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Abstract
In this work we introduce a novel four-party honest-majority
MPC protocol with active security that achieves comparable
efficiency to equivalent protocols in the same setting, while
having a much simpler design and not relying on function-
dependent preprocessing. Our initial protocol satisfies secu-
rity with abort, but we present some extensions to achieve
guaranteed output delivery. Unlike previous works, we do
not achieve this by delegating the computation to one single
party that is identified to be honest, which is likely to hinder
the adoption of these technologies as it centralizes sensitive
data. Instead, our novel approach guarantees termination of
the protocol while ensuring that no single party (honest or
corrupt) learns anything beyond the output.

We implement our four-party protocol with abort in the
MP-SPDZ framework for multiparty computation and bench-
mark multiple applications like MNIST classification training
and ImageNet inference. Our results show that our four-party
protocol performs similarly to an efficient honest-majority
three-party protocol that only provides semi-honest/passive
security, which suggest that adding a fourth party can be an
effective method to achieve active security without harming
performance.

1 Introduction

Secure Multiparty Computation (MPC) allows a set of par-
ties P1, . . . ,Pn, each with their own private input xi, . . . ,xn, to
compute a function f such that nothing is revealed except the
output. In a nutshell, an MPC protocol ensures that any subset
of at most t parties (called the corruption threshold) learn just
as much from running the MPC protocol, as if everyone had
just provided their inputs to a trusted party who computes f
by itself, only returning the output afterwards.

The efficiency of MPC protocols is highly dependent on
the size of t relative to n, as well as what is assumed about the
behavior of parties. For example, protocols where nothing is
assumed except t < n—the case where all but 1 party might

collude—are less efficient than the case where more strong
assumptions like t < n/2 or t < n/3 are made. In addition,
protocols where no assumption is made about the behavior of
the t corrupt parties are also less efficient that protocols where
the t parties are assumed to behave according to the protocol
specification. To make these parameters more concrete, we
talk about protocols secure against an honest majority when
t < n/2, as opposed to a dishonest majority when t < n. Like-
wise, we call corruptions active if the t corrupt parties can
behave arbitrarily, and passive if the t parties behave honestly,
but only try to learn more than they should be allowed to by
combining their information.

Protocols with an honest majority that are secure against a
passive or malicious adversary have received a great deal of
attention lately due to their remarkable efficiency. For exam-
ple, Araki et al. [5] propose a protocol capable of computing
in excess of a billion Boolean gates per second for a malicious
adversary corrupting one party out of three, and Dalskov et
al. [14] present a similar one which can evaluate large Con-
volutional Neural Networks for practical image prediction in
just a couple of seconds.

It might seem these very efficient protocols come at the cost
of a particularly restrictive threat model: After all, we need
to argue that no two parties collude (this is the special case
of three or four parties with one corruption, such as the afore-
mentioned works as well as the one we consider in this work).
However, one setting that fits very well with this threat model,
is the client/server model wherein the parties with the inputs
do not perform the actual computation, but instead share their
inputs towards a small fixed set of computing parties. In a
way, the cluster of computing parties act (collectively) as a
trusted party for the participants who supply input.

Outsourced Secure Computation. The client/server
model is particularly attractive for multiple reasons: First, it
allows a large number of parties to participate in a secure
computation protocol, without the need for these to actually
run a heavy computation themselves. Indeed, each party
only shows up to provide inputs initially, and then later
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returns to receive some outputs in the end. This particular
setting has previously been used in practical applications, for
example for auctioning sugar beets [8], for computing wage
statistics [27], or for detecting financial fraud [7]. In these
scenarios, the client/server model of secure computation
allows parties with little knowledge of running the secure
computation framework, or who does not posses adequate
computing power, to benefit from the added privacy of MPC.

Another area in which the client/server model has seen its
use recently, and one we will explore in detail as our use-case,
is secure machine learning. Machine-Learning-as-a-Service
(MLaaS) is a popular service architecture, for which many
major companies such as Amazon1, Google2 or Microsoft3

all provide their own flavor. Traditional MLaaS suffers from a
lack of privacy, however. Parties have to trust the provider with
both their inputs and the machine learning model: The former
is quite clearly problematic as the inputs quite often involve
sensitive data such as text or images. However, the latter also
presents an issue as obtaining a good machine learning model
often is an expensive process, both in terms of work-hours
needed to design the model, as well as computation needed
to train it.

Secure Computation provides a solution to these privacy
concerns, and the client/server model seems to be the obvious
candidate for a privacy preserving alternative to the MLaaS
model. Not surprisingly perhaps, many recent works have
focused on providing protocols that instantiate such a privacy
preserving MLaaS architecture [12,14,31,33]. This particular
application of MPC is shown in Figure 1 and is the one we
explore in this work.

Robust Outsourced Computation. The model outlined
above has the following format: Parties show up to provide
inputs, leave, and then return to receive their outputs. This is
clearly attractive since, from the clients point of view, there is
little difference between a privacy-preserving MLaaS, and a
regular one: Although the former is slower, it provides much
stronger privacy guarantees. However, the currently fastest
MPC protocols only provide security with abort. What this
means in particular, is that a malicious service provider (or
one that is just faulty) will cause the computation to abort
without any output being provided—when the input provider
later shows up, they do so in vain.

Enforcing robustness—guaranteeing that the correct out-
put is produced—is therefore a very attractive feature in our
setting, and one which has been pointed out and explored in
prior work as well [10, 25].

We can consider two kinds of robustness, the first which
we will call traditional robustness and a second which we call
private robustness.

1https://aws.amazon.com/machine-learning/
2https://cloud.google.com/solutions/ai
3https://azure.microsoft.com/en-in/services/

machine-learning/

Traditional robustness is, as the name implies, robustness
as traditionally considered. More precisely, it is a guarantee
that the computation always outputs the correct value in the
end. This might seem like it is sufficient for our purposes, and
indeed, this is the kind of robustness that prior work consider.
However, it suffers from a subtle privacy issue that is not cap-
tured by standard definitions of security, which has very real
implications—in particular in the client/server model. An ex-
ample will illustrate the issue: Consider four service providers
Alice, George, Mike and Frida who collectively provide a pri-
vacy preserving MLaaS. The security model assumes one of
these parties are corrupt (or faulty) and the protocol they run is
robust. Suppose that at some point during the protocol execu-
tion, Alice sees inconsistent messages from Mike and George,
concludes that one of these must be acting maliciously and
broadcasts a bit stating so. Now, the computation cannot pro-
ceed normally (since Alice does not know whether to use the
value she got from George, or the one she got from Mike).
However, there is one thing all parties can conclude: Frida
must be honest. Indeed, the dispute is an issue between Alice,
George and Mike, and so the malicious party must be one
of these. Robustness is now quite easy to achieve: Everyone
simply sends their shares to Frida who reconstructs the input
and finishes the computation in the clear.4

The above approach works: Output is guaranteed since
Frida receives a values from two honest parties and one cor-
rupt, and so can pick the right values by majority. However, it
relies on Frida learning all secrets and so is clearly not private.
This is not a problem, formally speaking: Frida is honest and
the classical security definition for MPC only cares about pro-
tecting the input from the malicious party. On the other hand,
in a practical setting this is clearly not viable: Users expect
the system to keep their inputs private and they expect that
this holds towards any of the parties. Moreover, the (honest)
providers themselves lose in such a system. Indeed, just as
the users care about privacy, the same is likely the case for the
providers as storing sensitive information securely is highly
non-trivial. However, a single faulty machine can now in ef-
fect “force” sensitive information onto an honest provider, if
that provider ends up being the one tasked with completing
the computation.

It is for these reasons that we consider a private robustness
variant as well.5 Stated simply, this guarantee also ensures the
correct output is produced in the end, but it does so without
relying on a honest party learning the user’s private inputs.
We show how this can be achieved by sophisticated protocol
transformations between four- and three-party protocols.

4This way of obtaining robustness is essentially how the four-party pro-
tocol by Koti et al. [25] works. Their three-party protocol also provides
robustness, albeit the process is more involved. The core trick, however, is
the same, i.e., a non-malicious party is identified who learns all the secrets in
order to finish the computation in the clear.

5It is worth pointing out here that this issue was also identified and treated
formally in a recent work [2] as well.
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Figure 1: Client/server model for privacy-preserving Machine-Learning-as-a-Service. A collection of model input providers
(1) provide their training data (or in case just inference is wanted, the model itself) as secret-shares to the MPC providers (2).
Later, users (3) can query the MPC providers with a secret-sharing of their input in order to run secure inference using the
model that was previously trained. Notice that all communication only happens to and from the MPC providers, and that all this
communication is secret-shared and thus private.

1.1 Contributions
This paper makes several contributions towards practically
efficient secure computation that work particular well for
machine learning tasks and outsourced computation. More
precisely:

• We present an actively secure four-party protocol for one
corruption over Z2k . This protocol has the same overall
complexity of current state-of-the-art protocols in the
same setting, but does not require any preprocessing.

• We also present an actively secure three-party protocol
for one corruption over Z2k . While this protocol has
slightly higher communication complexity than the on-
line phase of current state of the art [31], the overall
complexity is several orders of magnitude lower. This
is because, unlike said work, our protocol features a dot
product where the communication is independent of the
length of the inputs. Furthermore, BLAZE and other sim-
ilar works rely on the interpolation-based check from [9],
which require large extensions of Z2k and are not likely
to be efficient.

• We have benchmarked our protocol by training on the
MNIST dataset. To the best of our knowledge, we are the
first to produce extensive accuracy results for a pure im-
plementation in multi-party computation. Furthermore,
we consider the impact of parameter choices such a fixed-
point precision on the accuracy of the training.

• Our four-party protocol is robust in the traditional sense:
Should an error be encountered during computation, then
a trusted party can be identified who can be asked to
complete the computation.

• Finally, we show how our four-party protocol can be
made robust while retaining privacy. Note that robust-
ness as described just above (and as done in prior works)

retains no privacy towards the trusted party—this is in
many cases undesirable. Our modified four-party proto-
col is both efficient, robust and private.

All our protocols will be available as part of MP-SPDZ.6

1.2 Overview of our Techniques
Secure Computation with Three or Four parties. Both
our four- and three-party protocols are based on replicated
secret-sharing. That is, a value x is shared (in the four-
party case) as (x0,x1,x2,x3) with x = ∑

3
i=0 xi, where Pi holds

{x j} j 6=i. A similar type of sharing is used for the three-party
case. Notice that this is a sharing with threshold one, that is,
the share of an individual party does not leak anything about
the shared secret x, but two shares together completely de-
termine this value. Furthermore, this sharing is clearly linear
which means addition of secrets, as well as multiplications
by constants, are just local operations. For multiplication,
observe that the product of two secrets can be written as
xy = ∑i, j xiy j. In this sum, a particular term xiy j can be com-
puted by all parties not indexed as i or j and so each party is
able to obtain part of the sum of xy. This partial sum, in a nut-
shell, will constitute the share of the product and parties then
just have to distribute their partial sums such that everyone in
the end has new sharing of the same kind as the original ones
(but now of the product).

Active Security. To obtain security against malicious par-
ties, we take different approaches depending on whether we
are working with three or four parties.

For four parties, active security is obtained by leveraging
the existing redundancy of each share being held by three
parties. As a result, the parties can easily distribute the share
of the product without the adversary being able to tamper the
process.

6https://github.com/data61/MP-SPDZ
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For three parties on the other hand these ideas do not di-
rectly work, given that, although each share is held by two
parties, this is not enough to ensure correct behavior when
distributing the shares of the product. Instead, we utilize a
slight modification of the three-party instantiation of the com-
piler by Abspoel et al. [1], in which parties hold the shares
([x], [rx]) for a random r. When the protocol is run, each gate
is evaluated twice: once with the real values and once in a
randomized fashion because of the r. At the end of the com-
putation, a check is run to verify that the real output matches
the output after being randomized by r. Active security now
follows since the adversary can only introduce additive errors
(as observed by Genkin et al. [20]) and thus it cannot with
high probability “undo” the randomization that is introduced
by r.

Mixed-Circuit Computation. For some functionality such
as comparisons we switch from arithmetic to binary circuits.
This is done via a local share conversion method proposed by
Mohassel et al. [29] and Barak et al. [4]. It works by creating
a bit-wise sharing of every summand of the replicated secret
sharing, which are then summed up using a binary circuit. We
call the local conversion splitting.

With four parties, active security for binary circuits is pro-
vided using the same way as for arithmetic circuits. With
three parties however, we use the protocol by Araki et al. [5]
because the randomization method above cannot be used effi-
ciently with binary circuits.

Robust Computation. Our way of obtaining robust compu-
tation builds on the following clever observation and protocol
transformations that does not incur any additional overhead.

Consider the example from above and continue from the
situation in which Frida caused an error in the protocol. Like
in prior work, we identify a pair of parties (say, Frida and
George) of which one is guaranteed to be he culprit. However,
instead of letting Alice finish the computation with privacy
(as was done before), the parties instead arbitrarily exclude
one of Frida and George from participating further. Suppose
George is barred. After this step, the remaining parties locally
transform all their shares from 1-out-of-4 into 1-out-of-3 shar-
ings, after which they continue with the computation using
our maliciously secure three-party protocol.

From this point on, the parties know that, should another er-
ror occur, then for sure Frida was the malicious party. Indeed,
the pair (Frida, George) contained one malicious party and so,
after excluding George, we are left with either all honest par-
ties (in which case the computation clearly finishes) or Frida
was the malicious party. Should another error occur at this
point, Frida can be excluded and the remaining two parties
can finish the computation using a passively secure protocol.7

7Notice that, as before, going from a 1-out-of-3 sharing to a 1-out-of-2
sharing is again a local operation. Furthermore, the parties can reintroduce

This series of steps never reveal the private information that is
being computed on, but still allows the computation to finish
and so provides robustness.

1.3 Related Work
The particular area of MPC with a small number of server,
an honest majority and passive or active corruptions have
been particularly rich. Araki et al. [6] demonstrate such a
protocol (three parties, one corruption, passive security) which
can compute 7 billion gates per second. The authors further
demonstrate how their protocol can be used to handle up
to 35,000 logins per second in a Kerberos system. Chida
et al. [13] present an active-to-passive compiler which, as a
particular instantiation, contains a very efficient three-party
protocol. These works deal with computation over a finite
field (the former being F2, the latter Fp) secure computation
over a finite ring have also been shown to be highly efficient,
and it has been shown that it is possible to perform several
million multiplications per second [1, 17].

More recently, these smaller-number-of-parties-honest-
majority protocols have been shown to be particularly at-
tractive in the setting of privacy preserving machine learning.
A series of works [10–12, 25, 31] demonstrate variants of
three- or four-party protocols, all with one corruption, that
work particularly well for machine learning when compared
against ABY3 [29] which is itself another efficient three-party
protocol. Some of these protocols provide either fairness or
robustness, however they all suffer from the issues related to
these properties that we outlined before.

In more concrete terms, Wagh et al. have shown that both
inference and training of large convolutional neural networks
is possible with passive [33] and active [34] security.

Building in part on the work by Wagh et al., the authors of
CrypTFlow [26] demonstrate that inference with CNNs that
are used in practice (such as ResNet or DenseNet networks)
is possible in just a few seconds even with active security.
Dalskov et al. [14] also perform such experiments and present
a protocol which outperforms that of CrypTFlow. Moreover,
they also present an insight into the trade-offs when consider-
ing honest majority vs. dishonest majority, as well as passive
vs. active security.

1.4 Outline
In Section 2 we present our main protocol with abort, includ-
ing the underlying secret-sharing scheme, multiplication and
useful sub-protocols. Then, in Section 3 we present protocols
used both with three- and four-party computation such as trun-
cation. This includes an optimized construction of edaBits,
introduced by Escudero et al. [18], in our specific context.
Section 4 highlights our adaption of the three-party protocol

George as a cryptographic provider who will output multiplication triples in
order to finish the computation.
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by Abspoel et al. [1]. Following this, we present in Section 5
the extensions of our protocol to achieve robustness, without
relying on one single (identified-to-be-honest) party to finish
the computation in the clear. Finally, we discuss the imple-
mentation of our protocol with abort in Section 6, as well
as the applications we consider in our work, namely MNIST
classification training and ImageNet inference.

2 Secure Computation Protocol

In this section we present our main protocol with abort. We
begin in Section 2.1 by presenting the secret-sharing scheme
construction we use in our work. Then, in Section 2.2, we
describe our joint message passing protocol, which is used
as a primitive for multiple protocols throughout this work.
In particular, this primitive is used in Sections 2.3 and 2.4
to obtain protocols for input provision and multiplication,
respectively.

2.1 Secret-Sharing
When working in the honest majority setting there are multi-
ple linear secret-sharing schemes one can use. For instance,
a popular choice that works well for an arbitrary number of
parties is Shamir secret-sharing. One can also obtain linear
secret-sharing schemes from linear error-correcting codes.
However, when working with a small number of parties, such
as three or four, less general but more efficient schemes ex-
ist. In this work, we will rely on replicated secret-sharing.
While replicated secret-sharing is generic in the sense that
it works for any Q2 adversarial structure and any number
of parties, it is only concretely efficient for a small number
of parties since the complexity scales exponentially with the
number of parties if the threshold is a constant fraction thereof.
Replicated secret-sharing underlines many recent efficient
protocols [1, 5, 6, 14, 19]. However, it has been used mostly
in the context of three parties. In this case, a value x is dis-
tributed among three parties P0,P1,P2 by giving (xi−1,xi+1)
to Pi, where x = x1 + x2 + x3, and the indexes wrap around
modulo 3. For four parties, replicated secret-sharing has been
explored somewhat less [10,12,21], sometimes seemingly but
not stating so explicitly [10].

The following presentation assumes four parties and one
corruption. None of our protocols require special properties of
e.g., fields and so we will let R denote the algebraic structure
we would use, which could be computing modulo any num-
ber. Using 2 as the modulus implies binary circuits whereas
computing with larger moduli is commonly called arithmetic
circuits. Using a power of two is particularly efficient due to
the binary nature of most processors in use.

To secret-share a value s∈R with replicated secret-sharing
for four parties, the dealer does as shown in Protocol 1.

By [s] we mean that each party holds the three values as
defined above. It should be clear that [s] defines a linear secret-

Protocol 1: Replicated secret-sharing

Dealer distributes s ∈ R as follows:

1. Sample s1,s2,s3 from R uniformly at random
and set s4 = s− (s1 + s2 + s3).

2. To each Pi for i = 1,2,3,4, send {s j} j 6=i.

sharing of s with threshold one: s can be recovered from any
two shares, and given shares [x] and [y], a share of [x+ y] can
be computed by letting each party add the components of
their shares. This is denoted by [x+y]← [x]+[y]. Sometimes,
when R is the set of integers modulo some integer M, we use
the notation [x]M . In general we use M = 2k, and when clear
from context we omit this from the sharing notation.

As the name implies, replicated secret sharing comes with
some redundancy. This enables simple and efficient proto-
cols. In the following we describe the core primitives we use
in our work. The first one, described in Section 2.2, is the
joint message passing protocol that enables a pair of parties
knowing a common value to disseminate it to another party
correctly. This primitive is used then to obtain a protocol by
which the parties can obtain consistent sharings of an input
value. Finally, these subprotocols are put together to obtain
an efficient multiplication protocol in Section 2.4, followed
by a probabilistic truncation protocol in Section 2.5. For the
rest of this section, we denote parties with mutually distinct
indices i, j,k, ` ∈ {1,2,3,4}.

The protocols below admit a cheating identification phase,
that is executed in case an abort signal is produced, and is in
charge of outputting a set of at most two parties such that one
of them is corrupted. If one is only interested in security with
abort, this phase is not needed. However, we will make use of
it in Section 5 when we explore our robust protocols.

2.2 Joint Message Passing
Similar to Koti et al. [25], we make use of a protocol that
enables a pair of parties knowing a common value to send
this element to another party. Protocol 2 is simple: One of
the parties send the value and the other sends a hash, and the
receiver compares the received value with the hash. Koti et al.
aim to identify an honest party who can act as a trusted party
and carry the computation in the clear. Instead, as mentioned
before, the only requirement of our protocols is that, if an abort
signal is generated, then a pair of identified parties where one
of them is corrupt is produced.

Security of JMP. It should be clear that an honest P̀ either
receives the correct x or they abort, unless with negligible
probability. Suppose that Pi is malicious (note that Pk never
participates and that Pj only sends a hash; in particular, and
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Protocol 2: JMP(x,Pi,Pj, P̀ ), Joint message passing

Input: x known to Pi and Pj.
Output: P̀ learns x.
Protocol: Pi sends x to P̀ .
Batch check:
Let H be a cryptographically secure hash function. Pj
sends c=H(x, . . .) to P̀ , who checks if c is consistent
with the value sent earlier by Pi. If c is not consistent,
P̀ outputs a distinguished error symbol err.

Cheating identification
If P̀ outputs err, then the parties proceed as follows
to agree on a set of parties with at most two parties
that includes the corrupt one.

1. P̀ broadcasts (accuse,Pi,Pj,ci,c j), where ci =
H(x, . . .), with (x, . . .) and c j being the values
received from Pi and Pj, respectively.

2. If ci = c j then the parties output the set {P̀ }.
Else:

• If ci is different to the hash of the val-
ues that Pi sent to P̀ , then Pi broadcasts
(accuse, P̀ ) and the parties output the set
{Pi, P̀ }.

• If c j is different to the values that Pj sent
to P̀ , then Pj broadcasts (accuse, P̀ ) and
the parties output the set {Pj, P̀ }.

• If both parties Pi and Pj accuse P̀ , then the
parties output {P̀ }.

• If none of Pi or Pj accuse, then the parties
output {Pi,Pj}.

incorrect x could only come from Pi). If Pi manages to send
an x′ 6= x such that P̀ does not output err, then it must be the
case that H(x′) = H(x) for x 6= x′.

Regarding cheating identification, we argue by cases.

• If Pk is the corrupt party, then no abort signal will be
produced

• If P̀ is the corrupt party, then P̀ may accuse Pi and
Pj unrightfully. If ci = c j then the parties output {P̀ },
which is correct. Else, since Pi and Pj are both honest,
it cannot be the case that ci 6= c j, so either Pi or Pj will
accuse P̀ , and either case a set containing P̀ is output.

• If Pi is the corrupt party, then this party may send an
incorrect value to P̀ . However, P̀ , being honest, will
accuse Pi and Pj, and only Pi may return accusation
since P̀ will broadcast the correct value that Pj sent. If

Pi accuses, then {Pi, P̀ } is output, else, {Pi,Pj} is output.
Either case, Pi, the corrupt party, appears in the set. A
similar argument follows if Pj is corrupt.

We return in Section 5 to how the cheater identification
extension can be used to obtain a protocol with privacy pre-
serving robustness.

2.3 Shared Input

We now show how two parties, Pi and Pj, both holding a value
x ∈ R , can secret-share x towards all parties in a manner that
is maliciously secure. Protocol 3, PRGK denotes a pseudo-
random generator using key K which outputs a random value
v ∈ R . (We view PRGK as a stateful probabilistic algorithm;
i.e., multiple successive calls return different random elements
of R .)

Protocol 3: INP(x,Pi,Pj,Pk), Shared Input

Preprocessing: Pi and Pj have a pre-shared key K`

known to Pi,Pj,Pk.
Input: Pi and Pj both know a value x.
Output: [x].
Protocol:

1. Pi, Pj and Pk each define x` = PRGK`
().

2. Set xi = x j = 0 and xk = x− x`.

3. Pi and Pj call JMP(xk,Pi,Pj, P̀ ), so that P̀ gets
xk.

Cheating identification
Output the set produced by the JMP protocol.

Non-interactive sharing If a value x is known to three par-
ties, say P1,P2,P3, rather than only two, then the parties can
get shares [x] without any interaction. This is achieved by
defining the additive shares x1 = x2 = x3 = 0 and x4 = x.
We denote this local method by [x]← INPLocal(x,Pi,Pj,Pk),
where Pi,Pj and Pk are the parties knowing the value x.

Security of INP. Note that we just have to argue privacy
from the point of view of Pk and P̀ (since Pi and Pj both know
x). With respect to Pk, notice that it holds (xi,x j,x`)= (0,0,x`)
where x` was uniformly random and generated using PRGK`

and so reveals nothing about x. With respect to P̀ , it holds
(xi,x j,xk) = (0,0,xk) where xk = x−x`, but since P̀ does not
know K`, the value x` looks random towards P̀ and therefore
so does xk.
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Composability of INP. Note that the output of the INP
protocol does not follow the exact same distribution than that
of a trusted dealer, since some of the shares are set to be 0.
However, this does not affect security in any way

2.4 Secure Multiplication
Now we present Protocol 4 for secure multiplication, which
takes as input two shared values [x] and [y] and produces [x ·y].

Protocol 4: MULT([x], [y]), Multiplication

Input: [x] and [y].
Output: [x · y].
Protocol:

1. For every pair `,k ∈ {1,2,3,4} such that ` <
k, parties Pi and Pj with i, j /∈ {k, `}, who both
know xk,x`,yk and y`, run the protocol [xky` +
x`yk]← INP(xky`+x`yk,Pi,Pj,Ph) for some h /∈
{i, j}.

2. For every ` ∈ {1,2,3,4}, parties call
the non-interactive method [x`y`] ←
INPLocal(x`y`,Pi,Pj,Pk)

3. The parties locally add the shares [x · y] =
∑i6= j[xiy j + x jyi]+∑

4
i=1[xiyi].

Cheating identification
Output the set produced by the JMP protocol.

Security. It is easy to note that the protocol is correct, given
that if x = x1 + x2 + x3 + x4 and y = y1 + y2 + y3 + y4, then
x · y = ∑

4
i, j=1 xiy j, so the resulting shares indeed reconstruct

to x · y. It remains to analyze the privacy of the protocol, for
which it suffices to show that the shares obtained by a party
P̀ look uniformly random to this party. This follows directly
from the privacy of the INP protocol: For every summand
xky`+x`yk that a party P̀ does not know, it holds that the share
that P̀ misses looks uniformly random (and independent), so
when summing up it holds that P̀ ’s missing share also looks
uniformly random.

Regarding communication, observe that there are six possi-
ble pairs `,k ∈ {1,2,3,4} with ` < k, and one ring element is
communicated in each of the calls to INP(xky`+x`yk,Pi,Pj).8

As a result, the total asymptotic communication complexity
is six ring elements, which is on par with Gordon et al. [21]
and Rachuri and Suresh [12], while not requiring any form of
preprocessing (in particular, not function-dependent prepro-
cessing) as both of them do.

8We ignore the cost of sending the hash in the INP(·) protocol as its
complexity is independent of the total number of calls.

2.5 Probabilistic Truncation
We have discussed until now the fundamental building blocks
to obtain a secure multiparty computation protocol. However,
in practice, it is customary to define more advanced subpro-
tocols that can aid in the secure evaluation of a wide variety
of functionalities. In this section we discuss a protocol for
probabilistic truncation, which is particularly useful when
dealing with fixed-point arithmetic, which appears in a lot of
scientific applications, within MPC. In a truncation protocol
the goal is to obtain shares [y] from a shared value [x], where
y =

⌊
x/2`

⌋
for some publicly known value `, and sometimes

it is equally useful to obtain y =
⌊
x/2`

⌉
. In the case of proba-

bilistic truncation, we are interested in a good approximation
of
⌊
x/2`

⌉
. More precisely, in this case y =

⌊
x/2`

⌉
+u, where

u ∈ {0,1}. Furthermore, u is “biased towards the right result”,
which means that u is more likely to be 1 (0) the closer x/2`

gets to
⌈
x/2`

⌉
(
⌊
x/2`

⌋
).

Protocol 5 for probabilistic truncation combines the special
probabilistic truncation protocol by Dalskov et al. [14] with
SWIFT [25]. At a high level, it proceeds by first masking the
value to be truncated by a random amount and then opening
this result. It turns out that, if we require that the most sig-
nificant bit (MSB) of the value to be truncated is 0, we can
extract useful information about the overflow generated by
this masking simply from the MSB of the opened value. This
in turn helps us compute the truncation of the input from the
truncation of the opened value and that of the masking used.
The details can be found in the protocol below.

Now we analyze the security properties of the protocol.
First, we observe that privacy is preserved throughout the
computation given that the sub-primitives JMP and MULT
are private. The only potential leakage comes from the calls to
INP. However, this only reveals c= x+r = x+s3+s4 mod 2k

to P3 and P4, but since s3 and s4 are uniformly random and
unknown to P3 and P4 respectively, the leakage of these calls
is zero.

It remains to analyze the correctness of our construction.
We begin by observing that c = x + r − 2ku as integers,
where u is the potential overflow bit of adding x and r. Simi-
larly, (c mod 2k−1) = (x mod 2k−1)+(r mod 2k−1)−2k−1v,
where v is the potential overflow bit of adding (x mod 2k−1)
and (r mod 2k−1) modulo 2k−1. Notice that, since x’s most
significant bit is 0, it holds that (x mod 2k−1) = x and also
that u = v · rk−1. Let c = 2k−1 · c′′ + (c mod 2k−1), where
c′′ =

⌊
c/2k−1

⌋
, the expressions above allow us to conclude

that

2k−1 · c′′ = c− (c mod 2k−1)

= (x+ r−2ku)− (x+(r mod 2k−1)−2k−1v)

= 2k−1rk−1 +2k−1v−2k · v · rk−1

= 2k−1(rk−1⊕ v),

from which it follows that c′′ = rk−1⊕ v, or v = c′′⊕ rk−1.
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Protocol 5: Probabilistic truncation

Input: [x] with the most significant bit of x being 0.
Preprocessing: Pre-shared key Ki known to all par-
ties except Pi, for each i = 3,4.
Output: [bx/2me] rounded probabilistically.
Protocol:

1. Let si = PRGKi() for i = 3,4 and si = 0 for i =
0,1. Let r = s3 + s4. The parties have shares [r]
by defining the `-th share to be {si}i 6=`.

2. P0 and P1 compute rk−1 and r′ = ∑
k−2
i=m ri · 2i−m

for r =∑
k−1
i=0 ri ·2i being the bit decomposition of

r. The parties call [rk−1]← INP(rk−1,P1,P2) and
[∑k−2

i=m ri ·2i−m]← INP(∑k−2
i=m ri ·2i−m,P1,P2).

3. All parties compute [c]← [x]+ [r].

4. The parties call JMP(c3 +c4,P3) and JMP(c3 +
c4,P4), and P3 and P4 reconstruct c = ∑

4
i=1 ci.

5. P3 and P4 compute c′←
⌊
(c mod 2k−1)/2m

⌋
and

c′′ =
⌊
c/2k−1

⌋
, and call [c′] ← INP(c′,P3,P4)

and [c′′]← INP(c′′,P3,P4).

6. All parties call [rk−1 · c′′]←MULT([rk−1], [c′′])
and let [b]← [rk−1]⊕ [c′′] = [rk−1] + [c′′]− 2 ·
[rk−1 · c′′].

7. All parties output [c′]− [r′]+ [b] ·2k−m−1.

Cheating identification
Output the set produced by the first instance of JMP
to fail.

This is turn shows that v is equal to b from the protocol.
Now, (c mod 2k−1) = x+(r mod 2k−1)−2k−1v, thus⌊
(c mod 2k−1)/2m

⌋
=

⌊
x+(r mod 2k−1)

2m

⌋
−2k−m−1v.

Furthermore, it holds that c′ =
⌊
(x+(r mod 2k−1))/2m

⌋
=

bx/2mc+
⌊
(r mod 2k−1)/2m

⌋
+ w, with w ∈ {0,1}. Given

the above, together with the fact that the r′ from the pro-
tocol equals

⌊
(r mod 2k−1)/2m

⌋
, we obtain that the output

produced by the protocol is

c′− r′+2k−m−1b = bx/2mc+w.

Finally, it is easy to see that w = 1 with probability equal to
the decimal part of x

2m , which shows that the output is biased
towards bx/2me.

Communication cost. The protocol invokes INP four
times, JMP twice, and MULT once. INP and JMP both re-

quire sending one ring elements while MULT requires send-
ing six of them. This results in a cost of twelve ring elements
overall. Eight of them are only used to compute [b], namely
the multiplication as well as INP with c′′ and rk−1. b corre-
sponds to the overflow when adding x and r. Previous works
using a similar truncation [25, 29–31] have omitted this be-
cause b is zero with overwhelming probability if x has enough
leading zeros. In Section 6.2.1 we will discuss under which
circumstances it is valid to assume this using a real-word
example.

2.6 Random Bit Generation

Random bit generation is a fundamental primitive in multi-
party computation. We use it in particular to generate
daBits [32]. These are essential to convert from binary to
arithmetic secret sharing. As observed by Escudero et al. [18],
bits shared additively modulo a power of two can be con-
verted to the same sharing modulo two reducing the shares
individually.

Protocol 6 shows that we can rely on splitting the players in
two groups. Each group generates a random bit, and the XOR
of the two is the output. Every group contains one honest
party to check on the other.

Protocol 6: Random bit generation

Preprocessing: (P0,P1) and (P2,P3) have pre-shared
keys K01 and K23, respectively.
Output: [b] for random b ∈ {0,1}.
Protocol:

1. (P0,P1) and (P2,P3) use K01 and K23 to sam-
ple b01 =PRGK01() and b23 =PRGK23(), respec-
tively.

2. The parties use INP to share them to [b01] and
[b23].

3. They run [b] ← [b01] + [b23] − 2 ·
MULT([b01], [b23]).

Cheating identification
Output the set produced by the first sub-protocol to
fail.

It easy to see that that b ∈ {0,1} if this holds for b01 and
b23, which in turn is guaranteed by the fact that at least one
of each pair is honest. A wrong input is caught by the INP
protocol. Since b is computed as the XOR of two random
bits, one of which is unknown to any party, it is unknown and
uniformly random to the view of any party.
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3 Mixed-Circuit Computation

Previous work has established that computing non-linear func-
tions such as comparison and truncation is more efficient in
binary computation [29]. This in turn requires to switch be-
tween arithmetic and binary computation because arithmetic
computation is clearly superior for dot products. There are two
ways of achieving this. With certain secret sharing schemes
one can exploit their properties [4, 16, 29] for conversion. For
general conversion, Rotaru and Wood have established the
concept of double-authenticated bits (daBits), secret random
bits shared in both computation domains. These can be used
as mask for secret values. For example, if x is a bit in the
computation and r is a secret random bit, x⊕r does not reveal
information. Therefore, one can open x⊕ r in one computa-
tion domain and then compute x = (x⊕ r)⊕ r in the other
because r is available in both by construction.

Escudero et al. [18] have recently extended this concept
to extended daBits (edaBits), which are random m-bit values
shared in both domains for some m. As daBits, they can be
preprocessed in an offline phase to be used later on, in an
online phase, to efficiently compute a wide range of primi-
tives. On top of introducing the concept of edaBits and their
applications to practical MPC, Escudero et al. have shown
how to generate edaBits in any security model. The goal of
this section is to present more efficient protocols to prepro-
cess edaBits in the context considered in our work, that is,
replicated secret sharing modulo a power of two.

The core idea of our construction lies in combining the
overflow correction used in edaBit generation with the local
share conversion for replicated secret sharing [4, 29], which
we call share splitting. Protocol 7 shows the details. We denote
the j-th bit of a value x by x[ j].

Protocol 7: Share splitting

Pre: Shared value [x]2k

Post: Binary replicated secret sharing of selected bits
{[x[ j]]2} j∈S for a set of indices S.

Protocol:

1. Let x1,x2,x3,x4 be the additive shares of x, that
is ∑

4
i=1 xi = x mod 2k. Recall that each party Pi

holds {x j} j 6=i.

2. The parties locally compute shares of the bits
xi[ j] for j = 0, . . . ,k− 1 by calling [xi[ j]]2 ←
INPLocal(xi[ j],{Pk}k 6=i).

3. Given [xi[ j]]2 for all i and j and the fact that
∑

4
i=1 xi = x, the parties can compute [x[ j]]2 for

all desired j ∈ S using a binary adder.

Observe that share splitting easily generalizes to n-party
replicated secret-sharing. Furthermore, this method provides
malicious security if said security is used for the binary adder
because the replication carries over.

Protocol 8 shows how to generate edaBits efficiently. An
edaBit is made of a secret-shared random value [r]2k , together
with binary shares of its bits {r[i]}k−1

i=0 . The latter are denoted
by [r]2. The protocol assumes a method to convert a shared bit
[b]2 to the domain 2k, which we denote by [b]2k ← [b]2. This
can be instantiated for example by using daBits, which are
pairs ([r]2k , [r]2) where r ∈ {0,1} is uniformly random (notice
this is a particular case of edaBits), by letting the parties open
c← [r]2+[b]2, and then compute [b]2k = [r]2k +c−2 ·c · [r]2k .

Protocol 8: edaBits with replicated secret sharing

Pre:

• m≤ k

• Pre-shared key si among {Pk}k 6=i.

• A conversion method [b]2k ← [b]2.

Post: [r]2k , [r]2 for uniform m-bit r

Protocol:

1. Parties generate a random m-bit value r′i for
every pre-shared key si. This leads to a secret
shared value [r′]2k , where r′ = r′1 + r′2 + r′3 + r′4.
Notice that r′ is in the range [0,min(2m ·n,2k)−
1].

2. Using share splitting, the parties compute [r′[ j]]2
for j = m, . . . ,m′, where m′ = min(dlogne ,k)−
1.

3. The parties convert [r′[ j]]2k ← [r′[ j]]2 for j =
m, . . . ,m′.

4. The parties compute [r]2k = [r′]2k −
∑

m′
j=m 2 j[r′[ j]]2k .

5. The parties output ([r]2k ,{[r′[ j]]2} j=0,...,m−1).

We remark that in the context of probabilistic trunca-
tion with our three-party computation, only the first part
of the edaBit is used, it is thus not necessary to compute
{r′[ j]} j=0,...,m−1. We provide further details on truncation in
Appendix A.

4 Three-Party Computation

Our techniques to achieve robustness rely on three-party
computation, which has received considerable attention re-
cently [1,4–6,11,17,19,25,26,29,31,33,34]. We use a modi-
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fied version of the three-party instantiation of the compiler by
Abspoel et al. [1]. Their protocol consists of adding some au-
thentication data to secret-shared values so that cheating can
be detected in way similar to the SPDZ line of protocols [15].
However, their protocol does not allow continuous computa-
tion since it involves a final check phase in which correctness
is verified. Everything before this check is not trustworthy,
and no computation can be done after the check since some
secret information that prevented cheating is already revealed.
We modify the verification protocol by Abspoel et al. by keep-
ing this secret information hidden to facilitate continuous
computation at the cost of one extra secret multiplication in
the underlying protocol.

Protocol 9 outlines the relevant parts of our protocol. We
denote by 〈x〉 the SPDZ-wise sharing of x, that is the tuple
([x], [r · x]) for a global MAC key r ∈ Z2s where [·] denotes
three-party replicated secret sharing modulo 2k+2. We instan-
tiate the zero-check functionality FCheckZero using the post-
sacrifice protocol by Eerikson et al. [17]. The conversion is
straight-forward because said protocol also uses replicated
secret sharing modulo a power of two.

Complexity. Recall that the underlying protocol requires
every party to send k + s bits per dot product and the in-
putting party to send 2(k+ s) bits per input. It follows that the
asymptotic cost of a dot product in the SPDZ-wise protocol is
6(k+ s) and the asymptotic cost of an input is 3(k+ s) over
all parties. Note in particular that the cost of the product is
independent of the length.

4.1 Random Bit Generation

For multiparty computation going beyond polynomials such
as comparison, bit shifting etc., masking with random bits
plays an integral part. Even when using edaBits, we still need
daBits to convert from binary secret sharing back arithmetic
secret sharing. A straightforward way of generating random
bits with semi-honest security against one corrupted party
is to simply compute the XOR of random bits input by two
different parties. In the malicious setting however one has to
mitigate dishonest parties inputting values other than zero or
one. An efficient way to do this without revealing anything
is to check whether b · (1− b) = 0. Even if b is in Z2k , the
equality implies that b ∈ {0,1} because either b or 1− b is
odd and thus not a zero divisor. We use this check for our
random bit generation protocol in Figure 4.1. The protocol
also uses the fact that the SPDZ-wise protocol provides dot
products with constant communication.

It is clear the final step succeeds if all bi are zero. If any
bi mod 2k is non-zero however, the final step will fail sim-
ilarly to the multiplication check because ri was generated
independently of bi. Furthermore, assume w.l.o.g. that P0 is

Protocol 9: SPDZ-Wise Protocol

Global setup: MAC key [r]

Input: The parties let Pi input z as follows:

1. Pi inputs z to the underlying protocol, re-
sulting in [z].

2. Compute [z · r] using [r] and the underlying
protocol.

3. Use 〈z〉 = ([z], [z · r]) for further computa-
tion and store it for verification.

Multiplication: The parties compute the dot prod-
uct of (〈x1〉, . . . ,〈xn〉) and (〈y1〉, . . . ,〈yn〉) as fol-
lows:

1. Compute the dot products ∑i[xi] · [yi] and
∑i[xi] · [r ·yi] using the underlying protocol.

2. Store the resulting pair as 〈z〉 and use it for
further computation.

Verification: The parties verify all results and inputs
〈z1〉, . . . ,〈zn〉 as follows:

1. Generate fresh random values [r1], . . . , [rn].
This can be done using PRSS.

2. Compute the dot products [u]← ∑i[ri] · [zi]
and [w]← ∑i[ri] · [zi · r] using the underly-
ing protocol.

3. Compute [u] · [r]− [w] using the under-
lying protocol and check it for zero us-
ing FCheckZero as described by Abspoel et
al. [1].

honest, and consider that

bi = b0
i +b1

i −2 ·b0
i ·b1

i =

{
b1

i b0
i = 0

1−b1
i b0

i = 1.

It follows that, independently of b0
i , bi ∈ {0,1} if and only if

b1
i ∈ {0,1}. This precludes selective failure attacks on b0

i .

Complexity. The protocol requires two SPDZ-wise inputs
and one SPDZ-wise multiplication, resulting in 12(k+ s) bits
overall.

5 Achieving Robustness

We now turn our attention to describing how our four-party
protocol can be made robust. As mentioned back in the intro-
duction, we will consider two types of robustness: traditional
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Protocol 10: Random Bit Generation

In the following, P0 and P1 are placeholders for any
two distinct parties.

1. P0 and P1 input 〈b0
1〉, . . . ,〈b0

n〉 and 〈b1
1〉, . . . ,〈b1

n〉,
respectively.

2. The parties compute 〈bi〉 ← 〈b0
i 〉+ 〈b1

i 〉 − 2 ·
〈b0

i 〉 · 〈b1
i 〉 for all i.

3. The parties generate random public values
r1, . . . ,rn ∈ Z2s .

4. The parties compute ∑i(ri〈bi〉) · (1− 〈bi〉 and
check whether it opens to zero.

and private. The former refers to robustness in the classical
sense where we are just interested in guaranteeing the output
without compromising security; the latter kind also wants to
guarantee output, however this should happen without com-
promising privacy towards honest parties.

We treat the simpler traditional case first.

5.1 Robustness

By relying on the cheating identification extension of JMP
we immediately get a robust protocol: When a dispute is
recorded, parties can point to at least one party which is honest.
Indeed, JMP is a protocol between only three of the four total
parties and so the party who did not engage in JMP must be
honest. Traditional robustness then follows: Parties just send
their shares to the recognized honest party who finishes the
computation.

5.2 Privacy preserving robustness

We now describe how the cheating identification extension
of the JMP protocol allows for a very efficient, and more
importantly, privacy-preserving, way of obtaining a robust
protocol that also guarantees privacy with respect to the views
of honest parties. In a nutshell, the idea is to identify a pair
of parties {Pi,Pj} of which one is malicious. One of these
two parties is then excluded and the remaining three parties
convert their shares from ones that are compatible with our
four party protocol, to some that are compatible with our three
party protocol. After this has been done, computation con-
tinues, however now the remaining parties know that, should
another error occur, then this must have originated from the
party that was not excluded.

As a starting point, we make the following observation
about the secret sharing scheme we employ:

Local Share Conversion. Consider a replicated sharing of
x held by our four parties: In more detail, parties hold the
following values:

P0 holds (x1,x2,x3), P1 holds (x0,x2,x3),

P2 holds (x0,x1,x3), P3 holds (x0,x1,x2),

where x = x0 + x1 + x2 + x3. In the case where, say, P0, is ex-
cluded, the remaining parties can locally convert their shares
into shares compatible with a three party replicated secret
sharing as follows: Parties P1 and P2 define x′ = x0 + x3 and
P3 discards x0. That is, P1 holds (x′,x2), P2 holds (x1,x′) and
P3 holds (x1,x2). It is easy to see that this still defines a valid
secret-sharing of x. If we further exclude a party (say P3),
then the two remaining parties can perform a similar action as
before in order to obtain a valid full threshold secret-sharing
of x (e.g., P1 could set its share to be x′+ x2 while P2 sets its
share to be x1).

5.3 Robustness through protocol hopping
Using the observation above, privacy-preserving robustness
is now attained in the following way.

Consider first the case where the cheating identification
in JMP outputs a single party. This case is easy to handle:
parties just stop talking to the cheating party, convert their
shares as described above and perform the computation using
a semi-honest three-party protocol.

The situation is more interesting if a pair {Pi,Pj} is identi-
fied. In this case, we proceed as follows:

1. Parties select one of Pi or Pj arbitrarily and stop com-
municating with that party (e.g., pick the party with the
lowest index). To be concrete, suppose Pi is kicked out.

2. All remaining parties convert their shares into three-
party sharings. Notice that these can be viewed as a
semi-honest sharing of the underlying value, and so in
particular, can be used from step 2 onward in Protocol 9.

3. Thus, the three remaining parties continue the computa-
tion with the SPDZ-wise protocol.

The computation is clearly still private: the share conversion
was local, and the SPDZ-wise protocol is secure against a
malicious adversary (observe that Pi might be the honest party
and so the malicious party, Pj, could still be participating).

Consider now the situation if another error happens during
the execution of the three party protocol: In this case, par-
ties will know for sure that Pj is malicious and that Pi was
honest. Indeed, of the pair {Pi,Pj} one is guaranteed to be
malicious, and if Pi did not participate but malicious behavior
was observed, then Pj must be the culprit.

Having identified the malicious party, it is now just a matter
of finishing the computation in a privacy-preserving manner.
To do so, the remaining two parties (P̀ , Pk) convert their
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shares into full threshold shares and execute a semi-honest
two party protocol. Notice that, while such a protocol is quite
expensive, it is in our case easy to make very efficient. Indeed,
now that we could conclude that Pi was honest, the parties can
reestablish a connection with Pi who would then be tasked
with producing multiplication triples.

6 Applications and Implementation

In order to demonstrate the benefit of our protocols, we have
implemented various applications in MP-SPDZ [23], which
we will present in this section. We have only implemented
protocols with abort, however, because we do not see a mean-
ingful way to benchmark robust protocols. Usually, the com-
plexity of these vary considerably depending on the behavior
of the corrupt parties.

Our applications use real number arithmetic, which we emu-
late by using fixed-point representation of fractional numbers,
that is, x ∈ R is represented as

⌊
x ·216

⌉
. After every multipli-

cation we round using probabilistic truncation, as described
in Section 2.5.

We use three protocols in our benchmarks, the four-party
protocol with abort in Section 2, the three-party protocol with
abort in Section 4, and the semi-honest three-party protocol
already available in MP-SPDZ. The three-party protocol with
abort is based largely on work by Abspoel et al. [1] while
the three-party protocol goes back to Araki et al. [6] with
optimizations by Dalskov et al. [14] and Eerikson et al. [17].

We consider the following applications. First, we discuss
in Section 6.1 the case of multi-class deep learning, where
the goal is to learn a label from a non-binary set given some
training data using deep neural networks. Then we consider in
Section 6.2 training a logistic regression model to learn a bi-
nary label. Finally, Section 6.3 shows our results for ImageNet
inference using established networks such as ResNet.

6.1 Multi-Class Deep Learning
We have implemented training for the MNIST dataset [28]
with one to three dense layers. All but the last layer are fol-
lowed by a ReLU activation and output 128 values. We used a
batch size of 128, resulting in 469 iterations per epoch as there
are 60,000 examples in the training set. Furthermore, we use
softmax to compute the loss and stochastic gradient descent
with a momentum of 0.9 for training. The learning rate is set
to 0.01 in the beginning and is halved whenever a reset is
necessary due to divergence. To implement the exponential
function used by softmax we use the approach by Aly and
Smart [3].

Table 1 lists our timings and accuracy results for one run
of each protocol on AWS c5.9xlarge. We also run the same
computation using one of the semi-honest three-party proto-
cols provided by MP-SPDZ. The results show that running
malicious four-party computation costs less than twice of

running semi-honest three-party computation, both with one
corrupted party.

6.2 Logistic Regression and Binary Classifica-
tion

We have further implemented training to distinguish between
“4” and “9” in the MNIST dataset. While this task is inspired
by the Gisette dataset [22], we restrict ourselves to the relevant
subset of MNIST in order to allow comparison with previous
works that used the same number of features as MNIST for
logistic regression. As previous works [25, 29, 30], we use a
three-part approximation of the sigmoid function.

There are 11791 and 1191 relevant examples in the MNIST
training and test set, respectively. This comes down to 93 iter-
ations per epoch with our batch size of 128. We use the same
parameters for stochastic gradient descent as above. Table 2
shows our results. The figures for SWIFT [25] therein are
based on the reported 1.23 and 1.22 seconds per training iter-
ations for malicious 3PC and 4PC training of a 3-layer model,
respectively. The authors of SWIFT also report throughput
figures of running several iterations in parallel. We do not use
those because the training is not parallelizable.

Communication Our malicious three-party protocol re-
quires communicating 650 MB overall with one dense layer.
Koti et al. [25] give figure of 50.31 KB and 4,757.29 KB for
the online and preprocessing phase, respectively. This adds up
to roughly 4.7 MB online and 447 GB overall per epoch. The
overall cost of our protocol is therefore almost three orders of
magnitude lower. This can be explained by the fact that the
cost of our dot product is constant while theirs is linear.

6.2.1 The Impact of Fixed-Point Precision

Cleartext training makes use of floating-point arithmetic, typ-
ically over 32-bit datatypes, and its accuracy is very well
understood. However, when working in MPC floating-point
arithmetic, although possible, is considerably more expen-
sive [24], which is why one typically resorts to fixed-point
arithmetic as we do in this work. Although this increases
efficiency, it is not clear if, and if so, by how much, accuracy
is degraded. Previous works largely disregard this issue. In
this section we present data that supports experimentally that,
while the choice the parameters used in previous works gives
reasonably accuracy with small models, this is unlikely to
extend to larger models.

We now evaluate the impact of varying the fixed-point
precision and the implications on the probabilistic truncation,
based on the binary classification example from above. Recall
that we present fractional numbers as

⌊
x ·2 f

⌉
for f = 16.

Table 3 shows the impact of varying f between 12 and 16.
It also shows the maximum bit length we encountered in
truncation. This information is relevant because it dictates
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Table 1: Time and accuracy for MNIST with various models and protocols with one corrupted party. “SH 3PC” stands for the
semi-honest protocol implemented MP-SPDZ while “Mal. 4PC” and “Mal. 3PC” stand for the protocols with abort presented in
this work.

No. dense layers Seconds per epoch Accuracy after n epochs

SH 3PC Mal. 4PC Mal. 3PC n = 5 n = 10 n = 15 n = 20

1 12.2 22.1 92.7 91.7 92.0 92.2 92.3
2 28.2 42.4 451.5 93.3 94.0 94.7 95.0
3 33.8 51.1 573.7 88.1 91.3 92.4 92.9

Table 2: Time and accuracy for MNIST 4/9 distinction with various models and protocols with one corrupted party.

No. dense layers Seconds per epoch Accuracy after n epochs

SH 3PC Mal. 4PC Mal. 3PC n = 5 n = 10 n = 15 n = 20

SWIFT [25] online 1 ⊥ 113.5 114.4 ⊥ ⊥ ⊥ ⊥

Ours overall
1 0.5 0.8 1.6 96.5 96.4 96.8 96.9
2 3.2 4.2 75.2 94.5 96.4 98.3 98.5
3 4.2 5.8 102.2 96.7 97.6 97.9 98.3

Table 3: Accuracy for MNIST 4/9 distinction with various
fixed-point precisions. “Prec.” stands for the fixed-point pre-
cision, “Max. length” stands for the maximum bit length
encountered in probabilistic truncation, and ⊥ stands for di-
vergence. The accuracy figures are given for 10 and 20 epochs.

Layers Prec. Max. length Accuracy after n

n = 10 n = 20

1

8 24 87.3 88.2
10 28 93.2 93.1
12 31 96.1 96.1
14 35 96.8 96.9
16 39 96.7 96.9

2

8 ⊥ ⊥ ⊥
10 37 95.9 97.6
12 39 96.2 91.4
14 42 96.5 98.3
16 43 98.4 98.7

how small k can be while reduction modulo 2k does not affect
the computation. In our protocols the bit length of values can
be almost the one of the computation domain (k for computing
modulo 2k) without affecting correctness. The only restriction
is in our probabilistic truncation protocol from Section 2.5,
which requires the most significant bit of the input sharing to
be 0.

Unlike our protocols, many previous works [25, 29–31]
use a probabilistic truncation that requires this bit length to
be much shorter than the bit length of the computation do-
main. More precisely, in these works the failure probability
is 2`−k, where ` is the bit length of the input to the proba-
bilistic truncation. Table 3 shows that this probability is as
high as 2−20. This is insufficient as one epoch of training the
2-layer model already involves more than 9 million such trun-

Table 4: Time and communication per epoch for binary clas-
sification training with four parties. “Prec.” stands for the
fixed-point precision, and “Mod.” stands for the computation
modulus.

No. layers Prec. Mod. Time (s) Comm. (MB)

1

12 264 0.60 32
280 0.56 21

14 264 0.59 32
280 0.55 21

16 264 0.65 32
280 0.59 21

2

12 264 4.17 4,217
288 8.11 2,961

14 264 3.90 4,218
288 8.17 2,962

16 264 3.86 4,218
288 8.01 2,963
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cations.9 Furthermore, it is common practice to limit such an
error probability to 2−40 per unit that could. Given our figures,
this considerably limits the use of the cheaper probabilistic
truncation with computation modulo 264, which is commonly
used due to the ubiquity of 64-bit processors.

These considerations give rise to a trade-off between the
more expensive truncation in Section 2.5 and increasing the
computation modulus in order to decrease the error probability
with the cheaper truncation. By more expensive we mean
the truncation that uses [b] in the last step of Protocol 5 in
order to compensate the overflow when masking earlier on.
The former triples the communication cost as outlined in
Section 2.5 while the latter leads to an overall increase in
the computation cost because it is twice as expensive to add
72-bit numbers and more than twice as expensive to multiply
them on a 64-bit platform. Table 4 outlines this trade-off for
our binary classification task. It shows that, while the more
efficient truncation saves about one third in communication
throughout, the required larger modulus doubles the time
when training the two-layer model.

Koti et al. [25] claim a figure of 92 KB per iteration for
training a one-layer model. At 93 iterations per epoch, this
results in 8.6 MB per epoch, less than half of our figure of
21 MB. However, they use 13-bit fixed-point precision with a
64-bit modulus and the more efficient probabilistic truncation,
and Table 3 shows that this does not achieve a “gap” of 40
binary digits in the truncation, which is needed for having
an error probability of 2−40 as sketched above. While we did
not find any issues running the training in this setting, doing
so with two dense layers exhibits regular drops in accuracy,
similarly to the setting for 12-bit fixed-point precision in Ta-
ble 3, where these drops explain the lower accuracy for 20
epochs compared to 10. This suggests that 13-bit precision is
insufficient for larger models.

6.3 ImageNet Inference

In order to compare our protocols to the ones by Dalskov et
al. [14] and Kumar et al. [26], we have adapted the implemen-
tations by the former. Our results in Table 5 show that adding
another honest party is competitive with Kumar et al.’s ap-
proach of relying on a trusted execution environment instead.
While our approach does increase communication by a factor
of 1.5–2, the increase in overall time is at most 1.6-fold and
thus less than the 3-fold increase in the TEE-based solution.
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A Truncation from share splitting

We end with a concrete protocol for deterministic truncation
with replicated secret sharing modulo a power of two that
is more efficient than using edaBits because it only relies
on share splitting. Let f`(x) = x− (x mod 2`) for any `,x >
0, and let “/” denote floor division. It is easy to see that
f`(x) is a multiple of 2` and hence f`(x)/2` = x/2`. Let x =
(∑n

i=1 xi) mod 2k for xi ∈ [0,2k−1]. Then,

x/2m =
((

∑
i

xi

)
mod 2k

)
/2m

=
(
∑

i
xi− fk

(
∑

i
xi

))
/2m

=
(
∑

i
xi

)
/2m− fk

(
∑

i
xi

)
/2m

=
(
∑

i
( fm(xi)+(xi mod 2m))

)
/2m− fk

(
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i
xi

)
/2m

=
(
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i
fm(xi)+∑

i
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)
/2m− fk

(
∑

i
xi

)
/2m

= ∑
i

fm(xi)/2m +
(
∑

i
(xi mod 2m)

)
/2m− fk

(
∑

i
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)
/2m

= ∑
i

xi/2m +
(
∑

i
(xi mod 2m)

)
/2m− fk

(
∑

i
xi

)
/2m.

The third equality holds because 2m divides fk(x), and the
sixth equality holds because 2m divides fm(xi) for all i.

Now, let n = 4, and suppose that x = x1 +x2 +x3 +x4 mod
2k are the additive shares underlying a replicated sharing
[x]. We now discuss how the parties can use the equa-
tions derived above to compute [x/2m] from [x]. Since xi is
known by the three parties {Pj} j 6=i, the parties can locally get
shares [xi/2m]← INPLocal(xi/2m,{Pj} j 6=i), which in turns
yields sharings of the first summand in the equation above
[∑4

i=1 xi/2m]. For the other two summands, observe that, in
general,

n−1

∑
i=0

(xi mod 2m)< n ·2m⇒

(
n−1

∑
i=0

(xi mod 2m)

)
/2m < n

and

n−1

∑
i=0

xi < n ·2k⇒ fk

(
n−1

∑
i=0

xi

)
∈ {0,2k, . . . ,(n−1) ·2k}.

Therefore, these summands consist of only log(n) non-zero
bits, which in our case, since n= 4, leads to only two non-zero
bits. It is also easy to see that these few bits can be computed
using binary adders on the bits of all xi, of which the parties
can obtain shares locally. This directly leads to a protocol by
computing these bits, converting them to sharings modulo 2k,
and then adding them to the sharings [∑4

i=1 xi/2m].

17


	Introduction
	Contributions
	Overview of our Techniques
	Related Work
	Outline

	Secure Computation Protocol
	Secret-Sharing
	Joint Message Passing
	Shared Input
	Secure Multiplication
	Probabilistic Truncation
	Random Bit Generation

	Mixed-Circuit Computation
	Three-Party Computation
	Random Bit Generation

	Achieving Robustness
	Robustness
	Privacy preserving robustness
	Robustness through protocol hopping

	Applications and Implementation
	Multi-Class Deep Learning
	Logistic Regression and Binary Classification
	The Impact of Fixed-Point Precision

	ImageNet Inference

	Truncation from share splitting

