
One-Shot Fiat-Shamir-based NIZK Arguments
of Composite Residuosity and Logarithmic-Size

Ring Signatures in the Standard Model

Benôıt Libert1,2, Khoa Nguyen3 ?, Thomas Peters4, and Moti Yung5

1 CNRS, Laboratoire LIP, France
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France

3 Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Australia
4 FNRS and UCLouvain (ICTEAM), Belgium

5 Google and Columbia University, USA

Abstract. The standard model security of the Fiat-Shamir transform
has been an active research area for many years. In breakthrough results,
Canetti et al. (STOC’19) and Peikert-Shiehian (Crypto’19) showed that,
under the Learning-With-Errors (LWE) assumption, it provides sound-
ness by applying correlation-intractable (CI) hash functions to so-called
trapdoor Σ-protocols. In order to be compatible with CI hash functions
based on standard LWE assumptions with polynomial approximation fac-
tors, all known such protocols have been obtained via parallel repetitions
of a basic protocol with binary challenges. In this paper, we consider lan-
guages related to Paillier’s composite residuosity assumption (DCR) for
which we give the first trapdoor Σ-protocols providing soundness in one
shot, via exponentially large challenge spaces. This improvement is anal-
ogous to the one enabled by Schnorr over the original Fiat-Shamir pro-
tocol in the random oracle model. Using the correlation-intractable hash
function paradigm, we then obtain simulation-sound NIZK arguments
showing that an element of Z∗

N2 is a composite residue, which opens the
door to space-efficient applications in the standard model. As a concrete
example, we build logarithmic-size ring signatures (assuming a common
reference string) with the shortest signature length among schemes based
on standard assumptions in the standard model. We prove security un-
der the DCR and LWE assumptions, while keeping the signature size
comparable with that of random-oracle-based schemes.

Keywords. NIZK arguments, compactness, simulation-soundness, com-
posite residuosity, Fiat-Shamir, ring signatures, standard model.

1 Introduction

The Fiat-Shamir transform [40] is a famous technique that collapses interactive
protocols into non-interactive proof systems by computing the verifier’s chal-
lenges as hash values of the transcript so far. Since its introduction, it enabled

? This work was done while this author was at Nanyang Technological University,
SPMS, Singapore.

a wide range of applications in the random oracle model (ROM) although it
may fail to preserve soundness in general [43]. In the standard model, it was not
known to be safely instantiable under standard assumptions until recently. The
beautiful work of Canetti et al. [15] and Peikert and Shiehian [67] changed this
state-of-affairs by showing the existence of Fiat-Shamir-based non-interactive
zero-knowledge (NIZK) proofs for all NP languages under the Learning-With-
Errors (LWE) assumption [68]. Their results followed the methodology of cor-
relation intractable (CI) hash functions [17], which can sometimes emulate the
properties of random oracles in the standard model.

In short, correlation intractability for a relation R requires the infeasibility
of finding x such that (x,Hk(x)) ∈ R given a random hashing key k. This prop-
erty provides soundness because, with high probability, it prevents a cheating
prover’s first message from being hashed into a challenge admitting a valid re-
sponse. Canetti et al. [18] formalized this intuition by observing that it suffices
to build CI hash functions for efficiently searchable relations as long as Fiat-
Shamir is applied to trapdoor Σ-protocols. These are like standard Σ-protocols
with two differences. First, they assume a common reference string (CRS). Sec-
ond, there exists an efficiently computable function BadChallenge that inputs a
trapdoor τΣ together with a false statement x 6∈ L and a first prover message a
in order to compute the only challenge Chall such that an accepting transcript
(a,Chall, z) exists for some response z. If BadChallenge is efficiently computable,
soundness can be achieved using CI hash functions for any efficiently computable
relation, which covers the case of the relation R such that (x, y) ∈ R if and only
if y = BadChallenge(τΣ , x, a).

While the results of [15,67] resolve the long-standing problem of realizing
NIZK proofs for all NP under standard lattice assumptions, they raise the nat-
ural open question of whether LWE-based correlation-intractable hash functions
can lead to compact proofs/arguments for specific languages like subgroup mem-
bership. In this paper, we consider this problem for Paillier’s composite residu-
osity assumption [64] for which we obtain NIZK arguments that are roughly as
short as those obtained from the Fiat-Shamir heuristic in the ROM. In particu-
lar, we aim at trapdoor Σ-protocols that ensure soundness in one shot, without
going through Θ(λ) parallel repetitions to achieve negligible soundness error.

Our Contribution. We provide space-efficient NIZK arguments showing that
an element is a composite residue in the group Z∗N2 , for an RSA modulus N = pq.
In particular, we can argue that Paillier [64] or Damg̊ard-Jurik [34] ciphertexts
decrypt to 0. These arguments extend to handle multiplicative relations between
Paillier ciphertexts. We achieve this by showing that several natural Σ-protocols
for Paillier-related languages can be extended into trapdoor Σ-protocols with an
exponentially large challenge space, which achieve negligible soundness error in
a single protocol execution. To our knowledge, we thus obtain the first trapdoor
Σ-protocols that guarantee soundness without parallel repetitions.

Our constructions provide multi-theorem statistical NIZK and their sound-
ness can be proved under the Learning-With-Errors (LWE) assumption. In ad-
dition, we show how to upgrade them into unbounded simulation-sound NIZK

2

arguments based on the LWE and DCR assumptions. In their single-theorem
version, our arguments of composite residuosity are as short as their random-
oracle-based counterpart obtained from the Fiat-Shamir heuristic. Their multi-
theorem and simulation-sound extensions are only longer by a small constant
factor. In particular, we can turn any trapdoor Σ-protocol into an unbounded
simulation-sound NIZK argument for the same language while only lengthening
the transcript by the size of a Paillier ciphertext and its randomness.

As a main application, we obtain logarithmic-size ring signatures with con-
cretely efficient signature length in the standard model. Recall that ring sig-
natures allow a signer to sign messages while hiding in an ad hoc set of users
called a ring. To this end, the signer only needs to know the public keys of all
ring members and its own secret key. So far, the only known logarithmic-size
realizations in the standard model under standard assumptions [3,24] incur very
large signatures due to the use of witness indistinguishable proofs for NP. In con-
trast, we obtain fairly short signatures comprised of a small number of Paillier
ciphertexts while retaining security under well-studied assumptions. For rings of
R = 2r users, each signature fits within the equivalent of 15r + 7 RSA moduli,
which is only 3 times as large as in a Fiat-Shamir-like construction in the ran-
dom oracle model under the DCR assumption. The unforgeability of our scheme
is proved under the DCR and LWE assumptions while its anonymity holds for
unbounded adversaries.

To our knowledge, our NIZK arguments for DCR-related languages give the
first examples where, under standard assumptions, Fiat-Shamir-based arguments
in the standard model can be almost as short as those in the random oracle
model. We believe they can find many other applications than ring signatures.
For example, they easily extend to prove multiplicative relations among Paillier
ciphertexts, which is a common task in MPC [30] or voting protocols [34]. The
trapdoor Σ-protocol of our DCR-based ring signature can also be used in other
applications of compact 1-out-of-R proofs [46,45].

Technical Overview. Ciampi et al. [27] recently showed that any Σ-protocol
can be turned into a trapdoor Σ-protocol with small (i.e., binary) challenge
space, which requires many repetitions to achieve negligible soundness error. In
order to obtain an exponentially large challenge space in one shot, we rely on
earlier an observation by Chaidos and Groth [21] who noticed that a certain
family of encryption schemes with linearly homomorphic properties over their
message and randomness spaces admit a trapdoor Σ-protocol for the language
L0 = {x | ∃w ∈ R : x = Epk(0;w)} of encryptions of 0. At a high level, if the
prover’s first message is an encryption a = Epk(0; r) of 0 and the verifier sends
a challenge Chall, the response z = r + Chall · w satisfies a · xChall = Epk(0; z).
If x 6∈ L0, the special soundness property ensures that, for any given a, there
is at most one Chall such that a · xChall = Epk(0; z) for some z ∈ R. Moreover,
the secret key sk can serve as a trapdoor τΣ to compute BadChallenge(τΣ , x, a)
for any element a of the ciphertext space. Indeed, if Chall lives a polynomial-size
set (say {0, 1}log λ), the bad challenge is efficiently computable by outputting
the first Chall ∈ {0, 1}log λ for which Dsk(a · xChall) = 0. The above construction

3

thus decreases the number of parallel repetitions by a factor O(log λ). Using
the Okamoto-Uchiyama cryptosystem [63], Chaidos and Groth [21] apply the
above technique to identify bad challenges within an exponentially large chal-
lenge space. A follow-up work by Lipmaa [58] shows that, although the plaintext
space of Paillier’s cryptosystem [64] has non-prime order N = pq, bad chal-
lenges are still computable using the factorization of N as long as the challenge
space is contained in {0, . . . ,min(p, q) − 1}. We actually identify a subtlety in
[58], which adapts the Chaidos-Groth technique [21] to build designated verifier
NIZK proofs that an Elgamal-Paillier ciphertext [13] encrypts 0. The proof of
soundness of [58, Theorem 2] implicitly constructs a trapdoor Σ-protocol show-
ing that (C0, C1) = (gr mod N2, (1 + N)b · hr mod N2) encrypts b = 0. We
actually show that, for false statements, the extractor may fail to extract the
bad challenge when a maliciously generated first prover message is outside the
range of the encryption algorithm. Our trapdoor Σ-protocol for DCR proceeds
like the extractor of [58, Theorem 2] but avoids this problem as it only relies on
the Paillier/Damg̊ard-Jurik encryption scheme, which has the property that all
elements of the ciphertext space encrypt something.

In order to obtain a multi-theorem NIZK argument of composite residuosity,
we can then apply the construction of [56, Appendix B], which compiles any
trapdoor Σ-protocol into a NIZK argument for the same language using a lossy
encryption scheme with equivocable lossy mode. As considered [73,4], lossy en-
cryption is a primitive where ciphertexts encrypted under lossy public keys –
which are computationally indistinguishable from injective ones – statistically
hide the underlying plaintexts. Moreover, the equivocation property (a.k.a. “ef-
ficient opening” [4]) makes it possible to trapdoor open any lossy ciphertext
exactly as in a trapdoor commitment. It is known [48] that Paillier’s cryptosys-
tem [64] provides these properties under the DCR assumption.

However, in the context of the signature-of-knowledge paradigm [23], we need
NIZK arguments with unbounded simulation-soundness [35]. Libert et al. [56]
showed that any trapdoor Σ-protocol can be turned into an USS argument for
the same language using a generalization of the R-lossy encryption primitive
introduced by Boyle et al. [9]. In [56], they introduced two distinct equivocation
properties and gave a candidate based on the LWE assumption. In order to op-
timize the signature length, we give an efficient equivocable R-lossy encryption
candidate under the DCR assumption. This task is non-trivial since injective keys
have to be indistinguishable from lossy keys, even when one of the equivocation
trapdoors is given. Yet, our candidate only uses the DCR assumption while [56]
used fairly powerful tools (i.e., lattice trapdoors [41]) to equivocate lossy cipher-
texts. Although our DCR-based realization satisfies slightly weaker properties
than those of [56], we prove it sufficient to obtain simulation-soundness. It thus
allows compiling trapdoor Σ-protocols into unbounded simulation-sound NIZK
arguments without using lattice trapdoors.

Armed with a DCR-based construction of USS arguments, we then build a
simulation-sound NIZK argument that one-out-of-many elements of Z∗N2 is a
composite residue. To this end, we provide a DCR-based variant of the Groth-

4

Kohlweiss (GK) [46] Σ-protocol, which allows proving that one out of R commit-
ments contains 0 with communication cost O(logR). The reason why DCR is the
most promising assumption towards trapdooring [46] is that, in its original ver-
sion, the GK protocol cannot immediately be turned into a trapdoor Σ-protocol
by applying the transformation of Ciampi et al. [27]. The main difficulty is that
it only yields (r + 1)-special-soundness for r = O(logR), so that up to r bad
challenges may exist for a false statement and a given first prover message. Even
if BadChallenge can identify them all for a given protocol iteration, over κ rep-
etitions, we end up with up to rκ combinations, which are not enumerable in
polynomial time for non-constant κ and r.6 In order to apply the LWE-based
CI hash function of [67], we construct a variant of GK with an exponentially
large challenge space and where BadChallenge can efficiently enumerate all bad
challenges after a single protocol iteration. We achieve this by extending our
trapdoor Σ-protocol showing composite residuosity, using a BadChallenge func-
tion that computes the roots of a degree-r (instead of a degree-1) polynomial.

Adapting [46] to Paillier-based commitments raises several difficulties if we
want to apply it in the context of ring signatures. In our security proofs, we need
the Σ-protocol to be statistically honest-verifier zero-knowledge. In the protocol
of [46] and our DCR-based variant, this requires that users’ public keys be com-
puted as statistically hiding commitments to 0. A first idea is to apply Paillier,
where ciphertexts C = gm · rN mod N2 are perfectly hiding commitments when
g is an N -th residue (and extractable commitments when N divides the order of
g). Unfortunately, as shown in [57, Section 2.6], using a statistically hiding com-
mitment is not sufficient to ensure statistical anonymity when the adversary can
introduce maliciously generated public keys in the ring. In the case of Paillier,
when g is an N -th residue, so is any honestly generated commitment. However,
in the anonymity game, the adversary can choose a ring containing malformed
public keys that are not N -th residues in Z∗N2 . This affects the statistical ZK
property since the simulator cannot fully randomize commitments by multiply-
ing them with a random commitment to 0. To address this issue, we need a
statistically hiding commitment which is “dense” in that commitments to 0 are
uniformly distributed over Z∗N2 . In order to obtain trapdoor Σ-protocols, we also
need the commitment to be dual-mode as the BadChallenge function should be
able to efficiently extract committed messages in the perfectly binding setting.
We thus use commitments (suggested in [20] for their online/offline property)
of the form C = (1 + N)m · hy · wN mod N2, for randomness (y, w), which are
perfectly binding if h is an N -th residue and perfectly hiding if N divides the
order of h. Moreover, the latter configuration provides dense statistically hiding
commitments since commitments to 0 are uniformly distributed over Z∗N2 .

A second difficulty arises when we adapt the proof of unforgeability of the

6 Holmgren et al. [51] recently gave a technique allowing to address the combinatorial
explosion of bad challenges induced by parallel repetitions. In Supplementary Ma-
terial G.2, we discuss the applicability of their approach to our setting. Although
it allows instantiations under the DDH assumption, these are considerably more
expensive that our DCR-based candidate.

5

Groth-Kohlweiss ring signature, which relies on the extractability property of
their Σ-protocol. They apply the forking lemma to extract an opening of a per-
fectly hiding commitment by replaying the adversary O(r) times. In the standard
model, our reduction does not have the degree of freedom of replaying the ad-
versary with a different random oracle. Instead, we proceed with a sequence of
hybrid games that exploits the dual-mode property of our DCR-based commit-
ment and moves to a setting where the signer’s identity is only computationally
hidden. In one game, the commitment is switched to its extractable mode so
as to extract the committed bits `?1 . . . `

?
r ∈ {0, 1}r of the signer’s position `?

in the ring. In the next game, the reduction guesses which honestly generated
public key vk(i?) will be in the ring position `? and fails if this guess is incorrect.
Finally, we modify the key generation oracle and replace the expected target
user’s public key vk(i?) by a random element of Z∗N2 in order to force the forgery
to prove a false statement. In the last game transition, the problem is that we
cannot immediately rely on the DCR assumption to change the distribution of
vk(i?) while using the factorization of N to extract `?1 . . . `

?
r . We thus involve two

distinct moduli in our DCR-based adaptation of GK. The use of distinct moduli
N and N̄ requires to adjust our Σ-protocol and force some equality to hold over
the integers (and thus modulo both N and N̄) between values a, ` ∈ ZN̄ that
our BadChallenge function extracts from the commitments in the first prover
message. We enforce this condition by imposing an unusual range restriction to
some component of the response z = a + Chall · ` ∈ Z: Instead of only checking
an upper bound for z, the verifier also checks a lower bound to ensure that no
implicit modular reduction occurs when homomorphically computing a+Chall ·`
over commitments sent by a malicious prover.

Using the above ideas, the proof of unforgeability requires reliable erasures.
The reason is that the security proof appeals to the NIZK simulator to answer
all signing queries. Hence, if the adversary corrupts some user i after a signing
query involving sk(i), the challenger has to pretend that the random coins of user
i’s past signatures have been erased as it cannot efficiently compute randomness
that explain the simulated NIZK arguments as real arguments. In a second step,
we modify the scheme to get rid of the erasure assumption.

A first idea to avoid erasures is to adapt the proof of unforgeability in such
a way that the NIZK simulator is only used to simulate signatures on behalf
of the expected target user (whose index i? is guessed upfront), while all other
users’ signatures are faithfully generated. If the guess is correct, user i? is never
corrupted and the reduction never gets stuck when it comes to explaining the
generation of signatures created by adaptively corrupted users. However, this
strategy raises a major difficulty since decoding the signer’s position `? in the
ring is only possible when the bits `?1 . . . `

?
r ∈ {0, 1}r of `? are committed using

extractable commitments {L?i }ri=1. At the same time, our security proof requires
the guessed index i? to be statistically independent of the adversary’s view until
the forgery stage. In turn, this requires to simulate user i?’s signatures via statis-
tical NIZK arguments. Indeed, computational NIZK proofs would information-
theoretically leak the index i? of the only user for which the NIZK simulator is

6

used in signing queries. Unfortunately, perfectly binding commitments are not
compatible with statistical ZK in our setting. To resolve this tension, we need a
commitment which is perfectly hiding in all signing queries and extractable in
the forgery. Moreover, for anonymity purposes, the perfectly hiding mode should
make it possible to perfectly randomize adversarially-chosen commitments when
we multiply them with commitments to 0. We instantiate this commitment us-
ing a variant (called “dense R-lossy PKE” hereafter) of our DCR-based R-lossy
PKE scheme. Like our original R-lossy PKE system, it can be programmed to
be statistically hiding in all signing queries and extractable in the forgery, but it
features different properties: It does not have to be equivocable, but we need its
lossy mode to be dense in Z∗N2 (a property not met by our equivocable R-lossy
PKE) in order to use it in a statistically HVZK Σ-protocol.

Related Work. The negative results (e.g., [43,17]) on the standard-model
soundness of Fiat-Shamir did not rule out the existence of secure instantia-
tions when specific protocols are compiled using concrete hash functions. A large
body of work [72,16,50,14,26,29,59,10,53] investigated the circumstances under
which CI hash functions [17] lead to secure standard model instantiations of the
paradigm. Canetti et al. [15] showed that correlation intractability for efficiently
searchable relations suffices to remove interaction from any trapdoor Σ-protocol.
This includes their variant of [39] for the language of Hamiltonian graphs, which
enables Fiat-Shamir-based proofs for all NP. They also gave candidates assuming
the existence of fully homomorphic encryption (FHE) with circular security [18].
Peikert and Shiehian [67] subsequently achieved the same result under the stan-
dard LWE assumption [68].

Canetti et al. [18,15] gave trapdoor Σ-protocols for the languages of Hamil-
tonian graphs and quadratic residues in Z∗N [42]. Like the generic trapdoor Σ-
protocol of [27], they proceed with parallel repetitions of a Σ-protocol with
challenge space {0, 1}. CI hash functions were also used to compress protocols
with multiple interaction rounds [14,26,59,53] and larger challenges. Lombardi
and Vaikuntanathan [59] notably extended the CI paradigm beyond the class
of protocols where the BadChallenge function is efficiently computable. In this
case, however, evaluating the hash function in polynomial time requires a fairly
strong LWE assumption to ensure correlation intractability. Brakerski et al. [10]
considered a stronger notion of correlation intractability which allows handling
relations where the BadChallenge function can only be approximated by a distri-
bution over constant-degree polynomials. They thus obtained Fiat-Shamir-based
NIZK arguments from standard assumptions that are not known to imply FHE.

In the following, we consider 3-message protocols where bad challenges are
efficiently (and exactly) computable – and thus enable the use of polynomial-
time-computable CI hash functions based on standard lattice assumptions – in
an exponentially large set after a single protocol run.

Ring signatures were coined by Rivest, Shamir and Tauman [69]. They en-
able unconditional anonymity and involve no registration phase nor any tracing
authority. Whoever has a public key can be appointed as a ring member without
being asked for his consent or even being aware of it. The original motivation of

7

ring signatures was to enable the anonymous leakage of secrets, by concealing
the identity of a source (e.g., a whistleblower in a political scandal) while si-
multaneously providing reliability guarantees. Recently, the primitive also found
applications in the context of cryptocurrencies [62].

After the work of Rivest, Shamir and Tauman [69], a number of solutions
were given under various assumptions [12,1,71,11,46,65,2]. Bender et al. [6] gave
stronger definitions and constructions from general assumptions. In the standard
model, more efficient schemes were given [71,8] in groups with a bilinear map.
Brakerski and Tauman [11] gave the first constructions from lattice assumptions.

In early realizations [69,12,71,8], the size of signatures was linear in the num-
ber of ring members. Dodis et al. [36] suggested constant-size ring signatures in
the random oracle model. Chase and Lysyanskaya [23] took a similar approach
while using simulation-extractable NIZK proofs in the standard model. However,
it is not clear how to adapt their approach without using generic NIZK. Assum-
ing a common reference string, constructions with sub-linear-size signatures in
the standard model were given in [22,44,28]. Malavolta and Schröder [60] used
SNARKs (and thus non-falsifiable assumptions) to obtain constant-size signa-
tures. In the random oracle model, Groth and Kohlweiss [46] obtained an elegant
construction with logarithmic-size ring signatures under the discrete logarithm
assumption. Lattice-based analogues of [46] were given in [37,38].

The log-size signatures of [46,55,57] are obtained by applying Fiat-Shamir to
Σ-protocols that are not immediately compatible with the BadChallenge func-
tion paradigm. In their settings, it would require to iterate a basic Σ-protocol
(with small challenge space) a super-constant number of times, thus leading to a
combinatorial explosion in the total number of bad challenges as each iteration
would tolerate more than one bad challenge. Backes et al. [3] and Chatterjee et
al. [24] eliminated the need for a CRS while retaining logarithmic signature size.
However, they did not provide concrete signature sizes and, due to the use of
general NIWI/ZAPs techniques, their constructions would require much longer
signatures than ours for any realistic ring cardinality. For instance, even for very
small rings, the construction of [24] would incur signatures comprised several
hundreds of Megabytes to represent O(λ3) FHE ciphertexts. In stark contrast
with earlier solutions, our signatures would still fit within ≈ 1.5Mb (using 3072-
bit RSA moduli) for rings as large as the number of atoms in the universe.

While our construction relies on a common reference string, it features (to
our knowledge) the first logarithmic-size signatures with concretely efficient sig-
nature length and security under standard assumptions in the standard model.

2 Background and Definitions

For any t ≥ 2, we denote by Zt the ring of integers with addition and multi-
plication modulo t. For a finite set S, U(S) stands for the uniform distribution
over S. If X and Y are distributions over the same domain, ∆(X,Y) denotes
their statistical distance. For a distribution D, x ∼ D means that x is distributed
according to D, while x←↩ D denotes the explicit action of sampling x from D.

8

2.1 Hardness Assumptions

We first recall the Learning-With-Errors (LWE) assumption.

Definition 2.1 ([68]). Let m ≥ n ≥ 1, q ≥ 2 be functions of a security parame-
ter λ and let a distribution χ over Z. The LWE problem consists in distinguishing
between the distributions (A,As+e) and U(Zm×nq ×Zmq), where A ∼ U(Zm×nq),
s ∼ U(Znq) and e ∼ χm.

When χ is the discrete Gaussian distribution DZm,αq with standard deviation αq
for some α ∈ (0, 1), this problem is as hard as worst-case instances of well-studied
lattice problems. We now recall the Composite Residuosity assumption.

Definition 2.2 ([64,34]). Let integers N = pq and ζ > 1 for primes p, q.
The ζ-Decision Composite Residuosity (ζ-DCR) assumption states that the

distributions {x = wN
ζ

mod Nζ+1 | w ← U(Z?N)} and {x | x ← U(Z?Nζ+1)} are
computationally indistinguishable.

It is known [34] that the ζ-DCR assumption is equivalent to 1-DCR for any ζ > 1.

2.2 Correlation Intractable Hash Functions

We consider efficiently enumerable [15] relations R ⊆ X × Y where, for each
x ∈ X , there is a polynomial number of elements y ∈ Y satisfying R(x, y) = 1.
Moreover, these are efficiently enumerable.

Definition 2.3. A relation R ⊆ X ×Y is enumerable in time T if there exists
a function fR : X → 2Y computable in time T such that, for each x ∈ X ,
fR(x) = {yx ∈ Y | (x, yx) ∈ R}. If maxx∈X |fR(x)| ≤ 1, it is called searchable.

Let λ ∈ N a security parameter. A hash family with input length n(λ) and
output length λ is a collection H = {hλ : {0, 1}s(λ) × {0, 1}n(λ) → {0, 1}λ}
of keyed functions induced by efficient algorithms (Gen,Hash), where Gen(1λ)
outputs a key k ∈ {0, 1}s(λ) and Hash(k, x) computes hλ(k, x) ∈ {0, 1}λ.

Definition 2.4. For a relation ensemble {Rλ ⊆ {0, 1}n(λ) × {0, 1}λ}, a hash
function family H = {hλ : {0, 1}s(λ)×{0, 1}n(λ) → {0, 1}m(λ)} is R-correlation
intractable if, for any probabilistic polynomial time (PPT) adversary A, we
have Pr

[
k ← Gen(1λ)), x← A(k) : (x, hλ(k, x)) ∈ R

]
= negl(λ).

Peikert and Shiehian [67] described a CI hash family for any searchable re-
lation defined by functions f of bounded depth. Their construction relies on the
standard LWE assumption with polynomial approximation factors. Their proof
was given for efficiently searchable relations. However, it also implies correlation
intractability for efficiently enumerable relations, as observed in [18,53].

9

2.3 Admissible Hash Functions

Admissible hash functions were introduced in [7] as a combinatorial tool for
partitioning-based security proofs.

Definition 2.5 ([7]). Let `(λ), L(λ) ∈ N be functions of λ ∈ N. Let an effi-
ciently computable function AHF : {0, 1}` → {0, 1}L. For each K ∈ {0, 1,⊥}L,
let the partitioning function FADH(K, ·) : {0, 1}` → {0, 1} such that

FADH(K,X) :=

{
0 if ∀i ∈ [L] (AHF(X)i = Ki) ∨ (Ki =⊥)
1 otherwise

We say that AHF is an admissible hash function if there exists an effi-
cient algorithm AdmSmp(1λ, Q, δ) that takes as input Q ∈ poly(λ) and a non-
negligible δ(λ) ∈ (0, 1] and outputs a key K ∈ {0, 1,⊥}L such that, for all
X(1), . . . , X(Q), X? ∈ {0, 1}` such that X? 6∈ {X(1), . . . , X(Q)}, we have

Pr
K

[
FADH(K,X(1)) = · · · = FADH(K,X(Q)) = 1 ∧ FADH(K,X?) = 0

]
≥ δ(Q(λ)) .

It is known that admissible hash functions exist for `, L = Θ(λ).

Theorem 2.6 ([52, Theorem 1]). Let (C`)`∈N be a family of codes C` :

{0, 1}` → {0, 1}L with minimal distance cL for some constant c ∈ (0, 1/2). Then,
(C`)`∈N is a family of admissible hash functions. Furthermore, AdmSmp(1λ, Q, δ)
outputs a key K ∈ {0, 1,⊥}L for which η = O(log λ) components are not ⊥ and
δ(Q(λ)) is a non-negligible function of λ.

Jager proved [52] Theorem 2.6 for balanced admissible hash functions, which
provide both a lower bound and a close upper bound for the probability in Defi-
nition 2.5. However, Theorem 2.6 applies to standard admissible hash functions.

2.4 Trapdoor Σ-protocols

Canetti et al. [18] defined a trapdoor variant of the notion of Σ-protocols [31].

Definition 2.7 (Adapted from [18]). Let a language L associated with an NP
relations R. A 3-move interactive proof system Π = (Genpar,GenL,P,V) in the
common reference string model is a Σ-protocol for L if it satisfies the following:

– 3-Move Form: P and V both input crs = (par, crsL), with par← Genpar(1
λ)

and crsL ← GenL(par,L), and a statement x. They proceed as follows: (i)
P inputs w ∈ R(x), computes (a, st) ← P(crs, x, w) and sends a to V; (ii)
V sends back a random challenge Chall; (iii) P finally sends a response z =
P(crs, x, w,a,Chall, st) to V; (iv) On input of (a,Chall, z), V outputs 1 or 0.

– Completeness: If (x,w) ∈ R and P honestly computes (a, z) for a challenge
Chall, then V(crs, x, (a,Chall, z)) outputs 1 with probability 1− negl(λ).

10

– Special zero-knowledge: There is a PPT simulator ZKSim that inputs crs,
x ∈ L and a challenge Chall ∈ C. It outputs (a, z)← ZKSim(crs, x,Chall) such
that (a,Chall, z) is indistinguishable from a real transcript (for w ∈ R(x))
with challenge Chall.

– (r + 1)-Special soundness: For any CRS crs = (par, crsL) obtained as
par ← Genpar(1

λ), crsL ← GenL(par,L), any x 6∈ L, and any first message a
sent by P, the set of challenges BADC = f(crs, x,a) for which an accepting
transcript (crs, x,a,Chall, z) exists for some third message z has cardinality
|BADC| ≤ r. The function f is called the “bad challenge function” of Π.
That is, if x 6∈ L and Chall 6∈ BADC, the verifier never accepts.

Canetti et al. [18] define trapdoor Σ-protocols as Σ-protocols where the bad
challenge function is efficiently computable using a trapdoor. They also define
instance-dependent trapdoor Σ-protocol where the trapdoor τΣ should be gen-
erated as a function of some instance x 6∈ L. Here, we use a definition where x
need not be known in advance and the trapdoor does not depend on a specific x.
However, the CRS and the trapdoor may depend on the language in our setting.
The CRS crs = (par, crsL) consists of a fixed part par and a language-dependent
part crsL which is generated as a function of par and a language description L.

Definition 2.8 (Adapted from [18]). A Σ-protocol Π = (Genpar,GenL,P,V)
with bad challenge function f for a trapdoor language L is a trapdoor Σ-
protocol if it satisfies the properties of Definition 2.7 and there exist PPT
algorithms (TrapGen,BadChallenge) with the following properties.

• Genpar inputs λ ∈ N and outputs public parameters par← Genpar(1
λ).

• GenL is a randomized algorithm that, on input of public parameters par,
outputs the language-dependent part crsL ← GenL(par,L) of crs = (par, crsL).

• TrapGen(par,L, τL) inputs public parameters par and (optionally) a trapdoor
τL allowing to test membership of L. It outputs crsL and a trapdoor τΣ.

• BadChallenge(τΣ , crs, x,a) takes in a trapdoor τΣ, a CRS crs = (par, crsL),
an instance x, and a first prover message a. It outputs a set BADC.

In addition, the following properties are required.

• CRS indistinguishability: For any par ← Genpar(1
λ), and any trapdoor

τL for the language L, an honestly generated crsL is computationally indis-
tinguishable from a CRS produced by TrapGen(par,L, τL). Namely, for any
aux and any PPT distinguisher A, we have

Advindist-Σ
A (λ) := |Pr[crsL ← GenL(par,L) : A(par, crsL) = 1]

− Pr[(crsL, τΣ)← TrapGen(par,L, τL) : A(par, crsL) = 1]| ≤ negl(λ).

• Correctness: There exists a language-specific trapdoor τL such that, for
any instance x 6∈ L and all pairs (crsL, τΣ) ← TrapGen(par,L, τL), we have
BadChallenge(τΣ , crs, x,a) = f(crs, x,a) .

Note that the TrapGen algorithm does not take a specific statement x as input,
but only a trapdoor τL allowing to recognize elements of L.

11

2.5 R-Lossy Public-Key Encryption With Equivocation

In [56], Libert et al. considered a generalization of the notion of R-lossy en-
cryption introduced by Boyle et al. [9]. The primitive is a flavor of tag-based
encryption [54] where the tag space T is partitioned into injective and lossy
tags. When ciphertexts are generated for an injective tag, the decryption al-
gorithm recovers the plaintext. On lossy tags, ciphertexts statistically hide the
plaintexts. In R-lossy PKE schemes, the tag space is partitioned according to a
binary relation R ⊆ K×T . The key generation algorithm inputs an initialization
value K ∈ K and partitions T in such a way that injective tags t ∈ T are those
for which (K, t) ∈ R (i.e., all tags t for which (K, t) 6∈ R are lossy).

The definition of [56] requires the existence of a lossy key generation algo-
rithm LKeygen that outputs public keys for which all tags t are lossy (in contrast
with injective keys where the only lossy tags are those for which (K, t) 6∈ R).
In addition, [56] also asks that a trapdoor allows equivocating lossy ciphertexts
(a property called efficient opening [4]) using an algorithm called Opener. The
application to simulation-soundness [56] involves two opening algorithms Opener
and LOpener. The former operates over injective public keys for lossy tags while
the latter can equivocate ciphertexts encrypted under lossy keys for any tag.

Definition 2.9. Let R ⊆ Kλ × Tλ be a binary relation. An equivocable R-lossy
PKE scheme is a 7-uple of PPT algorithms (Par-Gen,Keygen, LKeygen,Encrypt,
Decrypt,Opener, LOpener) such that:

Parameter generation: Given a security parameter λ, a tag length L ∈
poly(λ) and a message length B ∈ poly(λ), Par-Gen(1λ, 1L, 1B) outputs pub-
lic parameters Γ that specify a tag space T , a space of initialization values
K, a public key space PK, a secret key space SK and a trapdoor space T K.

Key generation: For an initialization value K ∈ K and public parameters Γ ,
algorithm Keygen(Γ,K) outputs an injective public key pk ∈ PK, a decryp-
tion key sk ∈ SK and a trapdoor key tk ∈ T K. The public key specifies a
ciphertext space CtSp and a randomness space RLPKE.

Lossy Key generation: Given an initialization value K ∈ K and public pa-
rameters Γ , the lossy key generation algorithm LKeygen(Γ,K) outputs a lossy
public key pk ∈ PK, a lossy secret key sk ∈ SK and a trapdoor key tk ∈ T K.

Decryption on injective tags: For any Γ ← Par-Gen(1λ, 1L, 1B), any K ∈
K, any tag t ∈ T such that (K, t) ∈ R, and any message Msg ∈ MsgSp,
we have Pr

[
∃r ∈ RLPKE : Decrypt

(
sk, t,Encrypt(pk, t,Msg; r)

)
6= Msg

]
< ν(λ),

for some negligible function ν(λ), where (pk, sk, tk)← Keygen(Γ,K) and the
probability is taken over the randomness of Keygen.

Indistinguishability: For any Γ ← Par-Gen(1λ, 1L, 1B), the key generation
algorithms LKeygen and Keygen satisfy the following:

(i) For any K ∈ K, the distributions Dinj = {(pk, tk) | (pk, sk, tk) ←
Keygen(Γ,K)} and Dloss = {(pk, tk) | (pk, sk, tk) ← LKeygen(Γ,K)}
are computationally indistinguishable. For any PPT adversary A, the
following advantage function Advindist-LPKE

A (λ) is negligible:

|Pr[(pk, tk)←↩ Dinj : A(pk, tk) = 1]− Pr[(pk, tk)←↩ Dloss : A(pk, tk) = 1]| .

12

(ii) For any initialization values K,K ′ ∈ K, the two distributions {pk |
(pk, sk, tk) ← LKeygen(Γ,K)} and {pk | (pk, sk, tk) ← LKeygen(Γ,K ′)}
are 2−Ω(λ)-close in terms of statistical distance.

Lossiness: For any Γ ← Par-Gen(1λ, 1L, 1B), any initialization value K ∈ K
and tag t ∈ T such that (K, t) 6∈ R, any (pk, sk, tk) ← Keygen(Γ,K), and
any Msg0,Msg1 ∈ MsgSp, the following distributions are statistically close:
{C | C ← Encrypt(pk, t,Msg0)} ≈s {C | C ← Encrypt(pk, t,Msg1)}. For
any (pk, sk, tk)← LKeygen(Γ,K), the above holds for any tag t.

Equivocation under lossy tags: For any Γ ← Par-Gen(1λ, 1L, 1B), any K ∈
K, any keys (pk, sk, tk)← Keygen(Γ,K), let DR the distribution, defined over
RLPKE, from which the random coins of Encrypt are sampled. For any message
Msg ∈ MsgSp and ciphertext C, let Dpk,Msg,C,t denote the distribution on
RLPKE with support Spk,Msg,C,t = {r ∈ RLPKE | Encrypt(pk, t,Msg, r) = C}
and such that, for each r ∈ SPK,Msg,C,t, we have

Dpk,Msg,C,t(r) = Pr
r′←↩DR

[r′ = r | Encrypt(pk, t,Msg, r′) = C] . (1)

For any random coins r ←↩ DR, any tag t ∈ Tλ such that (K, t) 6∈ R,
and any messages Msg0,Msg1 ∈ MsgSp, algorithm Opener takes as inputs
pk, C = Encrypt(pk, t,Msg0, r), r t, and tk. It outputs a sample r from a
distribution statistically close to Dpk,Msg1,C,t.

Equivocation under lossy keys: For any K ∈ K, any keys (pk, sk, tk) ←
LKeygen(Γ,K), any randomness r ←↩ DR, any tag t ∈ Tλ, and any messages
Msg0,Msg1 ∈ MsgSp, algorithm LOpener inputs C = Encrypt(pk, t,Msg0, r),
r, t and sk. It outputs r ∈ RLPKE such that C = Encrypt(pk, t,Msg1, r̄).
We require that, for any tag t ∈ Tλ such that (K, t) 6∈ R, the distribution
{r̄ ← LOpener(pk, sk, t, ct,Msg0,Msg1, r) | r ←↩ DR} is statistically close to
{r̄ ← Opener(pk, tk, t, ct,Msg0,Msg1, r) | r ←↩ DR}.

The above definition is slightly weaker than the one of [56] in the property
of equivocation under lossy keys. Here, we do not require that the output of
LOpener be statistically close to Dpk,Msg1,C,t as defined in (1): We only require
that, on lossy keys and lossy tags, Opener and LOpener sample random coins from
statistically close distributions. Our definition turns out to be sufficient for the
purpose of simulation-sound arguments (as shown in Supplementary Material
B) and will allow us to obtain a construction from the DCR assumption.

Definition 2.9 also differs from [56, Definition 2.10] in that the equivocation
algorithms (Opener, LOpener) can use the original random coins r ∈ RLPKE of
the encryption algorithm. Again, this relaxation will suffice in our setting.

In our ring signature system, we also use a variant of the above R-lossy
encryption primitive to instantiate a tag-based commitment scheme.

Definition 2.10. A dense R-lossy PKE scheme is a tuple (Par-Gen,Keygen,
LKeygen,Encrypt,Decrypt) of efficient algorithms that proceed identically to Def-
inition 2.9, except that the lossy mode is dense and the indistinguishability prop-
erty is relaxed as below. Moreover, no equivocation property is required.

13

Weak Indistinguishability: For any Γ ← Par-Gen(1λ, 1L, 1B), the key gen-
eration algorithms LKeygen and Keygen satisfy the following:

(i) For any K ∈ K, Dinj = {pk | (pk, sk, tk) ← Keygen(Γ,K)} is indis-
tinguishable from Dloss = {pk | (pk, sk, tk) ← LKeygen(Γ,K)}. For any
PPT adversary A, the advantage function Advweak-indist-LPKE

A (λ), defined
as the distance |Pr[pk←↩ Dinj : A(pk) = 1]−Pr[pk←↩ Dloss : A(pk) = 1]|,
is negligible as a function of the security parameter.

(ii) For any initialization values K,K ′ ∈ K, the two distributions {pk |
(pk, sk, tk) ← LKeygen(Γ,K)} and {pk | (pk, sk, tk) ← LKeygen(Γ,K ′)}
are 2−Ω(λ)-close in terms of statistical distance.

Density of Lossy Mode: For any Γ ← Par-Gen(1λ, 1L, 1B), any initialization
value K ∈ K, any (pk, sk, tk) ← LKeygen(Γ,K) and Msg ∈ MsgSp, the dis-
tribution of {Encrypt(pk,Msg, r)|r ←↩ DR} is statistically close to U(CtSp).

2.6 Ring Signatures

We now recall the syntax and the definitions of ring signatures [69]. Our defini-
tions of unforgeability and anonmyity are identical to those of [6,22].

A ring signature [69] scheme consists of the following efficient algorithms:

CRSGen(1λ): Generates a common reference string ρ.
Keygen(ρ): Generates a public key vk and the corresponding secret key sk.
Sign(ρ, sk,M,R): Outputs a signature Σ on the message M ∈ {0, 1}∗ with

respect to the ring R = {vk0, . . . , vkR−1} as long as (vk, sk) is a valid key
pair produced by Keygen(ρ) and vk ∈ R (otherwise, it outputs ⊥).

Verify(ρ,M,Σ,R): Given a signature Σ on a message M w.r.t. the ring of public
keys R, this algorithm outputs 1 if Σ is deemed valid and 0 otherwise.

Correctness requires that users can always sign any message on behalf of a ring
they belong to. The standard security requirements for ring signatures are called
unforgeability and anonymity. We use the strong definitions of [6,22], which are
recalled in Section C of the Supplementary Material. In particular, we consider
unforgeability with respect to insider corruption and statistical anonymity.

3 R-Lossy Encryption Schemes from DCR

Libert et al. [56] gave a method that directly compiles any trapdoor Σ-protocol
for a trapdoor language into an unbounded simulation-sound NIZK argument for
the same language. As a building block, their construction uses an LWE-based
equivocable R-lossy PKE scheme for the bit-matching relation.

The construction of [56] is recalled in Supplementary Material B, where we
show that it applies to trapdoor Σ-protocols with (r + 1)-special-soundness for
r > 1 as long as we have a CI hash function for efficiently enumerable relations.

Definition 3.1. Let K = {0, 1,⊥}L and T = {0, 1}L, for some L ∈ poly(λ).
The bit-matching relation RBM : K×T → {0, 1} is defined as RBM(K, t) = 1

if and only if K = K1 . . .KL and t = t1 . . . tL satisfy
∧L
i=1(Ki =⊥) ∨ (Ki = ti).

14

In [56], the authors described an RBM-lossy PKE under the LWE assumption. In
order to instantiate their construction with a better efficiency, we now describe
a more efficient RBM-lossy PKE scheme based on the DCR assumption.

3.1 An Equivocable RBM-Lossy PKE Scheme from DCR

The construction goes as follows.

Par-Gen(1λ, 1L, 1B): Define the spaces T = {0, 1}L, K = {0, 1,⊥}L and the
public parameters as Γ = (1λ, 1B ,K, T).

Keygen(Γ,K): Given public parameters Γ and an initialization value K ∈ K,
generate a key pair as follows.

1. Choose an RSA modulus N = pq such that p, q > 2l(λ), for some poly-
nomial l : N→ N such that l(λ) > L(λ) for any sufficiently large λ, and
an integer ζ ∈ poly(λ) such that Nζ > 2B .

2. Choose g ←↩ U(Z∗Nζ+1) and αi,0, αi,1 ←↩ U(Z∗N) for each i ∈ [L]. Then,

for each i ∈ [L] and b ∈ {0, 1}, compute vi,b = gδb,1−Ki · αNζi,b mod Nζ+1

if Ki 6=⊥ and vi,b = αN
ζ

i,b mod Nζ+1 if Ki =⊥.

Define RLPKE = Z∗N × ZNζ and output sk = (p, q,K) as well as

pk :=
(
N, ζ, g, {vi,b}i∈[L],b∈{0,1}

)
, tk =

(
{αi,b}i∈[L],b∈{0,1},K

)
.

LKeygen(Γ,K): is identical to Keygen except that step 2 generates g by choosing

g0 ←↩ U(Z∗N) and computing g = gN
ζ

0 mod Nζ+1. The algorithm defines

RLPKE = Z∗N × ZNζ and outputs the lossy secret key sk = (g0, tk) together
with pk :=

(
N, ζ, g, {vi,b}i∈[L],b∈{0,1}

)
, tk =

(
{αi,b}i∈[L],b∈{0,1},K

)
.

Encrypt(pk, t,Msg): To encrypt Msg ∈ ZNζ for the tag t = t1 . . . tL ∈ {0, 1}L,
choose r ←↩ U(Z∗N), s←↩ U(ZNζ) and compute

ct = gMsg ·
(L∏
i=1

vi,ti

)s
· rN

ζ

mod Nζ+1 . (2)

Decrypt(sk, t, ct): Given sk = (p, q,K) and t = t1 . . . tL ∈ {0, 1}L, return ⊥ if

RBM(K, t) = 0. Otherwise,
∏L
i=1 vi,ti ≡

(∏L
i=1 αi,ti

)Nζ
(mod Nζ+1).

1. Compute βg = (gλ(N) mod Nζ+1)−1
N , where λ(N) = lcm(p − 1, q − 1) and

return ⊥ if βg = 0 or gcd(βg, N
ζ) > 1.

2. Otherwise, compute Msg = (ctλ(N) mod Nζ+1)−1
N · β−1

g mod Nζ , where the
division is computed over Z, and output Msg ∈ ZNζ .

15

Opener
(
pk, tk, t, ct,Msg0,Msg1, (r, s)

)
: Given tk = ({αi,b}i,b,K), t ∈ {0, 1}L,

plaintexts Msg0,Msg1 ∈ ZNs and random coins (r, s) ∈ RLPKE such that
ct = Encrypt(pk, t,Msg0; (r, s)), return ⊥ if RBM(K, t) = 1. Otherwise, define

vt ,
L∏
i=1

vi,ti mod Nζ+1 = gdt ·
(L∏
i=1

αi,ti

)Nζ
mod Nζ+1, (3)

where dt ∈ {1, . . . , L} is the number of non-⊥ entries of K such that Ki 6= ti.
Note that gcd(dt, N

ζ) = 1 since p, q > L. Then, compute and output

s̄ = s+ (d−1
t mod Nζ) · (Msg0 −Msg1) mod Nζ (4)

r̄ = r ·
L∏
i=1

αs−s̄i,ti
· g(Msg0−Msg1+dt·(s−s̄))/Nζ mod N,

where the division in the exponent above g can be computed over Z since
we have Msg0 + dt · s ≡ Msg1 + dt · s̄ (mod Nζ). Note that (r̄, s̄) satisfy

gMsg1 · vs̄t · r̄N
ζ

≡ gMsg1 ·
(
gdt ·

L∏
i=1

αN
ζ

i,ti

)s̄
· r̄N

ζ

.

≡ gMsg1 ·
(
gdt ·

L∏
i=1

αN
ζ

i,ti

)s̄
· rN

ζ

·
L∏
i=1

α
(s−s̄)·Nζ
i,ti

· g(Msg0−Msg1+dt·(s−s̄))

≡ gMsg0 ·
(
gdt ·

L∏
i=1

αN
ζ

i,ti

)s
· rN

ζ

≡ gMsg0 · vst · rN
ζ

(mod Nζ+1)

LOpener
(
pk, sk, t, ct,Msg0,Msg1, (r, s)

)
: Given sk =

(
g0, tk = ({αi,b}i,b,K)

)
, an

arbitrary tag t ∈ {0, 1}L, plaintexts Msg0,Msg1 ∈ ZNζ and randomness
(r, s) ∈ RLPKE such that ct = Encrypt(pk, t,Msg0; (r, s)), let dt ∈ {0, . . . , L}
the number of non-⊥ entries such that Ki 6= ti. If dt 6= 0, compute s̄ as per
(4). Otherwise, choose s̄ ←↩ U(ZNζ). In both cases, output the pair (r̄, s̄),

where r̄ = r ·
∏L
i=1 α

s−s̄
i,ti
· gMsg0−Msg1+dt·(s−s̄)

0 mod N.

Theorem 3.2. The above scheme is an equivocable RBM-lossy PKE scheme un-
der the DCR assumption.

Proof. We show that the scheme satisfies the required properties.

Decryption under injective tags. Let a tag t ∈ {0, 1}L and an initial-
ization value K ∈ {0, 1,⊥}L such that RBM(K, t) = 1 and let a message
Msg ∈ ZNζ . Consider a triple (pk, sk, tk) ← KeyGen(Γ,K) where sk = (p, q,K),
tk = ({αi,b}i,b,K) and pk = (N, ζ, g, {vi,b}i∈[L],b∈{0,1}). The encryption algo-
rithm outputs a ciphertext

ct = gMsg ·
(L∏
i=1

vi,ti

)s
· rN

ζ

≡ gMsg ·
(L∏
i=1

αsi,ti · r
)Nζ

(mod Nζ+1), (5)

16

for some r ∈ Z∗N and s ∈ ZNζ , where the second equality comes from the fact
that RBM(K, t) = 1 (i.e., ti = Ki whenever Ki 6=⊥). Since g ∼ U(Z∗Nζ+1), its
order is a multiple of Nζ with overwhelming probability ϕ(Nζ)/N ζ = ϕ(N)/N .
Since λ(Nζ+1) = Nζλ(N), we thus know that gλ(N) mod Nζ+1 has order Nζ

with probability ϕ(N)/N , in which case it has a representation of the form
gλ(N) ≡ 1 + βgN (mod Nζ+1) for some βg ∈ ZNζ such that gcd(βg, N

ζ) = 1.
From (5), we find that

ctλ(N) ≡ (1 + βgN)Msg ≡
(
1 + (βg ·Msg mod Nζ) ·N

)
(mod Nζ+1), (6)

which shows that Decrypt outputs Msg ∈ ZNζ at step 2.

Indistinguishability. We have two properties to verify.

(i) When we consider the distributions of pairs (pk, tk) produced by Keygen
and LKeygen, the only difference is the way to sample g. In the injective
case, g is sampled from U(Z∗Nζ+1) while, in the lossy case, g is sampled as

g = gN
ζ

0 mod Nζ+1, with g0 ←↩ U(Z∗N). The DCR assumption states that
these two distributions are indistinguishable and the same holds for the two
distributions of pairs (pk, tk).

(ii) We claim that the distributions {pk | (pk, sk, tk)← LKeygen(Γ,Kb)}b=0,1 are
perfectly indistinguishable for any initialization values K0,K1 ∈ {0, 1,⊥}L

since g = gN
ζ

0 mod Nζ+1 is an Nζ-th residue. Indeed, for any fixed ele-

ment g0 ∈ Z∗N , the distributions {(N, vi,b = gN
ζ

0 · αNζi,b mod Nζ+1) | αi,b ←↩
U(Z∗N))} and {(N, vi,b = αN

ζ

i,b mod Nζ+1) | αi,b ←↩ U(Z∗N))} are identical.

Lossiness under lossy tags. Let an arbitrary K ∈ K and an injective key(
pk =

(
N, ζ, g, {vi,b}i∈[L],b∈{0,1}

)
,

sk = (p, q,K), tk = ({αi,b}i,b,K)
)
← Keygen(Γ,K),

where vi,b = gδb,1−Ki · αNζi,b mod Nζ+1. Under a tag t such that RBM(K, t) = 0,
we have

vt ,
L∏
i=1

vi,ti mod Nζ+1 = gdt ·
(L∏
i=1

αi,ti

)Nζ
mod Nζ+1,

where dt ∈ {1, . . . , L} is the number of non-⊥ positions where K disagrees with
t ∈ {0, 1}L. Any ciphertext ct obtained by sampling s ←↩ U(ZNζ), r ←↩ U(Z∗N)
and computing

ct = gMsg · vst · rN
ζ

mod Nζ+1 = gMsg+dt·s ·
(L∏
i=1

αsi,ti · r
)Nζ

mod Nζ+1, (7)

perfectly hides Msg ∈ ZNζ since gcd(dt, N
ζ) = 1.

17

Equivocation under lossy tags. We know that, for any K ∈ K, any injective
keys (pk, sk, tk) ← Keygen(Γ,K) any message Msg ∈ ZNζ and any tag t such
that RBM(K, t) = 0, the distribution {ct = Encrypt(pk, t,Msg; (r, s)) | (r, s) ←↩
U(RLPKE)} is nothing but the uniform distribution U(Z∗Nζ+1) by (7).

From (7), we also observe that a lossy ciphertext ct uniquely determines
the value Msg + dt · s mod Nζ obtained by running Decrypt(sk, t, ct). Hence, for
any pair (ct,Msg) ∈ Z∗Nζ+1 × ZNζ , there exists only one s ∈ ZNζ such that
Decrypt(sk, t, ct) = Msg + dt · s mod Nζ . In turn, (ct,Msg, s) uniquely determine

rct = (ct · g−(Msg+dt·s))1/Nζ mod N and thus r = rct ·
∏L
i=1 α

−s
i,t′i

mod N , which

yields the only pair (r, s) ∈ RLPKE such that ct = Encryt(pk, t,Msg; (r, s)). On an
injective public key and a lossy tag t, for any Msg ∈ ZNζ , the support Spk,Msg,ct,t

is thus a singleton. This shows that, for any messages Msg0,Msg ∈ ZNζ and
randomness (r, s) ∈ RLPKE, Opener thus computes the only pair (s̄, r̄) ∈ ZNζ×Z∗N
such that Encrypt(pk, t,Msg0; (r, s)) = Encrypt(pk, t,Msg1; (r̄, s̄)).

Equivocation under lossy keys. We now consider the case of lossy keys

(pk, sk, tk) ← LKeygen(Γ,K), where g = gN
ζ

0 mod Nζ+1. For any Msg ∈ ZNζ
and arbitrary tags t, ciphertexts have the distribution{

ct =
(
g

(Msg+dt·s)
0 ·

L∏
i=1

αsi,t′i · r
)Nζ

mod Nζ+1 | s←↩ U(Z∗Nζ), r ←↩ U(Z∗N)

}
,

which is identical to {rNζ mod Nζ+1 | r ←↩ U(Z∗N)}. In contrast with injective
keys, for a given Nζ-th residue ct ∈ Z∗Nζ+1 , the support Spk,Msg,ct,t is no longer a
singleton (even for lossy tags). However, for any lossy tag t and any cipher-
text ct = Encryt(pk, t,Msg0; (r, s)), Opener

(
pk, tk, t, ct,Msg0,Msg1, (r, s)

)
and

LOpener
(
pk, sk, t, ct,Msg0,Msg1, (r, s)

)
output the same pair (r̄, s̄) ∈ Z∗N × ZNζ .

Indeed, whenever RBM(K, t) = 0 (and thus dt 6= 0), LOpener computes

s̄ = s+ (d−1
t mod Nζ) · (Msg0 −Msg1) mod Nζ ,

exactly like Opener. Moreover, for any ct = gMsg0 · vst · rN
ζ

mod Nζ+1 and any
pair (Msg1, s̄) ∈ ZNζ × ZNζ ,

r̄ = (ct · g−Msg1 · v−s̄t)1/Nζ mod N

=
(
gMsg0−Msg1+dt·(s−s̄) ·

(L∏
i=1

αs−s̄i,t′i

)Nζ · rNζ)1/Nζ

mod N

= g(Msg0−Msg1+dt·(s−s̄))/Nζ ·
L∏
i=1

αs−s̄i,t′i
· r mod N (8)

= g
Msg0−Msg1+dt·(s−s̄)
0 ·

L∏
i=1

αs−s̄i,t′i
· r mod N (9)

is the unique r̄ ∈ Z∗N (which Opener and LOpener compute as per (8) and (9),

respectively) such that ct = gMsg1 · vs̄t · r̄N
ζ

mod Nζ+1. ut

18

By plugging the above system in the construction in Supplementary Material
B, we obtain USS arguments from the DCR and LWE assumptions. A difference
with [56] is that LWE is only used in the correlation intractable hash function and
lattice trapdoors are not needed. This DCR-based scheme drastically reduces the
signature length of our construction. If we were to use the LWE-based R-Lossy
PKE scheme from [56], a single ciphertext would already be roughly 20 larger
than an entire ring signature, as discussed in Supplementary Material G.1.

3.2 A Dense RBM-Lossy PKE Scheme from DCR

In order to construct a ring signature without relying on erasures, we will also
use a “downgraded” version of the scheme in Section 3.1, where we do not need
equivocation properties. However, we will rely on the property that its lossy
mode induces dense commitments that are uniformly distributed in Z∗Nζ+1 . The
scheme of Section 3.1 does not have this density property as its lossy mode
induces commitments that live in the subgroup of Nζ-th residues.

Par-Gen(1λ, 1L, 1B): Define the spaces T = {0, 1}L, K = {0, 1,⊥}L and the
public parameters as Γ = (1λ, 1B ,K, T).

Keygen(Γ,K): Given public parameters Γ and an initialization value K ∈ K,
generate a key pair as follows.

1. Choose an RSA modulus N = pq such that p, q > 2l(λ), for some poly-
nomial l : N→ N such that l(λ) > L(λ)− λ for any sufficiently large λ,
and an integer ζ ∈ poly(λ) such that Nζ > 2B .

2. Choose αi,0, αi,1 ←↩ U(Z∗N) for each i ∈ [L]. Then, for each i ∈ [L] and

b ∈ {0, 1}, compute vi,b = (1 +N)δb,1−Ki · αNζi,b mod Nζ+1 if Ki 6=⊥ and

vi,b = αN
ζ

i,b mod Nζ+1 if Ki =⊥.

Define RLPKE = Z∗N ×ZNζ and output the secret key sk = (p, q,K) together
with pk :=

(
N, ζ, {vi,b}i∈[L],b∈{0,1}

)
and tk =⊥ .

LKeygen(Γ,K): proceeds identically to Keygen with the difference that step
2 chooses {vi,b}i,b at random. For each i ∈ [L], b ∈ {0, 1}, the algorithm
chooses vi,b ←↩ U(Z∗Nζ+1). It defines RLPKE = Z∗N × ZNζ and outputs sk =⊥
as well as pk :=

(
N, ζ, {vi,b}i∈[L],b∈{0,1}

)
, and tk =⊥ .

Encrypt(pk, t,Msg): To encrypt Msg ∈ ZNζ for the tag t = t1 . . . tL ∈ {0, 1}L,
choose random coins r ←↩ U(Z∗N), s←↩ U(ZNζ) and compute the ciphertext

ct = (1 +N)Msg ·
(∏L

i=1 vi,ti

)s
· rNζ mod Nζ+1.

Decrypt(sk, t, ct): Given the secret key sk = (p, q,K) and the tag t ∈ {0, 1}L, re-

turn ⊥ if RBM(K, t) = 0. Otherwise, compute Msg = (ctλ(N) mod Nζ+1)−1
N mod

Nζ , where the division is computed over Z, and output Msg ∈ ZNζ .

Theorem 3.3. The above system is a dense RBM-lossy PKE scheme under the
DCR assumption. Moreover, the lossy mode is dense in Z∗Nζ+1 .

19

Proof. The property of decryption under injective keys can be shown exactly as
in the proof of Theorem 3.2. The only difference is that g = 1 + N , so that its
order is Nζ with probability 1 and we have βg = 1 in equation (6).

The proof of lossiness under lossy tags carries over in the same way. From (7),
we observe that s ∼ U(ZNζ) perfectly hides Msg in the right-hand-side member

of ct = (1 +N)Msg · vst · rN
ζ

mod Nζ+1 when dt 6= 0.
The first weak indistinguishability property follows directly from the seman-

tic security of Damg̊ard-Jurik and thus the DCR assumption. Namely, under the

DCR assumption, (1 + N)δb,1−Ki · αNζi,b mod Nζ+1 is computationally indistin-
guishable from a random element of Z∗Nζ , regardless of δb,1−Ki ∈ {0, 1}. The
second weak indistinguishability property is trivially satisfied since, in public
keys generated by LKeygen, {vi,b}i,b are generated independently of K.

Finally, for lossy keys (pk, sk, tk) ← LKeygen(Γ,K), the distribution of ci-
phertexts is{

ct = (1 +N)Msg ·
(L∏
i=1

vi,t′i
)s · rNζ mod Nζ+1 | s←↩ U(ZNζ), r ←↩ U(Z∗N)

}
,

which is nothing but the uniform U(Z∗Nζ+1) unless there exists t1 . . . tL ∈ {0, 1}L

such that the order of
∏L
i=1 vi,ti is not a multiple of Nζ . This occurs with proba-

bility ≤ 2L ·(1−ϕ(N)/N), which is negligible as long as min(p, q) ≥ 2L+1−λ. ut

4 Trapdoor Σ-Protocols for DCR-Related Languages

Ciampi et al. [27] showed that any Σ-protocol with binary challenges can be
turned into a trapdoor Σ-protocol by having the prover encrypt the two pos-
sible responses and send them along with its first message. While elegant, this
approach requires Θ(λ) repetitions to achieve negligible soundness error. In this
section, we give communication-efficient protocols requiring no repetitions.

In Supplementary Material D.2, we show that the standard Σ-protocol that
allows proving composite residuosity readily extends into a trapdoor Σ-protocol.
By exploiting earlier observations from [46,58], we show that, for a single pro-
tocol iteration, the factorization of N allows computing bad challenges within
an exponentially large challenge space. In this section, we describe trapdoor
Σ-protocols that will serve as building blocks for our ring signature.

4.1 Trapdoor Σ-Protocol Showing that a Paillier
Ciphertext/Commitment Contains 0 or 1

We give a trapdoor Σ-protocol allowing to prove that a (lossy) Paillier cipher-
text encrypts 0 or 1. This protocol is a DCR-based adaptation of a Σ-protocol
proposed in [21,46] for Elgamal-like encryption schemes. The original protocol of
[21,46] assumes additively homomorphic properties in the plaintext and random-
ness spaces. Here, we adapt it to the DCR setting where the randomness space

20

is a multiplicative group. We also describe a BadChallenge function to obtain a
trapdoor Σ-protocol with a large challenge space.

The BadChallenge function uses observation from Lipmaa [58] showing that
bad challenges are also computable when the message space has composite or-
der N = pq (instead of prime order as in [21]). We actually point out an issue
in [58], which aims to identify bad challenges in a Σ-protocol showing that an
Elgamal-Paillier ciphertext [13] encrypts 0 or 1. However, in the Elgamal-Paillier
scheme, not all elements of Z∗N2 × Z∗N2 are in the range of the encryption algo-
rithm. In Supplementary Material D.3, we show that a cheating prover can send
maliciously generated first prover messages for which bad challenges are not ef-
ficiently computable although they may exist for false statements.

Here, to avoid this issue, we need a DCR-based dual-mode commitment where
the binding mode has the property that any element of Z∗N2 is in the range of the
commitment algorithm. Moreover, even the hiding mode should be dense, mean-
ing that honestly generated commitments to 0 should be uniformly distributed
over Z∗N2 . We thus use commitments of the form C = (1+N)Msg ·hy ·wN mod N2,
where the distribution of h determines if the commitment is perfectly hiding or
perfectly binding. If h is an N -th residue (resp. h ∼ U(Z∗N2)), it is perfectly
binding (resp. perfectly hiding). Moreover, the density property of the hiding
mode will be crucial to prove the special ZK property of the Σ-protocol.

Let an RSA modulus N = pq and let a random element h ∈ Z∗N2 . We give a
trapdoor Σ-protocol for the following language, which is parametrized by h:

L0-1(h) =
{
C ∈ Z∗N2 | ∃b ∈ {0, 1}, (y, w) ∈ ZN × Z?N :

C = (1 +N)b · hy · wN mod N2
}
.

We include h as a language parameter because we allow the CRS to depend
on N , but not on h. We note that, if N divides the order of h, the language
L0-1(h) is trivial since all elements of Z∗N2 can be explained as a commitment
to a bit. However, the language becomes non-trivial when h is an N -th residue
since C = (1 +N)b hy wN mod N2 is then a perfectly binding commitment to b.

While a trapdoor Σ-protocol for L0-1(h) can be obtained from [31], the one
below is useful to show that one out of many ciphertexts encrypts 0 [46]. A
difference with the Σ-protocols in [21, Figure 2] and [58, Section 3.2] is that, in
order to use it in Section 4.2, we need the verifier to perform a non-standard
interval check for the response over the integers.

Genpar(1λ) : Given the security parameter λ, define par = {λ}.
GenL(par,L0-1) : Given public parameters par and the description of a language
L0-1, consisting of an RSA modulus N = pq with p and q prime satisfying
p, q > 2l(λ), for some polynomial l : N → N such that l(λ) > 2λ, define the
language-dependent crsL = {N}. The global CRS is crs = ({λ}, crsL).

TrapGen(par,L0-1, τL) : Given par, a language description L0-1 that specifies an
RSA modulus N = pq, and the membership-testing trapdoor τL = (p, q),
output crs = ({λ}, crsL) as in GenL and the trapdoor τΣ = (p, q).

21

P
(
crs,x,w

)
↔ V(crs,x) : Given crs, a statement x = “C ∈ L0-1(h)”, for some

h ∈ Z∗N2 , P (who has w = (b, y, w)) and V interact as follows:

1. P chooses a←↩ U({2λ, . . . , 22λ − 1}), d, e←↩ U(ZN), u, v ←↩ U(Z∗N) and
sends V the following:

A1 = (1 +N)a hd uN mod N2, A2 = (1 +N)−a·b he vN mod N2.

2. V sends a random challenge Chall←↩ U({0, . . . 2λ − 1}).
3. P sends V the response (z, zd, ze, zu, zv) ∈ Z× (ZN)2 × (Z∗N)2, where

z = a+ Chall · b, z1 = d+ Chall · y, z2 = e+ (z − Chall) · y,
zd = z1 mod N, zu = u · wChall · hbz1/Nc mod N,

ze = z2 mod N, zv = v · wz−Chall · hbz2/Nc mod N.

4. V returns 1 if and only if 2λ ≤ z < 22λ+1 and

A1 = C−Chall · (1 +N)z · hzd · zNu mod N2, (10)

A2 = CChall−z · hze · zNv mod N2.

BadChallenge
(
par, τΣ , crs,x,a

)
: Given a statement x = “C ∈ L0-1(h)”, a trap-

door τΣ = (p, q) and a = (A1, A2) ∈ (Z∗N2)2, return ⊥ if h is not an N -th
residue. Otherwise, decrypt C and (A1, A2) to obtain b = DτΣ (C) ∈ ZN and
ai = DτΣ (Ai) ∈ ZN for each i ∈ {1, 2}. If x is false, we have b 6∈ {0, 1}.
Consider the following linear system with the unknowns (Chall, z) ∈ Z2

N :

z − b · Chall ≡ a1 (mod N),

b · (Chall− z) ≡ a2 (mod N).
(11)

1. If b(b−1) ≡ 0 (mod N), assume that b ≡ 0 (mod p) and b ≡ 1 (mod q).
Compute z′ = a1 mod p and Chall′ = z′ − a1 mod q. Then, return ⊥ if
Chall′ − z′ 6≡ a2 (mod q) or a2 6≡ 0 (mod p).

2. If b(b − 1) 6≡ 0 (mod N), define db = gcd(b(b − 1), N), so that we have
gcd(b(b− 1), N/db) = 1. Any solution of (11) also satisfies the system

z − b · Chall ≡ a1 (mod N/db)

b · z − b · Chall ≡ −a2 (mod N/db),

which has a unique solution (Chall′, z′) ∈ (ZN/db)2.

In both cases, if 2λ ≤ z′ < 22λ+1 and 0 ≤ Chall′ < 2λ, return Chall = Chall′.
Otherwise, return ⊥.

Any honest protocol execution always returns a valid transcript since we have
2λ ≤ a+ b · Chall ≤ 22λ + 2λ − 2 < 22λ+1 and

(1 +N)z · hzd · zNu
≡ (1 +N)a+Chall·b · uN · wN ·Chall · hzd · h(d+Chall·y)−(d+Chall·y mod N)

≡ (1 +N)a+Chall·b · uN · wN ·Chall · hd+Chall·y

≡ (1 +N)a · uN · hd ·
(
(1 +N)b · wN · hy

)Chall ≡ A1 · CChall (mod N2)

22

CChall−z · hze · zNv ≡
(
(1 +N)b · wN · hy

)Chall−z · vN · w(z−Chall)N · he+(z−Chall)·y

≡ (1 +N)b(Chall−z) · vN · he ≡ (1 +N)b(−a+(1−b)·Chall) · vN · he

≡ (1 +N)−ab · vN · he ≡ A2 (mod N2)

The correctness of BadChallenge follows from the fact that 0 ≤ Chall < 2λ (so
that Chall = Chall mod p = Chall mod q) and the observation that the verifier
never accepts when z ≥ min(p, q). This ensures that a valid response exists for
at most one z ∈ Z such that z = z mod p = z mod q.

Remark 4.1. When h is a composite residue, the condition b ∈ {0, 1} implies
that, over Z, we have either z = a + b · Chall or z = a + b · Chall − N , where
a = DτΣ (A1) and b = DτΣ (C) (recall that (10) implies z = a+ b ·Chall mod N).
The latter case can only occur if b = 1 and N − 2λ ≤ a ≤ N − 1. However, this
would imply Chall−2λ ≤ a+Chall−N ≤ Chall−1, which is not compatible with
the lower bound of the verification test 2λ ≤ z < 22λ+1. As a result, the equation
z = a+ b ·Chall holds over Z, and not only modulo N . While this property is not
necessary to ensure the soundness of the above Σ-protocol, it will be crucial for
the BadChallenge function of the trapdoor Σ-protocol in Section 4.2.7 In order to
ensure perfect completeness, the prover chooses a in a somewhat unusual interval
that does not start with 0. However, we still have statistical completeness and
statistical HVZK if a is sampled from U({0, . . . , 22λ − 1}).

4.2 Trapdoor Σ-Protocol Showing that One Out of Many
Ciphertexts/Commitments Contains 0

We now present a DCR-based variant of the Σ-protocol of Groth and Kohlweiss
[46], which allows proving that one commitment out of R = 2r contains 0.

Intuition. The Σ-protocol of [46] relies on a protocol, like the one of Section 4.1,
showing that a committed b is a bit using a response of the form z = a+b ·Chall.
To prove that some commitment C` ∈ {Ci}R−1

i=0 opens to 0 without revealing
the index ` ∈ {0, . . . , R− 1}, the bits `1 . . . `r ∈ {0, 1}r of ` are committed and,
for each of them, the prover provides evidence that `j ∈ {0, 1}. The response
zj = aj + `jChall is seen as a degree-1 polynomial in Chall and used to define
polynomials fj,1[X] = aj + `jX and ff,0[X] = X − fj , which in turn define

Pi[X] =

r∏
j=1

fj,ij [X] = δi,` ·Xr +

r−1∑
k=0

pi,k ·Xk ∀i ∈ {0, . . . , R− 1},

where Pi[X] has degree r if i = ` and degree ≤ r − 1 otherwise. In order to
prove that one of the {Pi[X]}R−1

i=0 has degree r, Groth and Kohlweiss homo-

morphically compute
∏R−1
i=0 C

Pi(Chall)
i and multiply it with

∏r−1
k=0 C

−Challk
dk

, for

auxiliary commitments {Cdk =
∏R−1
i=0 C

pi,k
i }r−1

k=0, in order to cancel out the

7 In contrast, the upper bound for z is crucial here in the first step of BadChallenge.

23

terms of degree 0 to r − 1 in the exponent. Then, they prove that the prod-

uct
∏R−1
i=0 C

Pi(Chall)
i ·

∏r−1
k=0 C

−Challk
dk

is indeed a commitment to 0.

Let N = pq and N̄ = p̄q̄ denote two RSA moduli. Let also h ∈ Z∗N2 and
h̄ ∈ Z∗

N̄2 . We give a trapdoor Σ-protocol for the language

L1-R
∨ (h, h̄) :=

{(
(C0, . . . , CR−1), (L1, . . . , Lr)

)
∈ (Z∗N2)R × (Z∗N̄2)r | (12)

∃y ∈ ZN , w ∈ Z∗N , ∃rj=1(`j , sj , tj) ∈ {0, 1} × ZN̄ × Z∗N̄ :∧r
j=1 Lj = (1 + N̄)`j h̄sj tN̄j mod N̄2 ∧ C` = hywN mod N2

}
where R = 2r and ` =

∑r
j=1 `j · 2j−1. In (12), h ∈ Z∗N2 and h̄ ∈ Z∗

N̄2 are used

as language parameters since we allow the CRS to depend on N and N̄ , but
not on h nor h̄. The reason is that, in our construction of Section 5, we need to
generate the CRS before h̄ is chosen.

We note that L1-R
∨ (h, h̄) is a trivial language (i.e., it is (Z∗N2)R × (Z∗

N̄2)r)

when N and N̄ divide the order of h and h̄, respectively. However, the security
proof of our ring signature will switch to a setting where h and h̄ are composite
residues, which turns C` = hy ·wN mod N2 into a perfectly binding commitment
to 0 (since C = (1 +N)Msg ·hy ·wN mod N2 uniquely determines the underlying
Msg ∈ ZN) and Lj into a perfectly binding commitment to `j .

Description. Our Paillier-based adaptation Π1-R
∨ = (Genpar,GenL,P,V) of the

Σ-protocol of [46] is described as follows.

Genpar(1λ) : Given the security parameter λ, define par = {λ}.
GenL(par,L1-R

∨) : Given par and the description of a language L1-R
∨ , consisting of

RSA moduli N = pq, N̄ = p̄q̄ with primes p, q, p̄, q̄ satisfying p, q, p̄, q̄ > 2l(λ),
where l : N → N is a polynomial such that l(λ) > 2λ, define the language-
dependent crsL = {N, N̄} and the global CRS crs = ({λ}, crsL).

TrapGen(par,L1-R
∨ , τL) : Given par, the description of a language L1-R

∨ and a
language trapdoor τL, it proceeds identically to GenL except that it also
outputs the trapdoor τΣ = (p, q, p̄, q̄).

P
(
crs,x,w

)
↔ V(crs, x) : P has the witness w = (y, w, {(`j , sj , tj)}rj=1) to the

statement x = “
(
(C0, . . . , CR−1), (L1, . . . , Lr)

)
∈ L1-R

∨ (h, h̄)” and interacts
with the verifier V in the following way:

1. For each j ∈ [r], P chooses āj ←↩ U({2λ, . . . , 22λ− 1}), d̄j , ēj ,←↩ U(ZN̄),
ūj , v̄j ←↩ U(Z∗

N̄
) and computes{
Āj = (1 + N̄)āj · h̄d̄j · ūN̄j mod N̄2,

B̄j = (1 + N̄)−āj ·`j · h̄ēj · v̄N̄j mod N̄2.
(13)

It then defines degree-1 polynomials Fj,1[X] = āj + `jX ∈ ZN [X],
Fj,0[X] = X − Fj,1[X] ∈ ZN [X]. For each index i ∈ {0, . . . , R − 1}
of binary expansion i1 . . . ir ∈ {0, 1}r, it computes the polynomial

Pi[X] =

r∏
j=1

Fj,ij [X] = δi,` ·Xr +

r−1∑
k=0

pi,k ·Xk ∈ ZN [X], (14)

24

which has degree ≤ r − 1 if i 6= ` and degree r if i = `. Then, using the
coefficients pi,0, . . . , pi,r−1 ∈ ZN of (14), P computes commitments

Cdk =

R−1∏
i=0

C
pi,k
i · hµk · ρNk mod N2 0 ≤ k ≤ r − 1, (15)

where µ0, . . . , µr−1 ←↩ U(ZN), ρ0, . . . , ρr−1 ←↩ U(Z∗N). Finally, P sends
V the message a =

(
{(Āj , B̄j)}rj=1, {Cdk}

r−1
k=0

)
.

2. V sends a random challenge Chall←↩ U({0, . . . , 2λ − 1}).
3. P sends the response

(
zy, zw, {(z̄j , z̄d,j , z̄e,j , z̄u,j , z̄v,j)}rj=1

)
, where

z̄d,j = d̄j + Chall · sj mod N̄ z̄j = āj + Chall · `j
z̄e,j = ēj + (āj + Chall · (`j − 1)) · sj mod N̄

z̄u,j = ūj · t̄Challj · h̄b(d̄j+Chall·sj)/N̄c mod N̄

z̄v,j = v̄j · t̄
āj+Chall·(`j−1)
j · h̄b(ēj+(āj+Chall·(`j−1))·sj)/N̄c mod N̄

(16)

and, letting P ′[X] = y ·Xr −
∑r−1
k=1 µk ·Xk ∈ Z[X],

zy = y · Challr −
r−1∑
k=0

µk · Challk mod N = P ′(Chall) mod N,

zw = wChallr
r−1∏
k=0

ρ−Chall
k

k

R−1∏
i=0

C
−bPi(Chall)/Nc
i · hbP

′(Chall)/Nc mod N,

(17)

where Pi(Chall) and P ′(Chall) are evaluated over Z in the exponent.
4. V defines fj,1 = z̄j and fj,0 = Chall − z̄j mod N for each j ∈ [r]. Then,

it accepts if 2λ ≤ z̄j < 22λ+1 for all j ∈ [r],

∀j ∈ [r] :

{
Āj = L−Challj · (1 + N̄)z̄j · h̄z̄d,j · z̄N̄u,j mod N̄2

B̄j = L
Chall−z̄j
j · h̄z̄e,j · z̄N̄v,j mod N̄2

(18)

and, parsing each i ∈ {0, . . . , R− 1} into bits i1 . . . ir ∈ {0, 1}r,
r−1∏
k=0

C−Chall
k

dk
·
R−1∏
i=0

C
(
∏r
j=1 fj,ij mod N)

i ≡ hzy · zNw (mod N2). (19)

It returns 0 if any of these conditions are not satisfied.

BadChallenge
(
par, τΣ , crs,x,a

)
: On input of a trapdoor τΣ = (p, q, p̄, q̄), a

statement x = “((C0, . . . , CR−1), (L1, . . . , Lr)) ∈ L1-R
∨ (h, h̄)” and a first

prover message a =
(
{(Āj , B̄j)}rj=1, {Cdk}

r−1
k=0

)
, return ⊥ if h is not an

N -th residue in Z∗N2 or h̄ is not an N̄ -th residue in Z∗
N̄2 . Otherwise, compute

`j = DτΣ (Lj) ∈ ZN̄ and decrypt a so as to obtain āj = DτΣ (Āj) ∈ ZN̄ ,
b̄j = DτΣ (B̄j) ∈ ZN̄ , for each j ∈ [r], and cdk = DτΣ (Cdk) ∈ ZN for each
k. Let also ci = DτΣ (Ci) ∈ ZN for each i = 0 to R − 1. Since x is false, we
have either: (i) `j 6∈ {0, 1}, for some j ∈ [r]; or (ii) ∀j ∈ [r] : `j ∈ {0, 1} but
c` 6= 0 mod N , where ` =

∑r
j=1 `j · 2j−1. We consider two cases:

25

1. If there exists j ∈ [r] such that `j 6∈ {0, 1}, then run the BadChallenge0-1

function of Sec. 4.1 on input of elements
(
par, (p̄, q̄), {N̄}, Lj , (Āj , B̄j)

)
and return whatever it outputs.

2. Otherwise, we have `j ∈ {0, 1} for all j ∈ [r]. Define degree-1 polynomi-
als Fj,1[X] = āj + `jX, Fj,0[X] = X − Fj,1[X] ∈ ZN [X] and compute
{Pi[X]}R−1

i=0 as per (14). For each i ∈ {0, . . . , R − 1}, parse the poly-

nomial Pi[X] ∈ ZN [X] as Pi[X] = δi,` · Xr +
∑r−1
k=0 pi,k · Xk for some

pi,0, . . . , pi,r−1 ∈ ZN . Define the polynomial

Q[X] , c` ·Xr +

r−1∑
k=0

((R−1∑
i=0

ci · pi,k
)
− cdk

)
·Xk ∈ ZN [X],

which has degree r since c` 6= 0 mod N . Define Qp[X] , Q[X] mod p

and Qq[X] , Q[X] mod q over Zp[X] and Zq[X], respectively. Since at
least one of them has degree r, we assume w.l.o.g. that deg(Qp[X]) = r.
Then, compute the roots8 Challp,1, . . . ,Challp,r of Qp[X] over Zp[X] in
lexicographical order (if it has less than r roots, the non-existing roots
are replaced by Challp,i =⊥). For each i ∈ [r], do the following:

a. If Challp,i 6∈ {0, . . . , 2λ − 1}, set Challi =⊥.
b. If Challp,i ∈ {0, . . . , 2λ − 1} and Qq(Challp,i) ≡ 0 (mod q), then set

Challi = Challp,i. Otherwise, set Challi =⊥.

Correctness. To see that honestly generated proofs are always accepted by
the verifier, we first note that 2λ ≤ āj ≤ z̄j = āj + Chall · `j ≤ 22λ + 2λ < 22λ+1,
for all j ∈ [r], and that the equations (18) are satisfied for the same reasons as
in Section 4.1. As for equation (19), we observe that, if the witnesses y ∈ ZN
and w ∈ Z∗N satisfy C` = hy · wN mod N2, we have

hzy · zNw ·
R−1∏
i=0

C
−(

∏r
j=1 fj,ij mod N)

i ≡ hzy · zNw ·
R−1∏
i=0

C
−Pi(Chall) mod N
i

≡ hzy · wChallr·N ·
r−1∏
k=0

ρ−Chall
k·N

k ·
R−1∏
i=0

C
−Pi(Chall)+(Pi(Chall) mod N)
i

· hP
′(Chall)−zy ·

R−1∏
i=0

C
−Pi(Chall) mod N
i

≡ hP
′(Chall) · wChallr·N ·

r−1∏
k=0

ρ−Chall
k·N

k ·
R−1∏
i=0

C
−Pi(Chall)
i

8 This can be efficiently achieved using the Cantor-Zassenhaus algorithm [19], which is
a probabilistic algorithm with small failure probability. The CI hash function of [67]
is compatible with BadChallenge functions failing with negligible probability.

26

≡ hChall
r·y · wChallr·N ·

r−1∏
k=0

(h−Chall
kµk · ρ−Chall

k·N
k)

·
R−1∏
i=0

C
−δi,`·Challr−

∑r−1
k=0 pi,k·Chall

k

i

≡ (hy · wN)Chall
r

·
r−1∏
k=0

(hµk · ρNk)−Chall
k

· C−Chall
r

` ·
R−1∏
i=0

C
−

∑r−1
k=0 pi,k·Chall

k

i

≡
r−1∏
k=0

(hµk · ρNk)−Chall
k

·
r−1∏
k=0

R−1∏
i=0

C
−pi,k·Challk
i ≡

r−1∏
k=0

C−Chall
k

dk
(mod N2).

Lemma 4.2. The above construction is a trapdoor Σ-protocol for L1-R
∨ .

Proof. Lemma 4.3 shows that, on a CRS generated by GenL, the Σ-protocol is
statistically special honest-verifier zero-knowledge when the orders of h ∈ Z∗N2

and h̄ ∈ Z∗
N̄2 are multiples of N and N̄ , respectively.

When h and h̄ are composite residues (thus making the commitments per-
fectly binding), we show that BadChallenge correctly identifies all the possible
bad challenges for any first message sent by the prover. We only consider the
case where `j ∈ {0, 1} since, otherwise, we can simply rely on the correctness of
BadChallenge0-1. At step 2, the polynomials {Pi[X]}R−1

i=0 that BadChallenge com-

putes from {`j , āj}rj=1 are of the form Pi[X] = δi,` ·Xr+
∑r−1
k=0 pi,k ·Xk ∈ ZN [X],

by construction. By the verification equations (18), any valid challenge-response
pair

(
Chall,

(
zy, zw, {(z̄j , z̄d,j , z̄e,j , z̄u,j , z̄v,j)}rj=1

))
must involve elements {z̄j}rj=1

that satisfy the conditions z̄j = āj + Chall · `j over the integers, and not only
modulo N̄ , due to the lower bound on z̄j and since `j is a bit (see Remark 4.1).
Hence, the polynomials {Fj,1[X]}rj=1 computed at step 2 of BadChallenge satisfy
z̄j = Fj,1(Chall) = Fj,1(Chall) mod N . Moreover, from equation (19), we have

hzy · zNw ≡
r−1∏
k=0

C−Chall
k

dk
·
R−1∏
i=0

C
Pi(Chall) mod N
i (20)

≡
r−1∏
k=0

C−Chall
k

dk
·
R−1∏
i=0

C
(δi,`·Challr+

∑r−1
k=0 pi,k·Chall

k mod N)
i (mod N2).

By decrypting all members of (20), we see that a bad challenge must be a root
of Q[X] over ZN since DτΣ (h) = 0. Since a bad challenge Chall satisfies

Q(Chall) = c` · Challr +

r−1∑
k=0

((R−1∑
i=0

ci · pi,k
)
− cdk

)
· Challk ≡ 0 (mod N),

it also satisfies Q(Chall) ≡ 0 (mod p) and Q(Chall) ≡ 0 (mod q). Given that
gcd(c`, N) ∈ {1, p, q} and gcd(c`, N/ gcd(c`, N)) = 1, we have either c` 6≡ 0
(mod p) or c` 6≡ 0 (mod q), meaning that at least one the polynomials Qp[X]

27

and Qq[X] is a non-zero degree-r polynomial over a prime field. Since p, q > 2λ,
we know that any Chall ∈ {0, . . . , 2λ − 1} fits in both Zp and Zq. The condition
Q(Chall) ≡ 0 (mod N) then implies that a bad challenge Chall ∈ {0, . . . , 2λ− 1}
necessarily satisfies Qp(Chall) = 0 mod p and Qq(Chall) = 0 mod q. This shows
that BadChallenge always identifies all the bad challenges at step 2. ut

Following [46] and standard Σ-protocols over the integers, the above Σ-
Protocol Π1-R

∨ = (Genpar,GenL,P,V) is statistically special honest-verifier zero-
knowledge. Although the adversary can choose Paillier commitments {Ci}R−1

i=0

of its own (which may be N -th residues or not), we can rely on the fact that
h has a component of order N to perfectly randomize commitments {Cdk}

r−1
k=0

over the full group Z∗N2 even if some of the {Ci}R−1
i=0 are maliciously generated.

Lemma 4.3. For any language L1-R
∨ (h, h̄) such that N divides the order of h ∈

Z∗N2 and N̄ divides the order of h̄ ∈ Z∗
N̄2 , Π1-R

∨ (h, h̄) is statistically special honest-
verifier zero-knowledge. (The proof is in Supplementary Material D.4.)

5 Logarithmic-Size Ring Signatures in the Standard
Model from DCR and LWE

In Supplementary Material E, we give a simplified version of the scheme where
the signer erases its random coins after each signature generation.

The proof of unforgeability departs from [46] in that we cannot replay the
adversary with a different random oracle. Instead, we use Paillier as a dual-mode
commitment, which is made extractable at some step to enable the extraction of
bits `?1 . . . `

?
r ∈ {0, 1}r from the commitments {L?j}rj=1 contained in the forgery

Σ? = ((L?1, . . . , L
?
r),π

?). The next step is to have the reduction guess which
honestly generated public key vk(i?) will belong to the signer identified by de-
coding the forgery. Then, vk(i?) is replaced by a random element of Z∗N2 in order
to force the adversary to break the simulation-soundness of Πuss by arguing that
vk(i?) is a commitment to 0, which it is not. The use of two distinct moduli al-
lows us to decode `?1, . . . , `

?
r ∈ {0, 1}r from {L?j}rj=1 (which is necessary to check

that `? = `?1 . . . `
?
r still identifies the expected verification key vk(i?)) even when

we rely on the DCR assumption to modify the distribution of vk(i?).
The security proof of our simplified scheme relies on erasures because the

NIZK simulator is used in all signing queries. If the adversary makes a cor-
ruption query Corrupt(i) after a signing query involving sk(i), the challenger’s
loophole is to claim that it erased the signer’s randomness in signing queries of
the form (i, ·, ·).

To avoid erasures, we adapt the security proof in such a way that the NIZK
simulator only simulates signatures on behalf of the expected target user i?.
All other users’ signatures are faithfully generated, thus allowing the challenger
to reveal consistent randomness explaining their generation. Since user i? is
not corrupted with noticeable probability, the challenger never has to explain
the generation of a simulated signature. This strategy raises a major difficulty

28

since decoding `?1 . . . `
?
r from {L?j}rj=1 is only possible when these are extractable

commitments. Unfortunately, the NIZK simulator cannot answer signing queries
(i?, ·, ·) by computing {Lj}rj=1 as perfectly binding commitments as this would
not preserve the statistical ZK property of the Σ-protocol of Section 4.2. More-
over, relying on computational ZK does not work because we need the guessed
index i? to be statistically independent of the adversary’s view until the forgery
stage. If we were to simulate signatures using computational NIZK proofs, they
would information-theoretically leak the index i? of the only user for which the
NIZK simulator is used in signing queries (i?, ·, ·). To resolve this problem, we use
a tag-based commitment scheme which is perfectly hiding in all signing queries
and extractable in the forgery (with noticeable probability).

We thus commit to the string ` ∈ {0, 1}r using the dense RBM-lossy PKE
scheme of Section 3.2. We use the property that, depending on which tag is used
to generate a commitment, it either behaves as perfectly hiding or extractable
commitment. In the perfectly hiding mode, we also exploit its density property
to ensure the statistical ZK property.

The construction uses the trapdoor Σ-protocol of Section 4.2 to prove mem-
bership of the parametrized language

L1-R
∨ (h, h̄VK) :=

{(
(C0, . . . , CR−1), (L1, . . . , Lr)

)
∈ (Z∗N2)R × (Z∗N̄2)r | (21)

∃y ∈ ZN , w ∈ Z∗N , s1, . . . , sr ∈ ZN̄ , t1, . . . , tr ∈ Z∗N̄ ,
(`1, . . . , `r) ∈ {0, 1}r : C` = hy · wN mod N2

∧ Lj = (1 + N̄)`j · h̄sjVK · t
N̄
j mod N̄2 ∀j ∈ [r]

}
,

with R = 2r and ` =
∑r
j=1 `j · 2j−1, where h̄VK changes in each signature.

The construction relies on the following ingredients:

- A trapdoor Σ-protocol Π′ = (Gen′par,Gen′L,P
′,V′) for the parametrized lan-

guage L1-R
∨ defined in (21).

- A strongly unforgeable one-time signature scheme OTS = (G,S,V) with
verification keys of length `v ∈ poly(λ).

- An admissible hash function AHF : {0, 1}`v → {0, 1}L, for some L ∈ poly(λ).
- A denseR-lossy PKE schemeR-LPKE =(Par-Gen,Keygen, LKeygen, Encrypt,

Decrypt) for RBM : K × T → {0, 1}, where K = {0, 1,⊥}L and T = {0, 1}L.

Our erasure-free ring signature goes as follows.

CRSGen(1λ) : Given a security parameter λ, conduct the following steps.

1. Generate par← Genpar(1
λ) for the trapdoor Σ-protocol of Section 4.2.

2. Generate an RSA modulus N = pq and choose an element h←↩ U(Z∗N2),
which has order divisible by N w.h.p.

3. Choose an admissible hash function AHF : {0, 1}`v → {0, 1}L. Generate
public parameters Γ ←↩ Par-Gen(1λ, 1L, 1|N |) for the dense RBM-lossy
PKE scheme of Section 3.2 with ζ = 1, which is associated with the bit-
matching relation RBM : K×T → {0, 1}. Choose a random initialization

29

value K ←↩ U(K) and generate lossy keys (pk, sk, tk) ← LKeygen(Γ,K).
Parse pk as pk :=

(
N̄ , {v̄i,b}i∈[L],b∈{0,1}

)
, for an RSA modulus N̄ = p̄q̄,

where v̄i,b ∼ U(Z∗
N̄2) for each i ∈ [L], b ∈ {0, 1}.

4. Generate a pair (crs, τzk) ← GenL(par,L1-R
∨) comprised of the CRS crs

of an USS argument Πuss (recalled in Supplementary Material B) for
the language L1-R

∨ defined in (21) with a simulation trapdoor τzk. The
common reference string crs contains crs′L = {N, N̄}, which is part of a
CRS crs′ = ({λ}, crs′L) for the Σ-protocol of Section 4.2.

Output the common reference string ρ = (crs, h,AHF, pk, Γ,OTS), where
OTS is the specification of a one-time signature scheme.

Keygen(ρ) : Pick w ←↩ U(Z∗N), y ←↩ U(ZN) and compute C = hy ·wN mod N2.
Output (sk, vk), where sk = (w, y) and vk = C.

Sign(ρ, sk,M,R) : Given a ring R = {vk0, . . . , vkR−1} (we assume that R = 2r

for some r ∈ N), a message M and a secret key sk = (w, y) ∈ Z∗N × ZN , let
` ∈ {0, . . . , R− 1} the index such that vk` = hy · wN mod N2.

1. Generate a one-time signature key pair (VK,SK) ← OTS.G(1λ) and let

VK′ = AHF(VK) ∈ {0, 1}L. Compute h̄VK =
∏L
j=1 v̄j,VK′[j] mod N̄2.

2. For each j ∈ [r], choose sj ←↩ U(ZN̄), tj ←↩ U(Z∗
N̄

) and compute a

commitment Lj = (1 + N̄)`j · h̄sjVK · tN̄j mod N̄2.

3. Define lbl = VK and compute a NIZK argument π ← P
(
crs,x,w, lbl

)
that x , ((vk0, . . . , vkR−1), (L1, . . . , Lr)) ∈ L1-R

∨ (h, h̄VK) by running the
prover P of Supplementary Material B with the Σ-protocol of Section
4.2 using the witness w = ((`1, . . . , `r), w, (s1, . . . , sr), (t1, . . . , tr)).

4. Generate a one-time signature sig ← OTS.S(SK, (x,M,R,π))).

Output the signature Σ = (VK, (L1, . . . , Lr),π, sig).

Verify(ρ,M,Σ,R) : Given a signature Σ = (VK, (L1, . . . , Lr),π, sig), a message
M and a ring R = {vk0, . . . , vkR−1}, return 0 if these do not parse properly.
Otherwise, let lbl = VK and return 0 if OTS.V(VK, (x,M,R,π), sig) = 0.
Otherwise, run V(crs,x,π, lbl) which outputs 1 iff π is a valid argument
that

(
(vk0, . . . , vkR−1), (L1, . . . , Lr)

)
∈ L1-R

∨ (h, h̄VK).

In Supplementary Material F, we provide concrete efficiency estimations
showing that, in terms of signature length, the above realization competes with
its random-oracle-model counterpart. We now state our main security results.

Theorem 5.1. The above scheme provides unforgeability assuming that: (i) The
one-time signature OTS is strongly unforgeable; (ii) The scheme of Section 3.2
is a secure dense RBM-lossy PKE scheme; (iii) The DCR assumption holds; (iv)
Πuss is an unbounded simulation-sound NIZK argument for the parametrized
language L1-R

∨ .

Proof. To prove the result, we consider a sequence of games starting with the
real unforgeability experiment and ending with a game where we give a direct
reduction from the simulation-soundness of Πuss. In each game, we call Wi the
event that the challenger outputs 1.

30

Game0: This is the real unforgeability experiment. The adversary A receives a
CRS ρ and is granted access to a key generation oracle Keygen, a signing
oracle Sign and a corruption oracle Corrupt. At the i-th query to Keygen, the
challenger returns a verification key of the form vk(i) = hyi ·wNi mod N2 for
some wi ←↩ U(Z∗N), yi ←↩ U(ZN) and keeps sk(i) = (wi, yi) for later use. If
A makes a corruption query Corrupt(i), the challenger reveals sk(i). At each
signing query (i,M,R), the challenger returns ⊥ if R contains a key vk 6∈
Z∗N2 . Otherwise, it runs Σ ← Sign(ρ, sk,M,R) and returns Σ to A. When
A halts, it outputs a triple (M?,R?,Σ?), where R? = {vk?0 , . . . , vk?R−1}
and Σ? = (VK?, (L?1, . . . , L

?
r),π

?, sig?), and the challenger outputs 1 if: (i)
Verify(ρ,M?,Σ?,R?) = 1; (ii) R? only consists of uncorrupted keys pro-
duced by the Keygen oracle; (iii) No signing query (·,M?,R?) was made. By

definition, we have Pr[W0] = Advunforge
A (λ).

Game1: This is like Game0 except that we introduce a failure event. The chal-
lenger initially chooses a random index i? ←↩ U([QV]), where QV is the
number of Keygen-queries. The challenger B outputs 0 if A outputs a forgery
Σ? = (VK?, (L?1, . . . , L

?
r),π

?, sig?) containing a VK? that coincides with a
verification key contained in the output of a signing query of the form (i?, ·, ·).
If the failure event does not occur, the challenger outputs the same result as
in Game0. The strong unforgeability of OTS implies that Pr[W1] cannot no-
ticeably differ from Pr[W0]. We can easily turn B into a one-time-signature
forger such that |Pr[W1]− Pr[W0]| ≤ QV ·QS ·Advots

B (λ).

Game2: This is like Game1 with one change at step 3 of CRSGen. Instead of sam-
pling K ←↩ U(K) uniformly, the challenger runs K ← AdmSmp(1λ, QS , δ)
to generate a key K ∈ {0, 1,⊥}L for an admissible hash function AHF :
{0, 1}`v → {0, 1}L, where QS is an upper bound on the number of signing
queries. Then, the sampled key K is used as an initialization value to gener-
ate (pk, sk, tk)← LKeygen(Γ,K). By the second indistinguishability property
of the dense RBM-lossy PKE scheme (which holds in the statistical sense),
changing the initialization value does not impact A’s view. In particular, the
scheme of Section 3.2 has the property that the distribution of lossy public
keys is perfectly independent of K. It follows that Pr[W2] = Pr[W1].

Game3: This game is like Game2 with one change. When A halts and outputs
Σ? = (VK?, (L?1, . . . , L

?
r),π

?, sig?), the challenger checks if the conditions

FADH(K,VK(1)) = · · · = FADH(K,VK(QS)) = 1 ∧ FADH(K,VK?) = 0 (22)

are satisfied, where VK? is the one-time verification key in the forgery and
VK(1), . . . ,VK(QS) are those involved in signing queries of the form (i?, ·, ·).
If these conditions do not hold, the challenger aborts and returns 0. For sim-
plicity, we assume that B aborts at the beginning of the game if it detects
that there exists j ∈ [QS] such that FADH(K,VK(j)) = 0 (recall that the ver-

ification keys {VK(j)}QSj=1 used in signing queries (i?, ·, ·) can be chosen at the
outset of the game by B). If conditions (22) are satisfied, the challenger re-
turns 1 whenever the challenger of Game2 does. Letting Fail denote the event

31

that B aborts because (22) does not hold, we have W3 = W2 ∧ ¬Fail. Since
K is perfectly independent of the distribution of keys produced by LKeygen,
we can apply Theorem 2.6 to argue that there is a noticeable function δ(λ)
such that Pr[¬Fail] ≥ δ(λ). This implies

Pr[W3] = Pr[W2 ∧ ¬Fail] ≥ δ(λ) · Pr[W2] , (23)

where the inequality stems from the fact that Fail is independent of W1 since
K is statistically independent of A’s view.

We note that, if conditions (22) are satisfied in Game3, the sequence of one-

time verification keys (VK(1), . . . ,VK(QS),VK?) satisfies RBM(K,VK?) = 1 and

RBM(K,VK(j)) = 0 for all j ∈ [QS].

Game4: We modify the distribution of crs. At step 3 of CRSGen, we generate
the keys for R-LPKE as injective keys (pk, sk, tk) ← Keygen(Γ,K) instead
of lossy keys (pk, sk, tk) ← LKeygen(Γ,K). The weak indistinguishability
property (i) of R-LPKE (see Definition 2.10) ensures that Pr[W4] and Pr[W3]
are negligibly far apart. Indeed, we can immediately build a reduction B from
this property of R-LPKE in order to transition from Game3 to Game4. We
thus have |Pr[W4]− Pr[W3]| ≤ Advindist-LPKE-1

B (λ) ≤ AdvDCR(λ).

Game5: In this game, the challenger uses the secret key sk = (p̄, q̄,K) produced
by (pk, sk, tk) ← Keygen(Γ,K) (which contains the factors of N̄ = p̄q̄) to
extract the content of commitments {(L?j , Ā?j)}rj=1 contained in A’s forgery.
Note that, if the conditions (22) introduced in Game3 are satisfied, A’s out-
put Σ? = (VK?, (L?1, . . . , L

?
r),π

?, sig?) involves an injective tag VK?, which
allows extracting the content of all commitments generated for this tag. If
the challenger does not fail, it thus obtains {(`?j , ā?j)}rj=1 and also outputs
0 if there exists j ∈ [r] such that `?j 6∈ {0, 1}. Otherwise, it obtains a string

`?1 . . . `
?
r ∈ {0, 1}r and reconstructs the index `? =

∑r
k=1 `

?
k ·2k−1 ∈ ZR of the

verification key vk?`? = C?`? in the ring R? = {vk?0 , . . . , vk?R−1}. If `?j 6∈ {0, 1}
for some j ∈ [r], the soundness of Πuss (and thus its simulation-soundness)
is broken and we have |Pr[W5]− Pr[W4]| ≤ 2−Ω(λ) + Advuss(λ).

Game6: This game is like Game5 with the following change. Recall that, in
Game1 and subsequent games, the challenger initially chooses a random in-
dex i? ←↩ U([QV]). Now, we let the challenger abort and output 0 if the
verification key vk?`? contained in R? does not coincide with the verification
key vk(i?) returned by the challenger at the i?-th query to the Keygen oracle.
In addition, the challenger aborts and outputs 0 if A makes the corruption
query Corrupt(i?). Otherwise (i.e., if vk?`? = vk(i?) and sk(i?) is not cor-
rupted), the challenger outputs the same bit as in Game5. Since i? is chosen
independently of A’s view, it is correct with probability 1/QV , where QV is
the number of Keygen-queries. We thus have Pr[W6] = Pr[W5]/QV .

32

Game7: This game is identical to Game6 except that, in all signing queries
(i,M,R), such that i = i?,9 the challenger simulates the Sign oracle by run-
ning the NIZK simulator of Πuss instead of using the real witness. Namely,
the commitments {Lj}rj=1 of each signature Σ = (VK, (L1, . . . , Lr),π, sig)

still commit to the binary decomposition (`1, . . . , `r) of vk(i?)’s location in
R but π is simulated without using sk(i?) nor ((`1, . . . , `r), t1, . . . , tr). Recall
that, when h ∈ Z?N2 and h̄ = h̄VK ∈ Z∗

N̄2 have order at least N and N̄ ,
respectively, the trapdoor Σ-protocol of Section 4.2 is statistically special
zero-knowledge. Also, all commitments generated using R-LPKE are per-
fectly hiding when h̄VK has order at least N̄ . Moreover, the latter condition
is met when (22) holds since, in this case, the zero-knowledge simulator com-

putes the commitments (L1, . . . , Lr) and {(Āj , B̄j)}rj=1 on lossy tags VK(j).
The statistical ZK properties of Πuss and the underlying trapdoor Σ-protocol
then ensure that |Pr[W7]− Pr[W6]| ≤ QS · 2−Ω(λ).

Game8: This game is like Game7 except that we change the distribution of
the CRS ρ = (crs, h, pk, Γ,OTS). Instead of sampling h uniformly in Z∗N2 ,
we now choose it as a random N -th residue. Namely, the challenger now
sets h = hN0 mod N2, where h0 ←↩ U(Z∗N). Under the DCR assumption in
Z∗N2 , this changes has no noticeable impact on A’s forging probability and

a straightforward reduction shows that |Pr[W8]− Pr[W7]| ≤ AdvDCR(λ).

We note that, due to the modification introduced in Game8, all public keys
produced by the Keygen oracle live in the subgroup of N -th residues in Z∗N2 .

Game9: We change the distribution of vk(i?) = C(i?) and sample C(i?) ←↩
U(Z∗N2) uniformly instead of sampling it as an N -th residue in Z∗N2 . Since the

secret key sk(i?) is not used in Game8, we can rely on the DCR assumption
in Z∗N2 and argue that |Pr[W9]− Pr[W8]| ≤ AdvDCR(λ).

In Game9, we claim that Pr[W9] ≤ Advuss(λ)+2−Ω(λ) as, except with probabil-
ity 1/N < 2−Ω(λ), the challenger can only output 1 if A breaks the simulation-
soundness of Πuss. Indeed, W9 only occurs if vk?`? = vk(i?) (which implies
that no query Corrupt(i?) was made); π? is a valid argument for the state-
ment ((vk?0 , . . . , vk

?
R−1), (L?1, . . . , L

?
r)) ∈ L1-R

∨ (h, h̄VK?); and no signing query

(i,M?,R?) has been made for any vk(i) ∈ R? (in particular for i = i?). Since
vk`? was sampled uniformly in Z∗N2 , it is not an N -th residue except with prob-

ability 1/N . This shows that, except with probability 2−Ω(λ), W9 only occurs
when π? is an accepting argument for a false statement x? ∈ L1-R

∨ (h, h̄VK?) on
an unqueried label lbl? , VK?.

9 Signing queries (i,M,R) with i 6= i? are still faithfully answered in such a way that
we do not need to rely on erasures when users i 6= i? are corrupted after a signing
query of the form (i, ., .).

33

Putting the above altogether, we can bound the adversary’s advantage as

Advunforge
A (λ) ≤ 1

δ
· (2QV + 1) ·

(
Advuss(λ) + AdvDCR(λ) +QS · 2−Ω(λ)

)
+QS ·QV ·Advots(λ)

where QV is the number of Keygen-queries and QS is the number of signing
queries. ut

The proof of anonymity follows from the fact that all commitments are per-
fectly hiding when the CRS ρ is configured as in the real scheme. The proof of
Theorem 5.2 is identical to that of Theorem E.2 in Supplementary Material E.

Theorem 5.2. The above construction instantiated with the trapdoor Σ-protocol
of Section 4.2 provides full anonymity under key exposure provided Πuss is a
statistical NIZK argument for the language L1-R

∨ (h, h̄VK) of (21) when the order
of h is a multiple of N and the order of h̄VK is a multiple of N̄ .

Acknowledgements

This research was partially funded by the French ANR ALAMBIC project
(ANR-16-CE39-0006). Khoa Nguyen was supported in part by the Gopalakr-
ishnan - NTU PPF 2018, by A*STAR, Singapore under research grant SERC
A19E3b0099, and by Vietnam National University HoChiMinh City (VNU-
HCM) under grant number NCM2019-18-01. Thomas Peters is a research as-
sociate of the Belgian Fund for Scientific Research (F.R.S.-FNRS).

References

1. M. Abe, M. Ohkubo, K. Suzuki. 1-out-of-n signatures from a variety of keys.
Asiacrypt, 2002.

2. M. Abe, M. Ambrona, A. Bogdanov, M. Ohkubo, A. Rosen. Non-Interactive Com-
position of Sigma-Protocols via Share-then-Hash. Asiacrypt, 2020.

3. M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, J. Schneider. Ring signatures:
Logarithmic-size, no setup — from standard assumptions. Eurocrypt, 2019.

4. M. Bellare, D. Hofheinz, S. Yilek. Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. Eurocrypt, 2009.

5. M. Bellare, S. Yilek. Encryption Schemes Secure under Selective Opening Attack.
Cryptology ePrint Archive: Report 2009/101.

6. A. Bender, J. Katz, R. Morselli. Ring Signatures: Stronger Definitions, and Con-
structions without Random Oracles. J. Cryptology, 22(1), 2009.

7. D. Boneh, X. Boyen. Secure identity based encryption without random oracles.
Crypto, 2004.

8. X. Boyen. Mesh signatures. Eurocrypt, 2007.
9. E. Boyle, G. Segev, D. Wichs. Fully leakage-resilient signatures. Eurocrypt, 2011.

10. Z. Brakerski, V. Koppula, T. Mour. NIZK from LPN and trapdoor hash via
correlation intractability for approximable relations. Crypto, 2020.

34

11. Z. Brakerski, Y. Tauman-Kalai. A framework for efficient signatures, ring signa-
tures and identity based encryption in the standard model. Cryptology ePrint
Archive: Report 2010/086, 2010.

12. E. Bresson, J. Stern, M. Szydlo. Threshold ring signatures and applications to
ad-hoc groups. Crypto, 2002.

13. J. Camenisch, V. Shoup. Practical Verifiable Encryption and Decryption of Dis-
crete Logarithms. Crypto, 2003.

14. R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. Rothblum, R. Rothblum. Fiat-
Shamir from simpler assumptions. Cryptology ePrint Archive: Report 2018/1004.

15. R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. Rothblum, R. Rothblum,
D. Wichs. Fiat-Shamir: From practice to theory. STOC, 2019.

16. R. Canetti, Y. Chen, L. Reyzin, and R. Rothblum. Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. Eurocrypt, 2018.

17. R. Canetti, O. Goldreich, S. Halevi. The random oracle methodology, revisted. J.
of the ACM, 51(4), 2004.

18. R. Canetti, A. Lombardi, D. Wichs. Fiat-Shamir: From Practice to Theory, Part
II (NIZK and Correlation Intractability from Circular-Secure FHE). Cryptology
ePrint Archive: Report 2018/1248.

19. D. Cantor, H. Zassenhaus. A new algorithm for factoring polynomials over finite
fields. Mathematics of Computation, 1981.

20. D. Catalano, R. Gennaro, N. Howgrave-Graham, P. Nguyen. Paillier’s cryptosys-
tem revisited. ACM-CCS, 2001.

21. P. Chaidos, J. Groth. Making Sigma-protocols non-interactive without random
oracles. PKC, 2015.

22. N. Chandran, J. Groth, A. Sahai. Ring Signatures of Sub-linear Size Without
Random Oracles. ICALP, 2007.

23. M. Chase, A. Lysyanskaya. On signatures of knowledge. Crypto, 2006.
24. R. Chatterjee, S. Garg, M. Hajiabadi, D. Khurana, X. Liang, G. Malavolta,

O. Pandey, S. Shiehian. Compact Ring Signatures from Learning With Errors.
Crypto, 2021.

25. D. Chaum, T. Pedersen. Wallet databases with observers. Crypto, 1992.
26. A. Choudhuri, P. Hubacek, K. C., K. Pietrzak, A. Rosen, G. Rothblum. Finding

a Nash equilibrium is no easier than breaking Fiat-Shamir. STOC, 2019.
27. M. Ciampi, R. Parisella, D. Ventury. On adaptive security of delayed-input Sigma

protocols and Fiat-Shamir NIZKs. SCN, 2020.
28. G. Couteau, D. Hartmann. Shorter non-interactive zero-knowledge arguments and

ZAPs for algebraic languages. Crypto, 2020.
29. G. Couteau, S. Katsumata, B. Ursu. Non-interactive zero-knowledge in pairing-free

groups from weaker assumptions. Eurocrypt, 2020.
30. R. Cramer, I. Damg̊ard, J.-B. Nielsen. Multiparty computation from threshold

homomorphic encryption. Eurocrypt, 2001.
31. R. Cramer, I. Damg̊ard, B. Schoenmaekers. Proofs of partial knowledge and sim-

plified design of witness hiding protocols. Crypto, 1994.
32. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model.

Eurocrypt, 2000.
33. I. Damg̊ard, N. Fazio, A. Nicolosi. Non-interactive Zero-Knowledge from Homo-

morphic Encryption. TCC, 2006.
34. I. Damg̊ard, M. Jurik. A generalisation, a simplification and some applications of

Paillier’s probabilistic public-key system. PKC, 2001.
35. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, A. Sahai. Robust non-

interactive zero-knowledge. Crypto, 2001.

35

36. Y. Dodis, A. Kiayias, A. Nicolosi, V. Shoup. Anonymous identification in ad hoc
groups. Eurocrypt, 2004.

37. M. Esgin, R. Steinfeld, J. Liu, D. Liu. Lattice-based zero-knowledge proofs: New
techniques for shorter and faster constructions and applications. Crypto, 2019.

38. M. Esgin, R. Zhao, R. Steinfeld, J. Liu, D. Liu. MatRiCT: Efficient, scalable and
post-quantum blockchain confidential transactions protocol. ACM-CCS, 2019.

39. U. Feige, D. Lapidot, A. Shamir. Multiple non-interactive zero-knowledge under
general assumptions. SIAM J. of Computing, 29(1), 1999.

40. A. Fiat, A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. Crypto, 1986.

41. C. Gentry, C. Peikert, V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. STOC, 2008.

42. S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 1989.

43. S. Goldwasser, Y. Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm.
FOCS, 2003.

44. A. González. Shorter ring signatures from standard assumptions. PKC, 2019.
45. M. Green, B.-W. Ladd, I. Miers. A Protocol for Privately Reporting Ad Impressions

at Scale. ACM-CCS, 2016.
46. J. Groth, M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and

spend a coin. Eurocrypt, 2015.
47. L. Guillou, J.-J. Quisquater. A “paradoxical” indentity-based signature scheme

resulting from zero-knowledge. Crypto, 1988.
48. B. Hemenway, B. Libert, R. Ostrovsky, D. Vergnaud. Lossy encryption: Construc-

tions from general assumptions and efficient selective opening chosen ciphertext
security. Asiacrypt, 2011.

49. D. Hofheinz, T. Jager, A. Rupp. Public-Key Encryption with Simulation-Based
Selective-Opening Security and Compact Ciphertexts. TCC, 2016-B.

50. J. Holmgren, A. Lombardi. Cryptographic hashing from strong one-way functions
(or: One-way product functions and their applications). FOCS, 2018.

51. J. Holmgren, A. Lombardi, R. Rothblum. Fiat-Shamir via List-Recoverable Codes
(or: Parallel Repetition of GMW is not Zero-Knowledge). STOC, 2021.

52. T. Jager. Verifiable random functions from weaker assumptions. TCC, 2015.
53. R. Jawale, Y. Tauman-Kalai, D. Khurana, R. Zhang. SNARGs for bounded depth

computations and PPAD hardness from sub-exponential LWE. STOC, 2021.
54. E. Kiltz. Chosen-ciphertext security from tag-based encryption. TCC, 2006.
55. B. Libert, S. Ling, K. Nguyen, H. Wang. Zero-knowledge arguments for lattice-

based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. Eurocrypt, 2016.

56. B. Libert, K. Nguyen, A. Passelègue, R. Titiu. Simulation-sound arguments for
LWE and applications to KDM-CCA2 security. Asiacrypt, 2020.

57. B. Libert, T. Peters, C. Qian. Logarithmic-size ring signatures with tight security
from the DDH assumption. ESORICS, 2018.

58. H. Lipmaa. Optimally Sound Sigma Protocols Under DCRA. FC, 2017.
59. A. Lombardi, V. Vaikuntanathan. PPAD-hardness and VDFs based on iterated

squaring, in the standard model. Crypto, 2020.
60. G. Malavolta, D. Schröder. Efficient ring signatures in the standard model. Asi-

acrypt, 2017.
61. P. Mohassel. One-time signatures and chameleon hash functions. SAC, 2010.
62. S. Noether. Ring signature confidential transactions for monero. Cryptology ePrint

Archive Report 2015/1098, 2015.

36

63. T. Okamoto, S. Uchiyama. A New Public-Key Cryptosystem as Secure as Factor-
ing. Eurocrypt, 1998.

64. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
Eurocrypt, 1999.

65. S. Park, A. Sealfon. It wasn’t me! repudiability and unclaimability of ring signa-
tures. Crypto, 2019.

66. R. Pass. Unprovable security of perfect NIZK and non-interactive non-malleable
commitments. TCC, 2013.

67. C. Peikert, S. Shiehian. Non-interactive zero knowledge for NP from (plain) Learn-
ing With Errors. Crypto, 2019.

68. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
STOC, 2005.

69. R. Rivest, A. Shamir, Y. Tauman. How to Leak a Secret. Asiacrypt, 2001.
70. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-

ciphertext security. FOCS, 1999.
71. H. Shacham, B. Waters. Efficient ring signatures without random oracles. PKC,

2007.
72. Y. Tauman Kalai, G. Rothblum, R. Rothblum. From obfuscation to the security

of Fiat-Shamir for proofs. Crypto, 2017.
73. A. Young, M. Yung. Questionable encryption and its applications. Mycrypt, 2005.

37

Supplementary Material

A Non-Interactive Zero-Knowledge and Simulation-
Sound Arguments

We recall the definitions of NIZK proofs. Since it is sufficient for our applica-
tions, we allow the common reference string to be generated as a function of the
language L.

In addition, we consider NIZK argument systems where each argument comes
with a label lbl taken as input by both the prover and the verifier.

Definition A.1. A non-interactive zero-knowledge (NIZK) argument system Π
for a language L associated with an NP relations R consists of four PPT algo-
rithms (Genpar,GenL,P,V) with the following syntax:

• Genpar(1
λ) takes as input a security parameter λ and outputs public param-

eters par.
• GenL(1λ,L, τL) takes as input a security parameter λ, the description of L

which specifies a statement length N , and a membership testing trapdoor τL
for L. It outputs the language-dependent part crsL of the common reference
string crs = (par, crsL).

• P(crs, x, w, lbl) is a proving algorithm taking as input the common reference
string crs, a statement x ∈ {0, 1}N , a witness w such that (x,w) ∈ R and a
label lbl. It outputs a proof π.

• V(crs, x, π, lbl) is a verification algorithm taking as input a common reference
string crs, a statement x ∈ {0, 1}N , and a proof π. It outputs 1 or 0.

Moreover, Π should satisfy the following properties. For simplification we denote
below by Setup an algorithm that runs successively Genpar and GenL to generate
a common reference string.

• Completeness: For any (x,w) ∈ R and any lbl ∈ {0, 1}∗, we have

Pr
[
crs← Setup(1λ,L),

π ← P(crs, x, w, lbl) : V(crs, x, π, lbl) = 1
]
≥ 1− negl(λ).

• Soundness: For any x ∈ {0, 1}N \ L and any PPT prover P ∗, we have

Pr
[
crs← Setup(1λ,L), (π, lbl)← P ∗(crs, x) : V(crs, x, π, lbl) = 1

]
≤ negl(λ).

• Zero-Knowledge: There is a PPT simulator (Sim0,Sim1) such that, for
any PPT adversary A, we have

|Pr[crs← Setup(1λ,L) : 1← AP(crs,·,·)(crs)]

− Pr[(crs, τzk)← Sim0(1λ,L) : 1← AO(crs,τzk,·,·)(crs)]| ≤ negl(λ).

38

Here, P(crs, ·, ·) is an oracle that outputs ⊥ on input of (x,w, lbl) 6∈ R and
outputs a valid proof π ← P(crs, x, w, lbl) otherwise; O(crs, τzk, ·, ·) is an ora-
cle that outputs ⊥ on input of (x,w, lbl) such that (x,w) /∈ R and outputs a
simulated argument π ← Sim1(crs, τzk, x, lbl) on input of (x,w, lbl) such that
(x,w) ∈ R. Note that this simulated proof π is generated independently of
the witness w provided as input.10

The notion of soundness captured by Definition A.1 is non-adaptive in that
the statement is given as input to the dishonest prover and chosen independently
of the common reference string. The stronger notion of adaptive soundness al-
lows the target statement to be chosen by the adversary after having received the
common reference string. It is known (see, e.g., [66]) that perfect or statistical
NIZK arguments cannot provide adaptive soundness under falsifiable assump-
tions. The reason lies in the impossibility of recognizing when the adversary wins
and outputs a proof for a false statement. One way to bypass the impossibility
results is to consider trapdoor languages, where a trapdoor can be used to rec-
ognize false statements. In our application to ring signatures, we will consider a
notion of adaptive soundness for trapdoor languages.

Definition A.1 captures a notion of multi-theorem zero-knowledge, which al-
lows the adversary to obtain proofs for multiple statements. Feige et al. [39]
gave a generic transformation of a multi-theorem NIZK argument system from
a single-theorem one (where the adversary can only invoke the oracle once).

Simulation-Soundness. We now recall the definition of simulation-soundness
introduced in [70], which informally captures the adversary’s inability to create
a new proof for a false statement x? even after having seen simulated proofs for
possibly false statements {xi}i of its choice.

In the following, in order to allow a challenger to efficiently check the win-
ning condition (ii) in the security experiment, we restrict ourselves to trapdoor
languages, where a language-specific trapdoor τL makes it possible to determine
if a given statement x? ∈ {0, 1}N belongs to the language L with overwhelming
probability. This restriction has no impact on our applications where we always
have a membership testing trapdoor τL at our disposal.

Definition A.2 ([70,35]). Let a language L. A NIZK argument system for L
provides unbounded simulation soundness if no PPT adversary has notice-
able advantage in this game.

1. The challenger chooses a membership testing trapdoor τL that allows recog-
nizing elements of L. Let Sim = (Sim0,Sim1) be an efficient NIZK simulator
for L. The challenger runs (crs, τzk)← Sim0(1λ,L) and gives (crs, τL) to the
adversary A.

2. The adversary A is given oracle access to Sim1(crs, τzk, ·, ·). At each query,
A chooses a statement x ∈ {0, 1}N and a label lbl ∈ {0, 1}∗. It obtains a
simulated argument π ← Sim1(crs, τzk, x, lbl).

10 In particular, Sim1 can be run on any statement x, even x /∈ L.

39

3. A outputs (x?, lbl?, π?).

Let Q be the set of all simulation queries and responses (xi, lbli, πi) made by
A to Sim1(crs, τzk, ·, ·). The adversary A wins if the following conditions are
satisfied: (i) (x?, lbl?, π?) 6∈ Q; (ii) x? 6∈ L; and (iii) V(crs, x?, π?, lbl?) = 1. The
adversary’s advantage Advuss

A (λ) is its probability of success taken over all coin
tosses.

B Simulation-Sound NIZK Arguments from Trapdoor
Σ-Protocols

In [56], the authors construct unbounded simulation-sound NIZK arguments by
combining a trapdoor Σ-protocol and an R-lossy public-key encryption scheme.

B.1 The Argument System

In order to apply the construction of [56] to trapdoor Σ-protocols with r bad
challenges, we need a CI hash function for efficiently enumerable relations R ⊆
X × Y where, for each x ∈ Y, the set Yx = {y ∈ Y | (x, y) ∈ R} has cardinality
at most |Yx| ≤ r and is efficiently computable from x.

The hash function of Peikert and Shiehian [67] provides this property. They
provide a correlation intractable hash function for efficiently searchable relations.
The bootstrapping theorem of [67] actually implies the existence of such a hash
family under the LWE assumption with polynomial approximation factors. In
[18], it was further observed that any CI hash function for efficiently searchable
relations is also correlation intractable for efficiently enumerable relations.

The construction hereunder thus adapts [56] using the following ingredients:

- A trapdoor Σ-protocol Π′ = (Gen′par,Gen′L,P
′,V′) for the same language

L with challenge space C = {0, 1}λ and which satisfies the properties of
Definition 2.8. This language is assumed to be a trapdoor language in that its
description can be sampled with a trapdoor τL allowing to test membership
of L. In addition, BadChallenge(τΣ , crs, x,a) should be computable within
time T ∈ poly(λ) for any input (τΣ , crs, x,a).

- A strongly unforgeable one-time signature scheme OTS = (G,S,V) with
verification keys of length `v ∈ poly(λ).

- An admissible hash function AHF : {0, 1}`v → {0, 1}L, for some L ∈ poly(λ)
with L > `v, which induces the relation RBM : {0, 1,⊥}L×{0, 1}`v → {0, 1}.

- An R-lossy PKE scheme R-LPKE = (Par-Gen,Keygen, LKeygen,Encrypt,
Decrypt, Opener, LOpener) for the relation RBM : {0, 1,⊥}L × {0, 1}L →
{0, 1} with public (resp. secret) key space PK (resp. SK). We assume that
Decrypt is computable within time T . We denote the message (resp. cipher-
text) space by MsgSp (resp. CtSp) and the randomness space by RLPKE. Let
also DLPKE

R denote the distribution from which the random coins of Encrypt
are sampled.

40

- A correlation intractable hash family H = (Gen,Hash) with output length λ
for the class RCI of relations that are efficiently enumerable within time T .

It is required that P′ outputs a first prover message a which fits in the message
space MsgSp of R-LPKE.

The argument system Πuss = (Genpar,GenL,P,V) allows P and V to input a
label lbl consisting of public data that can be bound to non-interactive arguments
in a non-malleable way. The construction proceeds as follows.

Genpar(1λ): Run par← Gen′par(1
λ) and output par.

GenL(par,L): Given public parameters par and a language L ⊂ {0, 1}N , the
CRS is generated as follows.

1. Generate a CRS crs′L ← Gen′L(par,L) for the trapdoor Σ-protocol Π′.
2. Choose a random member AHF : {0, 1}`v → {0, 1}L of an admissible

hash function family.
3. Generate public parameters Γ ←↩ Par-Gen(1λ, 1L, 1B) for the RBM-lossy

PKE scheme where RBM : K × T → {0, 1} is the bit-matching relation
and B ∈ poly(λ) is the length of the first prover messages. Given the
spaces K = {0, 1,⊥}L and T = {0, 1}L specified by Γ , choose a ran-
dom initialization value K ← K and generate lossy keys (pk, sk, tk) ←
LKeygen(Γ,K).

4. Generate a key k ← Gen(1λ) for a correlation intractable hash function
with output length λ.

Output the language-dependent crsL :=
(
crs′L, k

)
and the simulation trap-

door τzk := sk, which is the lossy secret key of R-LPKE. The global common
reference string consists of crs = (par, crsL, pk,AHF,OTS).

P(crs, x, w, lbl) : To prove a statement x for a label lbl ∈ {0, 1}∗ using w ∈ R(x),
generate a one-time signature key pair (VK,SK)← G(1λ). Then,

1. Compute
(
a′, st′

)
← P′(crs′L, x, w) using the prover of Π′. Then, compute

a← Encrypt(pk,AHF(VK),a′; r) using random coins r←↩ DLPKE
R .

2. Compute Chall = Hash(k, (x,a,VK)) ∈ {0, 1}λ.
3. Compute z′ = P′(crs′L, x, w,a

′,Chall, st′). Define z = (z′,a′, r).
4. Generate sig ← S(SK, (x, z, lbl)) and output π =

(
VK, z, sig

)
.

V(crs, x,π, lbl) : Given a statement x, a label lbl as well as a purported proof
π =

(
VK, (a, z), sig

)
, return 0 if V(VK, (x, z, lbl), sig) = 0. Otherwise,

1. Write z as z = (z′,a′, r) and return 0 if they do not parse properly (in
particular, if r 6∈ RLPKE). Otherwise, set a = Encrypt(pk,AHF(VK),a′; r).

2. Let Chall = Hash
(
k, (x,a,VK)

)
. If V′(crs′L, x, (a

′,Chall, z′)) = 1, return
1. Otherwise, return 0.

The NIZK simulator uses a technique due to Damg̊ard [32], which uses a
trapdoor commitment scheme to achieve a straight-line simulation of 3-move
zero-knowledge proofs in the common reference string model.

41

Theorem B.1 ([56]). The above argument is multi-theorem zero-knowledge if
the trapdoor Σ-protocol Π′ is special zero-knowledge.

Proof. The proof was given in [56, Theorem 3.3]. For completeness, we recall the
simulator (Sim0,Sim1) which uses the lossy secret key τzk = sk of R-LPKE to
simulate transcripts (a,Chall, z) without using the witnesses. Namely, on input
of par← Genpar(1

λ), Sim0 generates crsL by proceeding identically to GenL while
Sim1 is described hereunder.

Sim1(crs, τzk, x, lbl): On input a statement x ∈ {0, 1}N , a label lbl and the sim-
ulation trapdoor τzk = sk, algorithm Sim1 proceeds as follows.

1. Generate a one-time signature key pair (VK,SK) ← G(1λ). Let 0|a
′|

the all-zeroes string of the same length as the first prover message of
Π′. Compute a ← Encrypt(pk,AHF(VK),0|a

′|; r0) using random coins
r0 ←↩ DLPKE

R independently sampled from the distribution DLPKE
R .

2. Compute Chall = Hash(k, (x,a,VK)) ∈ {0, 1}λ.
3. Run the ZK simulator (a′, z′) ← ZKSim(crs′L, x,Chall) of Π′ to obtain a

simulated transcript (a′,Chall, z′) of Π′ for the challenge Chall ∈ {0, 1}λ.
4. Using the lossy secret key sk of R-LPKE, compute random coins r ←

LOpener(pk, sk,AHF(VK),a,0|a
′|,a′, r0) which explain a as an encryption

of a′ under the tag AHF(VK). Then, define z =
(
z′,a′, r

)
.

5. Generate a one-time signature sig ← S(SK, (x, z, lbl)) and output the
proof π =

(
VK, z, sig

)
.

We refer to [56, Theorem 3.3] for a proof that the simulation is indistinguishable
from a real argument. In particular, the proof shows that zero-knowledge holds
in the statistical sense if Π′ is statistically special ZK. ut

Theorem B.2 states the unbounded simulation-soundness property. The proof
is identical to that of [56, Theorem 3.4] with a slight modification since we
consider efficiently enumerable relations (and not only unique-output efficiently
searchable relations). The difference with the proof of [56] is just syntactical
since we need a BadChallenge function that outputs an enumerable set instead
of a single element of the challenge space.

As in [56], the proof uses the R-lossy PKE scheme as a trapdoor commitment
to equivocate lossy encryptions of the first prover message in Π′ while forcing
the adversary’s fake proof to take place on an extractable commitment.

Theorem B.2. The above non-interactive argument system provides unbounded
simulation-soundness if: (i) OTS is a strongly unforgeable one-time signature;
(ii) R-LPKE is an RBM-lossy PKE scheme; (iii) H is correlation-intractable for
all relations that are enumerable within time T , where T denotes the maximal
running time of algorithms BadChallenge(·, ·, ·, ·) and Decrypt(·, ·, ·).

Proof. We consider a sequence of games where, for each i, we define a variable
Wi ∈ {true, false} where Wi = true if and only if the adversary wins in Gamei.

42

Game0: This is the real game of Definition A.2. Namely, the challenger runs
(crs, τzk) ← Sim0(par, 1N) and gives crs = (par, crsL, Γ, pk,AHF, Πots) to the
adversary A. At the same time, the challenger generates a trapdoor τL for
the language L in such a way that it can efficiently test if A’s output sat-
isfies the winning condition (ii). The adversary is granted oracle access to
Sim1(crs, τzk, ·, ·). At each query, A chooses a statement x ∈ {0, 1}N with
a label lbl and the challenger replies by returning a simulated argument
π ← Sim1(crs, τzk, x, lbl). When A halts, it outputs a triple (x?,π?, lbl?),
where π? =

(
VK?, z?, sig?

)
. The Boolean variable W0 is thus set to W0 =

true under the following three conditions: (i) (x?, lbl?,π?) 6∈ Q, where

Q = {(xi, lbli,πi)}Qi=1 denotes the set of queries to Sim1(crs, τzk, ·, ·) and

the corresponding responses πi =
(
VK(i), zi = (z′i,a

′
i, ri), sigi

)
; (ii) x? 6∈ L;

and (iii) V (crs, x?,π?, lbl?) = 1. We may assume w.l.o.g. that the one-time

verification keys {VK(i)}Qi=1 are chosen ahead of time at the beginning of the
game. By definition we have Advuss

A (λ) = Pr[W0].

Game1: This is like Game0 except that the challenger B sets W1 = false if
A outputs a fake proof (x?,π?, lbl?), where π? =

(
VK?, z?, sig?

)
contains a

VK? that coincides with the verification key VK(i) contained in an output
πi =

(
VK(i), zi, sigi

)
of Sim1(crs, τzk, ·, ·). The strong unforgeability of OTS

implies that Pr[W1] cannot noticeably differ from Pr[W0]. We can easily turn
B into a forger such that |Pr[W1]− Pr[W0]| ≤ Advots

B (λ).

Game2: This game is like Game1 with the following changes. At step 2 of GenL,
the challenger runs K ← AdmSmp(1λ, Q, δ) to generate a key K ∈ {0, 1,⊥}L
for an admissible hash function AHF : {0, 1}`v → {0, 1}L, where Q is an
upper bound on the number of adversarial queries. By the second indis-
tinguishability property of the RBM-lossy PKE scheme (which holds in the
statistical sense), we know that changing the initialization value does not
significantly affect A’s view. It follows that |Pr[W2]− Pr[W1]| ≤ 2−Ω(λ).

Game3: This game is identical to Game2 with one modification. When the ad-
versary halts and outputs x?, the challenger checks if the conditions

FADH(K,VK(1)) = · · · = FADH(K,VK(Q)) = 1 ∧ FADH(K,VK?) = 0 (24)

are satisfied, where VK? is the one-time verification key in the adversary’s
output and VK(1), . . . ,VK(Q) are those in adversarial queries. If these condi-
tions do not hold, the challenger aborts and sets W3 = false. For simplicity,
we assume that B aborts at the very beginning of the game if it detects that
there exists i ∈ [Q] such that FADH(K,VK(i)) = 0 (recall that {VK(i)}Qi=1

are chosen at the outset of the game by B). If conditions (24) are satisfied,
the challenger sets W3 = true whenever W1 = true. Letting Fail denote the
event that B aborts because (24) does not hold, we have W3 = W2 ∧ ¬Fail.
Since the key K of the admissible hash function is statistically independent
of the adversary’s view, we can apply Theorem 2.6 to argue that there is a
noticeable function δ(λ) such that Pr[¬Fail] ≥ δ(λ). This implies

Pr[W3] = Pr[W2 ∧ ¬Fail] ≥ δ(λ) · Pr[W2] , (25)

43

where the inequality stems from the fact that Fail is independent of W1 since
K is statistically independent of A’s view.

We note that, if conditions (24) are satisfied in Game3, the sequence of one-time

verification keys (VK(1), . . . ,VK(Q),VK?) satisfies RBM(K,AHF(VK?)) = 1 and

RBM(K,AHF(VK(i))) = 0 for all i ∈ [Q].

Game4: We modify the oracle Sim1(crs, τzk, ·, ·) and by exploiting the equivoca-
tion property of R-LPKE for lossy tags (instead of lossy keys). At the i-th

query (xi, lbli) to Sim1(crs, τzk, ·, ·), we must have FADH(K,VK(i)) = 1 (mean-

ing that VK(i) is a lossy tag as RBM(K,VK(i)) = 0) if B did not abort. This
allows B to equivocate a using the trapdoor key tk instead of the lossy secret
key sk of R-LPKE. Namely, at step 4 of Sim1, the modified Sim1(crs, τzk, ·, ·)
oracle computes random coins

ri ← Opener
(
pk, tk,AHF(VK(i)),ai,0

|a′i|,a′i, ri,0
)

instead of running LOpener using sk. We define the variable W4 exactly
as W3. Since Opener and LOpener output samples from statistically close
distributions on all lossy tags VK(i), this implies |Pr[W4]−Pr[W3]| ≤ 2−Ω(λ).

Game5: We now modify the distribution of crs. At step 2 of Gen, we generate
the keys for R-LPKE as injective keys (pk, sk, tk) ← Keygen(Γ,K) instead
of lossy keys (pk, sk, tk)← LKeygen(Γ,K). The indistinguishability property
(i) of R-LPKE ensures that Pr[W5] and Pr[W4] are negligibly far apart. Re-
call that this indistinguishability property ensures that the distributions of
pairs (pk, tk) produced by Keygen and LKeygen are computationally indistin-
guishable. We can thus easily build a distinguisher B against R-LPKE that
bridges between Game4 and Game5 (by using tk to simulate Sim1(crs, τzk, ·, ·)
as in Game4). It comes that |Pr[W5]− Pr[W4]| ≤ Advindist-LPKE

B (λ).

Due to the modification introduced in Game5, if the conditions (24) are sat-
isfied, we have RBM(K,AHF(VK?)) = 1, meaning that the adversary’s fake proof
π? =

(
VK?, z? = (z′

?
,a′

?
, r?), sig?

)
involves an injective tag VK?. Since pk is

now an injective key, this implies that a? = Encrypt(pk,AHF(VK?),a′
?
; r?) is an

injective encryption of a′
?

under the tag VK? using the randomness r?.

Game6: We change the distribution of crs =
(
par, (crs′L, k), pk,AHF,OTS

)
by

relying on the CRS indistinguishability property of the trapdoor Σ-protocol
Π′. Namely, we use the TrapGen′ algorithm of Definition 2.8 to generate
crs′L as (crs′L, τΣ)← TrapGen′(par,L, τL) instead of crs′L ← Gen′L(par,L). We

immediately have |Pr[W6]− Pr[W5]| ≤ Advindist-Σ
A (λ).

We note that the trapdoor τΣ produced by TrapGen′ in Game6 can be used in
later games to compute the BadChallenge function of the trapdoor Σ-protocol Π′.
To evaluate BadChallenge, we also use the secret key sk produced by (pk, sk, tk)←
Keygen(Γ,K) which allows decrypting a? when RBM(K,AHF(VK?)) = 1.

44

Game7: In this game, we use the decryption algorithm of R-LPKE. If B did not
fail, we know that A’s output π? =

(
VK?, z? = (z′

?
,a′

?
, r?), sig?

)
involves

an injective tag VK?, so that a? = Encrypt(pk,AHF(VK?),a′
?
; r?) is a sta-

tistically binding commitment to a′
?
. With probability 2−Ω(λ), there thus

exists only one message a′
?

such that a? = Encrypt(pk,AHF(VK?),a′
?
; r?)

for some r? ∈ RLPKE. We thus consider the relation Rbad defined by(
(x,a,VK),Chall

)
∈ Rbad ⇔ x 6∈ L ∧ (26)

Chall ∈ BadChallenge
(
τΣ , crs′L, x,Decrypt(sk,AHF(VK),a)

)
.

We now set W7 = false if

Hash(k, (x?,a?,VK?))

6∈ BadChallenge
(
τΣ , crs′L, x

?,Decrypt(sk,AHF(VK?),a?)
)
, (27)

where a? = Encrypt(pk,AHF(VK?),a′?; r?), and W7 = W6 otherwise. The
decryption property under injective tags implies |Pr[W7]−Pr[W6]| ≤ 2−Ω(λ)

since, unless a? does not decrypt to a′
?
, π? cannot correctly verify if (27)

holds.

In Game7, we claim that Pr[W7] ≤ AdvCI
A (λ) since, if we had

Hash(k, (x?,a?,VK?)) ∈ BadChallenge
(
τΣ , crs′L, x

?,Decrypt(sk,AHF(VK?),a?)
)
,

it would break the correlation-intractability of H for the relation Rbad.

Putting the above altogether, we obtain

Advuss
A (λ) ≤ 2−Ω(λ) + Advots

B (λ) +
1

δ(λ)
·
(
Advindist-LPKE

B (λ)

+ Advindist-Σ
B (λ) + AdvCI

B (λ) + 2−Ω(λ)
)
,

which completes the proof. ut

C Security Definitions for Ring Signatures

The correctness requirement is formalized as follows.

Definition C.1 (Correctness). A ring signature scheme (CRSGen,Keygen,
Sign,Verify) is correct if, for any ρ← CRSGen(1λ), any (vk, sk)← Keygen(ρ), any
R s.t. vk ∈ R, any M ∈ {0, 1}∗, we have Verify

(
ρ,M, Sign(ρ, sk,M,R),R

)
= 1.

A ring signature is unforgeable with respect to insider corruption if it is
infeasible to forge a ring signature without controlling one of the ring members.

45

Definition C.2 (Unforgeability w.r.t. insider corruption). A ring signa-
ture scheme (CRSGen,Keygen,Sign,Verify) is unforgeable w.r.t. insider corrup-
tion if for any PPT adversary A,

Advunforge
A (λ) := Pr[ρ← CRSGen(1λ); (M?, R?, Σ?)← AKeygen,Sign,Corrupt(ρ) :

Verify(ρ,M?, Σ?, R?) = 1] ∈ negl(λ),

where:

– Keygen on the i-th query runs (vk(i), sk(i))← Keygen(ρ) and returns vk(i).
– Sign(i,M,R) returns the output of Sign(ρ, sk(i),M,R) if: (i) (vk(i), sk(i)) has

been generated by Keygen; (ii) vk(i) ∈ R. Otherwise, it returns ⊥.
– Corrupt(i) returns sk(i) if (vk(i), sk(i)) was generated by Keygen.
– A outputs (M?,R?, Σ?) such that Sign(·,M?,R?) has not been queried. More-

over, R? is non-empty and only contains public keys vk(i) generated by
Keygen and such that no query Corrupt(i) was made.

Definition C.3. A ring signature scheme (CRSGen,Keygen,Sign,Verify) pro-
vides statistical anonymity if, for any (possibly unbounded) adversary A,∣∣∣∣∣Pr

[
ρ← CRSGen(1λ); (M?, i0, i1,R

?)← AKeygen(·)(ρ)

b
$←− {0, 1};Σ∗ ← Sign(ρ, skib ,M

?, R?)
: A(Σ?) = b

]
− 1

2

∣∣∣∣∣ ∈ negl(λ)

where vki0 , vki1 ∈ R? and were both generated by the Keygen oracle.

We note that the definition of anonymity under full key exposure [6] requires
that the random coins of Keygen be revealed to the adversary. In our setting,
it does not make a difference since we assume unbounded adversaries. We also
insist that we do not assume any upper bound on the size of a ring.

D Deferred Material for the Trapdoor Σ-Protocols of
Section 4

D.1 Trapdoor Σ-Protocols With Small Challenge Space for
Linearly Homomorphic Encryptions of 0

We first observe that any encryption scheme which is additively homomorphic
over its message and randomness spaces has a direct trapdoorΣ-protocol proving
that a ciphertext encrypts 0.

We consider additively homomorphic encryption schemes (K, E ,D) where
the message spaceM, the randomness space R and the ciphertext space C form
groups (M,+), (R,+) and (C, ·) for operations + and ·, respectively. For any
public key pk produced as (pk, sk) ← K(1λ), any messages m1,m2 ∈ M and
randomness r1, r2 ∈ R, we require that

Epk(m1; r1) · Epk(m2; r2) = Epk(m1 +m2; r1+r2).

46

In addition, we assume that the order |R| of the group (R,+) is public and that
this group is efficiently samplable. We describe a trapdoor Σ-protocol for the
language L := {c ∈ C | ∃r ∈ R : c = Epk(0; r)}.

Genpar(1λ) : Define public parameters par = {λ, t} consisting of a security pa-
rameter λ ∈ N and an integer t = O(log λ) that defines a challenge space
{0, 1}t such that all prime divisors of |M| are strictly larger than 2t.

GenL(par,L) : Given public parameters par as well as a description of a lan-
guage L which specifies a public key pk produced by K, define the language-
dependent crsL = {pk}. The global common reference string is

crs =
(
pk, crsL

)
.

TrapGen(par,L, τL) : Given par, the description of a language L that speci-
fies a public key produced by (pk, sk) ← K(1λ), and a membership-testing
trapdoor τL = sk consisting of a secret key underlying pk, output crs =(
pk, crsL

)
, which defines crs =

(
pk, crsL

)
, and the trapdoor τΣ = sk.

P
(
crs, x, w

)
↔ V(crs, x) : Given crs, a statement x = Epk(0;w) for some w ∈ R,

the prover P and the verifier V interact in the following way.

1. P chooses r ← R and sends a = Epk(0; r) to V .

2. V sends a random challenge Chall ∈ {0, 1}t, which is interpreted as an
integer in {0, 1, . . . , 2t − 1}.

3. P computes the response z = r + Chall · w ∈ R and sends it to V .
4. V checks if z ∈ R and a · xChall = Epk(0; z). If these conditions do not

both hold, V halts and returns ⊥.

BadChallenge
(
par, τΣ , crs, x, a

)
: Given τΣ = sk, parse the first prover message

as a ∈ C and return ⊥ if it does not parse properly. Otherwise, if there exists
j ∈ {0, 1, . . . , 2t − 1} such that Dsk(a · xj) = 0, return Chall = j. If no such
j exists, return Chall =⊥.

When the above construction is instantiated using the Elgamal encryption
scheme, we obtain a variant of the Chaum-Pedersen protocol [25] that allows
proving the equality of discrete logarithms. The latter protocol was previously
shown [27] to be a trapdoor Σ-protocol with binary challenges. Here, we ob-
serve that the challenge space can actually be of size O(log λ) while keeping
BadChallenge efficient.

Lemma D.1. The above construction is a trapdoor Σ-protocol for L.

Proof. The CRS indistinguishability follows immediately from the fact that both
the real CRS produced by GenL and the one generated by TrapGen have exactly
the same distribution.

We next prove the special ZK property by providing a transcript simulator.
Given as inputs crs, a statement x ∈ C and a challenge Chall ∈ {0, 1}, the
simulator first samples z ←↩ U(R) uniformly, computes a = E(0; z) · x−Chall and
outputs (a, z). Since we assumed that (R,+) is efficiently samplable and has

47

public order, z is distributed as in the real protocol: in both the real protocol and
the simulation, a is uniquely determined by the challenge Chall, the statement
x and the response z. Hence, if x ∈ L, the simulated transcript (a,Chall, z) is
statistically close to a real transcript with challenge Chall.

Soundness follows from the homomorphism. The verification equations of two
valid transcripts (a,Chall0, z0), (a,Chall1, z1) imply xChall1−Chall0 = E(0; z1 − z0),
where we assume w.l.o.g. that Chall1 > Chall0. Since Chall1 − Chall0 is co-prime
with the group order |M|, this implies that x ∈ L.

We finally show that BadChallenge provides the correct result. Let x /∈ L be
a false statement. Note that we cannot simultaneously have Dsk(a · xi) = 0 and
Dsk(a ·xj) = 0 for distinct i, j ∈ {0, 1, . . . , 2t−1} as the additively homomorphic
property would imply Dsk(x

j−i) = 0, which would contradict the hypothesis that
x /∈ L since gcd(j − i, |M|) = 1.

Therefore, BadChallenge can always compute the only Chall ∈ {0, 1, . . . , 2t−1}
for which a valid response exists after 2t = poly(λ) executions of Dsk(·). ut

D.2 Trapdoor Σ-Protocol Showing Composite Residuosity

The trapdoor Σ-protocol in Supplementary Material D.1 supports polynomial-
size challenge spaces and thus requires Θ(λ/ log λ) repetitions to ensure sound-
ness. In the case of Paillier [64] and Damg̊ard-Jurik [34] systems, we give similar
trapdoor Σ-protocol with an exponentially large challenge space. In Damg̊ard-
Jurik, for an integer ζ > 1 and an RSA modulus N = pq, proving that a
ciphertext encrypts 0 is equivalent to proving that an element of Z∗Nζ+1 is an
Nζ-th residue. Paillier [64] is a special case with ζ = 1.

The trapdoor Σ-protocol below can be seen as an extension (based on stan-
dard Σ-protocols from [47,34]) with a large challenge space of the trapdoor
Σ-protocol given in [18, Section 6.2] for the Quadratic Residuosity language.
However, the challenge space is now {0, . . . , 2λ − 1}, so that we obtain (to our
knowledge) the first trapdoor Σ-protocol with exponentially large challenges.

Let an RSA modulus N = pq and an integer ζ > 1. We give a trapdoor

Σ-protocol for LDCR := {x ∈ Z∗Nζ+1 | ∃w ∈ Z?N : x = wN
ζ

mod Nζ+1}. In order
for BadChallenge to identify bad challenges for any x 6∈ LDCR, one difficulty is the
case of instances x ∈ Z∗Nζ+1 that decrypt to αx ∈ ZNζ such that gcd(αx, N

ζ) > 1
since we cannot identify a unique bad challenge by inverting αx in ZNζ . How-
ever, an observation from [58, Theorem 2] shows that, even in this case, the bad
challenge is efficiently computable since min(p, q) > 2λ. A difference with [58] is
that Lipmaa applied this idea to the Elgamal-Paillier cryptosystem [13], where
not all elements of the ciphertext space are in the range of the encryption algo-
rithm. In Supplementary Material D.3, we point out that the ability to identify
bad challenges crucially relies on all elements of Z∗Nζ+1 being Damg̊ard-Jurik
encryptions of some message m ∈ ZNζ .

Genpar(1λ) : Given the security parameter λ, define par = {λ}.
GenL(par,LDCR) : Given public parameters par and the description of a language
LDCR, consisting of an RSA modulus N = pq with p and q prime satisfying

48

p, q > 2l(λ), for some polynomial l : N → N such that l(λ) > λ, define the
language-dependent crsL = {N}. The global CRS is crs = ({λ}, crsL).

TrapGen(par,LDCR, τL) : Given the same inputs as GenL and a membership-
testing trapdoor τL = (p, q), output crs =

(
{λ}, crsL = {N}

)
and the trap-

door τΣ = (p, q).

P
(
crs, x, w

)
↔ V(crs, x) : Given a crs, a statement x = wN

ζ

mod Nζ+1, P (who
has the witness w ∈ Z?N) and V interact as follows:

1. P chooses a random r ←↩ U(Z∗N) and sends a = rN
ζ

mod Nζ+1 to V .
2. V sends a random challenge Chall←↩ U({0, . . . , 2λ − 1}) to P .
3. P computes the response z = r · wChall mod N and sends it to V .

4. V returns 1 if a · xChall ≡ zNζ (mod Nζ+1) and 0 otherwise.

BadChallenge
(
par, τΣ , crs, x, a

)
: Given τΣ = (p, q), decrypt x and a to obtain

αx = DτΣ (x) ∈ ZNζ , αa = DτΣ (a) ∈ ZNζ . If αx = 0, return Chall =⊥.
Otherwise, let dx = gcd(αx, N

ζ).

a. If 1 < dx < Nζ , return ⊥ if dx does not divide Nζ − αa.

b. Otherwise, the congruence αa + Chall · αx ≡ 0 (mod Nζ

dx
) has a unique

solution Chall′ = −α−1
x · αa ∈ ZNζ/dx since gcd(αx, N

ζ/dx) = 1. If

Chall′ ∈ ZNζ/dx \ {0, . . . , 2λ − 1}, return ⊥. Else, return Chall = Chall′.

Lemma D.2 now shows that the above construction is a trapdoor Σ-protocol
with large challenge space. By applying [67], this implies relatively short NIZK
arguments (i.e., without using parallel repetitions to achieve negligible soundness
error) for the language LDCR assuming that the LWE assumption holds.

Lemma D.2. The above protocol is a trapdoor Σ-protocol for LDCR.

Proof. The CRS indistinguishability property is straightforward. We now con-
struct a simulator for the special ZK property, which is identical to [34, Lemma
2] but we give it for completeness. Given crs, a statement x ∈ LDCR and a chal-
lenge Chall ∈ {0, . . . , 2λ − 1}, the simulator first samples z ←↩ U(Z∗N), computes

a = zN
ζ · x−Chall mod Nζ+1 and outputs (a, z). Since x ∈ LDCR, the simulated

transcript (a,Chall, z) produced by the simulator is identical to that of a real con-
versation when the challenge is Chall. This follows from the fact that: (i) For any

x ∈ LDCR, {a = zN
ζ · x−Chall mod Nζ+1 ∈ Z∗Nζ+1 | z ←↩ U(Z∗N)} is the uniform

distribution over the subgroup of Nζ-th residues in Z∗Nζ+1 ; (ii) a ∈ Z∗Nζ+1 and

r = a1/Nζ mod N are uniquely determined by x, Chall and z in the simulation

while z = (a · xChall)1/Nζ mod N is uniquely determined by r, x and Chall in the
real protocol. For a given challenge Chall, we thus obtain the same distribution
of (a,Chall, z) by first sampling r ←↩ U(Z∗N) before defining z as a function of r
and Chall as when we first sample z ←↩ U(Z∗N) before defining r as a function of
z and Chall.

Soundness follows from standard arguments used in [34, Lemma 2]. By com-
bining two accepting transcripts (a,Chall, z) and (a,Chall′, z′) for the same first

49

message a ∈ Z∗Nζ+1 , we obtain xChall
′−Chall = (z′ · z−1)N

ζ

mod Nζ+1. Since
p, q > 2λ, we have gcd(Chall′ − Chall, Nζ) = 1, which implies that x ∈ LDCR.

Finally, we have to show that BadChallenge provides the correct result. If
αa = D(a) = 0, the product a · xChall cannot be an encryption of 0 if Chall 6= 0
since αx 6= 0. Then, the only possible bad challenge is Chall = 0. If αa 6= 0 and
αx = D(x) is invertible in ZNζ , having a · xChall be an encryption of 0 implies
that αa+Chall ·αx ≡ 0 (mod Nζ), so that Chall = −αa ·α−1

x mod Nζ is uniquely
determined.

We are left with the case where dx = gcd(αx, N
ζ) > 1, so that αx is non-

invertible. Note that dx lives in the set

{piqj | 0 ≤ i < ζ, 0 ≤ j < ζ} ∪ {piqζ | 0 ≤ i < ζ} ∪ {psqj | 0 ≤ j < ζ}

and we know that the congruence αx · Chall ≡ −αa (mod Nζ) has solutions if
and only if dx divides Nζ − αa. Moreover, in this case, there are exactly dx
solutions, which are given by{

Challi = Chall0 + i · N
ζ

dx
mod Nζ | i ∈ {0, . . . , dx − 1}

}
,

where Chall0 is an arbitrary solution. However, since Nζ/dx > min(p, q) > 2λ, at
most one of these solutions can fit in {0, . . . , 2λ − 1}. This solution is efficiently
obtained at step 2 of BadChallenge when it exists. We conclude that BadChallenge
always outputs the only challenge Chall ∈ {0, . . . , 2λ − 1} for which a valid
response exists. ut

D.3 On the Importance of Dense Ciphertext Spaces to Identify
Bad Challenges in the DCR Setting

Chaidos and Groth [21] previously used the BadChallenge function methodology
to build non-interactive designated verifier proofs by applying a technique in-
troduced by Damg̊ard, Fazio and Nicolosi (DFN) [33]. In the designated-verifier
setting, proofs are not publicly verifiable. The verifier has a public key pk and a
secret verification key sk.

The constructions of [33,21] rely on an additively homomorphic encryption
scheme with key pair (ek, dk). The verifier’s public key pk = (ek, c) consists of ek
and a homomorphic encryption c = Eek(Chall) of a random challenge Chall while
the secret verification key consists of sk = (dk,Chall). Given a Σ-protocol Π, the
DFN transformation proceeds by having the prover generate a first prover mes-
sage a for Π (using some internal randomness r). The NIZK proof π = (a, cz)
is then obtained by computing cz = Eek(z) as an encryption of the prover’s
response z for Π. Verification then proceeds by decrypting cz and running the
verification procedure of Π on input of (a,Chall, z). The transformation exploits
the property that, in many Σ-protocols, the response z is an affine function of
the challenge Chall. Hence, as long as the encryption scheme (K, E ,D) is ad-
ditively homomorphic, the encrypted response cz = Eek(z) is computable from

50

c = Eek(Chall), the witness w and the prover’s randomness r.
Chaidos and Groth [21] used the above transformation to obtain a designated-

verifier NIZK proof that a ciphertext (computed using an additively homomor-
phic cryptosystem) encrypts 0 or 1. Assuming that (K, E ,D) provides IND-CPA
security, they prove that the transformation satisfies the notion of adaptive culpa-
ble soundness, where the adversary wins if it outputs a proof for a false statement
x of its choice, as long as it also outputs a witness wguilt for the relation Rguilt,
where (x,wguilt) ∈ Rguilt implies that x is a false statement. The proof assumes
that Π has identifiable bad challenges, which is somewhat similar to the property
of trapdoor Σ-protocols.

Definition D.3 ([21]). A Σ-protocol Π has a unique identifiable challenge
using NP-relation Rguilt if there exists a polynomial time algorithm E that inputs
a statement x, a witness wguilt and an initial message a. It returns the unique
challenge Chall that can be answered. Formally, for all statements x, and wit-
nesses wguilt such that (x,wguilt) ∈ Rguilt, algorithm E(x,wguilt, a) outputs the
only Chall for which there exists z such that V (x, a,Chall, z) = 1, where V is the
verifier’s algorithm in Π.

The proof of culpable soundness [21, Theorem 2] goes as follows. The reduc-
tion obtains an encryption key ek from its IND-CPA challenger. It chooses a
random Chall in the challenge space of Π and sends it to the challenger. The
latter flips a coin b and returns either an encryption c? = Eek(Chall) of Chall
(if b = 1) or an encryption c? = Eek(R) of a random message R (if b = 0).
The reduction then runs the culpable soundness adversary A on input of the
public key pk = (ek, c?). When A outputs a triple (x,wguilt,π = (a, cz)), the re-
duction uses the extractor of Definition D.3 to compute Chall′ = E(x,wguilt, a).
If Chall = Chall′, the reduction outputs b′ = 1. Otherwise, it outputs b′ = 0.
If b = 1, the probability that the reduction outputs b′ = 1 is exactly (up to
the negligible probability that E fails to extract the unique bad challenge from
(x,wguilt, a)) the probability that A breaks the culpable soundness of the desig-
nated verifier NIZK proof. If b = 0, the probability that b′ = 1 is negligible since
Chall is independent of A’s view.

The proof of [21, Theorem 2] actually assumes that, in the Σ-protocol Π,
the extraction algorithm E works for any (possibly maliciously generated) first
message a contained in π = (a, cz). This is the case in the instantiation of
[21], where a is an Okamoto-Uchiyama encryption [63] of some message (in the
Okamoto-Uchiyama cryptosystem, all elements of the ciphertext space are in the
range of the encryption algorithm). However, in Lipmaa’s Σ-protocol [58], the
prover’s first message is a ciphertext of the Elgamal-Paillier encryption scheme
[13], where valid ciphertexts are sparse in the ciphertext space. The extrac-
tors of [58] (Figure 2 and Figure 4) can only compute bad challenges when
the statement and the first prover message are both Elgamal-Paillier encryp-
tions of something. They may fail when a malicious prover sends a first message
a = (gu mod N2, (1 +N)r ·hv mod N2) for arbitrary r ∈ ZN , u, v ∈ Z. Consider
the statement that C = (gr mod N2, hs mod N2) encrypts 0 or 1, which is false

51

when r 6= s mod p′q′, where N = pq is a product of safe primes p = 2p′ + 1,
q = 2q′ + 1. When the prover sends a = (a1, a2) = (gu mod N2, hv mod N2)
with u 6= v mod p′q′, the bad challenge is uniquely determined modulo p′q′

(and can possibly live in the challenge space {0, . . . , 2λ − 1}). However, neither
wguilt = logg(h) nor wguilt = (p, q) allows computing the only challenge that
satisfies the verification equations without knowing (r, s, u, v).

In our setting, this issue does not arise since all elements of Z∗N2 are Paillier
encryptions of something. A similar property is satisfied by Okamoto-Uchiyama.
When the ciphertext space is not dense, the result of [21, Theorem 1] requires
that valid ciphertexts be efficiently recognizable and always decrypt to some
plaintext. In the case of Elgamal-Paillier, while invalid ciphertexts can be de-
tected using wguilt = logg(h) (by observing that a2 · a

−wguilt

1 mod N2 does not
have order N in Z∗N2), there is no efficient way to compute the bad challenge.

This invalidates the claim [58] that the DFN transform yields a culpably
sound designated-verifier NIZK argument about Elgamal-Paillier ciphertexts en-
crypting 0 or 1. On the other hand, it does provide culpable soundness when
instantiated with Paillier’s cryptosystem if we use our Σ-protocol of Section 4.1.

D.4 Proof of Lemma 4.3

Proof. Let crs be a CRS generated by GenL. By the hypothesis on their order,
h ∈ Z∗N2 and h̄ ∈ Z∗

N̄2 can be written as h = (1+N)α ·βN and h̄ = (1+N̄)ᾱ · β̄N̄ ,
for some α ∈ Z∗N , ᾱ ∈ Z∗

N̄
. We can thus assume that the commitments are

perfectly hiding. To prove the claim, we describe a simulator ZKSim which, on
input (crs,x,Chall), where x ∈ L1-R

∨ (h, h̄) and Chall ∈ {0, . . . , 2λ − 1}, builds a
transcript (a,Chall, z) by computing a pair (a, z) as follows.

1. Given
(
(C0, . . . , CR−1), (L1, . . . , Lr)

)
, for each j ∈ [r], pick uniformly ran-

dom z̄j ←↩ U({2λ, . . . , 22λ−1}), z̄d,j , z̄e,j ←↩ U(ZN̄) and z̄u,j , z̄v,j ←↩ U(Z∗
N̄

),
Then, compute

∀j ∈ [r] :

{
Āj = L−Challj · (1 + N̄)z̄j · h̄z̄d,j · z̄N̄u,j mod N̄2

B̄j = L
Chall−z̄j
j · h̄z̄e,j · z̄N̄v,j mod N̄2

(28)

2. Select zy ←↩ U(ZN) and zw ←↩ U(Z∗N) as well as Cdk ←↩ U(Z∗N2), for each
k ∈ {1, . . . , r − 1}. Then, define fj,1 = z̄j and fj,0 = Chall − z̄j mod N for
each j ∈ [r] and compute

Cd0 = hzy · zNw ·
r−1∏
k=1

C Challk

dk
·
R−1∏
i=0

C
−(

∏r
j=1 fj,ij mod N)

i mod N2, (29)

where i1 . . . ir ∈ {0, 1}r is the binary expansion of i ∈ ZR.

3. Return the first-message a =
(
{(Āj , B̄j)}rj=1, {Cdk}

r−1
k=0

)
and the response

z =
(
zy, zw, {(z̄j , z̄d,j , z̄e,j , z̄u,j , z̄v,j)}rj=1

)
.

52

Now, let (x,w,Chall) be the output of an unbounded adversary A(crs) such
that (x,w) ∈ R1-R

∨ (h, h̄). We analyze both distributions of (a,Chall, z), where
either (a, z) ← ZKSim(crs, x,Chall) is simulated or (a, st) ← P (crs,x,w) and
z ← P (crs, st,Chall) come from the real execution of the protocol. Note that
both transcripts are valid in that case.

First, since N̄ divides the order of h̄ in Z∗
N̄2 , the triples (Āj , z̄d,j , z̄u,j) and

(B̄j , z̄e,j , z̄v,j) are all identically distributed for each j ∈ [r]. Indeed, in both
cases, equations (18) and (28) imply that, given Lj , Chall and z̄j , there is a
one-to-one correspondence between Āj and (z̄d,j , z̄u,j), and B̄j and (z̄e,j , z̄v,j).
This is because (d̄j , ēj) in the real distribution and (z̄d,j , z̄e,j) in the simulated
distribution are uniformly random pairs in ZN̄ × ZN̄ . Then, as long as all the
z̄j ’s of both distributions are statistically indistinguishable, so are the transcripts
parts related to N̄ . We postpone the analysis of the distribution of z̄j to the end
of the proof.

Second, assuming that N divides the order of h modulo N2, Cd1 , . . . , Cdr−1

are uniformly random elements in Z∗N2 in both transcripts. Indeed, in the real
distribution, µ1, . . . , µr−1 ∼ U(ZN) thus fully randomize the ZN -components
while ρ1, . . . , ρr−1 ∼ U(Z∗N) fully randomize the Z∗N -component over the group
Z∗N2 ' ZN × Z∗N . Moreover, in the simulated distribution, those elements are
directly drawn from U(Z∗N2). As for the triple (zy, zw, Cd0), for a fixed choice of
{Cdk}

r−1
k=1, {z̄j}rj=1 and Chall, equations (29) and (19) give a one-to-one relation

between (zy, zw) ∈ ZN ×Z∗N and Cd0 in both transcripts whose distributions are
the same since µ0 of the real distribution and zy of the simulated distribution
are uniformly random element over ZN .

Finally, we show that the statistical distance between the distributions of z̄j
in the real case and the simulated case is negligible for all j ∈ [r]. For j ∈ [r],
the statistical distance is 0 if `j = 0. If `j = 1, we have to bound the statistical
distance between U([Chall+2λ,Chall+Bλ]) and U([2λ, Bλ]), where Bλ = 22λ−1.
We compute∑∞

i=0

∣∣Pr[zj ←↩ U([2λ, Bλ] + Chall) : zj = i]− Pr[zj ←↩ U([2λ, Bλ]) : zj = i]
∣∣

≤
∑2λ+Chall−1
i=2λ 21−2λ +

∑Chall+Bλ
i=Bλ+1 21−2λ ≤ 2 · Chall · 21−2λ ≤ 22−λ.

When the order of h is a multiple of N and the order of h̄ is a multiple of N̄ , this
shows that both distributions are within distance r ·22−λ, with r = O(log λ). ut

E Simpler Ring Signatures in the Erasure Setting

In this section, we describe a simpler variant of our main scheme where the signer
is required to erase its random coins after each signature generation. The main
difference is the commitment scheme that allows computing {Lj}rj=1. Instead of
computing each Lj using an RBM-lossy PKE scheme, the simplified construction
uses the Paillier-based commitment of [20].

CRSGen(1λ) : Given a security parameter λ, conduct the following steps.

53

1. Generate par← Genpar(1
λ) for the trapdoor Σ-protocol of Section 4.2.

2. Generate RSA moduli N = pq and N̄ = p̄q̄ such that p, q, p̄, q̄ > 2l(λ),
for some polynomial l : N→ N, and choose h←↩ U(Z∗N2), h̄←↩ U(Z∗

N̄2).

3. Generate a pair (crs, τzk) ← GenL(par,L1-R
∨) consisting of the common

reference string crs =
(
par, (crs′L, pkLPKE, k,AHF,OTS)

)
of a simulation-

sound argument Πuss for the language L1-R
∨ (h, h̄) defined in (12) together

with a simulation trapdoor τzk := skLPKE. In crs, the language-dependent
crs′L = {N, N̄} is part of a common reference string crs′ = ({λ}, crs′L) for
the Σ-protocol of Section 4.2.

Output the common reference string ρ = crs.

Keygen(ρ) : Pick w ←↩ U(Z∗N), y ←↩ U(ZN) and compute C = hy ·wN mod N2.
Output (sk, vk), where sk = (w, y) and vk = C.

Sign(ρ, sk,M,R) : Given a ring R = {vk0, . . . , vkR−1} (we assume that R = 2r

for some r ∈ N), a message M and a secret key sk = (w, y) ∈ Z∗N × ZN , let
`1 · · · `r = ` ∈ {0, . . . , R− 1} be the index such that vk` = hy ·wN mod N2.

1. For each j ∈ [r], choose sj ←↩ U(ZN̄) and tj ←↩ U(Z∗
N̄

), and compute

the commitment Lj = (1 + N̄)`j · h̄sj · tN̄j mod N̄2 to the bit `j .
2. Define the label lbl = (M,R) and generate a NIZK argument π ←

P
(
crs,x,w, lbl

)
that x , ((vk0, . . . , vkR−1), (L1, . . . , Lr)) ∈ L1-R

∨ (h, h̄)
by running the prover P of Supplementary Material B with the Σ-
protocol of Section 4.2 using w = (y, w, {(`j , sj , tj)}rj=1).

Output the signature Σ = ((L1, . . . , Lr),π) and erase all random coins.

Verify(ρ,M,Σ,R) : Given a signature Σ = ((L1, . . . , Lr),π), a message M and
a ring R = {vk0, . . . , vkR−1}, return 0 if any of these does not parse properly.
Otherwise, let lbl = (M,R) and return V(crs,x,π, lbl) which outputs 1 iff π
is a valid argument that

(
(vk0, . . . , vkR−1), (L1, . . . , Lr)

)
∈ L1-R

∨ (h, h̄).

Theorem E.1. The above ring signature instantiated using the trapdoor Σ-
protocol of Section 4.2 provides unforgeability assuming reliable erasures and
under the assumptions that: (i) The DCR assumption holds; (ii) Πuss is an un-
bounded simulation-sound NIZK argument for the language L1-R

∨ (h, h̄).

Proof. We use a sequence of games starting with the real experiment and ending
with a game where we give a direct reduction from the simulation-soundness of
Πuss. For each i, Wi is the event that the challenger outputs 1 in Gamei.

Game0: This is the real experiment. The adversary A receives a CRS ρ and has
access to a key generation oracle Keygen, a signing oracle Sign and a cor-
ruption oracle Corrupt. At the i-th query to Keygen, the challenger returns a
verification key vk(i) = hyi ·wNi mod N2 for some wi ←↩ U(Z∗N), yi ←↩ U(ZN)
and keeps sk(i) = (wi, yi) for later use. If A makes a corruption query
Corrupt(i), the challenger reveals sk(i) to A. At each signing query (i,M,R),
the challenger returns ⊥ if R contains a key vk 6∈ Z∗N2 . Otherwise, it runs
Σ ← Sign(ρ, sk,M,R) and returns Σ to A. When A halts, it outputs a triple
(M?,R?,Σ?), where R? = {vk?0 , . . . , vk?R?−1} and Σ? = ((L?1, . . . , L

?
r),π

?),

54

and the challenger outputs 1 if: (i) Verify(ρ,M?,Σ?,R?) = 1; (ii) R? only con-
tains uncorrupted keys produced by Keygen; (iii) No signing query (·,M?,R?)

was made. By definition, we have Pr[W0] = Advunforge
A (λ).

Game1: This game is like Game0 except that, in all signing queries (i,M,R),
the challenger simulates the Sign oracle by running the NIZK simulator of
Πuss instead of using the real witness. Namely, the commitments {Lj}rj=1

of each signature Σ = ((L1, . . . , Lr),π) still commit to the bits (`1, . . . , `r)
of vk(i)’s location in R but π is simulated without using sk(i) = (wi, yi)
nor {(`j , sj , tj)}rj=1. Recall that the trapdoor Σ-protocol of Section 4.2 is

statistically special ZK when h ∼ U(Z?N2) and h̄ ∼ U(Z?
N̄2). The statistical

NIZK property of Πuss, ensures that |Pr[W1]− Pr[W0]| ≤ QS · 2−Ω(λ).

Game2: This game is like Game1 except that we change the distribution of crs
in ρ = crs. For the parameters, we now sample h0 ←↩ U(Z∗N) and h̄0 ←↩
U(Z∗

N̄
) and compute h = hN0 mod N2 and h̄ = h̄N̄0 mod N̄2 as uniformly

random composite residues. Under the DCR assumption in Z∗N2 and Z∗
N̄2 ,

these changes have no noticeable impact on A’s forging probability and a
straightforward reduction shows that |Pr[W2]− Pr[W1]| ≤ 2 ·AdvDCR(λ).

Game3: In this game, the challenger uses the factorization of N̄ = p̄q̄ to decrypt
the Paillier ciphertexts {L?j}rj=1 contained in A’s forgery. The challenger
obtains {`?j}rj=1 and outputs 0 if there exists j ∈ [r] such that `?j 6∈ {0, 1}.
Otherwise, it obtains a string `?1 . . . `

?
r ∈ {0, 1}r and reconstructs the index

`? =
∑r
k=1 `

?
k · 2k−1 ∈ ZR of the verification key vk?`? = C?`? in the ring

R? = {vk?0 , . . . , vk?R−1}. If `?j 6∈ {0, 1} for some j ∈ [r], the soundness of Πuss

is broken and we have |Pr[W3]− Pr[W2]| ≤ Advuss(λ).

Game4: This game is like Game3 with one change. At the outset of the game,
the challenger draws i? ←↩ U([QV]) as a guess that vk?`? coincides with the
verification key vk(i?) returned by the challenger at the i?-th query to the
Keygen oracle. If the guess eventually turns out to be wrong or if Amakes the
corruption query Corrupt(i?), the challenger aborts and outputs 0. Otherwise
(i.e., if vk?`? = vk(i?)), it outputs the same bit as in Game3. Since i? is chosen
independently of A’s view, it is correct with probability 1/QV , where QV is
the number of Keygen-queries. We thus have Pr[W4] = Pr[W3]/QV .

Game5: We change the distribution of vk(i?) = C(i?) and sample C(i?) ←↩
U(Z∗N2) uniformly instead of sampling it as an N -th residue in Z∗N2 . As
a result, the signing oracle may now return simulated arguments for false
statements. However, since the challenger uses neither the factorization of
N nor the secret key sk(i?) in Game4, we can rely on the DCR assumption
in Z∗N2 to argue that |Pr[W5]− Pr[W4]| ≤ AdvDCR(λ).

In Game5, we claim that Pr[W5] ≤ Advuss(λ) + 2−Ω(λ) as, except with proba-
bility 1/N < 2−Ω(λ), the challenger only outputs 1 if A manages to break the
simulation-soundness of Πuss. Indeed, W5 only occurs if vk?`? = vk(i?) (which
implies that sk(i?) was not corrupted); π? is a valid argument for the statement
((vk?0 , . . . , vk

?
R−1), (L?1, . . . , L

?
r)) ∈ L1-R

∨ ; and no signing query (i,M?,R?) has

55

been made for any vk(i) ∈ R? (in particular for i = i?). Since vk`? was sam-
pled uniformly in Z∗N2 , it is not an N -th residue except with probability 1/N . If
W5 occurs, this necessarily implies that π? is an accepting argument for a false
statement x? ∈ L1-R

∨ on an unqueried label lbl? , (M?,R?).

Putting the above altogether, we can bound the adversary’s advantage as

Advunforge
A (λ) ≤ (2 +QV) ·

(
Advuss(λ) + AdvDCR(λ)

)
+ (QS +QV) · 2−Ω(λ)

where QV and QS are the number of Keygen-queries and signing queries. ut

The proof of anonymity follows from the fact that the Paillier-based commit-
ments are perfectly hiding when the parameters contained in ρ are configured
in such a way that the order of h (resp. h̄) in Z∗N2 (resp. in Z∗

N̄2) is at least N
(resp. N̄). Then, the statistical NIZK property of Πuss ensures that the signa-
tures produced by any two distinct signers have statistically indistinguishable
distributions.

Theorem E.2. The above scheme instantiated with the trapdoor Σ-protocol of
Section 4.2 provides full anonymity under key exposure provided Πuss is a sta-
tistical NIZK argument for the language L1-R

∨ (h, h̄).

Proof. We consider a sequence of statistically indistinguishable games that ends
with a game where the adversary has no advantage. In each game, we call Wi

the even that the adversary outputs 1 in Gamei.

Game0: This is the real anonymity game. Namely, the adversary is granted
access to a Keygen oracle that returns a pair (vk(i), sk(i)) at each query. In
the challenge phase, the adversary A chooses a message M? together with a
ring R? = {vk?0 , . . . , vk?R?−1} and two indices i0, i1 ∈ ZR such that vk?i0 and
vk?i1 were both produced by the Keygen oracle. The challenger then flips a
fair coin b ←↩ U({0, 1}) and computes Σ? ← Sign(ρ, sk?ib ,M

?,R?). At the
end of the game, the adversary outputs a bit b′ ∈ {0, 1} and the challenger
outputs 1 if and only if b′ = b.

Game1: In this game, the challenger generates Σ? = ((L?1, . . . , L
?
r),π

?) without
using sk?ib . Namely, (L?1, . . . , L

?
r) are still generated as Paillier commitments

to the binary representation of ib but π? is obtained by running the NIZK
simulator of Πuss. The latter’s statistical NIZK property guarantees that
|Pr[W1] − Pr[W0]| ≤ 2−Ω(λ). More precisely, when all dual-mode commit-
ments are computed in their perfectly hiding mode, the trapdoor Σ-protocol
of Section 4.2 provides statistical special zero-knowledge. In this setting, Πuss

is statistically ZK.

In Game1, we have Pr[W1] = 1/2 since (L?1, . . . , L
?
r) are perfectly hiding commit-

ments and π? is generated independently of b ∈ {0, 1}. ut

56

F Optimized Ring Signature Size

In this section, we assess the size of signatures Σ = (VK, (L1, . . . , Lr),π, sig) in
the erasure-free scheme of Section 5. If we use a DCR-based instantiation of the
generic one-time signature suggested by Mohassel [61], we can re-use a Paillier
modulus Nots from the CRS of our ring signature to generate many one-time
key pairs. In this case, VK has the size of 3 group elements modulo Nots and the
signature sig has the size of 2 group elements (as described at the end of this
section). The size of (L1, . . . , Lr) amounts to r elements modulo N̄2. We now
focus on the size of the NIZK argument π ← P

(
crs,x,w, lbl

)
.

Recall that the instance x , ((vk0, . . . , vkR−1), (L1, . . . , Lr)) is in the lan-
guage L1-R

∨ (h, h̄VK) given in equation (21). While verifying a signature requires x
and h̄VK, the ring R = (vk0, . . . , vkR−1) is not part of the signature and h̄VK can
be recomputed from VK and the CRS. Moreover, lbl = VK, so that we are left
with evaluating the size of π. Now, we parse π =

(
VK′, z, sig′

)
as in Section B,

where (VK′, sig′) is another one-time key pair. It is actually easy to avoid the
need for a second pair (VK′, sig′) as the ring signature can actually recycle the
one-time pair (VK, sig) from the simulation-sound argument π without affecting
the security. We decided to use separate one-time pairs in the description for the
sake of clarity and modularity.

In the optimized version, we are left with evaluating the size of the response
z = (z′,a′, r), where a′ =

(
{(Āj , B̄j)}rj=1, {Cdk}

r−1
k=0

)
is the first message; z′ =(

zy, zw, {(z̄j , z̄d,j , z̄e,j , z̄u,j , z̄v,j)}rj=1

)
the response of the 1-out-of-R trapdoor Σ-

protocol of Section 4.2; and r is the random coin used to encrypt a′ with the
R-lossy PKE scheme of Section 3.1. We can further optimize the signature by
not including {(Āj , B̄j)}rj=1 and Cd0 in π and replacing them by the challenge
Chall in the argument system of Section B since they can be recomputed given z′,
Chall and {Cdk}

r−1
k=1, as done in equations (28)-(29). The resulting ring signature

is easily seen to be equivalent to its original version.
Eventually, we assume that all moduli have the same bitlength and that the

modulus Ñ of the R-lossy PKE is the largest one. This allows encoding a′ as
a single plaintext modulo Ñ6r in the Ñ2-adic representation since we have 3r
elements modulo a square modulus. Therefore, r = (r̃, s̃) ∈ Z∗

Ñ
× ZÑ6r and we

can estimate the global length as follows, where we count an element modulo
the ζ-th power of a modulus N as ζ elements of ZN .

– One λ-bit string for Chall and 5 elements for (VK, sig);
– 2r elements modulo N : r − 1 for {Cdk}

r−1
k=1 and 2 for (zy, zw);

– 6r elements modulo N̄ : r for {Lj}rj=1 and 4r for {(z̄d,j , z̄e,j , z̄u,j , z̄v,j)}rj=1;
– r strings of 2λ+ 1 bits each for {z̄j}rj=1;

– 6r+1 elements modulo Ñ for the random coins r of theR-lossy PKE scheme.

This amounts to a total size bounded by the size of 15r + 7 elements modulo
Ñ . Interestingly, the signature length is only roughly three times as large as in
a ring signature obtained by applying the standard Fiat-Shamir heuristic un-
der the DCR assumption in the random oracle model. In a ROM-based version

57

of our scheme, we can apply Fiat-Shamir to our Σ-protocol of Section 4.2 and
simulation-soundness comes for free without using tag-based commitments or
even one-time signatures. Even though we can apply exactly the same proof
strategy as Groth and Kohlweiss [46] using more efficient DCR-based commit-
ments of the form Lj = g`j · rN mod N , the signature size only drops to 5r + 1
elements of ZN . At the 128-bit security level, we may choose moduli of size
|N | = 3072 and end up with signatures of size smaller than 1.57Mb for rings of
size |R| < 1082 (which is an estimation on the number of atoms in the universe).

Short Keys. Each user’s public key consists of a single element vk = C over
Z∗N2 and the secret key is a pair (w, y) ∈ Z∗N × ZN . In both cases, the size is
equivalent to that of two elements of ZN .

A Concrete DCR-based One-Time Signature. For completeness, we describe a
strongly unforgeable one-time signature based on a chameleon hash function
(or, equivalently, a trapdoor commitment) under the DCR assumption, which
follows the blueprint of [61]. Using a DCR-based variant of Mohassel’s generic
construction allows recycling the modulus N across different one-time key gener-
ations. Since the chameleon hashing trapdoors are N -th roots, the factorization
of N can remain unknown to signers. For this reason, we give a construction
that does not rely on the factoring-based instantiation of [61] since we already
have RSA moduli in the CRS and signers can re-use them. The construction
hereunder can be proven strongly unforgeable under the RSA assumption with
public exponent N , which is implied by the DCR assumption, as shown in [64].

CRSGen(1λ) : Given a security parameter λ, generate an RSA modulus N = pq
satisfying p, q > 2l(λ), where l : N→ N is a polynomial, choose H ←↩ H from
a family H of collision-resistant hash functions. Return pp = (N,H).

Keygen(pp) : Choose random u, v, w ←↩ U(Z∗N) and compute g = uN mod N ,
h = vN mod N and c = wN mod N (which is seen as a commitment to 0
with commitment key g). Return osk = (u, v, w) and ovk = (g, h, c).

Sign(ovk, osk,m) : Given a secret key osk = (u, v, w), pick s ←↩ U(Z∗N) and
compute d = hm · sN mod N and e = H(g, h, d). Then, use w and u to
equivocate c for the message e. Namely, compute r = w · u−e mod N and
output the signature σ = (r, s).

Verify(ovk,m, σ) : Given σ = (r, s) and a verification key ovk = (g, h, c), output
1 if c = ge · rN mod N , where d = hm · sN mod N and e = H(g, h, d), and 0
otherwise.

Since it is well-known that c = ge · rN mod N and d = hm · sN mod N are
trapdoor commitments, the strong unforgeability directly follows from [61].

G Comparison with Other Instantiations

G.1 Comparison with an LWE-based R-Lossy PKE Scheme

We note that our ring signatures would be much longer if we were to use the
equivocable R-lossy PKE scheme of [56] instead of the DCR-based construction

58

of Section 3.1. A single ciphertext would contain n · log q bits, where n is larger
than the length of the plaintext (i.e., the first prover message in the Σ-protocol
of Section 4.2, where r = 1 already implies n > 6·3072 = 18432 when |N | = 3072
at the 128-bit security level) and log q > 50. For r = 1, this would be over 20
times larger than our entire ring signature and it would only get worse for r > 1.

G.2 Comparison with Possible DDH-based Instantiations

As mentioned in the introduction, the discrete-logarithm-based Σ-protocol of
Groth and Kohlweiss [46] is not immediately compatible with the bad-challenge-
function methodology. The main obstacle is that, in order to compile it into a
trapdoor Σ-protocol, adapting the transformation of Ciampi et al. [27] would re-
quire the prover to send encrypted responses to all possible challenges along with
its first message. This requires to proceed with a challenge space of polynomial
size λc, for some constant c, and κ = O(λ/ log λ) repetitions. In order to identify
the bad challenges for a given first prover message, we run into a problem since
a single protocol execution has (r + 1)-special-soundness (so that up to r > 1
bad challenges may exist). Over κ iterations, this leads to a super-polynomial
number rκ of bad challenges, which is no longer compatible with correlation in-
tractable hash functions for efficiently enumerable relations.

Recently, Holmgren et al. [51] introduced a technique to address this com-
binatorial blow-up using list-recoverable codes. If S = S1 × . . . × Sκ denotes
the product set of bad challenges at each iteration (with size |Si| ≤ r for each
i ∈ [κ]), they construct a list-recoverable code (Encode,Recover) such that the
set MS of input messages m for which Encode(m) ∈ S = S1 × . . . × Sκ has
cardinality smaller than L ∈ poly(λ). Moreover, there is an efficient algorithm
Recover(S1, . . . , Sκ) that ouputs MS on input of S1, . . . , Sκ. As shown in [51], this
allows instantiating Fiat-Shamir by applying correlation-intractable hash func-
tions to Σ-protocols with more than one bad challenge at each repetition. To
this end, they use a CI hash function of the form H ′(a) = Encode(H(a)), where
H is a correlation-intractable hash function for efficiently enumerable relations
(e.g., [67]). Intuitively, the corresponding bad challenge function first computes
the product set S = S1× . . . Sκ of bad challenges determined by the first prover’s
message a. It then runs the decoding algorithm to output the polynomial-size
set MS = Decode(S1, . . . , Sκ) of challenges that H ′(a) should avoid.

The technique of [51]11 suggests possible instantiations of our high-level ap-
proach under the DDH assumption (we insist that these do not directly follow
from [46,51] as they rely on our proof technique, which departs from that of
Groth and Kohlweiss [46]). Nevertheless, they would be more expensive than in
the DCR setting. Indeed, in the discrete-log-based Σ-protocol of [46], the prover’s
first message consists of r = O(logR) commitments for one iteration. In order

11 It was proven to soundly instantiate Fiat-Shamir for a wide family of Commit-
and-Open protocols repeated in parallel. While the original Σ-protocol of [46] does
not quite fit the Commit-and-Open abstraction of [51], it does when we apply the
transformation of [27] to obtain a trapdoor Σ-protocol.

59

to obtain a trapdoor Σ-protocol, the transformation of [27] requires to send 2r
encrypted responses12 (one for each possible challenge value) together with the
first prover message of [46]. If we then apply the result of Holmgren et al. [51,
Theorem 5.1] and proceed with κ = Õ(λ) repetitions, we obtain a first prover
message comprised of Õ(λ2) bits. However, our security proof requires to instan-
tiate our USS argument system of Supplementary Material B under the DDH
assumption. To this end, we need to encrypt the first prover message using a
DDH-based analogue of our equivocable RBM-lossy PKE scheme in Section 3.1.

We are only aware of two DDH-based RBM-lossy PKE schemes that suit our
purposes. The first one encrypts messages bit-by-bit and can be obtained from
the scheme of Boyle et al. [9, Section 4.2] with slight modifications that notably
require to encode the plaintext in the exponent so as to achieve equivocation (see
[5, Section 5.4] for details). We note that this construction additionally requires
the simulation-sound argument to contain a proof that each RBM-lossy PKE ci-
phertext encrypts a bit (whereas, in our DCR-based construction, all ciphertexts
encrypt a valid message). Since the message to be encrypted has length Õ(λ2),
this construction incurs a communication cost Õ(λ3) in our setting, which is
asymptotically worse than the signature size O(λ3/polylog(λ)) enabled by DCR.

The second possible DDH-basedRBM-lossy PKE candidate is achievable from
the equivocable lossy PKE scheme of Hofheinz et al. [49].13 The latter provides
short ciphertexts at the expense of a public key size O(|m|2 ·λ), where |m| is the
number of bits to encrypt, and randomness of length |m| · λ. In order to turn
[49] into an RBM-lossy system, we need to combine it with an admissible hash
function and increase the public key size by another factor O(λ), thus leading to
a total public key size O(|m|2 ·λ2). To avoid an a priori upper bound on the ring
size, we should allow for |m| = λ2 · ω(log λ), thus resulting in a communication
cost Õ(λ3) (since the random encryption coins of size |m| · λ = Õ(λ3) should be
part of the prover’s response in our USS argument of Section B) and a CRS of
size Õ(λ6). In all cases, the signature size and even the CRS size remain signifi-
cantly larger than in the DCR setting.

The above comparisons only hold in the asymptotic regime. For concrete
parameters λ = 128, we may set |N | = 3072 and more drastically outperform
DDH-based instantiations. If we apply [51, Theorem 5.4] with t > λ repetitions
and a 256-bit group order, the concrete signature size exceeds 150 ·106 · r2 bits if
the underlying RBM-lossy PKE scheme is instantiated from [49]. Under the DCR
assumption, our signature length is strictly less than 60000 · r bits.

12 In order to keep the communication logarithmic in R, it is better to use a challenge
space of size 2r (so as to have a fraction ρ = 1/2 of bad challenges) at each repetition.

13 Due to the use of a universal hash function, this scheme is not compatible with
efficient Σ-protocols but this is not necessary in our USS argument. We also need
a “Σ-protocol-friendly” DDH analogue of our dense lossy PKE in Section 3.2. Since
the latter construction does not have to support equivocation, it can be instantiated
from the scheme of Boyle et al. [9, Section 4.2].

60

	One-Shot Fiat-Shamir-based NIZK Arguments of Composite Residuosity and Logarithmic-Size Ring Signatures in the Standard Model
	Introduction
	Background and Definitions
	Hardness Assumptions
	Correlation Intractable Hash Functions
	Admissible Hash Functions
	Trapdoor -protocols
	R-Lossy Public-Key Encryption With Equivocation
	Ring Signatures

	R-Lossy Encryption Schemes from DCR
	An Equivocable RBM-Lossy PKE Scheme from DCR
	A Dense RBM-Lossy PKE Scheme from DCR

	Trapdoor -Protocols for DCR-Related Languages
	Trapdoor -Protocol Showing that a Paillier Ciphertext/Commitment Contains 0 or 1
	Trapdoor -Protocol Showing that One Out of Many Ciphertexts/Commitments Contains 0

	Logarithmic-Size Ring Signatures in the Standard Model from DCR and LWE
	Non-Interactive Zero-Knowledge and Simulation-Sound Arguments
	Simulation-Sound NIZK Arguments from Trapdoor -Protocols
	The Argument System

	Security Definitions for Ring Signatures
	Deferred Material for the Trapdoor -Protocols of Section 4
	Trapdoor -Protocols With Small Challenge Space for Linearly Homomorphic Encryptions of 0
	Trapdoor -Protocol Showing Composite Residuosity
	On the Importance of Dense Ciphertext Spaces to Identify Bad Challenges in the DCR Setting
	Proof of Lemma 4.3

	Simpler Ring Signatures in the Erasure Setting
	Optimized Ring Signature Size
	Comparison with Other Instantiations
	Comparison with an LWE-based R-Lossy PKE Scheme
	Comparison with Possible DDH-based Instantiations

