
Forward and Backward Private Conjunctive Searchable

Symmetric Encryption

Sikhar Patranabis
ETH Zürich

Debdeep Mukhopadhyay
IIT Kharagpur

October 26, 2020

Abstract

Dynamic searchable symmetric encryption (SSE) supports updates and keyword
searches in tandem on outsourced symmetrically encrypted data, while aiming to mini-
mize the information revealed to the (untrusted) host server. The literature on dynamic
SSE has identified two crucial security properties in this regard - forward and backward
privacy. Forward privacy makes it hard for the server to correlate an update operation
with previously executed search operations. Backward privacy limits the amount of
information learnt by the server about documents that have already been deleted from
the database.

To date, work on forward and backward private SSE has focused mainly on single
keyword search. However, for any SSE scheme to be truly practical, it should at least
support conjunctive keyword search. In this setting, most prior SSE constructions with
sub-linear search complexity do not support dynamic databases. The only exception
is the scheme of Kamara and Moataz (EUROCRYPT’17); however it only achieves
forward privacy. Achieving both forward and backward privacy, which is the most
desirable security notion for any dynamic SSE scheme, has remained open in the setting
of conjunctive keyword search.

In this work, we develop the first forward and backward private SSE scheme for
conjunctive keyword searches. Our proposed scheme, called Oblivious Dynamic Cross
Tags (or ODXT in short) scales to very large arbitrarily-structured databases (includ-
ing both attribute-value and free-text databases). ODXT provides a realistic trade-off
between performance and security by efficiently supporting fast updates and conjunc-
tive keyword searches over very large databases, while incurring only moderate access
pattern leakages to the server that conform to existing notions of forward and backward
privacy. We precisely define the leakage profile of ODXT, and present a detailed formal
analysis of its security. We then demonstrate the practicality of ODXT by developing
a prototype implementation and evaluating its performance on real world databases
containing millions of documents.

1

1 Introduction

The advent of cloud computing potentially allows individuals and organizations to outsource
storage and processing of large volumes of data to third party servers. However, this leads to
privacy concerns - clients typically do not trust service providers to respect the confidentiality
of their data [13]. This lack of trust is often fortified by threats from malicious insiders and
external attackers.

Consider, for instance, a client that offloads an encrypted database of (potentially sensitive)
emails to an untrusted server. At a later point of time, the client might want to issue a
query of the form “retrieve all emails received from xyz@foobar.org or “retrieve all emails
with the keyword “research” in the subject field”. Ideally, the client should be able to perform
this task without revealing any sensitive information to the server, such as the sources and
contents of the emails, the keywords underlying a given query, the distribution of keywords
across emails, etc. Unfortunately, techniques such as fully homomorphic encryption [19],
that potentially allow achieving such an “ideal” notion of privacy, are unsuitable for practical
deployment due to large performance overheads.

Searchable Symmetric Encryption. Searchable symmetric encryption (SSE) [34, 20, 14,
33, 9, 8, 16, 38, 24, 29] is the study of provisioning symmetric-key encryption schemes with
search capabilities. Consider again a client that offloads an encrypted database of emails to
an untrusted server and later issues a query of the form “retrieve all emails with the keyword
“research” in the subject field”. The goal of SSE is to allow the client to perform this task
without revealing any sensitive information to the server, such as the contents of emails, the
keywords underlying a given query, the distribution of keywords across emails, etc.

Leakage Versus Efficiency. The most general notion of SSE with optimal security guar-
antees can be achieved using the work of Ostrovsky and Goldreich on Oblivious RAMs [21].
More precisely, using these techniques, one can evaluate a functionally rich class of queries
on encrypted data without leaking any information to the server. However, such an ideal
notion of privacy comes at the cost of significant computational or communication overhead.
A large number of existing SSE schemes prefer to trade-off security for practical efficiency
by allowing the server to learn “some” information during query execution. The informa-
tion learnt by the server is referred to as leakage. Some examples of leakage include the
database size, query pattern (which queries correspond to the same keyword w) and the
access pattern (the set of file identifiers matching a given query). Practical implementations
of such schemes can be made extremely efficient and scalable using specially designed data
structures.

Dynamic SSE. An important line of works (e.g., [11, 27, 26, 8, 5, 6, 15]) have studied
dynamic SSE schemes that support updates on the database without the need to re-initialize
the entire protocol. To formally address the additional privacy concerns that arise when
supporting the update operations, two new notions of security for SSE have been proposed
in these works - (a) forward privacy (which requires that adding a new file f to a database
should not reveal whether f contains keywords that have been previously searched for)
and (b) backward privacy (which requires that searching for a keyword w should reveal no
information about files containing w that have already been deleted from the database).

2

Forward private SSE was introduced by Chang and Mitzenmacher in [11], and has been
subsequently studied in [36, 5, 18, 28, 6, 15, 35]. Forward privacy has received much attention
in light of file injection attacks [7, 40], which are potentially devastating for SSE schemes
that try to support updates without being forward private. The notion of backward privacy
is comparatively more recent, and was first formalized by Bost et al. in [6]. Subsequently,
Chamani et al. [10] and Sun et al. [39] proposed SSE schemes supporting single keyword
search that are backward private under various leakage profiles.

However, existing dynamic SSE schemes, that satisfy both forward and backward privacy,
support only single keyword search. As a result, despite their efficiency and security, these
schemes are often severely limited in terms of the expressiveness of queries they support.
Consider, for example, a client that can only specify a single keyword to search on, and
receives all the documents containing this keyword. In real-life applications, such as querying
large remotely stored email databases, a single keyword query would potentially return a
large number of matching records/documents that the client would need to download and
filter locally. For any SSE scheme to be truly practical, it should at least support conjunctive
keyword search, i.e., given a set of keywords (w1, . . . , wn), it should be able to find and return
the set of documents that contain all of these keywords.

Goals and Challenges. In this paper, we aim to design a dynamic SSE scheme with both
forward and backward privacy, and with search complexity proportional to the number of
documents containing the least frequent term in the conjunction. This is indeed the best
possible search complexity achieved by plaintext information retrieval algorithms, as well
as by conjunctive SSE schemes in the static setting [9, 29]. However, this is non-trivial to
achieve in the dynamic SSE setting, where we need to additionally support updates and
ensure forward and backward privacy. For instance, existing conjunctive SSE schemes in
the static setting [9, 29] facilitate fast conjunctive searches by heavily pre-processing the
dataset during setup. Such pre-processing at setup is impossible in the dynamic setting,
where the dataset is updated on-the-fly.

Handling conjunctive searches also makes the analysis of leakage significantly more chal-
lenging. Existing definitions for forward and backward privacy [5, 6, 10, 39] assume leakage
profiles that are tuned specifically towards single keyword search, and are insufficient to
cover general conjunctive searches. For example, suppose that we design a dynamic SSE
scheme that has the following leakage profile: given a conjunctive query over the keywords
(w1, w2, w3), it leaks to the server, in addition to the actual outcome of the query, the
outcome of the sub-query (w1, w2). Note that this partial leakage is not meaningful when
searching for a single keyword; so the aforementioned SSE scheme might well be secure
according to forward/backward privacy definitions that cover only single keyword search.
But for general conjunctive queries, such partial leakages could have devastating conse-
quences [40].

1.1 Our Contributions

We develop the first dynamic SSE scheme supporting conjunctive keyword searches that is
both forward and backward private. Our scheme is named Oblivious Dynamic Cross-Tags,
or ODXT in short. The performance of ODXT scales to very large arbitrarily-structured

3

databases, including both attribute-value and free-text databases.

Techniques Developed. The technical centerpiece of ODXT is a search protocol exe-
cuted between the client and the server, where server takes as input a set of encrypted
records corresponding to update operations on the database, while the client takes as input
a conjunction of keywords and some secret state information. The outcome of this protocol
is a filtered, significantly smaller set of encrypted records, which the client can then locally
decrypt to compute the identifiers for documents containing all of the queried keywords.

A straightforward realization of this protocol, however, requires multiple rounds of com-
munication between the client and the server, which does not satisfy our desired level of
performance. In order to enable this search protocol with a single round of communication,
we design a novel update mechanism based on dynamic cross-tags that pre-computes parts
of the protocol messages, and stores these in encrypted form at the server. Then, during the
actual search protocol, the client only sends across some auxiliary information that allows
the server to unlock these pre-computed messages from the relevant update records, without
any further interaction.

Differences with Static Cross-Tags. Our idea of pre-computing search protocol messages
using cross-tags is inspired by conjunctive SSE schemes for static databases [9, 29]. How-
ever, applying this technique to the dynamic setting is not straightforward. In static SSE
schemes, the pre-computation typically happens at setup, when the client has access to the
entire database in the clear. Also, since the database is never updated, the pre-computed
messages do not need to change with time. This is impossible to emulate in the dynamic
setting, where the database is continuously updated. Finally, these schemes use specially
designed data structures that are inherently static with no provisions for updates such as
insertions/deletions.

This makes dynamic conjunctive SSE with appropriate performance and security guarantees
non-trivial to achieve; in particular, prior attempts to do so have been found to be vulnerable
to different classes of attacks such as leakage-abuse and file-injection attacks [7, 40].

Novelty of Our Approach. We introduce two novel techniques to tackle this issue that differ
significantly from existing design-paradigms:

• A specialized data structure for “dynamic cross-tags” that can be efficiently updated
and searched in tandem while ensuring both forward and backward-privacy.

• A round-reduction technique for conjunctive keyword searches that combines message
pre-computation with the update operations, and requires no pre-processing at setup.

At a high level, if an update operation (insertion/deletion) affects the outcome of some
future search, we ensure that the corresponding message pre-computation for this search is
also updated simultaneously. This combination of message pre-computation with normal
update operations is done in a manner that: (a) leaks as little information as possible to
the server, and (b) does not degrade the online efficiency of update and search operations.

4

Performance. Some of the performance benefits of ODXT are summarized below.

Fast Conjunctive Searches. Conjunctive keyword searches in ODXT entail only a single
round of communication between the client and the server. The search complexity is inde-
pendent of the total number of documents in the database. For a conjunctive query over
a set of keywords (w1, . . . , wn), the search complexity of ODXT scales linearly with the
number of update operations involving the least frequent keyword in the conjunction.

More specifically, the best possible search complexity for any conjunctive-SSE scheme is
O(n · |DB(w1)|), where n is the number of keywords involved in the conjunction, w1 is the
least frequent of these keywords, and |DB(w1)| is the number of files currently containing
w1. ODXT incurs slightly higher computational complexity, namely O(n.|Upd(w1)|), where
|Upd(w1)| is the number update operations involving files containing w1 (this is primarily
a tradeoff for achieving both forward and backward privacy). Our experiments reveal that
|Upd(w1)| typically exceeds |DB(w1)| by around 10%. In particular, any keyword that
occurs in very few files is naturally expected to be involved in very few update operations.

In summary, ODXT achieves a search performance level “reasonably close” to the best
possible search complexity achieved by plaintext information retrieval algorithms, as well as
by conjunctive SSE schemes in the static setting [9, 29].

Fast Updates. Updates in ODXT are extremely fast and lightweight. Each update operation
entails only a constant amount of computation at the client and the server, and a single
message transmission from the client to the server. This matches closely the update efficiency
of existing forward and backward private SSE schemes for single keyword search [6, 10, 39].

Efficient Storage. The server storage requirements for ODXT scale linearly with the number
of update operations executed on the database until a given point of time, while the client
is required to maintain a small amount of local storage that scales only logarithmically with
the number of update operations executed on the database until a given point of time.
This closely matches some of the most storage-efficient forward and backward private SSE
schemes that support only single keyword search [6, 10, 39].

Security. We establish security by: (a) precisely enumerating the leakage profile for our
scheme, including leakages from updates as well as leakages from conjunctive keyword
searches, and then (b) by proving formally that this is indeed the entire leakage incurred by
our scheme. Our formal proof of security follows the same simulation-based framework as
existing forward and backward private SSE schemes for single keyword queries [6, 10, 39],
and assumes an adaptive adversarial model. In this framework, we establish formally that
a probabilistic polynomial-time simulation algorithm can simulate the view of the adversar-
ial server (in a computationally indistinguishable manner) given access to only the leakage
profile for our scheme.

Leakage Analysis. We also present a detailed analysis of the leakage profile incurred by
our scheme, and compare it with the leakages incurred by existing forward and backward
private SSE schemes supporting single keyword search, as well as existing conjunctive SSE
schemes for static datasets. We broadly categorize the leakage from our scheme into two

5

categories described below.

Update Leakages. These are leakages incurred during updates. The design of our scheme
ensures that update operations reveal nothing to the adversary, including the nature of the
update operation (insertion/deletion), as well as the document/keyword pair involved in the
update operation.

Conjunctive Search Leakages. These are leakages incurred during conjunctive keyword
searches. Examples of such leakages incurred by our scheme include the access pattern,
the timestamps corresponding to updates involving the least frequent term in the conjunc-
tion, and the timestamps corresponding to updates involving other terms in the conjunction
and the files containing the least frequent term. Some of these leakages are also incurred by
existing forward and backward private in the single keyword search setting. Other leakages
are very specific to the case of conjunctive queries, and we draw parallels with conjunc-
tive SSE schemes in the static setting to justify their presence as a necessary performance
trade-off.

Prototype Implementation. Finally, we present a prototype implementation of ODXT,
and compare its search performances with the näıve adaptation of Mitra [10] to the conjunc-
tive search setting, as well as IEX-2LEV and IEX-ZMF due to Kamara and Moataz [24].
The evaluations are carried out on 60.92GB-sized real world dataset obtained from Wikime-
dia downloads [17], consisting of 16 million documents, 43 million keywords and 100 million
update operations.

1.2 Related Work

SSE for single keyword searches was first introduced by Song et al. in [34], and was sub-
sequently equipped with formal security definitions by Goh in [20] and by Curtmola et al.
in [14]. The literature on SSE that is relevant to this work can be broadly divided into two
categories - dynamic SSE schemes that are forward and backward private but only support
single keyword queries, and conjunctive SSE schemes that are either static or only forward
private. We summarize them below.

Forward and Backward Private Dynamic SSE. The first SSE schemes to efficiently
support updates [27, 26] were neither forward nor backward private. The notion of forward
privacy was introduced formally in [11]. Since then, numerous works have proposed im-
proved dynamic SSE schemes with forward privacy, albeit with support for single keyword
searches [36, 5, 18, 28, 6, 15, 35]. Backward privacy was introduced in [36], albeit with-
out a formal security definition or construction. Bost et al. [6] introduced the first formal
definitions of backward privacy for single keyword search, and proposed SSE constructions
satisfying these notions. More efficient constructions of backward private SSE have been
proposed subsequently in [39, 10].

To the best of our knowledge, all forward and backward private SSE constructions till
date only support single keyword searches. In particular, they do not support conjunctive
keyword searches, which is the goal of this paper.

6

Conjunctive SSE. A completely disjoint set of works have attempted to design SSE
schemes that support expressive queries such as conjunctions, disjunctions and general
Boolean formulae over keywords. The seminal work of Cash et al. [9] and a subsequent
work of Lai et al. [29] enable efficient conjunctive keyword searches, albeit on static datasets
with no provisions for updates. The work of Kamara and Moataz [24] enables conjunctive
keyword searches over dynamic databases, but is only forward private.

In this work, we address the open question of designing an SSE scheme for conjunctive
keyword searches over dynamic databases while simultaneously achieving both forward and
backward privacy.

2 Preliminaries

In this section we introduce the notations used in the rest of the paper. We also present
necessary cryptographic background material and definitions for dynamic SSE.

2.1 Notations

We write x
R←− χ to represent that an element x is sampled uniformly at random from a

set/distribution X . The output x of a deterministic algorithm A is denoted by x = A and
the output x′ of a randomized algorithm A′ is denoted by x′ ← A′. For a ∈ N such that
a ≥ 1, we denote by [a] the set of integers lying between 1 and a (both inclusive). We refer to
λ ∈ N as the security parameter, and denote by poly(λ) and negl(λ) any generic (unspecified)
polynomial function and negligible function in λ, respectively. 1

Databases. Let ∆ = {w1, . . . , wK} be a dictionary of keywords, and let F = {f1, . . . , fD}
be a collection of files, such that each fi is associated with a unique identifier idi and contains
keywords from ∆. We denote by DB a database of identifier-keyword pairs, such that a
given pair (id, w) ∈ DB if and only if the file with identifier id contains the keyword w. We
denote by W ⊆ ∆ the set of all keywords that appear at least once in DB, and by DB(w)
the set of all identifiers corresponding to files containing w. We denote by |W| the number
of distinct keywords in DB, by |DB| the number of distinct identifier-keyword pairs in DB,
by |DB(w)| the number of files containing the keyword w, and by |Upd(w)| the number of
update operations involving the keyword w.

Conjunctive Queries. We represent a conjunctive query over n distinct keywords w1, . . . , wn
as q = (w1 ∧ w2 ∧ . . . ∧ wn) and define the set DB(q) as DB(q) = ∩ni=1DB(wi). Depending
on the context, the keyword w1 is assumed to have either the least frequency of occurrence
or to have the least frequency of updates among all keywords in the conjunction q.

1Note that a function f : N → N is said to be negligible in λ if for every positive polynomial p, f(λ) <
1/p(λ) when λ is sufficiently large.

7

2.2 Cryptographic Background

This section presents the definitions and security notions for various cryptographic primitives
used in the rest of the paper.

Pseudorandom functions. A pseudorandom function (PRF) is a polynomial-time com-
putable function

F : {0, 1}λ × {0, 1}` −→ {0, 1}`
′
,

such that for all PPT algorithms A, we have∣∣∣Pr
[
AF (K,·) = 1

]
− Pr

[
AG(·) = 1

]∣∣∣ ≤ negl(λ),

where K
R←− {0, 1}λ and G is uniformly sampled from the set of all functions that map

{0, 1}` to {0, 1}`′ .

Symmetric-Key Encryption. A symmetric-key encryption scheme SKE consists of the
following polynomial-time algorithms:

• Gen(λ): A probabilistic algorithm that takes the security parameter λ as input and
outputs a secret-key sk.

• Enc(sk, x): A probabilistic algorithm that takes as input a key sk and a plaintext x.
Outputs a ciphertext c.

• Dec(K, c): A deterministic algorithm that takes as input a key sk and a ciphertext c.
Outputs the decrypted plaintext x.

A symmetric-key encryption scheme is said to be CPA-secure if for all PPT algorithms A
and any two arbitrary plaintext messages x0 and x1, we have

|Pr [A (Enc(sk, x0)) = 1]− Pr [A (Enc(sk, x1)) = 1]| ≤ negl(λ),

where sk ← Gen(λ).

2.3 Computational Assumptions

This section introduces the computational hardness assumptions used in the rest of the
paper.

Decisional Diffie-Hellman Assumption. Let G be a cyclic group of prime order p,
and let g be any uniformly sampled generator for G. The decisional Diffie-Hellman (DDH)
assumption is that for all PPT algorithms A, we have∣∣Pr

[
A
(
g, gα, gβ , gα·β

)
= 1
]
− Pr

[
A
(
g, gα, gβ , gγ

)
= 1
]∣∣ ≤ negl(λ),

8

where α, β, γ
R←− Z∗p.

Extended DDH Assumption. Let G be a cyclic group of prime order p, and let g be
any uniformly sampled generator for G. For any arbitrary m,n ∈ N, define the matrix of
group elements

M :=

gα1·β1 gα1·β2 . . . gα1·βn

gα2·β1 gα2·β2 . . . gα2·βn

...
...

. . .
...

gαm·β1 gαm·β2 . . . gαm·βn

 ,
where {αi

R←− Z∗p}i∈[m] and {βj
R←− Z∗p}j∈[n]. The extended DDH assumption is that for all

PPT algorithms A, we have

|Pr [A (g,M) = 1]− Pr [A (g,M ′) = 1]| ≤ negl(λ),

where M is distributed as described above and M ′ is distributed as follows:

M ′ :=

gγ1,1 gγ1,2 . . . gγ1,n

gγ2,1 gγ2,2 . . . gγ2,n

...
...

. . .
...

gγm,1 gγm,2 . . . gγm,n

 ,

where {γi,j
R←− Z∗p}i∈[m],j∈[n].

We state and prove the following lemma:

Lemma 2.1. The extended DDH assumption holds over a group G iff the DDH assumption
holds over the same group G.

Proof. It is easy to see that any PPT algorithm A that breaks the DDH assumption can be
used to break the extended DDH assumption, since A can distinguish any 2× 2 sub-matrix
of the m× n matrix M defined above from random. This is because any 2× 2 sub-matrix
of M is of the form

M2×2 =

[
gαi·βj gαi·βj′

gαi′ ·βj gαi′ ·βj′

]
and is hence a valid DDH tuple. In other words, the DDH assumption holds over G if the
extended DDH assumption holds over G.

The reverse direction is also true, i.e., the extended DDH assumption holds over G if the
DDH assumption holds over G. The proof proceeds via a hybrid argument over the columns
of the matrix M . For each j ∈ [0, n], in the jth hybrid, the matrix is distributed as follows:

• The first j columns are distributed as in M ′, i.e., thy consist of elements sampled
independently and uniformly from the group G.

• The remaining (n− j) columns are distributed as in M .

9

We now show that for each j ∈ [0, n − 1], the distributions of the matrix in hybrids j and
(j+1) are computationally indistinguishable. Given a DDH tuple of the form (g, gα, gβ , gγ),
where γ is either α ·β or uniformly random in Z∗p, a PPT algorithm A can uniformly sample

a set of scalars {xi, yi
R←− Z∗p}i∈[m], and create two tuples of the form

{gi = gxi · (gα)yi}i∈[m] ,
{
hi = (gβ)xi · (gγ)yi

}
i∈[m]

.

The algorithm A creates the first column of the matrix using the tuple (g1, . . . , gm) and the
(j + 1)th column using the tuple (h1, . . . , hm). It sets the remaining columns as follows:

• For each ` ∈ [2, j], it creates the `th column of the matrix using a tuple of uniformly
sampled group elements.

• For each ` ∈ [j + 1, n], it samples β`
R←− Z∗p and a set of scalars {xi,`, yi,`

R←− Z∗p}i∈[m],

and creates the `th column of the matrix using the tuple (h1,`, . . . , hm,`), where{
hi,` = (gβ`)xi,` · (gα·β`)yi,`

}
i∈[m]

.

We note that if γ = α · β, then the matrix is distributed as in hybrid j, since the (j + 1)th

column is distributed exactly as in the matrix M . On the other hand, if γ is uniformly
random, then the matrix is distributed as in hybrid (j + 1), since the (j + 1)th column is
distributed uniformly and is statistically independently of every other column.

Since the number of columns n is poly-sized, it follows that if there exists a PPT algorithm
that breaks the extended DDH assumption with non-negligible advantage, then there exists
a second poly-sized algorithm that breaks the DDH assumption, albeit with a polynomial
loss in advantage.

2.4 Dynamic SSE

A dynamic searchable symmetric encryption (SSE) scheme consists of a polynomial-time
algorithm Setup executed by the client, and protocols Search and Update executed
jointly by the client and the server:

• Setup(λ): A probabilistic algorithm that takes the security parameter λ. It outputs
the tuple (sk, st,EDB), where sk is the client’s secret-key, st is the client’s internal
state, and EDB is an empty encrypted database.

• Update(sk, st, op, (id, w); EDB): A client-server protocol, where the client takes as
input the secret-key sk, its state st, an operation op ∈ {add, del} and an identifier-
keyword pair (id, w), while the server takes as input the encrypted database EDB.
The protocol outputs a modified client state st′ and a modified encrypted database
EDB′ so as to reflect the outcome of the addition/deletion operation.

10

• Search(sk, st, q; EDB): A client-server protocol, where the client takes as input the
secret-key sk, its state st and a query q, while the server takes as input the encrypted
database EDB. At the end of the protocol, the client outputs DB(q).

In the above, we adopted the definition of dynamic SSE used by Chamani et al. [10]. There
exist other definitions of dynamic SSE in the literature [28, 15] where the Update opera-
tion takes an entire file for addition/deletion, which is functionally equivalent to executing
multiple addition/deletion operations on the relevant identifier/keyword pairs in our frame-
work. Finally, we make the implicit assumption that upon obtaining the set of file identifiers
corresponding to a query, the client performs an additional interaction with the server to
actually retrieve the files with these identifiers.

Correctness. A dynamic SSE is said to be correct if for every database DB and for every
query q, the Search protocol outputs DB(q) with all but negligible probability.

Security. The security of a dynamic SSE scheme is parameterized by a leakage function

L =
(
LSetup,LSearch,LUpd

)
,

where LSetup encapsulates the leakage to an adversarial server during the setup phase,
LSearch encapsulates the leakage to an adversarial server during each execution of the search
protocol, and LUpd encapsulates the leakage to an adversarial server during each execution
of the update protocol.

Informally, a dynamic SSE scheme is secure with respect to a leakage function L if the
adversarial server provably learns no more information about DB other than that en-
capsulated by L. Formally, a dynamic SSE scheme is said to be adaptively-secure with
respect to a leakage function L if for any stateful PPT adversary A that issues a maxi-
mum of Q = poly(λ) queries, there exists a stateful probabilistic polynomial-time simulator
Sim = (SimSetup,SimSearch,SimUpdate) such that the following holds:∣∣∣Pr

[
RealDy−SSE

A (λ,Q) = 1
]
− Pr

[
IdealDy−SSE

A,Sim (λ,Q) = 1
]∣∣∣ ≤ negl(λ),

where the “real” experiment RealDy−SSE and the “ideal” experiment IdealDy−SSE are as
described in Figure 1.

3 Dynamic Conjunctive SSE Schemes

3.1 A Näıve Solution

To motivate our solutions, we begin with a straightforward extension of the dynamic SSE
scheme Mitra introduced by Chamani et al. [10] from single keyword queries to conjunctive
queries.2 The idea is as follows: on input of a conjunctive query q = (w1 ∧ . . . ∧ wn), the

2We choose Mitra because it has the best update and search performances in practice among existing
forward and backward private SSE scheme. However, conceptually, the extension works for all forward and
backward private SSE schemes supporting single keyword search.

11

Experiment RealDy−SSE(λ,Q):

1. N ← A(λ).

2. (sk, st0,EDB0)← Setup(λ,N).

3. For k = 1 to Q:

(a) If Query-Type = Search
qk ← A(λ,EDBk−1, τ1, . . . , τk−1).

(stk,EDBk,DB(qk))← Search(sk, stk−1, qk;EDBk−1).

(b) Else If Query-Type = Update

(opk, (idk, wk))← A(λ,EDBk−1, τ1, . . . , τk−1).

(stk,EDBk)← Update(sk, stk−1, opk, (idk, wk);EDBk−1).

(c) End If

(d) Let τk denote the view of the adversary after the kth query.

4. End For

5. b← A(λ,EDBQ, τ1, . . . , τQ).

Experiment IdealDy−SSE(λ,Q,L):

1. Parse the leakage function L as:

L =
(
LSetup

,LSearch
,LUpd

)
.

2. N ← A(λ).

3. (stSim,EDB0)← SimSetup(LSetup(λ,N)).

4. For k = 1 to Q:

(a) If Query-Type = Search
qk ← A(λ,EDBk−1, τ1, . . . , τk−1).

(stSim,EDBk, τk)← SimSearch(stSim,LSearch
(qk);EDBk−1).

(b) Else If Query-Type = Update

(opk, (idk, wk))← A(λ,EDBk−1, τ1, . . . , τk−1).

(stk,EDBk, τk)← SimUpdate(stSim,LUpd
(opk, (idk, wk));EDBk−1).

(c) End If

(d) Let τk denote the view of the adversary after the kth query.

5. End For

6. b← A(λ,EDBQ, τ1, . . . , τQ).

Figure 1: The Real and Ideal Experiments for Dynamic SSE

12

Client

1. Sample a uniformly random key KT for PRF F

2. Initialize UpdateCnt,TSet to empty maps

3. Set sk = KT and st = UpdateCnt

4. Set EDB = TSet

5. Send EDB to the server

Figure 2: MitraConj. Setup (λ)

Client

1. Parse sk = KT and st = UpdateCnt

2. If UpdateCnt[w] is NULL then set UpdateCnt[w] = 0

3. Set UpdateCnt[w] = UpdateCnt[w] + 1

4. Set addr = F (KT , w||UpdateCnt[w]||0)

5. Set val = (id||op)⊕ F (KT , w||UpdateCnt[w]||1)

6. Send (addr, val) to the server

Server

1. Parse EDB = TSet

2. Set TSet[addr] = val

Figure 3: MitraConj. Update (sk, st, op, (id, w);EDB)

client and the server run the original Mitra search protocol in parallel for each keyword
wi. At the end of the search protocol, the client receives a list of encrypted file identifiers
corresponding to each keyword, decrypts each such list, and retains only the file identifiers
in the intersection of all the lists.

We refer to this näıve adaptation of Mitra for conjunctive queries as MitraConj. The
corresponding setup, update and search algorithms are described in Figures 2, 3 and 4,
respectively. Below, we provide a brief technical overview of how MitraConj handles con-
junctive queries. For more details on the original Mitra scheme, the reader may refer
to [10].

Construction Overview. The construction of MitraConj is based on a key-value dic-
tionary called a TSet designed as follows: for each keyword w, the TSet dictionary stores
encrypted transcripts corresponding to each operation involving w. The keys for TSet (which
are addresses in the dictionary storing encrypted values) are generated using a PRF.

13

Client

1. Parse sk = KT and st = UpdateCnt

2. Initialize tokenList1, . . . , tokenListn to empty lists

3. For i = 1 to n:

(a) For j = 1 to UpdateCnt[wi]:

i. Set addri,j = F (KT , wi||j||0)

ii. Set tokenListi = tokenListi ∪ {addri,j}
(b) End For

4. End For

5. Send tokenList1, . . . , tokenListn to the server

Server

1. Parse EDB = TSet

2. Initialize EOpList1, . . . ,EOpListn to empty lists

3. For i = 1 to n:

(a) For j = 1 to tokenListi.size:

i. Set vali,j = TSet[tokenListi[j]]

ii. Set EOpListi = EOpListi ∪ {vali,j}
(b) End For

4. End For

5. Send EOpList1, . . . ,EOpListn to the client

Client: Final Output Computation

1. Initialize IdList1, . . . , IdListn to empty lists

2. For i = 1 to n:

(a) For j = 1 to UpdateCnt[wi]:

i. Set:
(idi,j ||opi,j) = EOpListi[j]⊕ F (KT , wi||j||1)

ii. If opi,j is add then set IdListi = IdListi ∪ {idi,j}
iii. Else set IdListi = IdListi \ {idi,j}

(b) End For

3. End For

4. Output IdList = ∩ni=1IdListi

Figure 4: MitraConj. Search (sk, st, q = (w1 ∧ . . . ∧ wn);EDB)

During an update operation of the form [op(id, w)], the client generates the appropriate key-
value pair for the TSet dictionary, and sends it over to the server. The server updates the

14

dictionaries accordingly. Under the assumption that file identifiers are never repeated3, the
use of PRFs ensures that these key-value pairs reveal no information to the server about the
underlying operation op, the identifier id or the keyword w. Since updates are leakage-free,
forward privacy follows immediately.

Finally, let q = (w1 ∧ w2 ∧ . . . ∧ wn) be a conjunctive query issued by the client. For each
keyword wi (in parallel), the client recovers DB(wi) via the following steps. The client
efficiently generates the appropriate keys for the TSet dictionary corresponding to each
operation involving the keyword wi, and sends these across to the server. The server retrieves
the encrypted transcripts corresponding to each operation involving wi and sends these
back to the client. Upon receiving the encrypted transcripts, the client decrypts them to
recover each update operation involving wi. Given this information, constructing DB(wi)
is straightforward. Eventually, the client computes DB(q) = ∩ni=1DB(wi).

Search Performance. It is straightforward to observe that the computational and com-
munication complexity of this search protocol is proportional to

∑n
i=1 |Upd(wi)|, which is at

least as large as
∑n
i=1 |DB(wi)|. This may be reasonable in practice if each keyword wi is

low-frequency, but is definitely rather poor if one or more keywords have very high-frequency
of occurrence.

Leakage. Although this scheme inherits many of the forward and backward privacy prop-
erties of the original Mitra scheme, it incurs an additional undesirable leakage: a search
operation over keywords w1, . . . , wn allows the server to learn |Upd(wi)| (i.e., the total num-
ber of update operations) for each keyword wi, including those involving files that are not
relevant to the query, and the corresponding timestamp associated with each such update
operation.

Our goal is to reduce both the computational overheads as well as the leakages in the protocol
by tying these to only the less frequent keywords in the queried conjunction.

3.2 Basic Dynamic Cross-Tags

To achieve the above goal, we introduce the idea of “dynamic cross-tags”. For ease of
understanding, we exemplify the idea via a simplified protocol, called Basic Dynamic Cross-
Tags, or BDXT in short. The corresponding algorithms for setup, updates and search are
described in Figures 5, 6 and across Figures 7 and 8, respectively. The main changes from
MitraConj are highlighted in red.

Assume that, given a conjunctive query q = (w1 ∧ . . . ∧ wn), the client can choose the
keyword with the least frequency of occurrence (at the cost of small additional storage).
Assume without loss of generality that this keyword is w1. We will refer to w1 as the s-
term (where s stands for “special”) and to each of the remaining keywords w2, . . . , wn as a
x-term (where x stands for “cross”).

3 This assumption is made in several existing forward and backward private SSE schemes for single
keyword search, most notably in the constructions of Bost et al. [6] and Chamani et al. [10], including the
original Mitra scheme.

15

Handling the s-Term. In our simplified protocol presented below, the client still runs an
instance of the Mitra search protocol, albeit only for the s-term w1, following which the
client is able to retrieve the set of all identifiers corresponding to files currently containing
w1. In the process, the computational overheads incurred by the client and the server are
both proportional to DB(w1), and the server only learns |DB(w1)| (assuming no padding
for now).

At this point, an obvious solution is as follows: the client downloads all the files containing
w1, parses them locally and retains only those files that contain all the other keywords
w2, . . . , wn. This is extremely inefficient from a performance point of view, since it requires
downloading and parsing many more files than actually necessary. In order to handle this
more efficiently, we introduce the idea of “dynamic cross-tags” below.

Dynamic Cross-Tags. Concretely, in addition to the TSet dictionary in the previous
scheme, we use an additional dictionary called the XSet that has a pair of designated
addresses for each possible identifier-keyword pair (id, w). At any given time, this address
pair is populated with one of the following value pairs:

• (⊥,⊥) : (id, w) was neither inserted nor deleted

• (1,⊥) : (id, w) was inserted but not yet deleted

• (1, 1) : (id, w) was inserted and later deleted

where ⊥ denotes the corresponding address is empty. The keys pointing to these addresses
are referred to as “dynamic cross-tags”, and represent a major technical contribution of this
work. Unlike the “cross-tags” in the scheme of Cash et al. [9] which can only determine the
presence/absence of any identifier-keyword pair in a static dataset, the keys for our XSet
dictionary can determine the presence/absence of any identifier-keyword pair in a dynamic
dataset across any number of update operations.

These dynamic cross-tags are generated using PRFs, so that they may be efficiently repro-
duced by the client during update/search queries. More concretely, for an identifier-keyword
pair (idj , wi), the corresponding “insertion-cross-tag” and “deletion-cross-tag” are generated
as:

xtagi,j,add = F (KX , wi||idj ||add) , xtagi,j,del = F (KX , wi||idj ||del).

This is illustrated in Figure 6.

Handling Updates. The update procedure for BDXT is described in Figure 6. The TSet
dictionary is updated as in the previous scheme MitraConj, and hence incurs no leakages.
The XSet dictionary is updated as follows: when an identifier-keyword pair (id, w) is inserted,
the entry at the “insertion cross-tag” corresponding to (id, w) is updated to 1. At a later
time, when (id, w) is deleted, the entry at the “deletion-cross-tag” corresponding to (id, w)
is updated to 1.

Differences with Static Cross-Tags. A key difference in our approach as compared to
conjunctive SSE schemes for static databases [9, 29] is that our cross-tags are computed
on-the-fly with every update operation, and not at setup. In the works of Cash et al. [9] and

16

Client

1. Sample a uniformly random key KT ,KX for PRF F

2. Initialize UpdateCnt,DBCnt,TSet,XSet to empty maps

3. Set sk = (KT ,KX) and st = (UpdateCnt,DBCnt)

4. Set EDB = (TSet,XSet)

5. Send EDB to the server

Figure 5: BDXT. Setup (λ)

Client

1. Parse sk = (KT ,KX) and st = (UpdateCnt,DBCnt)

2. If UpdateCnt[w] is NULL then set:

UpdateCnt[w] = DBCnt[w] = 0

3. Set UpdateCnt[w] = UpdateCnt[w] + 1

4. If op is add then set DBCnt[w] = DBCnt[w] + 1

5. Else set DBCnt[w] = DBCnt[w]− 1

6. Set addr = F (KT , w||UpdateCnt[w]||0)

7. Set val = (id||op)⊕ F (KT , w||UpdateCnt[w]||1)

8. Set xtag = F (KX , w||id||op)

9. Send (addr, val, xtag) to the server

Server

1. Parse EDB = (TSet,XSet)

2. Set TSet[addr] = val

3. Set XSet[xtag] = 1

Figure 6: BDXT. Update (sk, st, op, (id, w);EDB)

Lai et al. [9], the presence or absence of a cross tag in the XSet simply indicated whether
a given file contains a certain keyword or not. By involving the operation op ∈ {add, del}
in the generation of the cross-tag, we have extended its semantic meaning to now indicate
whether a certain operation (either addition or deletion) involving a given keyword-file pair
has occurred or not. As a result, the XSet data structure, which was an inherently static
data structure in the previous works, is now transformed into a dynamic data structure
that can be updated without any additional pre-computation at setup. We managed to do
this while maintaining forward privacy (because a cross-tag does not reveal any information
about the underlying operation, file identifier or keyword), which is crucial for achieving
resistance against leakage-abuse attacks [7] and file-injection attacks [40].

17

Client: Round 1

1. Parse sk = (KT ,KX) and st = (UpdateCnt,DBCnt)

2. Use DBCnt to identify the least frequent keyword (assumed to be w1 w.l.o.g)

3. Initialize stokenList to an empty list

4. For j = 1 to |Upd(w1)|:

(a) Set saddrj = F (KT , w1||j||0)

(b) Set stokenList = stokenList ∪ {saddrj}

5. End For

6. Send stokenList to the server

Server: Round 1

1. Parse EDB = (TSet,XSet)

2. Initialize sEOpList to an empty list

3. For j = 1 to stokenList.size:

(a) Set svalj = TSet[stokenList[j]]

(b) Set sEOpList = sEOpList ∪ {svalj}

4. End For

5. Send sEOpList to the client

Figure 7: BDXT. Search (sk, st, q = (w1 ∧ . . . ∧ wn);EDB) (Part-1)

In addition, as we demonstrate subsequently, our dynamic cross-tags are both forward and
backward private, in the sense that they also incur minimal leakages during conjunctive
searches. In particular, our technique of treating additions and deletions in a symmetric
manner by generating cross-tags for them using the same PRF operation ensures that the
adversary also cannot infer additional information about the deletion history of keywords (it
is computationally indistinguishable from the insertion history), which is the primary re-
quirement for backward privacy. Achieving simultaneously forward and backward private
dynamic cross-tags constitutes the key technical innovation of our work and has not, to our
knowledge, been achieved by prior works.

Handling Conjunctive Searches. The conjunctive search procedure for BDXT is de-
scribed in Figure 7 and Figure 8. Let q = (w1 ∧ w2 ∧ . . . ∧ wn) be a conjunctive query
issued by the client, and let w1 be the keyword with the least frequency. In our simplified
protocol, the search operation involves two rounds of communication between the client and
the server.

Round-1 allows the client to recover DB(w1) as mentioned above. More concretely, the client
first efficiently generates all relevant addresses in the TSet related to w1 and sends them
across to the server. The server then retrieves the encrypted (id, op) pairs and transmits

18

Client: Round 2

1. Initialize sIdList to an empty list

2. For j = 1 to |Upd(w1)|:

(a) Set (idj ||opj) = sEOpList[j]⊕ F (KT , w1||j||1)

(b) If opj is add then set sIdList = sIdList ∪ {idj}
(c) Else set sIdList = sIdList \ {idj}

3. End For

4. Let m = sIdList.size (=|DB(w1)|).
5. Initialize xtagList1, . . . , xtagListm to empty lists

6. For j = 1 to m:

(a) Let idj = sIdList[j]

(b) For i = 2 to n:

i. Set xtagi,j,add = F (KX , wi||idj ||add)

ii. Set xtagi,j,del = F (KX , wi||idj ||del)
iii. Set xtagListj = xtagListj ∪ {(xtagi,j,add, xtagi,j,del)}

(c) Randomly permute the tuple-entries of xtagListj

7. End For

8. Send (xtagList1, . . . , xtagListm) to the server

Server: Round 2

1. For j = 1 to m:

(a) Set bj = 1

(b) For i = 2 to n:

i. Set (xtagi,j,add, xtagi,j,del) = xtagListj [i]

ii. If XSet[xtagi,j,add] = ⊥, then set bj = 0

iii. Else If XSet[xtagi,j,del] = 1, then set bj = 0

(c) End For

2. End For

3. Send (b1, . . . , bm) to the client

Client: Final Output Computation

1. Initialize IdList to an empty list

2. For j = 1 to m:

(a) Let idj = sIdList[j]

(b) If bj = 1, then set IdList = IdList ∪ {idj}

3. End For

4. Output IdList

Figure 8: BDXT. Search (sk, st, q = (w1 ∧ . . . ∧ wn);EDB) (Part-2)
19

them back to the client. At this point, the client can locally decrypt and recover DB(w1).
This is very similar to the search algorithm in MitraConj. This is described in Figure 7.

Round-2 is based on the following observation: at a given point of time, an identifier-keyword
pair (idj , wi) ∈ DB iff the following conditions hold simultaneously: (a) the “insertion-cross-
tag” corresponding to (idj , wi) is currently set to 1 (meaning that (idj , wi) has been inserted),
and (b) the “deletion-cross-tag” corresponding to (idj , wi) is currently set to ⊥ (meaning
that (idj , wi) is not yet deleted).

Based on this observation, it is natural to execute Round-2 of the conjunctive search via
the following steps:

1. For each identifier idj ∈ DB(w1), the client efficiently computes the cross-tag-pairs
corresponding to (idj , w2), . . . , (idj , wn), and sends these (n− 1) cross-tag-pairs across
to the server (in randomly permuted order).

2. For each j ∈ |DB(w1)|, the server receives a set of (n − 1) cross-tag-pairs from the
client and retrieves the corresponding XSet entries. If for each pair, the first entry is
1 and second entry is ⊥, the server returns bj = 1, otherwise it returns bj = 0.

3. For each idj ∈ DB(w1), if the corresponding bit bj received from the server is 1, the
client includes the identifier idj in the final list of identifiers to be output. Otherwise,
it discards the identifier idj .

This is described in Figure 8. Correctness of the search protocol follows immediately from
the aforementioned observation.

Implementing XSet. The XSet dictionary is represented equivalently using a set SXSet that
is history-independent (i.e., it is independent of the order in which the elements of the set
were inserted), and supports: (a) efficient element insertion and (b) efficient membership
test for a random element. For a dynamic cross-tag xtagi,j,op corresponding to an identifier-
keyword pair (idj , wi) and an operation op ∈ {add, del}, we interpret its corresponding value
in the XSet dictionary as:

XSet[xtagi,j,op] =

{
1 if xtagi,j,op ∈ SXSet
⊥ otherwise

During an update operation, setting a XSet entry to 1 can be realized by simply adding
the corresponding cross-tag to the set SXSet. As long as SXSet supports efficient element
insertion, an update operation can thus be realized efficiently. Similarly, as long as SXSet
supports efficient membership testing, the XSet dictionary can be efficiently looked up by
the server during conjunctive searches.

Server Storage. The server stores the dictionaries TSet and XSet. Note that during setup,
the TSet and XSet dictionaries are both initialized to empty. After N updates, the storage
requirement at the server grows linearly as O(Nλ), since each update operation adds a

20

O(λ)-sized entry of the form (addr, val) to TSet and a O(λ)-sized cross-tag entry of the form
(xtag, 1) to XSet. In other words, the storage requirement at the server grows linearly with
the number of update operations on the dataset.

Client Storage. The client locally stores the arrays UpdateCnt and DBCnt. Note that
during setup, both arrays are initialized to empty. After N updates, the storage requirement
at the client grows as O(|W| · logN), |W| is the size of the keyword dictionary, which is
typically upper-bounded by some large pre-defined constant. In other words, the storage
requirement at the client grows logarithmically with the number of update operations on
the dataset.

Search Performance. The computational overhead at both the client and the server
scales with (|Upd(w1)| + (n − 1) · |DB(w1)|). This is clearly a significant improvement
over the näıve adaptation over Mitra whenever there is a query term in the conjunction
with relatively small frequency of occurrence. The communication overhead also scales with
(|Upd(w1)| + (n − 1) · |DB(w1)|), which is again a significant improvement over the näıve
adaptation over Mitra whenever DB(w1) is small. In particular, this matches our original
goal of reducing the computational and communication overheads by tying these to the
s-term w1 that has the lowest frequency of occurrence.

An undesirable feature of BDXT from the point of view of search performance is the extra
round of communication with consequent latency. For some applications, low latency might
be a more crucial requirement and having a single round of communication during searches
might be preferable, even if at the cost of additional computation at the client and/or server.
Having multiple rounds of interaction during searches also limits the applicability of BDXT
to some settings, such as the multi-client SSE setting. We expand on this subsequently.

Leakage. In terms of leakage, BDXT again improves substantially upon the näıve adap-
tation of Mitra by tying the leakage from conjunctive searches to the s-term w1 that has
the least frequency of occurrence. Recall that in MitraConj, a search operation allows the
server to learn partial information about every update operation involving every keyword
in the conjunction. On the other hand, in BDXT, for each x-term in {w2, . . . , wn}, the
information gained by the adversary is only restricted to update operations involving files
in DB(w1). To see this, observe that if a file with identifier id contains some x-term (say,
w2) but does not contain the s-term w1, then in BDXT, the server does not receive any
cross-tag corresponding to id, and hence learns no information about the pair (id, w2).

However, BDXT still leaks more information than desirable. To begin with, BDXT allows
the server to learn the frequency of the s-term, i.e., |DB(w1)|, in addition to the number of
update operations involving the s-term, i.e., |Upd(w1)|. This immediately leaks the exact
number of insertion and deletion operations involving w1. Note that the näıve adaptation
of Mitra to the conjunctive setting does not suffer from this leakage, as it only reveals
|Upd(w1)| to the server.

BDXT also allows the server to learn cross-tag pairs in the XSet dictionary that correspond
to the same identifier-keyword pair, as well as the update history for this pair. Although the
server cannot immediately identify which keyword among the x-terms w2, . . . , wn a given
cross-tag pair corresponds to (since the cross-tag pairs are uniformly randomly permuted

21

for each file identifier in DB(w1)), it can test each cross-tag pair for membership in the
XSet dictionary to learn the exact number of keywords among w2, . . . , wn that each file in
DB(w1) contains.

We present in the next subsection an improved version of BDXT that achieves significantly
smaller leakage; hence, we avoid a formal analysis of the leakage of BDXT.

3.3 Oblivious Dynamic Cross-Tags

We address the drawbacks of BDXT with respect to both search performance and leakage by
presenting an alternative realization of dynamic cross-tags called Oblivious Dynamic Cross-
Tags, or ODXT in short. The corresponding algorithms for setup, updates and search
are described in Figures 9, 10 and 11 , respectively. The main changes from BDXT are
highlighted in red.

The key technical difference between ODXT and BDXT is that ODXT uses an oblivious
shared computation between the client and the server to allow conjunctive searches with
a single round of communication. To enable this oblivious shared computation, we resort
to using blinded exponentiations (as in the Diffie-Hellman based oblivious PRF) in a cyclic
group of prime order. ODXT also improves upon BDXT in terms of search privacy by
reducing the information leakage to the server during conjunctive searches.

The Idea. In order to elucidate the core idea behind ODXT, we focus on why our simpler
scheme, namely BDXT, requires two rounds of communication between the server and the
client. Note that in the first round, the client executes a single keyword search on the
s-term to recover DB(w1). Consequently, in the second round, it generates a pair of cross-
tags (xtagi,j,add, xtagi,j,del) for each keyword wi ∈ {w2, . . . , wn} and each document identifier
idj ∈ DB(w1) recovered in the first round. If the client could allow the server to compute
these cross-tags without explicitly recovering DB(w1), the additional round communication
could be avoided.

Our goal is to enable an oblivious evaluation of the cross-tag pair without explicitly recovering
DB(w1), thereby avoiding an additional round of interaction between the client and the
server.

Change Cross-Tags in XSet. The first step in realizing this goal is to change the manner
in which the cross-tags are generated. For a keyword wi, a document identifier idj and an
operation op ∈ {add, del}, the client now generates the corresponding cross-tag xtagi,j,op as

xtagi,j,op = gFp(KX ,wi)·Fp(KY ,idj ||op),

where g is a generator for a cyclic group G of prime order p, Fp is a PRF with range Z∗p ,
and KX and KY are uniformly sampled keys for the PRF Fp.

Note that conceptually, the xtag is split into two parts, one pertaining to wi and the other
pertaining to the pair (idj , op), which are combined multiplicatively in the exponent of g.
This is the key change from how the xtag was generated in BDXT (in BDXT, these two

22

Client

1. Sample a uniformly random key KT for PRF F

2. Sample uniformly random keys KX ,KY ,KZ for PRF Fp

3. Initialize UpdateCnt,TSet,XSet to empty maps

4. Set sk = (KT ,KX ,KY ,KZ) and st = UpdateCnt

5. Set EDB = (TSet,XSet)

6. Send EDB to the server

Figure 9: ODXT. Setup (λ)

parts were combined into a single PRF evaluation). As we shall see, this is crucial to
enabling the oblivious computation.

Note: The tag calculation mechanism works even when a given document is being updated
with the same keyword(s) multiple times. As stated earlier in footnote 3, we assume that
update operations involving the same file identifier are never repeated. In particular, when
an existing file is to be updated, it is deleted and re-inserted (in modified form) under a fresh
file identifier. This assumption is made in several existing forward and backward private
SSE schemes for single keyword search, most notably in the constructions of Bost et al. [6]
and Chamani et al. [10], including the original Mitra scheme.

Dynamic Blinding Factors in TSet. The client also computes and stores in the TSet
dictionary a dynamic blinding element corresponding to each update operation. For exam-
ple, let (op, (idj , wi)) be the cntth update operation involving the keyword wi (the client can
keep track of this count for each keyword using the UpdateCnt data structure). In the TSet
address corresponding to this update operation, the client additionally stores the following
blinding element:

αi,j,op = Fp(KY , idj ||op) · (Fp(KZ , wi||cnt))−1,

where g, Fp and KY are as defined before, and KZ is again a uniformly sampled key for the
PRF Fp.

Note again that conceptually, the blinding factor α is also split into two parts, one pertaining
to the keyword-count pair (wi, cnt) and the other pertaining to the pair (idj , op), which are
combined multiplicatively in Z∗p . Also note that the part pertaining to the pair (idj , op) is
the same in both the xtag and the blinding factor α. This is an intentional design choice.
Looking ahead, during a search operation, the server will be provided with a “search token”
that, when “obliviously” combined with the blinding term α, will give rise to an expression
that matches the corresponding xtag. The presence or absence of this xtag in the XSet
will then determine the outcome of the search. We present the details of this oblivious
combination mechanism next.

Differences with Static Cross-Tags and Static Blinding Factors. Once again, unlike
previous works [9, 29], our cross-tags are computed on-the-fly with every update operation,
and not at setup. In the OXT scheme of et al. [9] and the HXT scheme of Lai et al. [9], a

23

Client

1. Parse sk = (KT ,KX ,KY ,KZ) and st = UpdateCnt

2. If UpdateCnt[w] is NULL then set UpdateCnt[w] = 0

3. Set UpdateCnt[w] = UpdateCnt[w] + 1

4. Set addr = F (KT , w||UpdateCnt[w]||0)

5. Set val = (id||op)⊕ F (KT , w||UpdateCnt[w]||1)

6. Set α = Fp(KY , id||op) · (Fp(KZ , w||UpdateCnt[w]))−1

7. Set xtag = gFp(KX ,w)·Fp(KY ,id||op)

8. Send (addr, val, α, xtag) to the server

Server

1. Parse EDB = (TSet,XSet)

2. Set TSet[addr] = (val, α)

3. Set XSet[xtag] = 1

Figure 10: ODXT. Update (sk, st, op, (id, w);EDB)

static cross tag was conceptually divided into two parts, one corresponding to the keyword wi
and the other corresponding to only the document identifier idj . In ODXT, we additionally
involve the operation op ∈ {add, del} in the generation of the cross-tag, and combine it
with the document identifier idj . Similar to BDXT, this allows a cross-tag to indicate
whether a certain operation (either addition or deletion) involving a given keyword-file pair
has occurred or not, which in turn allows the XSet to be dynamic and forward privacy-
preserving.

However, where we improve over BDXT is in achieving a stronger notion of backward
privacy by minimizing leakages during searches, as discussed subsequently. A crucial role
in this regard is played by the dynamic blinding factor α in ODXT, which can also be
computed on-the-fly with every update operation. In other words, unlike OXT [9] and
HXT‘[29], we completely avoid the need for any pre-computation at setup. By involving
the operation op ∈ {add, del} in the generation of both the cross tags and the blinding factors,
we now allow both the TSet and XSet to be updated dynamically in tandem while preserving
forward privacy. In particular, our TSet now differs significantly from that in MitraConj in
its contents and also the manner in which it is updated. The concept of dynamic blinding
factors does not appear in Mitra, or for that matter, any existing dynamic conjunctive
SSE scheme.

As demonstrated subsequently, dynamic blinding factors additionally allow oblivious recon-
struction of cross tags during conjunctive searches, which suppresses leakages and paves the
way for strong backward privacy guarantees. Hence, the introduction of dynamic blinding
factors is another novel technical contribution of this work.

Oblivious Conjunctive Search. We now elucidate the overall idea for oblivious con-

24

junctive search. Unlike in BDXT, where the s-term in a conjunctive query was chosen to
be the keyword with the least frequency, in ODXT, we choose the s-term to be the key-
word involved in the least number of update operations. We note, however, that in real-life
databases a keyword that occurs across fewer documents is also likely to be involved in fewer
update operations, especially in systems where an update operation takes an entire file for
addition/deletion. Additionally, the client no longer needs two separate data structures
UpdateCnt and DBCnt to keep track of both the number of update operations involving a
keyword and the number of documents actually containing it.

Suppose that in a conjunctive query q = (w1∧. . .∧wn), w1 is the keyword involved in the least
number of update operations. Let (op, (idj , w1)) be the cntth update operation involving w1

and suppose that the server is able to compute each cross-tag xtagi,j,op for wi ∈ {w2, . . . , wn}.
In that case, the server is able to check each such cross-tag for membership in the XSet
dictionary, and let the client know the corresponding outcomes.

For example, if the cntth update operation was an insert operation, the client learns exactly
how many insertion operations involving idj and keywords among w1, . . . , wn have been
executed so far. Similarly, if this was a deletion operation, the client learns exactly how
many deletion operations involving idj and keywords among w1, . . . , wn have been executed.

Once the client gets this information from the server, it can compute the final list of doc-
ument identifiers as follows: among all document identifiers that appear in operations in-
volving w1, retain those that satisfy both of the following:

• It has been inserted for every keyword w1, . . . , wn,

• It has not been deleted for any keyword w1, . . . , wn

The challenge is to allow the server to compute the cross-tags obliviously, i.e., without
explicitly learning the actual identifier-operation pair (idj , op), via a single message received
from the client.

Oblivious Cross-Tag Computation. To enable this, the client does the following: for the
cntth update operation involving the keyword w1, it sends to the server the corresponding
TSet address (same as in BDXT) along with an additional (permuted) set of cross-tokens
{xtokeni,cnt}i∈[n] where for each i ∈ [n], we have

xtokeni,cnt = gFp(KX ,wi)·Fp(KZ ,w1||cnt).

Now recall that the TSet address corresponding to the cntth update operation involving w1

stores an additional pre-computed blinding factor α, where

α = Fp(KY , idj ||op) · (Fp(KZ , w1||cnt))−1.

It is easy to see that given a cross-token xtokeni,cnt and the blinding factor α, the server can
compute the cross-tag as:

xtagi,j,op = gFp(KX ,wi)·Fp(KY ,idj ||op) = (xtokeni,cnt)
α.

25

Figure 11: ODXT. Search (sk, st, q = (w1 ∧ . . . ∧ wn);EDB)

Client

1. Parse sk = (KT ,KX) and st = UpdateCnt

2. Use UpdateCnt to identify keyword with least updates (assumed to be w1 w.l.o.g)

3. Initialize stokenList to an empty list

4. Initialize xtokenList1, . . . , xtokenListUpdateCnt[w1] to empty lists

5. For j = 1 to UpdateCnt[w1]:

(a) Set saddrj = F (KT , w1||j||0)

(b) Set stokenList = stokenList ∪ {saddrj}
(c) For i = 2 to n:

i. Set xtokeni,j = gFp(KX ,wi)·Fp(KZ ,w1||j)

ii. Set xtokenListj = xtokenListj ∪ {xtokeni,j}
(d) End For

(e) Randomly permute the tuple-entries of xTagListj

6. End For

7. Send (stokenList, xtokenList1, . . . , xtokenListUpdateCnt[w1]) to the server

Server

1. Parse EDB = (TSet,XSet)

2. Initialize sEOpList to an empty list

3. For j = 1 to stokenList.size:

(a) Set cntj = 1

(b) Set (svalj , αj) = TSet[stokenList[j]]

(c) For i = 2 to n:

i. Set xtokeni,j = xtokenListj [i]

ii. Compute xtagi,j = (xtokeni,j)
αj

iii. If XSet[xtagi,j] = 1, then set cntj = cntj + 1

(d) End For

(e) Set sEOpList = sEOpList ∪ {(j, svalj , cntj)}

4. End For

5. Send sEOpList to the client

Client: Final Output Computation

1. Initialize IdList to an empty list

2. For ` = 1 to sEOpList.size:

(a) Let (j, svalj , cntj) = sEOpList[`]

(b) Recover (idj ||opj) = svalj ⊕ F (KT , w1||j||1)

(c) If opj is add and cntj = n then set sIdList = sIdList ∪ {idj}
(d) Else if opj is del and cntj > 0 then set sIdList = sIdList \ {idj}

3. End For

4. Output IdList
26

In other words, without ever learning what the underlying identifier idj or the underlying
operation op was, the server obliviously computes the relevant cross-tag involving the key-
word wi and the pair (idj , op). Note that we explicitly use the fact that xtagi,j,op and α share
the same sub-terms pertaining to the pair (idj , op) to enable this oblivious computation.

To see why this is useful, recall that in BDXT, the second round of communication between
the client and the server essentially involved the client explicitly computing and sending
across the relevant xtag values to the server. In ODXT, we save this additional round of
communication by allowing the client and the server to engage in a specially designed single-
round protocol where the server directly gets the xtag values. The oblivious computation
described above constitutes the core of this protocol. Beyond this, the rest of the search
operation proceeds along the same lines as BDXT.

Putting these ideas together, we get the ODXT protocol, as described across Figures 9, 10
and 11.

Server Storage. The server stores the dictionaries TSet and XSet. Note that during
setup, the TSet and XSet dictionaries are both initialized to be empty. After N updates,
the storage requirement at the server grows linearly to O(Nλ), since each update operation
adds a O(λ)-sized entry of the form (addr, α, val) to TSet and a O(λ)-sized cross-tag entry
of the form (xtag, 1) to XSet. In other words, the storage requirement at the server grows
linearly with the number of update operations on the dataset. This is exactly as in the
BDXT scheme described earlier.

Client Storage. ODXT approximately halves the local storage requirement at the client
as compared to BDXT. In ODXT, the client locally stores only a single array UpdateCnt,
as opposed to both UpdateCnt and DBCnt in BDXT. This makes the client storage require-
ments for ODXT comparable to the näıve adaptation of Mitra, as well as other dynamic
SSE schemes supporting single keyword search [5, 6, 10, 39].

Note that during setup, this array is initialized to empty. After N updates, the storage
requirement at the client grows as O(|W| · logN), |W| is the size of the keyword dictionary,
which is typically upper-bounded by some large pre-defined constant. In other words, the
storage requirement at the client grows logarithmically with the number of update opera-
tions.

Search Performance. ODXT requires a single round of communication between the client
and the server during conjunctive searches. The computational overheads at both the client
and the server, as well as the communication overheads, scale with O(n · |Upd(w1)|). First
of all, this is still a significant improvement over the näıve adaptation over Mitra whenever
there is a query term in the conjunction with relatively small frequency of updates.

While searches in BDXT incur lower computational overhead in the asymptotic sense, it is
worth observing that in real-life databases, a keyword that occurs across fewer documents is
also likely to be involved in fewer update operations, especially in systems where an update
operation takes an entire file for addition/deletion. So for real-life databases, the s-terms for
BDXT and ODXT are likely to be the same for most conjunctive queries, and the number
of updates on the s-term is unlikely to be significantly larger than the number of documents
currently containing it.

27

From an implementation point of view, the biggest cost for updates and searches in ODXT
lies in the group exponentiation operations. However, this cost can be made practical
for very large databases via a combination of efficient elliptic-curve choices and fixed-base
exponentiations. We elaborate more on this when we present a prototype implementation
for ODXT in Section 4.

3.4 Leakage Profile of ODXT (Informal)

We now present an informal overview of the leakage profile for ODXT. Due to lack of space
in the main body, we defer the formal enumeration and simulation-based proof of the leakage
profile of ODXT to Appendix 3.5. Additionally, an in-depth analysis of the leakage profile
for ODXT during conjunctive searches and its implications is presented in Appendix 3.8.

Update Leakages. Updates in ODXT are leakage-free. This is because during updates,
the server only sees a TSet (address, value) pair and a cross-tag, all of which are gener-
ated using PRFs and appear only once under the assumption that file identifiers are never
repeated4. This in turn implies that ODXT is forward private.

Search Leakages. Next, we informally summarize the leakages incurred by ODXT during
conjunctive searches.

Output Leakage: The server learns the final set of document identifiers in the conjunc-
tion, since we assume that the client sends these in the clear to retrieve the corresponding
documents.

s-term Leakage: The server learns the number of update operations involving the s-term
w1, as well as the time stamp for each such operation.

Common s-Term Leakage: The server learns if two (or more) conjunctive queries have the
same s-term w1. This is because, for all queries where the s-term is w1, the client sends
across the same set of (or a superset of the same set of) stoken values corresponding to
update records involving w1 in the TSet dictionary.

x-term Leakage: For each update operation (opj , (idj , w1)) involving the s-term w1, the
server learns the total number of update operations of the form (opj , (idj , wi)) for each
x-term wi ∈ {w2, . . . , wn}, as well the corresponding time stamp for each such operation.

Common x-Term Leakage: The server learns if two queries with (possibly distinct) s-terms
w1 and w′1 share a common x-term wi, provided that the update histories for w1 and w′1
involve at least one common document identifier idj . This is because when processing these
queries, the server would encounter a common cross-tag xtagi,j .

Improvements over BDXT. It is easy to see that ODXT improves significantly over
BDXT in terms of leakage. To begin with, in ODXT, the server does not learn the frequency

4This assumption is made in several existing forward and backward private SSE schemes for single
keyword search, most notably in the constructions of Bost et al. [6] and Chamani et al. [10], including the
original Mitra scheme.

28

of the s-term, i.e., |DB(w1)|; it only learns the number of update operations involving the s-
term, i.e., |Upd(w1)|. This is exactly as in the näıve adaptation of Mitra to the conjunctive
setting. On the other hand, in BDXT, the server learns both |Upd(w1)| and |DB(w1)|.

Moreover, in ODXT, the server does not learn which cross-tag pairs in the XSet dictionary
correspond to the same identifier-keyword pair. Learning this information would require the
server to be able to correlate cross-tags generated across different update operations, which
is computationally infeasible since the PRF Fp hides any such correlation. Consequently,
it does not learn the exact number of keywords among w2, . . . , wn that each document in
DB(w1) contains. This is a major improvement over BDXT, where the server was able to
learn this information.

Suitability to the Multi-Client Setting. As already discussed, ODXT removes the
need for an additional round of communication between the client and the server during
conjunctive searches. Beyond the obvious savings in terms of search latency, this also po-
tentially expands the applicability of ODXT to settings where multiple rounds of interaction
are unsuitable, such as the multi-client SSE setting. We expand more on this subsequently
in Section 3.9.

3.5 Formalizing the Leakage Profile of ODXT

In this section, we formally describe the leakage profile for ODXT and prove its forward and
backward privacy. Intuitively, a dynamic conjunctive SSE scheme is forward and backward
private if: (a) an update operation reveals no additional information about a conjunctive
search operation that took place at an earlier time, and (b) if a search operation on a
conjunction q = (w1 ∧ . . .∧wn) reveals no information about certain deletion operations on
(w1, . . . , wn) that took place at an earlier time. We formally establish below that ODXT
achieves this notion of forward and backward privacy.

Let Q be a list with the following types of entries:

• (t, w): search query on keyword w at timestamp t.

• (t, op, (id, w)): update query op ∈ {add, del} on identifier-keyword pair (id, w) at times-
tamp t.

Output Leakages. For any keyword w, we define TimeDB(w) to be the function that
returns the list of all file identifiers containing w that have not yet been deleted, along with
their respective timestamps of insertion. More formally, we have

TimeDB(w) = {(t, id) | (t, add, (id, w)) ∈ Q
and ∀t′ : (t′, del, (id, w)) /∈ Q}

We overload notation to define TimeDB(q) for any conjunctive query q = (w1 ∧ . . .∧wn) as

TimeDB(q) = {({ti}i∈[n], id) | (ti, add, (id, wi)) ∈ Q
and ∀t′ : (t′, del, (id, wi)) /∈ Q}

29

In other words, TimeDB(q) returns the list of identifiers corresponding to documents con-
taining w1, . . . , wn that have not yet been deleted, along with their respective timestamps
of insertion. Intuitively, TimeDB(q) captures the output leakage for q.

s-Term Leakages. For any keyword w, we define Upd(w) to be the function that returns
the timestamps of all update operations on w. More formally, we have

Upd(w) = {t | ∃(op, id) : (t, op, (id, w)) ∈ Q}.

Intuitively, for a conjunctive query q = (w1 ∧ . . . ∧ wn), where w1 is the s-term, Upd(w1)
captures all s-term leakages for q.

x-Term Leakages. Next, we again overload notation to define Upd(w1, w2) for any pair of
keywords (w1, w2) as

Upd(w1, w2) = {(t1, t2) | ∃(op, id) : (t1, op, (id, w1)) ∈ Q
and (t2, op, (id, w2)) ∈ Q}

In other words, Upd(w1, w2) returns the timestamps of all update operations on w1 and
w2 that involve the same document identifier. Intuitively, for a conjunctive query q =
(w1 ∧ . . . ∧wn), where w1 is the s-term, {Upd(w1, wi)}i∈[n] captures all x-term leakages for
q.

For ease of representation, we combine the s-term and x-term leakages from a given query
as follows: we further overload notation to define Upd(q) for q = (w1 ∧ . . . ∧ wn), where w1

is the s-term, as

Upd(q) = Upd(w1) ∪

(
n⋃
i=2

Upd(w1, wi)

)
.

We are now ready to formally define the leakage profile for ODXT as:

LODXT =
(
LSetup
ODXT,LSearch

ODXT ,LUpd
ODXT

)
,

where

• LSetup
ODXT = ⊥.

• LUpd
ODXT(op, (id, w)) = ⊥.

• LSearch
ODXT (q) = (TimeDB(q),Upd(q)).

Finally, we state the following theorem for the security of ODXT.

Theorem-1 (Security of ODXT). Assuming that F and Fp are secure PRFs and the
decisional Diffie-Hellman assumption holds over the group G, ODXT is adaptively-secure
with respect to a leakage function LODXT.

We prove Theorem 1 via a sequence of experiments between a challenger and an adver-
sary, where the first experiment is identical to the real experiment RealDy−SSE(λ,Q), while

30

the final experiment is identical to the simulation experiment SimDy−SSE(λ,Q). We estab-
lish formally that the view of the adversary A in each pair of consecutive experiments is
computationally indistinguishable.

Experiment-0. This experiment is identical to the real experiment RealDy−SSE(λ,Q). In
other words, the challenger generates the transcript corresponding to each update operation
using the ODXT.Upd algorithm and the transcript corresponding to each conjunctive search
query using the ODXT.Search algorithm.

Experiment-1. This experiment is identical to Experiment-0, except that when generating
the transcripts for each update and conjunctive search operation, the challenger replaces
each PRF evaluation of the form F (KT , ·) with a function evaluation of the form GT (·),
where the function GT is uniformly sampled from the set of all functions that map λ-bit
strings onto λ-bit strings.

Lemma 3.1. Assuming that F is a secure PRF, the view of the adversaryA in Experiment-1
is computationally indistinguishable from the view of the adversary A in Experiment-0.

Proof. Suppose that there exists a probabilistic polynomial-time algorithm B1 that can
distinguish between the views of the adversary A in Experiment-0 and Experiment-1. Then
it is easy to see that B1 can be used to design a probabilistic polynomial-time adversary B′1
that can distinguish a set of PRF evaluations of the form F (KT , ·) from a set of function
evaluations of the form GT (·), where the function GT is uniformly sampled from the set
of all functions that map λ-bit strings onto λ-bit strings. By definition, B′1 breaks the
pseudorandomness of F , which is a contradiction.

Experiment-2a. This experiment is identical to Experiment-1, except that when generat-
ing the transcripts for each update and conjunctive search operation, the challenger replaces
each PRF evaluation of the form Fp(KX , ·) with a function evaluation of the form GX(·),
where the function GX is uniformly sampled from the set of all functions that map λ-bit
strings onto elements in Z∗p.

Lemma 3.2. Assuming that Fp is a secure PRF, the view of the adversaryA in Experiment-
2a is computationally indistinguishable from the view of the adversary A in Experiment-1.

Proof. Suppose that there exists a probabilistic polynomial-time algorithm B2 that can
distinguish between the views of the adversary A in Experiment-1 and Experiment-2a. Then
it is easy to see that B2 can be used to design a probabilistic polynomial-time adversary B′2
that can distinguish a set of PRF evaluations of the form Fp(KX , ·) from a set of function
evaluations of the form GX(·), where the function GX is uniformly sampled from the set
of all functions that map λ-bit strings onto elements in Z∗p. By definition, B′2 breaks the
pseudorandomness of Fp, which is a contradiction.

Experiment-2b. This experiment is identical to Experiment-2a, except that when gen-
erating the transcripts for each update and conjunctive search operation, the challenger
replaces each PRF evaluation of the form Fp(KY , ·) with a function evaluation of the form

31

GY (·), where the function GY is uniformly sampled from the set of all functions that map
λ-bit strings onto elements in Z∗p.

Lemma 3.3. Assuming that Fp is a secure PRF, the view of the adversaryA in Experiment-
2b is computationally indistinguishable from the view of the adversary A in Experiment-2a.

The proof of this lemma is identical to the proof of Lemma 3.2, and is hence not detailed.

Experiment-2c. This experiment is identical to Experiment-2b, except that when generat-
ing the transcripts for each update and conjunctive search operation, the challenger replaces
each PRF evaluation of the form Fp(KZ , ·) with a function evaluation of the form GZ(·),
where the function GZ is uniformly sampled from the set of all functions that map λ-bit
strings onto elements in Z∗p.

Lemma 3.4. Assuming that Fp is a secure PRF, the view of the adversaryA in Experiment-
2c is computationally indistinguishable from the view of the adversary A in Experiment-2b.

The proof of this lemma is identical to the proof of Lemma 3.2, and is hence not detailed.

Experiment-3. This experiment is identical to Experiment-2c, except that when gen-
erating the transcripts for each conjunctive search operation, the challenger changes the
manner in which each xtoken value is generated. More specifically, for a conjunctive query
q = (w1 ∧ . . . ∧wn), the challenger first looks up the history of update queries made by the
adversary A to retrieve the set of update operations {(opj , (idj , w1))} involving the s-term
w1. Next, for each keyword wi in the conjunction and each update operation (opj , (idj , w1)),
it locally computes the corresponding TSet blinding factor αi,j and the corresponding cross-
tag xtagi,j exactly as in the real ODXT scheme, and generates the corresponding xtokeni,j

as: xtokeni,j = xtag
1/αi,j

i,j .

Lemma 3.5. The view of the adversary A in Experiment-3 is identical to the view of the
adversary A in Experiment-2c.

Proof. The proof of this lemma follows immediately from the fact that the distribution of
each xtoken value in Experiment-2c is identical to the distribution of each xtoken value in
Experiment-3. In Experiment-2c, for any triplet (αi,j , xtagi,j , xtokeni,j), we have xtagi,j =

xtoken
αi,j

i,j , i.e., in other words, xtokeni,j = xtag
1/αi,j

i,j , which is also the case in Experiment-3.
Hence, the view of the adversary A in Experiment-3 is identical to the view of the adversary
A in Experiment-2c.

Experiment-4. This experiment is identical to Experiment-3, except that when generating
the transcripts for each update operation, the challenger changes the manner in which each
pre-computed blinding factor α value is generated. More specifically, instead of computing

α as in Experiment-3, it simply samples α
R←− Z∗p.

Lemma 3.6. The view of the adversary A in Experiment-4 is statistically indistinguishable
from the view of the adversary A in Experiment-3.

32

Proof. Recall that the function GZ is uniformly randomly sampled from the set of all func-
tions that map λ-bit strings onto elements in Z∗p. Also note that due to the changes made
in Experiment-3 to the generation of xtoken values, the function GZ is only evaluated once
during each update operation (to generate the blinding factor α to be stored in the TSet
dictionary), and is never re-evaluated during any of the conjunctive search queries. Finally,
the function GZ is never evaluated on the same input in two different update operations,
and each evaluation of GZ is independent of the random coins used by the challenger in the
rest of the experiment.

Now observe that in Experiment-3, each pre-computed blinding factor α value in Z∗p is
generated as the product of an evaluation of GY in Z∗p with the inverse of an evaluation of
GZ in Z∗p. This fact, combined with the aforementioned observations, immediately implies
that the distribution of each α value in Experiment-4 is statistically indistinguishable from
that in Experiment-3.

Experiment-5. This experiment is identical to Experiment-4, except that when generating
the transcripts for each update operation, the challenger changes the manner in which
each xtag value is generated. More specifically, instead of computing each xtag value as in

Experiment-4, it simply samples γ
R←− Z∗p and sets xtag = gγ , where g is the generator for

the group G.

Lemma 3.7. Assuming that the DDH assumption holds in the group G, the view of the
adversary A in Experiment-5 is computationally indistinguishable from the view of the
adversary A in Experiment-4.

Instead of directly proving this lemma, we prove the following equivalent lemma:

Lemma 3.8. Assuming that the extended DDH assumption holds in the group G, the view
of the adversary A in Experiment-5 is computationally indistinguishable from the view of
the adversary A in Experiment-4.

where the equivalence of Lemmas 3.7 and 3.8 follows from the (polynomial) equivalence of
the DDH assumption and the extended DDH assumption over any group G.

Proof. We begin by observing that in Experiment-4, the distribution of any xtag value
corresponding to an update operation (op, (idj , wi)) is as follows:

xtagi,j,op = gGX(wi)·GY (idj ||op),

where g is the generator for the group G, and the functions GX and GY are uniformly
randomly sampled from the set of all functions that map λ-bit strings onto elements in Z∗p.
Setting αi = GX(wi) and βj,op = (idj ||op), the distribution can be re-written as:

xtagi,j,op = gαi·βj,op .

On the other hand, in Experiment-5, the distribution of any xtag value corresponding to an
update operation (op, (idj , wi)):

xtagi,j,op = gγi,j,op ,

33

where γi,j,op
R←− Z∗p.

Now suppose that there exists a probabilistic polynomial-time algorithm B5 that can dis-
tinguish between the views of the adversary A in Experiment-4 and Experiment-5. Then it
is easy to see that B5 can be used to design a probabilistic polynomial-time adversary B′5
that can distinguish between the aforementioned distributions of xtag values in the group
G. By definition, B′5 breaks the extended DDH assumption over the group G, which is a
contradiction.

Experiment-6. This experiment is identical to Experiment-5 except that when generating
the transcript for each update operation, the challenger replaces each function evaluation
of the form GT (w||cnt||b) for b ∈ {0, 1} with a function evaluation of the form GT (t), where
t is the timestamp at which the update operation is executed. Similarly, when generating
the transcript for each conjunctive search operation, the challenger replaces each function
evaluation of the form GT (w||cnt||0) with a function evaluation of the form GT (t), where t
is the timestamp corresponding to the operation that this evaluation is meant to address in
the TSet dictionary.

Lemma 3.9. The view of the adversary A in Experiment-6 is identical to the view of the
adversary A in Experiment-5.

Proof. Note that in Experiment-5, the function GT is never evaluated on the same input
at two different time-stamps due to the presence of the monotonically increasing counter
variable. In addition, the function GT is uniformly randomly sampled from the set of all
functions that map λ-bit strings onto λ-bit strings. This immediately implies that the
distribution of GT evaluations in Experiments 5 and 6 are identical from the point of view
of the adversary A.

Experiment-7. This experiment is identical to Experiment-6 except that we now replace
the challenger with a simulator Sim that does not have access to the actual queries made
by the adversary A. Instead, Sim only has access to the following leakage profile for each
update/conjunctive query issued by the adversary A.

Update Leakages: Sim has access to an empty update leakage function, i.e., it gains no
information about any of the update queries issued by the A. It uses the time stamp of
the update query to generate the TSet (address, value) pair, as done by the challenger in
Experiment-6. It generates a uniformly random blinding factor α, as done by the challenger

in Experiment-6. Finally, it samples γ
R←− Z∗p and sets xtag = gγ , where g is the generator

for the group G, as done by the challenger in Experiment-6.

Intra-Query Leakages: Sim has access to the following intra-query leakages.

s-term Leakage: Sim learns the number of update operations involving the s-term w1, as
well as the time stamp for each such operation, which it uses to simulate the set of stoken
values using the function GX as done by the challenger in Experiment-6.

34

x-term Leakage: For each update operation (opj , (idj , w1)) involving the s-term w1, Sim
learns the total number of update operations of the form (opj , (idj , wi)) for each x-term
wi ∈ {w2, . . . , wn}, as well the corresponding time stamp for each such operation. It uses
this information to determine the corresponding xtagi,j value and the corresponding blinding

factor αi,j , and then generates the xtokeni,j value as xtokeni,j = xtag
1/αi,j

i,j , as done by the
challenger in Experiment-6.

Output Leakage: Sim learns the final set of document identifiers in the conjunction, and
uses these to retrieve the corresponding documents.

Inter-Query Leakages: Sim has access to the following inter-query leakages.

Common s-Term Leakage: Sim learns if two (or more) conjunctive queries have the same s-
term w1, and generates the stoken values to be consistent across these queries by evaluating
the function GX on the same set of time stamps.

Common x-Term Leakage: Sim learns if two queries with (possibly distinct) s-terms w1 and
w′1 share a common x-term wi, provided that the update histories for w1 and w′1 involve at
least one common document identifier idj . When processing these queries, Sim makes sure
to generate the same cross-tag xtagi,j .

Lemma 3.10. The view of the adversary A in Experiment-7 is identical to the view of the
adversary A in Experiment-6.

Proof. The proof of this lemma follows immediately from the fact that the transcripts gen-
erated by Sim corresponding to each update and conjunctive keyword query issued by the
adversary A are identical to the corresponding transcripts generated by the challenger in
Experiment-6.

Experiment-8. This experiment is identical to Experiment-7 except that we now replace
the simulator Sim with a simulator Sim′ that has access to a leakage function

L =
(
LSetup,LSearch,LUpd

)
,

such that
LUpd(op, (id, w)) = ⊥,

LSearch(q) = (TimeDB(q),Upd(q)),

where for any conjunctive query q, the functions TimeDB(q) and Upd(q) are as defined in
Appendix 3.5. The simulator Sim′ runs the simulator Sim in Experiment 7 as a sub-routine
when interacting with the adversary A.

Lemma 3.11. The view of the adversary A in Experiment-8 is identical to the view of the
adversary A in Experiment-7.

The proof of this lemma follows in turn from the following lemma.

35

Lemma 3.12. The simulator Sim′ in Experiment-8 can efficiently run the simulator Sim
in Experiment 7 as a sub-routine.

Proof. We prove this by demonstrating that the leakage profile that Sim has access to is
subsumed by the leakage function that Sim′ has access to:

1. Update Leakages: Sim has access to an empty update leakage function, same as

Sim′.

2. Intra-Query Leakages:

(a) s-term Leakage: By definition, this leakage is subsumed by Upd(w1), which is
a part of Upd(q).

(b) x-term Leakage: By definition, this leakage is subsumed by Upd(q).

(c) Output Leakage: By definition, this leakage is subsumed by TimeDB(q).

3. Inter-Query Leakages:

(a) Common s-Term Leakage: By definition, this leakage is subsumed by Upd(q1)
and Upd(q2) for conjunctive keyword queries q1 and q2.

(b) Common x-Term Leakage: By definition, this leakage is reflected in the form
of a common timestamp ti,j appearing in Upd(q1) and Upd(q2) for conjunctive
keyword queries q1 and q2.

This completes the proof of Lemma 3.11, and hence the proof of Theorem 1.

3.6 Forward Privacy of ODXT

In this section, we formally describe the forward privacy guarantees of ODXT. According
to the formal definition introduced by Bost et al. [6], a dynamic conjunctive SSE scheme
that is adaptively secure with respect to a leakage profile

L =
(
LSetup,LSearch,LUpd

)
,

is said to be adaptively forward private if there exists a stateless function L′ such that for
any arbitrary triplet (op, id, w), we have

LUpd(op, (id, w)) = L′(op, id).

36

Intuitively, this captures the fact that an update operation computationally hides the under-
lying keyword w, and hence it cannot be correlated with any previous search query involving
w by a computationally bounded adversary.

We now examine whether ODXT is forward private as per this definition. Since LUpd
ODXT(op, (id, w)) =

⊥, an update operation in ODXT hides not only the underlying keyword w, but also the
identifier id and the operation op. In other words, the following is a natural corollary of
Theorem-1:

Corollary-1 (Forward Privacy of ODXT). Assuming that F and Fp are secure PRFs
and the decisional Diffie-Hellman assumption holds over the group G, ODXT is adaptively
forward private.

3.7 Backward Privacy of ODXT

Next, we formally describe the backward privacy guarantees of ODXT. According to
the formal definition introduced by Bost et al. [6], a dynamic SSE scheme that supports
single keyword searches and is adaptively secure with respect to some leakage function
L =

(
LSetup,LSearch,LUpd

)
is adaptively Type-II backward private if there exist stateless

functions L′′ and L′′′ such that for any (op, id, w), we have

LUpd(op, (id, w)) = L′′(op, id)), and

LSearch(w) = L′′′(TimeDB(w),Upd(w)).

We now examine whether ODXT is forward backward as per this definition. Recall that
we have

LUpd
ODXT(op, (id, w)) = ⊥,LSearch

ODXT (q) = (TimeDB(q),Upd(q)),

for any conjunctive query q. This is a natural generalization of the aforementioned leakage
profile for Type-II backward privacy from the setting of single keyword searches to our
setting of conjunctive keyword searches. Hence, the following is also a natural corollary of
Theorem-1:

Corollary-2 (Backward Privacy of ODXT). Assuming that F and Fp are secure PRFs
and the decisional Diffie-Hellman assumption holds over the group G, ODXT is adaptively
Type-II backward private.

3.8 Discussion on the Leakage Profile of ODXT

In this subsection, we present a more in-depth analysis of the leakage profile for ODXT
during conjunctive searches and its implications.

Output Leakage. We begin by noting that the output leakage (alternatively, the result
pattern leakage) is incurred by nearly all existing SSE schemes, including static and dynamic

37

schemes, in the setting of both single and conjunctive keyword searches (such as in [14, 9,
29, 6, 10, 39]). This is usually considered acceptable in the SSE literature; indeed the
few known data/query recovery attacks that manage to exploit this leakage ([22, 7, 40, 3])
assume extremely strong adversarial models where the adversary has partial knowledge of
the plaintext database/queries.

s-Term Leakages. We focus next on the leakages related to the s-term, namely, the total
number of operations on the s-term and the timestamps corresponding to these operations.
We begin by noting that these leakages are somewhat inherent in our design paradigm,
which attempts to tie both the search complexity and the leakage to the s-term, as it has
the least frequency of occurrence. We draw parallels with conjunctive SSE schemes in the
static setting, most notably the scheme of Cash et al. [9] and the more recent scheme of Lai
et al. [29], which incur similar s-term leakages.

In the setting of single keyword search, existing forward and Type-II backward private
SSE schemes [6, 10, 39] also incur leakages of update patterns; the only constructions not to
incur such leakages seem to rely on the use of ORAM-style data structures [6, 10]. Fortifying
ODXT with such data structures in an attempt to prevent this leakage is an interesting
open challenge, although this would probably have to trade-off with some degradation in
search performance (mostly in terms of communication complexity and number of rounds
of communication during searches).

It is also possible (and perhaps conceptually simpler) to mask this leakage by using volume-
hiding techniques such as padding [14, 25] where for the s-term w1, the client additionally
sends a randomly chosen set of dummy stoken keys to the server, such that the total number
of stoken keys sent is the same for all queries. This would incur a degradation in search per-
formance, and it is up to the designer to decide on a suitable trade-off between performance
and leakage.

However, we would like to point out that there are no known data/query recovery attacks
on either static or dynamic conjunctive SSE schemes that specially exploit leakages related
to the s-term. So we believe that even without the aforementioned fortifications, it appears
that our ODXT scheme is not vulnerable to any known attacks due to the leakages related
to the s-term.

x-Term Leakages. Next, we focus on the x-term leakages. We again draw parallels with
conjunctive SSE schemes in the static setting, most notably the scheme of Cash et al. [9]
and the more recent scheme of Lai et al. [29], which incur similar x-term leakages. The only
known attack on conjunctive SSE schemes that exploits a form of x-term leakages is the file
injection attack proposed by Zhang et al. in [40]. More concretely, the adversarial server
must be able to compute |DB(w1) ∩DB(wi)| when processing the search query.

We note however that for file injection attacks to work efficiently, the adversarial server
must recover, for every x-term wi, the result size corresponding to each sub-query of the
form w1 ∩ wi. However, the x-term leakage profile of ODXT is not sufficient to compute
this term, since the set of xtoken values sent to the server is randomly permuted precisely
to mask such inference-style attacks. In addition, in ODXT, the server only learns update
histories, and not the exact correspondences between insertions and deletions on the same
identifier-keyword pair, which is also necessary for inferring the aforementioned information.

38

Once again, either implementing the XSet using ORAM-style data structures or adopting
volume-hiding techniques such as padding may be useful in masking this leakage even fur-
ther; however, even without such additional fortifications, it appears that our ODXT scheme
is not vulnerable to file injection attacks, or any other known attacks for that matter, due
to the leakages related to the x-terms in a conjunctive query.

3.9 ODXT in the Multi-Client Setting

In this section, we discuss why ODXT is significantly more amenable to the multi-client
setting as compared to BDXT. In the multi-client setting, a data owner outsources its
encrypted data to an external server and enables other parties to perform queries on the
encrypted data by providing them with search tokens for specific queries. The key require-
ment is that external parties should learn no information beyond what is revealed by the
search tokens authorized to them.

Unfortunately, schemes such as BDXT with search operations involving multiple rounds
of client-server communication are inherently unsuited to the multi-client setting. This is
because such schemes potentially allow the untrusted server to collude with malicious clients
and recover sensitive information about queries issued by honest clients [9]. In particular,
a malicious client could gain access to intermediate messages exchanged between the server
and the honest clients, and exploit them to learn outcomes of queries involving conjuncts
that it was not originally authorized for.

On the other hand, ODXT involves a single round of communication during searches.
Hence, it is inherently resistant to such attacks. In particular, since the only message from
the server to each client is the final list of file identifiers corresponding to the client’s query,
there are no intermediate messages that a malicious client could observe/manipulate to in-
fer unauthorized information. Consequently, ODXT can be combined with well-established
authorization techniques for controlled disclosure (such as discussed in [12, 27, 23]) and de-
ployed in the multi-client setting. Additionally, using techniques introduced by the authors
of [23], ODXT can be extended to hide client-issued queries not only from the server but
also from the token issuing authority.

As a concrete example, when ODXT is implemented in the multi-client setting, the token
generation algorithm can be implemented using a secure two-party oblivious transfer (OT)
protocol [1, 32] between the client and the token issuing authority. For simplicity, we can
assume that the token issuing authority is the data owner itself (the same assumption is
made in [23].

In this protocol, the data owner’s input would be the secret key used to generate search
tokens, while the client’s input would be the keyword(s) that is wishes to search for. At the
end of the protocol, the client would learn the search token(s) corresponding to its query
without gaining any additional information about the secret key, while the data owner would
learn no information about the query issued by the client. After this, the client can simply
forward this search token to the server, and the search process would be executed exactly
as in the ODXT protocol described in Section 3.3. We can also argue that this affords the
client precisely the same query privacy guarantees against the server as the original ODXT

39

protocol.

We would also implement an authentication mechanism that would allow the server to verify
that any search token that it receives from a client was actually issued by the data owner,
and was not forged by the client. This is important to prevent query privilege escalation
attacks wherein a client could try and issue queries beyond those authorized by the data
owner. Since we are in the semi-honest setting, any standard authentication mechanism (e.g.,
existentially unforgeable digital signatures) would suffice for this purpose.

Finally, using techniques from [23], we can also boost the security of ODXT in the multi-
client setting to withstand arbitrarily malicious behavior from both the data owner as well
as from a group of (potentially colluding) clients. Such techniques would not compromise
the core security and efficiency guarantees of ODXT.

4 Evaluating Storage and Search Performance of ODXT

In this section, we report on a prototype implementation of ODXT and compare it with
a prototype implementation of MitraConj, which is a näıve adaptation of the Mitra
scheme for conjunctive queries, as well as prototype implementations of dynamic variants of
IEX-2LEV and IEX-ZMF proposed by Kamara and Moataz [24], which are not backward
private.

Implementation Details. Our prototype implementations are developed in Python (version-
3.8) using the PyCrypto library5 for symmetric-key operations and the Sagemath library6

for group-based operations. More specifically, we realize all PRF operations using AES-256
in counter mode, and all group operations in ODXT over the elliptic curve Curve25519 [2].
We implement the TSet data structure using Riak7, which provides APIs for realizing dis-
tributed NoSQL key-value dictionaries, while the XSet dictionary is realized using a Bloom
filter [4].

Platform and Dataset Used. For our experiments, we used a cluster of four 64-bit Intel
Xeon E5-2690 v4 2.60GHz processors, running Ubuntu 18.04.1 LTS, with 128GB RAM and
1TB SSD hard disk, connected over a 10MBps wide-area network (WAN).

We used a 60.92GB-sized real world dataset from Wikimedia downloads [17], with 16 million
documents and 43 million keywords. We simulated updates by randomly inserting and
deleting documents from the original dataset into an empty dataset. Overall, we performed
a total of 108 update operations, 30% of which were deletions. Our experiments were
designed to ensure that each file in the 61GB dataset was inserted at least once; hence the
entire database was effectively used.

Multi-Threaded Implementations. Our experiments use multi-threaded implementa-
tions of the client and the server. In particular, for MitraConj, the search operation cor-

5https://pycryptodome.readthedocs.io/en/latest/
6http://www.sagemath.org/
7http://basho.com/products/riak-kv/

40

https://pycryptodome.readthedocs.io/en/latest/
http://www.sagemath.org/
http://basho.com/products/riak-kv/

101 102 103 104 105 106 107

10−1

101

103

105

107

|Upd(w1)|

C
li
e
n
t

C
o
m

p
u

ta
ti

o
n

T
im

e
(i

n
m

s)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(a) |Upd(w2)| = 107

101 102 103 104 105 106 107

10−2

10−1

100

101

102

103

104

|Upd(w2)|

C
li
e
n
t

C
o
m

p
u

ta
ti

o
n

T
im

e
(i

n
m

s)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(b) |Upd(w1)| = 10

101 102 103 104 105 106 107

10−1

101

103

105

107

|Upd(w1)|

S
e
rv

e
r

C
o
m

p
u

ta
ti

o
n

T
im

e
(i

n
m

s)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(c) |Upd(w2)| = 107

101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

|Upd(w2)|

S
e
rv

e
r

C
o
m

p
u

ta
ti

o
n

T
im

e
(i

n
m

s)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(d) |Upd(w1)| = 10

Figure 12: Two-conjunctive search query q = (w1 ∧w2): (a) computation time v/s variable |Upd(w1)| (Client),
(b) computation time v/s variable |Upd(w2)| (Client), (c) computation time v/s variable |Upd(w1)| (Server), and (d)
computation time v/s variable |Upd(w2)| (Server). The only cases where MitraConj either matches or outperforms
ODXT is when all terms in the conjunction have nearly the same frequency, i.e., either the s-term has very high
frequency of updates, or all x-terms have very low frequency of updates. However, such queries relatively rarely
in practice. For most commonly encountered queries, ODXT offers significantly faster searches.

responding to each keyword in the queried conjunction is executed in parallel. Hence, the
search latency for MitraConj in our experiments is determined purely by the frequency
of the most frequent keyword(s). Similarly, for ODXT, the search operations correspond-
ing to the x-terms are executed in parallel; however by design, the search latency in our
experiments depends only on the frequency of the least frequent keyword.

Search Latency v/s Computational Complexity. Note that in the setting of multi-
threaded implementations, the variation of search latency with the frequency of keywords
in the queried conjunction do not exactly correspond to the asymptotic expressions for
computational overhead mentioned in Sections 3.1 and 3.3. In particular, the expressions
for computational overhead take into account the total work done across all the keywords in
the conjunction. Nonetheless, the core advantage of ODXT over MitraConj is also reflected
in our experiments evaluating search latency.

41

101 102 103 104 105 106 107

10−1

101

103

105

107

|Upd(w1)|

C
li
e
n
t

C
o
m

p
u

ta
ti

o
n

T
im

e
(i

n
m

s)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(a) |Upd(w2)| = 107

101 102 103 104 105 106 107
10−1

100

101

102

103

104

105

|Upd(w2)|

C
li
e
n
t

C
o
m

p
u

ta
ti

o
n

T
im

e
(i

n
m

s)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(b) |Upd(w1)| = 10

101 102 103 104 105 106 107
10−1

101

103

105

107

|Upd(w1)|

S
e
rv

e
r

C
o
m

p
u

ta
ti

o
n

T
im

e
(i

n
m

s)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(c) |Upd(w2)| = 107

101 102 103 104 105 106 107
10−1

100

101

102

103

104

105

|Upd(w2)|

S
e
rv

e
r

C
o
m

p
u

ta
ti

o
n

T
im

e
(i

n
m

s)
ODXT

MitraConj

IEX-2LEV
IEX-ZMF

(d) |Upd(w1)| = 10

Figure 13: Multi-conjunctive search query q = (w1∧. . .∧w6) with |Upd(w`)| = 107 for ` ∈ [3, 6]: (a) computation
time v/s variable |Upd(w1)| (Client), (b) computation time v/s variable |Upd(w2)| (Client), (c) computation time
v/s variable |Upd(w1)| (Server), and (d) computation time v/s variable |Upd(w2)| (Server)

Client and Server Latency. Figures 12 and 13 compare the various schemes with respect
to the computational overheads at the client and the server for conjunctive searches involving
two and six keywords, respectively. ODXT closely matches IEX-2LEV (despite achieving
stronger security guarantees) and outperforms MitraConj and IEX-ZMF in most cases.
The only cases where MitraConj either matches or outperforms ODXT is when all terms
in the conjunction have nearly the same frequency, i.e., either the s-term has very high
frequency of updates, or all x-terms have very low frequency of updates. However, such
queries occur relatively rarely in practice. For most commonly encountered queries, ODXT
offers significantly faster searches.

A simple observation is that in the extreme cases, the performance for ODXT can be boosted
by using only the TSet to search for every keyword in the conjunction in parallel. This
eliminates the usage of the heavier elliptic machinery, and achieve performance comparable
with MitraConj. We illustrate this when we compare the end-to-end search latency of
ODXT with the other benchmarks in Figure 15.

42

101 102 103 104 105 106 107

100

103

106

109

|Upd(w1)|

C
o
m

m
u

n
ic

a
ti

o
n

O
v
e
rh

e
a
d

(i
n

K
B

)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(a) |Upd(w2)| = 107

101 102 103 104 105 106 107

100

101

102

103

104

105

106

|Upd(w2)|

C
o
m

m
u

n
ic

a
ti

o
n

O
v
e
rh

e
a
d

(i
n

K
B

)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(b) |Upd(w1)| = 10

101 102 103 104 105 106 107

100

103

106

109

1012

|Upd(w1)|

C
o
m

m
u

n
ic

a
ti

o
n

O
v
e
rh

e
a
d

(i
n

K
B

)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(c) |Upd(w2)| = 107

101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

|Upd(w2)|

C
o
m

m
u

n
ic

a
ti

o
n

O
v
e
rh

e
a
d

(i
n

K
B

)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

(d) |Upd(w1)| = 10

Figure 14: Two-conjunctive search query q = (w1 ∧ w2): (a) communication overhead v/s variable |Upd(w1)|,
(b) communication overhead v/s variable |Upd(w2)|. Multi-conjunctive search query q = (w1 ∧ . . . ∧ w6) with
|Upd(w`)| = 107 for ` ∈ [3, 6]: (c) communication overhead v/s variable |Upd(w1)|, (d) communication overhead
v/s variable |Upd(w2)|

Communication Overheads. Figure 14 compares the various schemes with respect to the
communication overheads for conjunctive searches involving two and multiple keywords, re-
spectively. For ODXT and IEX-ZMF, the communication overheads scale with the update-
frequency for the least frequent keyword, while in MitraConj, the communication overheads
grow cumulatively with the frequency of each queried keyword. Note that IEX-ZMF has
a constant communication overhead, but as we show later in Figure 16, this is achieved at
the cost of nearly 100x greater storage as compared to ODXT.

Note: Observe that the flat lines corresponding to MitraConj in Figure 14 have some
“bumps” when the frequency of w1 jumps from 106 to 107. For the two-keyword case,
this is explained as follows: since the queries for w1 and w2 are executed in parallel, the
contributions of w1 and w2 towards the overall communication overhead are proportional to
their respective update-frequencies. The bumps indicate a transition point between “small”
and “large” update-frequencies of w1, relative to the update-frequency of w2.

43

101 102 103 104 105 106 107

10−1

102

105

108

|Upd(w1)|

E
n

d
-t

o
-E

n
d

S
e
a
rc

h
L

a
te

n
c
y

(i
n

m
s)

ODXT-Boosted
MitraConj

IEX-2LEV
IEX-ZMF

(a) |Upd(w2)| = 107

101 102 103 104 105 106 107

10−1

100

101

102

103

104

105

|Upd(w2)|

E
n

d
-t

o
-E

n
d

S
e
a
rc

h
L

a
te

n
c
y

(i
n

m
s)

ODXT-Boosted
MitraConj

IEX-2LEV
IEX-ZMF

(b) |Upd(w1)| = 10

101 102 103 104 105 106 107

100

102

104

106

108

|Upd(w1)|

E
n

d
-t

o
-E

n
d

S
e
a
rc

h
L

a
te

n
c
y

(i
n

m
s)

ODXT-Boosted
MitraConj

IEX-2LEV
IEX-ZMF

(c) |Upd(w2)| = 107

101 102 103 104 105 106 107

100

101

102

103

104

105

106

|Upd(w2)|

E
n

d
-t

o
-E

n
d

S
e
a
rc

h
L

a
te

n
c
y

(i
n

m
s)

ODXT-Boosted
MitraConj

IEX-2LEV
IEX-ZMF

(d) |Upd(w1)| = 10

Figure 15: Experimental results with boosted ODXT: Two-conjunctive search query q = (w1 ∧w2): (a) end-to-
end search latency v/s variable |Upd(w1)|, (b) end-to-end search latency v/s variable |Upd(w2)|. Multi-conjunctive
search query q = (w1 ∧ . . . ∧ w6) with |Upd(w`)| = 107 for ` ∈ [3, 6]: (c) end-to-end search latency v/s variable
|Upd(w1)|, (d) end-to-end search latency v/s variable |Upd(w2)|

End-to-End Search Latency. Figure 15 compares ODXT (with the modification as
mentioned above for boosting search performance in extreme cases) and the other schemes
with respect to their end-to-end latency for conjunctive searches involving two and multiple
keywords over a 10MBps wide-area network (WAN). As in our micro-benchmarks involving
only the client or the server, the end-to-end search latency for ODXT scales only with the
update-frequency of the least frequent keyword. It also outperforms all of the remaining
schemes across queries involving keywords from all frequency ranges. In particular, the
modification proposed above allows ODXT to be competitive with MitraConj even in the
extreme cases where all terms in the conjunction have nearly the same frequency.

Note that the end-to-end conjunctive search latency for ODXT is less than 10 seconds
even when the frequency of the least frequent keyword w1 is as high as 105. For example,
the average end-to-end search latency of a conjunctive query of the form “Find all emails
containing the keywords stock, consensus, infrastructure and cash” over a database of size

44

101 102 103 104 105 106 107 108
10−7

10−4

10−1

102

105

Total Number of Updates

S
to

ra
g
e

(i
n

G
B

)

ODXT
MitraConj

IEX-2LEV
IEX-ZMF

Plaintext Search Index

Figure 16: Server storage v/s number of updates

60.92GB is only 0.75 seconds, which is comparable in practice with the search latency over
plaintext databases.

Storage Overheads. Figure 16 compares the schemes with respect to the storage overhead
at the server. In all cases, the storage overhead grows linearly with the number of updates.
The storage overhead for MitraConj is approximately 75x that of the plaintext search
index. Despite the additional storage required for the XSet dictionary, ODXT requires only
3x more storage compared to MitraConj, which seems to be a reasonable trade-off for the
vast improvements in search performance. Finally, the storage overheads for IEX-ZMF and
IEX-2LEV are 10x and 100x larger than that for ODXT.

5 Cryptanalysis of Search Leakage in ODXT

In analyzing the leakage profile for ODXT, we followed a two-step process:

1. Step 1: Provably establishing the leakage using a simulation-based framework (see
Appendix 3.5).

2. Step-2: Analyzing its impact with respect to well-known attacks such as leakage-
abuse and file-injection attacks (please see Appendix 3.8 for a detailed discussion on
why the leakage profile of ODXT is highly resistant to a large class of existing attacks).

Unfortunately, the SSE literature does not currently have well-defined metrics for exper-
imentally evaluating the leakage of a scheme over real-world databases. This is why the
two-step approach of leakage enumeration and analysis as mentioned above is accepted
widely as the norm in the SSE literature (notably [14, 9, 8, 5, 6, 29, 10]. In particular,
the simulation-based proof in Appendix 3.5 provides a formal guarantee that ODXT does
not leak any more information about a real-world database to a computationally bounded
adversary than enumerated formally in the statement of Theorem 1. This guarantee holds

45

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fraction of Known Files
P

ro
b

a
b

il
it

y
o
f

Q
u

e
ry

R
e
c
o
v
e
ry

Leakage-Abuse Attack [7]

File-Injection Attack[40]

Figure 17: Leakage Analysis of ODXT: Two-Keyword Conjunctive Searches in the “Known Files” Setting

irrespective of the size and distribution of the underlying database, since we allow both of
these to be chosen by the honest-but-curious adversary in the simulation-based framework.

In Appendix 3.8, we claimed the following: conjunctive search operations in ODXT incur
leakages that are almost identical to those incurred by OXT [9] and HXT [29], and are quite
benign in practice based on analysis already done in prior works. In this section, we support
these statements by experimental cryptanalysis results. The experiments were conducted
over the same 60.92GB-sized real world dataset from Wikimedia downloads [17] as was used
for the performance evaluation experiments in Section 4. Recall that the dataset contains
16 million documents and 43 million keywords. The experiments were conducted on the
same platform as in Section 4.

Our cryptanalysis experiments target the leakage from the conjunctive search protocol in
ODXT. We evaluate the probability that the adversary guesses correctly the keywords w1

and w2 underlying a two-conjunction query q = (w1 ∧ w2) by one of two well-known and
extensively studied cryptanalysis methodologies in the SSE literature- the leakage-abuse
attack of Cash et al. [7] and the file-injection attack of Zhang et al. [40]. These attacks
operate in two models - the known file model (where the adversary knows the contents of
a certain fraction of the files in the database) and the chosen/injected file model (where a
certain fraction of the files in the database are adversarially generated).

Similarly, figure 17 illustrates the success probability of the adversary for both kinds of
attacks in the “chosen/injected file” attack setting. The results again establish that even
when the fraction of injected files in the database is as high as 60% (which is quite unlikely in
any real world database), the success probability of the adversary in recovering the keywords
underlying a conjunction (w1 ∧ w2) is less than 5%.

Our experiments thus re-establish our claims in Appendix 3.8 that the leakages incurred
by the conjunctive search protocol in ODXT are benign and are resistant to even the
most powerful leakage-based cryptanalysis techniques in the SSE literature over real-world
databases.

Naturally, when the adversary knows (or has injected) all the documents in the database,
query recovery is trivial. However, this is a very strong attack model and is practically

46

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Fraction of Adversarially Chosen/Injected Files

P
ro

b
a
b

il
it

y
o
f

Q
u

e
ry

R
e
c
o
v
e
ry

Leakage-Abuse Attack [7]

File-Injection Attack[40]

Figure 18: Leakage Analysis of ODXT: Two-Keyword Conjunctive Searches in the “Chosen Files” Setting

infeasible. What we want in a real-life application is that when the adversary knows only a
small fraction of the files in the database, or has managed to inject a small fraction of files
into the database, query recovery should happen with a very small probability. This would
essentially indicate that the adversary has access to no additional leakage (about either the
keywords underlying the query or the files in the database) from the search protocol beyond
the benign leakage profile that was formally enumerated in Appendix 3.5.

Figure 17 illustrates the success probability of the adversary for both kinds of attacks in
the “known file” attack setting. The results clearly establish that even when the fraction
of known files in the database is as high as 50%, the success probability of the adversary in
recovering the keywords underlying a conjunction (w1 ∧ w2) is less than 5%.

6 Conclusion and Open Problems

In this work, we proposed the first dynamic SSE scheme supporting conjunctive keyword
search that achieves both forward and backward privacy. Prior to this work, the study
of forward and backward private SSE was restricted almost exclusively to single keyword
search. On the other hand, in the setting of conjunctive keyword search, most prior SSE
constructions with sub-linear search complexity only supported static databases.

Our main construction, called Oblivious Cross-Tags (ODXT in short), supports both up-
dates and conjunctive keyword searches in tandem over very large arbitrarily-structured
databases, including both attribute-value and free-text databases. All operations in ODXT
involve only a single round of communication between the client and the server. This makes
it amenable to deployment in a variety of settings such as single-client and multi-client
SSE. Updates in ODXT are leakage-free, while searches incur only moderate access pattern
leakages to the server that conform to existing notions of forward and backward privacy.

Our work gives rise to a number of interesting open problems. We outline some of these
below.

47

Leakage Suppression. We leave it open to design dynamic conjunctive SSE schemes with
even smaller leakage profiles. For example, an attractive goal is to construct a scheme that
only reveals the update history pertaining to the final query outcome, and hides all the
information pertaining to the least frequent keyword. Other potential goals could be to
suppress access pattern and volume leakages by resorting to the use of trusted hardware
enclaves such as Intel SGX and enclave-based ORAM-style data structures [30, 31, 37].

General Boolean Queries. Extending ODXT beyond conjunctions to support general
Boolean queries is an interesting direction of future work. In the static setting, Cash et al. [9]
discuss some general strategies to extend SSE schemes for conjunctive keyword searches to
support more general Boolean queries; however extending these techniques to the dynamic
setting and analyzing the corresponding impact on privacy and performance seems non-
trivial.

(Quasi-) Optimal Search Complexity. The optimal search complexity for any conjunctive-
SSE scheme is O(n · |DB(w1)|), where n is the number of keywords involved in the con-
junction, w1 is the least frequent of these keywords, and |DB(w1)| is the number of files
currently containing w1. As explained in our asymptotic analysis, ODXT incurs slightly
higher computational complexity, namely O(n · |Upd(w1)|). This leaves open the question
of achieving forward and backward private SSE schemes with (quasi-) optimal conjunctive
keyword search complexity.

We note that question has indeed been addressed in the single keyword search setting by
Chamani et al. [10] in the form of Orion and Horus - two elegant SSE constructions with
quasi-optimal single keyword search complexity. These schemes use ORAM-style techniques
and incur logarithmically-many rounds of client-server communication during searches. It
would be interesting to explore if one could combine the concept of dynamic cross-tags
introduced in this paper with the original constructions of Orion and Horus to build an
SSE scheme that achieves quasi-optimal conjunctive keyword search complexity.

References

[1] W. Aiello, Y. Ishai, and O. Reingold, “Priced oblivious transfer: How to sell digital
goods,” in EUROCRYPT 2001, 2001, pp. 119–135.

[2] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in PKC 2006, 2006,
pp. 207–228.

[3] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting leakage abuse attacks,” in NDSS
2020, 2020.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun.
ACM, vol. 13, no. 7, pp. 422–426, 1970.

[5] R. Bost, “
∑

oϕoς: Forward secure searchable encryption,” in ACM CCS 2016, 2016,
pp. 1143–1154.

48

[6] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward private searchable
encryption from constrained cryptographic primitives,” in ACM CCS 2017, 2017, pp.
1465–1482.

[7] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks against search-
able encryption,” in ACM CCS 2015, 2015, pp. 668–679.

[8] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Dynamic searchable encryption in very-large databases: Data structures and imple-
mentation,” in NDSS 2014, 2014.

[9] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Highly-
scalable searchable symmetric encryption with support for boolean queries,” in
CRYPTO 2013, 2013, pp. 353–373.

[10] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New constructions
for forward and backward private symmetric searchable encryption,” in ACM CCS
2018, 2018, pp. 1038–1055.

[11] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on remote en-
crypted data,” in ACNS 2005, 2005, pp. 442–455.

[12] M. Chase and S. Kamara, “Structured encryption and controlled disclosure,” in ASI-
ACRYPT 2010, 2010, pp. 577–594.

[13] C. Chu, W. T. Zhu, J. Han, J. K. Liu, J. Xu, and J. Zhou, “Security concerns in popular
cloud storage services,” IEEE Pervasive Computing, vol. 12, no. 4, pp. 50–57, 2013.

[14] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric en-
cryption: improved definitions and efficient constructions,” in ACM CCS 2006, 2006,
pp. 79–88.

[15] M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans, “Efficient dynamic searchable
encryption with forward privacy,” PoPETs, vol. 2018, no. 1, pp. 5–20, 2018.

[16] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner, “Rich queries
on encrypted data: Beyond exact matches,” in ESORICS 2015, 2015, pp. 123–145.

[17] W. Foundation, “Wikimedia downloads,” https://dumps.wikimedia.org, 2017.

[18] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: efficient oblivious RAM in
two rounds with applications to searchable encryption,” in CRYPTO 2016, 2016, pp.
563–592.

[19] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in ACM STOC’09,
2009, pp. 169–178.

[20] E. Goh, “Secure indexes,” IACR Cryptology ePrint Archive, vol. 2003, p. 216, 2003.

[21] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious rams,”
J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[22] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation,” in NDSS 2012, 2012.

49

https://dumps.wikimedia.org

[23] S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Outsourced symmetric
private information retrieval,” in ACM CCS 2013, 2013, pp. 875–888.

[24] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption with worst-case
sub-linear complexity,” in EUROCRYPT 2017, 2017, pp. 94–124.

[25] ——, “Computationally volume-hiding structured encryption,” in EUROCRYPT 2019,
2019, pp. 183–213.

[26] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable symmetric encryp-
tion,” in FC 2013, 2013, pp. 258–274.

[27] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmetric encryp-
tion,” in ACM CCS 2012, 2012, pp. 965–976.

[28] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W. Kim, “Forward secure dynamic search-
able symmetric encryption with efficient updates,” in ACM CCS 2017, 2017, pp. 1449–
1463.

[29] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D. Mukhopadhyay, R. Steinfeld, S. Sun,
D. Liu, and C. Zuo, “Result pattern hiding searchable encryption for conjunctive
queries,” in ACM CCS 2018, 2018, pp. 745–762.

[30] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and
U. R. Savagaonkar, “Innovative instructions and software model for isolated execution,”
in HASP 2013, 2013, p. 10.

[31] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An efficient oblivious
search index,” in IEEE S&P 2018, 2018, pp. 279–296.

[32] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in SODA 2001, 2001,
pp. 448–457.

[33] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb: protecting
confidentiality with encrypted query processing,” in ACM SOSP 2011, 2011, pp. 85–
100.

[34] D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for searches on en-
crypted data,” in IEEE S&P 2000, 2000, pp. 44–55.

[35] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private searchable sym-
metric encryption with optimized I/O efficiency,” IACR Cryptology ePrint Archive, vol.
2018, p. 497, 2018.

[36] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable encryption
with small leakage,” in NDSS 2014, 2014.

[37] E. Stefanov, M. van Dijk, E. Shi, T. H. Chan, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path ORAM: an extremely simple oblivious RAM protocol,” J. ACM,
vol. 65, no. 4, pp. 18:1–18:26, 2018.

[38] S. Sun, J. K. Liu, A. Sakzad, R. Steinfeld, and T. H. Yuen, “An efficient non-interactive
multi-client searchable encryption with support for boolean queries,” in ESORICS 2016,
2016, pp. 154–172.

50

[39] S. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and S. Nepal, “Practical
backward-secure searchable encryption from symmetric puncturable encryption,” in
ACM CCS 2018, 2018, pp. 763–780.

[40] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong to us: The power
of file-injection attacks on searchable encryption,” in USENIX Security Symposium
2016, 2016, pp. 707–720.

51

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Notations
	Cryptographic Background
	Computational Assumptions
	Dynamic SSE

	Dynamic Conjunctive SSE Schemes
	A Naïve Solution
	Basic Dynamic Cross-Tags
	Oblivious Dynamic Cross-Tags
	Leakage Profile of ODXT (Informal)
	Formalizing the Leakage Profile of ODXT
	Forward Privacy of ODXT
	Backward Privacy of ODXT
	Discussion on the Leakage Profile of ODXT
	ODXT in the Multi-Client Setting

	Evaluating Storage and Search Performance of ODXT
	Cryptanalysis of Search Leakage in ODXT
	Conclusion and Open Problems

