheme. Again, we notice that the adaptive
correctness of DPRF (Def. 4) is very similar to its static correctness as provided
in DiSE, except the corruption capabilities. So, any adaptive corruption query
of a TSE adversary can be simulated using the adaptive corruption query of the
DPRF scheme. The rest of the proof follows from the static case.

ut

Lemma 2 (Adaptive message privacy). If DP is a adaptively secure DPRF
(Def. 2), then DiSE is an adaptively message-private TSE scheme.
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Proof sketch. Let us recall the intuition of static message privacy from [AMMR18a].
The challenge ciphertext c? has the form (j?, α?, e?) where e? = PRG(w?) ⊕
(mb‖ρ?), α? = Com(mb, ppcom; ρ?) and w? is the output of DPRF DP on j?‖α?.
Clearly, due to the masking with PRG, it is computationally hard guess b with
probability significantly better than 1

2 if w? is indistinguishable from random.
Now, in the adaptive case, the adaptive pseudorandomness property of DP

ensures this as long as an adaptive adversary A has no way of evaluating the
DPRF on j?‖α? itself, as due to hiding of the commitment scheme Σ no informa-
tion about mb is leaked from α?. So it boils down to the unpredictability of the
DPRF output on j?‖α?. Note that, the definition (Def. 8) of adaptive message
privacy ensures that j? is not corrupt at any point of time by checking j? /∈ C.
So, it is not possible to learn the DPRF output on j?‖α? by corrupting j? after
the challenge phase and accessing its past state. Alternatively, the attacker may
hope to win the game by using the indirect decryption queries initiated from
an honest party, but corrupting the initiator later. However, this is taken care
of by ensuring that any initiator of the indirect decryption query may not be
corrupt at any time (see the “guess” phase of Def. 8). All other potential attack
strategies are dealt with similar to the static case as provided in DiSE.

ut

Lemma 3 ((Strong) adaptive authenticity). If DP is an (strongly)-adaptively
secure DPRF, then DiSE is a TSE scheme that satisfies (strong) adaptive-
authenticity.

Proof sketch. Again, let us recall the intuition from the static case [AMMR18a].
If there are two forged ciphertexts c1 = (j, α, e1), c2 = (j, α, e2) with the same
(j, α), the underlying message-randomness pair (m1, ρ1) and (m2, ρ2) recovered
from c1 and c2, respectively, must be different (this also uses the consistency
of the DPRF). Binding of Σ, ensures that decryption of one of c1, c2 fails, and
subsequently AUTH outputs 0. So, in order to succeed the attacker must output
k+1 ciphertexts each with a unique (j, α). So, it boils down to showing that the
attacker can not acquire more information than producing k valid ciphertexts.

In the adaptive setting it becomes trickier to track the exact amount of
information acquired by the adversary before outputting forgery. However, in the
definition (Def. 9) we handle this by delaying the tracking until the very end when
the set of the entire corrupt set is known. This is enabled by recording all pairs
(j, S) used in a query in the list Lact. In fact, the list Lact may contain multiple
entries (j, S) as the attacker may use the same set to compute multiple valid
ciphertexts. As discussed in the preceding paragraph, storing this information
is sufficient to count the exact number of possible ciphertexts the attacker can
produce. The rest of the proof follows similar to the static counterpart.

To argue strong adaptive authenticity, one needs to additionally rely on adap-
tive correctness of the underlying DPRF– this can be easily adapted from the
static case.

ut
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9 Adaptive Non-interactive Zero-knowledge construction.

Here we show a simple and efficient construction of adaptive NIZK for the specific
commit-and-prove statement required for our construction Πstr-adap. We provide
the relevant definitions in Supp A.3.

Consider a group G of prime order p where discrete log is hard. Let g be
a generator. Let SCom := (Setupcom,Com) be a the Pederson’s commitment
scheme where Setupcom returns (g, h) such that h = gx and Com(m; r) := gmhr.
It is easy to see that this is a statistically hiding commitment scheme. Let
H : {0, 1}? → G2 and H′ : {0, 1}∗ → Zp be hash functions modeled as ran-
dom oracles. We construct a NIZK proof system for the relation Rcom-prov =
{x, z, c1, c2 : ∃ (k1, k2, ρ1, ρ2) such that ∀ i ∈ {1, 2}, ci = Com(ki; ρi) and z =
wk11 w

k2
2 where (w1, w2) := H(x)}.

The main idea is to use a Schnorr’s proof [Sch90] along with Fiat-Shamir
transformation [FS87]. Recall that, the Schnorr proof system can be used prove
a knowledge of exponent, in this case knowledge of k1, k2 for which z = wk11 w

k2
2 .

Nevertheless, this does not prove anything about the individual ki. Separately,
the commitment, when instantiated with Pederson’s, can also be thought of as
knowledge of exponents of k1, ρ1 and k2, ρ2 individually and can be proven using
Schnorr-like scheme–this is possible due to the homomorphic property of the
commitment scheme, by which Com(m1; r1) and Com(m2; r2) can be combined
to produce a commitment of Com(m1 +m2; r1 + r2). These two separate proofs
are bound together (that is, the same ki are used) by using the same challenge
e for verification.

ProveH,H
′
((x, z, c1, c2), (k1, k2, ρ1, ρ2)) : The prover works as follows:

− Sample randomnesses v1, v2, v̂1, v̂2 from Zp.
− Let (w1, w2) := H(x).

− Compute t := wv11 w
v2
2 ; t̂1 := Com(v1; v̂1) and t̂2 := Com(v2; v̂2).

− Generate the challenge (Fiat-Shamir) e := H′(t, t̂1, t̂2).

− Compute ui := vi + eki and ûi := v̂i + eρi for all i ∈ {1, 2}.
− Output π := ((t, t̂1, t̂2), e, (u1, u2, û1, û2)).

VerifyH,H
′
(s := (x, z, c1, c2), π := ((t, t̂1, t̂2), e, (u1, u2, û1, û2)) The verifier com-

putes (w1, w2) := H(x) and then checks the following and output 1 if and only
if all of them succeeds, and 0 otherwise:

− e = H′(t, t̂1, t̂2).

− wu1
1 wu2

2 = tze.

− hû1gu1 = t̂1c
e
1.

− hû2gu2 = t̂2c
e
2.

Lemma 4. The above protocol is a adaptive NIZK argument system in the ran-
dom oracle model assuming DDH.
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Proof. Perfect completeness is obvious. The simulation soundness follows from
a standard Fiat-Shamir rewinding argument in ROM. We show the adaptive
zero-knowledge, for which we construct simulators S1,S2,S3 as follows:

− S1. This algorithm simulates fresh random oracle queries on x for H by
sampling α, β←$Z2

p, storing (x, α, β) in table Q1 and finally returning the

pair (gα, gβ). Furthermore, it also simulates fresh random oracle queries
for H′ by returning a uniform random value in G and storing the input-
output pair in Q2. Repeating queries are simulated using the tables Q,Q2

appropriately. Furthermore, S1 can be asked by S2 or S3 to program bothH,
H′ with specific input-output pairs– if that pair is already defined (queried
by A earlier), then S1 fails to program.

− S2. This algorithm, on input (x, z, c1, c2) works as follows:
− sample uniform random e, u1, u2, û1, û2 from Zp and define ρS := (e, u1, u2, û1, û2);
− compute (w1, w2) := H(x);
− set t := wu1

1 wu2
2 z−e, {t̂i := hûiguicei}i∈{1,2};

− ask S1 to program H′ for input (t, t̂1, t̂2) and output e;
− returns π := ((t, t̂1, t̂2), e, (u1, u2, û1, û2)).

− S3. This algorithm, on input statement (x, z, c1, c2), witness (k1, k2, ρ1, ρ2),
and S2’s randomness ρS = (e, u1, u2, û1, û2) works as follows:
− use S2((x, z, c1, c2); ρS) to generate π = ((t, t̂1, t̂2), e, (u1, u2, û1, û2)) as

above;
− then compute vi := ui − eki and v̂i := ûi − eρi for i ∈ {1, 2};
− output r := (v1, v2, v̂1, v̂2)

It is straightforward to see that the above simulators indeed satisfy the adap-
tive zero-knowledge property. This concludes the proof.
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ACM Press.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lec-
ture Notes in Computer Science, pages 307–315, Santa Barbara, CA, USA,
August 20–24, 1990. Springer, Heidelberg, Germany.

24

https://eprint.iacr.org/2018/727


DK01. Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures
without a trusted dealer. In Birgit Pfitzmann, editor, Advances in Cryp-
tology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer
Science, pages 152–165, Innsbruck, Austria, May 6–10, 2001. Springer,
Heidelberg, Germany.

DK10. Ivan Damg̊ard and Marcel Keller. Secure multiparty AES. In Radu
Sion, editor, FC 2010: 14th International Conference on Financial Cryp-
tography and Data Security, volume 6052 of Lecture Notes in Computer
Science, pages 367–374, Tenerife, Canary Islands, Spain, January 25–28,
2010. Springer, Heidelberg, Germany.

dya. Dyadic Security. https://www.dyadicsec.com.
FKMV12. Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele

Venturi. On the non-malleability of the Fiat-Shamir transform. In
Steven D. Galbraith and Mridul Nandi, editors, Progress in Cryptology
- INDOCRYPT 2012: 13th International Conference in Cryptology in In-
dia, volume 7668 of Lecture Notes in Computer Science, pages 60–79,
Kolkata, India, December 9–12, 2012. Springer, Heidelberg, Germany.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194, Santa Barbara, CA, USA, August 1987.
Springer, Heidelberg, Germany.

GHKR08. Rosario Gennaro, Shai Halevi, Hugo Krawczyk, and Tal Rabin. Threshold
RSA for dynamic and ad-hoc groups. In Nigel P. Smart, editor, Advances
in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in
Computer Science, pages 88–107, Istanbul, Turkey, April 13–17, 2008.
Springer, Heidelberg, Germany.

GJKR96. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Ro-
bust threshold DSS signatures. In Ueli M. Maurer, editor, Advances
in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in
Computer Science, pages 354–371, Saragossa, Spain, May 12–16, 1996.
Springer, Heidelberg, Germany.

GOS12. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for non-
interactive zero-knowledge. J. ACM, 59(3):11:1–11:35, 2012.

GRR+16. Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and
Nigel P. Smart. MPC-friendly symmetric key primitives. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer
and Communications Security, pages 430–443, Vienna, Austria, Octo-
ber 24–28, 2016. ACM Press.

KHF+20. Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: exploiting
speculative execution. Commun. ACM, 63(7):93–101, 2020.
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Supplementary Material
A Cryptographic primitives used as building blocks

We include definitions of some well-known primitives for completeness, mostly
taken verbatim from [AMMR18b].

A.1 Commitment

Definition 10 (Commitment Scheme). A (non-interactive) commitment scheme
Σ consists of two PPT algorithms (Setupcom,Com) which satisfy hiding and bind-
ing properties:

− Setupcom(1κ)→ ppcom : It takes the security parameter as input, and outputs
some public parameters.

− Com(m, ppcom; r) =: α : It takes a message m, public parameters ppcom and
randomness r as inputs, and outputs a commitment α.

Hiding. A commitment schemeΣ = (Setupcom,Com) is statistically/computationally
hiding if for all unbounded/PPT adversaries A, all messages m0, m1, there exists
a negligible function negl such that for ppcom ← Setupcom(1κ),

|Pr[A(ppcom,Com(m0, ppcom; r0)) = 1]−
Pr[A(ppcom,Com(m1, ppcom; r1)) = 1]| ≤ negl(κ),

where the probability is over the randomness of Setupcom, random choice of r0
and r1, and the coin tosses of A. Unless mentioned explicitly we assume that
a commitment is computationally hiding, which suffices for construction Πadap

(Fig. 1). However for the construction Πstr-adap (Fig. 2) we need the commitment
scheme to be statistically hiding. We can use, for example Pederson’s commit-
ment for that. We briefly describe Pederson’s commitment in Sec. 9.

Binding. A commitment scheme Σ = (Setupcom,Com) is binding if for all PPT
adversaries A, if A outputs m0, m1, r0 and r1 ((m0, r0) 6= (m1, r1)) given
ppcom ← Setupcom(1κ), then there exists a negligible function negl such that

Pr[Com(m0, ppcom; r0) = Com(m1, ppcom; r1)] ≤ negl(κ),

where the probability is over the randomness of Setupcom and the coin tosses of
A.

A.2 Secret Sharing

Definition 11 (Shamir’s Secret Sharing). Let p be a prime. An (n, t, p, s)-
Shamir’s secret sharing scheme is a randomized algorithm SSS that on input four
integers n, t, p, s, where 0 < t ≤ n < p and s ∈ Zp, outputs n shares s1, . . . , sn ∈
Zp such that the following two conditions hold for any set {i1, . . . , i`}:
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− if ` ≥ t, there exists fixed (i.e., independent of s) integers λ1, . . . , λ` ∈ Zp
(a.k.a. Lagrange coefficients) such that

∑`
j=1 λjsij = s mod p;

− if ` < t, the distribution of (si1 , . . . , si`) is uniformly random.

Concretely, Shamir’s secret sharing works as follows. Pick a1, . . ., at−1 ←$

Zp. Let f(x) be the polynomial s+ a1 · x+ a2 · x2 + . . .+ at−1 · xt−1. Then si is
set to be f(i) for all i ∈ [n].

A.3 Adaptive NIZK

Let R be an efficiently computable binary relation. For pairs (s, w) ∈ R, we refer
to s as the statement and w as the witness. Let L be the language of statements in
R, i.e. L = {s : ∃w such that R(s, w) = 1}. We define adaptive non-interactive
zero-knowledge arguments of knowledge in the random oracle model based on
the work of Faust et al. [FKMV12], but augmented to the adaptive case similar
to [GOS12].

Definition 12 (Adaptive Non-interactive Zero-knowledge Argument of
Knowledge). Let H : {0, 1}∗ → {0, 1}poly(κ) be a hash function modeled as a
random oracle. An adaptive NIZK for a binary relation R consists of two PPT
algorithms Prove and Verify with oracle access to H defined as follows:

− ProveH(s, w) takes as input a statement s and a witness w, and outputs a
proof π if (s, w) ∈ R and ⊥ otherwise.

− VerifyH(s, π) takes as input a statement s and a candidate proof π, and
outputs a bit b ∈ {0, 1} denoting acceptance or rejection.

These two algorithms must satisfy the following properties:

− Perfect completeness: For any (s, w) ∈ R,

Pr
[
VerifyH(s, π) = 1 | π ← ProveH(s, w)

]
= 1.

− Adaptive Zero-knowledge: There must exist a triple of PPT simulators
(S1,S2,S3) such that for all PPT adversary A,∣∣∣Pr[AH,PR

H(·,·)(1κ) = 1]− Pr[AS1(·),SR(·,·)(1κ) = 1]
∣∣∣ ≤ negl(κ)

for some negligible function negl, where

− PRH, on input a statement-witness pair (s, w), samples a randomness
r, runs π ← ProveH(s, w) and returns a proof-randomness pair (π, r).

− S1 simulates the random oracle H;
− SR, on input a statement-witness pair (s, w), samples a randomness
ρS , runs π ← S2(s; ρS) and then r ← S3(s, w, ρS). It returns a simu-
lated proof-randomness pair (π, r) if (s, w) ∈ R and ⊥ otherwise;

− S1, S2 S3 may share states.
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− Simulation soundness: There must exist a PPT simulator S1 such that
for all PPT adversary A, there exists a PPT extractor EA such that

Pr
[
(s, w) /∈ R and VerifyH(s, π) = 1 |

(s, π)← AS1(·)(1κ);w ← EA(s, π,Q)
]
≤ negl(κ)

for some negligible function negl, where
− S1 is like above;
− Q is the list of (query, response) pairs obtained from S1.

Fiat-Shamir transform. Let (Prove,Verify) be a three-round public-coin honest-
verifier zero-knowledge interactive proof system (a sigma protocol) with unique
responses. Let H be a function with range equal to the space of the verifier’s
coins. In the random oracle model, the proof system (ProveH,VerifyH) derived
from (Prove,Verify) by applying the Fiat-Shamir transform satisfies the zero-
knowledge and argument of knowledge properties defined above. See Definition
1, 2 and Theorem 1, 3 in Faust et al. [FKMV12] for more details. (They actually
show that these properties hold even when adversary can ask for proofs of false
statements.)

B Detailed proof of Theorem 1

Since consistency is obvious, here we provide a full proof of adaptive pseudoran-
domness of the construction given in Fig. 1. For a sketch we refer to Sec. 7.1.

Comparison with the DiSE DPRF proof of static case. Somewhat surprisingly
our proof is simpler than the DiSE DPRF proof (Appendix C.4 of [AMMR18b])
even if our construction provides a strictly stronger guarantee than theirs. This is,
in fact, due to the fact that our construction has a feature by which the response
to the evaluation queries on the non-challenge values are made independent of
the responses to the challenge queries easily (the same feature is used to achieve
resilience against adaptive corruption). In DiSE DPRF, one needs to carefully
use the knowledge of corrupt set to reach a similar hybrid.

Formally, we prove a reduction from DDH assumption in the random oracle
model. We will go through a number of hybrid games. For a fixed b ∈ {0, 1}
and a PPT adversary A starting from the real game PseudoRandA(b) we will
be reaching a hybrid Hyb2A(b). Then we shall show that Hyb2A(0) and Hyb2A(1)
are statistically indistinguishable. We highlight the difference with between suc-
cessive hybrids in red. We start by describing the real game PseudoRandA(b)
concretely for our scheme Πadap.

PseudoRandA(b) :
1. Give the public parameters pp := (p, g,G) (G is a cyclic group of order p

and g is a generator of G) to A.
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2. Program the random oracle H as follows: Initialize LH := ∅. For random
oracle call with input x:

1. If there exists a tuple (x, s, t, w1, w2) ∈ LH , output (w1, w2).
2. Otherwise, choose (s, t)←$ Z2

p and set w1 := gs and w2 := gt. Update
LH := LH ∪ (x, s, t, w1, w2) and output (w1, w2).

Give random oracle access to A.
3. Choose a couple of (t − 1)-degree random polynomials f1, f2. Define ui :=
f1(i) and vi := f2(i) for i ∈ [n] ∪ {0}. Initialize states for each party i ∈ [n]
as sti := {ui, vi}. Initialize C := ∅. At any point on receiving a new set of
corrupt parties C̃ from A, send the corresponding secret states {sti}i∈C̃ to

A and update C := C ∪ C̃. For simplicity we assume that the final set C
is equal to {1, . . . , `}, which is without loss of generality because we will
not be using this information in the proof (otherwise handling the adaptive
corruption would have been trivial).

4. On an evaluation query (Eval, x, i) for an honest i, return hi := wui
1,iw

vi
2,i

where H(x) = (w1,i, w2,i) ∈ G2; update sti := sti ∪ {x}. Build a list Lx if
this is the first evaluation query on x, or update exiting Lx by appending i
to it.

5. On the challenge query (Challenge, x?, S?, g?1 , . . . , g
?
u) for m ≤ ` (without

loss of generality assume that S? ∩ C = [m]):

1. Set g?i := w?ui
1,iw

?vi
2,i for i ∈ S? \ C.

2. Depending on b do as follows:
1. If b = 0 then compute z? :=

∏
i∈S? g?i

λ0,i,S .
2. Else, choose a random z? ←$ G.

3. Send z? to A.

6. Continue answering evaluation queries as before.
7. Receive a guess b′ from A; then do as follows:
− if the total number of corrupt parties, |C| ≥ t then output 0 and stop;
− if the challenge x? has been queried for evaluation for at least g := t−|C|

honest parties, that is if Lx? ∩ ([n] \ C) ≥ g then output 0 and stop;
− otherwise output b′.

In the next hybrid experiment Hyb1A(b) the only change we make is: the
challenger guesses the challenge input x? randomly (incurring a 1/qH loss for
qH = poly(κ) distinct random oracle query) and simulates the random oracle
query on xi 6= x? as H(xi) := (gsi , gωsi) where ω, s1, s2, . . . are sampled uni-
formly random from Zp. This implicitly sets ti := wsi. Note that, each query
has the same ω, but a different si – this way the challenger ensures that the
attacker does not learn any new information by making more queries. However,
for x? the random oracle is programmed as usual by sampling random s?, t?

values as H(x?) := (gs
?

, gt
?

). We formally describe it below:

Hyb1A(b) :
1. Give the public parameters pp := (p, g,G) (G is a cyclic group of order p

and g is a generator of G) to A. Suppose A makes qH distinct random oracle
queries in total.
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2. Guess j←$[qH] and let the j-th query be on x?. Choose a random value
ω←$Zp. Then program the random oracle H as follows: Initialize LH := ∅.
For random oracle call on x do as follows:

1. If there exists a tuple (x, s, t, w1, w2) ∈ LH , output (w1, w2).
2. Otherwise,

− if x 6= x?: choose s ←$ Zp and define t := sωmod p; set w1 := gs

and w2 := gt. Update LH := LH ∪ (x, s, t, w1, w2) and output
(w1, w2). ;

− otherwise if x = x? choose s?, t?←$Zp; set w?1 := gs
?

and w?2 := gt
?

.
Update LH := LH ∪ (x?, s?, t?, w?1 , w

?
2) and output (w?1 , w

?
2).

Give random oracle access to A.
3. Choose a couple of (t − 1)-degree random polynomials f1, f2. Define ui :=
f1(i) and vi := f2(i) for i ∈ [n] ∪ {0}. Initialize states for each party i ∈ [n]
as sti := {ui, vi}. Initialize C := ∅. At any point on receiving a new set of
corrupt parties C̃ from A, send the corresponding secret states {sti}i∈C̃ to

A and update C := C ∪ C̃. For simplicity we assume that the final set C
is equal to {1, . . . , `}, which is without loss of generality because we will
not be using this information in the proof (otherwise handling the adaptive
corruption would have been trivial).

4. On an evaluation query (Eval, x, i) for an honest i, return hi := wui
1 w

vi
2

where H(x) = (w1, w2) ∈ G2; update sti := sti ∪ {x}. Build a list Lx if this
is the first evaluation query on x, or update exiting Lx by appending i to
it.

5. On the challenge query (Challenge, x, S?, g?1 , . . . , g
?
m) for m ≤ ` if the guess

is wrong, that is x 6= x? then output a random guess, otherwise: (without
loss of generality assume that S? ∩ C = [m]):

1. Set g?i := w?ui
1 w

?vi
2 for i ∈ S? \ C.

2. Depending on b do as follows:
1. If b = 0 then compute z? :=

∏
i∈S? g?i

λ0,i,S .
2. Else, choose a random z? ←$ G.

3. Send z? to A.

6. Continue answering evaluation queries as before.
7. Receive a guess b′ from A; then do as follows:
− if the total number of corrupt parties, |C| ≥ t then output 0 and stop;
− if the challenge x? has been queried for evaluation for at least g := t−|C|

honest parties, that is if Lx? ∩ ([n] \ C) ≥ g then output 0 and stop;
− otherwise output b′.

We prove the following claim:

Claim. Assuming DDH is hard in group G, we have that PseudoRandA(b) ≈comp

Hyb1A(b) for any PPT adversary A and any b ∈ {0, 1}.

Proof. Suppose that there exists a PPT adversary A that distinguishes between
PseudoRandA(b) and Hyb1A(b) for some b ∈ {0, 1} with non-negligible probability.
We construct a PPT reduction B, which breaks DDH given oracle access to A
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with non-negligible probability too (as long as qH is a polynomial). Given a DDH
challenge gα, gβ , gγ where γ is either is equal to αβmod p or uniform random in
Zp B simulates the random oracle queries for the evaluation phase x 6= x? as
follows:

Initialize LH := ∅. For random oracle call with input x:

1. If there exists a tuple (x, ?, ?, w1, w2) ∈ LH , output (w1, w2).
2. Otherwise set w1 := gµ · gασ for uniformly chosen µ, σ ∈ Z2

p and w2 :=

gµβ · gγσ. Update LH := LH ∪ (x, ?, ?, w1, w2) and output (w1, w2)

Now, if γ = αβ, then implicitly (in the exponent) the challenger sets s :=
µ+ σα and t := β(µ+ σα) for unknown values s := logg(w1) and t := logg(w2).
By change of variable we can write ω = β and t := sω. So the distribution of A’s
view in this case is identical to the view of A in Hyb1Ab. On the other hand, when
γ is uniform random in Zp, then the unknown value t := µβ+σγ which is uniform
random in Zp. So, in this case both s and t are uniform random and hence A’s
view is identical to the its view in PseudoRandA(b). Hence we can conclude that,
if A distinguishes the above experiments with non-negligible probability, B will
break DDH with non-negligible probability too. This concludes the proof of this
claim.

In the next hybrid Hyb2A(b), we do not make any change from Hyb1A(b) except
that all non-challenge evaluation queries are responded with an independent key
k←$Zp sampled uniformly at random, whereas the corruption query for party i
are answered using randomly sampled ui, vi subject to ui +ωvi = ki where ki is
the i-th Shamir’s share of k. In particular, for a non-challenge evaluation query
Eval(x, i), the challenger returns gsik where H(x) = (gsi , gωsi). We describe this
hybrid formally below:

Hyb2A(b) :
1. Give the public parameters pp := (p, g,G) (G is a cyclic group of order p

and g is a generator of G) to A. Suppose A makes qH distinct random oracle
queries in total.

2. Guess j←$[qH] and let the j-th query be on x?. Choose a random value
ω←$Zp. Then program the random oracle H as follows: Initialize LH := ∅.
For random oracle call on x do as follows:

1. If there exists a tuple (x, s, t, w1, w2) ∈ LH , output (w1, w2).
2. Otherwise,

− if x 6= x?: choose s ←$ Zp and define t := sωmod p; set w1 := gs

and w2 := gt. Update LH := LH ∪ (x, s, t, w1, w2) and output
(w1, w2). ;

− otherwise if x = x? choose s?, t?←$Zp; set w?1 := gs
?

and w?2 := gt
?

.
Update LH := LH ∪ (x?, s?, t?, w?1 , w

?
2) and output (w?1 , w

?
2).

Give random oracle access to A.
3. Choose a (t − 1)-degree random polynomials f . Define ki := f(i) for i ∈

[n]∪{0}. Initialize states for each party i ∈ [n] as sti := {ui, vi} where ui, vi
are random in Zp subject to ki = ui + ωvi. Initialize C := ∅. At any point
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on receiving a new set of corrupt parties C̃ from A, send the corresponding
secret states {sti}i∈C̃ to A and update C := C ∪ C̃. For simplicity we
assume that the final set C is equal to {1, . . . , `}, which is without loss
of generality because we will not be using this information in the proof
(otherwise handling the adaptive corruption would have been trivial).

4. On a non-challenge evaluation query (Eval, x, i) for an honest i, return hi :=
gkis where (x, s, t, w1, w2) ∈ LH ; on a evaluation query on the challenge,
(Eval, x?, i) for an honest i, return guis

?

gvit
?

. update sti := sti ∪{x}. Build
a list Lx if this is the first evaluation query on x, or update exiting Lx by
appending i to it.

5. On the challenge query (Challenge, x, S?, g?1 , . . . , g
?
u) for u ≤ ` if the guess

is wrong, that is x 6= x? then output a random guess, otherwise: (without
loss of generality assume that S? ∩ C = [u]):

1. Sample u?i, v
?
i ←$ Z2

p. Set g?i := w?u
?
i

1 w?v
?
i

2 for i ∈ S? \ C.
2. Depending on b do as follows:

1. If b = 0 then compute z? :=
∏
i∈S? g?i

λ0,i,S .
2. Else, choose a random z? ←$ G.

3. Send z? to A.

6. Continue answering evaluation queries as before.
7. Receive a guess b′ from A; then do as follows:
− if the total number of corrupt parties, |C| ≥ t then output 0 and stop;
− if the challenge x? has been queried for evaluation for at least g := t−|C|

honest parties, that is if Lx? ∩ ([n] \ C) ≥ g then output 0 and stop;
− otherwise output b′.

We prove the following claim:

Claim. We have that Hyb1A(b) ≈stat Hyb
2
A(b) for any (possibly unbounded) ad-

versary A any any b ∈ {0, 1}

Proof. Note that, this statement is information theoretic and hence we assume
that the adversary here may be unbounded. First we notice that, in both the
hybrids an unbounded adversary learns values {s1, s2, . . .}, ω from the random
oracle responses. Furthermore, it learns at most t−1 pairs {ui, vi}i∈C (ui, vi are
independent and random) where |C| < t, given which (u, v) remains statistically
hidden. Now, the only difference comes in the evaluation queries. In Hyb1, the
adversary is answered with the key {u+ωv} whereas in Hyb2 it is answered with
a uniform random k. Now, we note that conditioned on the given values, namely
{s1, s2, . . .}, ω, u+ ωv is uniformly random for randomly chosen u, v – another
way to see this will be as a universal hash function where ω is the input and
(u, v) are uniform keys (here we rely on statistical property of secret-sharing, in
that given at most t− 1 values ui, vi, (u, v) remains statistically hidden). Hence
the two distributions are statistically close.

Now, we note that, in the hybrid Hyb2A(b), the value z? is uniformly random
irrespective of b. This follows from the fact that each pair u?i, v

?
i are uniformly

chosen. Therefore we can conclude that, Hyb2A(0) ≈stat Hyb
2
A(1). This concludes

the proof of the theorem.
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