
Multiplicative Depth Independent & Efficient
MPC in the Presence of Mixed Adversary

Achintya Desai1, Shubham Raj1, and Kannan Srinathan1

International Institute of Information Technology-Hyderabad, India

Abstract. An extensive research of MPC protocols in different adver-
sarial settings over the past few years has led to various improvements
in this domain. Goyal et al.[13] in their paper addressed the issue of
an efficient MPC protocol in active adversarial setting by removing the
dependency on multiplication depth Dm in the arithmetic circuit. This
development was followed by Hirt et al.[15] which proposed an efficient
MPC protocol tolerating mixed adversary with communication complex-
ity of O((ci + cm + co)nk + ciBA(k) + Dm(n3k + nBA(k))) bits, where
Dm is the multiplicative depth of the circuit. Additionally, Hirt et al.[15],
proposed an open problem to construct a protocol for the mixed adver-
sarial setting, independent of the multiplicative depth Dm, with linear
communication complexity. In this paper, we resolve this problem in the
affirmative by providing an efficient perfectly secure-MPC protocol in
the mixed adversarial setting independent of the multiplicative depth of
the circuit.

Keywords: Multi-Party Computation · Efficiency · Mixed Adversary ·
Multiplicative Depth

1 Introduction

Consider a scenario with n parties who do not trust each other. However, they
want to jointly compute a function without revealing their private inputs. This
function is represented as a circuit over a finite field. In cryptography literature,
this problem is known as secure multi-party computation (MPC)[18]. This prob-
lem has been extensively studied in the modern literature with several different
models of computation.

Adversarial setting is one such model of computation which has been one
of the most prominent variation of secure multi-party computation. The three
major types corruption that can be induced in an adversarial setting are perpe-
trated by active(which can behave in arbitrary way), passive(which can eaves-
drop) and fail-stop adversaries(which can crash during execution). There exists
other adversaries such as mobile adversary, but that’s irrelevant to the scope of
this work. Adversarial setting refers to the type of corruption that a protocol
can withstand maintaining its correctness, consistency and completeness. Every
adversarial setting comes with reliable boundary conditions on the number of
parties that can be corrupted in previous influential works. It is well established

2 Achintya Desai, Shubham Raj, and Kannan Srinathan

that a perfectly secure protocol with n parties can handle not more than n
3 − 1

active corruptions and n
2 −1 passive corruptions. These boundary conditions can

be improved provided the security of the protocol is relaxed.

In terms of practicality, while the passive setting does offer us a better bound-
ary condition on the allowed number of corruptions, it is quite impractical and
wildly optimistic. Active adversarial setting, on the other hand, does prepare us
for the worst but is highly pessimistic and leaves us with a boundary condition
of at most n

3 − 1 corruptions. The real world isn’t either black or white but a
spectrum of colours. Similarly, a set of parties can be a combination of different
types of corruptions. On top of that, a party can crash during execution of a
protocol in the network which is a very realistic scenario. To counter this lack
of practicality, Fitzi et al.[9] tried reaching a middle ground and pointed out a
trade-off between the adversarial capabilities and the allowed number of corrup-
tions. Fitzi et al.[9] relaxed the number of active corruptions represented as ta
and accommodated passive and crash fault corruptions represented as tp and
tf respectively to create a more realistic model of adversarial setting called as
mixed adversarial setting. This hybrid setting paved way for a more realistic sce-
nario that accounts for all types of aforementioned corruptions with a boundary
condition of 3ta + 2tp + tf < n.

A parallel discussion that has been around for quite a while is on the efficiency
of the MPC protocols. Goldwasser et al. [12] and Chaum et al. [5] presented the
first protocols for MPC in pure setting and Fitzi et al.[9] presented the same
for mixed setting but they were expensive and incurred a communication cost
of Ω(n6) field elements in the evaluation of one multiplication gate. Over the
years, many challenges have been overcome leading to improvements in pure
and mixed adversarial settings through the works of [7], [16], [8], [2], [3], [11],
[13], [15] making the communication complexity per multiplication gates linear
in terms of the number of parties.

Table 1. MPC variations

Reference Papers Adversarial
Setting

Communication
Complexity

Dependency on
Multiplicative
Depth

Beerliová-Trub́ıniová
et al.[2]

Active linear 3

Goyal et al.[13] Active linear 7

Hirt et al.[15] Mixed linear 3

Our Paper Mixed linear 7

Hirt et al. in their ITC 2020 paper [15] studied the efficiency of a secure MPC
protocol in mixed adversarial setting. Their construction, however, yielded a
protocol whose final communication complexity depended on the multiplicative
depth of the circuit. In this paper, we answer the following open problem raised

Multiplicative Depth Independent MPC in Mixed Setting 3

by Hirt et al.[15] in affirmative: “Is it possible to remove the dependency on the
multiplicative depth of the circuit in the overall communication complexity of a
secure MPC protocol while maintaining its efficiency and the restrictions on the
number of corruptions such that 3ta + 2tp + tf < n?”

For our construction, we assume that every pair of parties is connected by a
secure channel and the communication between parties is synchronous.

2 Preliminaries

In our constructions, we will frequently use a few symbols to simplify the de-
scriptions associated with them. The parties which are involved in the protocol
are represented as a set P such that P = {P1, ..., Pn} is a set of n parties. The
parties involved wants to compute a function that is represented as a circuit
over a finite field F . Circuits consist of various types of gates which frequently
appears in the descriptions as well as the protocol complexities. Hence, using
symbols to quantify different gates simplifies the representation of of the proto-
col. In our construction, we will use ci input, co output, cm multiplication, ca
addition and cr random gates. This work also requires understanding of Byzan-
tine agreement[10], Circuit randomization[1] and Hyper Invertible matrix[2] as
a prerequisite whose extensive study material can be found in [6].

2.1 Adversary Model

Mixed Adversary: A mixed adversary is a more practical and realistic form
of adversary that can corrupt the participating parties in Byzantine and fail-
stop fashion. It is represented as (P, ta, tp, tf) and can corrupt up to ta, tp and
tf parties in active, passive and fail-stop manner, respectively. In an active
corruption, the adversary gains complete control of a party with the ability to
modify the the messages that are sent. Passive corruption, on the other hand,
only allows an adversary to read the messages sent by a party. A fail-stop
corruption is an intricate detail that makes the mixed adversary setting a
much more realistic possibility. In a fail-stop corruption, an adversary forces a
node to crash however the crashed node follows the protocol honestly until the
time of crash. An interesting property of a fail-stop corrupt party is that the
adversary cannot see the internal state i.e. the inputs or the messages processed
by the party (unless they are simultaneously actively or passively corrupted).
Adversarial models often associate parties with tags such as honest, dishonest,
correct, incorrect e.t.c which might leave some room of subtle differences. One
such subtlety is the difference between a correct and an honest party. A correct
party is one which has not been actively corrupted but can be either passively
corrupted or is prone to crash however an honest party is one which correctly
follows the protocol.

4 Achintya Desai, Shubham Raj, and Kannan Srinathan

2.2 Byzantine Agreement

Byzantine agreement refers to the concept of non faulty nodes reaching an
agreement upon a value in the presence of a Byzantine adversary. Formally, it can
be represented as an output y taking a value xi provided all the non faulty nodes
agree upon a common value i.e. xi through a consensus protocol. The idea of
Byzantine consensus was initially conceived as interactive consistency amongst
the nodes such that all non faulty nodes have the same value at the end which
is ultimately the output. Our construction is based on mixed setting and Garay
and Perry [10] formalized the guarantees of consensus in the mixed setting which
include consistency and persistence. Consistency makes sure that the output
of all parties that are not actively corrupted are equal and persistence makes
sure that the input and output of all correct parties are same.
Broadcast is closely related to consensus such that in a broadcast protocol, ev-
ery party agrees upon a value sent by a designated sender. Just like consensus,
broadcast protocol too comes in various shapes and forms. A reliable broad-
cast, which is valid, is one in which a correct party sends a message and all other
correct parties eventually receives it. A terminating reliable broadcast is a
reliable broadcast that takes termination into account such that every correct
party delivers some value.
In the mixed setting, we require the same consistency as in consensus. Garay and
Perry [10] gave a consensus protocol for active setting with fail-stop corruption
to achieve one bit consensus. This protocol allowed no passive corruptions such
that tp = 0 assuming that 3ta + tf < n. The communication complexity of the
protocol in [10] is O(n3). However, by applying the king-simulation technique of
[4], this complexity can be reduced to O(n2).
To accommodate the mixed adversarial setting, we use a player-elimination
framework to eliminate faulty parties thereby creating a reduced party set P ′.
Byzantine consensus is invoked amongst parties in P ′. So, the following protocol
is implemented which internally invokes a consensus protocol which is secure
under the assumption that 3ta + 2tp + tf < n.

Protocol 1: Consensus({xi}Pi∈P′)

– Consensus protocols in [10], [4] can be used by parties in P ′ such that
the input of Pi is xi.

– Each Pi sends its output to all parties in P\P ′ where Pi ∈ P ′.
– All parties ∈ P ′ outputs the result of the consensus, and all parties in
P\P ′ determines its output using the rule of the majority.

The cost of Consensus in [10], [4] is O(n2) where n is the size of the initial set P.
Let BA(k) be the complexity of broadcasting or reaching consensus on a k− bit
message in mixed setting. Hence using the aforementioned protocols gives us
BA(k) = O(n2k).

Multiplicative Depth Independent MPC in Mixed Setting 5

2.3 Circuit Randomization

Circuit randomization technique by Beaver et al.[1] helps in randomizing the
inputs of a circuit and facilitates the pre-processing phase which reduces the
overall communication complexity of the protocol. Given z = xy such that x is
shared as [x]d and y is shared as [y]d with d being the degree of polynomial used
for sharing the secret, circuit randomization allows us to compute a sharing [z]d
at the costs of two public reconstructions provided a random triple [a]d, [b]d, [c]d
such that c = ab which has been pre-shared is available. In this technique, we
first prepare cm shared multiplication triples [a]d, [b]d, [c]d and then we evaluate
a circuit with cm multiplications through a sequence of public reconstructions.
In circuit randomization we express z = xy as z = ((x − a) + a)(y − b) + b).
Let d = x − a and e = y − b, then, z = de + db + ae + c, where (a, b, c) is a
multiplication triple. If the multiplication triple (a, b, c) is random then d and e
are random values irrespective of x and y. Hence, a sharing [z]d can be linearly
computed as [z]d = [de]d +d[b]d +e[a]d +[c]d, by reconstructing [d]d = [x]d− [a]d
and [e]d = [y]d − [b]d.

2.4 Secret Sharing

In this section, we are establishing secret sharing variations, similar to [15],
as a fundamental building block for further protocols. We use Shamir’s secret
sharing scheme[17] to share and reconstruct secrets amongst n parties. In this
work, Share protocol simply distributes the secret input of a player Pi using a
random polynomial. PrivReconRobust protocol is a robust private reconstruction
where secret is reconstructed towards a single party. PubReconRobust protocol
reconstructs l secret sharings towards all the parties robustly with the help of
player-elimination framework.

Share

Protocol 2: Share(Pi, d, s, (P
′, t′a, t

′
p, t
′
f))

– Party Pi chooses a random polynomial g of degree d such that
s = g(0) and distributes share sj = g(αj) to party Pj ∈ P ′.

Public Reconstruction

Protocol 3: PubReconRobust(d, l, [s1]d, ..., [s
l]d, (P

′, t′a, t
′
p, t
′
f))

For each bucket [ŝ1]d, ..., [ŝ
l]d of size l ≤ n′ − t′a do the following step 1 to

4 :

1. Expansion : All the parties compute locally
([u1]d, ..., [u

n′]d)T = V ([ŝ1]d, ..., [ŝ
l]d)T where V is the Vandermonde

matrix of size n′ × l defined by fixed vector β with unique values.
2. Distributing the shares : For i ∈ {1, ..., n′}, the parties send their

share of [ui]d towards Pi.

6 Achintya Desai, Shubham Raj, and Kannan Srinathan

3. Reconstructing secret : Each Pi ∈ P ′ sends ui to every Pj ∈ P ′.
4. Checking validity : Every Pj ∈ P ′ checks whether there exists a

polynomial g of degree at most l − 1 such that all points
(β1, u1), ..., (βn′ , un

′
) lie on g. If this is the case, Pi considers ŝ1, ..., ŝl

as correct. Otherwise, Pj sets happy bit as unhappy.
5. Fault Detection : All parties now perform fault detection step from

player elimination framework. If the output is ”happy” then the
reconstructed values are considered correct and move to the next
segment. Otherwise, continue to next step.

6. Fault localization : Let Pr ∈ P ′ be the party with the smallest index.
All parties Pi ∈ P ′ sends to Pr the values generated, sent and received
in the above steps. Also, message Mi received during Fault Detection
step.
Now, Pr simulates the above steps on the behalf of each Pi ∈ P ′ to
reconstruct the sharing polynomial and the correct shares of each
party. If Pr identifies a Pi which does not follow the steps, then it
broadcasts (Pi, corrupt). If Pi finds a conflict between message index l
where Pi should have sent x to Pk but Pk claimed to have received x′

such that x 6= x′ then Pr broadcasts (l, Pi, Pk, x, x
′, disputed).

In case of dispute message broadcast by Pr, the conflicting parties Pi

and Pk respond by broadcasting their stand (agree/disagree).
If Pi disagrees, all parties set E = {Pi, Pr}. If Pk disagrees, all parties
set E = {Pk, Pr}. Otherwise, every party sets E = {Pi, Pk}.

7. Crash-check fault localization : For party Ph ∈ {Pi, Pk, Pr}, the
parties perform heartbeat protocol.

8. Player elimination : If all the parties Pi, Pr and Pk are alive, then all
parties set P ′ = P ′\E,n′ = n′ − 2 and t′a = t′a − 1. Otherwise set E as
parties for which were detected as crashed by heartbeat protocol. Set
P ′ = P ′\E,n′ = n′ − |E| and t′f = t′f − |E|. Repeat the procedure
with updated (P ′, t′a, t

′
p, t
′
f).

This robust protocol publicly reconstruct the secret under the assumption that
d < n− 2t′a − t′f .

Robust Private Reconstruction

Protocol 4: PrivReconRobust(Pi, d, [s]d, (P
′, t′a, t

′
p, t
′
f))

1. Every party Pj ∈ P ′ send their share sj of the sharing [s]d to party Pi.
2. If there exists a polynomial g with party Pi of degree d such that

atleast d+ t′a + 1 shares received must lie on g, then output s = g(0).
Otherwise Pi becomes unhappy.

This robust protocol privately reconstruct the secret towards a party under the
assumption that d < n− 2t′a − t′f .

Multiplicative Depth Independent MPC in Mixed Setting 7

2.5 4-Consistency

[13] used 4-consistency to allow verification of randomized shares. In a protocol,
we use random (n′ − 1)-shares in order to evaluate the circuit. We need all
the shares from P ′ to reconstruct the value and there are no redundancies.
However, due to the lack of redundancy, sharing becomes vulnerable which means
the verification becomes harder. This means a party can change the value by
changing its own share without being detected. To solve this issue, we need 4-
consistency which allows each party to commit their shares after evaluation of
the circuit thereby helping in the verification process. In our definition, n′ is the
number of active parties and ta is the maximum number of actively corrupted
parties an adversary can control.

Definition 1. For a partition π of P ′ = P1∪P2∪P3 such that |P1|, |P2|, |P3| ≤
ta + 1, a tuple of ta-sharings [r] = ([0r]ta , [1r]ta , [2r]ta , [3r]ta) is a 4-consistent
tuple with respect to π if 0r = r and there exists a degree-(n′− 1) polynomial p()
with p(0) = r and for all Pi ∈ Pj , p(αi) is the ith share of the sharing [jr]ta . [13]

We generate [r]ta,n′−1 for evaluation. The terms ([1r]ta , [2r]ta , [3r]ta) are gener-
ated to commit the shares of [r]n′−1 in verification.

Lemma 1. 4-consistency is preserved under linear combinations

Proof. Refer to [13].

3 Preparation Phase

3.1 Generating Random Triple-Sharings

Identical to [13], this protocol TripleShareRandom generates l random triple
sharings [r]d,d′,d′′ and distributes them using polynomials of degree d, d′, d′′.
Initially, all n′ parties distribute their randomness using polynomials of degree
d, d′, d′′. Hyper-invertible matrix, as described in [2], is applied which generates
new sharings such that any n′ − t′a output sharings are uniform random if any
n′ − t′a input sharings were random. The correctness of the output sharings is
verified in step 3 by reconstructing 2t′a sharings. The remaining l sharings are
considered as output of the protocol.

Protocol 1: TripleShareRandom(d, d′, d′′, l, (P ′, t′a, t
′
p, t
′
f))

1. Distributing randomness : Every party Pi ∈ P ′ randomly chooses
si ∈ F and performs share protocol thrice among P ′ as
Share(Pi, d, s

i, (P ′, t′a, t
′
p, t
′
f)), Share(Pi, d

′, si, (P ′, t′a, t
′
p, t
′
f)) and

Share(Pi, d
′′, si, (P ′, t′a, t

′
p, t
′
f)). Each party in Pj ∈ P ′ receives j-th

share of [si]d,d′,d′′ .
2. Applying hyper-invertible matrix : Every party computes locally

8 Achintya Desai, Shubham Raj, and Kannan Srinathan

[r1]d,d′,d′′ , [r
2]d,d′,d′′ , ..., [r

n′]d,d′,d′′ =

M([s1]d,d′,d′′ , [s
2]d,d′,d′′ , ..., [s

n′]d,d′,d′′) where M is hyper-invertible
matrix of size n′ × n′.

3. Checking correctness : All parties Pi ∈ P ′ send their shares of
[rj]d,d′,d′′ to respective Pj where j ∈ {1, 2, ..., 2t′a}. Each Pj with
j ∈ {1, 2, ..., 2t′a} checks whether the received triple sharing is correct
or not by constructing polynomial g1 with degree d from [rj]d,
polynomial g2 with degree d′ from [rj]d′ and polynomial g3 with
degree d′′ from [rj]d′′ . If g1(0) = g2(0) = g3(0) does not hold then Pj

sets its happy-bit as unhappy.
4. Output : All parties in P ′ consider remaining l sharings as output i.e.

[rn
′−l+1]d,d′,d′′ , ..., [r

n′]d,d′,d′′ .

Lemma 2. TripleShareRandom detectably generates l correct (d, d′, d′′) -
sharings and the shared value corresponding to each sharing is uniformly
random in the presence of adversary provided that (P ′, t′a, t

′
p, t
′
f) is valid and

input values of parties are consistent. Also, the communication complexity of
TripleShareRandom is O(ln′k + n′2k)

Proof. We prove the correctness and security with the assumption that no
party crashed during the protocol execution and all correct parties are happy
at the end of the protocol.
Correctness : The values si ∈ F randomly chosen by parties Pi ∈ P ′ in step 1
of the protocol, are generated & shared properly by atleast n′ − t′a parties
which makes at least n′ − t′a sharings from [si]d,d′,d′′ to be correct. In step 3 of
the given protocol, at least t′a sharings of [ri]d,d′,d′′ are verified by correct
parties. In total, there are n′ correct sharings (n′ − t′a sharings of [si]d,d′,d′′ and
t′a sharings of [ri]d,d′,d′′). Due to the bijective property of hyper-invertible
matrix, any other sharing can be written as a linear combination of the correct
n′ sharing which makes all the involved sharings correct.
Privacy : t′a + t′p values of si(Shares generated by actively or passively

corrupted parties) and min(2t′a, t
′
a + t′p) values of ri (reconstructed in

verification phase) are known to the adversary. In total, 2t′a + t′p+min(t′a, t
′
p)

values are fixed by adversary. Hence, there exists a bijective mapping between
the last l ≤ n′ − 2t′a − t′p−min(t′a, t

′
p) values of ri and l values of si generated

by either honest or fail-stop corrupted parties. Hence, the values
[rn
′−l+1]d,d′,d′′ , ..., [r

n′]d,d′,d′′ outputted by the protocol are uniformly random
and hidden from the adversary.
Complexity : Each execution of the above protocol results in O(n′2k) bits of
communication(n′ shares are broadcasted to n′ parties). Each execution
generates l ≤ n′ − 2t′a − t′p−min(t′a, t

′
p) double-sharings. Since 3t′a < n′ and

2t′p < n′, l ≤ n′ − 2t′a − t′p−min(t′a, t
′
p)= 1

5n
′. Therefore, the complexity of

TripleShareRandom is O((5l
n′ + 1)n′2k) = O(ln′k + n′2k)

Multiplicative Depth Independent MPC in Mixed Setting 9

3.2 Generating Random Multiplication Tuples

Goyal et al. [13] described the steps to generate multiplication tuples, which we
have inherited in this work. Initially, all the parties in P ′ execute
TripleShareRandom protocol to generate and distribute three random values a,
b and r. The values a and b, are distributed using polynomials of degree d, d′

and n′ − 1 whereas r is distributed using polynomials of degree d, 2d′ and
n′ − 1. Now, each party locally computes [c]2d′ = [a]d′ × [b]d′ and
[e]2d′ = [c]2d′ − [r]2d′ . In the following step, the parties publicly reconstruct e
towards all parties. Then each party locally compute their d-sharing of product
as [r]d + e. At the end, l multiplication triplets (a, b, c) are formed and all
parties hold their respective sharings along polynomial d and n′ − 1.

Protocol 2: GenerateMultiplicationTriples(d, l, (P ′, t′a, t
′
p, t
′
f))

1. Generate three random triples : All parties in Pi ∈ P ′ invoke
TripleShareRandom(d, d′, n′ − 1, l, (P ′, t′a, t

′
p, t
′
f)),

TripleShareRandom(d, d′, n′ − 1, l, (P ′, t′a, t
′
p, t
′
f)) and

TripleShareRandom(d, 2d′, n′ − 1, l, (P ′, t′a, t
′
p, t
′
f)), where d′ = t′a + t′p,

in parallel to generate random triple sharings for
[a1]d,d′,n′−1, ..., [a

l]d,d′,n′−1, [b1]d,d′,n′−1, ..., [b
l]d,d′,n′−1 and

[r1]d,2d′,n′−1, ..., [r
l]d,2d′,n′−1 respectively.

2. Local Computations : All parties Pi ∈ P such that i ∈ {1, ..., l},
locally compute [ci]2d′ = [ai]d′ .[b

i]d′ and [ei]2d′ = [ci]2d′ − [ri]2d′

3. Reconstructing the blinded product : All parties perform
PubReconRobust to reconstruct (e1, ..., el) towards all parties in P ′

4. Forming l triplets : Parties Pi ∈ P such that i ∈ {1, ..., l} locally
compute d-sharing of ci = ai.bi as [ci]d = [ri]d + ei

5. Output : Parties Pi where i ∈ {1, ..., l} output l triplets as
([a1]d,n′−1, [b

1]d,n′−1, [c
1]d,n′−1), ..., ([al]d,n′−1, [b

l]d,n′−1, [c
l]d,n′−1)

Lemma 3. GenerateMultiplicationTriples detectably generates l correct
triples of d-sharings and the shared values a and b corresponding to each triplet
sharing ([a]d, [b]d, [c]d) are uniformly random in the presence of adversary
provided that (P ′, t′a, t

′
p, t
′
f) is valid and input values of parties are consistent.

Also, the communication complexity of GenerateMultiplicationTriples is
O(ln′k + n′2k)

Proof. Correctness and Secrecy : Correctness and secrecy follows from lemma
TripleShareRandomlemma and PubReconRobust since the degree, 2d′, in
reconstructing the blinded product phase satisfies the condition
2d′ = 2t′a + 2t′p < n′ − t′a. Complexity : Since the protocol is based on
TripleShareRandom and PubReconRobust, the complexity O(ln′k + n′2k)
follows from lemma 3.1 and PubReconRobust.

10 Achintya Desai, Shubham Raj, and Kannan Srinathan

4 Constructions

4.1 Generating 4-Consistent Tuples

This protocol is obtained from [13] which generates l correct and random
4-consistent tuples [r] = ([0r]d, [1r]d, [2r]d, [3r]d). P1,P2,P3 are partitions of
parties such that P1 ∪ P2 ∪ P3 = P and |P1|, |P2|, |P3| ≤ d+ 1. The partitions
allows to create redundancy of matrix ([s1], ..., [sn]n−1) such that the entire
matrix can be recovered even if the adversary corrupts its shares. Each row of
this matrix is chosen d sharing such that even if adversary tampers its shares,
the original matrix and the 3 matrix which belong to each partition can be
recovered. For extensive details, refer to [13]. Each party distributes a random
4-consistent tuple, and using hyper-invertible matrix new random sharings are
constructed. For verifying the correctness, 2t′a 4-consistent tuples are
reconstructed. If they are invalid, parties set their happy bit as unhappy.
Otherwise l 4-consistent tuples are outputted.

Protocol 1: QuadrupleShareRandom(l, (P ′, t′a, t
′
p, t
′
f), (P1,P2,P3))

1. Distributing randomness : Every party Pi ∈ P ′ produces a random
4-consistent tuple [si] = ([0s

i]d, [1s
i]d, [2s

i]d, [3s
i]d). Each party in Pj

receives j-th share of [si] from Pi.
2. Applying hyper-invertible matrix : Every party computes locally

([r1], [r2], ..., [rn
′
]) = M([s1], [s2], ..., [sn

′
]) where M is

hyper-invertible matrix of size n′ × n′.
3. Checking correctness : All parties Pi ∈ P ′ send their shares of [rj] to

respective Pj where j ∈ {1, 2, ..., 2t′a}. Each Pj with j ∈ {1, 2, ..., 2t′a}
checks whether the received 4-consistent tuple [rj] is correct or not. If
it is invalid then Pj sets its happy-bit as unhappy.

4. Output : All parties in P ′ consider remaining l sharings as output i.e.
[rn
′−l+1], ..., [rn

′
].

Lemma 4. QuadrupleShareRandom detectably generates l correct random
4-consistent tuple and the shared value corresponding to each tuple sharing
([0r]d, [1r]d, [2r]d, [3r]d) are uniformly random in the presence of adversary
provided that (P ′, t′a, t

′
p, t
′
f) is valid and input values of parties are consistent.

Also, the communication complexity of QuadrupleShareRandom is
O(ln′k + n′2k)

Proof. Correctness and Secrecy : Since 4 sharings are distributed instead of 3,
the correctness and secrecy follows from lemma 3.1.
Complexity : Since the protocol is similar to TripleShareRandom, the
complexity O(ln′k + n′2k) follows from lemma 3.1.

4.2 Generating Random 0-Sharings

Description ZeroShareRandom is yet another protocol that was described by
Goyal et al. in [13] which has been inherited in this work. This protocol

Multiplicative Depth Independent MPC in Mixed Setting 11

generates l random t-sharings of 0. Initially, parties generates l random triple
sharings of r using a polynomial of degree d′, such that ([a]d′ , [b]d′ , [c]d′) are the
triple sharings and r = a = b = c. The parties then locally compute [b]d′ − [a]d′

to finally evaluate their shares of 0. ZeroShareRandom is used for ouptut gate
evaluation.

Protocol 2: ZeroShareRandom(l, (P ′, t′a, t
′
p, t
′
f))

1. Distributing random triple sharings : Every party Pi ∈ P ′ performs
ThreeShareRandom(d′, d′, d′, l, (P ′, t′a, t

′
p, t
′
f)) where d′ = t′a + t′p to

generate [rn
′−l+1]d′,d′,d′ , ..., [r

n′]d′,d′,d′ . If
ThreeShareRandom(d′, d′, d′, l, (P ′, t′a, t

′
p, t
′
f)) outputs disputed parties

then all parties halt.
2. Local computation : Every triple sharing ([rj]d′,d′,d′) for
j ∈ {n′ − l + 1, ..., n} is expressed as ([aj]d′ , [b

j]d′ , [c
j]d′ ,) where the

value is the same i.e. rj = aj = bj = cj . Every party locally computes
[bj]d′ − [aj]d′ for j ∈ {n′ − l + 1, ..., n} to obtain shares of 0.

3. Output : All parties consider [0n
′−l+1,...,n′]d′ , ..., [0

n′]d′ as output.

Lemma 5. ZeroShareRandom detectably generates l correct t - sharings of
0 and the share value corresponding to each sharing is uniformly random in the
presence of adversary provided that (P ′, t′a, t

′
p, t
′
f) is valid and input values of

parties are consistent. Also, the communication complexity of
ZeroShareRandom is O(ln′k + n′2k)

Proof. Correctness and Secrecy : Since ZeroShareRandom invokes
TripleShareRandom, the correctness and secrecy follows from lemma 3.1.
Complexity : Since the protocol is based on TripleShareRandom, the
complexity O(ln′k + n′2k) follows from lemma 3.1.

4.3 Checking Consistency

Like [13] version of CheckConsistencyKing, it is used to check whether PKing is
corrupt or not during the execution of AdditionMultiplicationGateEval. In the
first step, given l sharings are extended into l + d′ using hyper-invertible
matrix. These shares are given to each party and it checks whether it is valid
or not. If it is invalid then it sets its happy bit as unhappy indicating PKing

might be corrupt. Further, fault detection and localization steps detect, using a
referee party Pr, which pair of parties cheated during the protocol. Also, if any
of the parties crashed during the execution of the protocol then these are
added to set of crashed parties.

Protocol 3: CheckConsistencyKing(l, Pking, (P
′, t′a, t

′
p, t
′
f), [d1]0, ..., [d

l]0)

Let d′ = t′a + t′p.

12 Achintya Desai, Shubham Raj, and Kannan Srinathan

1. Applying hyper-invertible matrix : Every party computes locally
[r1]0, [r

2]0, ..., [r
l+d′]0 = M([d1]0, [d

2]0, ..., [d
l]0) where M is

hyper-invertible matrix of size (l + d′)× l.
2. Distributing Shares : All parties send the shares of [rj]0 to Pj where
j ∈ {1, ..., l + d′}

3. Checking validity : If all shares of [rj]0 are equal then [rj]0 is valid.
Otherwise Pj sets its happy-bit as unhappy.

4. Fault detection : Each party sends its own happy-bit to every other
party.
A party sets its own happy-bit as unhappy if it receives unhappy bit
from at least one party or it does not receive any bit from at least one
party.
Perform consensus protocol on the modified happy bits. If the
outcome is happy then all parties halt. Otherwise, perform next step.

5. Fault localization : Let Pr ∈ P ′ be the party with the smallest index.
All parties Pi ∈ Pr sends to Pr the values generated, sent and received
in the above steps. Also, Pking sends d1, ..., dl to Pr.
Now, Pr simulates the above steps on the behalf of each Pi ∈ P ′ to
check the correctness of the result generated. If Pr identifies a Pi

which does not follow the steps, then it broadcasts (Pi, corrupt). If Pi

finds a conflict between message index l where Pi should have sent x
to Pk but Pk claimed to have received x′ such that x 6= x′ then Pr

broadcasts (l, Pi, Pk, x, x
′, disputed).

In case of dispute message broadcast by Pr, the conflicting parties Pi

and Pk respond by broadcasting their stand (agree/disagree).
If Pi disagrees, all parties set E = {Pi, Pr}. If Pk disagrees, all parties
set E = {Pk, Pr}. Otherwise, every party sets E = {Pi, Pk}.

6. Crash-check fault localization : For party Ph ∈ {Pi, Pk, Pr}, the
parties perform heartbeat protocol.

7. Output : If all the parties Pi, Pr and Pk are alive, then all parties in
P ′ consider E as output. Otherwise set E as parties for which were
detected as crashed by heartbeat protocol.

Lemma 6. CheckConsistencyKing securely checks if a party Pking sent l
same elements to all other parties in the presence of mixed adversary provided
that (P ′, t′a, t

′
p, t
′
f) is valid. Also, the communication complexity of

CheckConsistencyKing is O(nk + (ta + tf)(n2k +BA(k)))

Proof. Complexity : In the distributing shares step, all parties send O(n2)
elements. The rest of the steps are similar to party elimination framework
except Pking sends additional O(n) elements to Pr during fault-localization
step. Hence, the overall communication complexity is
O(nk + (ta + tf)(n2k +BA(k))). .

Multiplicative Depth Independent MPC in Mixed Setting 13

4.4 Checking 4-Consistent Tuples

Check4ConsistentTuple generates and checks whether each party distributed a
correct random 4-consistent tuple. Firstly, each party generates l random
4-consistent tuples. It generates such dn

′

l e sets of l random tuples of
4-consistent sharings. Each random 4-consistent tuple is associated with
corresponding input 4-consistent tuples. Instead of revealing the input
4-consistent tuples, all parties perform checking over the addition of the two
tuples. Further, all parties apply hyper-invertible matrix to obtain l + d
random 4-consistent tuples. Each of these tuples is now reconstructed by
different parties and it checks whether it is valid or not. If it is invalid then it
sets its happy bit as unhappy implying that 4-consistent tuple has been
modified. Further, fault detection and localization steps detect, using a referee
party Pr, which pair of parties cheated during the protocol. Here, the referee
party checks the summation of the 4-consistent tuples instead of the original
input 4-consistent tuples. Also, if any of the parties crashed during the
execution of the protocol then these are added to set of crashed parties.

14 Achintya Desai, Shubham Raj, and Kannan Srinathan

Protocol 4: Check4ConsistentTuple(l, (P ′, t′a, t
′
p, t
′
f), (P1,P2,P3), {[sj]}n′j=1)

Let d′ = t′a + t′p.

1. 4-consistent tuple generation : All parties invoke
QuadrupleShareRandom to generate l random 4-consistent tuples
denoted as {[r1], ..., [rl]}.
If the QuadrupleShareRandom outputs disputed party pair
(Pi, Pk, disputed), then all parties forward the same pair as output
and halt.
This step is repeated to generate dn

′

l e sets of l random tuples of
4-consistent sharings which are denoted as {[rlj+1], ..., [rlj+l]} where

j ∈ {0, ..., dn
′

l e − 1}
2. Distributing Shares : All parties send the shares of [rj] to Pj and

compute [uj] = [sj] + [rj] where j ∈ {1, ..., n′}
3. Applying hyper-invertible matrix : Every party computes locally

([v1], [v2], ..., [vl+d′]) = M([ulj+1], ..., [ulj+l]) where M is
hyper-invertible matrix of size (l + d′)× l.
For k ∈ {1, ..., l + d′}, all parties send the shares of [rk] to Pk.
If the received 4-consistent tuple is valid then Pk sets its happy-bit as
happy. Otherwise Pj sets its happy-bit as unhappy.

Repeat this steps for values of j given as j ∈ {0, ..., dn
′

l e − 1}.
4. Fault detection : Each party sends its own happy-bit to every other

party.
A party sets its own happy-bit as unhappy if it receives unhappy bit
from at least one party or it does not receive any bit from at least one
party.
Perform consensus protocol on the modified happy bits. If the
outcome is happy then all parties halt. Otherwise, perform next step.

Multiplicative Depth Independent MPC in Mixed Setting 15

5. Fault localization : Let Pr ∈ P ′ be the party with the smallest index.
All parties Pi ∈ Pr sends to Pr the values generated, sent and received
in the above steps. Also, each party Pi sends [ui] to Pr.
Now, Pr simulates the above steps on the behalf of each Pi ∈ P ′ to
check the correctness of the result generated. If Pr identifies a Pi

which does not follow the steps, then it broadcasts (Pi, corrupt). If Pi

finds a conflict between message index l where Pi should have sent x
to Pk but Pk claimed to have received x′ such that x 6= x′ then Pr

broadcasts (l, Pi, Pk, x, x
′, disputed).

In case of dispute message broadcast by Pr, the conflicting parties Pi

and Pk respond by broadcasting their stand (agree/disagree).
If Pi disagrees, all parties set E = {Pi, Pr}. If Pk disagrees, all parties
set E = {Pk, Pr}. Otherwise, every party sets E = {Pi, Pk}.

6. Crash-check fault localization : For party Ph ∈ {Pi, Pk, Pr}, the
parties perform heartbeat protocol.

7. Output : If all the parties Pi, Pr and Pk are alive, then all parties in
P ′ consider E as output. Otherwise set E as parties for which were
detected as crashed by heartbeat protocol.

Lemma 7. Check4ConsistentTuples securely checks if each party
distributed a correct 4-consistent tuple in the presence of mixed adversary
provided that (P ′, t′a, t

′
p, t
′
f) is valid. Also, the communication complexity of

Check4ConsistentTuples is O(2nk + (ta + tf)(2n2k +BA(k)))

Proof. Complexity : In the distributing shares step, all parties send O(n2)
elements to reconstruct n′ number of [rj]s. Also, all parties send O(n2) more
elements for reconstructing l + t′ number of [vk]s. The rest of the steps are
similar to party elimination framework except each Pi sends additional
elements to Pr during fault-localization step which makes up O(n2) elements.
Hence, the overall communication complexity is
O(n2k + (ta + tf)(2n2k +BA(k))).

5 Evaluation Phase

5.1 Input Gates

For each input gate, a party who holds the corresponding input performs this
protocol. Initially, the initiating party performs private reconstruction of a
random value r to itself. It then subtracts this random value from its input to
obtain blinded input. This blinded input is broadcasted by the initiating party
to all the other parties. Further, The initiating party performs Heartbeat
protocol. If the output of Heartbeat is “alive”, then each party computes its
own share of input value by adding the blinded input with the random value
and the protocol outputs “success”. Otherwise the protocol outputs “fail”
indicating faulty input party.

16 Achintya Desai, Shubham Raj, and Kannan Srinathan

Protocol 1: InputGateEval(Pi, [r]d, (P
′, t′a, t

′
p, t
′
f))

Let sk be the input of party Pi which wants to evaluate input gate.

1. Party Pi invokes PrivReconRobust(Pi, d, [r]d, (P
′, t′a, t

′
p, t
′
f) to

reconstruct r towards itself.
2. Pi broadcasts e = sk − r to all other parties.
3. Pi performs heartbeat protocol.
4. If the output of heartbeat protocol is ”alive” then all parties output

”success” and each party Pj ∈ P ′ performs e+ rj , where rj is Pj ’s
share of r, to obtain share of e+ r. Otherwise, each Pj ∈ P ′ output
”fail”.

5. Repeat the above steps for k ∈ {1, ..., ci}

Lemma 8. InputGateEval securely distributes secret si for each party Pi in
the presence of mixed adversary provided that (P ′, t′a, t

′
p, t
′
f) is valid. Also, the

communication complexity of InputGateEval is O(ci(nk +BA(k))

Proof. Correctness and Secrecy : Correctness and secrecy is followed by robust
reconstruction of randomness towards Pi and blinded secret.
Complexity : From PrivReconRobust, O(n) bits are communicated for
reconstruction step. For ci input gates, the overall complexity becomes
O(ci(nk +BA(k))

5.2 Random Gates

RandomGateEval, similar to Goyal et al. [13], uses TripleShareRandom along
with player-elimination framework. If the output of TripleShareRandom is a
pair of disputed parties or a set of crashed parties then such parties are
eliminated and the aforementioned steps are repeated again. Otherwise, out of
the d, d′ and n′ − 1 sharings, d′, n′ − 1 sharings are discarded and the l
d-sharings for cr gates are taken as output for all parties.

Protocol 2: RandomGateEval(l, Pi, [r]d, (P
′, t′a, t

′
p, t
′
f))

1. All Parties invokes
PlayerElimination(TripleShareRandom(d, d′, n′ − 1, l, (P ′, t′a, t

′
p, t
′
f)))

to construct random sharings.
2. If the output of

PlayerElimination(TripleShareRandom(d, d′, n′ − 1, l, (P ′, t′a, t
′
p, t
′
f)))

is a pair of disputed parties or set of crashed parties denoted as
Pfaultyset then remove these parties from further computation such
that P ′ = P ′\Pfaultyset and repeat the above step with modified P ′.

3. Otherwise, discard the (n′ − 1)−sharings and d′−sharings. The l
number of d−sharings are denoted as {[[vlj+1]d], ..., [[vlj+l]d]}

4. Repeat the above steps for j ∈ {0, ..., d crl e − 1}

Multiplicative Depth Independent MPC in Mixed Setting 17

Lemma 9. RandomGateEval securely generates correct random d-sharings
and the shared value corresponding to each sharing is uniformly random in the
presence of mixed adversary provided that (P ′, t′a, t

′
p, t
′
f) is valid. Also, the

communication complexity of RandomGateEval is
O((d crl e+ (ta + tp))(lnk + n2k +BA(k)))

Proof. Complexity : TripleShareRandom requires O(lnk + n2k +BA(k)) which
is repeated either d crl e times or ta + tp times. Hence, the overall complexity
becomes O((d crl e+ (ta + tp))(lnk + n2k +BA(k)))

5.3 Addition and Multiplication Gates

A circuit is divided into multiples segments. For each segment seg,
AdditionMultiplicationGateEval computes multiplication gates present. Unlike
[15], there is no restriction on the depth of the multiplication gates present in a
segment. Initially, partition P ′ is aggreed among the parties in the protocol.
Protocol begins with the generation of multiplication triple per multiplication
gate. Using circuit randomization technique from [1] along with PKing, all
parties evaluate multiplication gates in the segment. Similarly, addition gate is
evaluated with each party adding their shares locally of the respective inputs.
Since, n′ − 1-sharings are used during the computation of multiplication gates,
it prohibits PKing from learning any additional information. To detect whether
incorrect shares have been sent to PKing or PKing is corrupt during
multiplication gate evaluation, all parties perform CheckConsistencyKing. Once
it is confirmed that the values sent by PKing are not tampered, for verifying
that the reconstructed values were correct parties perform public
reconstruction using d-sharings. If the reconstructed values are same as
obtained during gate evaluation then the output of the evaluation in step 3 is
considered correct. Otherwise, all parties verify the randomness used during
the generation of multiplication triples by committing the randomness with the
help of 4-consistent tuples. This 4-consistent tuple is now verified by
Check4ConsistentTuple. If the 4-consistent tuple is invalid then it returns pair
of disputed or set of crashed parties. Otherwise, PKing identifies the disputed
parties by finding mismatched value [q]d during gate evaluation phase and
reconstruction using values from 4-consistent tuple.

Protocol 3: AdditionMultiplicationGateEval(seg, (P ′, t′a, t
′
p, t
′
f))

Let Pking ∈ P ′ be the party with highest index and d = ta + tp.

1. Initialization : All parties agree upon a partition P ′ = P1 ∪ P2 ∪ P3

such that |P1|, |P2|, |P3| ≤ d+ 1
2. Generate Multiplication Triples : All parties perform

PlayerElimination(GenerateMultiplicationTriples(d, d′, n′ −
1, l, (P ′, t′a, t

′
p, t
′
f))).

18 Achintya Desai, Shubham Raj, and Kannan Srinathan

If the output of
PlayerElimination(GenerateMultiplicationTriples(d, d′, n′ −
1, l, (P ′, t′a, t

′
p, t
′
f))) is a pair of disputed parties or set of crashed

parties denoted as Pfaultyset then all parties take it as output and
halt. Otherwise, continue to the next step with one multiplication
triple corresponding to each multiplication gate in the segment seg.

3. Evaluate gates : For each addition gate in segment seg, all parties
perform addition over their own shares.
For each multiplication gate in segment seg, we denote input sharings
as [x]d, [y]d and corresponding multiplication triple as
([a]d,n′−1, [b]d,n′−1, [c]d,n′−1).
All parties compute [q]n′−1 = [x]d + [a]n′−1 and [e]n′−1 = [y]d + [b]n′−1.
All parties send the shares of [q]n′−1 and [e]n′−1 to Pking.
Pking reconstructs values of q and e which are broadcasted to all other
parties.
All parties now compute output sharings as
[z]d = qe− q[b]d − e[a]d + [c]d.

4. Validate consistency for Pking : We denote the elements distributed by
Pking in previous step as q1, ..., ql and e1, ..., el which is same as
distributing [q1]0, ..., [q

l]0 and [e1]0, ..., [e
l]0.

All parties perform
CheckConsistencyKing(l, Pking, (P

′, t′a, t
′
p, t
′
f), [q1]0, ..., [q

l]0) and

CheckConsistencyKing(l, Pking, (P
′, t′a, t

′
p, t
′
f), [e1]0, ..., [e

l]0). If the
output from either of the two executions is a pair of disputed parties
or set of crashed parties denoted as Pfaultyset then all parties take it
as output and halt.

5. Rechecking the reconstructions : For each multiplication gate in seg,
each party computes [q]d = [x]d + [a]d and [e]d = [y]d + [b]d.
For given segment seg, we denote the values of q and e as q1, ..., ql and
e1, ..., el.
All parties performs public reconstruction by invoking
PubReconRobust with [q1], ..., [ql] and [e1], ..., [el]).
Every party now checks whether the reconstructed values q1, ..., ql and
e1, ..., el match with the values distributed by Pking in step 3. If all
values match then the output shares generated in step 3 are
considered correct and taken as output for seg. Otherwise, continue to
the next step with the first incorrect value be denoted as qi

∗
.

6. Rechecking the randomness from multiplication triples of party Pi :
Let [si]d,n′−1 be the d− sharing and (n′ − 1)− sharing of si which a
party Pi distributed during one of the invokation of
TripleShareRandom during evaluation of multiplication triples in step
1.

Multiplicative Depth Independent MPC in Mixed Setting 19

Party Pi randomly generates [1s
i]d, [2s

i]d, [3s
i]d such that kth share of

[js
i] is [si]n′−1 for j ∈ {1, 2, 3} and Pk ∈ Pj . For Pk ∈ P ′\Pj , Pi sends

kth share of [js
i]d to Pk.

7. Check 4-Consistency : Let [si] denote the tuple sharings
[0s

i]d, [1s
i]d, [2s

i]d, [3s
i]d where [0s

i]d = [si]d
All parties perform

Check4ConsistentTuples(l, (P ′, t′a, t
′
p, t
′
f), (P1,P2,P3), {[sj]n

′

j=1})
If the output is a pair of disputed parties or set of crashed parties
denoted as Pfaultyset then all parties take it as output and halt.
Otherwise, continue to the next step.

8. Finding disputed parties : Let Mi∗ be the i∗th row of M , where M is
the hyper-invertible matrix used in TripleShareRandom, such that
[ai
∗
]n′−1 = Mi∗([s

1]n′−1, ..., [s
n′]n′−1).

All parties compute [jq
i∗]d = [xi

∗
]d +Mi∗([js

1]d, ..., [js
n′]d) for

j ∈ {1, 2, 3} and send their shares to Pking.

For a certain j, Pking finds a k∗ where k∗
th

share of [jq
i∗]d is not

equal to the value received from Pk∗ in evaluate phase and broadcasts
(k∗, corrupt).
For party Ph ∈ {Pking, P

∗
k }, the parties perform heartbeat protocol.

If both the parties Pking, Pk∗ are alive, then all parties in P ′ consider
E = Pking, Pk∗ as output. Otherwise set E as parties for which were
detected as crashed by heartbeat protocol.

Lemma 10. AdditionMultiplicationGateEval securely computes addition
and multiplication gates for a given segment seg in the presence of mixed
adversary provided that (P ′, t′a, t

′
p, t
′
f) is valid. Also, the communication

complexity of AdditionMultiplicationGateEval is
O(lnk + (ta + tf)(2n2k +BA(k)))

Proof. Complexity : In step 2, the communication complexity of
GenerateMultiplicationTriples(d, d′, n′ − 1, l, (P ′, t′a, t

′
p, t
′
f)). is

O(lnk + n2k +BA(k)). In step 3, for each multiplication Pking receives and
sends O(nk) bits.
In step 4, CheckConsistencyKing is performed twice where the communication
complexity is O(nk + (ta + tf)(n2k +BA(k))).
In step 5, PubReconRobust is also performed twice with the communication
complexity (public reconstruction complexity n2k).
In step 6, combined O(n2) elements are shared to distribute
[0s

i]d, 1s
i]d, [2s

i]d, [3s
i]d.

In step 7, Check4ConsistentTuples is invoked once which has complexity of
O(2nk + (ta + tf)(2n2k +BA(k))).
In step 8, all parties send O(n) elements to Pking and broadcast from Pking

along with heartbeat takes O(BA(k)).
Hence, the communication complexity of cm multiplication gates is
O(cmnk + cm

l (ta + tf)(2n2k +BA(k))).

20 Achintya Desai, Shubham Raj, and Kannan Srinathan

5.4 Output Gate

OutputGateEval uses ZeroShareRandom and player-elimination framework.
Initially, the parties perform ZeroShareRandom in order to generate l
d-sharings of 0. This step is, however, repeated if the output it receives is a
pair of disputed parties or a set of crashed parties which are eliminated from
the set of active parties. The parties then add their shares of output with the
shares of 0 to reconstruct the final output.

Protocol 4: OutputGateEval(l, (P ′, t′a, t
′
p, t
′
f))

For each segment of size l :

1. Outputting 0-Random Shares: All parties perform ZeroShareRandom.
If the output of ZeroShareRandom is a pair of disputed parties or set
of crashed parties denoted as Pfaultyset then remove these parties
from further computation such that P ′ = P ′\Pfaultyset and repeat the
above step with modified P ′.
Otherwise continue with l d−sharings of 0.

2. Let Po ∈ P ′ be the party which receives the output s. For each output
s, [s]t is t−sharing.
All parties P ∈ P ′ compute [s]t = [s]t + [0]t and send [s]t to Po.
Party Po ∈ P ′ now reconstructs the output s from the received shares.

Lemma 11. OutputGateEval securely reconstructs the output to the specific
party Po in the presence of mixed adversary provided that (P ′, t′a, t

′
p, t
′
f) is

valid. Also, the communication complexity of OutputGateEval is
O((n+ d col e)(conk + lnk + n2k))

Proof. Complexity : In step 1, ZeroShareRandom is performed atmost
O(n) + d col e times. Hence, the overall communication complexity is
O((n+ d col e)(conk + lnk + n2k))

5.5 Main Protocol

In the main protocol, all parties evaluate input gate to share their inputs
securely. Further, all parties evaluate random gates to generate random
sharings. The circuit is divided into dcm/le segments of size l where cm is
number of multiplication gates. Topological order is followed to evaluate
segments by invoking AdditionMultiplicationGateEval for each segment. If the
pair of disputed parties or set of crashed parties is received then these parties
are removed from active set of parties P ′ and the respective segment is
evaluated again. At the end, output gates are evaluated to reconstruct output
for the required party.

Protocol 5: MainProtocol(C)

Let P ′ = P, t′a = ta, t
′
p = tp, t

′
f = tf and C = {ci, cr, cm, co}.

Multiplicative Depth Independent MPC in Mixed Setting 21

1. Input Gates : All parties perform InputGateEval.
2. Random Gates : All parties perform RandomGateEval.
3. Evaluation : All parties agree on partition of circuit into segments

(seg1, seg2, ..., segdcm/le),
where each segment consists of l multiplication gates independent of
multiplication depth. For each segment j ∈ {1, ..., d cml e}, perform
AdditionMultiplicationGateEval(segj , (P

′, t′a, t
′
p, t
′
f)). If the output is a

pair of disputed parties or set of crashed parties denoted as Pfaultyset

then remove these parties from further computation such that
P ′ = P ′\Pfaultyset and repeat the above step with modified P ′.
Otherwise continue with next value of j.

4. Output Gates : All parties perform OutputGateEval(l, (P ′, t′a, t
′
p, t
′
f)).

Lemma 12. MainProtocol securely realizes any circuit if 3ta + 2ta + tf < n
in the presence of mixed adversary. Also, the communication complexity of
MainProtocol is O((n+ d col e)(conk + lnk + n2k))

Proof. Correctness and Secrecy : It is implied from the protocols invoked by
Main. Complexity : For ci input gates, the communication complexity is
O(ci(nk +BA(k))).
For cr random gates, the communication complexity is
O((d crl e+ (ta + tp))(lnk + n2k +BA(k))).
For cm multiplication gates, the communication complexity is
O(cmnk + d cml e(ta + tf)(2n2k +BA(k))).
For co output gates, the communication complexity is
O((n+ d col e)(conk + lnk + n2k)).
Hence, the overall communication complexity of evaluation phase is
O((ci + cr + cm + co)nk + (ci + cr + cm)(BA(k)) + n3k + nBA(k) + co

2nk).

6 Security

Identical to [15], we establish our requirements for security for mixed
adversarial setting. The view of a party is defined as its input values,
randomness and the received messages. Let S be ideal-world adversary and A
be real-world adversary. We define the view of adversary as views of passively
and actively corrupted parties. Let F be ideal-world functionality with domain
(X ∪ {⊥})n.
The ideal world is defined as follows : The correct parties, as defined earlier in
adversarial model, takes input value from X. The passively-corrupted parties
provide their input to the simulator. Accordingly, simulator chooses the input
value for actively-corrupted parites out of X ∪ {⊥}. Also, simulator defines a
set D of fail-corrupted parties whose input is set to ⊥. Now, functionality F is
evaluated using the inputs specified by the simulator.
The security requirement is that for every (unbounded) real-world adversary
A, there exists an ideal-world adversary S such that its joint distribution of its

22 Achintya Desai, Shubham Raj, and Kannan Srinathan

view and the output of honest parties computed by the ideal functionality F is
equal to the joint distribution of real-world adversary A’s view and the output
of honest parties executing the protocol.

7 Conclusion

We have presented an efficient MPC protocol in mixed adversarial setting
which is linear in communication complexity and is independent of the
multiplicative depth Dm of the circuit over a finite field F . In the previous
results, multiplicative depth independent circuit evaluation was achieved only
for active adversarial setting[13]. Also, linear communication complexity,
dependent on multiplicative depth, was achieved in mixed adversarial
setting[15]. An interesting future work would be to study the application of
this protocol on various functions which can benefit from the absence of
multiplicative depth in the communication complexity.

8 Appendix

8.1 Heartbeat & Player-Elimination Framework

The purpose of this sub-protocol is to adapt player-elimination framework [14]
for mixed adversarial setting. Let Ph be a party such that Ph ∈ P ′ and all
Pi 6=h ∈ P ′ wants to find out whether Ph is crashed. The sub-protocol
Heartbeat allows them to reach an agreement on whether Ph is alive.

Protocol 1: Heartbeat(Ph, (P
′, t′a, t

′
p, t
′
f))

– The party Ph sends a bit with value 1 to every party Pj 6=h ∈ P .
– Every party Pj runs a consensus protocol with an input of value 1 if

that’s the value it received from Ph otherwise with an input of value 0.
– If the output of the consensus is 1 then, the parties output ”alive”

otherwise the parties output ”crashed”.

Protocol 2: PlayerElimination(Π)

1. Initialization : All parties set their happy-bit to “happy”
2. Execution : All parties execute protocol Π
3. Fault detection : Every party send their happy-bit to every other

party and sets its own happy-bit to ”unhappy” if from at least one
party it either receives an ”unhappy” bit or does not receive any bit.
All parties run consensus on their happy-bits. Every player sets its
happy-bit as per the result of the consensus. If the outcome is happy
then all parties halt. Otherwise, perform next step.

4. Fault localization : Let Pr ∈ P ′ be the party with the smallest index.
All parties Pi ∈ Pr sends to Pr the values generated, sent and received
in the above steps. If Pr does not receive values from some parties, it
uses some default value. Now, Pr simulates the above steps on the

Multiplicative Depth Independent MPC in Mixed Setting 23

behalf of each Pi ∈ P ′ to check the correctness of the result generated.
If Pr identifies a Pi which does not follow the steps, then it broadcasts
(Pi, corrupt) and all parties set E = {Pr, Pi}. If Pi finds a conflict
between message index l where Pi should have sent x to Pk but Pk

claimed to have received x′ such that x 6= x′ then Pr broadcasts
(l, Pi, Pk, x, x

′, disputed).
In case of dispute message broadcast by Pr, the conflicting parties Pi

and Pk respond by broadcasting their stand (agree/disagree).
If Pi disagrees, all parties set E = {Pi, Pr}. If Pk disagrees, all parties
set E = {Pk, Pr}. Otherwise, every party sets E = {Pi, Pk}.

5. Crash-check fault localization : For party Ph ∈ {Pi, Pk, Pr}, the
parties perform heartbeat protocol.

6. Output : If all the parties Pi, Pr and Pk are alive, then all parties in
P ′ consider E as output. Otherwise set E as parties for which were
detected as crashed by heartbeat protocol.

References

1. Donald Beaver. Efficient multiparty protocols using circuit randomization. In
Annual International Cryptology Conference, pages 420–432. Springer, 1991.

2. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure mpc with linear
communication complexity. In Theory of Cryptography Conference, pages
213–230. Springer, 2008.

3. Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear
unconditionally-secure multiparty computation with a dishonest minority. In
Annual Cryptology Conference, pages 663–680. Springer, 2012.

4. Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed
consensus. In Computer science, pages 313–321. Springer, 1992.

5. David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally
secure protocols. In Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 11–19, 1988.

6. Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen. Secure
multiparty computation. Cambridge University Press, 2015.

7. Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In
Annual International Cryptology Conference, pages 501–520. Springer, 2006.

8. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In Annual International Cryptology Conference, pages
572–590. Springer, 2007.

9. Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading correctness for privacy in
unconditional multi-party computation. In Annual International Cryptology
Conference, pages 121–136. Springer, 1998.

10. Juan A Garay and Kenneth J Perry. A continuum of failure models for
distributed computing. In International Workshop on Distributed Algorithms,
pages 153–165. Springer, 1992.

11. Daniel Genkin, Yuval Ishai, Manoj M Prabhakaran, Amit Sahai, and Eran
Tromer. Circuits resilient to additive attacks with applications to secure
computation. In Proceedings of the forty-sixth annual ACM symposium on
Theory of computing, pages 495–504, 2014.

24 Achintya Desai, Shubham Raj, and Kannan Srinathan

12. S Goldwasser, M Ben-Or, and A Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computing. In Proc. of the 20th
STOC, pages 1–10, 1988.

13. Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional
mpc with guaranteed output delivery. In Annual International Cryptology
Conference, pages 85–114. Springer, 2019.

14. Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party
computation. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 143–161. Springer, 2000.

15. Martin Hirt and Marta Mularczyk. Efficient mpc with a mixed adversary. In 1st
Conference on Information-Theoretic Cryptography (ITC 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

16. Martin Hirt and Jesper Buus Nielsen. Robust multiparty computation with
linear communication complexity. In Annual International Cryptology
Conference, pages 463–482. Springer, 2006.

17. Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

18. Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on
foundations of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

	Multiplicative Depth Independent & Efficient MPC in the Presence of Mixed Adversary

