
Hybrid Framework for Approximate
Computation over Encrypted Data

Jihoon Cho1, Jincheol Ha2, Seongkwang Kim2, Joohee Lee1, Jooyoung Lee2,
Dukjae Moon1, and Hyojin Yoon1

1 Samsung SDS, Seoul, Korea,
{jihoon1.cho,joohee1.lee,dukjae.moon,hj1230.yoon}@samsung.com

2 KAIST, Daejeon, Korea,
{smilecjf,ksg0923,hicalf}@kaist.ac.kr

Abstract. Homomorphic encryption (HE) is a promising cryptographic
primitive that enables computation over encrypted data, with various ap-
plications to medical, genomic, and financial tasks. In such applications,
data typically contain some errors from their true values. The CKKS
encryption scheme proposed by Cheon et al. (Asiacrypt 2017) supports
approximate computation over encrypted data. However, HE schemes
including CKKS commonly suffer from slow encryption speed and large
ciphertext expansion compared to symmetric cryptography.

To address these problems, in particular, focusing on the client-side on-
line computational overload and the ciphertext expansion, we propose a
novel hybrid framework that supports CKKS. Since it seems to be infeasi-
ble to design a stream cipher operating on real numbers, we combine the
CKKS and the FV homomorphic encryption schemes, and use a stream
cipher using modular arithmetic in between. The proposed framework is
thus dubbed the CKKS-FV transciphering framework. As a result, real
numbers can be encrypted without significant ciphertext expansion or
computational overload on the client side.

As a stream cipher to instantiate the CKKS-FV framework, we propose
a new HE-friendly cipher, dubbed HERA, and analyze its security and
efficiency. HERA is a stream cipher that features a simple randomized key
schedule (RKS). Compared to recent HE-freindly ciphers such as FLIP
and Rasta using randomized linear layers, HERA needs smaller number
of random bits, leading to efficiency improvement on both the client and
the server sides.

Our implementation shows that the CKKS-FV framework using HERA is
3.634 to 398 times faster on the client-side, compared to the environment
where CKKS is only used, in terms of encryption time. Our framework
also enjoys 2.4 to 436.7 times smaller ciphertext expansion according to
the plaintext length.

Keywords: homomorphic encryption, transciphering framework, stream cipher,
HE-friendly cipher

1 Introduction

Cryptography has been extensively used to protect data when it is stored (data-
at-rest) or when it is being transmitted (data-in-transit). We also see increasing
needs that data should be protected when it is being used, since it is often
processed within untrusted environment. For example, organizations might want
to migrate their computing environment from on-premise to public cloud, and
to collaborate with their data without necessarily trusting each other. If data is
protected by an encryption scheme which is homomorphic, then the cloud would
be able to perform meaningful computations on the encrypted data, supporting
a wide range of applications such as machine learning over a large amount of
data preserving its privacy.

Homomorphic Encryption (for Approximate Computation). An encryp-
tion scheme that enables addition and multiplication over encrypted data with-
out decryption key is called a homomorphic encryption (HE) scheme. Since the
emergence of Gentry’s blueprint [34], there has been a large amount of research
in this area [12, 23, 24, 30, 35, 36, 38]. Various applications of HE to medical,
genomic, and financial tasks have also been proposed [10, 20, 22, 43, 46, 51].

However, real-world data typically contain some errors from their true values
since they are represented by real numbers rather than bits or integers. Even in
the case that input data are represented by exact numbers without approxima-
tion, one might have to approximate intermediate values during data processing
for efficiency. Therefore, it would be practically relevant to support approximate
computation over encrypted data. To the best of our knowledge, the CKKS en-
cryption scheme [21] is the only one that provides the desirable feature using
an efficient encoder for real numbers. Due to this feature, CKKS achieves good
performance in various applications, for example, to securely evaluate machine
learning algorithms on a real dataset [11, 18, 52].

Unfortunately, HE schemes including CKKS commonly have two technical
problems: slow encryption speed and large ciphertext expansion; the encryp-
tion/decryption time and the evaluation time of HE schemes are relatively slow
compared to conventional encryption schemes. In particular, ciphertext expan-
sion seems to be an intrinsic problem of homomorphic encryption due to the
noise used in the encryption algorithm. Although the ciphertext expansion has
been significantly reduced down to the order of hundreds in terms of the ra-
tio of a ciphertext size to its plaintext size since the invention of the batching
technique [35], it does not seem to be acceptable from a practical view point.
Furthermore, this ratio becomes even worse when it comes to encryption of a
short message; encryption of a single bit might result in a ciphertext of a few
megabytes.

Transciphering Framework. To address the issue of the ciphertext expansion
and the client-side computational overload, a hybrid framework, also called a
transciphering framework, has been proposed [51] (see Figure 1). In the client-
sever model, a client encrypts a message m using a symmetric cipher E with a

2

Ek

m

c

EncHE

k

EncHE

EvalHE(E−1)

EncHE(c)

EncHE(m)

Client Server

Fig. 1: The (basic) transciphering framework. Homomorphic operations are per-
formed in the boxes with thick lines.

secret key k; this secret key is also encrypted using an HE algorithm EncHE. The
resulting ciphertexts c = Ek(m) and EncHE(k) are stored in the server.

When the server wants to compute EncHE(m) (for computation over en-
crypted data), it first computes EncHE(c) for the corresponding ciphertext c.
Then the server homomorphically evaluates E−1 over EncHE(c) and EncHE(k),
securely obtaining EncHE(m).

Given a symmetric cipher with low multiplicative depth and complexity, this
framework has the following advantages on the client side.

– A client does not need to encrypt all its data using an HE algorithm (except
the symmetric key). All the data can be encrypted using only a symmetric
cipher, significantly saving computational resources in terms of time and
memory.

– Symmetric encryption does not result in ciphertext expansion, so the com-
munication overload between the client and the server will be significantly
low compared to using any homomorphic encryption scheme alone.

All these merits come at the cost of computational overload on the server side.
That said, this trade-off would be worth considering in practice since servers are
typically more powerful than clients.

A Symmetric Cipher over Real Numbers? The transciphering framework,
as described above, does not directly apply to the CKKS scheme. The main reason
is the difficulty in the design of an HE-friendly symmetric cipher E operating on
real numbers. If a symmetric cipher E is given as a (complex) polynomial map,
then any ciphertext will be represented by a polynomial in the corresponding
plaintext and the secret key. Then, for given plaintext-ciphertext pairs (mi, ci),
an adversary will be able to establish a system of polynomial equations in the
unknown key k. The sum of ‖Ek(mi)− ci‖22 over the plaintext-ciphertext pairs
also becomes a real polynomial, where the actual key is the zero of this function.
Since this polynomial is differentiable, its (approximate) zeros will be efficiently

3

found by using iterative algorithms such as the gradient descent algorithm. By
taking multiple plaintext-ciphertext pairs, the probability of finding any false
key will be negligible.

HE-friendly Ciphers. Symmetric ciphers are built on top of linear and non-
linear layers, and in a conventional environment, there has been no need to take
different design principles for the two types of layers with respect to their imple-
mentation cost. However, when a symmetric cipher is combined with BGV/FV-
style HE schemes in a transciphering framework, homomorphic addition becomes
way cheaper than homomorphic multiplication in terms of computation time and
noise growth. With this observation, efficiency of an HE-friendly cipher is eval-
uated by its multiplicative complexity and depth. In an arithmetic circuit, its
multiplicative complexity is represented by the number of multiplications (ANDs
in the binary case). Multiplicative depth is the depth of the tree that represents
the arithmetic circuit, closely related to the noise growth in the HE-ciphertexts.
These two metrics have brought a new direction in the design of symmetric
ciphers: to use simple nonlinear layers at the cost of highly randomized linear
layers as adopted in the design of FLIP [50] and Rasta [27].

1.1 Our Contribution

The main constriction of this paper is two-fold. The first is to propose a new
transciphering framework for the CKKS scheme that supports approximate com-
putation over encrypted data. As discussed above, it seems to be infeasible to
design a symmetric cipher over real numbers. In order to overcome this problem,
we combine CKKS with FV which is a homomorphic encryption scheme using
modular arithmetic [33], obtaining a novel hybrid framework, dubbed the CKKS-
FV transciphering framework. This framework requires a symmetric cipher using
modular arithmetic.

The second contribution is to propose a new stream cipher, dubbed HERA, to
be built in our framework. The HERA cipher, operating on a modular space with
a randomized key schedule, turns out to be faster than existing constructions in
this line of research. With HERA combined with the CKKS-FV framework, real
numbers can be encrypted without significant ciphertext expansion or compu-
tational overload on the client side.

Overview of the CKKS-FV Framework. Given a symmetric cipher E using
modular arithmetic on Zt (t > 2), the client encodes any message m, which can
be seen as a real number, into a vector in ZNt , and then encrypts it using E. This
“E-ciphertext” will be sent to the server and stored there. On the other hand,
the secret key of E is encrypted by FV and also stored in the server.

Whenever a “CKKS-ciphertext” is needed for any message m, the server
encrypts the E-ciphertext of m again, using the FV scheme. With the resulting
FV-ciphertext and the FV-encrypted key, the server homomorphically evaluates
E−1, obtaining the FV-ciphertext of encoded m. Finally, this FV-ciphertext is
translated into the corresponding CKKS-ciphertext of m. Afterwards, the server

4

Message
Scheme N

Ciphertext Expansion Performance

Length Message Ciphertext Ratio Latency Throughput

Short

CKKS-FV -

20 B

34 B 1.7 1.791 µs 10.65 MB/s

CKKS (level 0) 211 14848 B 742.4 712.9 µs 27.40 KB/s

CKKS (full level) 211 27648 B 1382.4 717.7 µs 27.21 KB/s

Long

CKKS-FV -

40 KB

108 KB 2.7 4.673 ms 8.359 MB/s

CKKS (level 0) 215 264 KB 6.6 16.98 ms 2.356 MB/s

CKKS (full level) 215 6512 KB 162.8 158.2 ms 0.2528 MB/s

Table 1: Comparison of the CKKS-FV transciphering framework with HERA and
the CKKS-only environment. All the experiments are done with 10-bit precision
and 128-bit security.

will be able to approximately evaluate any circuit on the CKKS-ciphertexts.
Details of this framework and the proof of its correctness are given in Section 3.

Why FV? In the FV scheme, a message is placed in the most significant bits
of the ciphertext, while the error is in the least significant bits. So when an
FV-ciphertext is decrypted by CKKS, the error still remains small without any
blow-up.

The CKKS and FV schemes operate on a set of real numbers and a vector
space over a finite field, say ZNt , respectively. However, their encoding schemes
map either type of messages to ZN . Furthermore, they use the same encryption
algorithm. All these properties make FV an ideal candidate for an intermediate
primitive between CKKS and a symmetric encryption algorithm.

Stream Ciphers Using Modular Arithmetic. In the CKKS-FV transcipher-
ing framework, a stream cipher using modular arithmetic is required. There are
only a few ciphers using modular arithmetic [1, 4, 5, 37], and even such al-
gorithms are not suitable for our transciphering framework due to their high
multiplicative depths. In order to make our transciphering framework efficiently
work, we propose a new HE-friendly cipher HERA, operating on a modular space
with low multiplicative depth.

Recent constructions for HE-friendly ciphers such as FLIP and Rasta use ran-
domized linear layers in order to reduce the multiplicative depth without security
degradation. However, it seems that this type of ciphers require too many ran-
dom bits in the generation of two-dimensional random matrices, slowing down
the overall speed on both the client and the server sides. Instead of generat-
ing random matrices, we propose to randomize the key schedule algorithm by
combining the secret key with a (public) random value for every round.

Implementations. The CKKS-FV framework is the first transciphering frame-
work that supports approximate computation over encrypted data. So in this
paper, our implementation is compared to the environment where the CKKS

5

scheme only is used, focusing on the ciphertext expansion and the client-side
computational overload. The implementation results are summarized in Table 1.

In this table, the security parameter λ and the precision parameter p are set to
128 and 10, respectively. For CKKS, we measure the performance of two extreme
sets of parameters, giving ciphertexts at level 0 and the full level, respectively.
We note that our framework should be fairly compared to CKKS of level 0, since
the CKKS-ciphertexts obtained at the end of the CKKS-FV framework should be
bootstrapped for any subsequent computation over the ciphertexts. Even in this
comparison, encryption of the CKKS-FV framework is 3.634 to 398 times faster
than CKKS only (according to the message length). Our framework also suffers
from ciphertext expansion due to the encoding phase, while it is still 2.4 to 436.7
times smaller than CKKS only (of level 0).

1.2 Related Work

The transciphering framework has first been proposed in [51]. In this framework,
the circuit of the AES block cipher has been homomorphically evaluated [35].
This work was followed by the implementation of lightweight block ciphers
SIMON [47] and PRINCE [29]. Since these ciphers have not been designed for
the transciphering framework, the performance of the homomorphic evaluation
was not satisfactory. In this line of research, low multiplicative complexity and
depth becomes an important design principle, and LowMC is the first construc-
tion based on this design principle. However, it turned out that LowMC-80 and
LowMC-128 are vulnerable to algebraic attacks and their variants [25, 28, 53].

Canteaut et al. claimed that stream ciphers might be advantageous in terms
of online complexity compared to block ciphers, and proposed a new stream
cipher Kreyvium [13]. However, its practical relevance is limited since the multi-
plicative depth (with respect to the secret key) keeps growing as keystreams are
generated. A new stream cipher FLIP is based on a novel design strategy that its
permutation layer is randomly generated for every encryption without increasing
the algebraic degree in the secret key [50]. Rasta is a stream cipher aiming at
higher throughput at the cost of high latency using random affine layers, which
are determined by an extendable output function (XOF) [27].

Beside the transciphering framework, there are some attempt to reduce the
memory overhead when encrypting short messages. Chen et al. proposed a con-
version method between LWE ciphertexts and RLWE ciphertexts [16]. Small
messages can be encrypted by LWE-based symmetric encryption with small ci-
phertext expansion, and a collection of LWE ciphertexts is converted to a RLWE
ciphertext to perform a homomorphic evaluation. Chen et al. [17] proposed a
hybrid SHE scheme using the CKKS packing algorithm and a variant of FV
proposed by Bootland et al. [8]. This hybrid scheme makes the ciphertext size
smaller compared to using CKKS only, in particular, when the number of slots
is small.

6

2 Preliminaries

2.1 Notation

Throughout the paper, bold lowercase letters (resp. bold uppercase letters) de-
note vectors (resp. matrices). For a real number r, bre denotes the nearest integer
to r, rounding upwards in case of a tie. For an integer q, we identify Zq with
Z∩ (−q/2, q/2]; for any integer z, [z]q denotes the mod q reduction of z into this
interval. The notation b·e and [·]q are extended to vectors (resp. polynomials) to
denote their component-wise (resp. coefficient-wise) reduction.

For a complex number z, its complex conjugate is denoted z̄. This notation is
also naturally extended to complex vectors. For a complex vector x, its `p-norm
is denoted ‖x‖p. Throughout the paper, ζ and ξ denote a 2N -th primitive root
of unity over the complex field C, and the finite field Zt, respectively, for fixed
parameters N and t. The set of strings of arbitrary length over Zt is denoted
Z∗t . Usual dot products of vectors is denoted by 〈·, ·〉. For two vectors (strings)
a and b, their concatenation is denoted a‖b.

For a set S, we will write a← S to denote that a is chosen from S uniformly
at random. For a probability distribution D, a← D will denote that a is sampled
according to the distribution D. Unless stated otherwise, all logarithms are to
the base 2.

2.2 Homomorphic Encryption

As the building blocks of our transciphering framework, we will briefly review
the FV and CKKS homomorphic encryption schemes. For more details, we refer
to [33, 21].

It is remarkable that FV and CKKS use the same ciphertext space; for a
positive integer q, an integer M which is a power of two, and N = M/2, both
schemes use

Rq = Zq[X]/(ΦM (X))

as their ciphertext spaces, where ΦM (X) = XN + 1. They also use similar al-
gorithms for key generation, encryption, decryption, and homomorphic addition
and multiplication. However, the FV scheme supports exact computation mod-
ulo t (which satisfies t ≡ 1 (mod M) throughout this paper), while the CKKS
scheme supports approximate computations over the real numbers by taking dif-
ferent strategies to efficiently encode messages. We begin with their underlying
hard problems.

LWE and RLWE. Let n and q be positive integers, and let D be a probability
distribution over Z. For an unknown vector s ∈ Znq , the LWE (Learning with

Errors) distribution ALWE
n,q,D(s) over Znq × Zq is obtained by sampling a vector a

uniformly at random from Znq and an error e according to D, and outputting

(a, b = [〈a, s〉+ e]q) ∈ Znq × Zq.

7

The search-LWE problem is to find s ∈ Znq when independent samples (ai, bi)

are obtained according to ALWE
n,q,D(s). The decision-LWE problem is to distinguish

the distribution ALWE
n,q,D(s) from the uniform distribution over Znq × Zq.

Lyubashevsky et al. introduced the ring version of the LWE problem, which
is also called Ring-LWE (RLWE) [48]. For a positive integer M , let ΦM (X) be
the M -th cyclotomic polynomial of degree N = φ(M). Let R = Z[X]/(ΦM (X))
and let Rq = R/qR = Zq[X]/(ΦM (X)). The (decisional) RLWE problem is
to distinguish the distribution of (a, b = [a · s + e]q) ∈ R2

q from the uniform
distribution over R2

q, where s ∈ R is a secret polynomial, a is sampled uniformly
at random from Rq and e is sampled according to a certain error distribution
over R. The security of both FV and CKKS is based on the hardness assumption
of the RLWE problem.

Encoders and Decoders. The main difference between FV and CKKS comes
from their methods to encode messages lying in distinct spaces. The encoder
EcdFV : ZNt → R of the FV scheme is the inverse of the decoder DcdFV defined
by, for p(X) ∈ R,

DcdFV(p(X)) = [(p(α0), · · · , p(αN−1))]t ∈ ZNt ,

where αi = ξ3
i−1

(mod t) for 0 ≤ i ≤ N − 1.3

Let δ be a positive real number (called a scaling factor in [21]). The CKKS
encoder EcdCKKS : CN/2 → R is the (approximate) inverse of the decoder
DcdCKKS : R → CN/2, where for p(X) ∈ R,

DcdCKKS(p(X)) = δ−1 · (p(β0), p(β1), · · · , p(βN/2−1)) ∈ CN/2,

where βj = ζ3
j−1 ∈ C for 0 ≤ j ≤ N/2− 1.

Algorithms. FV and CKKS share a common key generation algorithm. The
descriptions of those two algorithms have also been merged, so that one can
easily compare the differences between FV and CKKS.

– Key generation: given a security parameter λ > 0, fix integers N , P , and q0,
· · · , qL such that qi divides qi+1 for 0 ≤ i ≤ L − 1, and distributions Dkey,
Derr and Denc over R in a way that the resulting scheme is secure against
any adversary with computational resource of O(2λ).
1. Sample a← RqL , s← Dkey, and e← Derr.
2. The secret key is defined as sk = (1, s) ∈ R2, and the corresponding

public key is defined as pk = (b, a) ∈ R2
qL , where b = [−a · s+ e]qL .

3. Sample a′ ← RP ·qL and e′ ← Derr.
4. The evaluation key is defined as evk = (b′, a′) ∈ R2

P ·qL , where b′ =

[−a′ · s+ e′ + Ps′]P ·qL for s′ = [s2]qL .
– Encryption: given a public key pk and a plaintext m ∈ R,

1. Sample r ← Denc and e0, e1 ← Derr.
3 A primitive root of unity ξ exists if the characteristic t of the message space is an

odd prime such that t ≡ 1 (mod M).

8

2. Compute Enc(pk, 0) = [r · pk + (e0, e1)]qL .

• For FV, EncFV(pk,m) = [Enc(pk, 0) + (∆ · [m]t, 0)]qL , where ∆ = bqL/te.
• For CKKS, EncCKKS(pk,m) = [Enc(pk, 0) + (m, 0)]qL .

– Decryption: given a secret key sk ∈ R2 and a ciphertext ct ∈ R2
q`

,

DecFV(sk, ct) =

⌊
t

q`
[〈sk, ct〉]q`

⌉
;

DecCKKS(sk, ct) = [〈sk, ct〉]q` .

– Addition: given ciphertexts ct1 and ct2 in R2
q`

, their sum is defined as

ctadd = [ct1 + ct2]q` .

– Multiplication: given ciphertexts ct1 = (b1, a1) and ct2 = (b2, a2) in R2
q`

and
an evaluation key evk, their product is defined as

ctmult = [(d0, d1) + bP−1 · d2 · evke]q` ,

where (d0, d1, d2) is defined by [(b1b2, a1b2 +a2b1, a1a2)]q` when using CKKS

and
[⌊

t
q (b1b2, a1b2 + a2b1, a1a2)

⌉]
q`

when using FV.

– Rescaling (Modulus switching): given a ciphertext ct ∈ R2
q`

and `′ < `, its
rescaled ciphertext is defined as

Rescale`→`′(ct) =

[⌊
q`′

q`
· ct
⌉]

q`′

.

3 CKKS-FV Transciphering Framework

In this section, we describe how the CKKS-FV transciphering framework works,
and prove its correctness.

3.1 Specification

With a fixed security parameter λ, all the other parameters for the FV and
CKKS schemes will be set accordingly, including the degree of the polynomial
modulus N , the ciphertext moduli {qi}Li=0 (used for both FV and CKKS), and
the FV plaintext modulus t. With these fixed parameters, we will describe how
the framework works, distinguishing four parts; stream cipher generation, ini-
tialization, client-side computation, and server-side computation (See Figure 2).
The client-side and server-side computations are explained in Algorithm 1 and
Algorithm 2, respectively.

Generation of Stream Ciphers. For an integer n that divides N , the CKKS-
FV framework will use a stream cipher E that takes as input a secret key k ∈ Znt
and outputs a keystream v ∈ Znt . We require that an additional input u ∈ Z∗t
determines a distinct instance of E, denoted Eu (or simply E).

9

Ek Ek Ek. . .

EcdFV

m EcdCKKS t

C

XOF

nc

XOF

nc

EvalFV(E, ·)

EncFV

EcdFV

Concat

k

×∆

EncCKKS(EcdCKKS(m))

Off-line

On-line

Client Server

Fig. 2: The CKKS-FV transciphering framework. Homomorphic encryption and
evaluation is performed in the boxes with thick lines. Operations in the boxes
with rounded corners do not use any secret information. The vertical dashed line
distinguishes the client-side and the server-side computation, while the horizontal
dashed line distinguishes the offline and the online computation.

Generation of an instance of E by u ∈ Z∗t is denoted Gen (resp. Gen′) in Al-
gorithm 1 (resp. Algorithm 2). The input u is again generated by the underlying
extendable output function (XOF),

XOF : {0, 1}λ × Z→ Z∗t

that takes as inputs a public random value nc ∈ {0, 1}λ and a counter ctr ∈
{1, . . . , N/n}, and returns a string of elements of Zt. We will instantiate a pair
of E and XOF with HERA as described in Section 4, in which case the output
length of XOF is determined by the number and the size of the round keys of E.

Initialization. We use FV and CKKS with the same cyclotomic polynomial of
degree N , and the same public-private key pair (pk, sk). The public key pk is
shared by the server and the client.

The client encrypts k ∈ Znt using the FV scheme with pk. A packing tech-
nique might allow one to perform parallel computations for multiple messages
encrypted in one ciphertext in a SIMD (Single Instruction, Multiple Data) man-
ner. Hence, it is desirable to find an efficient packing method to homomorphically
evaluate multiple copies of E on k, depending on the choice of E.

10

For a matrix
Concat(k) := (k‖k‖ · · · ‖k)︸ ︷︷ ︸

k-times

∈ Zn×kt

where the i-th column of Concat(k) is k and k ≤ N , (glued) row-wise or column-
wise packing methods can be used to encrypt it. We take the glued column-
wise packing for k = N/n and encrypt it to obtain a single ciphertext on the
client side. For an efficient implementation, we use row-wise packing on the
server side where k = N , which outputs n HE-ciphertexts concurrently. After
homomorphic evaluation, the server re-aligns the n HE-ciphetexts into glued
column-wise packed n ciphertexts to compute them with the output ciphertext
of the client. Detailed description for row-wise and column-wise packing can be
found in Appendix A. To summarize, the client computes

K := EncFV(pk,EcdFV(Concat(k))),

and sends K to the server. We note that this initialization phase can be done
only once at the beginning of the CKKS-FV framework. The client also generates
a random value nc ∈ {0, 1}λ and sends it to the server.

Client-side Computation. Given a nonce nc ∈ {0, 1}λ, a secret key k ∈ Znt
of E, an N/2-tuple of complex messages m = (m1, . . . ,mN/2) ∈ CN/2, and a
scaling factor δ > 0 (used in the CKKS scheme), the client executes the following
two steps.

Step 1: Keystream Generation (Offline). For each counter ctr ∈ {1, . . . , N/n},
the client computes uctr := XOF(nc, ctr), and generates the corresponding stream
cipher E by procedure Gen in Algorithm 1; with this stream cipher E and secret
key k, the client computes vctr := E(k). With v1, . . . ,vN/n ∈ Znt , the client
computes a keystream

V := EcdFV(v1, . . . ,vN/n) ∈ ZNt .

Step 2: Message Encryption (Online). The client encodes the tuple of messages
m = (m1, . . . ,mN/2) ∈ CN/2 into R with the CKKS encoder equipped with
the scaling factor δ. Using the correspondence between R and ZN , the client
computes

C :=
[
EcdCKKS(m) + V

]
t
,

and sends it to the server.

Server-side Computation. Given a nonce nc ∈ {0, 1}λ, the FV-encrypted key
K = EncFV(pk,EcdFV(Concat(k))) and the symmetric ciphertext C, the server
executes the following two steps.

Step 1: Homomorphic Evaluation (Offline). The server is able to recover uctr =
XOF(nc, ctr) (using the nonce nc sent from the client), and generate the stream
cipher E ← Gen(uctr) for ctr = 1, . . . , N/n. Then, it constructs a circuit for the

11

homomorphic evaluation of N/n copies of E using the SIMD operation, denoted
EvalFV(E, ·). The procedure of generating the stream cipher and constructing a
circuit for EvalFV(E, ·) is denoted Gen′ in Algorithm 2. With the FV-encrypted
key K, the server homomorphically computes V := EvalFV(E,K).

Step 2: Retrieval of the CKKS-ciphertext (Online). The server computes a trivial
FV-encryption of C to enable FV evaluation, namely

C := (∆ · C, 0).

Then, it computes

M := [C − V]q,

where q is the ciphertext modulus of V. In Section 3.2, we will show that the
output M can be interpreted as a CKKS ciphertext of the client’s message m
indeed.

Algorithm 1: Client-side symmetric key encryption

Input:
– Nonce nc ∈ {0, 1}λ
– Symmetric key k ∈ Znt
– Tuple of messages m = (m1, . . . ,mN/2) ∈ CN/2
– Scaling factor δ

Output:

– Symmetric ciphertext C ∈ Rt

1 for ctr← 1 to N/n do
2 uctr ∈ Z∗t ← XOF(nc, ctr)
3 E← Gen(uctr)
4 vctr ← E(k)

5 V ← EcdFV(v1, . . . ,vN/n)

6 M ← EcdCKKS(m, scale = δ)
7 C ← [M + V]t
8 return C

Security of the CKKS-FV Framework. In the server, all the client’s data are
encrypted using the stream cipher E, and the secret key is also encrypted by the
FV encryption scheme.

In our framework, the underlying XOF will be modeled as a random oracle,
and we will assume that E behaves like an independent random function for a
random input string u ∈ Z∗t which is an output of XOF. Hence, the stream

12

cipher E will generate an independent random keystream by every distinct pair
of a nonce and a counter. Keystreams from E are encoded by the encoder of FV,
while it does not degrade the overall security since the encoder, being one-to-one,
does not reduce the entropy of the keystreams.

Encryption of Short Messages. Since the parameter N is fixed according
to the required depths for FV and CKKS in the initialization phase, it occurs
that one needs to encrypt a shorter message than that in CN/2. In this case, a
slight tweak to the above algorithms offers better performance in terms of the
client-side computational overload and the ciphertext expansion.

Suppose that the message dimension is `/2 for a positive integer `, where ` is a
power-of-two such that n ≤ ` < N , namely, m ∈ C`/2. Then one can first encode
the message m of `/2 slots with the encoder EcdCKKS` : C`/2 → Z[X]/(Φ2`(X))
and then map it into the plaintext space R of the HE schemes using a function
ψ defined by

ψ : Z[X]/(Φ2`(X))→ R = Z[X]/(Φ2N (X))

M(X) 7→ M(XN/`),

so that the resulting polynomial can be encrypted with FV.
Similarly, for any v1, . . . ,v`/n ∈ Znt , one can first obtain

EcdFV` (v1, . . . ,v`/n),

and then apply ψ so that the resulting polynomial is in the plaintext space of
FV. In this way, we obtain the ciphertext

C` =
[
EcdCKKS` (m) + EcdFV` (v1, . . . ,v`/n)

]
t
,

instead of C defined in line 7 of Algorithm 1. Upon receiving C`, the server maps
it into R and encrypts it with FV using the cyclotomic polynomial of degree N .
The remaining procedures are the same as Algorithms 1 and 2.

This tweak preserves the functionality of our CKKS-FV framework, while
reducing the ciphertext size to `dlog te, which is `/N times smaller than the
main version. The computational cost in the client side will be reduced by the
same order.

3.2 Correctness of the Framework

In this section, we prove the correctness of the CKKS-FV framework. Precisely,
we will prove that the output M from Algorithm 2 can be interpreted as
EncCKKS(pk,EcdCKKS(m)), namely, m is close to DcdCKKS(DecCKKS(sk,M)) up
to a small error with high probability. In the following theorem, we omit the
notations of pk and sk in the HE algorithms for simplicity.

Theorem 1. Let m ∈ CN/2 be the client’s message as an input to Algorithm 1
such that M = EcdCKKS(m, scale = δ) satisfies ‖M‖∞ ≤ bt/2c, and let M be the

13

Algorithm 2: Server-side homomorphic evaluation of decryption

Input:
– Nonce nc ∈ {0, 1}λ

– FV-encrypted key K = EncFV
(
EcdFV (Concat(k))

)
– Symmetric ciphertext C ∈ Rt

Output:

– CKKS-ciphertext M = EncCKKS(EcdCKKS(m)) with
scaling factor δ∆

1 for ctr← 1 to N/n do
2 uctr ∈ Z∗t ← XOF(nc, ctr)

3 EvalFV(E, ·)← Gen′(u1, . . . ,uN/n)

4 V ← EvalFV(E,K)
5 C ← (∆ · C, 0)
6 M← [C − V]q
7 return M

output from Algorithm 2. If the ciphertext after the homomorphic evaluation of
EvalFV(E, ·) has a decryption error eeval ∈ R such that ‖eeval‖can∞ < BEval where
‖ · ‖can∞ := ‖DcdCKKS(·, scale = 1)‖∞, then we have

∥∥∥m− DcdCKKS
(
DecCKKS(M), scale = ∆δ

)∥∥∥
∞

≤ N

2δ
+

1

∆δ

(
Nt

2
+BEval

)
.

Proof. Recall that, in Algorithm 1, M = EcdCKKS(m, scale = δ), and V =
EcdFV(v1, · · · ,vN/n), where E = Gen(uctr), vctr = E(k), and C = [M + V]t.
In Algorithm 2, we have

K = EncFV
(
EcdFV(k‖ · · · ‖k)

)
, V = EvalFV(E,K),

C = (∆ · C, 0), M = [C − V]q.

Since

DecCKKS(V) = ∆V + eeval,

DecCKKS(C) = ∆[M + V]t,

14

we have

DecCKKS([C − V]q) = [DecCKKS(C)− DecCKKS(V)]q

= [∆([M + V]t − [V]t)− eeval]q
= [∆[M]t + (∆t− q)ε− eeval]q , (1)

where ε ∈ R satisfies that [M + V]t − ([M]t + [V]t) = tε, and hence ‖ε‖∞ ≤ 1.

Since ‖DcdCKKS(M, scale = δ)−m‖∞ ≤ N
2δ and [M]t = M by (1), we have∥∥∥m− DcdCKKS

(
DecCKKS(M, scale = ∆δ)

)∥∥∥
∞
≤ N

2δ
+
|∆t− q| · ‖ε‖can∞ + ‖eeval‖can∞

∆δ

≤ N

2δ
+
|∆t− q|N + ‖eeval‖can∞

∆δ

≤ N

2δ
+

1

∆δ

(
Nt

2
+BEval

)
. ut

4 A New Stream Cipher over Zt

The CKKS-FV transciphering framework requires a stream cipher with a variable
plaintext modulus. In this section, we propose a new stream cipher HERA using
modular arithmetic, and analyze its security.

4.1 Specification

A stream cipher HERA for λ-bit security takes as input a symmetric key k ∈ Z16
t ,

a nonce nc ∈ {0, 1}λ, and returns a keystream knc ∈ Z16
t , where the nonce is fed

to the underlying extendable output function (XOF) that outputs an element in
(Z16
t)∗. In a nutshell, HERA is defined as follows.

HERA[k, nc] = Fin[k, nc, r] ◦ RF[k, nc, r − 1] ◦ · · · ◦ RF[k, nc, 1] ◦ ARK[k, nc, 0]

where the i-th round function RF[k, nc, i] is defined as

RF[k, nc, i] = ARK[k, nc, i] ◦ Cube ◦MixRows ◦MixColumns

and the final round function Fin is defined as

Fin[k, nc, r] =

ARK[k, nc, r] ◦MixRows ◦MixColumns ◦ Cube ◦MixRows ◦MixColumns

for i = 1, 2, . . . , r − 1 (see Figure 3).

Key Schedule. The round key schedule can be simply seen as component-wise
product between a random value and the master key k, where the uniformly
random value in Z×t is obtained from a certain extendable output function XOF.

15

XOFnc

MC MR

X3

X3

... t

k

Fig. 3: The round function of HERA. Operations in the box with dotted (resp.
thick) lines are public (resp. secret). “MC” and “MR” represent MixColumns and
MixRows, respectively.

Given a sequence of outputs of XOF, say rc = (rc0, . . . , rcr) ∈ (Z16
t)r+1, ARK is

defined as follows.
ARK[k, nc, i](x) = x + k • rci

for i = 0, . . . , r, and x ∈ Z16
t , where • (resp. +) denotes component-wise mod t

multiplication (resp. addition). The extendable output function XOF might be
instantiated with a sponge-type hash function SHAKE256 [32].

Linear Layers. Each linear layer is the composition of MixColumns and MixRows.
Similarly to AES, MixColumns multiplies a certain 4× 4-matrix to each column
of the state, where the state of HERA is also viewed as a 4×4-matrix over Zt (see
Figure 4). MixColumns and MixRows are defined as in Figure 5a and Figure 5b,
respectively. The only difference of our construction from AES is that each entry
of the matrix is an element of Zt.

x00

x10

x20

x30

x01

x11

x21

x31

x02

x12

x22

x32

x03

x13

x23

x33

Fig. 4: State of HERA. Each square stands for the component in Zt.

16

y0c
y1c
y2c
y3c

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·

x0c
x1c
x2c
x3c

(a) MixColumns

yc0
yc1
yc2
yc3

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·

xc0
xc1
xc2
xc3

(b) MixRows

Fig. 5: Definition of MixColumns and MixRows. For c ∈ {0, 1, 2, 3}, xij and yij
are defined as in Figure 4.

Nonlinear Layers. The nonlinear map Cube is the concatenation of 16 copies
of the same S-box, where the S-box is defined by x 7→ x3 over Zt. So, for
x = (x0, . . . , x15) ∈ Z16

t , we have

Cube(x) = (x30, . . . , x
3
15).

Encryption Mode. When a keystream of ` blocks (in (Z16
t)`) is needed for

some ` > 0, the “inner-counter mode” can be used; for ctr = 0, 1, . . . , `− 1, one
computes

z[ctr] = HERA [k, nc‖ctr] (0),

where 0 denotes the all-zero vector in Z16
t .

4.2 Design Rationale

Symmetric cipher designs for advanced protocols so far have been targeted at
homomorphic encryption as well as various privacy preserving protocols such
as multiparty computation (MPC) and zero knowledge proof (ZKP). In such
protocols, multiplication is significantly more expensive than addition, so a new
design principle has begun to attract attention in the literature: to use simple
nonlinear layers at the cost of highly randomized linear layers (e.g., LowMC [3]
and Rasta [27]). However, to the best of our knowledge, most symmetric ciphers
following this new design principle operate only on binary spaces, rendering it
difficult to apply them to our hybrid framework.

One might consider extending FLIP [50] or Rasta [27] to modular spaces by
generating random matrices over modular spaces. This straightforward approach
will degrade the overall efficiency of the cipher. Furthermore, unlike MPC and
ZKP, linear maps over homomorphically encrypted data may not be simply
“free”. In order to use the batching techniques for homomorphic evaluation, the
random linear layers should be encoded into HE-plaintexts, and then applied to
HE-ciphertexts. Since multiplication between (encoded) plaintexts and cipher-
texts require O(N logN) time (besides many HE rotations), randomized linear
layers might not be that practical except that a small number of rounds are
sufficient to mitigate algebraic attacks. For this reason, we opted for fixed linear
layers.

17

In Table 2, we compare different types of linear maps to the (nonlinear)
Cube map in terms of evaluation time and noise consumption. This experiment
is conducted with the HE-parameters (N, dlog qe) = (32768, 275) using row-wise
packing, where the noise budget after the initialization is set to 239 bits (see
Appendix A). In this table, “Fixed matrix” and “Freshly-generated matrix”
represent a non-sparse fixed matrix, and a set of distinct matrices freshly gener-
ated over different slots, respectively, where all the matrices are square matrices
of order 16 and randomly generated. We see that a freshly-generated linear layer
takes more time than Cube. A fixed linear layer is better than a freshly-generated
one, but its time complexity is not negligible yet compared to Cube. On the other
hand, our linear layer is even faster than any fixed linear layer due to its sparsity.

Time (ms) Consumed Noise (bits)

MixRows ◦MixColumns 23.55 4

Fixed matrix 461.68 27

Freshly-generated matrix 4006.03 34.9

Cube 3479.07 86.4

Table 2: Comparisons of different types of linear maps in terms of evaluation
time and noise consumption.

The HERA cipher uses a sparse linear layer, whose design is motivated by the
MixColumns layer in AES, enjoying a number of nice features; it is easy to analyze
since its construction is based on an MDS matrix and needs a small number of
multiplications due to the sparsity of the matrix. We design a Zt-variant of the
matrix and use it in the linear layers; it turns out to be an MDS matrix over Zt
when t is a prime number such that t > 17. Instead of using ShiftRows of AES,
HERA uses an additional layer MixRows which is a “row version” of MixColumns
to enhance the security against algebraic attacks; the composition of two linear
functions generates all possible monomials.

In the nonlinear layer, Cube takes the component-wise cube of the input.
The cube map is studied from earlier multivariate cryptography [49], recently
attracting renewed interest for the use in MPC-friendly ciphers [1, 4]. The cube
map has good linear/differential characteristics, whose inverse is of high degree,
mitigating meet-in-the-middle algebraic attacks.

As multiplicative depth heavily impacts on noise growth of HE-ciphertexts,
it is desirable to design HE-friendly ciphers using a small number of rounds.
One of the most threatening attacks on ciphers with low algebraic degrees is the
higher order differential attack. For a λ-bit secure (possibly non-binary) cipher,
the algebraic degree of the cipher should be at least λ− 1. However, the attack
is not available on randomized cipher such as FLIP and Rasta.

18

To balance between the efficiency and the security, we propose a new direc-
tion: randomizing the key schedule. A randomized key schedule (RKS) is moti-
vated by the tweakey framework [42]. In the tweakey framework, a key schedule
takes as input a public value (called a tweak) and a key, where an adversary
is allowed to take control of tweaks. On the other hand, RKS is a key schedule
which takes as input a randomized public value and a key together, where the
random value comes from a certain pseudorandom function. So, in our design,
an adversary is not able to freely choose the random value.

The design principle behind our RKS is simple: to use as a small number of
multiplications as possible. One might consider simply adding a fresh random
value to the master key for every round. This type of key schedule might provide
security against differential cryptanalysis, but it still might be vulnerable to al-
gebraic attacks and linear cryptanalysis. It is important to enlarge the number of
monomials in the first linear layer, while this candidate will invalidate this effect
since an adversary is able to use the linear change of variables (see Appendix C
in [27]). Based on this observation, we opted for component-wise multiplication.
It simply offers better security on algebraic attacks and linear cryptanalysis.

4.3 Security Analysis

4.3.1 Algebraic Attacks

The HERA cipher can be represented by a set of polynomials over Zt in un-
knowns k1, . . . , kn, where ki ∈ Zt denotes the i-th component of the secret key
k ∈ Znt . Since multiplication is more expensive than addition in HE schemes,
most HE-friendly ciphers have been designed to have a low multiplicative depth.
This property might possibly make such ciphers vulnerable to algebraic attacks.
Indeed, some of recent constructions have been analyzed by algebraic attacks
due to their low algebraic depth [25, 31, 2]. In this section, we will consider two
different types of algebraic attacks: trivial linearization and the Gröbner basis
attack.

Trivial Linearization. Trivial linearization is to make the system of polynomial
equations linear by replacing all monomials by new variables. When the cipher
is represented by a system of polynomial equations of degree d over Zt in n
unknowns (and d < t), the number of monomials appearing in this system is
upper bounded by

S =

d∑
i=0

(
n+ i− 1

i

)
.

Therefore, at most S equations will be enough to solve this system of equations.
If the system is sparse, then it would require less equations to solve the system.
As shown in Supplementary Material A, all the cubic monomials appear in a
single round of HERA so that all the monomials appear after r rounds of HERA.
Therefore, this attack requires O(S) data and O(Sω) time, where 2 ≤ ω ≤ 3.

An adversary might take the guess and determine strategy before trivial lin-
earization. By guessing g variables, the number of possible monomials is reduced

19

down to

Sg =

d∑
i=0

(
n− g + i− 1

i

)
.

This approach will be useful in particular when almost every monomial appears
in the system. In this case, the overall time complexity becomes O(tgSωg).

Gröbner Basis Attack. The Gröbner basis attack is to solve a system of equa-
tions by computing a Gröbner basis of the system. If such a Gröbner basis is
found, then the variables can be eliminated one by one. Gröbner basis can be
computed with low data unlike the trivial linearization. However, its computa-
tion is slower than the trivial linearization with a small amount of data. For
this reason, the Gröbner basis attack will be useful (compared to the trivial lin-
earization) when either the data is limited or the number of monimials grows
faster than the number of equations. When it comes to HERA, the Gröbner basis
attack is mitigated by setting the parameters so that O(Sω) is large enough.

Parameters. With respect to the algebraic attacks, the recommended number
of rounds is given in Table 3 for a various security level. It has been computed
by the above estimation for Sω with ω = 2. Guessing variables will not affect
the security of HERA when dlog te ≥ 17.

Security (bit) 80 128 192 256

Round 4 5 6 7

Table 3: Recommended number of rounds with respect to algebraic attacks.

4.3.2 Linear and Differential Cryptanalysis

Linear Cryptanalysis. Linear cryptanalysis typically applies to block ciphers
operating on binary spaces. However, linear cryptanalysis can be extended to
non-binary spaces [6]; similarly to binary ciphers, for a prime t, the linear prob-
ability of a cipher E : Z`t → Z`t with respect to input and output masks a,b ∈ Z`t
can defined as

LPE(a,b) =

∣∣∣∣Em

[
exp

{
2πi

t

(
− 〈a,m〉+ 〈b,E(m)〉

)}]∣∣∣∣2 ,
where m follows the uniform distribution over Z`t. When E is a random permu-
tation, the expected linear probability is denoted

ELPE(a,b) = EE[LPE(a,b)].

20

Then the number of samples required for linear cryptanalysis is known to be

1

ELPE(a,b)
.

In order to ensure the security against linear cryptanalysis, it is sufficient to
bound the maximum linear probability maxa6=0,b ELPE(a,b).

The linear probability of an r-round HERA is upper bounded by (LPS)B`·b r2 c,
where LPS and B` denote the linear probability of the S-box and the branch
number of the linear layer, respectively. Therefore, the data complexity for linear
cryptanalysis is lower bounded approximately by

1

(LPS)B`·b r2 c
.

The linear probability LPS is upper bounded as follows.

Lemma 1. For an odd prime t, let S : Zt → Zt be a permutation such that
S(x) = x3. Then, for any pair (α, β) ∈ Z2

t such that α 6= 0, we have

LPS(α, β) ≤ 4

t
.

Proof. By the definition of LP, we have

LPS(α, β) =
∣∣∣Em[− αm+ βS(m)

]∣∣∣2 =

∣∣∣∣∣1t
t−1∑
m=0

exp

{
2πi

t

(
−αm+ βm3

)}∣∣∣∣∣
2

.

Carlitz and Uchiyama [14] proved that∣∣∣∣∣
t−1∑
x=0

exp

(
2πi

t
· p(x)

)∣∣∣∣∣ ≤ (r − 1)
√
t

for any polynomial p(x) of degree r over Zt. Therefore, we have

LPS(α, β) =

∣∣∣∣∣1t
t−1∑
m=0

exp

{
2πi

t

(
− αm+ βm3

)}∣∣∣∣∣
2

≤ 1

t2

(
2
√
t
)2

=
4

t
. ut

The branch number of the linear layer of HERA is 8 (as shown in Supplemen-
tary Material B). Combined with Lemma 1, we can conclude that an r-round
HERA cipher provides λ-bit security against linear cryptanalysis when(

t

4

)8·b r2 c

> 2λ.

Differential Cryptanalysis. Resistance of a substitution-permutation cipher
to differential cryptanalysis is typically estimated by the maximum probability

21

of differential trails [7]. Let S : Zt → Zt be the nonlinear map (S-box) used
in Cube. Given nonzero input and output differences α and β, the differential
probability of S is defined by

DPS(α, β) =
1

t
· |{x ∈ Zt|S(x+ α)− S(x) = β}| .

So DPS(α, β) is determined by the number of solutions to S(x+α)−S(x) = β,
which is a quadratic equation in x since S(x) = x3. Therefore, there are at most
two solutions to this equation, which implies DPS(α, β) ≤ 2

t .
Since the branch number of the linear layer of HERA is 8 (as shown in Sup-

plementary Material B), an r-round HERA cipher provides λ-bit security against
differential cryptanalysis when (

t

2

)8·b r2 c

> 2λ.

Parameters. Based on the evaluation given as above, the recommended number
of rounds is summarized in Table 4 for a various security level. This table assumes
that dlog te ≥ 17.

Security (bit) 80 128 192 256

Round 2 4 4 6

Table 4: Recommended number of rounds with respect to linear and differential
cryptanalysis.

Remark 1. Our evaluation of the security of HERA against linear and differential
cryptanalysis is based on the assumption that round keys are fixed under the
same master key, while it is not the case for HERA. Due to its randomized
key scheduling, HERA will have additional security margins against such types
of attacks. We will choose the number of rounds with respect to the security
against algebraic attacks, in which case we have a few more rounds of security
margin for linear and differential cryptanalysis.

4.3.3 Related-key Attacks and Others.

Related-key Attacks. Kelsey et al. [44] have first proposed a related key attack
on DES with independent round keys. They used 15 related keys with a partial
collision property that all the round keys are the same except for a particular
target round. However, it would be infeasible to find such a partial collision for
HERA due to its randomized key schedule. Hence, the related key attack with

22

independent round keys will not be applicable to HERA. Related-key attacks
with random relationship between rounds keys would not work better than the
classical linear and differential cryptanalysis.

Other Attacks. Given a fixed polynomial representation of ciphertexts in plain-
text variables, and if the polynomial is of a low degree, then one can mount the
cube attack [26]. By interpolating a polynomial from plaintext-ciphertext pairs,
one might also mount the interpolation attack [41]. Such attacks would not be
applicable to HERA since round keys are fresh for every encryption.

The integral attack [45] exploits the integral property of the underlying per-
mutation. In particular, small bijective S-boxes and insufficiently diffusive linear
layers make the block cipher vulnerable to the integral attack. However, this at-
tack is possible only when a sufficient number of queries are made for the same
round keys since otherwise one cannot make the integral property propagate
over the rounds. Overall, we conclude that HERA is secure against the integral
attack.

5 Implementation

In this section, we evaluate the performance of the CKKS-FV framework com-
bined with the HERA cipher in terms of encryption speed and ciphertext ex-
pansion. Our source codes are developed in C++17 with Microsoft SEAL ver.
3.4.5 [54] which includes FV and CKKS implementations. Our experiments are
done in AMD Ryzen 7 2700X @ 3.70 GHz single-threaded with 64 GB memory,
using GNU C++ 7.5.0 compliler in O3 optimization level. XOF is instantiated
with SHAKE256 in XKCP [55]. In the client-side implementation, we use the AVX2
instruction set.

Selected Parameters. Sets of parameters used in our implementation are given
in Table 5, where

– λ is the security parameter of the CKKS-FV framework;
– p is the bits of precision of the CKKS-FV framework;
– t is the plaintext modulus of HERA;
– r is the number of rounds of HERA;
– N is the degree of the polynomial modulus in the HE schemes;
– q is the ciphertext modulus of the HE schemes before evaluating E.

Since the SEAL library supports only the security level of 128 bits or more, we
experiment Par-I and Par-II, which target 80-bit security, using the HE schemes
with 128-bit security parameters. In Table 5, we assume that plaintexts are fully
batched.

Given N and p, we will fix positive integers cl and cu such that cu/cl ≤ 4
and for any message m = (m1, . . . ,mN/2),

min
Re(mi) 6=0
Im(mi)6=0

{|Re(mi)|, |Im(mi)|} ≥ cl,

23

λ p
SKE HE

dlog te r logN dlog qe
Par-I 80 10 27 4 15 495

Par-II 80 14 31 4 15 550

Par-III 128 10 27 5 15 605

Par-IV 128 14 31 5 15 660

Table 5: Selected sets of parameters used in our implementations.

and ‖m‖∞ ≤ cu. Once cl and cu are fixed, we choose a scaling factor δ satisfying

α · N
δcl

< 2−p

where α < 0.476 (See Supplementary Material C), and then the plaintext mod-
ulus t satisfying

δcu <
t

2
.

In the case of encrypting short messages, we can choose an alternative set
of parameters as shown in Table 6. Here we only change the number of slots
and the corresponding plain modulus t from Par-III (without any change to the
other parameters). The parameter ` implies that the message space is C`/2.

dlog te log `

Par-IIIA 17 4

Par-IIIB 20 6

Par-IIIC 21 8

Par-IIID 23 10

Table 6: Sets of parameters for short message encryption.

5.1 Benchmarks

As shown in Table 7, we measure the performance of the CKKS-FV framework,
distinguishing two different parts: the client-side and the server-side as separated
in Figure 2. On the client-side, the latency includes time for generating pseudo-
random numbers (needed to generate a single keystream in ZNt), computation of
E, FV-encoding, CKKS-encoding and vector addition over Zt. When we measure
the throughput, we set the message length to Np bits. The extendable output

24

Client-side Server-side

Latency Throughput Latency Throughput

(ms) (MB/s) (s) (KB/s)

Par-I 4.507 8.666 32.63 9.752

Par-II 4.872 11.23 37.32 11.77

Par-III 4.673 8.359 51.69 6.633

Par-IV 5.056 10.82 57.97 8.194

Table 7: Performance of the CKKS-FV transciphering framework with HERA.

log `

Client-side Ciphertext Expansion

Latency Throughput Message Symmetric CKKS
Ratio

(µs) (MB/s) (B) (B) (B)

Par-IIIA 4 1.791 10.65 20 34 14848 436.7

Par-IIIB 6 7.912 9.642 80 160 14848 92.80

Par-IIIC 8 32.29 9.452 320 640 14848 23.20

Par-IIID 10 129.2 9.448 1280 2816 14848 5.272

Par-III 15 4695 8.320 40960 110592 270336 2.444

Table 8: Client-side performance and ciphertext expansion in the CKKS-FV
framework when short messages are encrypted.

function is instantiated with SHAKE256 in XKCP. For the uniform sampling on
Zt, we refer to [9].

The server-side part is implemented by using the SEAL library. The latency
includes time for randomized key schedule, homomorphic evaluation of E, mul-
tiplication of the client’s output by ∆, and the homomorphic subtraction. As
mentioned in Section 3.1, we use column-wise packing on the client side and row-
wise packing on the server side. When the server re-aligns from row-wise packing
to column-wise packing, it outputs 16 (column-wise packed) HE-ciphertexts. We
measure the latency until the first HE-ciphertext comes out, and measure the
throughput until all the 16 HE-ciphertext come out. We note that our evaluation
does not take into account key encryption since the encrypted key will be used
over multiple sessions once it is computed. For the same reason, the initialization
process of the HE schemes is not considered.

Table 8 shows the client-side performance and the ciphertext expansion in
the case of encrypting short messages. When the number of slots is reduced,
both encoders become faster super-linearly. On the other hand, for the server-
side computation, latency will be the same as the fully batched one, and the
throughput will be inversely proportional to the number of slots.

25

The ciphertext expansion can be evaluated by the underlying parameters
and the message length, independent of the experiments. The bits of precision
is counted in the message length; if a complex vector m of length `/2 has p
bits of precision, then we will regard m as of size `p bits. For a vector over Zt
of length `, its size is regarded as `dlog te bits. When it comes to the CKKS
scheme, the parameter N should be at least 2048 bits no matter how short
messages are encrypted; for short messages, the CKKS-ciphertext length cannot
be proportional to the message length.

5.2 Discussion

At the end of the CKKS-FV framework, the server obtains CKKS-ciphertexts
with scaling factor δ ·∆, as shown in Theorem 1. When the server evaluates any
function for the ciphertexts, rescaling will be necessary in order to balance the
ciphertext modulus and the scaling factor. However, the level of the ciphertext
will still remain too low to do any further operation over the ciphertexts.

When FV or BGV is used in the transciphering framework [3, 13, 27], one
can take sufficiently large parameters for the HE scheme in order to obtain
ciphertexts at a level high enough to do additional computations without boot-
strapping. When it comes to the CKKS-FV framework, one should choose a large
parameter t for the underlying symmetric cipher in addition to large HE param-
eters. For example, in order to obtain CKKS-ciphertexts of level 2 with 10 bits
of precision in each slot on average, the parameter log t should be approximately
set to 120.

Alternatively, bootstrapping allows a noisy ciphertext which is an output
of the CKKS-FV framework to be refreshed to a cleaner state. Bootstrapping
methods for the CKKS scheme have been actively studied [19, 15, 39], while all
the methods use the sine function to approximate modulo q operation in the
decryption circuit of the CKKS scheme as far as we know. To make accurate
approximation, it should be the case that ‖m‖∞ � q, where m is a plaintext
capsuled in the ciphertext to be bootstrapped and q is the ciphertext modulus.
Since the resulting CKKS-ciphertext has scaling factor δ∆ = δ · bq/te in our case,

t should be at least (C · ε−1 · q) 1
3 to make further bootstrapping sound, where

C = 2π2

3 and the approximation error between the modulo q operation and the
sine function is upper bounded by ε > 0.

References

[1] Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.
In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology – ASIACRYPT 2016.
vol. 10031, pp. 191–219. Springer (2016)

[2] Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rech-
berger, C., Schofnegger, M.: Algebraic Cryptanalysis of STARK-Friendly Designs:
Application to MARVELlous and MiMC. In: Galbraith, S.D., Moriai, S. (eds.)

26

Advances in Cryptology – ASIACRYPT 2019. vol. 11923, pp. 371–397. Springer
(2019)

[3] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology –
EUROCRYPT 2015. vol. 9056, pp. 430–454. Springer, Berlin, Heidelberg (2015)

[4] Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. IACR Cryp-
tology ePrint Archive, Report 2019/426 (2019), https://eprint.iacr.org/2019/426

[5] Ashur, T., Dhooghe, S.: MARVELlous: a STARK-Friendly Family of Crypto-
graphic Primitives. IACR Cryptology ePrint Archive, Report 2018/1098 (2018),
https://eprint.iacr.org/2018/1098

[6] Baignères, T., Stern, J., Vaudenay, S.: Linear Cryptanalysis of Non Binary Ci-
phers. In: Adams, C., Miri, A., Wiener, M. (eds.) Selected Areas in Cryptography.
vol. 4876, pp. 184–211. Springer (2007)

[7] Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) Advances in Cryptology – CRYPTO ’90.
vol. 537, pp. 2–21. Springer (1991)

[8] Bootland, C., Castryck, W., Iliashenko, I., Vercauteren, F.: Efficiently Process-
ing Complex-Valued Data in Homomorphic Encryption. Journal of Mathematical
Cryptology 14(1), 55 – 65 (2020)

[9] Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS - Kyber: A CCA-Secure Module-
Lattice-Based KEM. In: 2018 IEEE European Symposium on Security and Privacy
(Euro S&P). pp. 353–367 (2018)

[10] Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted med-
ical data. Journal of biomedical informatics 50, 234–243 (2014)

[11] Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Simulating Homomorphic Eval-
uation of Deep Learning Predictions. In: Dolev, S., Hendler, D., Lodha, S., Yung,
M. (eds.) Cyber Security Cryptography and Machine Learning. vol. 11527, pp.
212–230. Springer (2019)

[12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic En-
cryption without Bootstrapping. In: Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference. p. 309–325. ACM (2012)

[13] Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier,
P., Sirdey, R.: Stream ciphers: A Practical Solution for Efficient Homomorphic-
Ciphertext Compression. Journal of Cryptology 31(3), 885–916 (2018)

[14] Carlitz, L., Uchiyama, S.: Bounds for exponential sums. Duke mathematical Jour-
nal 24(1), 37–41 (1957)

[15] Chen, H., Chillotti, I., Song, Y.: Improved Bootstrapping for Approximate Ho-
momorphic Encryption. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology
– EUROCRYPT 2019. vol. 11477, pp. 34–54. Springer (2019)

[16] Chen, H., Dai, W., Kim, M., Song, Y.: Efficient Homomorphic Conversion Between
(Ring) LWE Ciphertexts. IACR Cryptology ePrint Archive, Report 2020/015
(2020), https://eprint.iacr.org/2020/015

[17] Chen, H., Iliashenko, I., Laine, K.: When HEAAN Meets FV: a New Somewhat
Homomorphic Encryption with Reduced Memory Overhead. IACR Cryptology
ePrint Archive, Report 2020/121 (2020), https://eprint.iacr.org/2020/121

[18] Cheon, J.H., Kim, D., Kim, Y., Song, Y.: Ensemble Method for Privacy-Preserving
Logistic Regression Based on Homomorphic Encryption. IEEE Access 6, 46938–
46948 (2018)

27

[19] Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for Approxi-
mate Homomorphic Encryption. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in
Cryptology – EUROCRYPT 2018. vol. 10820, pp. 360–384. Springer (2018)

[20] Cheon, J.H., Jeong, J., Lee, J., Lee, K.: Privacy-Preserving Computations of Pre-
dictive Medical Models with Minimax Approximation and Non-Adjacent Form.
In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y., Teague, V.,
Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) Financial Cryptography
and Data Security. vol. 10323, pp. 53–74. Springer (2017)

[21] Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic Encryption for Arith-
metic of Approximate Numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in
Cryptology – ASIACRYPT 2017. vol. 10624, pp. 409–437. Springer (2017)

[22] Cheon, J.H., Kim, M., Lauter, K.: Homomorphic Computation of Edit Distance.
In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) Financial Cryptog-
raphy and Data Security. vol. 8976, pp. 194–212. Springer (2015)

[23] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster Fully Homomorphic
Encryption: Bootstrapping in Less Than 0.1 Seconds. In: Cheon, J.H., Takagi, T.
(eds.) Advances in Cryptology – ASIACRYPT 2016. vol. 10031, pp. 3–33. Springer
(2016)

[24] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast Fully Homo-
morphic Encryption Over the Torus. Journal of Cryptology 33(1), 34–91 (2020)

[25] Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized Interpolation Attacks on
LowMC. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT
2015. vol. 9453, pp. 535–560. Springer (2015)

[26] Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In:
Joux, A. (ed.) Advances in Cryptology – EUROCRYPT 2009. vol. 5479, pp. 278–
299. Springer (2009)

[27] Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: A Cipher with Low ANDdepth and Few ANDs
per Bit. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO
2018. vol. 10991, pp. 662–692. Springer (2018)

[28] Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-Order Cryptanalysis of
LowMC. In: Kwon, S., Yun, A. (eds.) Information Security and Cryptology –
ICISC 2015. vol. 9558, pp. 87–101. Springer (2016)

[29] Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward Practical Homo-
morphic Evaluation of Block Ciphers Using Prince. In: Böhme, R., Brenner, M.,
Moore, T., Smith, M. (eds.) Financial Cryptography and Data Security. vol. 8438,
pp. 208–220. Springer (2014)

[30] Ducas, L., Micciancio, D.: FHEW: Bootstrapping Homomorphic Encryption in
Less Than a Second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology
– EUROCRYPT 2015. vol. 9056, pp. 617–640. Springer (2015)

[31] Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP Family of Stream
Ciphers. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO
2016. vol. 9814, pp. 457–475. Springer (2016)

[32] Dworkin, M.J.: SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. Tech. rep., National Institute of Standards and Technology
(2015)

[33] Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic En-
cryption. IACR Cryptology ePrint Archive, Report 2012/144 (2012),
https://eprint.iacr.org/2012/144

28

[34] Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing. p. 169–178.
ACM (2009)

[35] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic Evaluation of the AES Circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012.
vol. 7417, pp. 850–867. Springer (2012)

[36] Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In:
Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013.
vol. 8042, pp. 75–92. Springer (2013)

[37] Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-Friendly
Symmetric Key Primitives. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. p. 430–443. ACM (2016)

[38] Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
Advances in Cryptology – EUROCRYPT 2015. vol. 9056, pp. 641–670. Springer
(2015)

[39] Han, K., Ki, D.: Better Bootstrapping for Approximate Homomorphic Encryption.
In: Jarecki, S. (ed.) Topics in Cryptology – CT-RSA 2020. vol. 12006, pp. 364–390.
Springer (2020)

[40] Hong, S., Lee, S., Lim, J., Sung, J., Cheon, D., Cho, I.: Provable Security against
Differential and Linear Cryptanalysis for the SPN Structure. In: Goos, G., Hart-
manis, J., van Leeuwen, J., Schneier, B. (eds.) Fast Software Encryption – FSE
2000. vol. 1978. Springer (2001)

[41] Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: Bi-
ham, E. (ed.) Fast Software Encryption – FSE ’97. vol. 1267, pp. 28–40. Springer
(1997)

[42] Jean, J., Nikolić, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The
TWEAKEY Framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptol-
ogy – ASIACRYPT 2014. vol. 8874, pp. 274–288. Springer (2014)

[43] Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A Low Latency
Framework for Secure Neural Network Inference. In: Proceedings of the 27th
USENIX Conference on Security Symposium. p. 1651–1668. USENIX Associa-
tion (2018)

[44] Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) Advances in Cryp-
tology – CRYPTO ’96. vol. 1109, pp. 237–251. Springer (1996)

[45] Knudsen, L., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) Fast Software Encryption – FSE 2002. vol. 2365, pp. 112–127. Springer
(2002)

[46] Lauter, K., López-Alt, A., Naehrig, M.: Private Computation on Encrypted Ge-
nomic Data. In: Aranha, D.F., Menezes, A. (eds.) Progress in Cryptology – LAT-
INCRYPT 2014. vol. 8895, pp. 3–27. Springer (2015)

[47] Lepoint, T., Naehrig, M.: A Comparison of the Homomorphic Encryption Schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) Progress in Cryptology
– AFRICACRYPT 2014. vol. 8469, pp. 318–335. Springer (2014)

[48] Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT
2010. vol. 6110, pp. 1–23. Springer (2010)

[49] Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Barstow, D., Brauer, W.,

29

Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller,
G., Stoer, J., Wirth, N., Günther, C.G. (eds.) Advances in Cryptology – EURO-
CRYPT ’88. vol. 330, pp. 419–453. Springer (1988)

[50] Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards Stream Ciphers
for Efficient FHE with Low-Noise Ciphertexts. In: Fischlin, M., Coron, J.S. (eds.)
Advances in Cryptology – EUROCRYPT 2016. vol. 9665, pp. 311–343. Springer
(2016)

[51] Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can Homomorphic Encryption be
Practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Se-
curity Workshop. p. 113–124. ACM (2011)

[52] Park, S., Byun, J., Lee, J., Cheon, J.H., Lee, J.: HE-Friendly Algorithm for
Privacy-Preserving SVM Training. IEEE Access 8, 57414–57425 (2020)

[53] Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of Low-Data Instances
of Full LowMCv2. IACR Transactions on Symmetric Cryptology 2018(3), 163–
181 (2018)

[54] Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL (Oct 2019),
microsoft Research, Redmond, WA.

[55] XKCP: eXtended Keccak Code Package. https://github.com/XKCP/XKCP (Aug
2020)

A Homomorphic Evaluation of Symmetric Ciphers

Homomorphic encryption can be made more efficient using batching techniques
that allow to encrypt multi-dimensional arrays. Suppose that we use the FV
scheme with plaintext modulus t and degree of the polynomial modulus N , and
that we want to evaluate multiplication by a matrix A ∈ Zn×nt where n|N and
n� N . A straightforward approach is evaluating

A ·

C0
C1
...
Cn−1

for encrypted arrays C0, C1, . . . , Cn−1 by applying homomorphic addition and
multiplication. We will call this method row-wise packing.

Alternatively, we can evaluate
A 0 . . . 0
0 A . . . 0

...
. . .

...
0 0 0 A

 ·

m0

m1

...
mN−1

in a single ciphertext by applying rotation as well as homomorphic operations
to an encrypted array

C = Enc([m0, . . . ,mN−1]).

We will call this method column-wise packing. Not only linear layers, but also
nonlinear layers can be evaluated by both of these methods.

30

In the CKKS-FV transciphering framework, the evaluation method should be
chosen for both the client and the server sides. On the client side, for N/n pairs(
m(i),E(m(i))

)N/n−1
i=0

of plaintext and E-ciphertext, the column-wise packing will
compute

EcdFV
(
E(m(0)), . . . ,E(m(N/n−1))

)
.

On the other hand, for N pairs
(
m(i),E(m(i))

)N−1
i=0

, the row-wise packing will
compute

EcdFV
(
E(m(1))0, . . . ,E(m(N−1))0

)
,

EcdFV
(
E(m(1))1, . . . ,E(m(N−1))1

)
,

...

EcdFV
(
E(m(1))n−1, . . . ,E(m(N−1))n−1

)
,

where E(m(i))j implies the j-th component of E(m(i)).

31

Supplementary Material

A The Number of Cubic Monomials in a 1-round HERA

The round function of HERA is defined by

RF = ARK ◦ Cube ◦MixRows ◦MixColumns,

where the two linear maps MixColumns and MixRows can be represented by
16 × 16-matrices over Zt. Their product represents MixRows ◦ MixColumns as
follows.

MixRows ◦MixColumns =

4 6 2 2 6 9 3 3 2 3 1 1 2 3 1 1
2 4 6 2 3 6 9 3 1 2 3 1 1 2 3 1
2 2 4 6 3 3 6 9 1 1 2 3 1 1 2 3
6 2 2 4 9 3 3 6 3 1 1 2 3 1 1 2
2 3 1 1 4 6 2 2 6 9 3 3 2 3 1 1
1 2 3 1 2 4 6 2 3 6 9 3 1 2 3 1
1 1 2 3 2 2 4 6 3 3 6 9 1 1 2 3
3 1 1 2 6 2 2 4 9 3 3 6 3 1 1 2
2 3 1 1 2 3 1 1 4 6 2 2 6 9 3 3
1 2 3 1 1 2 3 1 2 4 6 2 3 6 9 3
1 1 2 3 1 1 2 3 2 2 4 6 3 3 6 9
3 1 1 2 3 1 1 2 6 2 2 4 9 3 3 6
6 9 3 3 2 3 1 1 2 3 1 1 4 6 2 2
3 6 9 3 1 2 3 1 1 2 3 1 2 4 6 2
3 3 6 9 1 1 2 3 1 1 2 3 2 2 4 6
9 3 3 6 3 1 1 2 3 1 1 2 6 2 2 4

.

We see that the matrix representation of MixRows ◦ MixColumns has no zero
entry. It implies that MixRows◦MixColumns contains all the linear monomials in
its polynomial representation, and hence RF contains all the cubic monomials.
More precisely, if ai 6= 0 for i = 0, 1, . . . , n− 1, then we have

(a0x0 + a1x1 + · · ·+ an−1xn−1)3 =
∑
i,j,k

aiajakxixjxk

=
∑
i≤j≤k

α(i, j, k)aiajakxixjxk,

where

α(i, j, k) =

1 if i = j = k;

3 if either i = j < k or i < j = k;

6 if i < j < k.

32

x00

x10

x20

x30

x01

x11

x21

x31

x02

x12

x22

x32

x03

x13

x23

x33

MixColumns

State X

y00

y10

y20

y30

y01

y11

y21

y31

y02

y12

y22

y32

y03

y13

y23

y33

MixRows

State Y

z00

z10

z20

z30

z01

z11

z21

z31

z02

z12

z22

z32

z03

z13

z23

z33

State Z

Fig. 6: Diagram of state change in HERA.

Since the plaintext modulus t is prime and t > 6, every monomial of degree three
has a nonzero coefficient.

B Branch Number of the Linear Layer in HERA

In this section, we compute the branch number of the linear layer of HERA.
Given a square matrix M over a finite field, its linear branch number B` and
differential branch number Bd are defined by

B`(M) = min
x6=0
{hw(x) + hw(MTx)},

Bd(M) = min
x6=0
{hw(x) + hw(Mx)},

respectively, where hw denotes the word-wise hamming weight function. For
example, the differential branch number of the 4× 4 submatrix

L =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 (2)

used in MixColumns is 5, which means that at least five nonzero components
(active S-boxes) exist in an input and the output of L. It is easily seen that
2 ≤ B`(M), Bd(M) ≤ n + 1 for an n × n-matrix M. It has also been proved
that B`(M) = n + 1 if and only if Bd(M) = n + 1 [40]. A matrix M such that
B`(M) = Bd(M) = n+1 is called a maximum distance separable (MDS) matrix.

One can computationally prove that L is an MDS matrix over Zt when t is
prime and t > 17. It implies that the linear and the differential branch numbers
of MixColumns and MixRows are all 5.

Theorem 2. The linear and the differential branch numbers of

MixRows ◦MixColumns

33

are all 8.

Proof. We will prove that the differential branch number of MixRows◦MixColumns
is 8. The linear branch number is computed similarly. We use the notations in
Figure 6.

Suppose that the branch number Bd of MixRows ◦MixColumns is less than 8.
It means that there exists a triple of nonzero states (X,Y, Z) such that hw(X)+
hw(Z) ≤ 7. Assuming hw(X) ≤ 3, we distinguish the following three cases.

– hw(X) = 1: all the components of Z are nonzero as seen in Figure 7a.
– hw(X) = 2: two nonzero components might be in the same column or not.

For either case, hw(Z) ≥ 12 (see Figure 7b for the first subcase).
– hw(X) = 3: we need to consider three subcases: three nonzero components

are in the same column, only two are in the same column, or all three
nonzero components are in different columns. hw(Z) ≥ 8 for the first subcase,
hw(Z) ≥ 13 for the second subcase, and hw(Z) ≥ 8 for the third subcase (see
Figure 7c for the second subcase).

Next, we assume that hw(X) ≥ 4; it implies hw(Z) ≤ 3. By the symmetry
between MixColumns and MixRows, it should be possible to draw a state change
diagram (like Figure 7a, 7b, 7c) such that hw(X) ≤ 3 and hw(X) +hw(Z) ≤ 7 if
there is a triple of states (X,Y, Z) such that hw(Z) ≤ 3 and hw(X)+hw(Z) ≤ 7.
So, there is no triple of states (X,Y, Z) such that hw(X) + hw(Z) ≤ 7.

Finally, we completes the proof by giving an example satisfying hw(X) +
hw(Z) = 8. See Figure 7d. A specific example of Figure 7d can be obtained
by fixing an intermediate state Y such that hw(Y) = 1, and then applying
MixColumns−1 and MixRows, respectively, to Y . ut

(a) hw(X) = 1. (b) hw(X) = 2.

(c) hw(X) = 3. (d) hw(X) + hw(Z) = 8.

Fig. 7: Pictorial representation of four cases appearing in the proof of Theorem 2.
A gray-colored cell represents a nonzero component.

C Bounding the Encoding Error

When a client encodes a message m ∈ C`/2 within the CKKS-FV framework, a
small error inevitably occurs. For M = EcdCKKS(m, scale = δ), it is easy to see

34

that the encoding error

‖DcdCKKS(M, scale = δ)−m‖∞

is upper bounded by `
2δ . However, for smaller ciphertext expansion, we prove a

slightly sharper bound as follows.

Lemma 2. Let δ be a positive number such that δ ≥ 2. Then for

M = EcdCKKS(m, scale = δ),

we have

‖DcdCKKS(M, scale = δ)−m‖∞ <
α`

δ
,

where α < 0.476.

Proof. Let M ′ ∈ Q[X]/(Φ2`(X)) be the CKKS-encoded polynomial with scaling
factor δ but not rounded off to integer coefficients. Then,

‖M −M ′‖∞ <
1

2
.

For a 2`-th primitive root ζ, we have

|M(ζ)−M ′(ζ)| ≤ max
ai∈R
|ai|≤1/2

|a0 + a1ζ + · · ·+ a`−1ζ
`−1|

= max
ai∈R
|ai|≤1/2

`−1∑
j=0

aj cos(jπ/`)

2

+

`−1∑
j=0

aj sin(jπ/`)

2

1
2

≤ 1

2

`−1∑
j=0

| cos(jπ/`)|

2

+

`−1∑
j=0

| sin(jπ/`)|

2

1
2

,

where sin(jπ/`) is non-negative for every j = 0, 1, . . . , `− 1, so their sum can be
estimated by using the Taylor series as follows.

`−1∑
j=0

| sin(jπ/`)| . −0.262 + 0.704 · `+O(1/`). (3)

We also have

`−1∑
j=0

| cos(jπ/`)| =
`/2−1∑
j=0

(cos(jπ/`) + sin(jπ/`)).

Hence it also can be estimated by using the Taylor series as follows.

`−1∑
j=0

| cos(jπ/`)| . −0.012 + 0.638 · `+O(1/`). (4)

35

By (3) and (4), we have

|M(ζ)−M ′(ζ)| . 0.476 · `,

which completes the proof. ut

36

