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Abstract. Adaptor signatures (AS) are an extension of digital signa-
tures that enable the encoding of a cryptographic hard problem (e.g.,
discrete logarithm) within the signature itself. An AS scheme ensures
that (i) the signature can be created only by the user knowing the solu-
tion to the cryptographic problem; (ii) the signature reveals the solution
itself; (iii) the signature can be verified with the standard verification
algorithm. These properties have made AS a salient building block for
many blockchain applications, in particular, off-chain payment systems
such as payment-channel networks, payment-channel hubs, atomic swaps
or discrete log contracts. Current AS constructions, however, are not se-
cure against adversaries with access to a quantum computer.
In this work, we present IAS, a construction for adaptor signatures that
relies on standard cryptographic assumptions for isogenies, and builds
upon the isogeny-based signature scheme CSI-FiSh. We formally prove
the security of IAS against a quantum adversary. We have implemented
IAS and our evaluation shows that IAS can be incorporated into current
blockchains while requiring ∼ 1500 bytes of storage size on-chain and
∼ 140 milliseconds for digital signature verification. We also show how
IAS can be seamlessly leveraged to build post-quantum off-chain payment
applications such as payment-channel networks without harming their
security and privacy.

1 Introduction

Bitcoin and many other cryptocurrencies rely on the blockchain, a data structure
that logs every single transaction deemed valid by miners through a decentralized
consensus protocol. Each transaction is defined in terms of a scripting language
that encodes the rules that make a transaction valid. Some cryptocurrencies (e.g.,
Bitcoin) support just a few operations to encode simple coin transfers authorized
by digital signatures, whereas others (e.g., Ethereum) provide a Turing-complete
scripting language enabling clients to encode more complex transaction logics.

While logging each single transaction on the blockchain allows for public ver-
ifiability, it also introduces evident scalability problems. First, the permissionless
nature of the consensus protocol highly limits the transaction rate to few trans-
actions per second – about three orders of magnitude less than traditional credit



card-based systems [1] – which highly hinders a wider adoption of these cryp-
tocurrencies. Second, miners charge a transaction fee proportional to the size of
the scripts included in each transaction and to the computation required by the
miners for its validation, which can rapidly become a financial bottleneck.

A promising approach to reduce the transaction size is to manage some of the
transaction logic off-chain, that is, encoding the logic as a peer-to-peer protocol
between sender and receiver instead of directly in the transaction script. In this
setting, A. Polestra introduced the notion of scriptless scripts [19], which has
been later formalized as adaptor signatures [2, 15].

Adaptor Signatures (AS). AS can be seen as an extended form of a stan-
dard digital signature, where one can create a “pre-signature” that can converted
into a (full) signature with respect to an instance of a hard relation (e.g., the
discrete logarithm). The resulting signature can then be verified by the miners
using the standard verification algorithm from the digital signature scheme. AS
provide the following two intuitive properties: (i) only the user knowing the wit-
ness of the hard relation can convert the pre-signature into a valid signature; and
(ii) anybody with access to the pre-signature and the corresponding signature
can extract the witness of the hard relation. This building block has been shown
highly useful in practice to build off-chain payment applications such as gener-
alized payment channels [2], payment-channel networks [17], payment-channel
hubs [22], and many others, being adopted in real-world blockchain protocols,
such as the Lightning Network, the COMIT Network, ZenGox and others.

Related Work and Limitations. Aumayr et al. [2] provides instances of
AS based on Schnorr and ECDSA digital signatures. Malavolta et al. [17] show
an instance of AS from any one-way homomorphic function and describe how to
construct payment-channel networks from AS. Moreno-Sanchez et al. [18] shows
an instance of AS based on the linkable ring signature supported in Monero.
Tairi et al. [22] leverage AS to build payment-channel hubs.

All these works do not provide security in the post-quantum setting where the
discrete logarithm assumption no longer holds against a post-quantum adversary.
Therefore, given the relevance in practice of AS, there is a need to design post-
quantum instances of them. For instance, there exist several efforts from NIST
to standardize quantum resistant algorithms. The blockchain community has
also shown interest in migrating towards post-quantum secure alternatives. For
example, Ethereum 2.0 Serenity upgrade [4] is planned to have an option for
a post-quantum signature and Zcash developers plan to update their protocol
with post-quantum alternatives when they are mature enough [14].

Esgin et al. [11] recently came up with a seminal contribution in this field,
proposing the first instance of a post-quantum AS, called LAS, which is based on
the standard lattice assumptions, such as Module-SIS and Module-LWE. This
construction, however, presents a few limitations with regards to correctness,
communication overhead, and privacy. From the correctness point of view, LAS
requires to use two hard relations, R and R′, where R is the base relation and
R′ is the extended relation that defines the relation for extracted witnesses.
The reason for this is due to the inherent knowledge/soundness gap in lattice-



based zero-knowledge proofs [13]. Hence, as mentioned by the authors, LAS only
achieves weak pre-signature adaptability, which guarantees that only the state-
ment/witness pairs satisfying R are adaptable, and not those satisfying R′. In
practice, this implies that the applications that use LAS as a building block
require a zero-knowledge proof to guarantee that the extracted witness is of suf-
ficiently small norm and belongs to the relation R, which in turn guarantees
that the pre-signature adaptability would work. However, the currently most ef-
ficient variant of such a proof has size of 53KB [12], which would incur significant
(off-chain) communication overhead to the applications using LAS.

From the privacy point of view, when LAS is used inside certain applications,
such as building payment-channel networks (PCNs), it can leak non-trivial in-
formation that hinders the privacy of the overall construction. In a nutshell, the
reason for that is that the witness for adapting the pre-signature in LAS is a
vector whose infinity norm is 1. Privacy-preserving applications such as PCNs
require to encode a randomization factor at each hop, which in LAS is encoded
by adding a new vector whose infinity norm is 1 for each hop [11, Section 4.2].
However, this leads to a situation where a node at position k in the payment path
receives a vector with infinity norm k with high probability, learning at least how
many parties are before it on the path. Moreover, if an intermediary observes
that the norm is 1, then it knows that (with high probability) the party before
it is the sender. We note that encoding a vector of random but small norm (i.e.,
padding) for each hop does not help either, as each sender-receiver pair would
use a unique norm, breaking thus relationship anonymity (see Section 6 and ??
for more details).

Finally, given the ongoing standardizations efforts of NIST, we find it inter-
esting to have several candidates of quantum-resistant AS building upon different
cryptographic assumptions to aid the related discussion (e.g., if one assumption
gets broken, we may still have standing post-quantum constructions). The cur-
rent state of affairs leads to the following question: Is it possible to design a
quantum resistant AS that preserves the security and privacy guarantees of the
off-chain applications built on top of the current non post-quantum alternatives?

Our Contributions. We affirmatively answer the previous question and
propose IAS, the first construction for post-quantum AS that preserves the se-
curity and privacy guarantees required by off-chain applications. In particular,

– We design IAS, a construction for AS that builds upon the post-quantum
signature scheme CSI-FiSh, and relies on hardness of standard cryptographic
assumptions from isogenies. We formally prove the security of IAS.

– We provide a parallelized implementation of IAS and evaluate its per-
formance, showing that it requires ∼ 1500 bytes of storage on-chain (with a
parameter set optimized for lower combined public key and signature size) and
140 milliseconds to verify a signature on average (i.e., the computation time for
miners). We compare with LAS and observe that the on-chain storage size is 3x
smaller than LAS while requiring higher computation time.

– We describe how to build payment-channel networks (PCNs) from IAS,
and show that IAS does not diminish the security or privacy guarantees of PCNs.



Thus, IAS seamlessly enables post-quantum off-chain applications as soon as the
underlying blockchains support the post-quantum signature scheme CSI-FiSh.

2 Preliminaries

Notation. We denote by 1λ, for λ ∈ N, the security parameter. We assume
this is given as an implicit input to every function, and all our algorithms run in
polynomial time in λ. We denote by x←$X the uniform sampling of the variable
x from the set X . We write x← A(y) to denote that a probabilistic polynomial
time (PPT) algorithm A on input y, outputs x. We use the same notation also for
the assignment of the computational results, for example, s← s1 + s2. If A is a
deterministic polynomial time (DPT) algorithm, we use the notation x := A(y).
We use the same notation for the projection of tuples, e.g., we write σ := (σ1, σ2)
for a tuple σ composed of two elements σ1 and σ2. A function negl : N → R is
negligible in n if for every k ∈ N, there exists n0 ∈ N, such that for every n ≥ n0
it holds that negl(n) ≤ 1/nk. Throughout the paper we implicitly assume that
negligible functions are negligible in the security parameter (i.e., negl(λ)).

We review the cryptographic primitives of interest. The definitions and se-
curity experiments for adaptor signatures are taken from [2] with minor changes
to fit our notation.

2.1 Non-Interactive Zero-Knowledge Proofs

We first recall the definition of a hard relation.

Definition 1 (Hard Relation). Let R be a relation with statement/witness
pairs (Y, y). Let us denote LR the associated language defined as LR := {Y |
∃y s.t. (Y, y) ∈ R}. We say that R is a hard relation if the following holds:

– There exists a PPT sampling algorithm GenR(1λ) that on input the security
parameter λ outputs a statement/witness pair (Y, y) ∈ R.

– The relation is poly-time decidable.
– For all PPT adversaries A there exists a negligible function negl, such that:

Pr

[
(Y, y∗) ∈ R

∣∣∣∣ (Y, y)← GenR(1λ),
y∗ ← A(Y )

]
≤ negl(λ) ,

where the probability is taken over the randomness of GenR and A.

A pair (P,V) of PPT algorithms is called a non-interactive zero-knowledge
proof of knowledge (NIZKPoK) with an online extractor for a relation R, random
oracle H and security parameter λ (in the random oracle model) if the following
holds:

– Completeness: For any (Y, y) ∈ R and any π ← PH(Y, y) there exists a
negligible function negl such that it holds that Pr[VH(Y, π) = 1] ≥ 1− negl(λ).



– Zero Knowledge: There exists a PPT algorithm S, the zero knowledge
simulator, such that for any pair (Y, y) and any PPT algorithm D the following
distributions are computationally indistinguishable:

• Let π ← PH(Y, y) if (Y, y) ∈ R and π ← ⊥ otherwise. Output DH(Y, y, π).

• Let π ← S(Y, 1) if (Y, y) ∈ R and π ← S(Y, 0) otherwise. Output DH(Y, y, π).

– Online Extractor: There exist a PPT algorithm K, the online extractor,
such that the following holds for any algorithm A. Let (Y, π) ← AH(λ) and HA

be the sequence of queries of A to H and H’s answers. Let y ← K(Y, π,HA).
Then it holds that

Pr[(Y, y) 6∈ R ∧ VH(Y, π) = 1] ≤ negl(λ) ,

where negl(λ) is a negligible function in the security parameter.

2.2 Adaptor Signatures

We first recall the definition and security notions of digital signatures. A sig-
nature scheme consists of three algorithms Σ = (KeyGen,Sig,Ver) defined as
follows:

KeyGen(1λ): is a PPT algorithm that on input a security parameter λ, outputs
a key pair (sk, pk).

Sig(sk,m): is a PPT algorithm that on input a secret key sk and message m ∈
{0, 1}∗, outputs a signature σ.

Ver(pk,m, σ): is a DPT algorithm that on input a public key pk, message m ∈
{0, 1}∗ and signature σ, outputs a bit b.

Every signature scheme must satisfy signature correctness meaning that for
every λ ∈ N and every message m ∈ {0, 1}∗:

Pr
[
Ver(pk,m,Sig(sk,m)) = 1 | (sk, pk)← KeyGen(1λ)

]
= 1.

The most common security requirement of a signature scheme is existential un-
forgeability under chosen message attack (EUF-CMA security for short). On high
level, it guarantees a malicious party, that does not know the private key, cannot
produce a valid signature on a message m even if he knows polynomially many
valid signatures on messages of his choice (but different from m). We recall this
notion in Definition 2.

Definition 2 (EUF-CMA Security). A signature scheme Σ is EUF-CMA se-
cure if for every PPT adversary A there exists a negligible function negl such
that

Pr[SigForgeA,Σ(λ) = 1] ≤ negl(λ) ,

where the experiment SigForgeA,Σ is defined as follows:



SigForgeA,Σ(λ)

1 : Q ← ∅

2 : (sk, pk)← KeyGen(1λ)

3 : (m,σ)← AOS(·)(pk)

4 : return (m 6∈ Q ∧ Ver(pk,m, σ))

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

Existential unforgeability does not say anything about the difficulty of trans-
forming a valid signature on m into another valid signature on m. Hardness of
such transformation is captured by a stronger notion, called strong existential
unforgeability under chosen message attack (or SUF-CMA for short), which we
recall next.

Definition 3 (SUF-CMA Security). A signature scheme Σ is SUF-CMA secure
if for every PPT adversary A there exists a negligible function negl such that

Pr[StrongSigForgeA,Σ(λ) = 1] ≤ negl(λ) ,

where the experiment StrongSigForgeA,Σ is defined as follows:

StrongSigForgeA,Σ(λ)

1 :Q ← ∅

2 : (sk, pk)← KeyGen(1λ)

3 : (m,σ)← AOS(·)(pk)

4 :return ((m,σ) 6∈ Q ∧ Ver(pk,m, σ))

OS(m)

1 :σ ← Sig(sk,m)

2 :Q := Q∪ {m,σ}
3 :return σ

The advantage of the adversary A playing the game StrongSigForge is defined
as follows:

AdvStrongSigForgeA = Pr[StrongSigForgeA,Σ(λ) = 1]

Next, we give a formal description of an adaptor signature and its properties.
Adaptor signatures have been introduced by the cryptocurrency community to
tie together the authorization of a transaction with leakage of a secret value. Due
to its utility, adaptor signatures have been used in previous works for various
applications like atomic swaps or payment channel networks [17]. An adaptor
signature scheme is essentially a two-step signing algorithm bound to a secret:
first a partial signature is generated such that it can be completed only by a
party that knows a certain secret, where the completion of the signature reveals
the underlying secret.

More precisely, we define an adaptor signature scheme with respect to a
standard signature scheme Σ and a hard relation R. In an adaptor signature
scheme, for any statement Y ∈ LR, a signer holding a secret key is able to
produce a pre-signature w.r.t. Y on any message m. Such pre-signature can
be adapted into a full valid signature on m if and only if the adaptor knows a
witness for Y . Moreover, if such a valid signature is produced, it must be possible
to extract the witness for Y given the pre-signature and the adapted signature.
This is formalized as follows, where we take the message spaceM to be {0, 1}∗.



Definition 4 (Adaptor Signature Scheme). An adaptor signature scheme
w.r.t. a hard relation R and a signature scheme Σ = (KeyGen,Sig,Ver) consists
of four algorithms ΞR,Σ = (PreSig,Adapt,PreVer,Ext) defined as:

PreSig(sk,m, Y ): is a PPT algorithm that on input a secret key sk, message
m ∈ {0, 1}∗ and statement Y ∈ LR, outputs a pre-signature σ̂.

PreVer(pk,m, Y, σ̂): is a DPT algorithm that on input a public key pk, message
m ∈ {0, 1}∗, statement Y ∈ LR and pre-signature σ̂, outputs a bit b.

Adapt(σ̂, y): is a DPT algorithm that on input a pre-signature σ̂ and witness y,
outputs a signature σ.

Ext(σ, σ̂, Y ): is a DPT algorithm that on input a signature σ, pre-signature σ̂
and statement Y ∈ LR, outputs a witness y such that (Y, y) ∈ R, or ⊥.

We note that an adaptor signature scheme ΞR,Σ also inherits the KeyGen
and Ver algorithms from the underlying signature scheme Σ. In addition to
the standard signature correctness, an adaptor signature scheme has to satisfy
pre-signature correctness. Informally, an honestly generated pre-signature w.r.t.
a statement Y ∈ LR is a valid pre-signature and can be adapted into a valid
signature from which a witness for Y can be extracted.

Definition 5 (Pre-signature Correctness). An adaptor signature scheme
ΞR,Σ satisfies pre-signature correctness if for every λ ∈ N, every message m ∈
{0, 1}∗ and every statement/witness pair (Y, y) ∈ R, the following holds:

Pr


PreVer(pk,m, Y, σ̂) = 1

∧
Ver(pk,m, σ) = 1

∧
(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣∣
(sk, pk)← KeyGen(1λ)
σ̂ ← PreSig(sk,m, Y )
σ := Adapt(σ̂, y)
y′ := Ext(σ, σ̂, Y )

 = 1.

Next, we define the security properties of an adaptor signature scheme. We
start with the notion of unforgeability, which is similar to existential unforge-
ability under chosen message attacks (EUF-CMA) but additionally requires that
producing a forgery σ for some message m is hard even given a pre-signature on
m w.r.t. a random statement Y ∈ LR. We note that allowing the adversary to
learn a pre-signature on the forgery message m is crucial as for our applications
unforgeability needs to hold even in case the adversary learns a pre-signature
for m without knowing a witness for Y . We now formally define the existential
unforgeability under chosen message attack for adaptor signature (aEUF-CMA).

Definition 6 (aEUF-CMA Security). An adaptor signature scheme ΞR,Σ is
aEUF-CMA secure if for every PPT adversary A there exists a negligible function
negl such that: Pr[aSigForgeA,ΞR,Σ (λ) = 1] ≤ negl(λ), where the experiment
aSigForgeA,ΞR,Σ is defined as follows:



aSigForgeA,ΞR,Σ (λ)

1 : Q := ∅

2 : (sk, pk)← KeyGen(1λ)

3 : m← AOS(·),OpS(·,·)(pk)

4 : (Y, y)← GenR(1λ)

5 : σ̂ ← PreSig(sk,m, Y )

6 : σ ← AOS(·),OpS(·,·)(σ̂, Y )

7 : return (m 6∈ Q ∧ Ver(pk,m, σ))

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̂ ← PreSig(sk,m, Y )

2 : Q := Q∪ {m}
3 : return σ̂

An additional property that we require from adaptor signatures is pre-signature
adaptability, which states that any valid pre-signature w.r.t. Y (possibly pro-
duced by a malicious signer) can be adapted into a valid signature using the
witness y with (Y, y) ∈ R. We note that this property is stronger than the
pre-signature correctness property from Definition 5, since we require that even
maliciously produced pre-signatures can always be completed into valid signa-
tures. The following definition formalizes this property.

Definition 7 (Pre-signature Adaptability). An adaptor signature scheme
ΞR,Σ satisfies pre-signature adaptability if for any λ ∈ N, any message m ∈
{0, 1}∗, any statement/witness pair (Y, y) ∈ R, any key pair (sk, pk)← KeyGen(1λ)
and any pre-signature σ̂ ← {0, 1}∗ with PreVer(pk,m, Y, σ̂) = 1, we have: Pr[Ver(pk,
m,Adapt(σ̂, y)) = 1] = 1.

The last property that we are interested in is witness extractability. Infor-
mally, it guarantees that a valid signature/pre-signature pair (σ, σ̂) for a mes-
sage/statement pair (m,Y ) can be used to extract the corresponding witness y
of Y .

Definition 8 (Witness Extractability). An adaptor signature scheme ΞR,Σ
is witness extractable if for every PPT adversary A, there exists a negligible
function negl such that the following holds: Pr[aWitExtA,ΞR,Σ (λ) = 1] ≤ negl(λ),
where the experiment aWitExtA,ΞR,Σ is defined as follows

aWitExtA,ΞR,Σ (λ)

1 : Q := ∅

2 : (sk, pk)← KeyGen(1λ)

3 : (m,Y )← AOS(·),OpS(·,·)(pk)

4 : σ̂ ← PreSig(sk,m, Y )

5 : σ ← AOS(·),OpS(·,·)(σ̂)

6 : y′ := Ext(pk, σ, σ̂, Y )

7 : return (m 6∈ Q ∧ (Y, y′) 6∈ R
8 : ∧ Ver(pk,m, σ))

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̂ ← PreSig(sk,m, Y )

2 : Q := Q∪ {m}
3 : return σ̂



Although, the witness extractability experiment aWitExt looks similar to the
experiment aSigForge, there is one important difference, namely, the adversary
is allowed to choose the forgery statement Y . Hence, we can assume that the
adversary knows a witness for Y , and therefore, can generate a valid signature
on the forgery message m. However, this is not sufficient to win the experiment.
The adversary wins only if the valid signature does not reveal a witness for Y .

Combining the three properties described above, we can define a secure adap-
tor signature scheme as follows.

Definition 9 (Secure Adaptor Signature Scheme). An adaptor signature
scheme ΞR,Σ is secure, if it is aEUF-CMA secure, pre-signature adaptable and
witness extractable.

2.3 Elliptic Curves and Isogenies

Let E be an elliptic curve over a finite field Fp with p a large prime, and let
0E be the point at infinity on E. An elliptic curve is called supersingular iff its
number of rational points satisfies #E(Fp) = p+ 1. Otherwise, an elliptic curve
is called ordinary. We note that in this work we are using supersingular curves.
An isogeny between two elliptic curves E and E′ is a rational map φ : E → E′,
such that φ(0E) = 0E′ , and which is also a homomorphism with respect to
the natural group structure of E and E′. An isomorphism between two ellliptic
curves is an injective isogeny. The j-invariant of an elliptic curve, which is a sim-
ple algebraic expression in the coefficients of the curve, is an algebraic invariant
under isomorphism (i.e., isomorphic curves have the same j-invariant). As isoge-
nies are group homomorphisms, any isogeny comes with a subgroup of E, which
is its kernel. Any subgroup S ⊂ E(Fpk) yields a unique (up to automorphism)
separable isogeny φ : E → E/S with kerφ = S. The equation for the quotient E
and the isogeny φ can be computed using Vélu’s formulae [23].

The ring of endomorphisms End(E) consists of all isogenies from E to itself,
and EndFp(E) denotes the ring of endomorphisms defined over Fp. For an or-
dinary curve E/Fp we have that End(E) = EndFp(E), but for a supersingular
curve over Fp we have a strict inclusion EndFp(E) ( End(E). In particular, for
supersingular elliptic curves the ring End(E) is an order of a quarternion alge-
bra defined over Q, while EndFp(E) is isomorphic to an order of the imaginary
quadratic field Q(

√
−p). We will identify EndFp(E) with the isomorphic order

which we will denote by O.
The ideal class group of O is the quotient of the group of fractional invertible

ideals in O by the principal fractional invertible ideals, and will be denoted
as Cl(O). There is a natural action of the class group on the class of elliptic
curves defined over Fp with order O. Given an ideal a ⊂ O, we can consider
the subgroup defined by the intersection of the kernels of the endomorphisms in
a, more precisely, Sa = ∩α∈a kerα. As this is a subgroup of E, we can divide
out by Sa and get the isogenous curve E/Sa, which we denote by a ? E. This
isogeny is well-defined and unique up to Fp-isomorphism and the group Cl(O)
acts via the operator ? on the set E of Fp-isomorphism classes of elliptic curves



with Fp-rational endomorphism ring O. One can show that Cl(O) acts freely
and transitively on E (i.e., E is a principal homogeneous space for Cl(O)).

Notation. Following [3], we see Cl(O) as a cyclic group with generator g,
and we write a = ga with a random in ZN for N = #Cl(O) the order of the
class group. We write [a] for ga and [a]E for ga ? E. We note that under this
notation [a][b]E = [a+ b]E.

2.4 Security Assumptions: GAIP and MT-GAIP

The main hardness assumption underlying group actions based on isogenies is
that it is hard to invert the group action.

Definition 10 (Group Action Inverse Problem (GAIP) [8]). Given two
elliptic curves E and E′ over the same finite field and with End(E) = End(E′) =
O, find an ideal a ⊂ O such that E′ = a ? E.

The CSI-FiSh signature scheme (see Section 3) relies on the hardness of
random instance of a multi-target version of GAIP, called MT-GAIP. In [8] it is
shown that MT-GAIP reduces tightly to GAIP when the class group structure
is known (which is the case for CSI-FiSh).

Definition 11 (Multi-Target GAIP (MT-GAIP) [8]). Given k elliptic
curves E1, . . . , Ek over the same field, with End(E1) = · · · = End(Ek) = O, find
an ideal a ⊂ O s.t. Ei = a ? Ej for some i, j ∈ {0 . . . , k} with i 6= j.

3 CSI-FiSh

Isogeny-based cryptography goes back to the works of Couveignes, Rostovtsev
and Stolbunov [6, 20], with the first isogeny-based signature scheme being pro-
posed by Stolbunov in his thesis [21]. The signature scheme was a Fiat-Shamir
transform applied to a standard three-round isogeny-based identification scheme.
However, the problem with Stolbunov’s scheme is that it required an efficient
method to sample in the class group, and that each element of class group should
have an efficiently computable unique representation. The roadblock to both of
these problems is that the structure of the class group is unknown. Recently,
Buellens et al. [3] computed the class group of the quadratic imaginary field
corresponding to the CSIDH-512 parameter set from [5], which allowed them to
construct a more efficient isogeny-based signature scheme, called CSI-FiSh.

Next, we briefly describe the CSI-FiSh signature scheme from [3]. CSI-FiSh
is a signature scheme obtained by applying Fiat-Shamir transform to an iden-
tification scheme. First, we recall the interactive zero-knowledge identification
scheme, where a prover wants to convince a verifier that it knows a secret ele-
ment a ∈ Cl(O) of its public key Ea = a ? E0, for a = ga and a ∈ ZN , where E0

is a publicly known base curve. The scheme is as follows:
– Prover samples a random b = gb for b ∈ ZN and commits to Eb = [b]E0

(this corresponds to Eb = b ? E0 with our notation).



Algorithm 1. CSI-FiSh Signature

1:
2: Public parameters: base curve E0, class number N = #Cl(O), security parameters
λ, tS , S, hash function H : {0, 1}∗ → {−S + 1, . . . , S − 1}tS

3: procedure KeyGen(1λ)
4: for i ∈ {1, . . . , S − 1} do
5: ai ←$ ZN
6: Ei ← [ai]E0

7: Set sk := [ai : i ∈ {1, . . . , S − 1}]
8: Set pk := [Ei : i ∈ {1, . . . , S − 1}]
9: return (sk, pk)

10: procedure Sig(sk,m)
11: Parse sk as (a1, . . . , aS−1)
12: a0 ← 0
13: for i ∈ {1, . . . , tS} do
14: bi ← ZN
15: E′i ← [bi]E0

16: (c1, . . . , ctS ) = H(E′1‖ · · · ‖E′tS‖m)
17: for i ∈ {1, . . . , tS} do

18: ri ← bi − sign(ci)a|ci| mod N

19: return σ := (r1, . . . , rtS , c1, . . . , ctS )

20: procedure Ver(pk,m, σ)
21: Parse pk as (E1, . . . , ES−1)
22: Parse σ as (r1, . . . , rtS , c1, . . . , ctS )
23: Define E−i := Eti for all i ∈ [1, S−1]
24: for i ∈ {1, . . . , tS} do
25: E′i ← [ri]Eci
26: (c′1, . . . , c

′
t) = H(E′1‖ · · · ‖E′tS‖m)

27: if (c1, . . . , ctS ) == (c′1, . . . , c
′
tS )

then
28: return 1
29: else
30: return 0

– Verifier samples a random challenge bit c ∈ {0, 1}.
– If c = 0, prover replies with r = b, otherwise it replies with r = b−a mod N

(reducing modulo N to avoid any leakage on a).

– If c = 0, verifier verifies that Eb = [r]E0, otherwise verifies that Eb = [r]Ea.

This scheme is clearly correct, and it has soundness 1/2. For the zero-knowledge
property, it is important that elements in Cl(O) can be sampled uniformly, and
that they have unique representation.

In order to improve soundness, the authors of [3] increased the size of the pub-
lic key. For a positive integer S, the secret key becomes the vector (a1, . . . , aS−1)
of dimension S − 1, and public key is set to (E0, E1 = [a1]E0, . . . , ES−1 =
[aS−1]E0). Then, the prover proves to the verifier that it knows an s ∈ ZN ,
such that [s]Ei = Ej for some pair of curves in the public key (with i 6= j).
In order to further increase the challenge space, one can exploit the fact that
given a curve E = [a]E0, its quadratic twist Et, which can be computed very
efficiently, is Fp-isomorphic to [−a]E0. Therefore, one can almost double the set
of public key curves going from E0, E1, . . . , ES−1 to E−S+1, . . . , E0, . . . , ES−1,
where E−i = Eti , without any increase in communication cost. Combining all
these the soundness error drops to 1

2S−1 . To achieve security level λ (i.e., 2−λ

soundness error), we need to repeat the protocol tS = λ/ log2(2S − 1) times.

The described identification scheme when combined with the Fiat-Shamir
heuristic, for a hash function H : {0, 1}∗ → {−S + 1, . . . , S − 1}tS , gives the
CSI-FiSh signature scheme shown in Algorithm 1, where sign denotes the sign
of the integer. In [3] it is shown that CSI-FiSh is SUF-CMA secure under the
MT-GAIP assumption, when H is modeled as a quantum random oracle, hence,
it is strongly unforgeable in the quantum random oracle model (QROM) [9].



Algorithm 2. Non-interactive zero-knowledge proof for Lj

1: Public parameters: class number N = #Cl(O), hash function F : {0, 1}∗ → {0, 1}
2: procedure NIZK.P(x, s)
3: Parse x as (E1, E

′
1, . . . , Ej , E

′
j)

4: b←$ ZN
5: for i ∈ {1, . . . , j} do
6: Êi ← [b]Ei

7: c = F(E1‖E′1‖Ê1‖ · · · ‖Ej‖E′j‖Êj)
8: r ← b− c · s mod N
9: return π := ((Ê1, . . . , Êj), r)

10: procedure NIZK.V(x, π)
11: Parse x as (E1, E

′
1, . . . , Ej , E

′
j)

12: Parse π as ((Ê1, . . . , Êj), r)
13: c = F(E1‖E′1‖Ê1‖ · · · ‖Ej‖E′j‖Êj)
14: if c = 0 then
15: return

∧j
i=1([r]Ei = Êi)

16: else if c = 1 then
17: return

∧j
i=1([r]E′i = Êi)

3.1 Zero-Knowledge Proof for Group Actions

Cozzo and Smart [7] showed how to prove knowledge of a secret isogeny generi-
cally. In detail, they showed a zero-knowledge proof for the following relation:

Lj :=

{(
(E1, E

′
1, . . . , Ej , E

′
j), s

)
:

j∧
i=1

(
E′i = [s]Ei

)}
.

Intuitively, the prover wants to prove in zero-knowledge that it knows a unique
witness s for j simultaneous instances of the GAIP. In [7] two variants of such
a proof are given, one when E1 = · · · = Ej = E0, called Special case with
soundness error 1/3, and another one when that condition does not hold, called
General case with soundness error 1/2. In our paper we only need the General
case for j = 2. Since the proof has soundness error of 1/2, we need to repeat it
tZK = λ times to achieve a security level of λ. Using a ”slow” hash function F , as
in CSI-FiSh, which is 2k times slower than a normal hash function we can reduce
the number of repetitions to tZK = λ−k. For example, when setting λ = 128 and
k = 16, as in the fastest CSI-FiSh parameters, we get tZK = 112. In the random
oracle model the proof can be made non-interactive using a hash function F
with codomain {0, 1}tZK . For brevity, we only present the non-interactive single
iteration (i.e., tZK = 1) variant of the proof for Lj in Algorithm 2.

4 IAS: An Adaptor Signature from Isogenies

Despite the fact that CSI-FiSh is simply a signature scheme obtained by applying
Fiat-Shamir to multiple repetitions of Schnorr-type identification scheme from
isogenies, one cannot trivially construct a Schnorr-type AS as described in [2].

Strawman approach. Let us consider a single iteration of the identification
scheme (i.e., tS = 1), and a hard relation R1

E0
⊆ E × Cl(O), for a set of elliptic

curves E , to be defined as R1
E0

:= {(EY , y) | EY = [y]E0}. A näıve approach
to construct an AS from a single-iteration CSI-FiSh, following the Schnorr AS
from [2], is to compute the randomness inside the pre-signature algorithm as
E′ ← [b]EY instead of doing E′ ← [b]E0 as in the original construction, and



leave the rest of the algorithm identical to the signing algorithm of CSI-FiSh.
However, later during the pre-verification, given the pre-signature σ̂ := (r̂, c), the
statement EY and c-th public key Ec, one cannot verify the correctness of the
pre-signature σ̂. More concretely, we have that r̂ = b− sign(c)a|c| mod N , Ec =

[sign(c)a|c|]E0 and EY = [y]E0. Now, using these values we can compute Ê′ =

[r̂]Ec = [b]E0, but then we cannot combine Ê′ with EY to obtain E′ = [b]EY ,
which we need for verification. Analogous problem happens if we first compute
the group action Ê′ = [r]EY , and then try to combine it with Ec to obtain the
desired E′. The reason behind this problem is that we have a limited algebraic
structure. More precisely, the group action is defined as ? : Cl(O) × E → E , for
class group Cl(O) and set of elliptic curves E . This implies that we can pair
a class group element with an elliptic curve to map it to a new elliptic curve,
however, we do not have any meaningful operation over the set E that would
allow us to purely pair two elliptic curves and map to a third one.

4.1 Our Construction

On a high-level, we have to circumvent the limited algebraic structure of CSI-
FiSh, which prevents us from extracting the randomness. We solve this problem
by means of a zero-knowledge proof showing the validity of the pre-signature con-
struction. This might remind of the ECDSA-based AS construction by Aumayr
et al. [2], where a zero-knowledge proof is also used to prove the consistency of the
randomness, which would not be otherwise possible due to the lack of linearity of
ECDSA. Besides not being post-quantum secure, their cryptographic construc-
tion (i.e., the underlying signature scheme and thus the resulting zero-knowledge
proof) is, however, fundamentally different because the issue in CSI-FiSh is a
limited algebraic structure as opposed to a lack of linearity as in ECDSA.

More concretely, to compute the pre-signature for EY , the signer samples
a random b←$ ZN , computes Ê′ ← [b]E0 and E′ ← [b]EY . Then, the signer
uses E′ as input to the hash function to compute the challenge c, and also
includes E′ as part of the pre-signature. Lastly, to ensure that the same value
b is used in computation of both Ê′ and E′, a zero-knowledge proof π that
(E0, Ê

′, EY , E
′) ∈ L2 is attached to the pre-signature (see Section 3.1 for such

a proof). So, the pre-signature looks like σ̂ := (r̂, c, π, E′). The pre-signature
verification of σ̂ then involves extracting Ê′ by computing the group actions
[r̂]Ec, using it to verify the proof π, and finally, checking that the hash of E′

produces the expected challenge c. The pre-signature adaptation is done by
adding the corresponding witness y to r̂ of the pre-signature to obtain the full
valid signature σ := (r, c). In an opposite manner, the extraction is done by
subtracting r of the valid signature from r̂ of the pre-signature.

Since CSI-FiSh involves multiple iterations (more concretely tS iterations),
we extend the hard relation R1

E0
to RtSE0

⊆ EtS×Cl(O)tS , to be defined as RtSE0
:=

{( ~EY := (E1
Y , . . . , E

tS
Y ), ~y := (y1, . . . , ytS )) | EiY = [yi]E0 for all i ∈ [1, tS ]}, and

apply the above described method to every iteration with a different EiY .



Algorithm 3. Adaptor Signature ΞR∗
E0
,ΣCSI−FiSh

(IAS)

1: Public parameters: base curve E0, class number N = #Cl(O), security parameters
λ, tS , S, hash function H : {0, 1}∗ → {−S + 1, . . . , S − 1}tS

2: procedure PreSig(sk,m, IY )
3: Parse sk as (a1, . . . , aS−1)
4: Parse IY as ( ~EY , πY )
5: Parse ~EY as (E1

Y , . . . , E
tS
Y )

6: a0 ← 0
7: for i ∈ {1, . . . , tS} do
8: bi ← ZN
9: Ê′i ← [bi]E0

10: E′i ← [bi]E
i
Y

11: Set xi := (E0, Ê
′
i, E

i
Y , E

′
i)

12: πi ← NIZK.P(xi, bi)

13: (c1, . . . , ctS ) = H(E′1‖ · · · ‖E′tS‖m)
14: for i ∈ {1, . . . , tS} do
15: r̂i ← bi − sign(ci)a|ci| mod N

16: return σ̂ := (r̂1, . . . , r̂tS , c1, . . . ,
17: ctS , π1, . . . , πtS , E

′
1, . . . , E

′
tS )

18: procedure PreVer(pk,m, IY , σ̂)
19: Parse pk as (E1, . . . , ES−1)
20: Parse IY as ( ~EY , πY )
21: Parse ~EY as (E1

Y , . . . , E
tS
Y )

22: Parse σ̂ as (r̂1, . . . , r̂tS , c1, . . . , ctS ,
23: π1, . . . , πtS , E

′
1, . . . , E

′
tS )

24: Set E−i = Eti for all i ∈ [1, S − 1]
25: for i ∈ {1, . . . , tS} do
26: Ê′i ← [r̂i]Eci

27: Set xi := (E0, Ê
′
i, E

i
Y , E

′
i)

28: if NIZK.V(xi, πi) 6= 1 then
29: return 0
30: if (c1, . . . , ctS ) == H(E′1‖ · · · ‖E′tS‖m)

then
31: return 1
32: else
33: return 0
34: procedure Ext(σ, σ̂, IY )
35: Parse σ as (r1, . . . , rtS , c1, . . . , ctS )
36: Parse σ̂ as (r̂1, . . . , r̂tS , c1, . . . , ctS ,
37: π1, . . . , πtS , E

′
1, . . . , E

′
tS )

38: for i ∈ {1, . . . , tS} do
39: y′i ← ri − r̂i
40: Set ~y′ := [y′i : i ∈ {1, . . . , tS}]
41: if (IY , ~y

′) 6∈ R∗E0
then

42: return ⊥
43: return ~y′

44: procedure Adapt(σ̂, ~y)
45: Parse σ̂ as (r̂1, . . . , r̂tS , c1, . . . , ctS ,
46: π1, . . . , πtS , E

′
1, . . . , E

′
tS )

47: Parse ~y as (y1, . . . , ytS )
48: for i ∈ {1, . . . , tS} do
49: ri ← r̂i + yi mod N

50: return σ := (r1, . . . , rtS , c1, . . . , ctS )

Although, the described scheme achieves correctness, one cannot prove its
security directly. As we would like to reduce both the unforgeability and witness
extractability of the scheme to the strong unforgeability of CSI-FiSh, inside the
reduction we need a way to answer the pre-signature queries by only relying on
the signing oracle of CSI-FiSh, and without access to the secret key sk or the
witness (y1, . . . , ytS ). In order to overcome this issue, we use a modified hard rela-

tion. Let R∗E0
consist of pairs IY := ( ~EY , πY ), where ~EY ∈ LRtSE0

is as previously

defined, and πY is a non-interactive zero-knowledge proof that ~EY ∈ LRtSE0

. For-

mally, we have that R∗E0
:= {(( ~EY , πY ), ~y) | ~EY ∈ LRtSE0

∧ NIZK.V( ~EY , πY ) = 1}.

Due to the soundness of the proof system, if RtSE0
is a hard relation, then so is

R∗E0
. Since we are in the random oracle model, the reduction then can use the

random oracle query table to extract a witness from the proof πY , and answer
the pre-signature oracle queries using this witness.



The resulting AS scheme, which we denote as ΞR∗E0
,ΣCSI−FiSh

and call as IAS,

is depicted in Algorithm 3. The security of our construction is captured by the
following theorem, which we formally prove in Appendix A.

Theorem 1. Assuming that the CSI-FiSh signature scheme ΣCSI−FiSh is SUF-CMA
secure and R∗E0

is a hard relation, the adaptor signature scheme ΞR∗E0
,ΣCSI−FiSh

,

as defined in Algorithm 3, is secure in QROM.

Optimization. Our construction, as defined in Algorithm 3, makes sure
that all tS parts of the signature are adapted (i.e., each ri, for i ∈ {1, . . . , tS}, is
adapted). This is due to the fact that IAS is based on CSI-FiSh, which in turn is
constructed from multiple iterations of a Schnorr-type identification scheme as
described in Section 3. However, this also points to the fact that CSI-FiSh is just
a much less efficient version of Schnorr. Therefore, one can have a more efficient
variant of IAS by only adapting one of the iterations (e.g., the first iteration).
In this variant, during the pre-signature algorithm we compute π1 and E′1 using
E1
Y as defined in Algorithm 3, and attach them to the pre-signature σ̂ as before.

But, for the rest of the iterations (i.e., for i ∈ {2, . . . , tS}), we do not compute
any zero-knowledge proof, and compute E′i using E0 as done in the signing
algorithm of CSI-FiSh (see Algorithm 1). This means that the pre-signature σ̂
is only incomplete in the first component (i.e., only r̂1 needs to be adapted to
obtain a valid signature). Hence, the extraction and adaptation only depend
on the first component of the pre-signature/signature pair. Using this approach
we revert back from the hard relation RtSE0

to R1
E0

, and define a new modified

relation R†E0
, which consists of pairs IY := (EY , πY ), such that EY ∈ LR1

E0

and πY is a zero-knowledge proof that EY ∈ LR1
E0

. More formally, we have

that R†E0
:= {((EY , πY ), y) | EY ∈ LR1

E0
∧ NIZK.V(EY , πY ) = 1}. Due to the

soundness of the proof system, if R1
E0

is a hard relation, then so is R†E0
. We

call this optimized variant O−IAS, and capture its security with the following
theorem, which we formally proof in Appendix A.

Theorem 2. Assuming that the CSI-FiSh signature scheme ΣCSI−FiSh is SUF-CMA
secure and R†E0

is a hard relation, the adaptor signature scheme ΞR†E0
,ΣCSI−FiSh

,

is secure in QROM.

5 Performance Evaluation

In order to evaluate IAS we extended the commit 7a9d30a version of the proof-
of-concept implementation of CSI-FiSh1. The implementation depends on the
eXtended Keccak Code Package2 for the implementation of SHAKE256, which
is used as the underlying hash function and to expand the randomness. We
also use the GMP library [16] for high precision arithmetic. We implemented

1 https://github.com/KULeuven-COSIC/CSI-FiSh
2 https://github.com/XKCP/XKCP

https://github.com/KULeuven-COSIC/CSI-FiSh
https://github.com/XKCP/XKCP


the optimized variant O−IAS as explained in Section 4. Since O−IAS and CSI-
FiSh are composed of multiple independent iterations of a non-interactive iden-
tification scheme, they are amenable to parallelization. Hence, we provided a
parallelized implementation using OpenMP. The source code is available at
https://github.com/etairi/Adaptor-CSI-FiSh.

Parameters. CSI-FiSh signature scheme is instantiated with the following
parameters: i) S, the number of public keys to use, ii) tS , the number of repeti-
tions to perform, and iii) k, the rate of the slow hash function (e.g., k = 16 means
that the used hash function is a factor 216 slower than a standard hash function,
such as SHA-3). In order to ensure λ bits of soundness security it suffices to take
the parameters such that S−tS ≤ 2−λ+k. As is described in [3], the parameter
S controls the trade-off between on the one hand small public key and fast key
generation (when S is small), and on the other hand small signature and fast
signing/verification (when S is large).

Testbed. All benchmarks were taken on a KVM-based VM with 2.0GHz
AMD EPYC 7702 processor with 16 cores and 32GB RAM, running Ubuntu
18.04 LTS, and the code was compiled with gcc 7.5.0.

5.1 Evaluation Results

In this section, we present our evaluation results and discuss the communication
size and computation time of O−IAS (i.e., sizes of objects and running times of
the algorithms). The results of our evaluation are summarized in Table 1. As
shown, playing with the parameters we can obtain different trade-offs, which we
explain next. We divide our discussion on: (i) on-chain analysis (i.e., overhead
imposed on the blockchain to support O−IAS) and (ii) off-chain analysis (i.e.,
overhead for peers at the application level).

On-Chain Analysis. In order to support O−IAS, the blockchain only needs
to verify that each transaction is accompanied by a signature that correctly ver-
ifies under a given public key according to the logic of the verification algorithm
of CSI-FiSh. Thus, the storage size imposed by CSI-FiSh is dominated by the
signature and public key sizes and the goal is thus to minimize these values.
As was already described above, the parameter S can be set to a small value

S tS k |sk| |pk| |σ̂| |σ| KeyGen Sig Ver PreSig PreVer Ext Adapt

21 56 16 16 128 19944 1880 0.05 0.24 0.23 3.59 3.55 0.005 0.005
22 38 14 16 256 19672 1286 0.06 0.16 0.16 2.75 2.68 0.005 0.005
23 28 16 16 512 19020 956 0.07 0.13 0.14 2.21 2.15 0.005 0.005
24 23 13 16 1024 19338 791 0.07 0.11 0.11 1.99 1.94 0.005 0.005
26 16 16 16 4096 18624 560 0.29 0.08 0.09 1.61 1.56 0.005 0.005
28 13 11 16 16384 19330 461 1.00 0.08 0.08 1.50 1.44 0.005 0.005
210 11 7 16 65536 19908 395 3.21 0.06 0.06 1.40 1.36 0.005 0.005
212 9 11 16 262144 19198 329 12.89 0.06 0.06 1.30 1.25 0.005 0.005
215 7 16 16 2097152 18327 263 102.02 0.06 0.06 1.16 1.11 0.005 0.005

Table 1. Performance of O−IAS. Time is shown in seconds and size in bytes.

https://github.com/etairi/Adaptor-CSI-FiSh


to achieve compact public keys. This, however, yields larger signatures. For in-
stance, we can observe from Table 1 that by setting S = 2 one can have public
keys of only 128 bytes, but at the cost of signatures of size 1880 bytes.

Similarly, the computation time of IAS for the miners is represented by the
running time of the verification algorithm of CSI-FiSh. In our evaluation, we
observe that increasing the value of S reduces the verification time of CSI-FiSh.
However, as was already noted, this increases the public key sizes. Nevertheless,
the technique of using Merkle trees to obtain compact and constant size pub-
lic keys (but large secret keys) as described in [3] can also be applied to our
construction. Using that technique one can have public keys of size 32 bytes,
signatures of size 1995 bytes and verification algorithm running time of 370 mil-
liseconds with no parallelization, as shown in [3, Table 4], or 60 milliseconds with
our parallelized implementation.

Off-Chain Analysis. The operations of O−IAS defined in Algorithm 3 are
carried out off-chain, meaning that the creation and verification of pre-signatures
is done in a peer-to-peer manner and thus do not need to be stored in the
blockchain, nor to be verified by the miners. Yet, we discuss here the computation
time and communication size for this part as it illustrates the overhead for
applications building upon O−IAS.

In terms of communication size, a pre-signature σ̂ in IAS has size of ∼ 19KB
on average. We can observe from Table 1 that the pre-signature size only varies
slightly the change in parameters. The reason for this is that the pre-signature
size is dominated by the expensive zero-knowledge proof for L2 (see Section 3.1)
that is required during pre-signature computation, which has size ∼ 18KB and
it varies slightly with parameter k (bigger k implies smaller proof size). On the
other hand the running times of the pre-signature and pre-verification algorithms
decrease with the increased S value, meaning with the decreased number of
iterations tS . The reason for this is that during pre-signature and pre-verification
computation our implementation only parallelizes the computation of the zero-
knowledge proof for L2, but all the tS iterations are computed by a single thread.
We opted for this approach as the zero-knowledge proof is the dominating cost
in IAS, and it requires ∼ 750 milliseconds to compute and verify. On the other
hand, extraction and adaptation are generally extremely fast operations for our
construction, however, we point out that the time for extraction in Table 1 does
not include the verification that the extracted witness ~y, which is a vector of
size 1 for O−IAS, satisfies (IY , ~y) ∈ R∗E0

(line 49 in Algorithm 3). We note that
in practice one can just extract the witness, adapt the pre-signature and then
check that the signature verifies, which is more efficient than actually checking
in R∗E0

, which requires verifying an expensive zero-knowledge proof. Lastly, we
note that even though the communication size is a bit high these operations are
handled off-chain, and the pre-signatures are not stored in the blockchain.

5.2 Comparison with LAS

We compare our evaluation results with those of LAS [11], which is the only
other known post-quantum AS, regarding on-chain and off-chain overhead. The



authors of [11] did not provide any implementation, but they estimated the size
of their signature and pre-signature as 2701 and 3210 bytes, respectively. From
this we can observe that our signature sizes are 1.5−10x smaller depending on the
parameter choices, however, our pre-signature sizes are ∼ 6x larger. However,
due to the weak pre-signature adaptability property of LAS (as described in
Section 1), the applications that use LAS require an expensive zero-knowledge
proof to ensure that the extracted witness is of correct norm. In [12] it is shown
that such a proof has size of 53KB, which signifies that our construction is
more efficient with respect to both on-chain and off-chain communication size.
Moreover, LAS has public key size of 1472 bytes (observed from [10, Table 2]),
which implies that using the Merkle tree technique we can have public key sizes
that are 42x times smaller. In terms of computation time, LAS is an AS scheme
based on Dilithium [10], and thus, it can perform more than hundred sign/verify
operations per second, as these operations take less than one millisecond for
Dilithium, thereby offering better computational performance than O−IAS.

In summary, our evaluation shows that it is feasible to adopt IAS to extend
current blockchains with post-quantum AS at the cost of ∼ 1500 bytes (for com-
bined public key and signature size using parameters S = 23, tS = 28, k = 16)
of communication size, which will be ∼ 3x smaller than LAS, and requiring
only ∼ 100 milliseconds of computation time (for signature verification using
the same parameters). Analogous results and reduction in communication size
also applies to the off-chain setting, which greatly benefits the off-chain appli-
cations using AS as building block, such as payment channels, payment-channel
networks, atomic swaps or payment-channel hubs, which are performed over a
WAN network, and thus, a reduction in communication is desirable.

6 Building Payment-Channel Networks from IAS

In this section we describe how to use adaptor signatures (AS) and IAS to build
post-quantum payment-channel networks (PCNs). In particular, we give the
background on PCNs, describe the atomic multi-hop locks (AMHLs) [17], show
the current implementation (i.e., one susceptible to post-quantum adversaries),
then we explain how to leverage IAS to build post-quantum resistant PCN that
achieves both security and privacy, and lastly discuss the privacy challenges of
LAS-based PCN from [11].

During our discussion, we assume that the verification algorithm in the un-
derlying cryptocurrency is replaced by the verification algorithm of CSI-FiSh
given in Algorithm 1. We further assume that the scripting language supports
other application-dependent functionality such as timing conditions, which are
available in virtually all cryptocurrencies today.

Background on PCN. Payment channels are a promising and practically
relevant approach to mitigate the low throughput provided by permissionless
cryptocurrencies such as Bitcoin. In a nuthsell, two users Alice and Bob cre-
ate a payment channel between them by means of a Bitcoin transaction where
they lock coins into a deposit Bitcoin address controlled by both of them. Af-



terwards, Alice and Bob can pay each other by exchanging signed transactions
that distribute the coins at the deposit address. These off-chain payments are
exchanged in a peer-to-peer manner and stored locally by the users. Only when
Alice and Bob decide to close the channel, they include the last transaction that
they have agreed on to the Bitcoin blockchain, therefore releasing the coins from
the deposit address.

A PCN naturally extends the notion of payment channel to route payments
between two users that do not have a payment channel directly between them.
Instead, these two users can pay each other by means of multi-hop payments
that leverage the payment channels available between intermediaries. A crucial
property required in a multi-hop payment is the synchronization of the channels
in the path, meaning that either all channels are successfully updated to process
the payment or no channel is updated.

The Lightning Network uses the hash-time lock contract (HTLC) for such
synchronization task. However, this mechanism presents security (i.e., it is prone
to the wormhole attack) and privacy issues (i.e., it leaks who pays to whom).
Recently, Malavolta et al. [17] have proposed Anonymous Multi-Hop Locks
(AMHL) as an alternative synchronization protocol for multi-hop payments that
overcomes the aforementioned security and privacy issues. The proposed con-
structions are, however, based on Schnorr and ECDSA digital signatures, both
based on the discrete logarithm problem, and thus, insecure against quantum
attackers. Our approach is thus to realize the functionality of AMHL leveraging
IAS instead.

Background on AMHL. A multi-hop payment from sender S to receiver
R through intermediaries {I}1...k, which is synchronized with AMHL is divided
in three steps: setup, commit and release. During the setup phase, S chooses
random strings l0, . . . , lk−1 and computes yj :=

∑j
i=0 li and Yj := f(yj) for

j := 0 . . . k − 1 where f is an additively homomorphic one-way function. The
setup ends when S sends the tuple (Yj−1, Yj , lj) to each intermediary Ij and
the tuple (Yk−1, yk−1) to the receiver R. At this point, each intermediary can
check the correctness of the tuple received from the sender by checking that
f(lj)⊕ Yj−1 = Yj , where ⊕ denotes the operation in the range of f .

After the setup, the commit phase starts when S makes a conditional pay-
ment to I1 requiring that I1 provides the pre-image of Y0. Similarly, each inter-
mediary Ij makes a conditional payment to Ij+1 with the condition Yj after they
have received the corresponding payment from Ij−1. Finally, the release phase
is triggered by the receiver R that reveals yk−1 to Ik−1 to claim the coins in the
conditional payment previously set during the commit phase. Then, each inter-
mediary claims the coins from the previous neighbor in the path by computing
yj−1 := yj − lj . When the release phase is finished, all channels are updated and
the payment is finished.

Realizing AMHL with IAS. IAS allows for a smooth realization of AMHL
in a post-quantum setting. The random strings lj in our case are sampled from
ZN for N = #Cl(O) being the order of the class group. The pre-images of the

one-way function f in our case are computed as yj ←
∑j
i=0 li. The function f



becomes the group action computation, and hence, we compute Yj ← [yj ]E, for
the public base curve E. Then, the setup phase continues as described above. We
note that analogous to other AMHL realizations [17, 11], S also needs to send
a zero-knowledge proof πj+1 to each intermediary Ij+1, for j ∈ {0, . . . , k − 2},
which proves that S knows a witness yj for Yj . Although, this corresponds to
the L1 variant of the proof described in Section 3.1, one can just run an instance
of the underlying basic CSI-FiSh identification scheme to prove this statement
more efficiently, as it corresponds to a proof of a single secret group action.

Once the setup phase is finalized, the parties proceed to the commit and
release phases, which we combine them here under a single phase called payment
for brevity. We denote by txi the transaction transferring coins from Ij to Ij+1.
During the payment phase S creates a pre-signature σ̂0 ← PreSig(sk0, tx0, Y0),
and shares it with I1. Then, for j ∈ {1, . . . , k−1}, each intermediary Ij creates its
own pre-signature σ̂j ← PreSig(skj , txj , Yj). Once all pre-signature are generated
and shared, R adapts the pre-signature σ̂k−1 into a valid full signature σk−1
using the witness yk−1 that it receives from S. Then, R shares σk−1 with Ik−1,
which extracts the witness y′k−1 using σ̂k−1 and σk−1, computes y′′k−2 ← y′k−1 −
lk−1, and uses it to adapt its own pre-signature σ̂k−2. This process continues
backwards until S receives σ0. This anonymous multi-hop payment construction
is shown in Fig. 1.

Security and privacy discussion. In terms of security, it is shown in
[17] that when AMHL is constructed using an AS, the security reduces to the
security of the underlying AS scheme. As proved in Appendix A, IAS is a secure
AS, hence, the security of our AMHL realization follows trivially.

Regarding privacy, we observe that each witness yj (pre-image of f) is com-
puted as the sum of j+ 1 elements that are uniformly sampled from ZN . Hence,
the resulting value yj is also uniformly distributed in ZN . Therefore, when a
witness yj is revealed to an intermediary, it does not leak any information that
might be used to harm the privacy. As explained in Section 1, this is in contrast
with the AMHL construction of LAS [11], where the norm of yj increases (with
high probability) as j increases (i.e., as we move further along the path). This
in turn leaks non-trivial information regarding the path, which can be used to
break the privacy notions of interest for an AMHL that are described in [17].

Privacy challenges with LAS in PCNs. Interestingly, Esgin et al. [11] also
describe how to realize a post-quantum PCN building on LAS. As the authors of
this work point out, LAS is a post-quantum adaptor signature scheme that relies
on hardness assumptions from lattices, a design choice that requires to carefully
handle challenge inherent to the lattice setting that makes the realization of
applications in a secure manner difficult. We refer to [11, Section 4.2] or more
details. We observe that the lattice setting (and thus LAS) also presents severe
challenges in terms of privacy.

In LAS-based PCN, the sender S during the setup samples k vectors rj with

infinity norm equal 1 [11, Fig.2]. Then, S sets a vector sj :=
∑j
i=0 ri for each

intermediary Ij . Thus, each vector sj has an infinity norm equal j with high
probability. This pattern leaks information that allows an honest-but-curious



Public parameters: base curve E, class number N = #Cl(O)

SetupS(sk0, pk0) SetupIj (skj , pkj) for j ∈ {1, . . . , k}
for j ∈ {0, . . . , k − 1} do
lj ←$ ZN ; yj ←

∑j
i=0 li mod N

Yj ← [yj ]E

for j ∈ {0, . . . , k − 2} do
πj+1 ← NIZK.P((E, Yj), yj)

Tj+1 := (Yj , lj+1, πj+1)

Tk := (Yk−1, yk−1)

Tj

if j 6= l then

Tj := (Yj−1, lj , πj)

if NIZK.V((E, Yj−1), πj) 6= 1 abort

Yj ← [lj ]Yj−1

return Zj := (Yj , Yj−1, lj)

PaymentIj ((skj , pkj), pkj−1, Zj) PaymentIj+1
((skj+1, pkj+1), pkj , Zj+1)

Parse Zj := (Yj , Yj−1, lj)

Obtain σ̂j−1 from Ij−1

Generate txj spending coins to Ij+1

σ̂j ← PreSig(skj , txj , Yj)

σ̂j

Parse Zj+1 := (Yj+1, Yj , lj+1)

Obtain σ̂j+1 from Ij+2

y′j+1 := Ext(σj+1, σ̂j+1, Yj+1, )

// Note σ̂j+1 is created by Ij+1

y′′j ← y′j+1 − lj+1

σj := Adapt(σ̂j , y
′′
j )

σj

y′j := Ext(σj , σ̂j , Yj)

y′′j−1 ← y′j − lj
σj−1 := Adapt(σ̂j−1, y

′
j−1)

Fig. 1. Anonymous multi-hop payments using IAS. We assume that (i) Tj ’s are trans-
mitted confidentially, (ii) pre-signature transmission from Ij to Ij+1 happens only if
that from Ij−1 to Ij already happened, and (iii) signature transmission from Ij+1 to
Ij happens only if that from Ij+2 to Ij+1 already happened.

adversarial intermediary to deduce sensitive information. First, if the adversary
receives a vector sj with norm equal 1, then the adversary trivially learns that
the sender of the payment is the left neighbor in the path. Second, if an adversary
receives a vector with norm k∗, it learns that it is in the k∗-th position within
the payment path.

As a possible countermeasure, one could imagine that the sender, during
the setup, could set the norm of the vector s0 (i.e., the first vector in the se-
ries sj) to a value other than 1 chosen at random. This näıve approach has
two disadvantages. First, increasing the norm of the vector sj decreases the ef-
ficiency of the signature scheme. In fact, Esgin et al. suggest to keep this value
below 50 for practical purposes. Second, this approach also breaks relationship



anonymity [17], meaning that an adversarial intermediary can link who pays
to whom in a PCN. In particular, as required in the definition of relationship
anonymity, assume that two senders S0 and S1 simultaneously pay to receiver R0

and R1 correspondingly, through a path I1, I2, I3 where I1 and I3 are controlled
by the adversary. In this setting, when I1 receives the vector s0 from sender S0

with a certain norm x, the adversary can compare it with the norm of the vector
s2 that sends to R0. If the norm of s2 is x+2, the adversary knows that R0 is the
intended receiver of the payment from S0. Otherwise, the intended receiver is
R1. We leave the design of a modified version of LAS that preserves the privacy
properties of off-chain applications such as PCNs as an interesting future work.

7 Conclusion

Adaptor signatures (AS) are an extension of digital signatures that enable the
encoding of a cryptographic hard problem within the signature itself, a func-
tionality that has emerged as a key building block for off-chain applications.
However, virtually all current AS constructions are prone to attacks from an
adversary with a quantum computer. The recently proposed post-quantum AS
construction LAS constitutes a breakthrough in this sense, suffering however
from limitations when it comes to performance, communication overhead and,
most notably, privacy of the off-chain applications that use it as a building block.

In this work we designed IAS, the first construction for AS that is provably
secure in the post-quantum setting that additionally provides the security and
privacy notions of interest for off-chain applications built upon it. Our perfor-
mance evaluation showed that IAS can be incorporated into current blockchains
while requiring ∼ 1500 bytes of storage size on-chain and 140 milliseconds for
digital signature verification. When compared to LAS, IAS requires 3x small
storage while requiring higher computation time, thereby posing a different per-
formance thread-off. Finally, we showed how to build post-quantum resistant
payment-channel networks from IAS.
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A Security Proof

In this section we formally prove the security of IAS. We recall the theorem
stated in Section 4, which we prove here.

Theorem 1. Assuming that the CSI-FiSh signature scheme ΣCSI−FiSh is SUF-CMA
secure and R∗E0

is a hard relation, the adaptor signature scheme ΞR∗E0
,ΣCSI−FiSh

,

as defined in Algorithm 3, is secure in QROM.

Proof. We begin by proving that the adaptor signature scheme ΞR∗E0
,ΣCSI−FiSh

(IAS) satisfies pre-signature adaptability. In fact, we prove a slightly stronger
statement, which says that any valid pre-signature adapts to a valid signature
with probability 1.

Lemma 1 (Pre-signature Adaptability). The adaptor signature scheme
ΞR∗E0

,ΣCSI−FiSh
satisfies pre-signature adaptability.

Proof. Let us fix some arbitrary (IY , ~y) ∈ R∗E0
,m ∈ {0, 1}∗, pk := (E1, . . . , ES−1)

∈ ES−1 and σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS , π1, . . . , πtS , E
′
1, . . . , E

′
tS ) ∈ ZtSN ×{−S+

1, . . . , S − 1}tS × ({0, 1}∗)tS × EtS . Let (c1, . . . , ctS ) = H(E′1‖ · · · ‖E′tS‖m) and
for all i ∈ {1, . . . , tS},

Ê′i ← [r̂i]Eci .

Assuming that PreVer(pk,m, IY , σ̂) = 1, we know that there exists (b1, . . . , btS ) ∈
ZtSN s.t. for all i ∈ {1, . . . , tS}, Ê′i := [bi]E0 and E′i := [bi]E

i
Y for IY :=

( ~EY := (E1
Y , . . . , E

tS
Y ), πY ). Moreover, by the definition of Adapt, we know that

Adapt(σ̂, ~y := (y1, . . . , ytS )) = (r1, . . . , rtS , c1, . . . , ctS ) for ri := r̂i + yi for all
i ∈ {1, . . . , tS}. Hence, we have

H([r1]Ec1‖ · · · ‖[rtS ]EctS ‖m) = H([y1][r̂1]Ec1‖ · · · ‖[ytS ][r̂tS ]EctS ‖m)

= H([y1]Ê′1‖ · · · ‖[ytS ]Ê′tS‖m)

= H(E′1‖ · · · ‖E′tS‖m)

= (c1, . . . , ctS ).

�

Lemma 2 (Pre-signature Correctness). The adaptor signature scheme
ΞR∗E0

,ΣCSI−FiSh
satisfies pre-signature correctness.

Proof. Let us fix some arbitrary (sk := (a1, . . . , atS ), ~y) ∈ Z2·tS
N and m ∈ {0, 1}∗,

compute Ei ← [ai]E0 and EiY ← [yi]E0 for all i ∈ {1, . . . , tS}, set pk :=
(E1, . . . , EtS ), compute πY ← NIZK.P((E0, E

1
Y , . . . , E0, E

tS
Y ), y) and set IY :=

( ~EY , πY ). For σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS , π1, . . . , πtS , E
′
1, . . . , E

′
tS )← PreSig(sk,

m, IY ), and for all i ∈ {1, . . . , tS}, it holds that Ê′i = [bi]E0, E′i = [bi]E
i
Y ,



(c1, . . . , ctS ) = H(E′1‖ · · · ‖E′tS‖m) and r̂i = bi − sign(ci)a|ci| mod N . Set for all
i ∈ {1, . . . , tS},

Ê′i := [r̂i]Eci = [bi]E0.

By correctness of NIZK we know that NIZK.V((E0, Êi, E
i
Y , E

′
i), πi) = 1, and

hence, we have that PreVer(pk,m, IY , σ̂) = 1. By Lemma 1, this implies that
Ver(pk,m, σ) = 1 for σ = (r1, . . . , rtS , c1, . . . , ctS ) := Adapt(σ̂, ~y := (y1, . . . , ytS )).
By definition of Adapt, we know that ri = r̂i + yi for all i ∈ {1, . . . , tS}, and
hence,

Ext(σ, σ̂, IY ) = ri − r̂i = (r̂i + yi)− r̂1 = yi for all i ∈ {1, . . . , tS}.

�

Lemma 3 (aEUF-CMA Security). Assuming that the CSI-FiSh signature scheme
ΣCSI−FiSh is SUF-CMA secure and R∗E0

is a hard relation, the adaptor signature
scheme ΞR∗E0

,ΣCSI−FiSh
, as defined in Algorithm 3, is aEUF-CMA secure.

Proof. We prove the unforgeability by reduction to strong unforgeability of the
CSI-FiSh signatures scheme, which was proved in [3] to hold in quantum random
oracle model (QROM) [9]. We consider an adversary A who plays the aSigForge
game, and then we build a simulator S who plays the strong unforgeability
experiment for the CSI-FiSh signature scheme and uses A’s forgery in aSigForge
to win its own experiment. S has access to the signing oracle SigCSI−FiSh and the
random oracle HCSI−FiSh, which it uses to simulate oracle queries for A, namely
random oracle (H), signing (OS) and pre-signing (OpS) queries.

The main challenges in the oracle simulations arise when simulating OpS

queries, since S can only get full signatures from its own signing oracle, and
hence, needs a way to transform the full signatures into pre-signatures for A. In
order to do so, the simulator faces two challenges: 1) S needs to learn the witness

~y for the statement ~EY for which the pre-signature is supposed to be generated,
and 2) S needs to simulate the zero-knowledge proofs πi, for {1, . . . , tS}, which
proves the consistency of the randomnesses in the pre-signature.

More precisely, upon receiving a OpS query from A on input a message m

and an instance IY = ( ~EY , πY ), the simulator queries its signing oracle to obtain
a full signature on m. Then, S needs to learn a witness ~y, s.t. EiY = [yi]E0 for
{1, . . . , tS}, in order to transform the full signature into a pre-signature for A.
We make use of the extractability property of the zero-knowledge proof πY , in
order to extract ~y, and consequently transform a full signature into a valid pre-
signature. Additionally, since a valid pre-signature contains ts zero-knowledge
proofs for L2 (see Section 3.1), the simulator has to simulate these proof without
knowledge of the corresponding witness. In order to achieve this, we make use
of the zero-knowledge property, which allows for simulation of a proof for a
statement without knowing the corresponding witness.



G0G0G0

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : m← AOS(·),OpS(·,·)(pk)

5 : (IY , ~y)← GenR(1λ)

6 : σ̂ ← PreSig(sk,m, IY )

7 : σ∗ ← A(σ̂, IY )

8 : b := Ver(pk,m, σ∗)

9 : return (m 6∈ Q ∧ b)

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x]←$ CtS

4 : return H[x]

OpS(m, IY )

1 : σ̂ ← PreSig(sk,m, IY )

2 : Q := Q∪ {m}
3 : return σ̂

G1G1G1

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : m∗ ← AOS(·),OpS(·,·)(pk)

5 : (IY , ~y)← GenR(1λ)

6 : σ̂ ← PreSig(sk,m∗, IY )

7 : σ∗ ← A(σ̂, IY )

8 : if Adapt(σ̂, ~y) = σ∗

9 : abort

10 : b := Ver(pk,m∗, σ∗)

11 : return (m∗ 6∈ Q ∧ b)

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x]←$ CtS

4 : return H[x]

OpS(m, IY )

1 : σ̂ ← Sig(sk,m, IY )

2 : Q := Q∪ {m}
3 : return σ̂

Game G0G0G0: This game corresponds to the original aSigForge game, where the
adversary A has to come up with a valid forgery for a message m of its choice,
while having access to oracles H, OpS and OS. Since we are in the random oracle



model, we explicitly write the random oracle code H. It trivially follows that

Pr[G0 = 1] = Pr[aWitExtA,ΞR∗
E0

,ΣCSI−FiSh
(λ) = 1].

Game G1G1G1: This game works exactly as G0G0G0 with the exception that upon
the adversary outputting a forgery σ∗, the game checks if completing the pre-
signature σ̂ using the witness ~y results in σ∗. In that case, the game aborts.

Claim: Let Bad1 be the event that G1G1G1 aborts, then it holds that Pr[Bad1] ≤
negl(λ).

Proof: We prove this claim using a reduction to the hardness of the relation
R∗E0

. More precisely, we construct a simulator S that breaks the hardness of
the relation assuming it has access to an adversary A that causes G1G1G1 to abort
with non-negligible probability. The simulator gets a challenge I∗Y , upon which
it generates a key pair (sk, pk) ← KeyGen(1λ) in order to simulate A’s queries
to the oracles H, OpS and OS. The simulation of the oracles works as described
in G1G1G1.

Eventually, upon receiving the challenge message m from A, S computes a
pre-signature σ̂ ← PreSig(sk,m, I∗Y ) and returns the pair (σ̂, I∗Y ) to the adversary
which outputs a forgery σ. Assuming that Bad1 happened (i.e., Adapt(σ̂, ~y) = σ),
we know that due to the correctness property, the simulator can extract ~y∗ by
executing Ext(σ, σ̂, I∗Y ) to obtain a valid statement/witness pair for the relation
R∗E0

(i.e., (I∗Y , ~y
∗) ∈ R∗E0

).

We note that the view of A is indistinguishable to his view in G1G1G1, since the
challenge I∗Y is an instance of the hard relation R∗E0

, and therefore, equally dis-
tributed to the public output of GenR. Hence, the probability of S breaking the
hardness of the relation is equal to the probability of the event Bad1 happening.
By our assumption, this is non-negligible, which is a contradiction to the hard-
ness of R∗E0

. �

Since games G1G1G1 and G0G0G0 are equivalent except when event Bad1 happens, it
holds that

Pr[G1G1G1 = 1] ≤ Pr[G0G0G0 = 1] + negl(λ) .



G2G2G2

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : m∗ ← AOS(·),OpS(·,·)(pk)

5 : (IY , ~y)← GenR(1λ)

6 : σ̂ ← PreSig(sk,m∗, IY )

7 : σ∗ ← A(σ̂, IY )

8 : if Adapt(σ̂, ~y) = σ∗

9 : abort

10 : b := Ver(pk,m∗, σ∗)

11 : return (m∗ 6∈ Q ∧ b)

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x]←$ CtS

4 : return H[x]

OpS(m, IY )

1 : Parse IY as ( ~EY , πY )

2 : ~y := K( ~EY , πY , H)

3 : if (( ~EY , πY ), ~y) 6∈ R∗E0

4 : abort

5 : σ̂ ← PreSig(sk,m, IY )

6 : Q := Q∪ {m}
7 : return σ̂

Game G2G2G2: The only changes between G1G1G1 and G2G2G2 are for the OpS oracle.
More precisely, during the OpS queries, this game extracts a witness ~y by exe-

cuting the extractor algorithm K on input the statement ~EY , the proof πY and
the list of random oracle queries H. If for the extracted witness ~y it does not
hold that (( ~EY , πY ), ~y) ∈ R∗E0

, then the game aborts.

Claim: Let Bad2 be the event that G2G2G2 aborts during an OpS execution, then it
holds that Pr[Bad2] ≤ negl(λ).

Proof: According to the online extractor property of NIZK, for a witness ~y ex-
tracted from a proof πY of statement ~EY such that NIZK.V( ~EY , πY ) = 1, it

holds that (( ~EY , πY ), ~y) ∈ R∗E0
, except with negligible probability in the secu-

rity parameter λ. �

Since games G2G2G2 and G1G1G1 are equivalent except if event Bad2 happens, it holds
that

Pr[G2G2G2 = 1] ≤ Pr[G1G1G1 = 1] + negl(λ) .



G3G3G3

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : m∗ ← AOS(·),OpS(·,·)(pk)

5 : (IY , ~y)← GenR(1λ)

6 : σ̂ ← PreSig(sk,m∗, IY )

7 : σ∗ ← A(σ̂, IY )

8 : if Adapt(σ̂, ~y) = σ∗

9 : abort

10 : b := Ver(pk,m∗, σ∗)

11 : return (m∗ 6∈ Q ∧ b)

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x]←$ CtS

4 : return H[x]

OpS(m, IY )

1 : Parse IY as ( ~EY , πY )

2 : ~y := K( ~EY , πY , H)

3 : if (( ~EY , πY ), ~y) 6∈ R∗E0

4 : abort

5 : σ ← Sig(sk,m)

6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

7 : Parse pk as (E1, . . . , ES−1)

8 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

9 : Parse ~y as (y1, . . . , ytS )

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi
12 : Ê′i ← [ri]Eci

13 : E′i ← [yi]Ê
′
i

14 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

15 : Q := Q∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

Game G3G3G3: This game extends the changes of the previous game to the OpS

oracle by first creating a valid full signature σ by executing the Sig algorithm, and
then converting σ into a valid pre-signature using the extracted witness ~y. Fur-
thermore, the game computes the randomnesses (Ê′1, . . . , Ê

′
tS ) and (E′1, . . . , E

′
tS )

from σ, and simulates the zero-knowledge proofs (πS
1 , . . . , π

S
tS ) using the Ê′i and

E′i values.
Due to the zero-knowledge property of NIZK, the simulator can produce a

proof πS
i that is computationally indistinguishable from an honest proof πi ←

NIZK.P((E0, Ê
′
i, E

i
Y , E

′
i), bi). Hence, this game is indistinguishable from the pre-

vious game, and it holds that

Pr[G3G3G3 = 1] ≤ Pr[G2G2G2 = 1] + negl(λ) .

Game G4G4G4: In this game, upon receiving the challenge message m∗ from
A, the game creates a full signature σ by executing the Sig algorithm, and



transforming the resulting signature into a valid pre-signature in the same way
as was done in the previous game during the OpS execution. Hence, the same
indistinguishability argument as in the previous game holds in this game as well,
and it holds that

Pr[G4G4G4 = 1] ≤ Pr[G3G3G3 = 1] + negl(λ) .

G4G4G4

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : m∗ ← AOS(·),OpS(·,·)(pk)

5 : (IY , ~y)← GenR(1λ)

6 : σ ← Sig(sk,m∗, IY )

7 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

8 : Parse pk as (E1, . . . , ES−1)

9 : Parse IY as ( ~EY , πY )

10 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

11 : Parse ~y as (y1, . . . , ytS )

12 : for i ∈ {1, . . . , tS} do
13 : r̂i ← ri − yi
14 : Ê′i ← [ri]Eci

15 : E′i ← [yi]Ê
′
i

16 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

17 : σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS ,

18 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

19 : σ∗ ← A(σ̂, IY )

20 : if Adapt(σ̂, ~y) = σ∗

21 : abort

22 : b := Ver(pk,m∗, σ∗)

23 : return (m∗ 6∈ Q ∧ b)

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x]←$ CtS

4 : return H[x]

OpS(m, IY )

1 : Parse IY as ( ~EY , πY )

2 : ~y := K( ~EY , πY , H)

3 : if (( ~EY , πY ), ~y) 6∈ R∗E0

4 : abort

5 : σ ← Sig(sk,m)

6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

7 : Parse pk as (E1, . . . , ES−1)

8 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

9 : Parse ~y as (y1, . . . , ytS )

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi
12 : Ê′i ← [ri]Eci

13 : E′i ← [yi]Ê
′
i

14 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

15 : Q := Q∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

Having shown that the transition from the original aSigForge game (Game
G0G0G0) to Game G4G4G4 is indistinguishable, it remains to show that there exists a sim-
ulator that perfectly simulates G4G4G4, and uses A to win the StrongSigForge game.



In the following we describe in a concise way the simulator code.

SSigCSI−FiSh,HCSI−FiSh

(pk)

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : m∗ ← AOS(·),OpS(·,·)(pk)

5 : (IY , ~y)← GenR(1λ)

6 : σ ← SigCSI−FiSh(m∗)

7 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

8 : Parse pk as (E1, . . . , ES−1)

9 : Parse IY as ( ~EY , πY )

10 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

11 : Parse ~y as (y1, . . . , ytS )

12 : for i ∈ {1, . . . , tS} do
13 : r̂i ← ri − yi
14 : Ê′i ← [ri]Eci

15 : E′i ← [yi]Ê
′
i

16 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

17 : σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS ,

18 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

19 : σ∗ ← A(σ̂, IY )

20 : return (m∗, σ∗)

OS(m)

1 : σ ← SigCSI−FiSh(m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]← HCSI−FiSh(x)

3 : return H[x]

OpS(m, IY )

1 : Parse IY as ( ~EY , πY )

2 : ~y := K( ~EY , πY , H)

3 : if (( ~EY , πY ), ~y) 6∈ R∗E0

4 : abort

5 : σ ← SigCSI−FiSh(m)

6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

7 : Parse pk as (E1, . . . , ES−1)

8 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

9 : Parse ~y as (y1, . . . , ytS )

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi
12 : Ê′i ← [ri]Eci

13 : E′i ← [yi]Ê
′
i

14 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

15 : Q := Q∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

Simulation of oracle queries.

Signing queries: Upon A querying the oracle OS on input m, S forwards m
to its oracle SigCSI−FiSh and returns its response to A.

Random oracle queries: Upon A querying the oracle H on input x, if H[x] =
⊥, then S queries HCSI−FiSh(x), otherwise the simulator returns H[x].

Pre-signing queries:

1. Upon A querying the oracle OpS on input (m, IY ), the simulator extracts

~y using the extractability of NIZK, forwards m to the oracle SigCSI−FiSh,
and parses the signature that is generated as σ := (r1, . . . , rtS , c1, . . . , ctS ).



2. S generates a pre-signature from (r1, . . . , rtS , c1, . . . , ctS ) by computing
r̂i ← ri − yi, for all i ∈ {1, . . . , tS}.

3. Finally, S simulates the zero-knowledge proofs πS
i , for i ∈ {1, . . . , tS},

proving that Ê′i and E′i have the same group action. The simulator out-
puts σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS , π

S
1 , . . . , π

S
tS , E

′
1, . . . , E

′
tS ).

Challenge phase:

1. Upon A outputting the message m∗ as the challenge message, S gen-
erates (IY , ~y) ← GenR(1λ), forwards m∗ to the oracle SigCSI−FiSh, and
parses the signature that is generated as σ := (r1, . . . , rtS , c1, . . . , ctS ).

2. S generates the required pre-signature σ̂ in the same way as during OpS

queries.
3. Upon A outputting a forgery σ∗, the simulator outputs (m∗, σ∗) as its

own forgery.

We emphasize that the main difference between the simulation and G4G4G4 are
syntactical. More concretely, instead of generating the secret/public keys and
running the algorithms Sig and H, the simulator S uses its oracles SigCSI−FiSh

and HCSI−FiSh. It remains to show that the forgery output by A can be used by
the simulator to win the StrongSigForge game.

Claim: (m∗, σ∗) constitutes a valid forgery in the StrongSigForge game.

Proof: In order to prove this claim, we have to show that the tuple (m∗, σ∗) has
not been output by the oracle SigCSI−FiSh before. We note that the adversary
A has not previously made a query on the challenge message m∗ to either OpS

or OS. Hence, SigCSI−FiSh is only queried on m∗ during the challenge phase. As
shown in game G1G1G1, the adversary outputs a forgery σ∗ which is equal to the
signature σ output by SigCSI−FiSh during the challenge phase only with negligible
probability. Therefore, SigCSI−FiSh has never output σ∗ on query m∗ before, and
consequently (m∗, σ∗) constitutes a valid forgery for the StrongSigForge game. �

From the games G0G0G0 −G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + negl(λ).
Since S provides a perfect simulation of game G4G4G4, we obtain

AdvaSigForgeA = Pr[G0G0G0 = 1]

≤ Pr[G4G4G4] + negl(λ)

≤ AdvStrongSigForgeS + negl(λ) .

Since CSI-FiSh is secure in QROM withHCSI−FiSh modeled as a quantum ran-
dom oracle, this implies that IAS is aEUF-CMA secure in QROM. This concludes
the proof of Lemma 3.

�

Lemma 4 (Witness Extractability). Assuming that the CSI-FiSh signature
scheme ΣCSI−FiSh is SUF-CMA secure and R∗E0

is a hard relation, the adaptor
signature scheme ΞR∗E0

,ΣCSI−FiSh
, as defined in Algorithm 3, is witness extractable.



Proof. First, we start with the main intuition behind the witness extractability
proof. In overall this proof is very similar to the proof of Lemma 3. Our goal is
to reduce the witness extractability of ΞR∗E0

,ΣCSI−FiSh
to the strong unforgeability

of the CSI-FiSh signature scheme. More concretely, assuming that there exists
a PPT adversary A who wins the aWitExt experiment, we design another PPT
adversary S that wins the StrongSigForge experiment.

Similar to the unforgeability proof, the main challenge arises during the sim-
ulation of pre-sign queries. Hence, the simulation is done exactly as in the proof
of Lemma 3. However, unlike in the aSigForge experiment, in aWitExt, A outputs
the statement IY for the relation R∗E0

alongside the challenge message m∗. This
means that the game does not choose the pair (IY , ~y). Therefore, S does not
learn the witness ~y, and hence, cannot transform a valid full signature to a pre-
signature by computing r̂i ← ri−yi, for all i ∈ {1, . . . , tS}. Though, it is possible
to extract ~y from the zero-knowledge proof embedded in IY . After extracting
~y, the same approach used in Lemma 3 to simulate the pre-sign queries can be
taken here as well.

Next, we continue with the sequence of games needed for the proof.

Game G0G0G0: This game corresponds to the original aWitExt game, where the
adversaryA has to come up with a valid signature σ for a message m of its choice,
given a pre-signature σ̂ and a statement/witness pair (IY := ( ~EY , πY ), ~y), while
having access to oracles H, OpS and OS, such that (IY ,Ext(σ, σ̂, IY )) 6∈ R∗E0

.
Since we are in the random oracle model, we explicitly write the random oracle
code H. It trivially follows that

Pr[G0 = 1] = Pr[aWitExtA,ΞR∗
E0

,ΣCSI−FiSh
(λ) = 1].

Game G1G1G1: This game only applies changes to the OpS oracle compared to
the previous game. More precisely, during the OpS queries, this game extracts a

witness ~y by executing the extractor algorithm K on inputs the statement ~EY ,
the proof πY and the list of random oracle queries H. The game aborts, if for
the extracted witness ~y it does not hold that (IY := ( ~EY , πY ), ~y) ∈ R∗E0

.

Claim: Let Bad1 be the event that G1G1G1 aborts during an execution of OpS, then
it holds that Pr[Bad1] ≤ negl(λ).

Proof: According to the online extractor property of NIZK, for a witness ~y ex-
tracted from a proof πY for statement ~EY such that NIZK.V( ~EY , πY ) = 1, it

holds that (( ~EY , πY ), ~y) ∈ R∗E0
, except with negligible probability. �

Since games G1G1G1 and G0G0G0 are equivalent except when the event Bad1 happens,
it holds that

Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 = 1] + negl(λ) .



G0G0G0

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : (m, IY )← AOS(·),OpS(·,·)(pk)

5 : σ̂ ← PreSig(sk,m, IY )

6 : σ ← AOS(·),OpS(·,·)(σ̂)

7 : ~y′ := Ext(σ, σ̂, IY )

8 : b1 := Ver(pk,m, σ)

9 : b2 := m 6∈ Q
10 : b3 := (IY , ~y

′) 6∈ R∗E0

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x]←$ CtS

4 : return H[x]

OpS(m, IY )

1 : σ̂ ← PreSig(sk,m, IY )

2 : Q := Q∪ {m}
3 : return σ̂

G1G1G1

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : (m∗, IY )← AOS(·),OpS(·,·)(pk)

5 : σ̂ ← PreSig(sk,m∗, IY )

6 : σ∗ ← AOS(·),OpS(·,·)(σ̂)

7 : ~y′ := Ext(σ∗, σ̂, IY )

8 : b1 := Ver(pk,m∗, σ∗)

9 : b2 := m∗ 6∈ Q
10 : b3 := ((IY , ~y

′) 6∈ R∗E0

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x]←$ CtS

4 : return H[x]

OpS(m, IY )

1 : Parse IY as ( ~EY , πY )

2 : ~y := K( ~EY , πY , H)

3 : if (( ~EY , πY ), ~y) 6∈ R∗E0

4 : abort

5 : σ̂ ← PreSig(sk,m, IY )

6 : Q := Q∪ {m}
7 : return σ̂

Game G2G2G2: This game extends the changes to the OpS oracle from the pre-
vious game. In the OpS execution, this game first creates a valid full signature σ



by executing the Sig algorithm, and converts σ into a pre-signature using the ex-
tracted witness ~y. Moreover, the game computes the randomnesses (Ê′1, . . . , Ê

′
tS )

and (E′1, . . . , E
′
tS ) from σ, and simulates the zero-knowledge proofs (πS

1 , . . . , π
S
tS )

using the Ê′i and E′i values.
Due to the zero-knowledge property of NIZK, the simulator can generate a

proof πS
i that is computationally indistinguishable from an honest proof πi ←

NIZK.P((E0, Ê
′
i, EY , E

′
i), bi). Hence, this game is indistinguishable from the pre-

vious game, and it holds that

Pr[G1G1G1 = 1] ≤ Pr[G2G2G2 = 1] + negl(λ) .

G2G2G2

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : (m∗, IY )← AOS(·),OpS(·,·)(pk)

5 : σ̂ ← PreSig(sk,m∗, IY )

6 : σ∗ ← AOS(·),OpS(·,·)(σ̂)

7 : ~y′ := Ext(σ∗, σ̂, IY )

8 : b1 := Ver(pk,m∗, σ∗)

9 : b2 := m∗ 6∈ Q
10 : b3 := ((IY , ~y

′) 6∈ R∗E0

11 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x]←$ CtS

4 : return H[x]

OpS(m, IY )

1 : Parse IY as ( ~EY , πY )

2 : ~y := K( ~EY , πY , H)

3 : if (( ~EY , πY ), ~y) 6∈ R∗E0

4 : abort

5 : σ ← Sig(sk,m)

6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

7 : Parse pk as (E1, . . . , ES−1)

8 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

9 : Parse ~y as (y1, . . . , ytS )

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi
12 : Ê′i ← [ri]Eci

13 : E′i ← [yi]Ê
′
i

14 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

15 : Q := Q∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

Game G3G3G3: In this game we apply the exact same changes made in the game
G1G1G1 for OpS oracle to the challenge phase of the game. During the challenge
phase, this game extracts a witness ~y by executing the extractor algorithm K on
inputs the statement ~EY , the proof πY and the list of random oracle queries H.



If for the extracted witness y it does not hold that (( ~EY , πY ), ~y) ∈ R∗E0
, then

the game aborts.

G3G3G3

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : (m∗, IY )← AOS(·),OpS(·,·)(pk)

5 : Parse IY as ( ~EY , πY )

6 : ~y := K( ~EY , πY , H)

7 : if (( ~EY , πY ), ~y) 6∈ R∗E0

8 : abort

9 : σ̂ ← PreSig(sk,m, IY )

10 : σ ← AOS(·),OpS(·,·)(σ̂)

11 : ~y′ := Ext(σ∗, σ̂, IY )

12 : b1 := Ver(pk,m∗, σ∗)

13 : b2 := m∗ 6∈ Q
14 : b3 := ((EY , πY ), ~y′) 6∈ R∗E0

15 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x]←$ CtS

4 : return H[x]

OpS(m, IY )

1 : Parse IY as ( ~EY , πY )

2 : ~y := K( ~EY , πY , H)

3 : if (( ~EY , πY ), ~y) 6∈ R∗E0

4 : abort

5 : σ ← Sig(sk,m)

6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

7 : Parse pk as (E1, . . . , ES−1)

8 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

9 : Parse ~y as (y1, . . . , ytS )

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi
12 : Ê′i ← [ri]Eci

13 : E′i ← [yi]Ê
′
i

14 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

15 : Q := Q∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

Claim: Let Bad2 be the event that G3G3G3 aborts during the challenge phase, then
it holds that Pr[Bad2] ≤ negl(λ).

Proof: This proof is analogous to the proof of G1G1G1 in the proof of Lemma 4. �

Since games G2G2G2 and G3G3G3 are identical except if event Bad2 occurs, it holds
that

Pr[G2G2G2 = 1] ≤ Pr[G3G3G3 = 1] + negl(λ) .



G4G4G4

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : (m∗, IY )← AOS(·),OpS(·,·)(pk)

5 : Parse IY as ( ~EY , πY )

6 : ~y := K( ~EY , πY , H)

7 : if (( ~EY , πY ), ~y) 6∈ R∗E0

8 : abort

9 : σ ← Sig(sk,m)

10 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

11 : Parse pk as (E1, . . . , ES−1)

12 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

13 : Parse ~y as (y1, . . . , ytS )

14 : for i ∈ {1, . . . , tS} do
15 : r̂i ← ri − yi
16 : Ê′i ← [ri]Eci

17 : E′i ← [yi]Ê
′
i

18 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

19 : σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS ,

20 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

21 : σ∗ ← AOS(·),OpS(·,·)(σ̂)

22 : ~y′ := Ext(σ∗, σ̂, IY )

23 : b1 := Ver(pk,m∗, σ∗)

24 : b2 := m∗ 6∈ Q
25 : b3 := ((EY , πY ), ~y′) 6∈ R∗E0

26 : return (b1 ∧ b2 ∧ b3)

OS(m)

1 : σ ← Sig(sk,m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : C := {−S + 1, . . . , S − 1}
3 : H[x]←$ CtS

4 : return H[x]

OpS(m, IY )

1 : Parse IY as ( ~EY , πY )

2 : ~y := K( ~EY , πY , H)

3 : if (( ~EY , πY ), ~y) 6∈ R∗E0

4 : abort

5 : σ ← Sig(sk,m)

6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

7 : Parse pk as (E1, . . . , ES−1)

8 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

9 : Parse ~y as (y1, . . . , ytS )

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi
12 : Ê′i ← [ri]Eci

13 : E′i ← [yi]Ê
′
i

14 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

15 : Q := Q∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

Game G4G4G4: In this game we apply the exact same changes made in the game
G2G2G2 for OpS oracle to the challenge phase of the game. In the challenge phase,
this game first creates a valid full signature σ by executing the Sig algorithm,
and converts σ into a pre-signature using the extracted witness ~y. Moreover, the
game computes the randomness and zero-knowledge proofs as described in the



game G2G2G2, and hence, the same arguments also apply here. Therefore, this game
is indistinguishable from the previous game, and it holds that

Pr[G3G3G3 = 1] ≤ Pr[G4G4G4 = 1] + negl(λ) .

SSigCSI−FiSh,HCSI−FiSh

(pk)

1 : Q := ∅
2 : H := [⊥]

3 : (sk, pk)← KeyGen(1λ)

4 : (m∗, IY )← AOS(·),OpS(·,·)(pk)

5 : Parse IY as ( ~EY , πY )

6 : ~y := K( ~EY , πY , H)

7 : if (( ~EY , πY ), ~y) 6∈ R∗E0

8 : abort

9 : σ ← SigCSI−FiSh(m∗)

10 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

11 : Parse pk as (E1, . . . , ES−1)

12 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

13 : Parse ~y as (y1, . . . , ytS )

14 : for i ∈ {1, . . . , tS} do
15 : r̂i ← ri − yi
16 : Ê′i ← [ri]Eci

17 : E′i ← [yi]Ê
′
i

18 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

19 : σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS ,

20 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

21 : σ∗ ← AOS(·),OpS(·,·)(σ̂)

22 : return (m∗, σ∗)

OS(m)

1 : σ ← SigCSI−FiSh(m)

2 : Q := Q∪ {m}
3 : return σ

H(x)

1 : if H[x] = ⊥
2 : H[x]← HCSI−FiSh(x)

3 : return H[x]

OpS(m, IY )

1 : Parse IY as ( ~EY , πY )

2 : ~y := K( ~EY , πY , H)

3 : if (( ~EY , πY ), ~y) 6∈ R∗E0

4 : abort

5 : σ ← SigCSI−FiSh(m)

6 : Parse σ as (r1, . . . , rtS , c1, . . . , ctS )

7 : Parse pk as (E1, . . . , ES−1)

8 : Parse ~EY as (E1
Y , . . . , E

tS
Y )

9 : Parse ~y as (y1, . . . , ytS )

10 : for i ∈ {1, . . . , tS} do
11 : r̂i ← ri − yi
12 : Ê′i ← [ri]Eci

13 : E′i ← [yi]Ê
′
i

14 : πS
i ← S((E0, Ê

′
i, E

i
Y , E

′
i), 1)

15 : Q := Q∪ {m}
16 : return (r̂1, . . . , r̂tS , c1, . . . , ctS ,

17 : πS
1, . . . , π

S
tSE

′
1, . . . , E

′
tS )

Having shown that the transition from the original aWitExt game (GameG0G0G0)
to GameG4G4G4 is indistinguishable, it remains to show that there exists a simulator
that perfectly simulates G4G4G4, and uses A to win the StrongSigForge game. In the
following we describe in a concise way the simulator code.



Simulation of oracle queries.

Signing queries: Upon A querying the oracle OS on input m, S forwards m
to its oracle SigCSI−FiSh and returns its response to A.

Random oracle queries: Upon A querying the oracle HCSI−FiSh on input x,
if H[x] = ⊥, then S queries HCSI−FiSh(x), otherwise the simulator returns
H[x].

Pre-signing queries:

1. Upon A querying the oracle OpS on input (m, IY ), the simulator extracts

~y using the extractability of NIZK, forwards m to oracle SigCSI−FiSh and
parses the signature that is generated as σ := (r1, . . . , rtS , c1, . . . , ctS ).

2. S generates a pre-signature from (r1, . . . , rtS , c1, . . . , ctS ) by computing
r̂i ← ri − yi, for all i ∈ {1, . . . , tS}.

3. Finally, S simulates the zero-knowledge proofs πS
i , for i ∈ {1, . . . , tS},

proving that Ê′i and E′i have the same group action. The simulator out-
puts σ̂ := (r̂1, . . . , r̂tS , c1, . . . , ctS , π

S
1 , . . . , π

S
tS , E

′
1, . . . , E

′
tS ).

Challenge phase:

1. Upon A outputting the message (m∗, IY ) as the challenge message, S
extracts ~y using the extractability of NIZK, forwards m∗ to the oracle
SigCSI−FiSh and parses the signature that is generated as σ := (r1, . . . , rtS ,
c1, . . . , ctS ).

2. S generates the required pre-signature σ̂ in the same way as during OpS

queries.
3. Upon A outputting a forgery σ, the simulator outputs (m∗, σ∗) as its

own forgery.

We emphasize that the main difference between the simulation and G4G4G4 are
syntactical. More precisely, instead of generating the secret/public keys and run-
ning the algorithms Sig and H, the simulator S uses its oracles SigCSI−FiSh and
HCSI−FiSh. It remains to show that the signature output by A can be used by the
simulator to win the StrongSigForge game.

Claim: (m∗, σ∗) constitutes a valid forgery in the StrongSigForge game.

Proof: In order to prove this claim, we have to show that the tuple (m∗, σ∗) has
not been output by the oracle SigCSI−FiSh before. We note that the adversary
A has not previously made a query on the challenge message m∗ to either OpS

or OS. Hence, SigCSI−FiSh is only queried on m∗ during the challenge phase. If
the adversary outputs a forgery σ∗, which is equal to the signature σ output
by SigCSI−FiSh during the challenge phase, the extracted ~y would be in relation
with the given public statement IY . Therefore, SigCSI−FiSh has never output σ∗

on query m∗ before and consequently (m∗, σ∗) constitutes a valid forgery for the
StrongSigForge game. �



From the games G0G0G0 −G4G4G4 we get that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + negl(λ).
Since S provides a perfect simulation of game G4G4G4, we obtain

AdvaWitExt = Pr[G0G0G0 = 1]

≤ Pr[G4G4G4 = 1]negl(λ)

≤ AdvStrongSigForgeS + negl(λ) .

Since CSI-FiSh is secure in QROM with HCSI−FiSh modeled as a quantum
random oracle, this implies that IAS achieves witness extractability even against
quantum adversaries. This concludes the proof of Lemma 4. �

This concludes the proof of Theorem 1. �

Next, we continue with the proof of the optimized variant of IAS (O−IAS),
as defined in Section 4. More concretely, we prove the following theorem.

Theorem 2. Assuming that the CSI-FiSh signature scheme ΣCSI−FiSh is SUF-CMA
secure and R†E0

is a hard relation, the adaptor signature scheme ΞR†E0
,ΣCSI−FiSh

,

is secure in QROM.

Proof. The proof is analogous to the proof of Theorem 1, with the only changes
being to the underlying hard relation and the adaptation procedure. More con-
cretely, the hard relation R∗E0

, which consists of pairs IY := ( ~EY , πY ), such that
~EY ∈ L

R
tS
E0

and πY is a zero-knowledge proof that ~EY ∈ L
R
tS
E0

, is replaced

with the hard relation R†E0
, which consists of pairs IY := (EY , πY ), such that

EY ∈ LR1
E0

and πY is a zero-knowledge proof that EY ∈ LR1
E0

. Since both R∗E0

and R†E0
are hard relations, this proof goes through exactly as the proof of Theo-

rem 1, with the single caveat being that in the O−IAS construction only the first
iteration of the pre-signature needs to be adapted. Hence, when the simulator
S transforms a full signature into a pre-signature for the adversary A, it only
needs to modify the first part of the signature (i.e., r1). This concludes the proof
of Theorem 2. �
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