
Efficient mixing of arbitrary ballots with
everlasting privacy: How to verifiably mix the

PPATC scheme

Kristian Gjøsteen1, Thomas Haines1, and Morten Rotvold Solberg1

Norwegian University of Science and Technology, Trondheim, Norway
{kristian.gjosteen,thomas.haines,mosolb}@ntnu.no

Abstract. The long term privacy of voting systems is of increasing con-
cern as quantum computers come closer to reality. Everlasting privacy
schemes offer the best way to manage these risks at present. While ho-
momorphic tallying schemes with everlasting privacy are well developed,
most national elections, using electronic voting, use mixnets. Currently
the best candidate encryption scheme for making these kinds of elections
everlastingly private is PPATC, but it has not been shown to work with
any mixnet of comparable efficiency to the current ElGamal mixnets. In
this work we give a paper proof, and a machine checked proof, that the
variant of Wikström’s mixnet commonly in use is safe for use with the
PPATC encryption scheme.

Keywords: Everlasting Privacy · E-Voting · Verifiable Shuffles · Coq.

1 Introduction

Traditional paper-based and electronic voting has many good properties, but
also limitations. A voter is not able to verify that her vote was counted as she
cast it, and confidentiality of the votes relies heavily on trust in the election
officials and procedures. In addition there are problems regarding for example
counting errors and accessibility. Verifiable electronic voting systems can solve
some of these issues. In particular, cryptographic techniques can be used to
provide public verifiability of election results and raise each individual voter’s
confidence in the privacy and integrity of her vote.

Electronic voting has been plagued by mistakes, both in implementations but
also in the cryptographic protocols. This means that security proofs are essential,
and in particular it is desirable with automatically verifiable security proofs.

To achieve verifiable elections, encrypted votes are often published on a pub-
lic bulletin board, along with sophisticated cryptographic proofs that allow an
individual voter to verify that their ballot was not only listed on the bulletin
board, but also included correctly in the tally.

Mix nets were first introduced by Chaum [2] as a solution to the traffic
analysis problem in which an adversary is able to extract useful information
from patterns of communication, even when that communication is encrypted.

2 K. Gjøsteen et al.

The traffic analysis problem can be thought of, more generally, as the set of
problems that arise by the ability to link the messages between sets of senders and
receivers. Mix nets therefore consist of a finite sequence of authorities (mixers),
each of which permutes (shuffles) and hides the relationship between its inputs
and its outputs. In the context of elections, mix nets are used to transform the
set of submitted encrypted ballots (which are linked to the voters) to the set of
decrypted votes in the tally.

The votes are encrypted to provide confidentiality, which is usually considered
essential for a fair vote. Confidentiality requires votes to remain private not only
during the time of the election, but for all foreseeable future. However, due
to computers and algorithms getting faster and the potential introduction of
quantum computers, there is no way to safely predict how long it may take
before a ciphertext encrypted today is broken. Thus, the property of everlasting
privacy has been introduced.

Everlasting privacy is a property of electronic voting schemes where the infor-
mation released to the public perfectly (or information-theoretically) hides how
each voter voted, up to the outcome of the election. This means that regardless
of developments in practical computing power and algorithm design, individual
votes cannot be recovered from the public record.

Everlasting privacy is a subtle concept. In all systems that are practical
for large-scale voting, functional requirements mean that the voter will have to
encrypt their ballot and transmit this encryption to some infrastructure. The
subtlety is that this ciphertext is not part of the public record. This essen-
tially assumes that the potential powerful future attacker did not record the
network traffic, and is only working with the public record of the election. This
is in many cases a reasonable assumption. We emphasize that it is only privacy
against these potential future attackers that relies on this assumption. Com-
putationally secure cryptography still protects against adversaries with greater
network access. So schemes that provide everlasting privacy are no less secure
than conventional cryptographic voting schemes, but they have greater security
against future adversaries that work only from the public record.

There are various candidate constructions which achieve everlasting privacy
while maintaining verifiability. Most of the schemes are inspired by Cramer et
al.’s “Multi-Authority Secret-Ballot Elections with Linear Work” [3] and Moran
and Naor’s “Split-ballot voting: Everlasting privacy with distributed trust” [11].
In both cases perfectly hiding commitments are combined with zero knowledge
proofs to provide verifiability without leaking any information. In this work
we will focus on schemes in the style of [11] which are able to handle arbitrary
ballots rather than the homomorphic tally supported by [3]. This style of schemes
are less developed than the homomorphic schemes, but have greater practical
implications since mixnet style schemes have been used in many of countries
who have voted electronically (Australia, Estonia, Norway, and Switzerland),
and where homomorphic counting is often hard to do.

The general idea in these schemes is to have a publicly verifiable part deal-
ing only with commitments to ballots. We achieve everlasting privacy by using

Efficient mixing of arbitrary ballots with everlasting privacy 3

perfectly hiding commitments. However, somehow the ballots must be recovered
by the infrastructure, and this is done in a private part, typically working on
encrypted openings for the commitments. In this way, we get everlasting privacy.
Note that we only get computational integrity.

There are two encryption schemes which are commonly suggested for use in
this context, both involve first committing to the message and then encrypting
the opening to the commitment. The schemes fit into a wider everlasting privacy
scheme with the perfectly hiding commitments being publicly shuffled and then
opened providing both verifiability and everlasting privacy; the encrypted open-
ings are shuffled by the authorities and then publicly posted. The first is the MN
encryption scheme from Moran and Naor [11] which is built on Paillier encryp-
tion [12] and Pedersen commitments [13]. The second is the PPATC encryption
from Cuvelier et al. [4] which uses ElGamal and Abe et al.’s [1] commitment
scheme. Since the latter encryption scheme can be instantiated on prime or-
der elliptic curves, rather than the semi-prime RSA groups of the former, it is
significantly faster.

Simple and efficient zero-knowledge proofs for correct encryption and de-
cryption of both encryption schemes are known. An efficient mixnet for the MN
encryption scheme was proven by Haines and Gritti [10], but at present the
most efficient known mixnet for PPATC uses the general version of Terelius-
Wikström proof of shuffle [14] which proves statements over the integers using
Fujisaki-Okamoto commitments [6], based on an RSA modulus, which hampers
the efficiency of the mixnet. The reason is that every operation must happen
modulo the RSA modulus, which means that basic arithmetic is very slow. We
will use pairing groups, but we arrange it so that most of the group arithmetic
happens in a group where arithmetic is much faster, which means that Fujisaki-
Okamoto commitments will be slow compared to most of our arithmetic. In
practice everyone using the Terelius-Wikström proof of shuffle uses an optimised
variant which avoids the use of Fujisaki-Okamoto commitments. It is folklore that
the optimised variant of Terelius-Wikström works for wide class of encryption
schemes but the precise variant for each encryption scheme should be proven.

1.1 Contribution

We prove a variation of the optimised Terelius-Wikström shuffle [14] for the
PPATC encryption scheme [4]. This is essentially the optimised variation which
is widely used, and which avoids the use of Fujisaki-Okamoto commitments. In
addition we show how the Fiat-Shamir transform can be applied so that the
public proofs of correct shuffling can be trivially derived from the private proofs
of correct shuffling, nearly doubling the speed of mixing.

We provide a machine-checked proof using the interactive theorem prover
Coq. The machine-checked proof relies on recent work which shows that any
encryption scheme with certain properties works with the optimised Terelius-
Wikström shuffle. For completeness and human understanding, we also give a
straight-forward traditional paper proof.

4 K. Gjøsteen et al.

2 Notation and Tools

We denote by G1 and G2 cyclic groups of large prime order q, and by Zq the field
of integers modulo q. Let An be the set of vectors of length n, with elements from
the set A. We denote vectors in bold, e.g. a. We denote by ai the ith element of
the vector a. Sometimes, we will work with vectors that have tuples as elements.
In such cases, we also denote by ai the ith element of a, and by ai,j the jth
element of the tuple ai. Multiplication of tuples is elementwise multiplication,
that is, ab is the tuple where the ith element is aibi. We denote by An×n the set
of n× n-matrices with elements from the set A. Matrices will be denoted using
capital letters, e.g. M . We denote by Mi the ith column of M , by Mi,∗ the ith
row of M , and by Mi,j the element in row i and column j. A binary relation
for a set S of statements and a set W of witnesses is a subset of S ×W and is
denoted by R.

Matrix Commitments. We now describe how to commit to a matrix using a
variation of Pedersen commitments [14]. We denote by Comγ,γ1(m, t) the Peder-
sen commitment of m ∈ Zq with randomness t ∈ Zq, i.e. Comγ,γ1(m, t) = γtγm1
for group generators γ and γ1. To commit to a vector v ∈ Znq , we compute
u = Comγ,γ1,··· ,γn(v, t) = γt

∏n
i=1 γ

vi
i , where t is chosen at random from Zq, and

the γs are random group generators. If the commitment parameters are omitted,
it is implicit that they are γ, γ1, · · · , γn. An n × n matrix M is committed to
column-wise. For a matrix M ∈ Zn×nq and a vector t chosen at random from Znq ,
we compute the commitment u of M as

u = Com(M, t) =
(
Com(M1, t1), . . . ,Com(Mn, tn)

)
=
(
γt1Πn

i=1γ
Mi,1

i , . . . , γtnΠn
i=1γ

Mi,n

i

)
.

Abe Commitments. We now describe a perfectly hiding commitment scheme
due to Abe et al. [1], that is used in a a construction of the PPATC encryption
scheme that we describe further down. Let Λsxdh = (q,G1,G2,GT , e, g, h) be a
description of bilinear groups, where g is a generator of G1, h is a generator of
G2 and e is an efficient and non-degenerate bilinear map e : G1 × G2 → GT .
We assume that the DDH problem is hard in both G1 and G2. In our notation,
an Abe commitment to a message m ∈ G1 is the tuple (hr1hr21 ,mg

r2
1), where

r1 and r2 are random elements in Zq and g1 and h1 are random elements of
G1 and G2, respectively. An Abe commitment to m can be thought of as an
ElGamal encryption of m where the first coordinate is hidden in a Pedersen
commitment. An opening is of the form (gr11 ,m) which is valid if e(g, hr1hr21) =
e(gr11 , h)e(mgr21 /m, h1).

Polynomial Identity Testing. We will make use of the Schwartz-Zippel lemma
to analyze the soundness of our protocol. The lemma gives an efficient method
for testing whether a polynomial is equal to zero.

Lemma 1 (Schwartz-Zippel). Let f ∈ Zq[X1, ..., Xn] be a non-zero polyno-
mial of total degree d ≥ 0 over Zq. Let S ⊆ Zq and let x1, ..., xn be chosen
uniformly at random from S. Then Pr[f(x1, ..., xn) = 0] ≤ d/|S|.

Efficient mixing of arbitrary ballots with everlasting privacy 5

3 Commitment Consistent Encryption

We now describe commitment consistent encryption (CCE), as defined by Cu-
velier et al. [4]. The key idea is that for any ciphertext, one can derive a com-
mitment to that ciphertext, and the secret key can be used to obtain an opening
to that commitment. Furthermore, applied in a voting protocol, the idea is that
the voters compute a CC encryption of their ballot, and the authorities derive
a commitment to the ciphertext and post this commitment on a public bulletin
board PB. If the commitments are perfectly hiding, they can be used to provide
a perfectly private audit trail, which allows anyone to verify the correctness of
the count, but does not contain any information about who submitted which
ballots.

Definition 1 (CC Encryption [4]). A commitment consistent encryption scheme
Π is a tuple of six efficient algorithms (Gen,Enc,Dec,DeriveCom,Open,Verify),
defined as follows:

– Gen(1λ): on input a security parameter λ, output a triple (pp, pk, sk) of public
parameters, public key and secret key. The public parameter pp is implicitly
given as input to the rest of the algorithms.

– Encpk(m): output a ciphertext c, which is an encryption of a message m in
the plaintext space M (defined by pp) using public key pk.

– Decsk(c): for a ciphertext c in the ciphertext space C (defined by pp), output
a message m using secret key sk.

– DeriveCompk(c): From a ciphertext c, output a commitment d using pk.
– Opensk(c): from a ciphertext c, output an auxiliary value a, that can be con-

sidered as part of an opening for a commitment d.
– Verifypk(d,m, a): On input a message m and a commitment d wrt. public

key pk, and auxiliary value a, output a bit. The algorithm checks that the
opening (m, a) is valid wrt. d and pk.

Correctness. We expect that any commitment consistent encryption scheme sat-
isfies the following correctness property: For any triple (pp, pk, sk) output by Gen,
any message m ∈M and any c = Encpk(m), it holds with overwhelming proba-
bility in the security parameter that Decsk(c) = m and Verifypk

(
DeriveCompk(c),

Decsk(c),Opensk(c)
)

= 1.

The above definition does not guarantee that it is infeasible to create honest-
looking CCE ciphertexts that are in fact not consistent. To address this issue,
Cuvelier et al. [4] define the concept of validity augmentation (VA) for CCE
schemes. A validity augmentation adds three new algorithms Expand,Valid and
Strip to the scheme.

The Expand algorithm augments the public key for use in the other algo-
rithms. The Valid algorithm takes as input an augmented ciphertext cva along
with some proofs of validity. It then checks whether it is possible to derive a
commitment and an encryption of an opening to that commitment. The Strip
algorithm removes the proofs of validity.

6 K. Gjøsteen et al.

Definition 2 (Validity Augmentation [4]). A scheme Πva = (VA.Gen,VA.Enc,
VA.Dec,VA.DeriveCom,VA.Open,VA.Verify,Expand,Strip,Valid) is a validity aug-
mentation of the CCE scheme Π = (Gen,Enc,Dec,DeriveCom,Open,Verify) if
the following conditions are satisfied:

– Augmentation: VA.Gen runs Gen to obtain (pp, pk, sk) and outputs an up-
dated triple (ppva, pkva, skva) = (pp,Expand(pk), sk).

– Validity: Validpkva(c
va) = 1 for all honestly generated public keys and cipher-

texts. In addition, for any PPT adversary A, the following probability is
negligible in λ:

Pr[Validpkva(c
va) = 1 ∧ ¬Verifypk(Strippkva(c

va)) = 1

| c← A(ppva, pkva); (ppva, pkva, skva)← VA.Gen]

– Consistency: The values Strippkva(VA.encpkva(m)) and Encpk(m) are equally
distributed for all m ∈ M, i.e. it is possible to strip a validity augmented
ciphertext into a ”normal” one. In addition, it holds, for all ciphertexts and
keys, that VA.Decskva(c

va) = Decsk(Strippkva(c
va)), that VA.Openskva(c

va) =
Opensk(Strippkva(c

va)) and that VA.Verifypkva(c
va) = Verifypk(Strippkva(c

va)).
In other words, the decryption, opening and verification for Πva is consistent
with those of Π.

3.1 The PPATC Encryption System

We now describe an augmented CCE system called PPATC (Perfectly Private
Audit Trail with Complex ballots). The different algorithms are defined as follows
[4]:

– VA.Gen(1λ) : Generate Λsxdh = (q,G1,G2,GT , e, g, h) and random genera-
tors g1 = gx1 , g2 = gx2 ∈ G1 and h1 ∈ G2. Now, (pp, pk, sk) = ((Λsxdh, h1),
(g1, g2), (x1, x2)). The augmented key pkva = Expand(pk) is computed by
adding a description of a hash function H with range Zq to the public key,
resulting in the triple (ppva = pp, pkva, skva = sk).

– VA.Encpkva(m; r) : Compute the CCE ciphertext c = Encpk(m; r) where c =
(c1, c2, c3, d1, d2) = (gr2 , gr3 , gr11 g

r3
2 , h

r1hr21 ,mg
r2
1) and r = (r1, r2, r3) ∈ Z3

q.

Then compute the following validity proof. Select s1, s2, s3
r← Zq and com-

pute c′ = (c′1, c
′
2, c
′
3, d
′
1) = (gs2 , gs3 , gs11 g

s3
2 , h

s1hs21). Compute νcc = H(ppva,
pkva, c, c′), f1 = s1 + νccr1, f2 = s2 + νccr2 and f3 = s3 + νccr3. Let
σcc = (νcc, f1, f2, f3). The ciphertext is cva = (c, σcc).

– VA.Decskva(c
va) : Parse cva as (c1, c2, c3, d1, d2, σcc) and return d2/c

x1
1 .

– VA.DeriveCompkva(c
va) : Parse cva as (c1, c2, c3, d1, d2, σcc) and return (d1, d2).

– VA.Openskva(c
va) : Parse cva as (c1, c2, c3, d1, d2, σcc) and return a = c3/c

x2
2 .

– VA.Verifypkva(d1, d2,m, a) : Return 1 if e(g, d1) = e(a, h)e(d2/m, h1) and 0
otherwise.

– Validpkva(c
va) : Parse cva as (c1, c2, c3, d1, d2, νcc, f1, f2, f3) and check if all

elements of cva are properly encoded. Compute c′1 = gf2/cνcc1 , c′2 = gf3/cνcc2 ,

c′3 = gf11 g
f3
2 /c

νcc
3 and d′1 = hf1hf21 /d

νcc
1 . Return 1 only if

νcc = H(ppva, pkva, c1, c2, c3, d1, d2, c
′
1, c
′
2, c
′
3, d
′
1, d
′
2).

Efficient mixing of arbitrary ballots with everlasting privacy 7

– Strippkva(c
va): Parse cva as (c1, c2, c3, d1, d2, σcc) and return the CCE cipher-

text c = (c1, c2, c3, d1, d2) and the commitment d = (d1, d2).

A CCE ciphertext c = Encpk(m; r) = (gr2 , gr3 , gr11 g
r3
2 , h

r1hr11 ,mg
r2
1) can be re-

encrypted, by multiplying c with the encryption of 1 using randomness r′ =
(r′1, r

′
2, r
′
3) ∈ Z3

q. Thus, a ciphertext c′, where

c′ = c · Encpk(1; r′) = (gr2 , gr3 , gr11 g
r3
2 , h

r1hr21 ,mg
r2
1) · (gr

′
2 , gr

′
3 , g

r′1
1 g

r′3
2 , h

r′1h
r′2
1 , g

r′2
1)

= (gr2+r
′
2 , gr3+r

′
3 , g

r1+r
′
1

1 g
r3+r

′
3

2 , hr1+r
′
1h
r2+r

′
2

1 ,mg
r2+r

′
2

1),

can be thought of as an encryption of m using randomness r + r′.

4 Shuffling Commitment Consistent Ciphertexts

In this section, we first describe how the PPATC can be used as a building block
in a voting system. We then concrete shuffle algorithms for shuffling PPATC
ciphertexts and their derived commitments, before describing how to apply the
Fiat-Shamir heuristic to make the shuffles non-interactive.

4.1 Using the PPATC scheme in a Voting System

A validity augmented CCE scheme can be applied in an election as follows
[4]. First, a setup phase takes place, where the election authorities generate
encryption and decryption keys, as well as two bulletin boards PB and SB.
The public board PB will contain the public audit trail, while SB will contain
encrypted votes, be kept secret by the authorities and will be used to compute
the tally. To produce a ballot, each voter encrypts her vote using the PPATC
scheme, and sends the resulting ciphertext to the authorities. The ciphertext is
stored on SB and the derived commitment is stored on PB.

To preserve privacy, the link between voter and vote must be destroyed,
the list of ciphertexts on SB is shuffled. A shuffle of a list v of ciphertexts
is a new list v′, such that for all i = 1, . . . , n, v′i = vπ(i) · Encpk(1; rπ(i)), where
π : {1, . . . , n} → {1, . . . , n} is a randomly chosen permutation. Thus, the two lists
v and v′ contain encryptions of the same plaintexts in permuted order. To also
provide verifiability, we keep track of the concordance between the ciphertexts
on SB and the corresponding commitments on PB. To achieve this, the list of
commitments on PB is also shuffled, using the same permutation as for SB.

The lists are shuffled several times, by a series of mix servers. It is necessary
that each mix server provides a proof of shuffle, to prove that he follows the
protocol, and that the lists of ciphertexts in fact decrypt to the same plaintexts.
For our shuffle algorithms we will use the optimised version of the Terelius-
Wikström shuffle presented by Haenni et al. [7], where a proof of shuffle consists
of proving knowledge of the permutation π and the random vector r used to
re-encrypt the ciphertexts.

Thus, the tally procedure will proceed as follows:

8 K. Gjøsteen et al.

1. Stripping : Algorithms Valid and Strip are run on the ciphertexts stored on SB
to obtain a vector v of n CCE ciphertexts and a vector d of the corresponding
commitments.

2. Performing the shuffles: Each mix server selects a random permutation
π : {1, . . . , n} → {1, . . . , n}, also defining a permutation matrix M , and
computes a commitment u on that permutation matrix, along with a proof
of knowledge of the permutation. The mix server then selects a random vec-
tor r = ((r1,1, r1,2, r1,3), · · · , (rn,1, rn,2, rn,3)) and computes a new vector v′

where v′i = vπ(i) · Encpk(1; rπ(i)), and rπ(i) = (rπ(i),1, rπ(i),2, rπ(i),3). Let the
last two components of each ciphertext v′i form a vector d′. This vector is
posted on PB. Finally, the mix server computes two commitment consistent
proofs of shuffle, showing that v′ is a shuffle of v and d′ is a shuffle of d,
with respect to the permutation π.

3. Decryption of openings: The authorities verify the proofs and perform a
threshold decryption of the ciphertexts in v′. In addition, they run the al-
gorithm Open on these ciphertexts to obtain the auxiliary values for the
commitments. The plaintexts and the auxiliary values are posted on PB.

4.2 Proof of Shuffle on the Private Board

We start with the shuffle on the private board, i.e. the shuffle of the CCE
ciphertexts. In the following, let Rcom be a relation between the commitment
parameters γ, γ1, ..., γn ∈ G1 , m,m′ ∈ Znq and t, t′ ∈ Zq which holds if and only if
Comγ,γ1,...,γn(m, t) = Comγ,γ1,...,γn(m′, t′) and m 6= m′. Let Rπ be the relation
between the commitment parameters γ, γ1, ..., γn, a commitment u ∈ Gn1 , a
permutation matrixM ∈ Zn×nq and a randomness vector t ∈ Znq which holds only

if u = Comγ,γ1,...γn(M, t). Let Rshuf
ReEnc(pk, (v1, ..., vn), (v′1, ..., v

′
n))(π, (r1, ..., rn)),

where π is a permutation of the set {1, ..., n}, be the relation which holds if and
only if v′i = vπ(i) · Encpk(1; rπ(i)) for all i ∈ {1, ..., n}.

Theorem 1. Algorithm 1 is a perfectly complete, 4-round special soundness,
special honest-verifier zero-knowledge proof of knowledge of the relation Rcom ∨
(Rπ ∧Rshuf

ReEnc).

It is infeasible under the discrete log assumption to find a witness for Rcom, so
Theorem 1 implies a proof of knowledge for (Rπ∧Rshuf

ReEnc). To prove the theorem,
we now demonstrate the completeness of the protocol, as well as the special
soundness extractor and the special honest-verifier zero-knowledge simulator.

Completeness. We now show that Algorithm 1 is complete, i.e. that in an honest
run, the verifier accepts the proof. The proof consists of algebraic manipulations.

a1 = γz1 = (γt)−βγz1+βt = (γtΠn
i=1γi/Π

n
i=1γi)

−βγb1 = (Πn
i=1ui/Π

n
i=1γi)

−βγb1 .

a2 = γz2 = (γ t̂)−βγz2+βt̂ = (γ t̂γ
Πni=1w

′
i

1 /γ
Πni=1wi
1)−βγb2 = (ûn/γ

Πni=1wi
1)−βγb2 .

Efficient mixing of arbitrary ballots with everlasting privacy 9

Protocol 1 Interactive ZK-Proof of Shuffle on Private Board
Common Input: A public key pk, a matrix commitment u, commitment parameters

γ, γ1, ..., γn and ciphertext vectors v,v′ ∈ (G1 ×G1 ×G1 ×G2 ×G1)n.
Private Input: Permutation matrix M ∈ Zn×nq and randomness t ∈ Znq such that

u = Com(M, t). Randomness r ∈ (Zq×Zq×Zq)n such that v′i = vπ(i) ·Encpk(1; rπ(i))
for i = 1, ..., n.

1: V chooses a random w ∈ Znq and sends w to P.
2: P computes w′ = (w′1, ..., w

′
n) = Mw, and randomly chooses t̂ = (t̂1, . . . , t̂n), ẑ =

(ẑ1, ..., ẑn), z′ = (z′1, ..., z
′
n) ∈ Znq , z1, z2, z3 ∈ Zq and z̃ = (z̃1, z̃2, z̃3) ∈ Z3

q. P defines

t = 〈1, t〉, t̃ = 〈t,w〉, t̂ = t̂n +

n−1∑
i=1

(
t̂i

n∏
j=i+1

w′j

)
and

r′ =

(
n∑
i=1

ri,1wi,

n∑
i=1

ri,2wi,

n∑
i=1

ri,3wi

)
,

and sends the following elements to V (for i = 1, . . . , n):

û0 = γ1 ûi = γ t̂i(ûi−1)w
′
i a1 = γz1 a2 = γz2

a3 = γz3Πn
i=1γ

z′i
i a4 = Encpk(1; z̃)Πn

i=1(v′i)
z′i âi = γẑi(ûi−1)z

′
i .

3: V chooses a random challenge β ∈ Zq and sends β to P.
4: For i ∈ {1, . . . , n}, P responds with

b1 = z1 + β · t b2 = z2 + β · t̂ b3 = z3 + β · t̃

b̃ = z̃− β · r′ b̂i = ẑi + β · t̂i b′i = z′i + β · w′i.

5: V accepts if and only if, for i ∈ {1, . . . , n}

a1 = (Πn
i=1ui/Π

n
i=1γi)

−β · γb1 a2 = (ûn/γ
Πni=1wi
1)−β · γb2

a3 = (Πn
i=1u

wi
i)−β · γb3 ·Πn

i=1γ
b′i
i a4 = (Πn

i=1v
wi
i)−β · Encpk(1; b̃) ·Πn

i=1(v′i)
b′i

âi = (ûi)
−β · γ b̂i · (ûi−1)b

′
i

10 K. Gjøsteen et al.

a3 = γz3Πn
i=1γ

z′i
i = (γ t̃Πn

i=1γ
w′i
i)−βγz3+βt̃Πn

i=1γ
z′i+βw

′
i

i

= (Πn
i=1u

wi
i)−βγb3Πn

i=1γ
b′i
i .

a4 = Encpk(1; z̃) ·Πn
i=1(v′i)

z′i = Encpk(1; b̃) · Encpk(1;β · r′) ·Πn
i=1(v′i)

z′i

= Encpk(1; b̃) ·Πn
i=1(v′i)

b′i · Encpk(1;β · r′) ·Πn
i=1(v′i)

−βw′i

= (Πn
i=1v

wi
i)−β · Encpk(1; b̃) ·Πn

i=1(v′i)
b′i .

âi = γ b̂iγ−βt̂i(ûi−1)z
′
i = γ b̂i(ûi−1)b

′
iγ−βt̂i(ûi−1)−βw

′
i = (ûi)

−βγ b̂i(ûi−1)b
′
i .

Thus, all verification equations are satisfied.

Special Soundness. We will follow the structure of Terelius & Wikström [14]
and split the extractor in two parts. In the first part, the basic extractor, we
show that for two accepting transcripts with the same w but different β, we can
extract witnesses for certain sub-statements. In the second part, the extended
extractor, we show that we can extract a witness to the main statement, given
witnesses which hold for these sub-statements, for n different w.

Basic extractor. Given two accepting transcripts

(w, û, a1, a2, a3, a4, â, β, b1, b2, b3, b̃, b̂,b
′)

(w, û, a1, a2, a3, a4, â, β
∗, b∗1, b

∗
2, b
∗
3, b̃
∗, b̂
∗
,b′∗)

where β 6= β∗, the basic extractor computes

t = (b1 − b∗1)/(β − β∗) t̂ = (b2 − b∗2)/(β − β∗) t̃ = (b3 − b∗3)/(β − β∗)

t̂
′

= (b̂− b̂
∗
)/(β − β∗) w′ = (b′ − b′∗)/(β − β∗) r′ = (b̃− b̃∗)/(β − β∗)

We will prove that

Πn
i=1ui = Com(1, t), Πn

i=1u
wi
i = Com(w′, t̃), Πn

i=1v
wi
i = Πn

i=1(v′i)
w′i · Encpk(1;−r′),

ûi = Comγ,ûi−1
(w′i, t̂

′
i) and ûn = Comγ,γ1

(
Πn
i=1wi, t̂

)
.

The proof consists of algebraic manipulations:

Πn
i=1ui =

(
(Πn

i=1ui)
β · a1

(Πn
i=1ui)

β∗ · a1

) 1
β−β∗

= γ
b1−b

∗
1

β−β∗ ·Πn
i=1γi = Com(1, t).

Πn
i=1u

wi
i =

(
(Πn

i=1u
wi
i)β · a3

(Πn
i=1u

wi
i)β∗ · a3

) 1
β−β∗

= γ
b3−b

∗
3

β−β∗ ·Πn
i=1γ

b′i−b
′∗
i

β−β∗

i = Com(w′, t̃).

Efficient mixing of arbitrary ballots with everlasting privacy 11

Πn
i=1v

wi
i =

(
(Πn

i=1v
wi
i)β · a4

(Πn
i=1v

wi
i)β∗ · a4

) 1
β−β∗

= Πn
i=1(v′i)

b′i−b
′∗
i

β−β∗ · Encpk

(
1;

b̃− b̃∗

β − β∗

)
= Πn

i=1(v′i)
w′i · Encpk(1;−r′).

ûi = γ
b̂i−b̂

∗
i

β−β∗ · (ûi−1)
b′i−b

′∗
i

β−β∗ = γ t̂
′
i · (ûi−1)w

′
i = Comγ,ûi−1

(w′i, t̂
′
i).

ûn = γ
b2−b

∗
2

β−β∗ · γΠ
n
i=1wi

1 = γ t̂ · γΠ
n
i=1wi

1 = Comγ,γ1(Πn
i=1wi; t̂).

Thus, all the equations are satisfied.

Extended Extractor. The extended extractor takes, for one statement, n different
witnesses extracted by the basic extractor, and produces a witness for the main
statement. Let t, t̂, t̃ ∈ Znq , r′ ∈ (Zq × Zq × Zq)n and T̂ ′,W ′ ∈ Zn×nq be the
collective output from the n runs of the basic extractor, extracted from challenges
W ∈ Zn×nq . Let Wj be the jth column of W , i.e. the challenge vector from
the jth run of the basic extractor. The challenge vectors are sampled from a
uniform distribution, but since the cheating prover may not succeed with uniform
probability for all challenge vectors, the final distribution of challenge vectors
is non-uniform. However, since the adversary has a significant probability of
success, any set of challenge vectors with a significant success probability must
be much larger than the set of non-invertible matrices. It follows that the columns
of W will be linearly independent with overwhelming probability.

Thus, W will, with overwhelming probability, have an inverse. We call this
inverse A. For such matrix A, we have that WAk is the kth standard unit vector
in Znq , where Ak is the kth column of A. We see that

uk = Πn
i=1u

WAk
i = Πn

i=1

(
Πn
j=1u

Wi,jAj,k
i

)
= Πn

j=1Com(W ′j , t̃j)
Aj,k

= Πn
j=1Com(W ′jAj,k, t̃jAj,k) = Com(W ′Ak, 〈t̃, Ak〉).

Thus, we can open u to a matrix M , where Mk = W ′Ak has been committed to
using randomness 〈t̃, Ak〉.

We expect M to be a permutation matrix. If it is not, we can find a wit-
ness breaking the binding property of the commitment scheme. We extract this
witness in two different ways, depending on whether M1 = 1 or not.

If M1 6= 1, let w′′ = M1. We note that w′′ 6= 1 and that Com(1, tj) =
Πn
i=1ui = Com(w′′, t̃A), meaning that we have found a witness violating the

binding property of the commitment scheme.
Now, assume that M1 = 1. Terelius & Wikström [14] prove that M is a

permutation matrix if and only if M1 = 1 and Πn
i=1〈Mi,x〉 = Πn

i=1xi for a vec-
tor x ∈ Znq of independent elements. This fact, along with the Schwartz-Zippel
lemma and the assumptions that M1 = 1 and that M is not a permutation ma-
trix, implies that there exists, with overwhelming probability, some j ∈ {1, ..., n}

12 K. Gjøsteen et al.

such that Πn
i=1〈Mi,∗,Wj〉−Πn

i=1Wi,j 6= 0 (recall that Mi,∗ is the ith row of M).
Since this is true with overwhelming probability, we assume that it is true and
rewind if it is not.

Now, let w′′ = MWj . Note that Πn
i=1W

′
i,j = Πn

i=1Wi,j and that Πn
i=1Wi,j 6=

Πn
i=1w

′′
i . The equality follows from the base statements, and the inequality fol-

lows from the Schwartz-Zippel lemma and the definition of w′′. Together, these
facts imply that w′′ 6= W ′j .

We also see that Com(W ′j , t̃j) = Πn
i=1u

Wi,j

i = Com(w′′, 〈t̃A,Wj〉). Since
w′′ 6= W ′j , this means that we have found a witness violating the binding property
of the commitment scheme. We conclude that either M is a permutation matrix,
or the binding property of the commitment scheme does not hold. We conclude
further that we either violate the binding property of the commitment scheme,
or we have that w′′ = Wj , meaning that W ′j = MWj , for all j ∈ {0, ..., n}.

Extracting the randomness. We now show that we can extract r ∈ (Zq×Zq×Zq)n
such that v′ is a re-encryption of v, i.e. v′i = vπ(i)·Encpk(1; rπ(i)). In the following,
recall that w′ = Mw,Mk = W ′Ak, and that WAk is the kth standard unit
vector in Znq . Thus, we get

vk = Πn
i=1v

WAk
i = Πn

j=1(Πn
i=1(v′i)

W ′i,j · Encpk(1;−r′))Aj,k

= Πn
i=1(v′i)

Σnj=1W
′
i,jAj,k · Encpk(1;−〈r′, Ak〉)

= Πn
i=1(v′i)

Mk · Encpk(1;−〈r′, Ak〉) = v′π−1(k) · Encpk(1;−〈r′, Ak〉).

This shows that v′π−1(k) = vk · Encpk(1; 〈r′, Ak〉), so rk = 〈r′, Ak〉.

Special Honest-Verifier Zero-Knowledge The zero-knowledge simulator chooses
the following values at random: ûi ∈ G1 for i = 1, ..., n, w,b′, b̂ ∈ Znq , b1, b2, b3, β ∈
Zq and b̃, r′ ∈ Zq×Zq×Zq. The simulator then computes a1, a2, a3, a4 and âi for
i = 1, ..., n using the verification equations in step 5. This is a perfect simulation.
To see that, consider the statistical distribution of the values in the real run and
the simulated run:

– w is chosen at random from Znq in both the simulated and the real run.
– The ûi are randomly distributed in G1 in both the real and the simulated run.

It is obvious in the simulated run since the simulator samples the elements
at random from G1. In the real run, we have ûi = γ t̂i(ûi−1)w

′
i , where the t̂i

are chosen at random from Zq. Thus, the ûi will be uniformly distributed in
G1.

– β is chosen uniformly at random from Zq in both runs.

– In the simulated run, b1, b2, b3, b̃, b̂ and b′ are chosen uniformly at random
from their respective domains. In the real run, the challenge β defines a bijec-
tion between b1, b2, b3, b̃, b̂,b

′ and z1, z2, z3, z̃, ẑ, z
′ (given by the equations

in Step 4 of Algorithm 1). Since the latter values are chosen uniformly at
random, the former values will be uniformly distributed as well.

– The above values determine the values of a1, a2, a3, a4 and âi for i = 1, ..., n
by the verification equations in Step 5, in both runs.

Efficient mixing of arbitrary ballots with everlasting privacy 13

4.3 Proof of Shuffle on the Public Board

A verifiable shuffle for the public board is given in Algorithm 2. Note that it is
very similar to the shuffle in Algorithm 1. The difference is that on the public
board, the shuffle is performed on the two last components of each ciphertext,
rather than on the full ciphertext.

Let Rshuf
ReRand(pk,d,d

′)(π, r′), where π is a permutation on {1, . . . , n}, be the
relation which holds if d′i = ReRand(dπ(i); r

′
π(i)) for all i ∈ {1, . . . , n}, where

ReRand(di; r
′
i) = (hri,1+r

′
i,1h

ri,2+r
′
i,2

1 ,mg
ri,2+r

′
i,2

1) for di = (hri,1h
ri,2
1 ,mg

ri,2
1) and

random r, r′ ∈ (Zq × Zq)n. Let Rπ and Rcom be as in Section 4.2.

Theorem 2. Algorithm 2 is a perfectly complete, 4-round special soundness,
special honest-verifier zero-knowledge proof of knowledge of the relation Rcom ∨
(Rπ ∧Rshuf

ReRand).

The proof is very similar to the proof of Theorem 1 and will be omitted.

4.4 Applying the Fiat-Shamir Heuristic

We now describe how we can make the shuffle non-interactive, by applying the
Fiat-Shamir heuristic [5]. The main idea is to replace the challenges sent by the
verifier (in step 1 and 3) by a call to some hash function, making the challenges
look random. This is straight-forward, but we do not want to run the argument
twice, once for the public board and once for the private board. We want to
have only one computation. It is easy to see that the interactive public board
argument can be extracted from the interactive private board argument, but
applying Fiat-Shamir is not straight-forward now, since different knowledge is
available in the two cases.

The idea is to use a nested hash function for the private board argument,
and then provide the inner hash value as part of the public board argument.
This allows us to extract the public board argument from the private board
argument by replacing the knowledge that is not present on the public board
by their hash value. In order to ensure that no knowledge leaks, we actually
commit to the hash of the private values, so that we can prove that the hash
value does not contain any information about the private values. This is safe,
since commitments are binding.

To obtain w, we first hash the parts of the common input on the private
board that is not part of the common input on the public board, i.e. the first
three components of the CCE ciphertexts. We then commit to this hash, and
hash the commitment along with the part of the common input that is also
present on the public board. The challenge w is set to be this second hash value.
The commitment is posted on the public board and opened on the private board.

The challenge β is obtained in a similar manner. We first hash the information
on the private board that is not present on the public board, commit to this hash,
post the commitment on the public board and then open the commitment on the
private board. Further, the commitment is hashed along with the information
on the private board that is also present on the public board. This hash is set
to be the challenge value β.

14 K. Gjøsteen et al.

Protocol 2 Interactive ZK-Proof of Shuffle on Public Board
Common Input: A public key pk, a matrix commitment u, commitment parameters

γ, γ1, ..., γn and vectors d,d′ ∈ (G2 ×G1)n.
Private Input: Permutation matrix M ∈ Zn×nq and randomness t ∈ Znq such that

u = Com(M, t). Randomness r ∈ (Zq × Zq)n such that d′i = ReRand(dπ(i), rπ(i))
for i = 1, ..., n.

1: V chooses a random w ∈ Znq and sends w to P.
2: P computes w′ = (w′1, ..., w

′
n) = Mw, and randomly chooses t̂ = (t̂1, . . . , t̂n), ẑ =

(ẑ1, ..., ẑn), z′ = (z′1, ..., z
′
n) ∈ Znq , z1, z2, z3 ∈ Zq and z̃ = (z̃1, z̃2) ∈ Z2

q. P defines

t = 〈1, t〉, t̃ = 〈t,w〉, t̂ = t̂n +

n−1∑
i=1

(
t̂i

n∏
j=i+1

w′j

)
and

r′ =

(
n∑
i=1

ri,1wi,

n∑
i=1

ri,2wi

)
,

and sends the following elements to V (for i = 1, . . . , n):

û0 = γ1 ûi = γ t̂i(ûi−1)w
′
i a1 = γz1 a2 = γz2

a3 = γz3Πn
i=1γ

z′i
i a4 = (hz̃1hz̃21 , g

z̃2
1)Πn

i=1(d′i)
z′i

âi = γẑi(ûi−1)z
′
i .

3: V chooses a random challenge β ∈ Zq and sends β to P.
4: For i ∈ {1, . . . , n}, P responds with

b1 = z1 + β · t b2 = z2 + β · t̂ b3 = z3 + β · t̃

b̃ = z̃− β · r′ b̂i = ẑi + β · t̂i b′i = z′i + β · w′i.

5: V accepts if and only if, for i ∈ {1, . . . , n}

a1 = (Πn
i=1ui/Π

n
i=1γi)

−β · γb1 a2 = (ûn/γ
Πni=1wi
1)−β · γb2

a3 = (Πn
i=1u

wi
i)−β · γb3 ·Πn

i=1γ
b′i
i

a4 = (Πn
i=1d

wi
i)−β · (hb̃1hb̃21 , g

b̃2
1) ·Πn

i=1(d′i)
b′i

âi = (ûi)
−β · γ b̂i · (ûi−1)b

′
i

Efficient mixing of arbitrary ballots with everlasting privacy 15

5 Machine Checked Proof

Having given a paper proof of the mixnet we now turn our attention to the
machine checked proof. The obvious approach would be to codify the above
paper proof in an interactive theorem prover. However, codifying such proofs
is a complex process, so instead we reuse previous work. The idea is that our
variant of the mixnet has a machine checked proof. The gap is that the mixnet is
not proved for our particular encryption scheme. But the existing proof applies
to a large class of encryption schemes. We need only prove that our scheme is in
this class, after which we know that the general results also apply to our concrete
mixnet.

For the machine checked proof we will make use of the interactive theorem
prover Coq. Our work expands upon Haines et al. [9]; who demonstrated how
interactive theorem provers and code extraction can be used to gain much higher
confidence in the outcome of elections; they achieved this by using the interactive
theorem prover Coq and its code extraction facility to produce verifiers, for ver-
ifiable voting schemes, with the verifiers proven to be cryptographically correct.
They also showed that it was possible to verify the correctness (completeness,
soundness and zero-knowledge) of a proof of correct shuffle. Their work was sub-
sequently expanded upon by [8] who removed a number of limitations in the
original work and expanded the result. Specifically they proved that for any en-
cryption scheme that falls within a class, which they formally defined, it can be
securely mixed in the optimised variant of Wikström’s mixnet. We exploit this
result by proving that PPATC falls within this class and hence can be verifiably
mixed by Wikström’s mixnet. Note that the mixnet generated in the Coq code
is equivalent to Algorithm 1.

In the rest of this section we will present our work in standard notation.
Interested readers can find the Coq code linked.1 We begin by proving that the
ciphertext space is a group. Let G1 and G2 represent the elements of the two
groups of the bilinear pairing both of which are of prime order p. We let the
set S of the ciphertext space equal G1 ×G1 ×G1 ×G2 ×G1. All operations are
performed pairwise and the group axioms are satisfied trivially.

We then show that the ciphertext group is isomorphic to a vector space over
the field of integers modulo p. This follows directly from the fact that two groups
of the same order are themselves isomorphic to vector spaces over the field of
integers modulo p. We are now ready to define the encryption scheme. Beyond
the groups already mentioned we denote the field of integers modulo p as F.

Let PPATC denote the encryption scheme.

Key generation space := G1 ×G2 ×G2 × F× F.
Public key space := G1 ×G2 ×G2 ×G1 ×G1.
Secret key space := F× F.
Message space := G1.
Randomness space := F× F× F.

1 Currently the code can be found at https://www.dropbox.com/s/76es9rnqt7jigc7/,
we will later make it available at a public git repository.

16 K. Gjøsteen et al.

Key generation := On input (g, h, h1, x1, x2) from key generation space out-
put public key (g, h, h1, g

x1 , gx2) and secret key (x1, x2)

Encryption := On input public key (g, h, h1, y1, y2), message m, and random-
ness (r1, r2, r3) and output ciphertext (gr1 , gr2 , yr22 g

r3 , hr3hr11 , y
r1
1 m).

Decryption := Given secret key (x1, x2) and ciphertext (c1, c2, c3, c4, c5) and
return c5/c

x1
1

To show that the encryption scheme can be correctly mixed we need to prove
three theorems which are stated below. We will also require the vector space
properties for the spaces defined above, see the Coq code for a formal definition
of these properties.

Lemma correct : forall (kgr : KGR)(m : M)(r : Ring.F),
let (pk,sk) := keygen kgr in
dec sk (enc pk m r) = m.

Theorem 3. Correctness: ∀kgr ∈ Key generation space,m ∈ Message space, r ∈
Randomness space,
(pk, sk) = Key generation(kgr)
Decryption(sk Encryption(pk m r)) = m.

The correctness of PPATC follows directly from the correctness of ElGamal.

Lemma homomorphism : forall (pk : PK)(m m’ : M)(r r’ : Ring.F),
C.Gdot (enc pk m’ r’)(enc pk m r) =
enc pk (Mop m m’) (Ring.Fadd r r’).

Theorem 4. Homomorphism: ∀pk ∈ Public key space,m m′ ∈ Message space, r r′ ∈
Randomness space,
Encryption(pk m r)× Encryption(pk m′ r′) = Encryption(pk (m ·m′) (r ∗ r′))

The homomorphic property of PPATC follows from the homomorphic properties
of ElGamal and Abe et al.’s commitments.

Lemma encOfOnePrec : forall (pk : PK)(a : Ring.F)(b: F),
(VS.op (enc pk Mzero a) b) = enc pk Mzero (MVS.op3 a b).

Theorem 5. Encryption of one preserved: ∀pk ∈ Public key space,
r r′ ∈ Randomness space,
Encryption(pk 1 a)b = Encryption(pk 1 (a ∗ b))

To see that this property holds, first consider a PPATC ciphertext encrypting
zero (gr1 , gr2 , yr22 g

r3 , hr3hr11 , y
r1
1). Now observe that raising it to any power a is an

encryption of one with randomness (r1a,r2a,r3a), (gr1 , gr2 , yr22 g
r3 , hr3hr11 , y

r1
1)a =

(gr1a, gr2a, yr2a2 gr3a, hr3ahr1a1 , yr1a1).

Efficient mixing of arbitrary ballots with everlasting privacy 17

Conclusion This suffices for a proof that the PPATC scheme can be safely mixed
by the optimised variant of the Wikström’s mixnet.

Readers will have noted that we proved the scheme for any pair of groups
with the same prime order. Technically, we didn’t even require that there exists
a billinear pairing between them, though this would be required to get the verifi-
able component of the Abe et al. commitments to work. The current work could
be extracted into OCaml code and appropriate groups provided to check election
transcripts. However, further work is ongoing in Coq to allow these groups to be
instantiated within Coq.

6 Conclusion

We have given a paper proof for a variant of the optimised Wikström’s mixnet
for the PPATC encryption scheme. This is a useful result for anyone wanting
to build an efficient e-voting scheme with everlasting privacy which can handle
arbitrary ballots. In addition we provide a machine checked proof of the mixnet.

References

1. Abe, M., Haralambiev, K., Ohkubo, M.: Group to group commitments do not
shrink. In: EUROCRYPT. LNCS, vol. 7237, pp. 301–317. Springer (2012)

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

3. Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-autority secret-
ballot elections with linear work. In: EUROCRYPT. Lecture Notes in Computer
Science, vol. 1070, pp. 72–83. Springer (1996)

4. Cuvelier, E., Pereira, O., Peters, T.: Election verifiability or ballot privacy: Do we
need to choose? In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013.
LNCS, vol. 8134, pp. 481–498. Springer, Heidelberg, Germany, Egham, UK (Sep 9–
13, 2013). https://doi.org/10.1007/978-3-642-40203-6 27

5. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 1987).
https://doi.org/10.1007/3-540-47721-7 12

6. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: CRYPTO. Lecture Notes in Computer Science, vol. 1294,
pp. 16–30. Springer (1997)

7. Haenni, R., Locher, P., Koenig, R.E., Dubuis, E.: Pseudo-code algorithms for ver-
ifiable re-encryption mix-nets. In: Brenner, M., Rohloff, K., Bonneau, J., Miller,
A., Ryan, P.Y.A., Teague, V., Bracciali, A., Sala, M., Pintore, F., Jakobsson, M.
(eds.) FC 2017 Workshops. LNCS, vol. 10323, pp. 370–384. Springer, Heidelberg,
Germany, Sliema, Malta (Apr 7, 2017)

8. Haines, T., Goré, R., Sharma, B.: Did you mix me? Formally verifying verifiable
mix nets in voting. In: 2021 IEEE Symposium on Security and Privacy, SP 2021,
San Jose, CA, USA, May 23-27, 2021. IEEE (2021)

18 K. Gjøsteen et al.

9. Haines, T., Goré, R., Tiwari, M.: Verified verifiers for verifying elections. In: Cav-
allaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, Lon-
don, UK, November 11-15, 2019. pp. 685–702. ACM (2019)

10. Haines, T., Gritti, C.: Improvements in everlasting privacy: Efficient and secure
zero knowledge proofs. In: E-VOTE-ID. Lecture Notes in Computer Science, vol.
11759, pp. 116–133. Springer (2019)

11. Moran, T., Naor, M.: Split-ballot voting: Everlasting privacy with distributed trust.
ACM Trans. Inf. Syst. Secur. 13(2), 16:1–16:43 (2010)

12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: EUROCRYPT. pp. 223–238. Springer (1999)

13. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO. LNCS, vol. 576, pp. 129–140. Springer (1991)

14. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT 10. LNCS, vol. 6055, pp. 100–113. Springer, Heidelberg,
Germany, Stellenbosch, South Africa (May 3–6, 2010)

