
Homomorphic Evaluation of the SM4

Yu Xue
xueyu7452@hotmail.com

October 25, 2020

Abstract

We report the homomorphic evaluation of the SM4 symmetric block-
cipher based on BGV homomorphic encryption scheme. We implement
bootstrapping and non-bootstrapping homomorphic evaluation of the 32-
rounds SM4 based on HELib with about 128-bit security level. Our ways
refer to and are similar as the AES homomorphic evaluation[1]. The im-
plementation uses packed ciphertexts and bytes in slots. The S-Box evalu-
ation is similar as the AES evaluation method, and the Linear Transform
layer uses the permutation of the bytes in states. Since the rounds are
more than the AES and the SM4’s feistel structer is different with the
AES, the depths and levels of homomorphic evaluation of the SM4 are
much more than AES, so need larger parameter(non-bootstrapping) and
more bootstrapping. Our bootstrapping implementaion(3 ciphertexts, 360
blocks) runs about 1.5 hours on Macbook Pro(MacOS catalina 10.15,
16G), and the non-bootstrapping(1 ciphertext, 480 block) implementa-
tion runs about 6 hours on Macbook Pro(MacOS catalina 10.15, 16G).

1 Introduction

Homomorphic Encryption [2] enables computation of arbitrary functions on
encrypted data without decrypting the data. Gentry’s breakthrough result[3]
demonstrated that fully homomorphic encryption was theoretically possible,
assuming the hardness of lattices problems. Since then there are many differ-
ent algorithms to make kinds of improments. Among them BGV[4], BFV[5]
and CKKS[6] etc are algorithms which are implemented in several commonly
used homomorphic encryption software lib such as HELib[7], SEAL[8] and
PALISADE[9] etc. We use the BGV scheme based on HELib to homomorphic
evaluate SM4 like AES homomorphic evaluation.

1.1 BGV Scheme

The BGV-type[10] ring-LWE-based scheme we used is defined over a ring R
def
=

Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial. A ciphertext
c is decrypted using the current secret key s by taking inner product over Rq

1

(with q the current modulus) and then reducing modulo 2 in coefficient repre-
sentation. Namely, the decryption formula is

a← [[〈c, s〉 mod Φm(X)]q]2

The polynomial [〈c, s〉 mod Φm(X)]q is called the ”noise” in the ciphertext
c. Noise should be sufficiently small to make c is valid. The main opera-
tions are addition, multiplication, automorphism, rotation, key-switching and
modulus-switching etc. The BGV scheme is leveled with finite depth without
bootstrapping. bootstrapping[11] could be applied to refresh ciphertext to run
more depth. Key switching enables converting a valid ciphertext with respect
to one key into a valid ciphertext encrypting the same plaintext with respect to
another key. For example, after multiplication key switching reduces the high
demension key back to a ciphertext with respect to the low dimension key. The
modulus switching operation is intended to reduce the norm of the noise to
compensate for the noise increase that results from all the other operations. A
BGV-type cryptosystem has a chain of moduli, q0 < q1 ... < qL−1, where initial
ciphertexts are with repect to the largest modulus qL−1. During homomorphic
evaluation when the noise grows too large we apply modulus switching from qi
to qi−1 in order to decrease it back. Automorphism is also a useful operation,
the effect of which is either applying the transformation to each slot separately
when using the power of two or shifting the values between the different slots.

1.2 SM4

SM4 is a Chinese block cipher standard with 128-bit key and 128-bit input/output
block. Encryption and decryption takes 32 rounds, each of which generates a
new block by a round function. The round function contains a non-linear substi-
tution τ and a linear substitution L. Let the plaintext input be (X0, X1, X2, X3) ∈
(Z32

2)4, and the encrypting key be rki ∈ Z32
2 , i = 0, 1, 2...31. Then the encryp-

tion proceeds as following:

Xi+4 = F (Xi, Xi+1, Xi+2, Xi+3, rki)

= Xi ⊕ L(τ(Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕ rki)), i = 0, 1...31

where τ is non-linear substitution and L is linear substitution.
The ciphertext output would be (Y0, Y1, Y2, Y3) ∈ (Z32

2)4:

(Y0, Y1, Y2, Y3) = R(X32, X33, X34, X35) = (X35, X34, X33, X32)

where R is reverse operation.
Encryption and decryption have the same structure except the order in which

the round keys are used is reversed.
The non-linear substitution τ applies 4 S-boxes in parallel. Let the 32-bit in-
put word be A = (a0, a1, a2, a3) ∈ (Z8

2)4 then the 32-bit output word B =
(b0, b1, b2, b3) ∈ (Z8

2)4 is:

(b0, b1, b2, b3) = τ(A) = (Sbox(a0), Sbox(a1), Sbox(a2), Sbox(a3))

2

The implementation of Sbox is to first perform affine transformation on
GF (2), then carry out inversion in GF (28), followed by the second affine trans-
formation over GF (2). The Sbox then could be computed as:

S(x) = A2(A1 · x+ C1)−1 + C2

where C1 is a vector (11001011)2 and C2 is a vector (11010011)2. A1 and A2

are cyclic matrices as below:

A1 =

1 0 1 0 0 1 1 1
0 1 0 0 1 1 1 1
1 0 0 1 1 1 1 0
0 0 1 1 1 1 0 1
0 1 1 1 1 0 1 0
1 1 1 1 0 1 0 0
1 1 1 0 1 0 0 1
1 1 0 1 0 0 1 1

, A2 =

1 1 0 0 1 0 1 1
1 0 0 1 0 1 1 1
0 0 1 0 1 1 1 1
0 1 0 1 1 1 1 0
1 0 1 1 1 1 0 0
0 1 1 1 1 0 0 1
1 1 1 1 0 0 1 0
1 1 1 0 0 1 0 1

The irreducible primitive polynomial in GF (28)is :

f(x) = (x8 + x7 + x6 + x5 + x4 + x2 + 1)

Let B ∈ Z32
2 be the 32-bit output word of the non-linear substitution τ

which will be the input of the linear substitution L. Let C ∈ Z32
2 be the 32-bit

ouptut of L. Then

C = L(B) = B ⊕ (B <<< 2)⊕ (B <<< 10)⊕ (B <<< 18)⊕ (B <<< 24)

1.3 HELib

HELib[7] is an open-source(Apache License) C++ software library that imple-
ments BGV scheme with bootstrapping and the Approximate Number scheme
of CKKS, along with many optimization using Smart-Vercauteren ciphertext
packing[12] and the Gentry-Halevi-Smart optimizations[1] etc. It also includes
permutations, shift-networks, replication and linear algebra etc homomorphic
evaluation algorithms[13]. bootstrapping[11] involves a recryption routine where
the scheme’s decryption algorithm is evaluated homomorphically. The routines
we used include add, multiplcation, rotation, applyLinPolyLL, net-permutation,
recrypte etc.

2 Homomorphic Evaluation of SM4

The overall process of SM4 encryption is as the following graph. The Ctxt4,
Ctxt8 and Ctxt12 are the rotation 4, 8 and 12 of Ctxt. From InitCtxt to LT
only the last four bytes are valid. S-Aff1, Inv-S, S-Aff2 are the S-Box and after
LT it need make the bytes from the first to the twelve to be zero and only keep

3

the last four bytes, then add Ctxt12 to get the next round ctxt.

Ctxt Ctxt4 Ctxt8 Round Key

InitCtxt Ctxt12

S-Aff1

Inv-S

S-Aff2

LT

Round Ctxt

2.1 S-Box

SBox consists of two affine transformations and one inversion transformation.
The F2 affine transformations can be computed as a F 8

2 affine transformation
over the conjugates. We could get constants γ0, γ1, ..., γ7, δ,F8

2 such that affine

transformation S-Aff1 and S-Aff2 can be expressed as δ +
∑7

j=0 γj · β2j . For
inverse transformation we use method of AES SBox inverse[1]. For ciphertext
c, the c254 = c−1 can be computed as:

4

c2 = c� 2

c3 = c× c2
c12 = c3 � 4

c14 = c12 × c2
c15 = c12 × c3
c240 = c15 � 16

c254 = c240 × c14

2.2 Linear Transformation

The linear transformation is a 32× 32 bit matrix multiplication. Since the slots
are bytes we could split the matrix as 8 × 8 block matrices. We set A1, A2, A3

as the flowwing:

A1 =

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

A2 =

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

A3 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

Then the block matrix for byte multiplication is:

A1 A2 A2 A3

A3 A1 A2 A2

A2 A3 A1 A2

A2 A2 A3 A1

 (1)

One optimization is that we could merge the second affine transformation of
S-BOX(S-Aff2) and the linear transformation(LT) as one process. Assume
A1, A2, A3 are block matrices after the merged affine transformations, we apply
them to get three ciphertexts. Assuming the last four bytes of transformation

5

input are c0, c1, c2, c3, then the last four bytes of the three ciphertexts after
applying affine transformations are respectively: b0

b1
b2

 =

 c0A1 c1A1 c2A1 c3A1

c0A2 c1A2 c2A2 c3A2

c0A3 c1A3 c2A3 c3A3

 (2)

Then the whole transformation is actually b0+(b1 ≪ 1)+(b1 ≪ 2)+(b2 ≪ 3),
so we could permutate bytes of b0, b1 and b2.

2.3 Parameter Selection

For bootstraing version, we choose the parameters p = 2,m = 53261, d = 24.
Since at the end of each round the beginning ciphertext at each round need
to be added(rotate 12), bootstrap should be evaluated at end of round. We
use bootstrap after rounds 9,15,21,27 to reduce time. For non-bootstrapping
version, we choose the very large parameters p = 2,m = 266305, d = 24

2.4 Implementation

Our implementation could be available at GitHub[14]. The bootstrapping ver-
sion encrypts/decrypts 3 ciphertexts, each of which has 1920 slots that is 360
blocks totally, running about 1 hours 35 minute on MacBook Pro(macOS Catalina,
2.4GHz four cores, Intel Core i5, 16G memory). The non-bootstrapping version
which has 7680 slots and encrypt/decrypt 1 ciphertext runs about 6 hours on
the same machine.

References

[1] C. Gentry, S. Halevi, and N. P.Smart, “Homomorphic evaluation of the
aes circuit,” IACR eprint, https: // eprint. iacr. org/ 2012/ 099. pdf ,
2015.

[2] L. A. R. Rivest and M. Dertouzos, “On data banks and privacy homomor-
phisms,” Foundations of Secure Computation, 1978.

[3] C. Gentry, “Fully homomorphic encryption using ideal lattices.,” In STOC
2009, 2009.

[4] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic en-
cryption without bootstrapping,” In Innovations in Theoretical Computer
Science (ITCS’12),, 2012.

[5] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic en-
cryption,” IACR eprint, http: // eprint. iacr. org/ 2012/ 144 , 2012.

[6] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” IACR eprint, https: // eprint.
iacr. org/ 2016/ 421. pdf , 2016.

6

[7] homenc, “Helib.” https://github.com/homenc/HElib.

[8] Microsoft, “Seal.” https://github.com/microsoft/SEAL.

[9] “Palisade.” https://palisade-crypto.org/.

[10] S. H. Craig Gentry and N. Smart, “Fully homomorphic encryption with
polylog overhead,” In EUROCRYPT, Springer 2012, http: // eprint.

iacr. org/ 2011/ 566 , 2012.

[11] S. Halevi and V. Shoup, “Bootstrapping for helib,” IACR eprint, http:
// eprint. iacr. org/ 2014/ 873 , 2014.

[12] N. Smart and F. Vercauteren, “Fully homomorphic simd operations,” IACR
eprint, http: // eprint. iacr. org/ 2011/ 133 , 2011.

[13] S. Halevi and V. Shoup, “Algorithms in helib,” IACR eprint, http: //

eprint. iacr. org/ 2014/ 106 , 2014.

[14] Y. Xue, “Homosm4.” https://github.com/xueyumusic/homosm4.

7

