
Indifferentiability of SKINNY-HASH

Internal Functions

Akinori Hosoyamada1,2 and Tetsu Iwata2

1NTT Secure Platform Laboratories, NTT Corporation, Tokyo, Japan

akinori.hosoyamada.bh@hco.ntt.co.jp
2Department of Information and Communication Engineering, Nagoya University,

Nagoya, Japan

{hosoyamada.akinori,tetsu.iwata}@nagoya-u.jp

Abstract

We provide a formal proof for the indifferentiability of SKINNY-HASH
internal function from a random oracle. SKINNY-HASH is a family of
function-based sponge hash functions, and it was selected as one of the
second round candidates of the NIST lightweight cryptography competi-
tion. Its internal function is constructed from the tweakable block cipher
SKINNY. The construction of the internal function is very simple and the
designers claim n-bit security, where n is the block length of SKINNY.
However, a formal security proof of this claim is not given in the original
specification of SKINNY-HASH. In this paper, we formally prove that
the internal function of SKINNY-HASH has n-bit security, i.e., it is indif-
ferentiable from a random oracle up to O(2n) queries, substantiating the
security claim of the designers.

Keywords: symmetric-key cryptography, provable security, sponge con-
struction, indifferentiability, SKINNY, SKINNY-HASH

1 Introduction

The sponge construction is one of the most basic constructions to convert a
function or permutation into a cryptographic hash function. It is used in many
modern cryptographic hash functions including SHA-3 [Nat15].

The sponge construction based on F : {0, 1}b → {0, 1}b, where F is a public
permutation or a public function, has two positive parameters r and c such that
r + c = b. Given an input M ∈ {0, 1}∗, the hash value is computed as follows:
First, M is padded so that its length is a multiple of r. Let M [1]|| · · · ||M [L] ∈
{0, 1}rL be the message after padding, where M [i] ∈ {0, 1}r for each i. Second,
the internal states st0, . . . , stL ∈ {0, 1}b are computed in a sequential order as
st0 := IV and sti := F (sti−1 ⊕ (M [i]||0c)) for 1 ≤ i ≤ L, where IV ∈ {0, 1}b is
an initialization vector. (This phase is called the absorbing phase.) Third, the

1

internal states stL+1, . . . , stL+h−1 and the output value H = H[1] · · · ||H[h] ∈
{0, 1}rh (H[i] ∈ {0, 1}r) are computed as stL+i := F (stL+i−1) for 1 ≤ i ≤ h− 1
and H[i] := (the most significant r bits of stL+i−1). (This phase is called the
squeezing phase1.) H is truncated if necessary. See Fig. 1.

F F F F

M[1] M[2] M[3] M[L] H[1] H[h-1] H[h]

IV

r

c

M

pad

H

||

Figure 1: The sponge construction.

The sponge construction is proven to be indifferentiable from a random or-
acle up to O(2c/2) queries when F is a random oracle or an ideal permuta-
tion [BDPA08], and an appropriate padding function is chosen. That is, if a
cryptosystem is proven to be secure in the random oracle model, the security of
the cryptosystem does not decrease even if we replace the random oracle with
the sponge construction, as long as the number of queries made to F through
the sponge construction or the direct computation of F (and F−1, if F is a
permutation) is O(2c/2).

Since the sponge construction is proven to be secure, to realize a secure
cryptographic hash function, it is sufficient to construct a secure function or
permutation F . There are two possible ways to realize such F .

One approach is to design a dedicated function or permutation from scratch.
Most sponge-based hash functions including SHA-3 take this approach. For in-
stance, SHA-3 uses a dedicated 1600-bit permutation as F . The other approach
is to construct F from well-established primitives such as block ciphers or tweak-
able block ciphers, which is taken by the SKINNY-HASH function family.

1In some concrete hash functions, the parameters r and c are changed to other parameters
r′ and c′ such that r′ + c′ = b in the squeezing phase.

2

1.1 SKINNY-HASH Internal Functions

SKINNY-HASH [BJK+20] is a family of function-based sponge constructions, which
is one of the second round candidates of the NIST lightweight cryptography
competition [NIS]. It consists of SKINNY-tk2-Hash and SKINNY-tk3-Hash,
which are the sponge constructions with b = 256 and b = 384, and the in-
ternal functions are built with the tweakable block ciphers SKINNY-128-256

and SKINNY-128-384 [BJK+16], respectively.
SKINNY-128-256 is a tweakable permutation Ẽ256

tk : {0, 1}128 → {0, 1}128,
where the tweakey tk is chosen from {0, 1}256. Similarly, SKINNY-128-384 is a
tweakable permutation Ẽ384

tk on {0, 1}128, where the tweakey tk is chosen from

{0, 1}384. Ẽ256
tk and Ẽ384

tk are expected to be secure and suitable to instantiate
ideal ciphers of which the block length is 128 bits and the key lengths are 256
bits and 384 bits, respectively.

The internal functions F256 : {0, 1}256 → {0, 1}256 and F384 : {0, 1}384 →
{0, 1}384 of SKINNY-tk2-Hash and SKINNY-tk3-Hash are defined by

F256(x) := Ẽ256
x (c1)||Ẽ256

x (c2)

and
F384(x) := Ẽ384

x (c1)||Ẽ384
x (c2)||Ẽ384

x (c3),

respectively, where c1, c2, c3 are distinct 128-bit constants (see Fig. 2).

||

 𝐸384

 𝐸384

 𝐸384

𝑥

𝐹384 𝑥

𝑐1

𝑐2
||

 𝐸256

 𝐸256

𝑥 𝐹256 𝑥256

128

128

128

128

256 384

𝑐1
128

𝑐2
128

𝑐3
128

128

128

128

384

Figure 2: The SKINNY-HASH internal functions F256 and F384.

In the specification of SKINNY-HASH, the designers claim that “The function
F256 is indifferentiable from a 256-bit random function up to O(2128) queries.”
and “The same intuitive argument applies to F384. However, the bound is worse
than the one for F256 by a factor of 3...”.

3

Their design and security claim are notable since F256 and F384 achieve n-
bit security from an n-bit tweakable block cipher although the designs of the
functions are quite simple (just a few parallel applications of tweakable block
ciphers). On the other hand, when we build a compression function (to be used
in the Merkle-Damg̊ard construction) based on (tweakable) block ciphers, even
the known approaches to achieve the same level of security require more complex
constructions [Nai11, HK14].

Observe that F256 and F384 do not give a perfect random function. If we
write F256(x) = Y1||Y2, then Y1 = Y2 never happens. Similarly, if we write
F384(x) = Y1||Y2||Y3, then for any i 6= j, Yi = Yj is impossible. The n-bit
security claim comes from the intuition that these are the only events that
make them different from a truly random function. However, there is no formal
proof for the n-bit security claim. Generally, it is highly favorable that a mode
of operation of (tweakable) block ciphers has formal security proofs when a
security claim is provided.

1.2 Our Contributions

In this paper, we give a formal proof of the indifferentiability of the SKINNY-HASH
internal functions F256 and F384 in the ideal cipher model. In fact, we show a
more general theorem: Let E be an n-bit block cipher with `n-bit key, where `
is a small constant. Define FE : {0, 1}`n → {0, 1}`n be the function defined by

FE(x) := Ex(c1)|| · · · ||Ex(c`), (1)

where c1, . . . , c` are fixed distinct n-bit constants. We call FE the SHI function
(“SHI function” is an abbreviation of SKINNY-HASH Internal function). We
show the following theorem.

Theorem 1 (Main theorem, informal). If E is an ideal cipher, the SHI function
FE is indifferentiable from a random oracle as long as the total number of
queries made to E and its inverse E−1 are in o(2n).

This theorem shows that the SHI function has n-bit security, as claimed by
the designers. Since the structure of SKINNY-HASH internal functions and the
generalization FE is quite simple and the security is very high, we believe that
more and more function-based sponge constructions will be developed and used
in practical situations relying on the SHI construction and our security proof.

Intuition of the proof for Theorem 1. Intuitively, we construct a simulator S as
follows2.

When an adversary A queries a value (K,X) to E that A has already queried
before, S just returns the previous result stored in a list LK .

2Our intuition for the simulator is based on “Rationale of F256 and F384” in the original
specification [BJK+20]. Note that the original explanation in [BJK+20] is very rough (only
two paragraphs) and it is not trivial how to derive a formal security proof from that.

4

When A queries a fresh value (K,X) to E such that A has never queried
(K,Z) for any Z to E nor E−1, S first queries K to the random oracle RO :
{0, 1}n` → {0, 1}n`, and simulates the values EK(c1), . . . , EK(c`) as EK(c1)|| · · ·
||EK(c`) := RO(K). S stores the pairs (c1, EK(c1)), . . . , (c`, EK(c`)) into LK .
If X = ci for some i, then S returns the value EK(ci) to A. If X 6= ci for
all i, then S picks a value Y from {0, 1}n \ {EK(c1), . . . , EK(c`)} uniformly at
random, simulates the value EK(X) as EK(X) := Y , stores the pair (X,Y) into
the list LK , and returns Y to A.

When A queries a value (K,X) to E such that A has already queried (K,Z)
for some Z to E or E−1 before but (X,Y) 6∈ LK for any Y , S chooses Y from
{0, 1}n` randomly in such a way that Y 6= Y ′ holds for every pair (X ′, Y ′) ∈ LK ,
stores the pair (X,Y) into the list LK , and returns Y to A.

Queries to E−1 are simulated in the same way.
The above simulation fails only when S queries K to the random oracle RO,

and RO(K) = Y1|| · · · ||Y` (Yi ∈ {0, 1}n for each i) happens to satisfy Yi = Yj
for some i 6= j. Roughly speaking, the probability of this event can be upper
bounded by O(1/2n) for each K, and thus the failure probability of S is always
negligibly small if the number of queries made by A is smaller than 2n. Note that
such an event never holds in the real world since, if we divide FE(K) ∈ {0, 1}n`
into n-bit blocks as FE(K) = Y1|| · · · ||Y`, then Yi = EK(ci) never matches
Yj = EK(cj) for i 6= j, for arbitrary K.

The main contribution of the paper is to provide a formal proof that the
above intuition is correct.

1.3 Paper Organization

Section 2 gives basic notations and definitions. Section 3 shows a formal proof
for the SKINNY-HASH internal function. Section 4 concludes the paper.

2 Preliminaries

We say that a function f : Z≥0 → R is negligible if, for arbitrary constant c > 0,
there exists a sufficiently large integer N such that |f(n)| ≤ 1/nc for all n ≥ N .

Block ciphers. An n-bit block cipher with k-bit keys is a keyed permutation
E : {0, 1}k ×{0, 1}n → {0, 1}n. In other words, the function E is called a block
cipher when E(K, ·) : {0, 1}n → {0, 1}n is a permutation for all K ∈ {0, 1}k.
Let E−1 denote the inverse of E defined by E−1(K,E(K,M)) = M for all
M ∈ {0, 1}n. We often write EK(·) and E−1

K (·) instead of E(K, ·) and E−1(K, ·),
respectively.
Ideal primitive models. The random oracle model is the model in which there
exists the oracle of a random function RO (either of fixed input-length and vari-
able input-lengths), and adversaries have access to RO(·). The ideal permutation
model is the model in which there exists the oracle of a random permutation P

5

and its inverse P−1, and adversaries have access to P (·) and P−1(·) (we some-
times refer to P as an ideal permutation). The ideal cipher model is the model
in which there exists the oracle of an ideal cipher E (an ideal cipher is a block
cipher such that, for each key K, E(K, ·) is chosen independently at random)
and its inverse E−1, and adversaries have access to E(·, ·) and E−1(·, ·). In
what follows, we refer to (i) a random oracle (either of fixed input length and
variable input lengths), (ii) an ideal permutation, and (iii) an ideal cipher as
ideal primitives.

Indifferentiability. Let R be an ideal primitive. Let H be a function that
accesses to the oracle of another ideal primitive O, and suppose that the input
and output lengths of H are the same as those of R. Let S be an algorithm
that has the same interface of input and output as O and has an oracle access
to R. Let RealH,O,A be the game that runs A relative to (HO,O), and finally

returns what AHO,O outputs. In addition, let IdealR,A
S be the game that runs

A relative to (R,SR), and finally returns what AR,SR outputs. We define the
indifferentiability advantage of an adversary A against (HO,O) and R with
respect to the simulator S by

Advindiff
(HO,O),R,S(A) :=

∣∣∣Pr
[
1← RealH,O,A

]
− Pr

[
1← IdealR,A

S

]∣∣∣ .
See also Fig. 3.

H O R S

A

Real Ideal

Figure 3: Indifferentiability games.

Definition 1 (Indifferentiability [MRH04]). The function HO is said to be
(tS , tA, qA, QA, ε)-indifferentiable from R if there exists a simulator S such that
(1) S runs in time at most tS , and (2) for any adversary A that runs in time
tA, makes at most qA queries to O (resp., SR), and QA queries to HO (resp.,
R),

Advindiff
(HO,O),R,S(A) ≤ ε

holds.

6

We ambiguously say that HO is indifferentiable from R up to x queries
if there exists a simulator S such that, for arbitrary adversary A such that
qA, QA � x, Advindiff

(HO,O),R,S(A) is negligible.
The following composition theorem assures that, if (i) the security of a prim-

itive Q is defined with a single-stage game, and (ii) HO is indifferentiable from
a random oracle, then it suffice to prove the security of QR in the setting that

adversaries can access to R to prove the security of QHO in the setting that
adversaries can access to (HO,O).

Theorem 2 (Composition theorem [RSS11]). Let G be a single-stage game.
Let H and O as above. Then, for any adversary A and simulator S, there exist
adversaries B and C such that

Pr
[
GHO,AO ⇒ x

]
≤ Pr

[
GR,B ⇒ x

]
+ Advindiff

(HO,O),R,S(C)

and QB ≤ QA+QS ·qA, QC ≤ QG +nG,A ·QA, qC ≤ nG,A ·qA, tB ≤ tA+qA · t̃S ,
tC ≤ tG +nG,A · tA hold3. Here, QX denotes the maximum number of queries to
R or HO made by X for X = A,B, C, G, and QS denotes the maximum number
of queries made to R at each invocation of S. qX denotes the maximum number
of queries to O or SR made by X for X = A, C. tX denotes the maximum
running times of X for X = A,B, C, G, and t̃S denotes the maximum time that
S spends at each invocation of S. nG,A denotes the number of invocations of A
by G.

3 Security Proofs of the SHI Function

Let E denote an n-bit ideal cipher with `n-bit keys, where ` is a small constant.
Let FE be the SHI function defined as in (1). The goal of this section is to prove
the following theorem, which shows that the SHI function is indifferentiable from
a random oracle up to O(2n) queries. Together with Theorem 2, the following
theorem assures that the security of the sponge construction does not decrease
when its internal function is instantiated with the SHI function up to O(2n)
queries.

Theorem 3. There exists a simulator S that satisfies the following conditions.

1. S makes at most 1 query to RO and returns an output in time O(1) at
each invocation of S.

2. For an arbitrary adversary A that makes at most QA queries to HE and
makes qA queries to E and E−1 in total,

Advindiff
(FE ,(E,E−1)),RO,S(A) ≤ `2(qA + `QA)

2n

holds.
3The claim on the number of queries and running times (the inequalities on QB, QC , qC ,

tB. and tC) are a little bit different from the original statement in [RSS11], but they can be
deduced from the arguments in the original proof.

7

Game GA1
x← AFE ,(E,E−1)

return x

Procedure E(K,X)

if there exists Y such that (X,Y) ∈ LK

return Y
else

Y
$←− {0, 1}n \ LK,out

LK,in ← LK,in ∪ {X}
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y)}

Procedure E−1(K,Y)

if there exists X such that (X,Y) ∈ LK

return X
else

X
$←− {0, 1}n \ LK,in

LK,in ← LK,in ∪ {X}
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y)}

Procedure FE(T)

S ← E(T, c1)|| . . . ||E(T, c`)
return S

Figure 4: The real game G1. The lists LK , LK,in, and LK,out (for K ∈ {0, 1}n`)
are set to be empty at the beginning of the game.

Proof. We show the theorem with the code-based game-playing proof tech-
nique [BR06], by introducing 6 games G1, . . . , G6. See the explanation below
Theorem 1 for intuition of the proof.

Game G1. G1 is the real game, where the adversary A runs relative to the
oracles FE , E, and E−1. We assume that the oracle of the ideal cipher E is
implemented by using lazy sampling. See Fig. 4 for details.

Games G2 and G3. G2 is identical to G1 except that, when a value (K,X)
(resp., (K,Y)) is queried to E (resp., E−1) such that (K,Z) has not been
queried to E nor E−1 for any Z, the values EK(c1), . . . , EK(c`) are sampled
before answering to the query. In addition, the sampling of EK(c1), . . . , EK(c`)

8

are performed as follows:

1. Choose Y1, . . . , Y` ∈ {0, 1}n independently and uniformly at random.

2. If Yi = Yj holds for some i 6= j, set flag to be bad, and re-sample Y1, . . . , Y`
in such a way that Yi 6= Yj holds for all i 6= j.

3. Set EK(ci) := Yi for i = 1, . . . , `.

The procedure FE is not changed from G1. G3 is identical to G2 except that
the re-sampling of Y1, . . . , Y` is not performed even if flag is set to be bad. See
Fig. 5 for details.

Games G4 and G5. In the game G4, compared to G3, a random oracle RO
is introduced, and the sampling of Y1, . . . , Y` in E and E−1 when LK is empty
is replaced with the query of K to the random oracle RO. FE is not changed in
G4. The game G5 is identical to G4 except that FE is modified in such a way
that FE(T) := RO(T). See Fig. 6 for details.

Game G6. G6 is the ideal game. In G6, A runs relative to RO and SRO
instead of FE and (E,E−1), where S is a simulator defined as in Fig.7. Given
an input (b,K,Z) ∈ {0, 1} × {0, 1}n` × {0, 1}n, S simulates E(K,Z) if b = 0
and E−1(K,Z) if b = 1. The behavior of S is the same as that of E and E−1

in the games G4 and G5.
Below we give an upper bound of the indifferentiability advantage Advindiff

(FE ,(E,E−1)),RO,S(A).
First, by definition of the games,∣∣Pr

[
1← GAi

]
− Pr

[
1← GAi+1

]∣∣ = 0 (2)

holds for i = 1, 3, 4, 5.
On the difference between G2 and G3, let SetBad(i) denote the event that

flag is set to be bad at the i-th query to E or E−1 (note that 1 ≤ i ≤ qA+ ` ·QA
holds since one invocation of FE makes ` queries to E). Then, for each i,

Pr [SetBad(i)] = Pr
Y1,...,Y`

$←−{0,1}n
[Yj = Yk for some 1 ≤ j < k ≤ `]

≤
∑

1≤j<k≤`

Pr
Yj ,Yk

$←−{0,1}n
[Yj = Yk]

=
∑

1≤j<k≤`

∑
W∈{0,1}n

Pr
Yj ,Yk

$←−{0,1}n
[Yj = W ∧ Yk = W]

=
∑

1≤j<k≤`

∑
W∈{0,1}n

1

22n
≤ `2

2n

9

Procedure E(K,X)

if LK is empty

Y1, . . . , Y`
$←− {0, 1}n

if Yi = Yj for some i 6= j
flag← bad

for i = 1, . . . , ` do:

Yi
$←− {0, 1}n \ {Y1, . . . , Yi−1}

LK,in ← LK,in ∪ {c1, . . . , c`}
LK,out ← LK,out ∪ {Y1, . . . , Y`}
LK ← LK ∪ {(c1, Y1), . . . , (c`, Y`)}

else if there exists Y such that (X,Y) ∈ LK

return Y
else

Y
$←− {0, 1}n \ LK,out

LK,in ← LK,in ∪ {X}
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y)}

Procedure E−1(K,Y)

if LK is empty

Y1, . . . , Y`
$←− {0, 1}n

if Yi = Yj for some i 6= j
flag← bad

for i = 1, . . . , ` do:

Yi
$←− {0, 1}n \ {Y1, . . . , Yi−1}

LK,in ← LK,in ∪ {c1, . . . , c`}
LK,out ← LK,out ∪ {Y1, . . . , Y`}
LK ← LK ∪ {(c1, Y1), . . . , (c`, Y`)}

else if there exists X such that (X,Y) ∈ LK

return X
else

X
$←− {0, 1}n \ LK,in

LK,in ← LK,in ∪ {X}
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y)}

Figure 5: The modified versions of E(K,X) and E−1(K,Y) in the games G2

and G3. The steps surrounded by a square is performed in G3 but not performed
in G2.

10

Procedure RO(T)

if there exists W s.t. (T,W) ∈ LRO

return W
else

W
$←− {0, 1}n`

LRO ← LRO ∪ {(T,W)}
return W

Procedure E(K,X)

if LK is empty
Y1|| · · · ||Y` ← RO(K) (here, Yi ∈ {0, 1}n for each i)
LK,in ← LK,in ∪ {c1, . . . , c`}
LK,out ← LK,out ∪ {Y1, . . . , Y`}
LK ← LK ∪ {(c1, Y1), . . . , (c`, Y`)}

else if there exists Y such that (X,Y) ∈ LK

return Y
else

Y
$←− {0, 1}n \ LK,out

LK,in ← LK,in ∪ {X}
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y)}

Procedure E−1(K,Y)

if LK is empty
Y1|| · · · ||Y` ← RO(K) (here, Yi ∈ {0, 1}n for each i)
LK,in ← LK,in ∪ {c1, . . . , c`}
LK,out ← LK,out ∪ {Y1, . . . , Y`}
LK ← LK ∪ {(c1, Y1), . . . , (c`, Y`)}

else if there exists X such that (X,Y) ∈ LK

return X
else

X
$←− {0, 1}n \ LK,in

LK,in ← LK,in ∪ {X}
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y)}

Procedure FE(T)

S ← E(T, c1)|| . . . ||E(T, c`)
S ← RO(T)

return S

Figure 6: The procedure RO and the modified versions of E(K,X), E−1(K,Y),
and FE in the games G4 and G5. The list LRO is set to be empty at the
beginning of the game. The step surrounded by a square is included in G5 but
not included in G4.

11

Game GA6
x← ARO,SRO

return x

Procedure S(0,K, Z)

if LK is empty
Y1|| · · · ||Y` ← RO(K) (here, Yi ∈ {0, 1}n for each i)
LK,in ← LK,in ∪ {c1, . . . , c`}
LK,out ← LK,out ∪ {Y1, . . . , Y`}
LK ← LK ∪ {(c1, Y1), . . . , (c`, Y`)}

else if there exists Y such that (X,Y) ∈ LK

return Y
else

Y
$←− {0, 1}n \ LK,out

LK,in ← LK,in ∪ {X}
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y)}

Procedure S(1,K, Y)

if LK is empty
Y1|| · · · ||Y` ← RO(K) (here, Yi ∈ {0, 1}n for each i)
LK,in ← LK,in ∪ {c1, . . . , c`}
LK,out ← LK,out ∪ {Y1, . . . , Y`}
LK ← LK ∪ {(c1, Y1), . . . , (c`, Y`)}

else if there exists X such that (X,Y) ∈ LK

return X
else

X
$←− {0, 1}n \ LK,in

LK,in ← LK,in ∪ {X}
LK,out ← LK,out ∪ {Y }
LK ← LK ∪ {(X,Y)}

Figure 7: The ideal game G6 and the simulator S. The procedure RO is the
same as that of G4 and G5. The procedures S(0,K,X) and S(1,K,X) are
described separately so that the notations will be compatible with those in G4

and G5. S(0, ·, ·) simulates E(·, ·) and S(1, ·, ·) simulates E−1(·, ·).

12

holds. Therefore∣∣Pr
[
1← GA2

]
− Pr

[
1← GA3

]∣∣ ≤ Pr [flag← bad in G2]

≤
∑

1≤i≤qA+`QA

Pr [SetBad(i)]

≤ `2(qA + `QA)

2n
(3)

holds.
From (2) and (3),

Advindiff
(FE ,(E,E−1)),RO,S(A) =

∣∣Pr
[
1← GA1

]
− Pr

[
1← GA6

]∣∣
≤
∑

1≤i≤5

∣∣Pr
[
1← GAi

]
− Pr

[
1← GAi+1

]∣∣
≤ `2(qA + `QA)

2n

follows.
By definition of the simulator S (Fig. 7), at each invocation of S, it makes

at most one query to RO and returns an output in time O(1). Therefore the
claim of the theorem holds.

4 Concluding Remarks

In this paper, we provided a formal security proof of the indifferentiability of
the SKINNY-HASH internal function (SHI). In the original specification of
SKINNY-HASH, the SHI function is claimed to have n-bit security without
a formal proof. We showed that they are in fact indifferentiable from a random
oracle up to O(2n) queries, as claimed by the designers. Though its construc-
tion is quite simple, the SHI function achieves very high security. We hope that
more and more function-based sponge constructions will be developed and used
in practical situations relying on the SHI function and our security proof.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number JP20K11675.

References

[BDPA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
che. On the indifferentiability of the sponge construction. In Nigel P.
Smart, editor, Advances in Cryptology - EUROCRYPT 2008, 27th
Annual International Conference on the Theory and Applications of

13

Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Pro-
ceedings, volume 4965 of Lecture Notes in Computer Science, pages
181–197. Springer, 2008.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng
Sim. The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in Com-
puter Science, pages 123–153. Springer, 2016.

[BJK+20] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng
Sim. SKINNY-AEAD and skinny-hash. IACR Trans. Symmetric
Cryptol., 2020(S1):88–131, 2020.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption
and a framework for code-based game-playing proofs. In Serge Vau-
denay, editor, Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1,
2006, Proceedings, volume 4004 of Lecture Notes in Computer Sci-
ence, pages 409–426. Springer, 2006.

[HK14] Shoichi Hirose and Hidenori Kuwakado. A block-cipher-based hash
function using an mmo-type double-block compression function. In
Sherman S. M. Chow, Joseph K. Liu, Lucas Chi Kwong Hui, and Siu-
Ming Yiu, editors, Provable Security - 8th International Conference,
ProvSec 2014, Hong Kong, China, October 9-10, 2014. Proceedings,
volume 8782 of Lecture Notes in Computer Science, pages 71–86.
Springer, 2014.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indif-
ferentiability, impossibility results on reductions, and applications
to the random oracle methodology. In Moni Naor, editor, Theory of
Cryptography, First Theory of Cryptography Conference, TCC 2004,
Cambridge, MA, USA, February 19-21, 2004, Proceedings, volume
2951 of Lecture Notes in Computer Science, pages 21–39. Springer,
2004.

[Nai11] Yusuke Naito. Blockcipher-based double-length hash functions for
pseudorandom oracles. In Ali Miri and Serge Vaudenay, editors,
Selected Areas in Cryptography - 18th International Workshop, SAC
2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected
Papers, volume 7118 of Lecture Notes in Computer Science, pages
338–355. Springer, 2011.

14

[Nat15] National Institute of Standards and Technology. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. NIST
FIPS PUB 202, U.S. Department of Commerce, August 2015.

[NIS] NIST. Round 2 candidates of the lightweight cryptography stan-
dardization process. See https://csrc.nist.gov/projects/lightweight-
cryptography/round-2-candidates (2020/9/18).

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Care-
ful with composition: Limitations of the indifferentiability frame-
work. In Kenneth G. Paterson, editor, Advances in Cryptology -
EUROCRYPT 2011 - 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tallinn, Es-
tonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes
in Computer Science, pages 487–506. Springer, 2011.

15

	Introduction
	SKINNY-HASH Internal Functions
	Our Contributions
	Paper Organization

	Preliminaries
	Security Proofs of the SHI Function
	Concluding Remarks

