Hybrid Framework for Approximate
Computation over Encrypted Data

Jihoon Cho', Jincheol Ha?, Seongkwang Kim?, Joohee Lee!, Jooyoung Lee?,
Dukjae Moon', and Hyojin Yoon'

! Samsung SDS, Seoul, Korea,
{jihoonl.cho, jooheel.lee,dukjae.moon,hj1230.yoon}@samsung. com
2 KAIST, Daejeon, Korea,
{smilecjf,ksg0923,hicalf}@kaist.ac.kr

Abstract. Homomorphic encryption (HE) is a promising cryptographic
primitive that enables computation over encrypted data, with various ap-
plications to medical, genomic, and financial tasks. In such applications,
data typically contain some errors from their true values. The CKKS
encryption scheme proposed by Cheon et al. (Asiacrypt 2017) supports
approximate computation over encrypted data. However, HE schemes
including CKKS commonly suffer from slow encryption speed and large
ciphertext expansion compared to symmetric cryptography.

To address these problems, in particular, focusing on the client-side com-
putational overload and the ciphertext expansion, we propose a novel hy-
brid framework that supports CKKS. Since it seems infeasible to design
a stream cipher operating on real numbers, we combine the CKKS and
the FV homomorphic encryption schemes, and use a stream cipher using
modular arithmetic in between. The proposed framework is thus dubbed
the CKKS-FV transciphering framework. As a result, real numbers can
be encrypted without significant ciphertext expansion or computational
overload on the client side.

As a stream cipher to instantiate the CKKS-FV framework, we propose
a new HE-friendly cipher, dubbed HERA, and analyze its security and
efficiency. HERA is a stream cipher that features a simple randomized key
schedule (RKS). Compared to recent HE-friendly ciphers such as FLIP
and Rasta using randomized linear layers, HERA needs a smaller number
of random bits, leading to efficiency improvement on both the client and
the server sides.

Our implementation shows that the CKKS-FV framework using HERA
is 2.386 to 230.0 times faster on the client-side, compared to the en-
vironment where only CKKS is used, in terms of encryption time. Our
framework also enjoys 2.357 to 180.7 times smaller ciphertext expansion
according to the plaintext length. In the transciphering framework with
BGV only, HERA increases the throughput on the client side (resp. server
side) up to 229380 times (resp. 355478 times) compared to existing HE-
friendly ciphers.

Keywords: homomorphic encryption, transciphering framework, stream cipher,
HE-friendly cipher

1 Introduction

Cryptography has been extensively used to protect data when it is stored (data-
at-rest) or when it is being transmitted (data-in-transit). We also see increasing
needs that data should be protected when it is being used, since it is often pro-
cessed within untrusted environments. For example, organizations might want
to migrate their computing environment from on-premise to public cloud, and
to collaborate with their data without necessarily trusting each other. If data is
protected by an encryption scheme which is homomorphic, then the cloud would
be able to perform meaningful computations on the encrypted data, supporting
a wide range of applications such as machine learning over a large amount of
data preserving its privacy.

Homomorphic Encryption (for Approximate Computation). An encryp-
tion scheme that enables addition and multiplication over encrypted data with-
out decryption key is called a homomorphic encryption (HE) scheme. Since the
emergence of Gentry’s blueprint [31], there has been a large amount of research
in this area [13| 29] 23] [33]. Various applications of HE to medical, genomic, and
financial tasks have also been proposed [20, 22] [43] [49].

However, real-world data typically contain some errors from their true values
since they are represented by real numbers rather than bits or integers. Even in
the case that input data are represented by exact numbers without approxima-
tion, one might have to approximate intermediate values during data processing
for efficiency. Therefore, it would be practically relevant to support approximate
computation over encrypted data. To the best of our knowledge, the CKKS en-
cryption scheme [21] is the only one that provides the desirable feature using
an efficient encoder for real numbers. Due to this feature, CKKS achieves good
performance in various applications, for example, to securely evaluate machine
learning algorithms on a real dataset [12] [50].

Unfortunately, HE schemes including CKKS commonly have two technical
problems: slow encryption speed and large ciphertext expansion; the encryp-
tion/decryption time and the evaluation time of HE schemes are relatively slow
compared to conventional encryption schemes. In particular, ciphertext expan-
sion seems to be an intrinsic problem of homomorphic encryption due to the
noise used in the encryption algorithm. Although the ciphertext expansion has
been significantly reduced down to the order of hundreds in terms of the ra-
tio of a ciphertext size to its plaintext size since the invention of the batching
technique [32], it does not seem to be acceptable from a practical view point.
Furthermore, this ratio becomes even worse when it comes to encryption of a
short message; encryption of a single bit might result in a ciphertext of a few
megabytes.

Transciphering Framework. To address the issue of the ciphertext expansion
and the client-side computational overload, a hybrid framework, also called a
transciphering framework, has been proposed [49] (see Figure . In the client-
sever model, a client encrypts a message m using a symmetric cipher E with a

Client Server

: > ncHEc
N i E $()

«— B
—

k—+ E Enc"E ft—————|—] Eval"(E™")

Fig. 1: The (basic) transciphering framework. Homomorphic operations are per-
formed in the boxes with thick lines.

secret key k; this secret key is also encrypted using an HE algorithm EncME. The
resulting ciphertexts ¢ = Ey(m) and EncME(k) are stored in the server.

When the server wants to compute Enc"®(m) (for computation over en-
crypted data), it first computes EncE(c) for the corresponding ciphertext c.
Then the server homomorphically evaluates E~! over EncM(c) and Enc'E(k),
securely obtaining Enc'®(m).

Given a symmetric cipher with low multiplicative depth and complexity, this
framework has the following advantages on the client side.

— A client does not need to encrypt all its data using an HE algorithm (except
the symmetric key). All the data can be encrypted using only a symmetric
cipher, significantly saving computational resources in terms of time and
memory.

— Symmetric encryption does not result in ciphertext expansion, so the com-
munication overload between the client and the server will be significantly
low compared to using any homomorphic encryption scheme alone.

All these merits come at the cost of computational overload on the server side.
That said, this trade-off would be worth considering in practice since servers are
typically more powerful than clients.

HE-friendly Ciphers. Symmetric ciphers are built on top of linear and non-
linear layers, and in a conventional environment, there has been no need to take
different design principles for the two types of layers with respect to their imple-
mentation cost. However, when a symmetric cipher is combined with BGV /FV-
style HE schemes in a transciphering framework, homomorphic addition becomes
way cheaper than homomorphic multiplication in terms of computation time and
noise growth. With this observation, efficiency of an HE-friendly cipher is eval-
uated by its multiplicative complexity and depth. In an arithmetic circuit, its
multiplicative complexity is represented by the number of multiplications (ANDs
in the binary case). Multiplicative depth is the depth of the tree that represents

the arithmetic circuit, closely related to the noise growth in the HE-ciphertexts.
These two metrics have brought a new direction in the design of symmetric
ciphers: to use simple nonlinear layers at the cost of highly randomized linear
layers as adopted in the design of FLIP [48] and Rasta [25].

A Symmetric Cipher over Real Numbers? The transciphering framework,
as described above, does not directly apply to the CKKS scheme. The main reason
is the difficulty in the design of an HE-friendly symmetric cipher E operating on
real numbers. If a symmetric cipher E is given as a (complex) polynomial map,
then any ciphertext will be represented by a polynomial in the corresponding
plaintext and the secret key. Then, for given plaintext-ciphertext pairs (my, c;),
an adversary will be able to establish a system of polynomial equations in the
unknown key k. The sum of ||Ex(m;) — ¢;||3 over the plaintext-ciphertext pairs
also becomes a real polynomial, where the actual key is the zero of this function.
Since this polynomial is differentiable, its (approximate) zeros will be efficiently
found by using iterative algorithms such as the gradient descent algorithm. By
taking multiple plaintext-ciphertext pairs, the probability of finding any false
key will be negligible.

1.1 Owur Contribution

The main contribution of this paper is two-fold. The first is to propose a new
transciphering framework for the CKKS scheme that supports approximate com-
putation over encrypted data. The problem is that it seems infeasible to design a
symmetric cipher operating on real numbers. In order to overcome this problem,
we combine CKKS with FV which is a homomorphic encryption scheme using
modular arithmetic [29], obtaining a novel hybrid framework, dubbed the CKKS-
FV transciphering framework. This framework requires a symmetric cipher using
modular arithmetic.

The second contribution is to propose a new stream cipher, dubbed HERA (HE-
friendly cipher with an RAndomized key schedule), to be built in our framework.
The HERA cipher, operating on a modular space with a randomized key sched-
ule, turns out to be faster than any existing construction in this line of research.
With HERA combined with the CKKS-FV framework, real numbers can be en-
crypted without significant ciphertext expansion or computational overload on
the client side.

Overview of the CKKS-FV Framework. Given a symmetric cipher E using
modular arithmetic on Z; (¢t > 2), the client encodes any message m, which can
be seen as a real number, into a vector in Z¥, and then encrypts it using E. This
“E-ciphertext” will be sent to the server and stored there. On the other hand,
the secret key of E is encrypted by FV and also stored in the server.

Whenever a “CKKS-ciphertext” is needed for any message m, the server
encrypts the E-ciphertext of m again, using the FV scheme. With the resulting
FV-ciphertext and the FV-encrypted key, the server homomorphically evaluates
E~!, obtaining the FV-ciphertext of encoded m. Finally, this FV-ciphertext is
translated into the corresponding CKKS-ciphertext of m. Afterwards, the server

Message Scheme N p Ciphertext Expansion Performance
Length Msg. Ctxt. Ratio | Latency | Throughput
CKKS-FV - 34 B 1.89 | 1.645 us | 10689 KB/s
Short | CKKS (level 0) 2101 9 18 B 6144 B | 341.3 | 378.1 us | 46.48 KB/s
CKKS (full level) | 210 6912 B | 384 | 378.1 us | 46.48 KB/s
CKKS-FV - 112 KB 2.8]4.801 ms | 8.136 MB/s
Long | CKKS (level 0) 215110 | 40 KB | 264 KB | 6.6 | 11.46 ms | 3.409 MB/s
CKKS (full level) | 215 6432 KB | 160.8 | 170.1 ms | 0.2296 MB/s

Table 1: Comparison of the CKKS-FV transciphering framework with HERA and
the CKKS-only environment. All the experiments are done with 128-bit security.
The parameter p stands for the bits of precision.

will be able to approximately evaluate any circuit on the CKKS-ciphertexts.
Details of this framework and the proof of its correctness are given in Section

Why FV? In the FV scheme, a message is placed in the most significant bits
of the ciphertext, while the error is in the least significant bits. So when an
FV-ciphertext is decrypted by CKKS, the error still remains small without any
blow-up.

The CKKS and FV schemes operate on a set of real numbers and a vector
space over a finite field, say ZY, respectively. However, their encoding schemes
map either type of messages to Z~. Furthermore, they use the same encryption
algorithm. All these properties make FV an ideal candidate for an intermediate
primitive between CKKS and a symmetric encryption algorithm.

Stream Ciphers Using Modular Arithmetic. In the CKKS-FV transci-
phering framework, a stream cipher using modular arithmetic is required. There
are only a few ciphers using modular arithmetic [I, 3] 4} [34], and even such
algorithms are not suitable for our transciphering framework due to their high
multiplicative depths. In order to make our transciphering framework efficiently
work, we propose a new HE-friendly cipher HERA, operating on a modular space
with low multiplicative depth.

Recent constructions for HE-friendly ciphers such as FLIP and Rasta use
randomized linear layers in order to reduce the multiplicative depth without
security degradation. However, it seems that this type of ciphers requires too
many random bits in the generation of random matrices, slowing down the overall
speed on both the client and the server sides. Instead of generating random
matrices, we propose to randomize the key schedule algorithm by combining the
secret key with a (public) random value for every round.

Implementation. The CKKS-FV framework is the first transciphering frame-
work that supports approximate computation over encrypted data. So in this
paper, our implementation is compared to the environment where the CKKS

scheme is only used, focusing on the ciphertext expansion and the client-side
computational overload. The implementation results are summarized in Table

In this table, the security parameter A is set to 128. For CKKS, we measure the
performance of two extreme sets of parameters, giving ciphertexts at level 0 and
the full level, respectively. We note that our framework should be fairly compared
to CKKS of level 0, since the CKKS-ciphertexts obtained at the end of the CKKS-
FV framework should be bootstrapped for any subsequent computation over the
ciphertexts. Even in this comparison, encryption of the CKKS-FV framework is
2.386 to 230.0 times faster than CKKS only (according to the message length).
Our framework also suffers from ciphertext expansion due to the encoding phase,
while it is still 2.357 to 180.7 times smaller than CKKS only (of level 0).

In order to make a fair comparison of HERA to existing HE-friendly ci-
phers, we also implemented them in the transciphering framework using the
BGV scheme in the HE1ib library [38]. The comparison is given in Table [2] (and
in Section in detail). We see that HERA increases the throughput on the
client side (resp. server side) 1.250 to 229380 times (resp. 6.235 to 355478 times)
compared to existing HE-friendly ciphers.

Client-side Server-side
Cipher(Parameters) Latency Throughput | Latency Throughput
(cycles) (C/B) (s) (KB/s)
80-bit
LowMCv3(13,128,31) | 6.118 x 10* 3824 332.8 3.380 x 1072
FLIP(42,128 8A%) | >4.303 x 10° > 3.443 x 107 | 98.49 1.004 x 10~*
Rasta(4, 327,2) >2.224 x 107 >5.440 x 105 | 265.7 3.005 x 1074
Dasta(4, 327,2) 8.648 x 10* 2116 - -
Masta(5, 16, 65537) 6004 187.6 57.95 1.104
" HERA(4,16,65537) | 4803 150.1 | 2869 3569
128-bit
LowMCv3(14,196,63) | 1.496 x 10° 6106 1191 3.615 x 1072
FLIP(82,224,8A16) | > 1.080 x 107 >8.643 x 107 | 1195 1.532 x 107°
Rasta(5, 525, 2) >7.393 x 107 > 1.127 x 109 1517 8.449 x 10~°
Dasta(5, 525, 2) 1.538 x 10° 2344 - -
Masta(6, 32, 65537) 1.373 x 10* 214.5 768.7 2.664
" HERA(5,16,65537) | 4911 1535 | 36.64 27.95

Table 2: Comparison of HERA to existing HE-friendly ciphers with BGV.

1.2 Related Work

Since the transciphering framework has been introduced [49], early works have
been focused on homomorphic evaluation of popular symmetric ciphers (e.g.,
AES [32], SIMON [44], and PRINCE [27]). Such ciphers have been designed with-
out any consideration on their arithmetic complexity, so the performance of their
homomorphic evaluation was not satisfactory. In this line of research, LowMC [2]
is the first construction that aims to minimize the depth and the number of
AND gates. However, it turned out that LowMC is vulnerable to algebraic at-
tacks [24) 26|, 5], so it has been revised laterE|

Canteaut et al. [I4] claimed that stream ciphers would be advantageous in
terms of online complexity compared to block ciphers, and proposed a new
stream cipher Kreyvium. However, its practical relevance is limited since the mul-
tiplicative depth (with respect to the secret key) keeps growing as keystreams
are generated. The FLIP stream cipher [48] is based on a novel design strategy
that its permutation layer is randomly generated for every encryption without
increasing the algebraic degree in its secret key. Furthermore, it has been re-
ported that FiLIP [47], a generalized instantiation of FLIP, can be efficiently
evaluated with the TFHE scheme [39]. Rasta [25] is a stream cipher aiming at
higher throughput at the cost of high latency using random linear layers, which
are generated by an extendable output function. Dasta [37], a variant of Rasta
using affine layers with lower entropy, boosts up the client-side computation. As
another variant of Rasta, Masta [35] operates on a modular domain, improving
upon Rasta in terms of the throughput of homomorphic evaluation.

Beside the transciphering framework and HE-friendly ciphers, there have
been attempts to reduce the memory overhead when encrypting short messages.
Chen et al. [I7] proposed a conversion method between LWE ciphertexts and
RLWE ciphertexts. Small messages can be encrypted by LWE-based symmetric
encryption with small ciphertext expansion, and a collection of LWE ciphertexts
is converted to an RLWE ciphertext to perform a homomorphic evaluation. Chen
et al. [I8] proposed a hybrid HE scheme using the CKKS packing algorithm and
a variant of FV. This hybrid scheme makes the ciphertext size smaller compared
to using CKKS only, in particular, when the number of slots is small.

2 Preliminaries

2.1 Notation

Throughout the paper, bold lowercase letters (resp. bold uppercase letters) de-
note vectors (resp. matrices). For a real number r, || denotes the nearest integer
to r, rounding upwards in case of a tie. For an integer ¢, we identify Z, with
ZN(—q/2,q/2]; for any integer z, [z], denotes the mod ¢ reduction of z into this
interval. The notation |-] and [-], are extended to vectors (resp. polynomials) to
denote their component-wise (resp. coefficient-wise) reduction.

3 https://github.com/LowMC/lowmc/blob/master/determine_rounds.py

https://github.com/LowMC/lowmc/blob/master/determine_rounds.py

For a complex vector x, its £,-norm is denoted by ||x||,. Usual dot products
of vectors are denoted by (-,-). Throughout the paper, ¢ and ¢ denote a 2N-
th primitive root of unity over the complex field C, and the finite field Z;,
respectively, for fixed parameters N and t. We denote the multiplicative group
of Z; by Z;. The set of strings of arbitrary length over a set S is denoted by
S*. For two vectors (strings) a and b, their concatenation is denoted by a||b.
For a set S, we will write a <— S to denote that a is chosen from S uniformly at
random. For a probability distribution D, a <— D will denote that a is sampled
according to the distribution D. Unless stated otherwise, all logarithms are to
the base 2.

2.2 Homomorphic Encryption

As the building blocks of our transciphering framework, we will briefly review
the FV and CKKS homomorphic encryption schemes of which security is based
on the hardness of Ring Learning With Errors (RLWE) problem [52, 45]. For
more details, we refer to [29, 21].

It is remarkable that FV and CKKS use the same ciphertext space; for a
positive integer ¢, an integer M which is a power of two, and N = M/2, both
schemes use

Ry = ZolX]/(@11(X))

as their ciphertext spaces, where @,,(X) = X~ + 1. They also use similar al-
gorithms for key generation, encryption, decryption, and homomorphic addition
and multiplication. However, the FV scheme supports exact computation mod-
ulo ¢ (which satisfies t = 1 (mod M) throughout this paper), while the CKKS
scheme supports approzimate computation over the real numbers by taking dif-
ferent strategies to efficiently encode messages.

Encoders and Decoders. The main difference between FV and CKKS comes
from their methods to encode messages lying in distinct spaces. The encoder
Ecd™ : ZN — R of the FV scheme is the inverse of the decoder Dcd™ defined
by, for p(X) € R,

DCdFV(p(X)) = [(p(()[o), e ap(aN—l))]t € Ziv7
where o; = §3i71 (mod t) for 0 <i < N — 1
Let § be a positive real number (called a scaling factor in [2I]). The CKKS

encoder Ecd“KKS : CN/2 5 R is the (approximate) inverse of the decoder
Dcd“KKS . R — CN/2 where for p(X) € R,

Ded " (p(X)) = 57" - (p(Bo), p(B1): -~ P(Brja-1)) € CV/2,

where 3; = ¢ eClro<y< N/2 —1.

4 A primitive root of unity ¢ exists if the characteristic ¢ of the message space is an
odd prime such that ¢ =1 (mod M).

Algorithms. FV and CKKS share a common key generation algorithm. The
descriptions of those two algorithms have also been merged, so that one can
easily compare the differences between FV and CKKS.

— Key generation: given a security parameter A > 0, fix integers N, P, and
qo, - - -, qr such that g; divides g;41 for 0 <4 < L —1, and distributions Dyey,
Derr and Deype over R in a way that the resulting scheme is secure against
any adversary with computational resource of O(2%).

1. Sample a <= Rq, , 5 < Dhey, and € <= Dey.
2. The secret key is defined as sk = (1,s) € R?, and the corresponding
public key is defined as pk = (b,a) € R2,, where b= [—a - s + €], .
3. Sample @’ < Rp.q, and € < Deyy.
4. The evaluation key is defined as evk = (V',a') € Rp,, , where b =
[—a' - s+ e + Ps|p.y, for s’ =[s%],,.
— Encryption: given a public key pk and a plaintext m € R,
1. Sample r < Depe and eg, €1 < Depy.
2. Compute Enc(pk,0) = [r - pk + (eo, e1)]qy -
e For FV, Enc™ (pk,m) = [Enc(pk,0) + (A - [m];,0)],,
e For CKKS, Enc™*®(pk, m) = [Enc(pk,0) + (m,0)],, -
— Decryption: given a secret key sk € R? and a ciphertext ct € R

where A = |q1./t].

2
qe’

Dec sk ct) = | Lokl [
Dec™ 3 (sk, ct) = [(sk, ct)],, -

— Addition: given ciphertexts ct; and cty in ’Rg ,» their sum is defined as
Ctodd = [Ctl + Ctg]qz.

— Multiplication: given ciphertexts ct; = (b1, a1) and ¢ty = (ba, az) in Rg , and
an evaluation key evk, their product is defined as

Ctour = [(do,d1) + | P - dy - evk]]

a
where (do, d1, d2) is defined by [(b1b2, a1b2 + a2b1, a1a2)]4
and Hg(blbg, arbs + agby, aﬂh)” when using FV.

qe
— Rescaling (Modulus switching): given a ciphertext ¢t € R2, and £ </, its

rescaled ciphertext is defined as

Rescaley¢ (ct) = qu, . ct-H
q

de

when using CKKS

12

o/

3 CKKS-FV Transciphering Framework

In this section, we describe how the CKKS-FV transciphering framework works,
and prove its correctness.

Client : Server
I
nc : » NnC
* 1
1
[XOF J ' XOF
1
! ' ! :
1
k= E k= E o k> E '
! Eval™v(E,)
7 i 7 ; ”
[EcdFY] EncY |
1
Off-line !
_____________________________________ PR [——
On-line :
v I
" at I
Y :
C : > xA
1
1
1
: EnCCKKS<ECdCKKS(m))

Fig.2: The CKKS-FV transciphering framework. Homomorphic encryption and
evaluation is performed in the boxes with thick lines. Operations in the boxes
with rounded corners do not use any secret information. The vertical dashed line
distinguishes the client-side and the server-side computation, while the horizontal
dashed line distinguishes the offline and the online computation.

3.1 Specification

With a fixed security parameter A, all the other parameters for the FV and
CKKS schemes will be set accordingly, including the degree of the polynomial
modulus N, the ciphertext moduli {g;}%, (used for both FV and CKKS), and
the FV plaintext modulus ¢t. With these fixed parameters, we will describe how
the framework works, distinguishing four parts; stream cipher generation, ini-
tialization, client-side computation, and server-side computation (See Figure .
The client-side and server-side computations are explained in Algorithm [1| and
Algorithm [2] respectively.

Generation of Stream Ciphers. For an integer n that divides N, the CKKS-
FV framework will use a stream cipher E that takes as input a secret key k € Z}
and outputs a keystream v € Z7. We require that an additional input u € Z;
determines a distinct instance of E, denoted by E, (or simply E).

Generation of an instance of E by u € Z; is denoted by Gen (resp. Gen’)
in Algorithm 1 (resp. Algorithm 2). The input u is again generated by the
underlying extendable output function XOF : {0,1}* x Z — Z} that takes as
inputs a public random value nc € {0,1}* and a counter ctr € {1,..., N/n},
and returns a string of elements of Z;. We will instantiate a pair of E and XOF

10

with HERA as described in Section [d] in which case the output length of XOF is
determined by the number and the size of the round keys of E.

Initialization. We use FV and CKKS with the same cyclotomic polynomial of
degree N, and the same public-private key pair (pk, sk). The public key pk is
shared by the server and the client.

The client encrypts k € Z} using the FV scheme with pk. A packing tech-
nique might allow one to perform parallel computations for multiple messages
encrypted in one ciphertext in a SIMD (Single Instruction, Multiple Data) man-
ner. Hence, it is desirable to find an efficient packing method to homomorphically
evaluate multiple copies of E on k, depending on the choice of E.

For a matrix

Concat(k) := (k|[k|| - - |k) € Z**
k-times

where the i-th column of Concat(k) is k, (glued) row-wise or column-wise pack-
ing methods can be used to encrypt it. We take the glued column-wise packing
for k = N/n and encrypt it to obtain a single ciphertext on the client side. For
an efficient implementation, we use row-wise packing on the server side where
k = N, which outputs n HE-ciphertexts concurrently. After homomorphic eval-
uation, the server re-aligns the n HE-ciphertexts into glued column-wise packed
n ciphertexts to compute them with the output ciphertext of the client. Detailed
description for row-wise and column-wise packing can be found in Appendix [A]
To summarize, the client computes

K = Enc™Y (pk, Ecd™ (Concat(k))),

and sends I to the server. We note that this initialization phase can be done
only once at the beginning of the CKKS-FV framework. The client also generates
a random value nc € {0,1}* and sends it to the server.

Client-side Computation. Given a nonce nc € {0,1}*, a secret key k € Z7
of E, an N/2-tuple of complex messages m = (mq,...,my/2) € CN/2, and a
scaling factor 6 > 0 (used in the CKKS scheme), the client executes the following
two steps.

Step 1: Keystream Generation (Offline). For each counter ctr € {1,...,N/n},
the client computes ue, := XOF(nc, ctr), and generates the corresponding stream
cipher E by procedure Gen in Algorithm [I} with this stream cipher E and secret
key k, the client computes ve, = E(k). With vi,...,vy/, € Z}, the client
computes a keystream

V= Ecd™ (vi,..., V) € Ry

Step 2: Message Encryption (Online). The client encodes the tuple of messages
m = (my,...,myy2) € CV/? into R with the CKKS encoder equipped with the
scaling factor §. The client computes

C = [EchKKS(m, scale=9)+ V| |
¢

11

and sends it to the server.

Server-side Computation. Given a nonce nc € {0,1}*, the FV-encrypted key
K = Enc™V(pk,Ecd™ (Concat(k))) and the symmetric ciphertext C, the server
executes the following two steps.

Step 1: Homomorphic Evaluation (Offline). The server is able to recover ug, =
XOF(nc, ctr) (using the nonce nc sent from the client), and generate the stream
cipher E < Gen(ug,) for ctr = 1,..., N/n. Then, it constructs a circuit for the
homomorphic evaluation of N/n copies of E using the SIMD operation, denoted
by EvaIFV(E, -). The procedure of generating the stream cipher and constructing a
circuit for EvaIFV(E, -) is denoted by Gen’ in Algorithm With the FV-encrypted
key K, the server homomorphically computes V := EvaIFV(E, K).

Step 2: Retrieval of the CKKS-ciphertext (Online). The server computes a trivial
FV-encryption of C to enable FV evaluation, namely

C:=(A-C,0).

Then, it computes M := [C — V],, where ¢ is the ciphertext modulus of V. In
Section we will show that the output M can be interpreted as a CKKS
ciphertext of the client’s message m indeed.

Algorithm 1: Client-side symmetric key encryption

Input:
— Nonce nc € {0,1}*
— Symmetric key k € Z}
— Tuple of messages m = (my,...,my/2) € CN/2
— Scaling factor §

Output:
— Symmetric ciphertext C' € Ry

1 for ctr + 1 to N/n do

2 Uctr € ZF + XOF(nc, ctr)
3 E «+ Gen(ucy)

4 Verr ¢ E(k)

5 V ECdFV(Vl, s VN/n)

6 M + Ecd“¥S(m, scale = §)
7 C +— [M + V]t

8 return C

12

Security of the CKKS-FV Framework. In the server, all the client’s data are
encrypted using the stream cipher E, and the secret key is also encrypted by the
FV encryption scheme.

In our framework, the underlying XOF will be modeled as a random oracle,
and we will assume that E behaves like an independent random function for a
random input string u € Zj which is an output of XOF. Hence, the stream
cipher E will generate an independent random keystream by every distinct pair
of a nonce and a counter. Keystreams from E are encoded by the encoder of FV,
while it does not degrade the overall security since the encoder, being one-to-one,
does not reduce the entropy of the keystreams.

Encryption of Short Messages. Since the parameter N is fixed according
to the required depths for FV and CKKS in the initialization phase, it occurs
that one needs to encrypt a shorter message than that in C/2. In this case, a
slight tweak to the above algorithms offers better performance in terms of the
client-side computational overload and the ciphertext expansion.

Suppose that the message dimension is /2 for a positive integer ¢, where £ is a
power-of-two such that n < ¢ < N, namely, m € C*/2. Then one can first encode
the message m of £/2 slots with the encoder Ecd$"S : C¥/2 — Z[X]/(P2(X))
and then map it into the plaintext space R of the HE schemes using a function
1 defined by

¥ Z[X]/(P2(X)) = R = Z[X]/(P2n (X))
M(X) = M(XN,

so that the resulting polynomial can be encrypted with FV.

Similarly, for any v, ..., v/, € Z{, one can first obtain Ecdgv(vl, e Vim),
and then apply 1 so that the resulting polynomial is in the plaintext space of
FV. In this way, we obtain the ciphertext

Cy = |Ecd¥KS(m)+Ecd§v(v1,...,v@/n)},
t

instead of C' defined in line 7 of Algorithm [1} Upon receiving Cy, the server maps
it into R and encrypts it with FV using the cyclotomic polynomial of degree V.
The remaining procedures are the same as Algorithms [I] and

This tweak preserves the functionality of our CKKS-FV framework, while
reducing the ciphertext size to ¢[logt], which is £/N times smaller than the
main version. The computational cost in the client side will be reduced by the
same order.

3.2 Correctness of the Framework

In this section, we prove the correctness of the CKKS-FV framework. Precisely,
we will prove that the output M from Algorithm(! can be interpreted as
Enc™®S (pk, Ecd“S(m)), namely, m is close to Ded“K*® (Dec“¥*S (sk, M)) u

to a small error with high probability. In the following theorem7 we omit the
notations of pk and sk in the HE algorithms for simplicity.

13

Algorithm 2: Server-side homomorphic evaluation of decryption

Input:
— Nonce nc € {0,1}*

— FV-encrypted key K = Enc™ (EchV (Concat(k)))
— Symmetric ciphertext C' € R

Output:

— CKKS-ciphertext M = EncK*S(Ecd“*®(m)) with
scaling factor A

1 for ctr + 1 to N/n do

2 L Uctr € Z; < XOF(nc, ctr)
Eval™v(E,) « Gen'(uy,..., uy/p)
V « Eval™v(E, K)

C+ (A-C,0)

M [C-V],

return M

I B =>IL B V]

Theorem 1. Let m € CN/2 be the client’s message as an input to Algom'thm
such that M = Ecd“*S(m, scale =) satisfies | M| oo < [t/2], and let M be the
output from Algorithm [3 If the ciphertext after the homomorphic evaluation of
Eval™v(E, ") has a decryption error eea € R such that ||eeal|lso < A/2 (i-e., the
ciphertext is correctly FV-decryptable), then we have

Hm — Ded“KKS (DecCKKS(M), scale = Aé) Hoo < % + %

Proof. Recall that, in Algorithm (1} M = EchKKS(m,scale =9¢), and V =
Ecd™(vy,--- ,VN/n), Where E = Gen(ucy), Ver = E(k), and C = [M + V],.
In Algorithm [2] we have

K = Enc? (EchV (Concat(k))) . V=Eal"(E,K), C=(A-C,0), M=I[C-V],

Since Dec™K®(V) = AV + eeyar and Dec™¥3(C) = A[M + V], we have

Dec™3([C — V)],) = [Dec™*5(C) — Dec¥* 5 (V)],
= [A([M + V]t - [V]t) - eeval]q
= [A[M}t_FAtg_eeval}q, (1)

14

where € € R satisfies that [M + V]; — ([M]: + [V]:) = te, and hence ||e||oc < 1.
Since |[Dcd ™S (M, scale = §) — m|| o < X and [M], = M, by , we have

N 1At =gl fell” + lleeallss”

Hm — Ded™%s (DecCKKS(M), scale = Ad) H < 5% v

< ﬁ | AL — g|N + [leeval | 5™

- 26 Ad

N Nt N

— 20 246 26
N, Nt

) 2A6

where || - [|<2m := ||Ded“KKS (-, scale = 1)]|oo. O

4 A New Stream Cipher over Z;

The CKKS-FV transciphering framework requires a stream cipher with a variable
plaintext modulus. In this section, we propose a new stream cipher HERA using
modular arithmetic, and analyze its security.

4.1 Specification

A stream cipher HERA for A-bit security takes as input a symmetric key k € Z%,
a nonce nc € {0,1}*, and returns a keystream k. € Z%, where the nonce is fed
to the underlying extendable output function (XOF) that outputs an element in
(Z1%)*. In a nutshell, HERA is defined as follows.

HERA[Kk, nc] = Fin[k, nc, 7] o RF[k,nc,” — 1] o - - - o RF[k, nc, 1] o ARK[K, nc, 0]
where the i-th round function RF[k, nc, 1] is defined as
RF[k, nc,i] = ARK[k, nc,] o Cube o MixRows o MixColumns
and the final round function Fin is defined as

Finlk,nc,7] =
ARK[k, nc, r] o MixRows o MixColumns o Cube o MixRows o MixColumns

fori=1,2,...,r — 1 (see Figure [3).

Key Schedule. The round key schedule can be simply seen as component-
wise product between a random value and the master key k, where the uni-
formly random value in Z; is obtained from a certain extendable output func-
tion XOF with an input nc. Given a sequence of the outputs from XOF, say
rc = (rcy,...,re,) € (Z{%) !, ARK is defined as follows.

ARKIk, nc,i](x) =x + ke rc;

15

— MR

XS

HE

Fig.3: The round function of HERA. Operations in the box with dotted (resp.
thick) lines are public (resp. secret). “MC” and “MR” represent MixColumns and

MixRows, respectively.

for i =0,...,7r, and x € Z}%, where e (resp. +) denotes component-wise multi-
plication (resp. addition) modulo ¢. The extendable output function XOF might
be instantiated with a sponge-type hash function SHAKE256 [28].

Linear Layers. Each linear layer is the composition of MixColumns and MixRows.
Similarly to AES, MixColumns multiplies a certain 4 x 4-matrix to each column
of the state, where the state of HERA is also viewed as a 4 x 4-matrix over Z; (see
Figure . MixColumns and MixRows are defined as in Figure [5al and Figure
respectively. The only difference of our construction from AES is that each entry
of the matrix is an element of Z;.

Zoo

Zo1

Z02

Zo3

Z10

T11

Z12

Z13

20

21

Z22

€23

Z30

T31

32

Z33

Fig. 4: State of HERA. Each square stands for the component in Z;.

Nonlinear Layers. The nonlinear map Cube is the concatenation of 16 copies

of the same S-box, where the S-box is defined by =z — =z

x = (20, ...,215) € Zi%, we have

Cube(x) = (2, ..

16

. 7‘2::135)'

3

over Z;. So, for

Yoc 2311 T0oc Yeco 2311 Tc0

Yic| _ 1231 . T1e Ye1| _ 1231 . el

Yac N 1123 T2c Ye2 N 1123 T2

Y3c 3112 T3¢ Ye3 3112 Le3
(a) MixColumns (b) MixRows

Fig. 5: Definition of MixColumns and MixRows. For ¢ € {0,1,2,3}, z;; and y;;
are defined as in Figure

For the bijectivity of S-boxes, it is required that ged(3,t — 1) = 1.

Encryption Mode. When a keystream of k blocks (in (Z}%)*) is needed for
some k > 0, the “inner-counter mode” can be used; for ctr = 0,1,...,k — 1, one

computes
z[ctr] = HERA [k, ncl|ctr] (ic),

where ic denotes a constant (1,2,...,16) € Z}°.

4.2 Design Rationale

Symmetric cipher designs for advanced protocols so far have been targeted at
homomorphic encryption as well as various privacy preserving protocols such
as multiparty computation (MPC) and zero knowledge proof (ZKP). In such
protocols, multiplication is significantly more expensive than addition, so a new
design principle has begun to attract attention in the literature: to use simple
nonlinear layers at the cost of highly randomized linear layers (e.g., FLIP [48§]
and Rasta [25]). However, to the best of our knowledge, most symmetric ciphers
following this new design principle operate only on binary spaces, rendering it
difficult to apply them to our hybrid framework.

One might consider literally extending FLIP [48] or Rasta [25] to modular
spaces. This straightforward approach will degrade the overall efficiency of the
cipher. Furthermore, unlike MPC and ZKP, linear maps over homomorphically
encrypted data may not be simply “free”. In order to use the batching techniques
for homomorphic evaluation, the random linear layers should be encoded into
HE-plaintexts, and then applied to HE-ciphertexts. Since multiplication between
(encoded) plaintexts and ciphertexts require O(N log N) time (besides many HE
rotations), randomized linear layers might not be that practical except that a
small number of rounds are sufficient to mitigate algebraic attacks. For this
reason, we opted for fixed linear layers.

In Table [3) we compare different types of linear maps to the (nonlinear)
Cube map in terms of evaluation time and noise consumption. This experiment
is conducted with the HE-parameters (N, [log ¢]) = (32768, 275) using row-wise
packing, where the noise budget after the initialization is set to 239 bits (see
Appendix . In this table, “Fixed matrix” and “Freshly-generated matrix”

17

represent a non-sparse fixed matrix, and a set of distinct matrices freshly gener-
ated over different slots, respectively, where all the matrices are 16 x 16 square
matrices and randomly generated. We see that a freshly-generated linear layer
takes more time than Cube. A fixed linear layer is better than a freshly-generated
one, but its time complexity is not negligible yet compared to Cube. On the other
hand, our linear layer is even faster than any fixed linear layer due to its sparsity.

Time (ms) | Consumed Noise (bits)
MixRows o MixColumns 23.55 4
Fixed matrix 461.68 27
Freshly-generated matrix 4006.03 34.9
7777777 Cube | 347907 | 864

Table 3: Comparisons of different types of maps in terms of evaluation time and
noise consumption.

The HERA cipher uses a sparse linear layer, whose design is motivated by the
MixColumns layer in AES, enjoying a number of nice features; it is easy to analyze
since its construction is based on an MDS (Maximum Distance Separable) matrix
and needs a small number of multiplications due to the sparsity of the matrix.
We design a Z;-variant of the matrix and use it in the linear layers; it turns
out to be an MDS matrix over Z; when ¢ is a prime number such that ¢ >
17. Instead of using ShiftRows of AES, HERA uses an additional layer MixRows
which is a “row version” of MixColumns to enhance the security against algebraic
attacks; the composition of two linear functions generates all possible monomials,
which makes algebraic attacks infeasible. Also, using MixRows mitigates linear
cryptanalysis; the branch number of the linear layer is 8 (See Appendix SO
that HERA does not have a high-probability linear trail.

In the nonlinear layer, Cube takes the component-wise cube of the input.
The cube map is studied from earlier multivariate cryptography [46], recently
attracting renewed interest for the use in MPC/ZKP-friendly ciphers [I} [3]. The
cube map has good linear/differential characteristics, whose inverse is of high
degree, mitigating meet-in-the-middle algebraic attacks.

As multiplicative depth heavily impacts on noise growth of HE-ciphertexts,
it is desirable to design HE-friendly ciphers using a small number of rounds.
One of the most threatening attacks on ciphers with low algebraic degrees is the
higher order differential attack. For a A-bit secure (possibly non-binary) cipher,
the algebraic degree of the cipher should be at least A — 1. However, the attack
is not available on randomized ciphers such as FLIP and Rasta.

To balance between efficiency and security, we propose a new direction: ran-
domizing the key schedule. A randomized key schedule (RKS) is motivated by
the tweakey framework [42]. In the tweakey framework, a key schedule takes as

18

input a public value (called a tweak) and a key, where an adversary is allowed
to take control of tweaks. On the other hand, RKS is a key schedule which takes
as input a randomized public value and a key together, where the random value
comes from a certain pseudorandom function. So, in our design, an adversary is
not able to freely choose the random value.

The design principle behind our RKS is simple: to use as a small number of
multiplications as possible. One might consider simply adding a fresh random
value to the master key for every round. This type of key schedule might provide
security against differential cryptanalysis, but it still might be vulnerable to
algebraic attacks and linear cryptanalysis. It is important to enlarge the number
of monomials in the first linear layer, while this candidate cannot obtain this
effect since an adversary is able to use the linear change of variables (see Section
. Based on this observation, we opt for component-wise multiplication. It
offers better security on algebraic attacks and linear cryptanalysis.

The input constant ic = (1,2,...,16) consists of distinct numbers in Z}%;
it will make a larger number of monomials in the polynomial representation of
the cipher (compared to using a too simple constant, say the all-zero vector),
enhancing security against algebraic attacks.

5 Security Analysis of HERA

In this section, we provide security analyses of HERA. Table [shows the number
of rounds to prevent each of the attacks considered in this section according to
the security level \, where we assume that ¢ > 216,

12 192 2
Attack 80 8 9 56

Trivial Linearization
GCD Attack
Grobner Basis Attack
Interpolation Attack
Linear Cryptanalysis

[RN SN
NS RS G
e = o
(=N BEN IS BN

Table 4: Recommended number of rounds with respect to each attack.

Assumptions and the Scope of Analysis. We limit the number of encryp-
tions under the same key up to the birthday bound with respect to A, i.e., 2*/2,
since otherwise one would not be able to avoid a nonce collision (when nonces
are chosen uniformly at random).

In this work, we will consider the standard “secret-key model”, where an
adversary arbitrarily chooses a nonce, and obtains the corresponding keystream
without any information on the secret key. The related-key and the known-key
models are beyond the scope of this paper.

19

Since HERA takes as input counters, an adversary is not able to control the
differences of the inputs. Nonces can be adversarially chosen, while they are also
fed to the extendable output function, which is modeled as a random oracle. So
one cannot control the difference of the internal variables. For this reason, we
believe that our construction is secure against any type of chosen-plaintext attack
including (higher-order) differential, truncated differential, invariant subspace
trail and cube attacks. A recent generalization of an integral attack [9] requires
only a small number of chosen plaintexts, while it is not applicable to HERA
within the birthday bound.

The HERA cipher can be represented by a set of polynomials over Z; in
unknowns kg, ..., k15, where k; € Z; denotes the i-th component of the secret
key k € Z}5. Since multiplication is more expensive than addition in HE schemes,
most HE-friendly ciphers have been designed to have a low multiplicative depth.
This property might possibly make such ciphers vulnerable to algebraic attacks.
With this observation, our analysis will be focused on algebraic attacks.

5.1 Trivial Linearization

Trivial linearization is to make a system of polynomial equations linear by replac-
ing all monomials by new variables, and solve it. When the cipher is represented
by a system of polynomial equations of degree d over Z; in n unknowns (and
d < t), the number of monomials appearing in this system is upper bounded by

d)
S_;(n—kz—l)'

Therefore, at most S equations will be enough to solve this system of equations.
If the system is sparse, then it would require less equations to solve the system.
In Appendix we explain the reason that all the monomials of degree < 3"
are expected to appear after r rounds of HERA. Therefore, we can conclude that
this attack requires O(S) data and O(S*) time, where 2 < w < 3.

An adversary might take the guess and determine strategy before trivial lin-
earization. By guessing g variables, the number of possible monomials is reduced

down to .
n—g+i—1
S, = .
>

i=0
This approach will be useful in particular when almost every monomial appears
in the system. In this case, the overall time complexity becomes O(t9 S‘;).

Parameters. With respect to the trivial linearization attack, the recommended
number of rounds is given in Table [5| for various security levels. It has been
computed by the above estimation for S with w = 2. Guessing variables will
not affect the security of HERA when ¢ > 216.

On the First and the Last Affine Layers. A classic substitution-permutation
block cipher does not begin with nor end with affine layers since they do not

20

Security (bit) 80 128 192 256
Round 4 5 6 7

Table 5: Recommended number of rounds with respect to trivial linearization.

affect the overall security of the cipher. However, this is not the case for HERA.
In the following, we give a trivial linearization attack for a variant of HERA
where either the first or the last affine layer is missing.

If the first affine layer is missing, then the output of the first nonlinear layer
will be of the form

(ao(ko + 1), a1(k1 +2)°, ..., a15(k15 + 16)%)

for public coefficients ayg, . .., a5, and unknowns (key variables) ko, ..., k15. An
adversary can try trivial linearization with respect to the variables (K, ..., k]s)
where k} = (k;+i+1)3 for i = 0,...,15. The maximum number of all monomials

1S
Y 64— 1
.
S:
()

which is much lower than expected with the first affine layer.
On the other hand, if the last affine layer is missing, the input to the last
nonlinear layer will be of the form

((co — aoko)™, (c1 — a1k1)®, ..., (c15 — a15ki5)”)

where « is the inverse of 3 modulo (¢t — 1), ¢ = (co, ..., c15) is a keystream, and
a; is the i-th component of rc,. It can be converted to the form

(ag (bo — ko)*,af (by — k1)*, ..., af5(b1s — k15)%)

—Qx

where b; = c;a; ©. Setting new variables k; ; = k; —j for 0 < j <t —1, for
r-round HERA", we can establish a meet-in-the-middle (MitM) equation

HERA" [k, nc] = (—af'kiy, Jo<i<is-

i

When the number of equations is sufficiently large, the maximum number of
monomials is given as

3r! ,
S=16(t—-1)+ (16+;_1)

=0

which is also much lower than expected with the last affine layer.

21

5.2 GCD Attack

The GCD attack is one of the major threats to symmetric ciphers over large
fields (e.g., MiMC [1]). Let E : Fy, x F; — F, be an encryption function, where
F, is the key and the plaintext/ciphertext spaces. Given two plaintext-ciphertext
pairs (z1,41), (2,92) € Fﬁ, one can establish univariate polynomial equations
E(K,z1) =y, and E(K,23) = yo in an unknown K. Then,

ged(E(K,z1) — y1, BE(K, 22) — y2)

includes (K — k) as a factor, where k denotes the actual secret key. It is known
that the complexity of finding the GCD of two univariate polynomials of degree
d is O(dlog? d).

This attack can be extended to a system of multivariate polynomial equations
by guessing all the key variables except one. For r-round HERA, the complexity
of the GCD attack is estimated as O(t!5r23"). For a security parameter A < 240,
HERA will be secure against the GCD attack even with a single round as long
as t > 216, If A\ = 256, then the number of round should be at least 7.

5.3 Grobner Basis Attack

The Grobner basis attack is an attack by solving a system of equations by
computing a Grobner basis of the system. If such a Grobner basis is found, then
the variables can be eliminated one by one after carefully converting the order of
monomials. We refer to [3] for details. In the literature, security against Grébner
basis attack is bounded by the time complexity for Grébner basis computing.

Suppose that an attacker wants to solve a system of m polynomial equations
in n variables over a field I,

filzy, .. zn) = folzr, . yxn) = = f(x1, ..., 2n) = 0.

The complexity of computing a Grobner basis of such system is known to be

n+dreg v
o))

in terms of the number of operations over the base field, where 2 < w < 3 is the
linear algebra constant and d,.4 is the degree of regularity [8]. With the degree of
regularity, one can see how much degree of polynomial multiples will be needed
to find the Grobner basis. Unfortunately, it is hard to compute the exact degree
of regularity for a generic system of equations. On the other hand, there is the
Macaulay bound

dreg =1+ Y (di — 1)
=1

for a regular sequence (with m = n) where d; is the degree of f; [6]. When
the number of equations is larger than the number of variables, the degree of

22

regularity of a semi-reqular sequence can be computed as the degree of the first
non-positive coefficient in the Hilbert series

m

HS(2) = ﬁ 3 | (D

As it is conjectured that most sequences are semi-regular [30], we analyze the
security of HERA against the Grobner basis attack under the (semi-)regular
assumption.

Hybrid Approach. One can take a hybrid approach between the guess-and-
determine attack and the algebraic attack [7]. Guessing some variables makes the
system of equations overdetermined. An overdetermined system becomes easier
to solve; the complexity of the hybrid approach after g guesses is given as

o(e ("))

where d, is the degree of regularity after g guesses.

Application to HERA. For the Grobner basis attack, re-arranging equations
may lead to a significant impact on the attack complexity. For example, one
may set a system of equations using only plaintext-ciphertext pairs, or set an
equation with new variables standing for internal states. The former will be a
higher-degree system in a fewer variables, while the latter will be a lower-degree
system in more variables.

From a set of nonce-plaintext-ciphertext triples {(nc;, m;,c;)}, an attacker
will be able to establish an over-determined system of equation

Ji(ko, ... k15) = fa(ko,. .. k15) = -+ = fm(ko,... ki) =0

where k; € Z; is i-th component of the key variable. The degree of regularity of
the system is computed as the degree of the first non-positive coefficient in

=) (2]

i=0

16

where 7 is the number of rounds. Since the summation does not have any negative
term, one easily see that the degree d,.q4 of regularity cannot be smaller than 3".
So, in this case, the time complexity is lower bounded by

of (16+37
3r '
Note that the hybrid approach has worse complexity when r» < 6 and ¢ > 2'6.
Even for r = 7, there is no significant impact on the security.

23

Instead of a system of equations of degree 3", one can establish a system of
167k cubic equations in 16(r — 1)k + 16 variables, where k is the block length of
each query. Then, the complexity is

o)

We compute the degree dyeq(r, k) of regularity assuming semi-regular sequences
in Table [6] and give a plot of complexity according to k in Figure We see
that the degree of regularity increases from k = 2 as k grows. It seems too costly
to attack HERA with this method.

K 1 2 3 4)
r
4 129 75 95 115 136
5 161 100 129 159 190
6 193 124 165 206 247
7 235 151 202 254 306

Table 6: dyeq(r, k) for a semi-regular system of 16rk cubic equations in 16(r —
1)k + 16 variables.

911 2 3 4 5
T

4 |65 59 55 51 48
5 |81 74 69 65 62
6 | 97 89 84 80 76
7 113 105 101 94 90

Table 7: d;..,(r, g) for a semi-regular system of 16r cubic equations in 16r vari-
ables with g guesses.

Suppose that one takes the hybrid approach. As the degree of regularity
differs with a huge gap between m = n and m = n + 1, we arrange the degrees
dy..q(7, g) of regularity when & = 1 and the number g of guess is positive in Table

and give a plot of complexity depending ¢ in Figure [6b] Provided that the

24

1,600 ‘ 1,000 ‘
—=-r=4 —a-r=4
——r=25 ——7r =25
1,200 | © =6 sool| @ r=6 |
e =7 . =7
=800 <] 5
= 4 =
=] _— =]
3 . 3
- =
40— 1
0 Il Il Il Il Il Il
1 2 3 4 5 200 2 4 5
k g
(a) Complexity as a function in k. (b) Complexity as a function in g.

Fig. 6: Complexity of the Grobner basis attack with w = 2 and ¢ = 216 4+ 1.

complexity is

0 (tg (IGT -9 + d;‘eg(r, g)>w>
12)
dreg (’I“, g)
we see that HERA provides at least 256-bit level of security for any set of pa-
rameters.

Parameters. With respect to the Grobner basis attack, the recommended num-

ber of rounds is given in Table[§|for a various security level. It has been computed

2
by the above estimation for (16;3) . Guessing variables will not affect the se-

curity of HERA when ¢t > 216,

Security (bit) 80 128 192 256
Round 4 5 6 7

Table 8: Recommended number of rounds with respect to the Grébner basis
attack.

5.4 Interpolation Attack

The interpolation attack is to establish an encryption polynomial in plaintext
variables without any information on the secret key and to distinguish it from a
random permutation [41].

Suppose that encryption with a fixed key can be represented as a permutation
on Fy (i.e., the plaintext and the ciphertext spaces are IFy). Then a single word

25

of the ciphertext can be written as a function, say £ : Fy — F;. We can also
consider its polynomial representation as follows.

B(X) =) acX",
ecT

where Z C Z, denotes the index set, and X° =[], X7 for X = (X1,...,X,) €
Fy and e = (e1,...,e,) € Z. Given plaintext-ciphertext pairs (X;, Y;); such that
Y; = E(X}), this attack seeks to recover all the (key-related) coefficients ae’s
i.e., a polynomial equivalent to E. It is known that the data complexity of this
attack depends on the number of monomials in the polynomial representation
of this cipher.

For the r-round HERA cipher, let rc = (rco,...,rc,) € (Z%)"! be a se-
quence of the outputs from XOF. For i = 0,...,r, rc; is evaluated by a poly-
nomial of degree 3"~%. As we expect that the r-round HERA cipher has almost
all monomials of degree < 3" in its polynomial representation, the number of
monomials is lower bounded by

r 16+z’—1>

Considering the data limit up to the birthday bound, the recommended number
of rounds with respect to this attack is summarized in Table [0

Security (bit) 80 128 192 256
Round 4) 6 7

Table 9: Recommended number of rounds with respect to the interpolation at-
tack.

One might try to recover the secret key using the interpolation attack on r—1
rounds. However, HERA uses the full key material for every round. It implies that
the key recovery attack needs brute-force search for all the key space.

Meet-in-the-middle Approach. In the basic approach, one considers a poly-
nomial equivalent to the output, while one might try to find a polynomial equa-
tion in the middle state. However, the inverse of the cube map is of degree
(2t — 1)/3, so the degree of the equation in the middle state will be too high to
recover all its coefficients. So we conclude that the meet-in-the-middle approach
is not applicable to HERA.

5.5 Linear Cryptanalysis

Linear Cryptanalysis on Non-binary Ciphers. Linear cryptanalysis is
typically applied to block ciphers operating on binary spaces. However, linear

26

cryptanalysis can be extended to non-binary spaces [5]; similarly to binary ci-
phers, for a prime ¢, the linear probability of a cipher E : Z} — Z} with respect
to input and output masks a,b € Z} can defined as

. 2
27

LPE(a,b) = ‘Em [exp {t (— (a,m) + (b, E(m)>) H

I

where m follows the uniform distribution over Z;. When E is a random permu-
tation, the expected linear probability is defined by

ELPE(a,b) = Eg[LPE(a, b)].
Then the number of samples required for linear cryptanalysis is known to be

1
ELPE(a,b)

In order to ensure the security against linear cryptanalysis, it is sufficient to
bound the maximum linear probability maxa-o b ELPE(a,b).

Application to HERA. One might consider two different approaches in the
application of linear cryptanalysis on HERA according to how to take the input
variables: the XOF output variables or the key variables. In the first case, unlike
traditional linear cryptanalysis, the probability of any linear trail of HERA de-
pends on the key since it is multiplied to the input. It seems infeasible to make
a plausible linear trail without any information on the key material.

In the second case, the attack is reduced to solving an LWE-like problem as
follows; given pairs (nc;,y;) such that HERA(k, nc;) = y;, one can establish

(b,y:) = (a,k) +e;

for some vectors a # 0,b € Z} and error e; sampled according to a certain dis-
tribution x. It requires 1/ ELPE(a, b) samples to distinguish x from the uniform
distribution [5]. The linear probability of r-round HERA is upper bounded by
(LP%)Bels) | where LP® and By denote the linear probability of the S-box and
the (linear) branch number of the linear layer, respectively. Therefore, the data
complexity for linear cryptanalysis is lower bounded approximately by

1
(LP%)Belsl”
The linear probability LPY is upper bounded as follows.
Lemma 1. For an odd prime t, let S : Zy — Z; be a permutation such that

S(z) = 3. Then, for any pair (a,) € Z? such that a # 0, we have

LP%(a, B) <

SYIS

27

Proof. By the definition of LP, we have

t—1 2

P>

m=0

LP%(a, B) = ‘Em{—am—kﬂS(m)HQ = exp{im (—am+ﬁm3)}

Carlitz and Uchiyama [I5] proved that

<(r=1)Vt

for any polynomial p(z) of degree r over Z;. Therefore, we have
t—1

2
1Zexp{2tm<—am+ﬁm3>}‘ gt%(%/i)?:%. O

m=0

LP%(a,) =

The branch number of the linear layer of HERA is 8 (as shown in Appendix.
Combined with LemmalT] we can conclude that an r-round HERA cipher provides
A-bit security against linear cryptanalysis when

815]
t 2

- 2*.
(i) -

Parameters. Based on the evaluation given as above, the recommended num-
ber of rounds is summarized in Table [10] for various security levels. This table
assumes that t > 216,

Security (bit) 80 128 192 256
Round 2 4 4 6

Table 10: Recommended number of rounds with respect to linear cryptanalysis.

5.6 Differential Cryptanalysis

Although we believe that our construction will be secure against any type of
chosen-plaintext attack, for an unsuspected differential-related attack, we present
a computation of differential characteristic in the following. Resistance of a
substitution-permutation cipher against differential cryptanalysis is typically es-
timated by the maximum probability of differential trails [10]. Let S : Z; — Z;
be the nonlinear map (S-box) used in Cube. Given a pair («,) € Z; X Z;, the
differential probability of S is defined by

DPY(a, B) = % e € Zy|S(@ +a) — S(z) = B

28

So DP®(a, 8) is determined by the number of solutions to S(z + a) — S(x) = 3,
which is a quadratic equation in z since S(x) = x. Therefore, there are at most
two solutions to this equation, which implies DPS(a, B) < %

Since the branch number of the linear layer of HERA is 8 (as shown in Ap-
pendix |C)), an r-round HERA cipher provides A-bit security against differential

cryptanalysis when
t SL%J A\
= > 27
(z)

Since this inequality is similar to one for linear cryptanalysis, the required num-
ber of rounds is same as in Table [I0l

6 Implementation

In this section, we evaluate the performance of the CKKS-FV framework com-
bined with the HERA cipher in terms of encryption speed and ciphertext ex-
pansion. Our source codes are developed in C++17 with Microsoft SEAL ver.
3.4.5 [53] which includes FV and CKKS implementations. Our experiments are
done in AMD Ryzen 7 2700X @ 3.70 GHz single-threaded with 64 GB memory,
using GNU C++4 7.5.0 compiler in O3 optimization level. XOF is instantiated
with SHAKE256 in XKCP [54]. In the client-side implementation, we use the AVX2
instruction set.

We also evaluate the performance of HERA combined with BGV only in or-
der to make a fair comparison with previous works. Our source codes are de-
veloped using HElib version 2.0.0 [38]. Since we assume exact homomorphic
encryption in this case, some parameters are different from those in the CKKS-
FV framework. The LowMCv3 implementations were taken from the publicly
available repositories (client-side implementation from https://github.com/
LowMC/lowmc and server-side implementation from https://bitbucket.org/
malb/lowmc-helib). The client-side implementations of FLIP were built from
the publicly available repository (https://github.com/CEA-LIST/Cingulata).

6.1 Parameter Selection
Sets of parameters used in our implementation are given in Table where

—) is the security parameter;

— p is the bits of precision of the CKKS-FV framework;

t is the plaintext modulus;

— 7 is the number of rounds of the symmetric ciphers;

— N is the degree of the polynomial modulus in the HE schemes;

— / is the number of slots in FV;

— ¢ is the ciphertext modulus of the HE schemes before evaluating E.

For the CKKS scheme, the message space is C/2. When choosing parameters of
CKKS-FV, one should be careful neither to overflow the plaintext modulus nor

29

https://github.com/LowMC/lowmc
https://github.com/LowMC/lowmc
https://bitbucket.org/malb/lowmc-helib
https://bitbucket.org/malb/lowmc-helib
https://github.com/CEA-LIST/Cingulata

to lose the required precision. In the following, we give a clear formula to choose
t. Given N and p, we will fix positive integers ¢; and ¢, such that ¢, /¢; < ¢ and
for any message m = (my,...,my/2),

i Re(m;)|, |1 Il = a,
i (IRe(m). fim(m)l) > e
Im(m;)7#0

and ||m||« < ¢,. Once ¢; and ¢, are fixed, we choose a scaling factor ¢ such that

1 (N Nt
— _ - 2717
p (5 * 2A6> <

to preserve precision, and the plaintext modulus ¢ such that ¢ > v/2d¢,, to bound
the coefficients of the encoded plaintext. In summary, the plaintext modulus ¢

should satisfy
Nt
t>Pt2 (N4).
> c + 2A

In Table 11} we recommend some parameters of HERA for ¢ = 4 when combined
with the CKKS-FV framework. In the case of encrypting short messages, we can
choose an alternative set of parameters by changing the number of slots and
the corresponding plaintext modulus ¢ from Par-III. Unfortunately, there is no
appropriate modulus ¢ of 18 to 21 bits so we slightly change bits of precision.
For A € {192,256}, it suffices to use 6 and 7 rounds, respectively.

A p SKE HE
[logt] 7 |logN logf¢ [logq]

Long Message

Par-I | 80 10 28 4 15 15 495
Par-IT | 80 14 32 4 15 15 550
Par-I1T | 128 10 28 5 15 15 605
Par-IV | 128 14 32 5 15 15 660
Short Message

Par-A | 128 9 17 5 15 4 495
Par-B | 128 13 22 5 15 6 550
Par-C | 128 11 22 51 15 8 550
Par-D | 128 10 23 51 15 10 605

Table 11: Selected sets of parameters used in our implementation. Since the SEAL
library supports only the security level of 128 bits or more, we experiment Par-
I and Par-II, which target 80-bit security, using the HE schemes with 128-bit
security parameters.

30

6.2 Benchmarks

Client-side Server-side Ctxt. Exp. Rate
HERA CKKS
Latency Throughput | Latency Throughput Cxct. Cxct.
Long Message
Par-I | 4.687 ms 8.334 MB/s | 32.62s 9.772 KB/s 2.8 6.6
Par-IT | 4.964 ms 11.02 MB/s | 37.27s 11.81 KB/s | 2.29 5.29
Par-IIT | 4.801 ms 8.136 MB/s | 51.49s 6.660 KB/s 2.8 6.6

Par-IV | 5.246 ms 10.42 MB/s | 57.90 s 8.216 KB/s 2.29 5.29
Short Message
Par-A | 1.645 us 1044 MB/s | 40.21s 3.899 B/s 1.89 341.3
Par-B | 7.654 us 12.96 MB/s | 45.94 s 19.47 B/s 1.69 142.8
Par-C | 32.68 us 10.27 MB/s | 46.25s 63.34 B/s 2 40.73
Par-D | 136.6 us 8.937 MB/s | 52.24s 207.5 B/s 2.3 11.6

Table 12: Performance of the CKKS-FV transciphering framework with HERA.

Performance of HERA with CKKS-FV Framework. As shown in Table
we measure the performance of the CKKS-FV framework, distinguishing two
different parts: the client-side and the server-side as separated in Figure |2l On
the client-side, the latency includes time for generating pseudorandom numbers
(needed to generate a single keystream in Z.¥), computation of E, FV-encoding,
CKKS-encoding and vector addition over Z;. The extendable output function is
instantiated with SHAKE256 in XKCP.

In Table we also compare the ciphertext expansion rates of HERA and
CKKS. The ciphertext size is evaluated by the underlying parameters and the
message length, independent of the experiments. The bits of precision is counted
in the message length; if a complex vector m of length ¢/2 has p bits of precision,
then we will regard m as of size ¢p bits. For a vector over Z; of length ¢, its size is
regarded as ¢[logt] bits. When it comes to the CKKS scheme, the parameter N
should be at least 1024 no matter how short messages are encrypted; for short
messages, the CKKS-ciphertext length cannot be proportional to the message
length. We choose the ciphertext modulus of CKKS as small as possible while
preserving the precision.

The server-side part is implemented by using the SEAL library. The latency
includes time for randomized key schedule, homomorphic evaluation of E, mul-
tiplication of the client’s output by A, and the homomorphic subtraction. As
mentioned in Section we use column-wise packing on the client side and row-
wise packing on the server side. When the server re-aligns from row-wise packing

31

to column-wise packing, it outputs 16 (column-wise packed) HE-ciphertexts. We
measure the latency until the first HE-ciphertext comes out, and measure the
throughput until all the 16 HE-ciphertexts come out. We note that our eval-
uation does not take into account key encryption since the encrypted key will
be used over multiple sessions once it is computed. For the same reason, the
initialization process of the HE schemes is not considered.

Cipher(Parameters) I{:;SE}CS}), Thz(é?gél)put
80-bit

LowMCv3(13,128,31) | 6.118 x 10* 3824
LowMCv3(13,256,49) | 1.757 x 10° 5492

FLIP(42,128,8A%) | > 4.303 x 10° > 3.443 x 107
Rasta(4,327,2) > 2.224 x 107 > 5.440 x 10°
Rasta(6, 219, 2) > 1.320 x 107 > 4.822 x 10°

Dasta(4, 327,2)1 8.648 x 10* 2116

Dasta(6,219,2)" 7.246 x 10* 2647

Masta(4, 32, 65537) 1.212 x 10* 189.4

Masta(5, 16, 65537) 6004 187.6

" HERA(4,16,65537) | - 4803 1501

128-bit

LowMCv3(14,196,63) | 1.496 x 10° 6106

LowMCv3(14,256,63) | 1.947 x 10° 6085

FLIP(82,224,8A'6) | > 1.080 x 107 > 8.643 x 107
Rasta(5, 525, 2) > 7.393 x 107 > 1.127 x 10°
Rasta(6, 351, 2) > 3.523 x 107 > 8.029 x 10°

Dasta(5, 525,2)1 1.538 x 10° 2344
Dasta(6,351,2)" 1.131 x 10° 2579
Masta(6, 32, 65537) 1.373 x 10* 214.5
Masta(7, 16, 65537) 6488 202.8

" HERA(5,16,65537) | - 4011 1535

1: These values are directly computed from the data in [37].

Table 13: Comparison of client-side performance between various HE-friendly
ciphers.

Performance of HERA with BGV. We implemented HERA in the regular
transciphering framework using the BGV scheme in HElib. Table and
summarize the comparison of client-side and server-side performance between
selected HE-friendly ciphers.

32

Cipher(Parameters) | [logq] N Shsizte:f N La‘zglcy Th(l;;tég/l;};mt ;aeiligi
80-bit
LowMCv3(13,128,31) | 380 18000 120x6 94.94 332.8 3.380 x 1072 | row
LowMCv3(13,256,49) | 410 18000 120x 6 87.02 558.8 4.027 x 1072 | row
©FLIP(42,1288A% | 60 4050 81 81.23| 9849 1.004x107*| row
FLIP(42,128,8A9) 110 15004 682 345.1 55.90 2.184 x 1076 col
FLIP(42,128,8A9%) 60 4050 1 81.23 5.504 2.218 x 107° no
© Rasta(4,327,2) | 170 7500 150 83.93 | 1822 3.286x 107 | row
Rasta(4, 327, 2) 260 15004 682 115.9 265.7 3.005 x 1074 col
Rasta(4, 327, 2) 140 7500 1 89.98 72.83 5.481 x 1074 no
Rasta(6, 219, 2) 250 12000 60 x 10 88.63 3255 4.928 x 1073 | row
Rasta(6, 219, 2) 320 15004 682 100.5 271.7 2.952 x 1074 col
Rasta(6, 219, 2) 180 12000 1 125.7 132.8 2.013 x 1074 no
 Masta(4,32,65537) | 400 16384 8192x2 1155 2613 3919 | row
Masta(4, 32, 65537) 420 16384 8192x 2 80.23 36.87 0.8679 col
Masta(5, 16, 65537) 380 32768 16384 x 2 1954 178.9 5.724 row
Masta(5, 16, 65537) 500 32768 16384 x 2 144.8 57.95 1.104 col
HERA(4, 16, 65537) 380 32768 16384 x 2 195.4 28.69 35.69 row
128-bit
LowMCv3(14,196,63) | 450 27000 150 x 6 x 2 132.2 1191 3.615x 1072 | row
LowMCv3(14,256,63) | 450 27000 150 x 6 x 2 132.2 1337 4.206 x 1072 | row
FLIP(82,2248A16) | 110 7500 150 162.2 | 1195 1.532x107° | row
FLIP(82,224,8 A16) 120 49500 1650 714.9 736.1 1.658 x 1077 col
FLIP(82,224,8 Al6) 110 7500 1 162.2 36.71 3.325 x 1076 no
© Rasta(5,525,2) | 230 14112 252x2 139.3 [1.332x 10* 2425 x107% | row
Rasta(5, 525, 2) 320 43690 600 x 2 331.2 1517 8.449 x 1075 col
Rasta(5, 525, 2) 150 14112 1 187.1 310.9 2.061 x 1074 no
Rasta(6, 351, 2) 270 18000 120 x 6 140.1 | 1.198 x 10* 2.576 x 1073 | row
Rasta(6, 351, 2) 370 54000 360 x 6 334.2 1834 1.402 x 10~* col
Rasta(6, 351, 2) 190 18000 1 198.9 378.9 1.131 x 1074 no
© Masta(6,32,65537) | 450 32768 16384 x2 169.5 | 7687 2664 | row
Masta(7, 16, 65537) 500 32768 16384 x 2 144.8 241.0 4.249 row
HERA(5, 16, 65537) 490 32768 16384 x 2 147.9 36.64 27.95 row

Table 14: Comparison of server-side performance between various HE-friendly

ciphers.

33

We note that Trivium and Kreyvium have not been included in the comparison
since they are not suitable to generate a sufficiently long keystream from a
single key. Dasta is included only in Table The main purpose of Dasta is
improvement of client-side performance, while it does not outperform Rasta on
the server side. So we compare its client-side performance only using the data
from the original paper [37].

In Table [I3] we compare the client-side performance of HE-friendly ciphers.
The benchmarks of LowMCv3 and FLIP have been computed using public repos-
itories, while those of Rasta, Masta and HERA are obtained from our implemen-
tation using AVX2 instructions. For FLIP and Rasta, we only measured the time
of “randomizing element” (permutation generator for FLIP, and XOF for Rasta)
so that the benchmark will be better than practice, as marked by the inequality
signs. For the parameters of the symmetric cipher, we remark the following.

— For LowMCv3(r,n,m), r, n and m denote the number of rounds, the block
size, and the number of S-boxes in one round, respectively.

— For FLIP(ny,ng, " AF), ny, ny, nb and k denote the number of bits in the
linear part, the number of bits in the quadratic part, the number of triangular
functions and their degree, respectively.

— For Rasta(r,n,t), Dasta(r,n,t), Masta(r,n,t) and HERA(r,n,t), r, n and ¢
denote the number of rounds, the block size (in the number of words), and
the plaintext modulus, respectively.

In Table we compare the server-side performance of HE-friendly ciphers.
The ciphertext modulus ¢ is chosen with tight capacity, namely, homomor-
phic evaluation after transciphering is almost infeasible. In this table, ‘Packing
Method’ stands for how we homomorphically evaluate ciphers (See Appendix
. In this column, ‘row’ (resp. ‘col’) means row-wise packing (resp. column-
wise packing) and “no” represents no packing at all. The parameter A is the
security level of the BGV scheme. The shape of slots represents a hypercube of a
certain dimension which inherently supports the rotation along any axis. When
adopting column-wise packing, this shape affects the throughput.

Packing methods affect the performance significantly. The difference mainly
comes from the homomorphic evaluation of the linear layer, which is composed
of multiplications by an n x n matrix. When multiplication by an n X n matrix is
homomorphically evaluated as described in Appendix [A| (with size V), row-wise
packing requires n? multiplications and n(n — 1) additions for N evaluations,
while column-wise packing requires 2n — 1 rotations, 2n — 1 additions and 2n —1
multiplications for N/n evaluations. With this observation, it will be reason-
able to use column-wise packing for low latency, and row-wise packing for high
throughput.

6.3 Considerations on Bootstrapping

In order to allow further computation over ciphertexts, sufficiently large parame-
ters have been taken [2] 14, [25]. However, at the end of the CKKS-FV framework,

34

the final scaling factor § - A and the last ciphertext modulus are so close to each
other that any further arithmetic operation might be done modulo ¢. This means
that this approach (of taking large parameters) is not applicable to the CKKS-FV
framework, and one should bootstrap the ciphertexts at the end of the framework
for further computation over ciphertexts.

Bootstrapping methods for the CKKS scheme have been actively studied [19,
16l [36], while all the methods use the sine function to approximate modulo
q operation in the decryption circuit of the CKKS scheme. To make accurate
approximation, it should be the case that ||M||. < ¢, where M is a (encoded)
plaintext capsuled in the ciphertext to be bootstrapped and ¢ is the ciphertext
modulus after all the process of the CKKS-FV framework. Specifically, the sine
function to approximate [z], is given as

g (B2
S(a:)2ﬂ_sm< .)

where the approximation error is bounded as follows.

onx . (27rm)
—~ _sin | —=
q q

When we target (p + 1)-bit precision, the plaintext M satisfies that || Moo <
2PN assuming ¢, /¢; < 4 and A >> t. As the plaintext is multiplied by A in
the CKKS-FV framework, the approximation error is upper bounded by

272 |A-PHAN3
3 q? ’

2m2 a3
< - —.
3 ¢

]y — S(a)] = ~=

:271'

If this approximation error is upper bounded by A/2, the decoded message will
achieve p-bit precision. Letting A & ¢/t, ¢ should satisfy

2
o [

For example, in order to achieve 10-bit precision, ¢ should be at least 45 bits.

In this work, we do not consider this issue in the choice of parameters. Instead,
in order to make a fair comparison, we take “non-bootstrappable” parameters
for every cipher when it is combined with CKKS. Recently, Bossuat et. al. [11]
proposed a new bootstrapping technique for the RNS version of CKKS. We be-
lieve that application of this method to our framework will not significantly
degrade the server-side throughput; based on their implementation result, we
expect around 20% decrease.

References
[1] Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: Efficient
Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity.

In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology — ASTACRYPT 2016.
vol. 10031, pp. 191-219. Springer (2016)

35

[2]

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology —
EUROCRYPT 2015. vol. 9056, pp. 430-454. Springer (2015)

Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols. IACR Trans-
actions on Symmetric Cryptology 2020(3) (Sep 2020)

Ashur, T., Dhooghe, S.: MARVELIlous: a STARK-Friendly Family of Crypto-
graphic Primitives. IACR Cryptology ePrint Archive, Report 2018/1098 (2018),
https://eprint.iacr.org/2018/1098

Baigneres, T., Stern, J., Vaudenay, S.: Linear Cryptanalysis of Non Binary Ci-
phers. In: Adams, C., Miri, A., Wiener, M. (eds.) Selected Areas in Cryptography.
vol. 4876, pp. 184-211. Springer (2007)

Bardet, M., Faugere, J.C., Salvy, B.: Asymptotic Behaviour of the Index of Reg-
ularity of Semi-Regular Quadratic Polynomial Systems. In: MEGA 2005 - 8th
International Symposium on Effective Methods in Algebraic Geometry (2005)
Bettale, L., Faugere, J.C., Perret, L.: Hybrid Approach for Solving Multivariate
Systems over Finite Fields. Journal of Mathematical Cryptology 3(3), 177-197
(2009)

Bettale, L., Faugere, J.C., Perret, L.: Solving Polynomial Systems over Finite
Fields: Improved Analysis of the Hybrid Approach. In: Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation. ISSAC 12,
Association for Computing Machinery, New York, NY, USA (2012)

Beyne, T., Canteaut, A., Dinur, 1., Eichlseder, M., Leander, G., Leurent, G., Naya-
Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Out of Oddity — New
Cryptanalytic Techniques Against Symmetric Primitives Optimized for Integrity
Proof Systems. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology
— CRYPTO 2020. vol. 12172, pp. 299-328. Springer (2020)

Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) Advances in Cryptology — CRYPTO ’90.
vol. 537, pp. 2-21. Springer (1991)

Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J., Hubaux, J.P.: Efficient Boot-
strapping for Approximate Homomorphic Encryption with Non-Sparse Keys.
Cryptology ePrint Archive, Report 2020/1203 (2020), https://eprint.iacr.
org/2020/1203

Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Simulating Homomorphic Eval-
uation of Deep Learning Predictions. In: Dolev, S., Hendler, D., Lodha, S., Yung,
M. (eds.) Cyber Security Cryptography and Machine Learning. vol. 11527, pp.
212-230. Springer (2019)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic En-
cryption without Bootstrapping. In: Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference. p. 309-325. ACM (2012)

Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier,
P., Sirdey, R.: Stream ciphers: A Practical Solution for Efficient Homomorphic-
Ciphertext Compression. Journal of Cryptology 31(3), 885-916 (2018)

Carlitz, L., Uchiyama, S.: Bounds for exponential sums. Duke mathematical Jour-
nal 24(1), 37-41 (1957)

Chen, H., Chillotti, I., Song, Y.: Improved Bootstrapping for Approximate Ho-
momorphic Encryption. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology
— EUROCRYPT 2019. vol. 11477, pp. 34-54. Springer (2019)

36

https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2020/1203
https://eprint.iacr.org/2020/1203

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

32]

Chen, H., Dai, W., Kim, M., Song, Y.: Efficient Homomorphic Conversion Between
(Ring) LWE Ciphertexts. IACR Cryptology ePrint Archive, Report 2020/015
(2020), https://eprint.iacr.org/2020/015

Chen, H., Tliashenko, I., Laine, K.: When HEAAN Meets FV: a New Somewhat
Homomorphic Encryption with Reduced Memory Overhead. IACR Cryptology
ePrint Archive, Report 2020/121 (2020), https://eprint.iacr.org/2020/121
Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for Approxi-
mate Homomorphic Encryption. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in
Cryptology — EUROCRYPT 2018. vol. 10820, pp. 360-384. Springer (2018)
Cheon, J.H., Jeong, J., Lee, J., Lee, K.: Privacy-Preserving Computations of Pre-
dictive Medical Models with Minimax Approximation and Non-Adjacent Form.
In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y., Teague, V.,
Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) Financial Cryptography
and Data Security. vol. 10323, pp. 53-74. Springer (2017)

Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic Encryption for Arith-
metic of Approximate Numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in
Cryptology — ASTACRYPT 2017. vol. 10624, pp. 409-437. Springer (2017)
Cheon, J.H., Kim, M., Lauter, K.: Homomorphic Computation of Edit Distance.
In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) Financial Cryptog-
raphy and Data Security. vol. 8976, pp. 194-212. Springer (2015)

Chillotti, I., Gama, N., Georgieva, M., Izabachéne, M.: TFHE: Fast Fully Homo-
morphic Encryption Over the Torus. Journal of Cryptology 33(1), 34-91 (2020)
Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized Interpolation Attacks on
LowMC. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology — ASTACRYPT
2015. vol. 9453, pp. 535-560. Springer (2015)

Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: A Cipher with Low ANDdepth and Few ANDs
per Bit. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology — CRYPTO
2018. vol. 10991, pp. 662-692. Springer (2018)

Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-Order Cryptanalysis of
LowMC. In: Kwon, S., Yun, A. (eds.) Information Security and Cryptology —
ICISC 2015. vol. 9558, pp. 87-101. Springer (2016)

Dor6z, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward Practical Homo-
morphic Evaluation of Block Ciphers Using Prince. In: B6hme, R., Brenner, M.,
Moore, T., Smith, M. (eds.) Financial Cryptography and Data Security. vol. 8438,
pp. 208—-220. Springer (2014)

Dworkin, M.J.: SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. Tech. rep., National Institute of Standards and Technology
(2015)

Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
IACR Cryptology ePrint Archive, Report 2012/144 (2012), https://eprint.
iacr.org/2012/144

Froberg, R.: An Inequality for Hilbert Series of Graded Algebras. MATHEMAT-
ICA SCANDINAVICA 56 (Dec 1985)

Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing. p. 169-178.
ACM (2009)

Gentry, C., Halevi, S., Smart, N.P.: Homomorphic Evaluation of the AES Circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology — CRYPTO 2012.
vol. 7417, pp. 850-867. Springer (2012)

37

https://eprint.iacr.org/2020/015
https://eprint.iacr.org/2020/121
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

[33]

[34]

[35]

[36]

37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In:
Canetti, R., Garay, J.A. (eds.) Advances in Cryptology — CRYPTO 2013.
vol. 8042, pp. 75-92. Springer (2013)

Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.. MPC-Friendly
Symmetric Key Primitives. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. p. 430—443. ACM (2016)

Ha, J., Kim, S., Choi, W., Lee, J., Moon, D., Yoon, H., Cho, J.: Masta: An
HE-Friendly Cipher Using Modular Arithmetic. IEEE Access 8, 194741-194751
(2020)

Han, K., Ki, D.: Better Bootstrapping for Approximate Homomorphic Encryption.
In: Jarecki, S. (ed.) Topics in Cryptology — CT-RSA 2020. vol. 12006, pp. 364-390.
Springer (2020)

Hebborn, P., Leander, G.: Dasta — Alternative Linear Layer for Rasta. IACR
Transactions on Symmetric Cryptology 2020(3), 46-86 (Sep 2020)

HElib (release 2.0.0). https://github.com/homenc/HE1lib (Jan 2021)

Hoffmann, C., Méaux, P., Ricosset, T.: Transciphering, Using FiLIP and TFHE
for an Efficient Delegation of Computation. In: Bhargavan, K., Oswald, E., Prab-
hakaran, M. (eds.) Progress in Cryptology — INDOCRYPT 2020. pp. 39-61.
Springer International Publishing, Cham (2020)

Hong, S., Lee, S., Lim, J., Sung, J., Cheon, D., Cho, I.: Provable Security against
Differential and Linear Cryptanalysis for the SPN Structure. In: Goos, G., Hart-
manis, J., van Leeuwen, J., Schneier, B. (eds.) Fast Software Encryption — FSE
2000. vol. 1978. Springer (2001)

Jakobsen, T., Knudsen, L.R.: The Interpolation Attack on Block Ciphers. In:
Biham, E. (ed.) Fast Software Encryption — FSE ’97. vol. 1267, pp. 28-40. Springer
(1997)

Jean, J., Nikoli¢, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The
TWEAKEY Framework. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptol-
ogy — ASIACRYPT 2014. vol. 8874, pp. 274-288. Springer (2014)

Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A Low Latency
Framework for Secure Neural Network Inference. In: Proceedings of the 27th
USENIX Conference on Security Symposium. p. 1651-1668. USENIX Associa-
tion (2018)

Lepoint, T., Naehrig, M.: A Comparison of the Homomorphic Encryption Schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) Progress in Cryptology
— AFRICACRYPT 2014. vol. 8469, pp. 318-335. Springer (2014)

Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) Advances in Cryptology —- EUROCRYPT
2010. vol. 6110, pp. 1-23. Springer (2010)

Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Barstow, D., Brauer, W.,
Brinch Hansen, P., Gries, D., Luckham, D.; Moler, C., Pnueli, A., Seegmiiller,
G., Stoer, J., Wirth, N., Gunther, C.G. (eds.) Advances in Cryptology — EURO-
CRYPT ’88. vol. 330, pp. 419-453. Springer (1988)

Méaux, P., Carlet, C., Journault, A., Standaert, F.X.: Improved Filter Permuta-
tors for Efficient FHE: Better Instances and Implementations. In: Hao, F., Ruj,
S., Sen Gupta, S. (eds.) Progress in Cryptology — INDOCRYPT 2019. vol. 11898,
pp. 68-91. Springer (2019)

38

https://github.com/homenc/HElib

[48] Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards Stream Ciphers
for Efficient FHE with Low-Noise Ciphertexts. In: Fischlin, M., Coron, J.S. (eds.)
Advances in Cryptology — EUROCRYPT 2016. vol. 9665, pp. 311-343. Springer
(2016)

[49] Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can Homomorphic Encryption be
Practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Se-
curity Workshop. p. 113-124. ACM (2011)

[50] Park, S., Byun, J., Lee, J., Cheon, J.H., Lee, J.: HE-Friendly Algorithm for
Privacy-Preserving SVM Training. IEEE Access 8, 57414-57425 (2020)

[61] Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of Low-Data Instances
of Full LowMCv2. TACR Transactions on Symmetric Cryptology 2018(3), 163—
181 (2018)

[52] Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. J. ACM 56(6) (Sep 2009)

[53] Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL|(Oct 2019),
microsoft Research, Redmond, WA.

[54] XKCP: eXtended Keccak Code Package. https://github.com/XKCP/XKCP (Aug
2020)

A Homomorphic Evaluation of Symmetric Ciphers

Homomorphic encryption can be made more efficient using batching techniques
that allow to encrypt multi-dimensional arrays. Suppose that we use the FV
scheme with plaintext modulus ¢ and degree of the polynomial modulus N, and
that we want to evaluate multiplication by a matrix A € Z;*™ where n|N and
n < N. A straightforward approach is evaluating

Co
C
Cnfl

for encrypted arrays Cy,Cy,...,Cn—1 by applying homomorphic addition and
multiplication. We will call this method row-wise packing.
Alternatively, we can evaluate

AO0...0 mo
OA...O0 mq

000A my—1
in a single ciphertext by applying rotation as well as homomorphic operations

to an encrypted array
C= Enc([mo, NN ,mN_l]).

We will call this method column-wise packing. Not only linear layers, but also
nonlinear layers can be evaluated by both of these methods.

39

https://github.com/Microsoft/SEAL
https://github.com/XKCP/XKCP

In the CKKS-FV transciphering framework, the evaluation method should be
chosen for both the client and the server sides. On the client side, for N/n pairs

(m®, E(m(i)))ji/on_
compute

1
of plaintext and E-ciphertext, the column-wise packing will

Ecd™Y (E(m<0>), . E(m(N/”’l))> .

On the other hand, for N pairs (m®), E(m(i)))jvzgl, the row-wise packing will
compute

Ecd™Y (E(m(o))o, - E(m<N—1>)O) ,

Ecd™Y (E(m(°>)1, . E(m(N’l))l) :

Ecd™ (E(m(o))n_l, o E(m(N‘l))n_l) ,

where E(m("); implies the j-th component of E(m(®).

B On The Number of Monomials in HERA
The round function of HERA is defined by
RF = ARK o Cube o MixRows o MixColumns,

where the two linear maps MixColumns and MixRows can be represented by
16 x 16-matrices over Z;. Their product represents MixRows o MixColumns as
follows.

MixRows o MixColumns =

O W WD WHRFNWRFRDNOSDN DN
W WO O N WRFFFDNWNDN RS
W DO WHFNWFRFDNWRFDNRODN
DO W WNWHFFFNWRFRRFB/BODNDDND
WHF P DNWHFFFDNOONNPR OWWD
R RN WRFRRFRFNWNDNDERODDWWO O
N WRFRFRFNWRFRNDERODOIND WO O W
N WHRE FNWFRFRPRDINDDNDODO W W
W HF FPFNDNONDNPRE OWWO WRF R~
RN WNNPREDDWWO O~ DNDW
HF N WRFRNPERE DN WD O W N W
N WHE R EAREIDODNDNDOWWN WR—
DO NN RO WWDH W FFDNDWR DN
NN DWWOD O FNWRF =N W
N DN WD O WHRENWRHRFENDWR
B ONNOSD O©WWN WR - N W =

W
o

We see that the matrix representation of MixRows o MixColumns has no zero
entry. It implies that MixRows o MixColumns contains all the linear monomials in
its polynomial representation, and hence RF contains all the cubic monomials.
More precisely, if a; # 0 for i = 0,1,...,n — 1, then we have

(apzo + @11+ -+ + Gp1Tp—1 + b)3 = Z a;0;0LT;T;T) + Z 3a;a;bx;7;
5,k i,J
+3 " Ba;bz; + b7

= E a(i, j, k)aiajapzz;cy

i<j<k
+ Y B faiazbziz; + Y 3a:b’w; + b,
i<j i
where
ifi=j5==k;
6 ifi<j<ek,
and

8(i.) = { 5 Weitheri=J;
6 if i < j.

Since the plaintext modulus ¢ is prime and ¢ > 26, every monomial of degree 3
has a nonzero coefficient.

We can estimate the number of monomials in HERA with more rounds. Let
b = (bo,...,b15) be the output of the first round function. The second round
function will contain all the cubic monomials in b. When we view the second
round function as a polynomial in by, ..., b5, some coefficients might become
zero, while this happens only with probability of 1/t. Heuristically (with the
independence assumption), each monomial will remain at the second round with
probability 1 — (1/¢)*. This heuristic is confirmed by our computation, showing
all possible monomials at the end of the second round. We conjecture that this
property will hold for more than two rounds.

C Branch Number of the Linear Layer in HERA

In this section, we compute the branch number of the linear layer of HERA.
Given a square matrix M over a finite field, its linear branch number B, and
differential branch number By are defined by

By(M) = g;iér(}{hw(x) + hw(M”x)},

By(M) = I)gir&{hw(x) + hw(Mx)},

41

MixColumns MixRows

SN TN

Zoo | o1 |Lo2 | Lo3 Yoo | Yo1 [Yo2 | Yo3 200 [201 | 202 | %03
Z10|T11 |L12|L13 Yio | Y11 (Y12 (Y13 210 | 11 | %12 | %13
T20 | T21 | T22 |23 Y20 (Y21 [Y22 | Y23 220 [Z21 | %22 | %23
I30|L31 |32 (L33 Y30 (Y31 [Y32 | Y33 230 [#31 | #32 | %33
State X State Y State Z

Fig. 7: Diagram of state change in HERA.

respectively, where hw denotes the word-wise hamming weight function. For
example, the differential branch number of the 4 x 4 submatrix

2311
1231
L= 1123 (2)

3112

used in MixColumns is 5, which means that at least five nonzero components
(active S-boxes) exist in an nonzero input and its output of L. It is easily seen
that 2 < By(M), B4(M) < n+1 for an invertible n x n-matrix M. It has also been
proved that B¢(M) = n+ 1 if and only if B4(M) = n+1 [40]. A matrix M such
that Be(M) = Bg(M) = n + 1 is called a mazimum distance separable (MDS)
matrix.

One can computationally prove that L is an MDS matrix over Z; when t is
prime and ¢ > 17. It implies that the linear and the differential branch numbers
of MixColumns and MixRows are all 5. Now we present the branch number of
MixRows o MixColumns.

Theorem 2. The linear and the differential branch numbers of
MixRows o MixColumns
are all 8.

Proof. We will prove that the differential branch number of MixRowsoMixColumns
is 8. The linear branch number is computed similarly. We use the notations in

Figure [7]

Suppose that the branch number By of MixRows o MixColumns is less than 8.
It means that there exists a triple of nonzero states (X,Y, Z) such that hw(X)+
hw(Z) < 7. Assuming hw(X) < 3, we distinguish the following three cases.

— hw(X) = 1: all the components of Z are nonzero as seen in Figure

42

— hw(X) = 2: two nonzero components might be in the same column or not.
For either case, hw(Z) > 12 (see Figure [8] for the first subcase).

— hw(X) = 3: we need to consider three subcases: three nonzero components
are in the same column, only two are in the same column, or all three
nonzero components are in different columns. hw(Z) > 8 for the first subcase,
hw(Z) > 13 for the second subcase, and hw(Z) > 8 for the third subcase (see
Figure [8c| for the second subcase).

Next, we assume that hw(X) > 4; it implies hw(Z) < 3. By the symmetry
between MixColumns and MixRows, it should be possible to draw a state change
diagram (like Figure [8a] such that hw(X) < 3 and hw(X)+hw(Z) < 7 if
there is a triple of states (X, Y, Z) such that hw(Z) < 3 and hw(X)+hw(Z) < 7.
So, there is no triple of states (X, Y, Z) such that hw(X) + hw(Z) < 7.

Finally, we completes the proof by giving an example satisfying hw(X) +
hw(Z) = 8. See Figure A specific example of Figure can be obtained
by fixing an intermediate state Y such that hw(Y) = 1, and then applying
MixColumns™! and MixRows, respectively, to Y. a

— — I — —

(a) hw(X) =

1. .
] 1]
— — — —
3.

(¢) hw(X) = (d) hw(X) + hw(Z) = 8.

Fig. 8: Pictorial representation of four cases appearing in the proof of Theorem
A gray-colored cell represents a nonzero component.

43

	Hybrid Framework for Approximate Computation over Encrypted Data
	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Notation
	Homomorphic Encryption

	CKKS-FV Transciphering Framework
	Specification
	Correctness of the Framework

	A New Stream Cipher over Zt
	Specification
	Design Rationale

	Security Analysis of HERA
	Trivial Linearization
	GCD Attack
	Gröbner Basis Attack
	Interpolation Attack
	Linear Cryptanalysis
	Differential Cryptanalysis

	Implementation
	Parameter Selection
	Benchmarks
	Considerations on Bootstrapping

	Homomorphic Evaluation of Symmetric Ciphers
	On The Number of Monomials in HERA
	Branch Number of the Linear Layer in HERA

