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Abstract. In this paper, we investigate the key dependency of differentials in block ciphers by
examining the results of numerous experiments applied to the substitution-permutation network
(SPN) structure using 4-bit S-boxes. In particular, we consider two cipher structures: a toy 16-bit
SPN and a realistic 64-bit SPN. For both ciphers, we generate many different experimental results
by inserting the S-boxes used in many lightweight cipher proposals and applying different forms
of round key generation. It is demonstrated that, in most circumstances, with enough rounds in
the cipher, the probability distribution (across all keys) of the differential probability follows the
distribution expected in the theoretically ideal scenario. However, this does not occur consistently
for all S-boxes and all approaches to round key generation. Consequently, it is possible that a cipher
may have more susceptibility to differential cryptanalysis for some subset of the cipher keys than is
implied when employing the standard assumptions used in analyzing a cipher’s security.

1 Introduction

Differential cryptanalysis was first proposed and applied to the Data Encryption Standard by Biham and
Shamir [1]. In the years since its introduction, many block ciphers have been proposed and analyzed
for resistance to differential cryptanalysis and its many variations. In recent years, a large number
of lightweight block ciphers have been proposed such as PRESENT [2], ICEBERG [3], PUFFIN [4],
Piccolo [5], KLEIN [6], PRINCE [7], PRIDE [8], Midori [9], SKINNY [10], and Mysterion [11]. The ciphers
PRESENT and PUFFIN belong to the architectural category of the basic substitution-permutation
network (SPN), while other ciphers mentioned can be thought of as modified SPNs1. In all cases, the
ciphers are constructed using a nonlinear mapping of a 4-bit S-box, which maps a 4-bit input to a 4-
bit output. Small 4-bit S-boxes are typically preferred in lightweight ciphers because they require fewer
hardware resources, such as area and energy, than larger S-boxes, like the 8-bit S-boxes used in the
Advanced Encryption Standard (AES) [12]. Variants of AES, based on a 4-bit S-box have been described
in [13] and we refer to this work as “Small AES”.

Although differential cryptanalysis is well understood and its application to various block cipher
proposals considered many times, the analyses typically make some generalizing assumptions, which

1 Such ciphers involve linear transformations in place of the simple permutation and the Piccolo cipher further
belongs to the category of generalized Feistel networks.



do not necessarily reflect the exact behaviour of the system. For example, the notion of stochastic
equivalence [14] is assumed, implying that all selections for the cipher key result in the same differential
probability. Indeed, comparatively few papers have explored more realistic models for the behaviour of
differential cryptanalysis and, in particular, the dependence of the attack on the specific key used in the
cipher. In this paper, we focus on investigating experimentally the relationship between the key of the
cipher and the differential probability computed for the differential attack of practical ciphers. To do this,
we consider two basic SPN cipher constructions (one for a 16-bit block cipher and one for a 64-bit block
cipher), different round key generation approaches, and numerous S-box mappings, based on S-boxes
selected from many proposed lightweight block ciphers.

2 Background

In this section, we very briefly review differential cryptanalysis and present the cipher structures we study.

2.1 Differential Cryptanalysis

After its introduction in 1990 by Biham and Shamir [1], there have been hundreds of papers written on
differential cryptanalysis and many good descriptions of how to apply the attack. Hence, here we only
present a very brief overview.

Differential cryptanalysis is a chosen plaintext attack where a large number of pairs of plaintext
blocks are applied to the cipher input and the corresponding output pairs are processed in a manner
which results in the extraction of some key information. Here, we use “output” to mean the output block
after R rounds of the encryption process and this does not necessarily mean the ciphertext block. The
unordered plaintext pair {P1, P2} is selected so that the values have a specific difference, ∆I = P1 ⊕ P2,
where “⊕” represents a bitwise XOR operation. In ciphers susceptible to differential cryptanalysis, using
a specific difference of plaintext pairs can lead to a highly likely occurrence of a particular difference
for the output pairs, ∆O = C1 ⊕ C2, where {C1, C2} represents the output pair generated by the input
plaintexts. The pair of input and output differences, (∆I , ∆O), is referred to as a differential. Loosely
speaking, the differential probability is the probability that a given output difference will occur for a given
input difference. For our work, we need more precise definitions.

Definition: Fixed-Key Differential Probability (DPK)
The fixed-key differential probability of a block cipher is defined as the probability that a given output
difference will occur for a given input difference and a specific fixed cipher key, K. That is, DPK =
Pr(∆O|∆I ,K), where Pr(·) represents the probability of the argument.

Definition: Average Differential Probability (ADP )
The average differential probability of a block cipher is the average value of DPK across all keys. That is,
ADP = EK{DPK}, where EK{·} is the expectation operator applied across all keys.2

2 Note that this is close to the definition of expected differential probability found in [15]. However, our definition
averages over all cipher keys, not over the long keys defined in [15].
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Ideally, if two outputs are randomly generated in response to two distinct inputs, the probability of
a particular given output difference occurring would be 2−B , where B is the blocksize.3 In a practical
block cipher, if Pr(∆O|∆I) � 2−B for all keys, this information can be utilized to extract information
on key bits using differential cryptanalysis. For example, in the basic attack on SPN ciphers, knowledge
of a highly probable differential (∆I , ∆O), where ∆O is taken from the penultimate round, can be used
to extract information on the key bits applied in the last round of the cipher [16]. Highly probable
differentials can be found by analyzing the cipher components (namely, S-boxes and permutations for an
SPN) and making generalizing assumptions about how the differential probability can be estimated.

In the original work on differential cryptanalysis [1], highly likely output differences were determined
by concatenating highly likely one round differentials, so that a highly likely R round differential was
determined by a specific set of input and output differences for each round. This is referred to as a
differential characteristic or differential trail. The probability of a differential trail was then calculated by
multiplying the individual round differential probabilities using the assumption that all round differentials
occur independently. The probability of a differential trail was taken to be a good approximation of the
fixed-key differential probability, DPK , for all keys and therefore also the average differential probability,
ADP .

Definition: Differential Trail Probability (DPtrail)
The differential trail probability of a block cipher is the probability generated by the multiplication of
individual round differential probabilities.

For the cipher structures discussed in this paper, the probability of a specific output difference of an
individual round given a specific input difference to the round is not dependent on the key. However, in
reality, the round differentials making up a trail are not independent as they are all dependent on the
specific data flowing through the cipher. Also, since a differential is only defined by its overall input and
output differences, many different trails of round differentials can contribute to the overall differential
probability. That is, many differential trails can generate a specific differential and, hence, it is well known
ADP 6= DPtrail and, in fact, it is expected ADP > DPtrail. Indeed, it is expected that DPK 6= DPtrail for
some keys and for some keys DPK > DPtrail. Further, it is possible that, for some keys DPK � DPtrail
(while for other keys, it is even possible DPK � DPtrail). The assumption that trail probabilities can
be calculated assuming independent round differentials can be seen as equivalent to assuming that every
round of encryption uses an randomly generated independent key for each plaintext and is consistent
with the concept of stochastic equivalence [14].

In the experimental results presented in this paper, we apply plaintext differences to ciphers over a
number of fixed keys and examine the resulting likelihoods of specific differentials, not differential trails.
In some cases the keys will be randomly selected samples, while at other times, the keys are selected
exhaustively from the available set. Since the resulting differential probability will be calculated with a
fixed key, we are experimentally determining DPK for each key selected. We do not expect the principle
of stochastic equivalence to apply and the probabilities determined for given keys can vary, resulting in
a distribution of differential probability across all possible keys for the cipher under study.

3 All block ciphers are bijective. Hence, if two random outputs are generated from two distinct inputs, then
strictly, the probability of an output difference of 0 is 0 (that is, Pr(∆O = 0|∆I 6= 0) = 0) and the probability
of a specific non-zero output difference is 1/(2B − 1) (that is, for δ 6= 0, Pr(∆O = δ|∆I 6= 0) = 1/(2B − 1)). For
large B, this small difference is insignificant.
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2.2 Previous Work on the Fixed-Key Differential Probability

There are many hundreds of papers exploring the differential cryptanalysis of block ciphers. We do not
provide an exhaustive review of the work here but highlight a few papers that are of direct relevance to our
work as they discuss theory or practical issues of the probability distribution of the fixed-key differential
probability. The motivation for this work is that consideration of differential probabilities without the
expectation of stochastic equivalence have not been extensively studied, even though stochastic equivalence
clearly does not apply to practical cipher structures like SPNs.

In [15], Daemen and Rijmen examine the probability distributions of differentials expected in block
ciphers structured with key mixing applied to iterative ciphers using XOR operations between rounds
of cryptographic operations. The substitution-permutation networks studied in this paper fall into this
category of cipher. In particular, they consider the implications for characteristics of fixed-key differential
probabilities, not just idealized ciphers which assume the expected behaviour across all keys is the same.
However, their analysis does include some assumptions that mean results are still generalizations. One
conclusion of their work is that the idealized models form a good basis for understanding the behaviour
of the fixed-key behaviour of the cipher. However, as we shall see in our experimental results, it is clear
specific cipher components and keying approaches can lead to dramatic deviations from idealized results,
especially if the block size and number of rounds of the ciphers is not large enough.

Experimental work on differential cryptanalysis was undertaken by Blondeau and Gerard [17], with
the focus being the same 16-bit cipher structure that we consider in our work. In their experiments, the
authors use the PRESENT cipher S-box exclusively [2], whereas in our work we shall apply a broad range
of S-boxes to our ciphers and will find a variety of behaviours across the different S-boxes. In [17], the
experimental confirmation of differential trails is undertaken for a small number of rounds and a specific
focus is given to finding good differentials by combining differential trails. In addition, key dependency of
the differential probability is investigated with experimental results consistent with a distribution of the
differential probability across the keys being shaped like a binomial probability distribution. It should
be noted that this is the resulting outcome for one very specific cipher construction and, as we shall see,
our results contain a much larger set of ciphers under study with a much more variable outcome for the
distribution of the differential probability.

In [18], the authors develop methods for determining the best differentials of various block ciphers,
using combinations of differential trails which satisfy a differential input and output differences. As
expected, this leads to differential probabilities that are larger than the differential trail probability.
Further, the authors present experimental results for differential analysis of reduced round versions of
various block ciphers using encryption of many plaintext pairs for several thousand different cipher keys.
This results in an experimental plot of the probability distribution of the count of good differential
pairs (where a good differential pair refers to the occurrence of the output difference, given the input
difference, consistent with the targeted differential). The probability is determined by the fraction of keys
which result in the value of the count. In several circumstances, the results give unexpectedly interesting
distributions that do not follow the theoretical binomial distribution (or it’s approximation of the Poission
distribution). The results of this paper were, in fact, the inspiration of the studies in our work.

2.3 Application of Binomial Distribution to the Fixed-Key Differential Probability

Consider a B-bit block cipher with a fixed key for which Npairs plaintext pairs, {P1, P2}, are selected
in an experiment so that they satisfy the input difference, ∆I = P1 ⊕ P2, of a differential. Assume that
the output difference of the differential, ∆O, is produced with a probability of p. Now, letting random
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Fig. 1: 16-bit SPN

variable t represent the number of times the correct ∆O is generated by Npairs input pairs, if we treat
the block cipher as a random function, the probability distribution of t can be assumed to be given by
the binomial distribution (similar to Theorem 1 in [15]):

Pr(t) =

(
Npairs
t

)
pt(1− p)Npairs−t (1)

which has a mean of µt = Npairs ·p and a standard deviation of σt =
√
Npairs · p · (1− p). We can convert

t into a random variable representing the differential probability of t/Npairs. For the distribution of the
differential probability, the mean is given as µt/Npairs = p and the standard deviation is given by

σDP = σt/Npairs =
√
p · (1− p)/Npairs. (2)

2.4 Cipher Structures Under Consideration

In this paper, we shall present the results of experiments on two SPN block cipher structures: a 16-bit
cipher and a 64-bit cipher. In both cases, the ciphers make use of 4-bit S-boxes, which is a commonly
used S-box size, especially in the design of lightweight block ciphers. As we shall see, various ciphers
will be considered, characterized by using different S-boxes. Except for one scenario where we consider
the PRESENT block cipher directly, the ciphers investigated are not proposed ciphers: although they
do use S-box components from real ciphers (eg. Piccolo, PRINCE, ICEBERG, etc.), they use these
components in different structures than the original ciphers. Hence, we cannot conclude anything about
the original ciphers from our analysis and we do not make any claims to this. However, since the 64-bit
SPN structure studied is realistic (it is the structure used in PRESENT and PUFFIN, for example), the
ciphers investigated give us insight into practical cipher design.

16-bit SPN Round The first SPN considered is a toy system with a 16-bit block size and is illustrated
in Figure 1. The cipher is comprised of a number of rounds, where one round of the SPN consists of (1)
round key mixing, (2) substitution (provided by a layer of four 4-bit S-boxes), and (3) a permutation.
Rounds are concatenated to produce the ciphertext output from the plaintext input. The round key
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mixing takes a 16-bit round key, generated from the cipher key via the key scheduling algorithm (which
is not illustrated), and performs a bitwise XOR with the cipher data block. The cipher uses one mapping
for all S-boxes, but in our experiments we will consider many different ciphers by applying for each, one
of many different 4-bit S-boxes from various proposed ciphers. The permutation layer is shown in the
diagram and summarized in Table 1, where bit 15 is the leftmost bit in the block and bit 0 is the rightmost
bit. Although the 16-bit SPN is not a realistic size for a practical cipher, it is of interest because we are
able to run experiments with exhaustive sets of data. For example, all 216 plaintexts (and, hence, all 215

plaintext pairs of a specific differential) can be used as experimental inputs.

input 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 15 11 7 3 14 10 6 2 13 9 5 1 12 8 4 0

Table 1: 16-bit Permutation

64-bit SPN The second SPN upon which we run experiments is modelled after the PRESENT cipher
structure and is illustrated in Figure 2. Again, the cipher consists of multiple rounds with each round
having 3 layers consisting of key mixing, substitution, and a permutation. The substitution uses 16 4-bit
S-boxes, each with the same mapping as selected from various S-boxes for different experiments, and
the permutation layer is identical to the PRESENT cipher permutation given in Table 2. For this cipher
structure, each round mixes 64 bits of round key using a bitwise XOR with the cipher block data. Round
keys are generated from the cipher key using a key scheduling algorithm.

2.5 Round Key Generation

In order to generate the round keys from the cipher key, block ciphers apply a key schedule. Key schedules
are public algorithms which can generate round key bits using the cipher key as the seed. Such algorithms
tend to be simple, but can vary from generating round key bits as simple selections of cipher key bits
to more complicated functions involving permutation of bits, mixing of round-variable constants, and
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input 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

output 63 47 31 15 62 46 30 14 61 45 29 13 60 44 28 12

input 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

output 59 43 27 11 58 42 26 10 57 41 25 9 56 40 24 8

input 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

output 55 39 23 7 54 38 22 6 53 37 21 5 52 36 20 4

input 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 51 35 19 3 50 34 18 2 49 33 17 1 48 32 16 0

Table 2: 64-bit Permutation

application of nonlinear mappings (i.e., S-boxes) to produce round key bits from the original cipher key
bits. Examples of the second category include AES and PRESENT.

As there is no standard method for generating the round keys, in our experiments we will consider
three possibilities for the generation of the round keys:

1. repeated round keys where one round key is generated and then used for every round,

2. random round keys where a new random round key is generated for every round, and

3. scheduled round keys where a PRESENT-like key schedule is applied to the cipher key to generate
the round keys.

In the first case, the round keys will simply be a repeat of the cipher key, implying a cipher key of 16 bits or
64 bits for the two cipher structures considered. In the second case, we will generate random, independent
round keys (using a pseudorandom bit generator unrelated to the cipher under study) resulting in an
implied cipher key size of B ·R bits for R rounds of a cipher, where B is the size of the block. Finally, in
the third case, the round keys are generated by applying a key schedule and, for the 64-bit cipher, we use
directly the PRESENT key schedule for the 80-bit cipher key scenario, which produces 64-bit round keys,
while, for the 16-bit SPN, we use a key schedule, similar in structure to the PRESENT key schedule,
that takes a 20-bit cipher key and generates 16-bit round keys. In the appendix, we present a description
of a generalized key schedule based on the PRESENT cipher and give the exact specifications of the key
schedules used in our experiments.

In the case of repeated round keys, for the 16-bit SPN, only 216 cipher keys (and the corresponding
round keys) are possible. Hence, it is practical to exhaustively test all 231 combinations of keys and
unordered plaintext pairs {P1, P2}, of which there are 215 corresponding to the input difference of the
differential. For the larger, 64-bit SPN, exhaustive testing over the complete set of 263 plaintext pairs
is not practical, nor is exhaustive testing over the complete set of 264 keys for the repeated round key
scenario.

For the random round key scenario, there are a total of 2B·R cipher keys to test making it not possible
to exhaustively test over all keys for either the 16-bit or 64-bit SPN and, hence, in our experiments, we
generate a random sample of random round keys.

Using the key schedule, for the 16-bit SPN, we assume a 20-bit cipher key which is used to generate
each 16-bit round key, thereby requiring the examination of 220 · 215 = 235 plaintext pairs in order to
exhaustively test, which is practically achievable on a single computer. Of course, for the 64-bit SPN,
using an 80-bit cipher key, exhaustive testing is not possible and we rely on generating a random selection
of cipher keys and plaintext pairs in our experiments.

7



In addition to our experiments generating the distribution of the differential probability across keys, in
this paper, we present an algorithm to generate keys that give high differential probabilities. Specifically,
our algorithm is targeted to finding keys comprised of random round keys, that is, the scenario where
round keys are not constrained by the key scheduling algorithm or the requirement of repeated round
keys.

It is not our intention to study specific existing ciphers, but instead we explore the general behaviour
in an SPN relating differential cryptanalysis to applied keys. We conjecture that the poorest key schedules
could be mimicked by the repeated round key approach, while the best key schedules would provide round
keys that appear random and independent, as in our model of the random round keys. The simple key
schedule derived from PRESENT represents, perhaps, a key schedule somewhere between the worst and
best possible.

2.6 S-box

The S-box is the key component in determining the resistance of an SPN block cipher to differential
cryptanalysis. In particular, the difference probabilities found in an S-box and the input-output differences
to which they apply are critical in the consideration of the differential probabilities of the overall cipher.
Initially, cipher differential probabilities were derived by using differential characteristics or trails of active
S-boxes [1][16]. The product of the probabilities of the input-output differences of the S-boxes used in
constructing the trail give an approximation of the differential probability of the overall cipher in cases
where a differential is dominated by a high probability trail. The probability of a differential trail, DPtrail,
is approximated by

DPtrail =

m∏
i=1

pSi
(3)

where pSi represents the difference probability of the i-th S-box used in the trail and the expression
presumes there are m active S-boxes involved in the trail.

More realistically, many trails lead to the differential and, hence, the dominant trail approach to
determining the differential probability is necessarily conservative. The differential trail probability,
DPtrail, is an approximation of a lower bound on the differential probability, which is typically assumed
to be the same for all keys (by the hypothesis of stochastic equivalence). In addition, the determination of
the trail probability assumes the independence of the differences of the S-boxes in the trail, which is not
strictly true. Nevertheless, this heuristic approach to characterizing differential cryptanalysis is thought
to provide a good estimate of the attack complexity (taken to be proportional to 1/DPtrail) and has
been used to justify many ciphers’ resistance to differential cryptanalysis. See [16] for an example of how
differential cryptanalysis can be applied to an SPN.

Every possible input-output difference of an S-box has a probability, implying that there are 2n · 2n
such probability values for an n-bit S-box. Let ∆x = x1⊕x2 (∆y = y1⊕ y2) represent the input (output)
difference as the bitwise XOR of two n-bit S-box inputs, x1 and x2 (outputs, y1 and y2). For a given
input-output difference pair (∆x,∆y), we define the S-box difference probability as:

pS(∆x,∆y) =
∑
x∈Zn

2

Γ∆y(S(x), S(x⊕∆x))/2n (4)

where S(x) represents the S-box operation on input x and

Γ∆y(y1, y2) =

{
1 , if y1 ⊕ y2 = ∆y
0 , if y1 ⊕ y2 6= ∆y.

(5)
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For the S-boxes studied in this paper, n = 4, and due to the bijectivity of the S-box, pS(∆x =
0, ∆y 6= 0) = 0, pS(∆x 6= 0, ∆y = 0) = 0, and pS(∆x = 0, ∆y = 0) = 1. Also, since there are
only 8 unordered input pairs corresponding to a specific input difference, pS(∆x 6= 0, ∆y 6= 0) ∈
{0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1} and, across all (∆x,∆y), at least half of the values have pS(∆x,∆y) =
0.

To guard against differential cryptanalysis, an objective in cipher design is usually to minimize DPtrail.
Considering (3), this can be done by maximizing the number of S-boxes used in the trail, m, and
minimizing the difference probabilities of those S-boxes, pSi

. If we can employ an S-box which has the
smallest maximum difference probability, this minimizes the possible pSi used for that S-box in a trail.
The number of S-boxes, m, is a function of the number of input and output bits used in the S-box input-
output difference pair which is used to generate the trail. In cipher design, it is therefore desirable in the
determination of possible trails to maximize γ where

γ = wt(∆x) + wt(∆y) (6)

where wt(·) represents the Hamming weight operator and ∆x and ∆y represent the S-box input and
output differences used in a differential trail. Many papers have investigated the construction of S-boxes
with the best properties to minimize DPtrail and many recently proposed lightweight block ciphers use
S-boxes that have similar properties to provide resistance to differential cryptanalysis. These ciphers often
have different structures into which the S-boxes are inserted and the S-boxes are also selected for a variety
of other cryptographic and implementation properties.

In view of the cipher designer’s desire to minimize the S-box difference probabilities used in the
differential trail, using the strategy to minimize the maximum possible value of an S-box difference
probability, it is possible to construct 4-bit S-boxes for which:

pS(∆x,∆y) ≤ 1/4,∀(∆x 6= 0, ∆y 6= 0). (7)

We refer to this as a flattened difference distribution and all S-boxes studied in this paper satisfy this
constraint.

Further S-box properties can be defined to assist in mitigating susceptibility to differential cryptanalysis.
Whether these properties are applied often depends on the cipher structure within which the S-box is
implemented. We define one such property to reflect an S-box’s resistance to differential cryptanalysis as
follows.

Definition: Guaranteed Avalanche (GA)
If an S-box satisfies pS(∆x,∆y) = 0 for all (∆x,∆y) such that wt(∆x) = wt(∆y) = 1, then the S-box is
said to satisfy guaranteed avalanche.

In fact, this is similar to the definition of guaranteed avalanche of order 2 found in [19]. The definition
of GA also relates to the often used notion of differential branch number [20] [21] and GA is equivalent to
saying that the S-box must have a differential branch number of at least 3. Also, it is a known property
of the DES S-boxes [22] and is a defined property of the PRESENT S-box [2]. It can be shown that
satisfying GA ensures that all differential trails in any SPN have at least 1.5 active S-boxes per round,
on average. This can be easily seen for the 16-bit SPN and can be shown to be true for any permutations
used in any SPN which satisfies the basic property that no 2 output bits of an S-box are connected to
the same S-box in the next round. For the permutation of the 64-bit cipher in Table 2, if the S-boxes
satisfy GA, it can be shown that all differential trails have at least 2 active S-boxes per round. Since the
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PRESENT S-box satisfies GA, this fact is used in the discussion of the security of the PRESENT cipher
[2].

In addition to satisfying GA, the S-box used in the PRESENT cipher has a flattened difference
distribution. Hence, when used in the 16-bit SPN, since the minimum number of active S-boxes for R
rounds is 1.5 · R, the differential trail probability for R rounds is upper bounded by 2−3R. When the
PRESENT S-box is used in the 64-bit SPN structure, the differential trail probability is upper bounded
by 2−4R, using the fact that there is at least 2 active S-boxes per round. Since DPtrail depends on
the probabilities associated with the specific S-box input and output differences used in the trail, the
maximum DPtrail may be less than the upper bound and for the PRESENT cipher, no trail has been
found that achieves the upper bound. In fact, the best differential trail probability based on an iterative
trail in the original PRESENT proposal [2] was found to be 2−5R, although it is possible to improve on
this using non-iterative trails, as is discussed for small R in [2]. For the 16-bit SPN, using the PRESENT
S-box, it is possible to find a differential trail with a probability of 2−3.75R, which is less than the upper
bound of 2−3R.

Other S-boxes which we investigate in this paper (such as PRINCE, Midori, ICEBERG, and Piccolo),
do not satisfy GA and it possible to derive trails consisting of one active S-box per round based on S-box
differences for which wt(∆x) = wt(∆y) = 1, with an S-box difference probability of pS(∆x,∆y) = 1/4.
This results in differential trail probabilities of 2−2R for R rounds when these S-boxes are used in the
16-bit SPN or the 64-bit SPN.

Closely related to GA, we now define the notion of strong avalanche.

Definition: Strong Avalanche (SA)
If an n-bit S-box satisfies pS(∆x,∆y) ≤ 1/2n−1 for all (∆x,∆y) such that wt(∆x) = wt(∆y) = 1, then
the S-box is said to satisfy strong avalanche.

If an S-box satisfies SA, even though differential trails may exist which have only one S-box per round,
the difference probability of the active S-boxes is no more than the smallest non-zero value possible for an
S-box difference, resulting in a low DPtrail. For example, for 4-bit S-boxes satisfying SA, the difference
probability is either 0 or 1/8 for all cases of wt(∆x) = wt(∆y) = 1. Hence, in both the 16-bit SPN and
the 64-bit SPN, an R-round differential trail with one S-box per round has a DPtrail upper bounded by
2−3R, which is lower than the maximum differential trail probability of 2−2R that is possible for S-boxes
which do not satisfy GA or SA but which have a flattened difference distribution.

A summary of differential trail probability upper bounds for R rounds of an SPN using the 4-bit S-
boxes with various properties is given in Table 3. For convenience in presenting the values, it is assumed
that R is a multiple of 2. The “flattened distribution” characterization refers to the S-box having the
property that the maximum difference probability is 1/4 across all input-output differences for the S-
box, while the “SA + Flat Dist.” label refers to any general SPN structure with S-boxes that satisfy
strong avalanche and a flattened distribution. Guaranteed avalanche in the S-box of an SPN (along with
a flattened difference distribution) results in differential probabilities no more than the value specified
for “general SPN” which can have any permutation structure4 (not just the ones described in this paper
for the 16-bit and 64-bit ciphers), while for some specific permutation structures, like the permutation of
the PRESENT cipher (and presented as our 64-bit permutation), the DPtrail can be no more than the
entry “PRESENT-like SPN”, a tighter upper bound facilitated by the nature of the permutation.

4 We assume the trivial expectation that no two output bits of one S-box are fed into the same S-box in the next
round.
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S-box Property DPtrail Upper Bound
(R rounds)

Flattened Distribution 2−2R

SA + Flat Dist. 2−3R

GA + Flat Dist. 2−3R (general SPN)
2−4R (PRESENT-like SPN)

Table 3: Upper Bounds on Differential Trail Probability

S-Box Source Outputs Properties
corresponding to
input sequence:

0123456789ABCDEF

PRESENT [2] C56B90AD3EF84712 GA

ICEBERG s0 [3] D7329AC1F45E60B8 involution

ICEBERG s1 [3] 4AFC0D9BE6173582 SA, involution

Small AES [13] 6B542E7A9DFC3108 -

Piccolo [5] E4B238091A7F6C5D -

KLEIN [6] 74A91FB0C3268ED5 SA, involution

PRINCE [7] BF32AC916780E5D4 -

PRIDE [8] 048F15E927ACBD63 involution

Midori Sb0 [9] CAD3EBF789150246 involution

Mysterion [11] 02A964ED17F8BC35 -

Table 4: S-boxes Under Consideration
(All S-box values are in hexadecimal.

Another property often found in S-boxes is the involution property, which implies that S((x)) = x for
all x. This property is found in many ciphers and it is convenient in practical terms, as it implies that the
same S-box component can be used for both encryption and decryption implementation. The involution
property results in the following differential property:

pS(∆x = a,∆y = b) = pS(∆x = b,∆y = a). (8)

This property can sometimes be helpful to the cryptanalyst in constructing or finding good differential
trails.

In this paper, we insert many different 4-bit S-boxes selected from a number of lightweight block
ciphers into both the 16-bit SPN and the 64-bit SPN and examine experimentally the key dependency of
differential probabilities. That is, we experimentally determine and plot the probability distribution across
the keys. In Table 4, we present a list of the S-boxes examined with a characterization of the cryptographic
properties related to differential cryptanalysis. Note that all S-boxes have flattened difference distributions,
i.e., the largest S-box difference probability is 1/4. Some of the S-boxes considered for our experiments
are also used in ciphers other than the original proposal. For example, the LED cipher [23] uses the
PRESENT S-box, PUFFIN [4] uses the ICEBERG s0 S-box, and MANTIS [10] uses the Midori Sb0

S-box. The block cipher SKINNY [10] uses an S-box that is very similar to the Piccolo S-box and has
identical differential properties.
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2.7 Categories of Differential Trails Used in Experiments

Our experiments will study differential probabilities, considering both the fixed-key differential probability
DPK and average differential probability ADP . However, for convenience, we shall use high values of
differential trail probabilities as a guide to selecting which differentials to examine. As a result, although
we expect the differentials selected will have high probabilities, we do not claim that they are the highest
probability differentials that are existing in the cipher.

Based on the properties of the S-boxes in the experiments (all of which have a flattened distribution),
the differential trails utilized can be considered to fall into the following categories:

1. Highly Diffusive Trails - S-boxes which satisfy GA are guaranteed to have, at best, a 2-round iterative
trail with 3 active S-boxes (for a general SPN) or 2 active S-boxes per round (for a PRESENT-like
SPN) resulting in upper bounds on differential trail probabilities of 2−3R or 2−4R, respectively. The
only S-box we consider for this category is the PRESENT S-box.

2. Moderately Diffusive Trails - S-boxes which satisfy SA can have trails using an S-box difference
probability of 1/8 which result in an R-round trail with probability as high as 2−3R, which can
be realized with one active S-box in each round of the trail. For a general SPN, it may also be
possible that an R-round trail can be constructed by concatenating 2-round iterative differential
trails comprised of 3 active S-boxes, which could have S-box differential probabilities of 1/4, resulting
in the same maximum trail probability of 2−3R. S-boxes considered for this category are the S-box
from the KLEIN cipher and S-box s1 from the ICEBERG cipher.

3. Poorly Diffusive Trails - S-boxes in this category allow for trails constructed by concatenating 1-
round differentials (which may, in some cases, be iterated) based on 1 active S-box with a differential
probability of 1/4. As a result, the R-round differential trail probability can be as high as 2−2R. This
is the highest possible probability for an SPN constructed with an S-box using a flattened difference
distribution for which the largest S-box difference probability is 1/4. The remaining S-boxes under
consideration fall into this category and are from ciphers ICEBERG (S-box s0), Small AES, Piccolo,
PRINCE, PRIDE, Midori (S-box Sb0), and Mysterion.

In our experimental studies, it is most interesting to focus on simulations of ciphers which use poorly
diffusive S-boxes. In doing so, we can examine SPNs with more rounds since the differential probabilities
are higher and take fewer plaintexts to observe the occurrence of the correct output difference. For
example, using a poorly diffusive S-box in a 12-round 64-bit SPN results in differential trail probabilities
of up to 2−24, while using a moderately or highly diffusive S-box could result differential trail probabilities
no higher that 2−36. This means that, for the first case, we might expect to recognize the occurrence of
the correct output difference using about 17 million plaintext pairs, while for the second case, it can
be expected to take 70 billion plaintext pairs or more, before the correct output difference is likely to
occur. For the 64-bit permutation used in this paper, for highly diffusive trails, the upper bound on the
differential trail probability is even lower at 2−48, requiring about 280 trillion plaintext pairs to observe
the correct output difference.5

It should be emphasized that, while we are labelling numerous S-boxes as poorly diffusive, this is not
meant to be a comment on the strength of the ciphers from which they are drawn. We have taken these
S-boxes out of the context of their cipher structure and put them in an SPN structure for which they
were not intended. Hence, it is not fair to characterize the original ciphers from any perceived weakness

5 As previously mentioned, in fact, for the PRESENT S-box, DPtrail based on a 2-round iterative differential
can be shown to be even smaller at 2−60, implying the need for more than a quintillion plaintext pairs.
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in this new context. In fact, it is quite possible that a poorly diffusive S-box is compensated for in its
original cipher structure by a highly diffusive linear transformation layer. In a basic SPN which uses a
simple permutation, the permutation is easily applied but can be very poor at diffusion. Our goal is not
to comment specifically on the original ciphers, but to examine and characterize differential cryptanalysis
in relation to distribution across keys. In order to do this, we explore feasible ciphers based on the
SPN structure and investigate their characteristics through experimentation. We do not advocate for the
practical application of the ciphers we examine for either the 16-bit or the 64-bit SPN structures.

3 Differential Probability Distributions for 16-bit SPNs

We begin our presentation of the experimental outcomes by focusing on the results of the 16-bit SPN.
Given the large number of S-boxes used as candidates, we do not present all results in the paper, but
use some sample results as the basis for discussion. First we layout some necessary background for
interpretation of the experiments.

3.1 Differentials Used in the Experiments

In Table 5, the differential trails for the various S-boxes that were used in our experiments on the 16-bit
cipher are presented. The illustrated trails are all based on iterating a differential trail of only a few (often
just one) rounds. The full trail probability DPtrail for the PRESENT S-box case assumes that R is a
multiple of 4 and for the ICEBERG s1 S-box (differential trail 2) assumes that R is a multiple of 2.

3.2 Experimental Data Collection

In the execution of the experiments, the appropriate differential trail defined in Table 5 for the S-box
under consideration was used to determine the appropriate differential to examine. A number of cipher
keys were selected (as discussed below) and, for each cipher key, plaintext pairs corresponding to the
input difference of the trail were generated and output pairs were examined after the number of rounds
of interest. From the output pairs, the output difference is determined and the number of times the
correct output difference from the differential trail occurs is counted for each key. The resulting fixed-key
differential probability for the given key is determined from

DPK = # occurrences of correct output difference / # plaintext pairs (9)

For the 16-bit SPN, the plaintext space only consists of 216 distinct plaintexts, resulting in 215 distinct
plaintext pairs corresponding to a specific input difference (since the ordering of the plaintexts in the
pair generating an input difference is not relevant). Hence, it is quite practical to exhaustively search the
plaintext input space for a given input difference for each key.

In our experiments, we have generally considered the 3 methods of deriving round keys discussed in
Section 2.5: a 16-bit key repeated in each round, a randomly generated round key for each round, and
round keys generated using a PRESENT-like key schedule (described in the appendix) using a cipher
key of 20 bits (for the 16-bit SPN). Using a repeated round key, it is quite feasible to exhaustively test
the full plaintext space for the full key space. Similarly, for the 20-bit cipher key applied as input to the
key schedule, it is also possible to test the full space of 215 plaintext pairs × 220 keys. However, using
randomly generated round keys, it quickly becomes infeasible to do an exhaustive test as the number of
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S-Box S-box Iterative Trail DPtrail

Input → Output Differences (Sequence of (R rounds)
(Probability) Input Differences)

PRESENT 1→ 3 (1/4) 0001→ 0011→ 0033 2−3.75R

3→ 1 (1/8) → 0003→ 0001

ICEBERG s0 4→ 4 (1/4) 0400→ 0400 2−2R

ICEBERG s1 8→ 8 (1/8) 8000→ 8000 2−3R

(Differential Trail 1)

ICEBERG s1 1→ 6 (1/4) 0001→ 0110→ 0660 2−3R

(Differential Trail 2) 6→ 1 (1/4) → 0006→ 0001

Small AES 4→ 4 (1/4) 0400→ 0400 2−2R

Piccolo 1→ 8 (1/4) 0001→ 1000→ 8000 2−2R

8→ 4 (1/4) → 0800→ 0400
4→ 2 (1/4) → 0040→ 0020
2→ 1 (1/4) → 0002→ 0001

KLEIN 8→ 8 (1/8) 8000→ 8000 2−3R

PRINCE 1→ 1 (1/4) 0001→ 0001 2−2R

PRIDE 8→ 8 (1/4) 8000→ 8000 2−2R

Midori Sb0 1→ 2 (1/4) 0001→ 0010→ 0020 2−2R

2→ 1 (1/4) → 0002→ 0001

Mysterion 4→ 4 (1/4) 0400→ 0400 2−2R

Table 5: Differentials for 16-bit SPN
(All differences in hexadecimal.)

rounds increases and we are therefore only able to sample the key space (although for each sample key,
the full plaintext pairs space is tested). As we shall see, in some cases there is a clear difference between
distributions for the scenario of repeated round keys and the application of the key schedule. However,
we found little difference between the cases of random round keys and scheduled round keys and, hence,
generally do not present the random round key results.

3.3 Ideal Distribution

For an ideal cipher, we are interested in a behaviour mimicking randomly generated data and in thwarting
differential cryptanalysis we want to minimize the differential probability at least to the point that it is
indistinguishable from a random result. It would seem in the ideal case, all output differences of the
cipher, ∆O, would be equally likely given a particular ∆I and, hence, Pr(∆O|∆I) = 1/2B for all ∆O.
Although this is a reasonable assumption if one averages across all keys (that is, for ADP ), this is not
true when considering the behaviour of the cipher with a fixed key (that is, for DPK). In fact, due to the
bijective nature of a cipher, for a fixed key and a given input difference, ∆I , all output differences, ∆O,
must occur a multiple of 2 times when counting across all 2B values of input P1, which is combined with
a second input, P2 = P1 ⊕ ∆I , to produce the two outputs generating ∆O. Across all the 2B resulting
pairs, both ordered input pairs (P1, P2) and (P2, P1) will produce the same output difference ∆O. So
rather than 2B ordered pairs, we can instead consider 2B−1 unordered pairs {P1, P2} used to generate
2B−1 output differences out of a total possible 2B values. Now, assuming that output differences occur
randomly and independently for each input difference (as ideal random behaviour would imply), letting
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t represent the number of times a particular ∆O is generated by one of the possible 2B−1 unordered
input pairs, the probability of t is given by the binomial distribution of (1) where we let Npairs = 2B−1

and p = 2−B . In the ideal case, across all 2B−1 possible unordered plaintext pairs satisfying the input
difference, the expected value of t is µt = 2B−1 · p = 0.5 and the standard deviation of the distribution
of t is given by σt =

√
2B−1 · p · (1− p) ≈ 2−0.5 = .707. Note that the random variable, t, representing

the number of occurrences of a particular output difference can be converted to a random variable
representing the differential probability by dividing by 2B−1. As a result, the differential probability
becomes µt/2

B−1 = p and the standard deviation of the ideal distribution of the differential probability
is σDP = σt/2

B−1 ≈ 2−B+0.5, where it is assumed all possible plaintext pairs are tried for inputs to the
differential with random output differences resulting.

For the 16-bit SPN in our experiments, for each key, we generate the count of occurrences of ∆O for
a given ∆I derived from 2B−1 = 215 unordered pairs of plaintexts and compute the resulting differential
probability. For comparison, the ideal distribution is generated using (1) with p = 2−16 and Npairs = 215,
with the resulting mean of the differential probability being 2−16, which we refer to as the ideal probability,
and the standard deviation being σDP ≈ 2−15.5. It is intuitive that as we simulate SPNs and the number
of rounds increases, the cipher output behaves more randomly and the distribution of the experimental
results should approach the ideal distribution. Although it frequently does, as we shall observe, in some
cases, the experimental results perplexingly do not seem to converge to the ideal.

3.4 PRESENT S-box

Since the PRESENT S-box is targeted to a basic SPN (and, in fact, the 64-bit SPN to be studied is
exactly the PRESENT cipher structure), we begin our study with the application of the PRESENT S-
box to the 16-bit SPN. Since the PRESENT S-box satisfies the GA property, the trail is highly diffusive
and the differential probability decreases rapidly as the number of rounds increases. In Figure 3, the
resulting probability distribution across the keys is presented for 4 rounds and 8 rounds. In all cases, we
have used the key schedule to generate round keys and have generated all possible 20-bit cipher keys in
the experiments. In each plot, there are 4 curves presented:

1. Distribution from experimental results labelled “Experimental”
2. Binomial distribution using the mean from experimental results labelled “Binomial (Experimental)”
3. Binomial distribution using differential trail probability labelled “Binomial (Trail)”
4. Ideal distribution labelled “Ideal”

The differential trail probabilities are given in Table 5. The experimental probability of a particular
differential probability for a fixed key, DPK , is determined by counting the number of occurrences of the
expected ∆O given the fixed ∆I and then dividing by the number of input pairs applied. The distribution
from the experimentally derived result is the true distribution since all 220 keys and 215 plaintext pairs
are exhaustively tried.

In order to derive the distribution based on the binomial distribution using the experimental mean, we
let µ represent the experimental average, taken across all keys, of the total number of output pairs which
satisfy the correct output difference, ∆O, across all plaintext pairs which satisfy the input difference, ∆I .
Using all 215 unordered pairs to generate ∆I , the binomial distribution of (1) can be used to generate
the curve, with Npairs = 215 and now p = µ/215 (meaning that p is actually the average differential
probability, ADP ). The resulting probability for the random variable, t, representing the number of pairs
satisfying output difference ∆O, can be converted to the probability of the random variable of differential
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Fig. 3: DPK Distribution for PRESENT S-box
(16-bit SPN, R = 4 and 8)

probability given as t/215. For the binomial distribution derived from the trail probability, we simply use
p = DPtrail in (1) to derive the differential probability distribution, while the ideal distribution is based
on (1) with ideal probability p = 2−16.

In the graph representing the results for a 4 round SPN, we can see the experimental (true) distribution
is only roughly approximated by the binomial distribution. Not surprisingly, the average differential
probability6, ADP , is higher than the differential trail probability, DPtrail, since, as predicted by theory,
the differential probability has more contributions than just the trail probability. Both DPtrail and ADP
are larger than the ideal probability of 2−16 = 1.53 × 10−5, implying that it is possible to extract key
information using differential cryptanalysis methods. In fact, the distribution based on the differential trail
probability is clearly centred to the left (with smaller values) than the experimental distribution, and the
ideal distribution is centred even further to the left. It can be concluded that the differential probability
of a cipher with a fixed key, DPK , is likely be higher than predicted by DPtrail. Indeed, in the worst case,

6 Since the experimental distribution is the true distribution, the experimentally determined average differential
probability across all keys, is, in fact, precisely the average differential probability.
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for some keys, differential probabilities might be significantly higher than the trail probability. (Observe
that the tail of the experimental distribution is to the right of the mean of the binomial probability based
on the trail.) As well, differential probabilities for some keys can be significantly higher than expected
under the ideal distribution, implying perhaps significant susceptibility to differential cryptanalysis for
this trivially small network.

For the 8 round SPN, as can be seen in the graph, the experimental distribution is now very well
approximated by a binomial distribution generated using the experimental mean. On this graph, the
binomial probability from the trail probability is now based on a trail probability that is lower than
expected for the ideal scenario. Hence, it is no longer meaningful to consider the trail-based distribution
and instead the comparison of interest is to the ideal distribution. In fact, the experimental distribution is
now visually indistinguishable from the ideal distribution, implying that the 8 round version of the cipher
does not have obvious key-dependent vulnerabilities to differential cryptanalysis. However, as we discuss
below, since experimental occurrences of high values of DPK represent deterministic results, specific keys
are associated with these high values.

For further consideration, we have also plotted the average differential probability, ADP , and the
maximum of all fixed-key differential probabilities versus the number of rounds in Figure 4. In both graphs,
we have given 3 plots: the experimental plot for a cipher with repeated round keys, the experimental plot
for a cipher with the key schedule applied, and a plot of the larger of either the trail probability or the
ideal probability. For R = 3 or R = 4, the trail probability is greater than the ideal probability, but for 5
rounds and up, the ideal probability is larger. The two experimental plots are derived using all possible
plaintext and key values and, hence, these curves reflect the true distributions.

It can be observed in the plots of Figure 4, for a small number of rounds, for both keying approaches,
the average differential probability is clearly larger than the trail or ideal probability. However, as
the number of rounds increases, the average differential probability decreases dramatically and visually
approaches the ideal probability value by R = 8. In the case of the maximum differential probability, it
is clear that, while this probability decreases as R increases, it does not approach the ideal probability
value and, hence, for some keys, the differential probability can be significantly higher than the ideal
probability. This would seem to be statistically not surprising since the spread of the ideal distribution
implies some higher values will occur even if different keys are generating random results. However, since
these experimental results represent true values, some specific keys do have much higher differential
probabilities for both keying approaches. In other words, these maximum values from the experiments
represent true differential probability values for specific keys, not simply random statistical outliers that
will change if we run the experiments again. Although it may not be possible to determine which keys
will have higher differential probabilities, the results suggest that some keys may be considered weak in
relation to differential cryptanalysis. Nevertheless, distinguishing these keys may be a challenge, because
we expect differential probabilities higher than the ideal probability of 2−16 will statistically appear even
if the cipher was behaving randomly.

The results presented for the PRESENT S-box are somewhat as expected and are of limited interest
since statistical anomalies are only visible for a small number of rounds. That is, for more than 8 rounds
or so, the distributions and their parameters fit very much the ideal distribution. In subsequent sections,
we shall explore many more cipher constructions with different S-boxes placed into the 16-bit SPN and
will see unusual behaviour of some ciphers in the context of differential cryptanalysis.
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Fig. 4: Average and Maximum DPK vs. R for PRESENT S-box
(16-bit SPN)

3.5 Results for Different S-boxes

Rather than presenting comprehensively the results for all S-boxes that we have investigated, in this
section, we instead select results to present based on conclusions that can be drawn and interesting
points that can be made. All of the S-boxes discussed in this section lead to poorly diffusive trails and
this allows us to examine the differential behaviour of the resulting SPNs for a larger number of rounds
than was possible for the SPN based on the PRESENT S-box.

Binomial Distribution Fit In many cases, as the number of rounds R increases, the experimental
distribution fits very well to a binomial distribution, using the experimental mean to determine the
parameter as p = ADP . For example, consider the PRINCE S-box and the distributions for 4, 8, and
12 rounds when the key schedule is applied to all possible 20-bit cipher keys as shown in Figure 5. In
the figure, we display the plots for the true distribution based on experimental results, the binomial
distribution based on the experimental mean, and either the binomial distribution based on the trail
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probability (p = DPtrail) or the ideal distribution (p = 2−16). The trail probability, which is given by
DPtrail = 2−2R is higher than the ideal probability of 2−16 for R < 8. For R = 8, DPtrail = 2−16 (equal
to the ideal probability), while for R > 8, the trail probability falls below the ideal probability and, hence,
is not included since it becomes meaningless to expect such low values.

For a small number of rounds, like R = 4, the experimental (true) distribution is clearly very different
than the binomial distribution. However, for R = 8 the fit is getting better and for R = 12, the fit of
the experimental data to a binomial distribution is visually very good. This example is based on the
PRINCE S-box, but many other S-boxes also resulted in distributions which fit well to the binomial
distribution. For example, for R = 12, for experiments applying the key schedule, the distributions
based on ICEBERG s0, Piccolo, Small AES, and Mysterion, are visually indistiguishable from a binomial
distribution, while Midori Sb0 and PRIDE fit reasonably well with a binomial distribution although clearly
visually distinguishable. It should be noted, as we shall see, when repeated round keys are applied, in
some cases, the resulting fit to a binomial distribution is very poor.

It is quite expected that a distribution resembles the binomial distribution with the parameter p equal
to the average differential probability, ADP . If we took random sample sets of plaintext pairs satisfying ∆I

(with random keys), then we would expect the resulting experimental differential probabilities to follow a
binomial distribution. There would be some occurrences of extreme cases of high differential probabilities
due to the natural statistics that would not necessarily correlate to any particular data of the cipher,
such as a specific key. However, in our experiments on the 16-bit SPN, the sets of plaintext pairs that
determine the distribution of the differential probability correspond to all possible specific fixed keys
and are generated for each key by trying all possible plaintexts. Hence, the tails of the experimental
distributions represent actual fixed-key differential probabilities, DPK , not just randomly occurring
outcomes independent of the key. This means that cases of high DPK do actually represent circumstances
of weak keys, where the keys are more susceptible to detection due to differential cryptanalysis than is
expected by the average differential probability ADP . As a result, we are able to infer a weakness of the
16-bit SPN cipher for specific keys. As we shall see, when we examine the 64-bit SPN, we are only able
to generate experimental results by taking samples of keys and samples of plaintext pairs and, hence, we
cannot find the true distribution of the fixed-key differential probability and cannot as easily infer that
the outcomes are more than expected statistical results.

Unusual Distributions Although many versions of the SPN with different S-boxes have distributions
that are fit by a binomial distribution, especially as the number of rounds increases, in some cases, there
are distributions that are dramatically different than the expected binomial shape. Some such examples
are given in Figures 6 and 7. Again, in this section, we are considering the distribution of the differential
probabilities by considering all possible keys, where we have generated all 20-bit cipher keys and then
applied the key schedule to generate 16-bit round keys. As can be seen in these graphs for 4-round
ciphers, the shape of the distributions for the ICEBERG s0 S-box and the Small AES S-box are quite
different than the binomial distribution, with multiple peaks and a wide spread of values. Interestingly,
for the graphs of Piccolo and PRIDE, the graphs appear as histograms and clearly do not fit closely
to the binomial distribution. The histogram nature appears because there are many possible values of
the differential probability (that is, multiples of 2−15) which have zero likelihood. These zero values are
interspersed with non-zero values, giving the plots an envelope which is still quite a poor fit to the binomial
curve. It should be noted that R = 4 is a very small number of rounds and it is not surprising that, as a
result, there are many dependencies within the data which keep it from becoming like the random nature
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Fig. 6: DPK Distribution for ICEBERG s0 and Small AES S-boxes
(16-bit SPN, R = 4)

of the binomial distribution. As the number of rounds increases for all these S-boxes, the shape of the
experimental distribution does begin to resemble a binomial distribution.

Another S-box which provides a very interesting result is the Mysterion S-box, where the distribution
for 4-round and 8-round ciphers are given in Figure 8 based on the application of the key schedule
and applying all 20-bit cipher keys. It can be seen that the case for R = 4 is dramatically different
than the expectation of a binomial distribution. In fact, the experimental distribution involves 8 equally
weighted spikes, with a very large spread. This means that 1/8 of the keys result in the highest differential
probability of 0.015, which is about 4 times the value of the trail probability. We have no explanation for
this unusual behaviour, but note that the Mysterion has the unusual characteristic that not all output bits
are a function of all input bits. We do not know whether there is a correlation between this property and
the unusual differential characteristics. It is also significant to note that this unusual behaviour disappears
as the number of rounds in the SPN increases. In the figure, the experimental distribution for R = 8
clearly is smoother (with no evident spikes) and, although the fit is not perfect, it is tending towards
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Fig. 7: DPK Distribution for Piccolo and PRIDE S-boxes
(16-bit SPN, R = 4)

the binomial distribution. For R = 12 (which is not shown), the experimental distribution is visually
indistinguishable from the binomial curve.

Distributions with a Large Spread When considering the distribution of differential probabilities
across keys, of particular interest is whether any keys result in a large differential probability. As previously
discussed, the experimental distributions for the 16-bit SPN represent the true distribution of DPK
and, hence, large differential probabilities that occur with non-zero probability represent differential
probabilities for specific fixed keys. If a key or subset of keys results in a differential probability significantly
greater than the trail probability, then the idea that the trail probability can be used as a heuristic metric
of the cipher’s security for all keys may be misplaced thinking.

In the distributions shown in the previous subsection which are based on a key schedule applied to
a 20-bit key, where the number of rounds was small, it is not surprising that cases of keys with large
DPK can be seen to exist. For example, for the PRINCE cipher, for R = 4, there are 8 keys (out of 220)
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Fig. 8: DPK Distribution for Mysterion S-box
(16-bit SPN, R = 4 and 8)

which result in 290 pairs of plaintexts leading to the correct output difference generating a differential
probability of 290/215 = 8.85×10−3, which can be compared to the trail probability of 2−8 = 3.91×10−3.
This implies these keys would require 8.85 × 10−3/3.91 × 10−3 = 2.26 times fewer chosen plaintexts to
implement the attack than predicted by the trail probability. This is not a big improvement, but if we
consider R = 8, the ratio of the maximum fixed-key differential probability to trail probability becomes
(48/215)/2−16 = 1.47 × 10−3/1.53 × 10−5 = 96 (which occurs for one key) implying that a successful
differential attack requires about 100 times fewer chosen plaintexts for the one key. For R = 12, the ratio
of the maximum DPK to the ideal probability7 is (11/215)/2−16 = 3.36× 10−4/1.53× 10−5 = 22 (which
occurs for 6 keys), implying that a differential attack is possible requiring about 3000 chosen plaintexts,
although the trail probability implies that a differential attack is not possible (since the differential trail
probability is much less than the ideal probability).

7 Since the trail probability is now less than the ideal probability, the ideal probability becomes the meaningful
comparison.
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Again, we note that even if we assume that the trail probability represents the differential probability
(although it is often significantly smaller), the differential probability is expected to be a random variable
that will vary when computed across different sets of plaintext pairs satisfying ∆I and in our experiments
the sets are differentiated by the fact that different fixed keys are used. If we treat the distribution as
a binomial distribution with a parameter p equal to the trail probability DPtrail, we expect there is
a non-zero probability that some key sets will have much higher differential probability (based on the
probabilities in the upper tail of the distribution). Similarly, even for the ideal distribution, where it is
assumed that p = 2−16, there is a non-zero likelihood that a differential probability, computed from a trial
of a randomly selected set of plaintext pairs satisifying the plaintext difference, will imply the cipher is
susceptible to differential cryptanalysis. For example, for 220 trials drawn from the ideal distribution based
on 215 plaintext pairs, there is expected to be one trial for which the computed differential probability is
expected to be at least 7/215 = 2.14× 10−4, which is equivalent to a ratio of 14 to the ideal probability.
This ratio can be compared to the outcome for the 12-round SPN based on the PRINCE S-box where
the ratio of 22 was derived from the experiments for the true probability across the keys applied with the
key schedule.

In fact, while we have used PRINCE in our above description, other S-boxes can lead to much greater
spreads, implying greater susceptibility to differential cryptanalysis. Consider Figure 9 which contains
3 graphs of the following parameters (as determined by experiment) by round: average differential
probability, maximum differential probability, and standard deviation of differential probability. Plots
are given for 3 S-boxes: PRIDE, Midori Sb0, and PRINCE. In all cases, the key schedule is applied.
Consider first the average differential probability. It is clear as the number of rounds increases, the average
differential probability decreases and appears to approach the ideal value of 2−16 = 1.53×10−5. However,
close observation for R = 10 and R = 12, would reveal that PRIDE and Midori Sb0, in particular, are still
substantially above the ideal probability, implying that they are susceptible to differential cryptanalysis
for many keys. Considering now the graph of the maximum differential probability, we can see that, for
some keys, the differential probability is substantially higher than the ideal probability even for larger R.
The plots for the standard deviation give an indication of the size of the spread for the distributions of
the differential probability. For comparison, the standard deviation for the ideal distribution, as discussed
in Section 3.3, is σDP ≈ 2−15.5 = 2.16× 10−5.

For further consideration, we present Tables 6, 7, and 8 which tabulate data similar to the graphs
of Figure 9 but for larger values of R. Again, the key schedule is applied to generate round keys in
the experiments. We have presented results for ciphers which have large spreads, specifically SPNs with
S-boxes from PRIDE, Midori Sb0, and PRINCE. For the distribution of each cipher, we present the
average differential probability, the maximum differential probability in the distribution, and the standard
deviation of the distribution.

Consider first the average differential probability. For all values of R ≥ 8, the trail probability of
the differential is less than or equal to the ideal differential probability of 2−16 = 1.53 × 10−5. For
a small number of rounds (eg. R = 8), the average differential probability is quite a bit larger than
the ideal probability. Probabilities much larger than the ideal probability imply that a large number
of keys are susceptible to the method of differential cryptanalysis. As R increases, unsurprisingly the
average differential probability decreases and, for 20 rounds, the value for all ciphers is close to the ideal
probability.

For the ideal distribution described in Section 3.3, we can determine the cumulative distribution
probability and compute the probability that a differential probability (drawn from the ideal distribution)
is greater than 3.05×10−4 is 7.73×10−12. Assuming that each of the 220 keys applied in the key schedule
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Fig. 9: DPK Distribution Parameters vs. R for Various S-boxes
(16-bit SPN)
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S-Box 8 rounds 12 rounds 16 rounds 20 rounds

Ideal 1.53× 10−5 1.53× 10−5 1.53× 10−5 1.53× 10−5

PRIDE 1.66× 10−3 1.32× 10−4 2.44× 10−5 1.60× 10−5

Midori Sb0 1.44× 10−3 2.22× 10−4 4.85× 10−5 2.08× 10−5

PRINCE 5.37× 10−4 6.02× 10−5 1.95× 10−5 1.56× 10−5

Table 6: Average Differential Probability (ADP ) vs. R for Various S-boxes
(16-bit SPN)

S-Box 8 rounds 12 rounds 16 rounds 20 rounds

Ideal 3.05× 10−4 3.05× 10−4 3.05× 10−4 3.05× 10−4

PRIDE 2.22× 10−2 2.87× 10−3 2.44× 10−4 2.14× 10−4

Midori Sb0 7.39× 10−3 1.13× 10−3 3.36× 10−4 2.44× 10−4

PRINCE 1.47× 10−3 3.36× 10−4 2.14× 10−4 2.14× 10−4

Table 7: Maximum DPK vs. R for Various S-boxes
(16-bit SPN)

S-Box 8 rounds 12 rounds 16 rounds 20 rounds

Ideal 2.16× 10−5 2.16× 10−5 2.16× 10−5 2.16× 10−5

PRIDE 9.56× 10−4 9.02× 10−5 2.78× 10−5 2.21× 10−5

Midori Sb0 4.68× 10−4 9.8× 10−5 3.91× 10−5 2.53× 10−5

PRINCE 1.45× 10−4 4.30× 10−5 2.44× 10−5 2.19× 10−5

Table 8: Standard Deviation of DPK vs. R for Various S-boxes
(16-bit SPN)

scenario gives a random, independent sample of a differential probability means that the probability that
the maximum differential probability, as determined from across the keys, has a negligible probability of
220×7.73×10−12 = 8.10×10−6 of being greater that 3.05×10−4. Hence, we could consider 3.05×10−4 as a
rule-of-thumb upper limit on the maximum value we expect to see as the maximum differential probability
across keys. (Of course, arguments could be made for other values being an upper limit, based on how
low one wants to ascribe to the probability of the maximum value not occurring.) From the table, we can
see that for small R, the maximum differential probabilities exceed the upper limit, implying that the
behaviour of the ciphers is not compatible with an ideal distribution. However, as the number of rounds
increases to R = 20, all ciphers have maximum values around 2 × 10−4 and the occurrence of such a
value would be quite a bit more likely in an ideal distribution (where the probability of the maximum is
greater than 1.83 × 10−4 is close to 1, while the probability of the maximum greater than 2.14 × 10−4

is about 6-7%). Hence, the maximum values for R = 20 are not inconsistent with the expectation for an
ideal distribution.

Lastly, consider the data on the standard deviation obtained from experimental results. As discussed
above, the standard deviation of the ideal distribution for the differential probability should approach
σDP ≈ 2.16× 10−5. As with the other metrics, clearly for small values of R = 8 and 12, the experimental
results have a much larger standard deviation than for the ideal distribution. However, for R = 20, in
all cases, the standard deviation of the experimental results is approaching the standard deviation of the
ideal distribution.
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Fig. 10: DPK Distribution for PRIDE and Mysterion S-boxes
(16-bit SPN, R = 20)

3.6 Convergence to Ideal Distribution

For ciphers which apply the key schedule to obtain the round keys, we have observed that, for all S-
boxes, as the number of rounds increases, the distribution approaches the ideal distribution. We have
already discussed this phenomenon in the previous section in our discussion of Tables 6, 7, and 8. It was
noted that the parameters of the average differential probability, the maximum differential probability,
and the standard deviation of the differential probability tend towards the values expected for the ideal
distribution. The ciphers in these tables had notably large maximum values and a large spread of values
for a small number of rounds, but seem to converge towards the ideal distribution after about 20 rounds.

As further evidence of this convergence to the ideal, we present the experimental distributions of the
PRIDE-based cipher and the Mysterion-based cipher for R = 20. The PRIDE-base cipher is notable,
because it has very large values for the maximum differential probability for a modest number of rounds,
while the cipher based on the Mysterion S-box has an extremely unusual distribution for a small number
of rounds, as discussed in Section 3.5. The results for the two ciphers are presented in Figure 10 and on
the same graph, the ideal distribution for the differential probability is also presented. It is clear both
experimental results fall almost exactly on top of the ideal distribution. So even for these ciphers with
somewhat unusual distributions for a small number of rounds, it seems that enough rounds will result in
a convergence to the ideal distribution.

The general implication is that, for 16-bit SPN ciphers constructed using round keys generated using
the key schedule, after enough rounds (we conjecture on the order of 20 rounds), the distribution of the
differential probability across all keys becomes indistinguishable from the ideal distribution. Hence, there
is reason to conjecture that differential cryptanalysis will not be applicable to SPNs which use a good
key schedule (generating good pseudorandom round keys) with enough rounds.8 Surprisingly, as we shall
see, this intuitive conjecture does not appear generally applicable to ciphers with a repeated round key.

8 Although the tails of the experimentally-derived (true) distribution correspond to specific keys, it is not clear
that such knowledge could be used effectively in an attack if the true distribution follows the ideal distribution.
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3.7 Round Key Generation

Different approaches for round key generation appear to lead to different results. As noted in Section
2.5, we consider 3 approaches to generation of round keys. The simplest approach is to generate one
random 16-bit key and then repeat this key for every round key. The approach of applying a key schedule
on a 20-bit cipher key to generate different 16-bit round keys is described in the appendix and most
results presented to this point are based on this approach. Lastly, the generation of the round keys can
be accomplished using a pseudorandom number generator to produce different, random round keys for
each round.

Comparison of Round Key Approaches For discussion, in Figure 11, we present results for the 4
round cipher based on the ICEBERG s0 S-box. We can see that the results for the key schedule approach
and the randomly generated round keys are visually very similar. Note that the experimental result for
the key schedule approach is the true distribution since all 220 keys are exhaustively tested, while the
randomly generated scenario uses a sample of 220 from the set of all 216·R keys and is thus an experimental
approximation and not the true distribution. In general, we have tried several experiments for different
S-boxes and numbers of rounds and found that the key schedule results are similar to randomly generated
round keys.

In contrast, the sample result for ICEBERG s0 in Figure 11 using the repeated round key approach
looks dramatically different. Recall that in this approach, all keys can be exhaustively tested and, hence,
the figure represents the true distribution. In numerous other cases, testing ciphers with various S-boxes,
we have found that the repeated round key produces results that look worse (that is, move away from
the ideal distribution) than the key schedule or random round key experimental results.

Hence, we conjecture that the key schedule approach produces results similar to randomly generated
round keys, while the repeated round key approach can produce extremely poor results, with unusual
distributions which poorly fit a binomial distribution and which do not always converge to the ideal
distribution as R increases. We explore this in more detail in the next section.

Repeated Round Keys In experimental studies of the differential properties of 16-bit SPNs, we
discovered in some cases that the behaviour of the system configured with repeated round keys was
significantly different than systems which used a key schedule but which were otherwise equivalent
(i.e., used the same S-box). In particular, it was noted that in many circumstances, the experimental
distribution for the repeated round key fit a binomial distribution much more poorly than for the key
scheduled system. Often the repeated round key system resulted in a much larger spread of the distribution
and a large maximum differential probability for one or more keys.

As an example, consider Figure 12 which contains plots of the distribution for the 20-round PRIDE-
based SPN, with both a repeated round key and a key schedule applied. As can be seen in the graph,
the key schedule curve fits very well the ideal distribution. This is not a surprise, since we have already
discussed that as R increases we expect to converge to the ideal distribution and, since the trail probability
for 20 rounds is 2−40 which is significantly less than the ideal probability of 2−16, we do not expect
differential cryptanalysis to be applicable. However, the curve for the distribution generated using a
repeated round key does not fit the ideal distribution (nor even a binomial distribution) at all. We
speculate that this reflects a weakness that might make some keys susceptible to a differential attack.

Further examples of anomalies for repeated round keys are illustrated in Figure 13. In these graphs,
we have plotted experimentally derived parameters - the differential probability average, maximum, and
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Fig. 12: Comparison of Key Schedule and Repeated Round Keys for PRIDE S-box
(16-bit SPN, R = 20)

standard deviation for the distribution across keys - for S-boxes with results which deviate dramatically
from the key schedule approach and from the ideal distribution as R increases. These parameters are
plotted as a function of rounds for cases where the number of rounds is very large - 10, 20, 30, and 40.

The results in these graphs can be seen to differ dramatically from the graphs of Figure 9, which are
plots of ciphers with fewer rounds, 8 to 20, using a key scheduling approach. Specially, we can see for the
curves in Figure 13 that the average differential probability does not converge towards the ideal value of
2−16. For the PRIDE-based cipher, even at 40 rounds, the average differential probability is significantly
higher (in fact, over an order of magnitude) than the ideal probability. This implies that many keys of
the cipher may indeed result in susceptibility to differential cryptanalysis.

For the graph showing the maximum DPK of each cipher, we also present the upper limit on the
differential probability of 3.05× 10−4 as discussed previously.9 All ciphers have maximums which exceed
this limit, even as R approaches 40. Again, the PRIDE-based cipher in particular has a very large
maximum value and this hints at potentially dramatic vulnerability to differential cryptanalysis for a
subset of keys, since DPK for these keys is much higher than the ideal differential probability of 2−16.
With R = 40, for Midori Sb0, the maximum value is 800 times the ideal probability and for PRIDE,
the maximum value is about 2300 times the ideal probability. The implication is that, for a 40-round
PRIDE-based SPN using repeated round keys, there is one or more keys that could be distinguished with
a few dozen chosen plaintexts in a differential attack!

Similar to the maximum value, the standard deviation of DPK for these ciphers is much larger than
the expected standard deviation of the ideal distribution, implying a wide spread of differential probability
values across the keys and potential vulnerability for many keys.
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Fig. 14: DPK Distribution for ICEBERG s1 and KLEIN S-boxes
(16-bit SPN, R = 8 and 12)

3.8 Effect of Differential Properties in S-box

In the previous sections, we have presented experimental results for S-boxes which resulted in poorly
diffusive trails. As a last point of discussion on 16-bit SPNs, we consider characteristics of ciphers
built with S-boxes that have properties (specifically, SA or GA) that result in moderately diffusive or
strongly diffusive differential trails. In Section 3.4, we have presented the results for a cipher based on the
PRESENT S-box. The PRESENT S-box is the only S-box we have studied which has the GA property,
resulting in strongly diffusive trails. It is clear from the results presented that the PRESENT-based
cipher appears resistant to differential cryptanalysis. In Figure 4, we see that as the number of rounds
increases, the average differential probability quickly converges to the ideal distribution probability of
2−16, making use of the differential impossible for most keys. Further, from the plot of the maximum

9 In this case, however, since the repeated round key approach only considers 216 keys, the probability of drawing
a value from the ideal distribution above this upper limit is now even smaller and is equal to 216×7.73×10−12 =
5.07× 10−7.
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S-Box R ADP Maximum DPK Std. Dev. of DPK

Ideal Distribution 1.53× 10−5 3.05× 10−4 2.16× 10−5

ICEBERG s1 Trail 1 8 3.21× 10−5 3.36× 10−4 3.21× 10−5

ICEBERG s1 Trail 2 8 3.50× 10−5 3.05× 10−4 3.33× 10−5

KLEIN 8 2.37× 10−5 2.44× 10−4 2.70× 10−5

ICEBERG s1 Trail 1 12 1.56× 10−5 1.83× 10−4 2.18× 10−5

ICEBERG s1 Trail 2 12 1.56× 10−5 1.83× 10−4 2.18× 10−5

KLEIN 12 1.54× 10−5 1.83× 10−4 2.17× 10−5

Table 9: Parameters for DPK Distribution
for ICEBERG s1 and KLEIN S-boxes

(16-bit SPN)

differential probability, it is clear the maximum differential probability becomes small as R increases and
for small R falls within the rule-of-thumb upper limit of 3.05× 10−4, developed for the ideal distribution.

We have also investigated two S-boxes which have the SA property and which, therefore, have
moderately diffusive trails. In Figure 14, we present the experimental results of the distribution of the
differential probability for KLEIN and ICEBERG s1 for 8 rounds and 12 rounds. For ICEBERG s1, we
have presented two possible differentials as described in Table 5 with the trail probability for both being
the same. In all cases, the key schedule is applied to the cipher to generate the round keys. Clearly, for the
8 round scenario, all 3 experimental distributions are clearly distinguishable from the ideal distribution.
This is a bit surprising: since the trail probability for R = 8 is 2−24, which is substantially less than the
ideal probability of 2−16, we might expect that the distributions would approach the ideal. For R = 12,
the distributions are now very similar to the ideal distribution. The data associated with the experimental
results (based on the use of the key schedule) is presented in Table 9. For comparison, the values associated
with the ideal distribution are included. The value for the maximum differential probability of the ideal
distribution is the rule-of-thumb upper limit of 3.05× 10−4 previously discussed.

3.9 Conclusions and Conjectures

We now present a summary of conclusions to be drawn, based on the experimental results for the 16-bit
SPN. In general, unless otherwise stated, our conclusions apply to the SPN based on round keys generated
using the key scheduling algorithm described in the appendix. In the list below, we label our points as
either FACT, when we can conclusively know that a statement is true as shown by our experiments, or
CONJECTURE, when the experimental results support the statement, but it cannot be known to be
generally true.

1. FACT 1: The differential trail probability, DPtrail, is pessimistic for predicting the average differential
probability, ADP , which can be much larger.
This is already a well established truth but is clearly confirmed by our experiments.

2. FACT 2: For a small number of rounds, the distribution of differential probability across keys, does
not necessarily follow a binomial distribution.
Depending on the number of rounds and S-box properties, the variation from the binomial distribution
can be dramatic. Further, in some instances, this results in unexpectedly large differential probabilities
for some keys. This may take the form of either a very large DPK for a small number of keys or large
DPK for a large number of keys.
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3. FACT 3: For some S-boxes, for an SPN using a repeated round key, the distribution of the differential
probability is more poorly behaved than if the key schedule is applied.
By “poorly behaved”, we mean that the distribution is not fit well by the binomial distribution, has
a significant tail of keys with large fixed-key differential probability, at least one key with a very large
differential probability, and/or does not converge to the ideal distribution as the number of rounds
becomes large.

4. CONJECTURE 1: For all S-boxes, as the number of rounds is increased, the distribution of the
differential probability is well represented by a binomial distribution with p = ADP .

5. CONJECTURE 2: For all S-boxes, for a large number of rounds, the distribution of the differential
probability approaches the ideal distribution.

6. CONJECTURE 3: S-boxes that produce moderately and strongly diffusive differential trails approach
the ideal distribution with fewer rounds than S-boxes that produce poorly diffusive trails.
This is not at all surprising and is consistent with cipher design paradigms.

7. CONJECTURE 4: For all S-boxes, for an SPN using round keys generated by the key schedule specified
in the appendix, the distribution of the differential probability is very similar to the distribution based
on random round keys.

In the following section, we examine the experimental results for the more-realistic 64-bit SPN (using
different S-boxes) and we determine whether the same facts and conjectures can be applied.

4 Differential Probability Distributions for 64-bit SPNs

For experiments on 64-bit SPNs, we study the same S-boxes previously considered and listed in Table 4.
Again, we also consider the three forms of round key generation - repeated round keys, random round
keys, and scheduled round keys. The key schedule applied for the 64-bit SPN is exactly the key schedule
used in PRESENT (with an 80-bit key) and is described in the appendix. (Hence, the SPN using the
PRESENT S-box and the PRESENT key schedule is precisely the PRESENT cipher structure.) SPNs
with other S-boxes are PRESENT-like in structure and they can have very different properties in relation
to differential cryptanalysis, as we shall see in our experiments.

4.1 Differentials Used in the Experiments

In determining which differentials to use, we again base our study on convenient iterative differential
trails. In this way, we can use the differential trail probability, DPtrail, as a basis for our understanding
of the average differential probability, ADP , and the fixed-key differential probability, DPK . We apply
the same S-box input/output differences used in the 16-bit SPNs, leading to the differential trails listed
in Table 10.

4.2 Experimental Data Collection

Some aspects of the experimental data collection for the larger 64-bit SPN differ from the 16-bit SPN
discussed in the previous section. For the 16-bit SPN, it was possible to exhaustively try all plaintext
pairs satisfying a given difference (since there was only 216 plaintexts) for all keys in both cases of the
repeated round keys (which only had 216 possible keys) and the key scheduled cipher (which had only 220

cipher keys). Hence, it was experimentally possible to determine the true distribution of the differential
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S-Box S-box Input → Output Iterative Trail DPtrail

Differences (Sequence of (R rounds)
(Probability) Input Differences)

PRESENT 1→ 3 (1/4) 0000000000000011 2−5R

3→ 1 (1/8) → 0000000000030003
→ 0000000000000011

ICEBERG s0 4→ 4 (1/4) 0000040000000000 2−2R

→ 0000040000000000

ICEBERG s1 8→ 8 (1/8) 8000000000000000 2−3R

(Differential Trail 1) → 8000000000000000

ICEBERG s1 1→ 6 (1/4) 0000000000000110 2−4R

(Differential Trail 2) 6→ 1 (1/4) → 0000000600060000
→ 0000000000000110

Small AES 4→ 4 (1/4) 0000040000000000 2−2R

→ 0000040000000000

Piccolo 1→ 8 (1/4) 0000000000000001 2−2R

8→ 4 (1/4) → 0001000000000000
4→ 2 (1/4) → 1000000000000000
2→ 1 (1/4) → 8000000000000000

→ 0000800000000000
→ 0000080000000000
→ 0000040000000000
→ 0000000004000000
→ 0000000000400000
→ 0000000000200000
→ 0000000000000020
→ 0000000000000002
→ 0000000000000001

KLEIN 8→ 8 (1/8) 8000000000000000 2−3R

→ 8000000000000000

PRINCE 1→ 1 (1/4) 0000000000000001 2−2R

→ 0000000000000001

PRIDE 8→ 8 (1/4) 8000000000000000 2−2R

→ 8000000000000000

Midori Sb0, 1→ 2 (1/4) 0000000000000001 2−2R

2→ 1 (1/4) → 0000000000010000
→ 0000000000100000
→ 0000000000200000
→ 0000000000000020
→ 0000000000000002
→ 0000000000000001

Mysterion 4→ 4 (1/4) 0000040000000000 2−2R

→ 0000040000000000

Table 10: Differentials for 64-bit SPN
(All differences in hexadecimal.)

35



probability across all keys. For the keying scenario of a different random round key for every round, a
true distribution was not achievable, but as we discussed we found little experimental difference between
the random round key approach and the approach using round keys generated by the key schedule.

For the larger 64-bit SPN, in no scenario is it possible to determine the true distribution of the
differential probability by experiment since it is not possible to exhaustively search through all plaintexts
pairs for a given difference (since there are 263 such pairs). Also, the number of possible keys for the
repeated round key approach is 264 and for the key schedule approach based on the PRESENT key
schedule for the 80-bit key results in 280 keys. For the random round keys, the number of possible keys
is even larger. Hence, for all keying approaches, it is not possible to test all keys to determine a precise
distribution. Instead sample keys are randomly selected and, for each key, sample pairs of plaintext
(satisfying the input difference) are randomly selected and used to determine an experimental differential
probability. For the selection of Nkeys keys, trying Npairs pairs of plaintexts requires the encryption of
a total of Ntotal = Nkeys ·Npairs plaintext pairs. We have found that, for our computing environment10,
letting Ntotal = 1010 requires several hours of processing (dependent linearly on the number of rounds
of the cipher). Hence, this is a computationally practical value of Ntotal to select to explore a number
of possible scenarios (eg. varying S-boxes and number of rounds). It is reasonable to expect that one or
more occurrences of the correct output difference will be observed if Ntotal ≥ 1/ADP . We have found
that this constraint has allowed us to discover several scenarios of differential probabilities where we find
that ADP > 10−10, even though the differential trail probability satisfies DPtrail � 10−10.

Consider now the effect of varying Nkeys and Npairs while keeping Ntotal fixed at 1010. If ADP �
1/Npairs, then we can expect that each random key sample will likely have many occurrences of the
correct output difference and, for each key, we will get an accurate experimental estimate of DPK . For a
modest number of rounds (R ≤ 12), we have typically let Npairs = 106 (resulting in Nkeys = 104), since
the average differential probability ADP is greater than, and often significantly greater than, the trail
probability DPtrail. The average differential probability can be determined across all keys by adding up
all occurrences of the correct output difference and dividing by Ntotal. As the number of rounds increases
(that is, R > 12), if ADP � 1/Npairs, then the distribution of the differential probability across keys is
skewed towards 0 since DPK is zero for most keys. If this is the case, it is hard to perceive a difference
between the experimental distribution of the fixed-key differential probability and the distribution implied
by the trail distribution, where by “trail distribution”, we mean the binomial distribution of (1) using
p = DPtrail. (See the following section’s discussion on why the trail distribution is used for comparison
in place of the ideal distribution, which uses p = 2−64 in (1)). Hence, in order to generate a better
perspective on the experimental distribution, it is possible to decrease the number of keys, Nkeys, used in
the experiments in favour of increasing the number of plaintext pairs, Npairs. For example, for large R, our
experiments sometimes used Nkeys = 103 and Npairs = 107 or even Nkeys = 102 and Npairs = 108. Large
Npairs makes the occurrence of the correct output difference more likely for an individual key, but means
that the distribution of DPK is based on fewer key samples and is therefore a rougher approximation of
the distribution. Also, using a smaller Nkeys and larger Npairs means that is it less likely to find a key
with a large differential probability, since fewer keys are tested. In our experiments, for a large number
of rounds of R ≥ 20, we have tried 3 values of (Nkeys, Npairs): (104, 106), (103, 107), and (102, 108). By
default, unless otherwise mentioned, all experiments are based on Nkeys = 104 and Npairs = 106.

10 MacBook Pro with 2.3 GHz Intel Core i5
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4.3 Ideal Distribution

For the ideal distribution of the differential probability, consider a random variable representing the
experimentally determined differential probability based on the ideal differential probability of 2−64 in
the 64-bit SPN. We can apply the binomial distribution of (1) with parameter p = 2−64 and letting Npairs
represent the number of plaintext pairs used to compute the experimental differential probability. The
mean of the ideal distribution for differential probability (which is derived by dividing t of (1) by Npairs)
is then given by p and the standard deviation of the differential probability computed from Npairs is
given by (2).

For the 64-bit ciphers to which we apply our experiments, for a modest number of rounds, the
differential trail probability is typically larger than the probability used in the ideal distribution, that
is, DPtrail > 2−64 . For example, for most differentials of Table 10, the trail probability is 2−2R and,
if R = 20, the trail probability is 2−40 (which, for the trail distribution, can be used as the value for p
in (1) to determine the probability of t occurrences of the the correct output difference) which is much
greater than the ideal probability of 2−64. Similarly, the standard deviation of the ideal distribution is
much smaller than the standard deviation of the trail distribution. As a result, in making comparisons
of our experimentally derived distributions, we typically use the trail distribution, based on (1) with
p = DPtrail and divided by Npairs, rather than the ideal distribution for which p = 2−64.

4.4 PRESENT S-box

In this section, we examine the distribution for the 64-bit SPN using the PRESENT S-box. Since the
PRESENT S-box has the GA property and a flattened difference distribution, the SPN has strongly
diffusive differential trails. When we apply the key schedule (as described in the appendix), since it is
precisely the PRESENT key schedule, we are studying the PRESENT cipher exactly. As discussed in [2],
the best iterative 2-round differential trail for PRESENT is the one given in Table 10. Using this as our
guide for determining differentials to investigate, we have run experiments and the resulting distribution
for the 4-round cipher using the key schedule is presented in Figure 15, along with the trail distribution
based on the binomial distribution parameterized by the trail probability. Note that the distribution
of DPK for the 64-bit SPN is expected to be very different from the 16-bit results of Figure 3 since
the differential trail probabilities are very different - the trail probability for 4 rounds of the 16-bit
cipher is 2−15, while for the 64-bit cipher, it is 2−20. From the plot, we can see that the experimental
distribution skews to slightly higher differential probabilities than is predicted by the distribution of the
trail probability. In fact, the experimental average differential probability is 1.11 × 10−6, which is only
just slightly higher than the trail probability of 9.54×10−7. Hence, it appears that the average differential
probability and the fixed-key differential probability distribution are well predicted by the trail probability
and the corresponding binomial distribution.

We have not bothered to plot the resulting distribution for R = 8, since the experimental results
produced the simple outcome that the differential probability was 0 for all keys. Since our experiment
used Npairs = 106 plaintext pairs for each of Nkeys = 104 keys tried, the results failed to find the correct
output difference in Ntotal = 1010 total pairs, implying the average differential probability ADP is likely
less than 10−10. This is not surprising since DPtrail = 2−40 = 9.09× 10−13 for 8 rounds.

As a better summary of the results for PRESENT, consider Figure 16, which plots the experimental
average differential probability across all keys and the maximum differential probability from all keys
versus the number of rounds. The scenarios of repeated round keys and scheduled round keys are both
shown. In both cases, the values converge quickly to very small values as predicted when compared to the
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Fig. 15: DPK Distribution for PRESENT S-box
(64-bit SPN, R = 4)

trail probability DPtrail (which is also plotted in both graphs of the figure). Similar to our conclusions
for the 16-bit SPN using PRESENT S-boxes, we observe that the 64-bit PRESENT SPN seems to have
good resistance to differential cryptanalysis for a small number of rounds.

4.5 Results for Different S-boxes

We now consider the behaviour of various 64-bit ciphers, which are constructed by using the various S-
boxes within the 64-bit SPN structure. In this section, all the S-boxes considered result in poorly diffusive
trails and all experiments apply the key schedule described in the appendix.

Binomial Distribution Fit As we saw with the results from the 16-bit SPN, although we usually find
that the average differential probability ADP is larger than the trail probability DPtrail, for ciphers with
different S-boxes and different numbers of rounds, we often find that the distribution of the differential
probability across keys is reasonably well approximated by the binomial distribution.

Consider, for example, the experimental distribution for an SPN using the PRINCE S-box for various
numbers of rounds, R = 4, 8, and 12, as shown in Figure 17. It is easy to recognize from the graphs for
all R, that the average differential probability from the experiments is greater than the trail probability.
Indeed, the experimental distribution in each case is skewed to larger values than the trail distribution.
It can also be seen that the experimental distribution is well fitted by a binomial distribution based on
the experimental average differential probability, such that p = ADP .

Unusual Distributions Although in some cases the binomial distribution fits well on the experimental
distribution, in other cases, this is not true, with the experimental results giving unusually shaped
distributions. This is similar in general to what was observed with the smaller 16-bit cipher. In Figures
18 and 19, we have presented experimental results for 8 round ciphers based on S-boxes ICEBERG s0
and Small AES and S-boxes Piccolo and PRIDE, respectively.
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Fig. 16: DPK Distribution Parameters vs. R for PRESENT S-box
(64-bit SPN)

For ICEBERG s0 and Piccolo, the modes of the experimental distributions are clearly skewed left
and the experimental distributions have large tails to the right, with larger values of DPK having higher
probability when compared to the binomial distribution (based on the experimental ADP ) and the trail
distribution. As a result, it can be concluded that many keys have a differential probability that is higher
than what is expected from the trail distribution, but also many keys have lower differential probability
than predicted by the trail distribution.

For the Small AES and PRIDE ciphers, the experimental distributions are flatter than the binomial
distribution based on the experimental ADP , meaning that there is a greater spread of differential
probabilities across the keys. As expected, the experimental distribution is shifted to the right of the
trail distribution, reflecting that the average differential probability is higher than the differential trail
probability.

One other cipher for which there is an interesting distribution is the cipher based on the Mysterion
S-box, which has its experimental distributions plotted for 4, 8, and 12 rounds in Figure 20. For R = 4,
the distribution of the Mysterion cipher is distinctly bi-modal, with a number of keys having differential
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Fig. 18: DPK Distribution for ICEBERG s0 and Small AES S-boxes
(64-bit SPN, R = 8)

probabilities above the trail probability and a number of keys having differential probabilities below the
trail probability. As R increases to 8, the experimental distribution has now gelled into one shape, which
is somewhat flattened with the mode skewed left relative the binomial distribution using the experimental
ADP and the trail distribution. Finally, as R increases to 12, the experimental distribution of DPK is
now tightly fit by a binomial distribution and the curve is approaching the trail distribution.

Distributions with a Large Spread Several ciphers presented results with very large spreads that
are quite distinguishable as the number of rounds increase. To best see the deviation from the trail
distribution, it is most convenient to plot experimental distributions based on a large number of plaintext
pairs, Npairs = 108, across a small number of keys, Nkeys = 102 . This gives a rougher graph, but a more
distinguishable shape than using a smaller number of plaintext pairs for a large number of keys. Consider
for example, the graphs of experiment distributions for a 20-round SPN using PRIDE, Midori Sb0, and
PRINCE S-boxes as shown in Figure 21. We can see that for each cipher, the distribution falls quite
clearly to the right (with more keys with higher values of the differential probability) than for the trail
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Fig. 19: DPK Distribution for Piccolo and PRIDE S-boxes
(64-bit SPN, R = 8)

distribution. In particular, the differential probability values for Midori Sb0 are very much higher than
expected based on the trail distribution. Since this reflects data for a 20-round cipher which is getting into
the realm of a realistic number of rounds for a practical cipher, such a trivially visual result is perhaps
surprising.

The results in Figure 21 are based on skewing the total plaintext pairs, Ntotal, to fewer keys and more
plaintext pairs with Nkeys = 102 and Npairs = 108 (versus our default experiments which use Nkeys = 104

and Npairs = 106). The effect of this is that any one key is more likely to have an occurrence of the correct
output difference. However, the likelihood of testing a key with a large differential probability is smaller
since the number of keys tested is reduced.

For further consideration of the large spread of differential probabilities across keys, we present
Figure 22 which illustrates the average differential probability across all keys and maximum differential
probability found across keys as a function of the number of rounds for several ciphers. DPtrail is also
plotted for reference. The results are based on Nkeys = 104 and Npairs = 106. For a smaller number
of rounds, all ciphers have clear distinguishability from the trail probability. As the number of rounds
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Fig. 20: DPK Distribution for Mysterion S-box
(64-bit SPN, R = 4, 8, and 12 )
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Fig. 21: DPK Distribution for 3 S-boxes
(64-bit SPN, R = 20)

increases, the average differential probabilities tend to approach the trail probability, at least visually. As
seen previously in Figure 21, however, if we look in detail at the case for 20 rounds, we can still see a
significant variation from the trail distribution.

To get a more precise picture, we present the data in Tables 11, 12, and 13 which give the experimental
results for the average differential probability, the maximum differential probability, and the standard
deviation, again using Nkeys = 104 and Npairs = 106. For comparison, the average and standard
deviation of the trail distribution, based on (1) using p = DPtrail, is also presented. In the table, we
can clearly see that all values decrease as the number of rounds increase. In all cases shown, even as
R increases, the experimentally derived ADP and maximum DPK are clearly much higher than the
trail probability and the standard deviation is higher than the trail distribution standard deviation. This
implies for these ciphers that they have differential probability distributions clearly distinguishable from
the trail distribution and many keys have differential probabilities much higher than predicted by the
trail probability.

4.6 Convergence to Ideal Distribution

As discussed in Section 4.3, with the block size of B = 64, the ideal distribution uses parameter p = 2−64

and it is not possible for our experimental results to incorporate enough data to explore the convergence
of experimental distributions to the ideal distribution. Instead, we can observe how close the experimental
distribution, and its parameters, get to the fit of the binomial distribution of (1) based on p = DPtrail.
This is previously discussed in Section 4.5.

4.7 Round Key Generation

We now consider the effects of the 3 approaches to the generation of round keys for the 64-bit SPN.
Sample results from our experiments are presented in Figure 23. In the figure, results are presented for
an 8 round SPN using ICEBERG s0 and Mysterion S-boxes, for the approaches of a repeated round keys,
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Fig. 22: DPK Distribution Parameters vs. R for Various S-boxes
(64-bit SPN)

random round keys, and round keys generated by applying the key schedule (detailed in the appendix).
These results are representative of the results seen for other S-boxes.

First, we can see that the results for the case of random round keys have a very similar shape to
the distribution generated by the key schedule. Recall, this was also the phenomenon observed for the
16-bit SPN. This encourages us to conjecture that a good key schedule, which mixes key bits significantly
between rounds, can cause the SPN to behave very much like the round keys were independently, randomly
generated.

Secondly, the distribution generated for the scenario of the repeated round key is dramatically different
than the other round key generation approaches. For example, the ICEBERG s0 cipher has a peak centred
around small differential probabilities (actually, below the values expected by the trail distribution) and
smaller peaks at higher DPK values than are likely for the other round key generation approaches and
the trail distribution. Similarly, the Mysterion cipher has a clear bimodal nature, with one peak skewed
to the left and one skewed to the right of the other round key generations and the trail distribution.

The sample results described above illustrate a somewhat dramatic difference that can occur between
the distribution of the repeated round key and the other round key generation approaches. However, in
general, we did not observe the results to be as dramatic as these examples and speculate that as the
number of rounds increases, there is less obvious difference between the repeated round key approach and
the other approaches.
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S-Box 8 rounds 12 rounds 16 rounds 20 rounds

Trail 1.53× 10−5 5.96× 10−8 2.33× 10−10 9.09× 10−13

PRIDE 3.64× 10−4 1.21× 10−5 3.82× 10−7 1.21× 10−8

Midori Sb0 3.61× 10−4 2.75× 10−5 2.14× 10−6 1.76× 10−7

PRINCE 1.22× 10−4 7.82× 10−6 4.59× 10−7 2.68× 10−8

Table 11: Average Differential Probability (ADP ) vs. R for Various S-boxes
(64-bit SPN)

S-Box 8 rounds 12 rounds 16 rounds 20 rounds

Trail - - - -

PRIDE 5.55× 10−4 2.90× 10−5 4.00× 10−6 1.00× 10−6

Midori Sb0 6.12× 10−3 5.30× 10−5 9.00× 10−6 3.00× 10−6

PRINCE 1.69× 10−4 2.00× 10−5 4.00× 10−6 2.00× 10−6

Table 12: Maximum DPK vs. R for Various S-boxes
(64-bit SPN)

S-Box 8 rounds 12 rounds 16 rounds 20 rounds

Trail 3.91× 10−6 2.44× 10−7 1.53× 10−8 9.54× 10−10

PRIDE 4.01× 10−5 3.72× 10−6 6.18× 10−7 1.09× 10−7

Midori Sb0 5.31× 10−5 5.47× 10−6 1.47× 10−6 4.21× 10−7

PRINCE 1.11× 10−5 2.77× 10−6 6.70× 10−7 1.63× 10−7

Table 13: Standard Deviation of DPK vs. R for Various S-boxes
(64-bit SPN)

4.8 Effect of Differential Properties in S-box

The differentials considered in the previous results, except for the results for PRESENT, are all based
on poorly diffusive differential trails with one S-box per round with an S-box difference probability
of 1/4, resulting in a differential trail probability of 2−2R for R rounds. As discussed, the differential
considered for PRESENT is influenced by the guaranteed avalanche property of the S-box which results
in a highly diffusive trail with a much lower probability. The ICEBERG s1 and KLEIN S-boxes create
moderately diffusive trails since they both satisfy the strong avalanche property (but not GA). Hence,
the differential trail probabilities must be < 2−2R and it is expected that the differentials will have much
lower probabilities than for other S-boxes which do not satisfy GA or SA.

To explore the distribution of the differential probability for 64-bit SPNs based on the ICEBERG s1
and KLEIN S-boxes, we consider the differential trails in Table 10. In Figure 24, we present the results
derived for ICEBERG s1 using Differential Trail 2 from the table, which makes use of 2 active S-boxes
per round and results in a trail probability of 2−4R. Data in the figure is generated using Npairs = 108

plaintext pairs across Nkeys = 102 keys with the key schedule applied to generate the round keys. It
is obvious that for R = 8, the distribution is dramatically different than the trail distribution, being
much more spread out, with a maximum differential probability much larger than predicted from the
trail probability. As the number of rounds is increased to R = 12, the distribution begins to fit the trail
distribution and for larger R (not shown), the trail probability becomes very small and it becomes difficult
experimentally to obtain a non-zero differential probability for any key.
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Fig. 23: Comparison of Round Key Generation for ICEBERG s0 and Mysterion
(64-bit SPN, R = 8)

In Figure 25, we present the results for ICEBERG s1 using Differential Trail 1 and for KLEIN. In both
cases, the differential trail uses one active S-box (with difference probability of 1/8) per round, which
results in a trail probability of 2−3R. Data using Npairs plaintext pairs across Nkeys keys as indicated
in the plot title is shown, generated using the key schedule. For both R = 8 and R = 12, the curves
for ICEBERG s1 and KLEIN are similar and clearly distinct from the trail distribution, with differential
probabilities appearing for some keys to be much larger than predicted by the trail. As R increases, it
becomes difficult to observe the correct output difference of the differential and the experimental curves
cannot be distinguished from the trail distribution, which is based on a very small trail probability.

4.9 Conclusions and Conjectures

Let us now consider the conclusions drawn for the 16-bit SPN and determine their applicability to the
64-bit SPN. In general, the behaviour observed for the 16-bit SPN was also found to hold true for the
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Fig. 24: DPK Distribution for ICEBERG s1 (Differential Trail 2)
(64-bit SPN, R = 8 and 12)

64-bit SPN. The following statements are based on the application of the key schedule to generate round
keys, unless otherwise stated.

1. FACT 1: The differential trail probability, DPtrail, is pessimistic for predicting the average differential
probability, ADP , which can be much larger.
As expected this was found to be true for the 64-bit SPN.

2. FACT 2: For a small number of rounds, the distribution of differential probability across keys, does
not necessarily follow a binomial distribution.
Again, as with the 16-bit SPN, for the 64-bit SPN, depending on the number of rounds and S-box
properties, the variation from the binomial distribution can be dramatic and, in some instances, this
results in unexpectedly large differential probabilities for some keys.

3. FACT 3: For some S-boxes, for an SPN using a repeated round key, the distribution of the differential
probability is more poorly behaved than if the key schedule is applied.
By “poorly behaved”, we mean that the distribution is not fit well by the binomial distribution, has
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Fig. 25: DPK Distribution for ICEBERG s1 (Diff. Trail 1) and KLEIN
(64-bit SPN, R = 8 and 12)

a significant tail of keys with large fixed-key differential probability, at least one key with a very large
differential probability, and/or does not converge to the ideal distribution as the number of rounds
becomes large. The evidence of this being broadly the case for the 64-bit SPN is weak. It is true for
a small number of rounds for ICEBERG s0 and Mysterion, but it has not been observed to be true
for a large number of rounds (as was the case for some S-boxes for the 16-bit SPN). Hence, we leave
further study of the applicability of this statement to the 64-bit SPN as an open problem.

4. CONJECTURE 1: For all S-boxes, as the number of rounds is increased, the distribution of the
differential probability is well represented by a binomial distribution with p = ADP .
This was found to be consistent for the 64-bit SPN, as well as the 16-bit SPN.

5. CONJECTURE 2: For all S-boxes, for a large number of rounds, the distribution of the differential
probability approaches the ideal distribution.
This could not be verified for the 64-bit SPN since the differential probability for the ideal case is so
small. Hence, the applicability of this conjecture to the 64-bit SPN is still an open problem.
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Fig. 26: Comparison of DPK for PRINCE for R = 4→ 12
(16-bit SPN and 64-bit SPN)

6. CONJECTURE 3: S-boxes that produce moderately and strongly diffusive differential trails approach
the ideal distribution with fewer rounds than S-boxes that produce poorly diffusive trails.
Again, it is not possible to verify in relation to the ideal distribution, which is based on such a small
differential probability, and we are therefore not able to confirm the validity of this conjecture. It
does seem experimentally that, for 64-bit SPNs, S-boxes in moderately and strongly diffusive trails
result in distributions well represented by the binomial distribution with p = DPtrail for a modest
number of rounds. Hence, as the number of rounds increases and DPtrail becomes on the order of the
ideal probability, we expect this conjecture to hold true. Its precise verification, we leave as an open
problem.

7. CONJECTURE 4: For all S-boxes, for an SPN using round keys generated by the key schedule specified
in the appendix, the distribution of the differential probability is very similar to the distribution based
on random round keys.
This conjecture appears to hold true for the cases considered for the 64-bit SPN.

5 Comparison of 16-bit and 64-bit SPNs

It is worth reflecting on the implications of the block size when studying the properties of the differential
cryptanalysis. In this section, we briefly comment on the comparison of ciphers which have the same
S-box and similar key scheduling approaches, but which differ in block size. It is perhaps surprising to
discover that the block size has a dramatic effect on the nature of the differential probability distribution,
even when the differential trail probability is the same.

Consider Figure 26 and Table 14 which depict the average differential probability and the maximum
differential probability for a 16-bit SPN and a 64-bit SPN, both of which use the PRINCE S-box. For
the figure, results for R = 4 to 12 are presented, while results for R = 8 to 20 are listed in the table.
For the 16-bit SPN, round keys are generated using the key schedule of the appendix on a 20-bit cipher
key, while for the 64-bit SPN, the key schedule is applied to an 80-bit cipher key. For the 16-bit SPN,
all plaintext pairs satisfying the input difference are applied (that is, Npairs = 215) and all keys are
applied (that is, Nkeys = 220) which results in the generation of the true distribution of DPK and, hence,
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8 rounds 12 rounds 16 rounds 20 rounds

DPtrail 1.53× 10−5 5.96× 10−8 2.33× 10−10 9.09× 10−13

Average DP (16-bit SPN) 5.37× 10−4 6.02× 10−5 1.95× 10−5 1.56× 10−5

Average DP (64-bit SPN) 1.22× 10−4 7.82× 10−6 4.59× 10−7 2.68× 10−8

Maximum DPK (16-bit SPN) 1.47× 10−3 3.36× 10−4 2.14× 10−4 2.14× 10−4

Maximum DPK (64-bit SPN) 1.69× 10−4 2.00× 10−5 4.00× 10−6 2.00× 10−6

Table 14: Comparison of DPK for PRINCE for R = 8→ 20
(16-bit SPN and 64-bit SPN)

the average and maximum differential probabilities plotted for the different rounds are exact. For the
64-bit SPN, Npairs = 106 plaintext pairs satisfying the required input difference are randomly generated
and Nkeys = 104 random cipher keys are applied to derive experimental estimates of the average and
maximum differential probabilities.

From the figure, we can see that, as expected, for both block sizes, the average differential probabilities
are larger than the trail probability, DPtrail. However, the average differential probability is substantially
higher for the 16-bit SPN, than for the 64-bit SPN and this is visually obvious for smaller values of R.
This may be surprising because the differential trail probability is identical for both block sizes and,
hence, it may be reasonable to expect similar differential probabilities. The fact that this does not occur
is likely due to a much higher dependency between the bits of the smaller block than the bits of the larger
block. Hence, DPtrail is an even worse predictor of the differential probability for the small block than
for the large block. Recall, the determination of the trail probability is dependent on the concept that
each active S-box operates independently and this assumption applies very poorly in the 16-bit cipher.

From the table, we can also see, as R increases, the average differential probability for both cases is
much larger than the DPtrail. Further, the differential probability for the 16-bit SPN is much larger than
for the 64-bit SPN. For example, for R = 20, the average differential probability of the 16-bit SPN is 3
orders of magnitude larger than for the 64-bit SPN, which is 4 orders of magnitude larger than DPtrail.
This occurs because the 16-bit SPN approaches the ideal distribution with B = 16 and, hence, the average
differential probability approaches 2−16 but does not get smaller. However, for the 64-bit SPN, the ideal
distribution uses B = 64 and the differential probability does not approach 2−64 since DPtrail > 2−64 for
the values of R considered.

Consider now the plot and data values of the maximum differential probability in the figure and
the table, respectively. For small values of R, it is clear that the maximum is quite different than the
average for the 16-bit SPN, while there is visually little difference for the 64-bit SPN. As R increases,
the maximum differential probability becomes 2 orders of magnitude smaller for the 64-bit SPN than
for the 16-bit SPN, while the relative ratio between the maximum and average values becomes larger
for the 64-bit SPN at larger values of R. It should also be noted that, while the maximum differential
probability for the 16-bit SPN is a true value, the maximum value for 64-bit SPN is an experimental
value affected by the number of keys, Nkeys = 104, and number of plaintext pairs, Npairs = 106, used
in the experiment. Keeping the runtime of the experiment fixed by fixing Ntotal = Nkeys · Npairs and
increasing Nkeys (and decreasing Npairs) is likely to result in a larger value for the maximum differential
probability for the 64-bit SPN since more keys are tested, while increasing Npairs (and decreasing Nkeys)
will tend to decrease the maximum differential probability, since fewer keys are tested.
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Algorithm 1 Algorithm to Search for Keys with High DPK
function key search(R,n1, n2) . Inputs: number of rounds R, parameters n1 and n2, n1 > n2

Randomly set [RK1, RK2, RK3] . Generates round keys RK4, ...., RKR with high DPK

Generate n1 random RK4 to form round key sequences: [RK1, RK2, RK3, RK
(j)
4 ], j ∈ {1, 2, ..., n1}

Select n2 round key sequences with highest DPK and store as [RK1, RK2, RK3, RK
(i)
4 ], i ∈ {1, 2, ..., n2}

for r = 5 to R do
for i = 1 to n2 do

Generate n1 random RK
(j)
r , j ∈ {1, 2, ..., n1}

and store as [RK1, RK2, RK3, ..., RK
(i)
r−1, RK

(j)
r ], i ∈ {1, 2, ..., n2}, j ∈ {1, 2, ..., n1}

end for . Total of n2 × n1 round key sequences of r rounds stored by for loop
Select n2 round key sequences from stored set with highest DPK

and store as [RK1, RK2, RK3, ..., RK
(i)
r−1, RK

(i)
r ], i ∈ {1, 2, ..., n2}

end for
return [RK1, RK2, RK3, ..., RK

(i)
R−1, RK

(i)
R ], i ∈ {1, 2, ..., n2}

end function . Output: set of n2 round key sequences with high DPK

6 Key Search Algorithm

Since some distributions of DPK have keys with high differential probabilities, it is of interest to develop
an efficient algorithm to find such keys, without the need for an extensive random search. For the 16-bit
SPN, both the repeated round key and the key schedule approaches have small enough key spaces that it
is possible to exhaustively search the full set of keys. In addition, due to the limited size of the plaintext
space, it is possible to test all plaintext pairs for each of these keys. Hence, the keys with the largest DPK
values can be found for these two keying approaches. However, it is not known whether other round key
generations might lead to deficient round keys which also give very high (perhaps even higher) differential
probabilities. For the 64-bit SPN, it is not possible to execute exhaustive search on the full key space of 64
bits for the repeated round key or 80 bits for the key schedule approach. For these round key generation
approaches, we must rely on the results of a random sampling of the key space.

To fully explore whether it is possible to systematically search for and find round key values with high
differential probabilities for both 16-bit and 64-bit SPNs, we have developed a greedy algorithm and it is
presented as Algorithm 1. Let RKr represent the round key applied to the round r. The basic concept of
the algorithm is to extend a set of round key sequences (where each element in the set is identified by a
sequence of round keys listed from round 1 to round r − 1, [RK1, RK2, ..., RKr−1]) known to have high
differential probability for r − 1 rounds. By testing a number (n1) of randomly selected candidates for
the r-th round key concatenated to the round keys of the first r − 1 rounds and then selecting a subset
consisting of n2 candidate round key sequences with the highest differential probability over all r rounds,
we can identify a set of round key sequences for an r-round which have high differential probability.
Then, having selected the best n2 candidates for the round key sequences for r rounds, we can proceed
to determine good candidates for the (r + 1)-th round, by testing n1 candidates for RKr+1 for each of
the n2 round key sequences selected for r rounds, followed by the selection of the best n2 candidates.
This process can continue until the required number of rounds is reached. For the step of the algorithm
representing round r, the encryption (of r rounds) of Ntotal = n2×n1×Npairs plaintext pairs would need
to be executed. For example, in our execution of the algorithm for the 64-bit SPN, we have typically used
n1 = 200, n2 = 20, and Npairs = 106, so that execution of the algorithm finishes in a practical time (i.e.,
a few hours) for a reasonable number of rounds (perhaps, 20). This means that a set of 20 good round
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key sequences are saved at each round and for each of these good keys, 200 random round keys are tried
in the next round, from which the best 20 are kept as a set of good round key sequences, etc. Keeping
Npairs at a reasonably modest value limits the applicability of the algorithm, since we would need to have
fairly large values of DPK in order for a good number of occurrences of the correct output difference to
be observed. As the number of rounds increases and DPK decreases, Npairs would need to be increased
at either the expense of the execution time of the algorithm or by adjusting n1 and n2 so that n1 × n2 is
reduced proportionally to the increase in Npairs.

The algorithm presented as Algorithm 1 is presented to find the best round key sequences for
[RK4, ..., RKR], having randomly set the sequence of the first 3 round keys, [RK1, RK2, RK3]. This
constrains the search space and it is possible to run the algorithm multiple times with different values for
the first 3 round keys to try different search spaces for the best round key sequences of R rounds. Also,
the algorithm presented strictly represents the approach taken for the 64-bit SPN. For the 16-bit SPN, in
implementing the algorithm, we randomly set only the first 2 round keys and find good round sequences
for a cipher of 3 rounds or more.

To explore the effectiveness of the algorithm, we have applied it to both the 16-bit and 64-bit SPNs.
In Table 15, we have presented the results of a search for the best keys of a 16-bit SPN based on the
PRIDE S-box, using parameter values n1 = 1000 and n2 = 50. We have chosen to apply the algorithm to
the PRIDE S-box, because PRIDE has really distinct high values for DPK for both the repeated round
key and the key schedule approaches to round key generation. The results in the table represent the
largest values found using one execution of the algorithm. Results for the algorithm from R = 8 to 20
are presented. For comparison, the results derived from exhaustive search of all keys for the repeated
round key and the scheduled round key approaches are presented. In all cases, the DPK values represent
true values, since for each key tested the complete set of Npairs = 215 plaintext pairs generating an
input difference are applied. As can be seen from the table, the algorithm, while capable of finding large
values of DPK , does not find values that are significantly larger than the values found by the exhaustive
test of the two keying approaches. In particular, the repeated round key results in bad keys (with very
high DPK) and these keys (or keys with similarly high DPK) are not found by the algorithm. This is
not surprising, because while the algorithm is capable of finding many keys with DPK larger than the
average differential probability, ADP , it still works within a limited area of the key space (starting from
a randomly selected starting point for the first 2 round keys).

In Table 16, results from the search are presented for the 64-bit SPN based on the Midori Sb0 S-box.
Parameter values of n1 = 200, n2 = 20, and Npairs = 106 (to calculate DPK values) are used when
running the algorithm and the algorithm is executed 5 times (with different values for the first 3 round
keys), with the best outcome from across the runs being listed. The value of the largest DPK found
by the algorithm, as well as the results from the experiments for the repeated round key and scheduled
round key experiments are given. Since the algorithm’s calculation of DPK is only based on 106 pairs,
it is clear that the DPK values will not be accurate when DPtrail and ADP become small due to the
potential for a lot of statistical variation. Hence, we calculate a more accurate value of DPK for the key
that results in the largest DPK from the algorithm, by using many more pairs (in fact, 109 pairs) for just
the one specific key11. This accurate value is given in brackets. Again the algorithm is able to find large
values of DPK , larger than the average differential probability, although not substantially so for R = 16
and R = 20. The value of Npairs is too small to give an accurate computation of DPK for larger R since

11 Actually, the largest DPK value found by the algorithm often corresponds to several keys. We arbitrarily select
one key from the set of keys which have the largest DPK from the algorithm.
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R Largest DPK Largest DPK Largest DPK ADP Ideal
from Algorithm (Repeated Round Key) (Key Schedule) (Key Schedule) Probability

8 1.23× 10−2 7.56× 10−2 2.22× 10−2 1.66× 10−3 1.53× 10−5

12 1.83× 10−3 5.87× 10−2 2.87× 10−3 1.32× 10−4 1.53× 10−5

16 4.58× 10−4 6.54× 10−2 2.44× 10−4 2.44× 10−5 1.53× 10−5

20 2.14× 10−4 5.33× 10−2 2.14× 10−4 1.60× 10−5 1.53× 10−5

Table 15: Largest DPK Found from Algorithm for PRIDE S-box
(16-bit SPN)

R Largest DPK Largest DPK Largest DPK ADP DPtrail

from Algorithm (Repeated Round Key) (Key Schedule) (Key Schedule)
(accurate value)

8 9.46× 10−4 (8.66× 10−4) 6.70× 10−4 6.12× 10−4 3.61× 10−4 1.53× 10−5

12 8.30× 10−5 (6.18× 10−5) 5.70× 10−5 5.30× 10−5 2.75× 10−5 5.96× 10−8

16 1.60× 10−5 (4.45× 10−6) 1.10× 10−5 9.00× 10−6 2.14× 10−6 2.33× 10−10

20 4.00× 10−6 (2.41× 10−7) 4.00× 10−6 3.00× 10−6 1.76× 10−7 9.09× 10−13

Table 16: Largest DPK Found from Algorithm for Midori Sb0 S-box
(64-bit SPN)

DPtrail and ADP become very small. Increasing Npairs would likely improve the algorithm success for
these cases but at the expense of the algorithm run time.

In general, the algorithm does seem to work well for a small number of rounds where the differential
probabilities are reasonably high. However, the algorithm is only somewhat successful in finding keys with
large differential probabilities as the number of rounds increases. Although it is able to find a set of keys
with high DPK , it does not seem to perform substantially better than exhaustive or random searches
as was done in our experiments. In fact, in the case of repeated round keys, which can have quite high
values of differential probabilities for some keys, it may be possible to find much larger values of DPK
by searching this restricted space, rather than applying the algorithm. It is possible the success of the
algorithm could be improved by modifying the parameters n1 and n2 and increasing the number of pairs,
Npairs, used as a basis for the search. However, in this case, the algorithm may not be able to complete
the search in a practical time.

7 Conclusions

In this paper, we have presented experimental results on the distribution of the differential probability as a
function of keys for SPNs based on different 4-bit S-box mappings. We have done this for both a small-sized
basic SPN of 16 bits, where we are able to test exhaustively, and the realistically-sized PRESENT-like
SPN of 64 bits, which has the value of being modelled after practical ciphers. The differentials explored
are taken from high probability differential trails. We find that the results vary dramatically based on
the selection of S-box, the method of round key generation, and the number of rounds. In some cases,
the distribution of differential probabilities are dramatically different than the theoretically expected
distribution of the binomial distribution. This may be cause for concern, because it clearly illustrates
that the usual assumptions (namely, stochastic equivalence and differential trail domination) used in
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determining the differential probability can lead to inaccurate characterizations. While experiments show
that there can be significant deviations from the expected differential distribution, with reasonable cipher
design practice incorporating a large security margin (in terms of number of rounds) and a good key
schedule, we still expect practical ciphers can be designed to be secure against these anomalies found in
the differential distribution.
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10. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal
Sasdrich, and Siang Meng Sim. The SKINNY family of block ciphers and its low-latency variant MANTIS.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II,
volume 9815 of Lecture Notes in Computer Science, pages 123–153. Springer, 2016.

11. Anthony Journault, François-Xavier Standaert, and Kerem Varici. Improving the security and efficiency of
block ciphers based on ls-designs. Des. Codes Cryptogr., 82(1-2):495–509, 2017.

12. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard.
Information Security and Cryptography. Springer, 2002.

13. Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Small scale variants of the AES. In Henri Gilbert
and Helena Handschuh, editors, Fast Software Encryption: 12th International Workshop, FSE 2005, Paris,
France, February 21-23, 2005, Revised Selected Papers, volume 3557 of Lecture Notes in Computer Science,
pages 145–162. Springer, 2005.

14. Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and differential cryptanalysis. In Donald W.
Davies, editor, Advances in Cryptology - EUROCRYPT ’91, Workshop on the Theory and Application of
of Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceedings, volume 547 of Lecture Notes in
Computer Science, pages 17–38. Springer, 1991.

15. Joan Daemen and Vincent Rijmen. Probability distributions of correlation and differentials in block ciphers.
J. Mathematical Cryptology, 1(3):221–242, 2007.

16. Howard M. Heys. A tutorial on linear and differential cryptanalysis. Cryptologia, 26(3):189–221, 2002.
17. Céline Blondeau and Benôıt Gérard. Links between theoretical and effective differential probabilities:

Experiments on PRESENT. IACR Cryptol. ePrint Arch., 2010:261, 2010.
18. Ralph Ankele and Stefan Kölbl. Mind the gap - A closer look at the security of block ciphers against differential

cryptanalysis. In Carlos Cid and Michael J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC 2018
- 25th International Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Selected Papers, volume
11349 of Lecture Notes in Computer Science, pages 163–190. Springer, 2018.

19. Howard M. Heys and Stafford E. Tavares. Avalanche characteristics of substitution-permutation encryption
networks. IEEE Trans. Computers, 44(9):1131–1139, 1995.

20. Markku-Juhani O. Saarinen. Cryptographic analysis of all 4 x 4-bit s-boxes. In Ali Miri and Serge Vaudenay,
editors, Selected Areas in Cryptography - 18th International Workshop, SAC 2011, Toronto, ON, Canada,
August 11-12, 2011, Revised Selected Papers, volume 7118 of Lecture Notes in Computer Science, pages 118–
133. Springer, 2011.

21. Markus Ullrich, Christophe De Cannière, Sebastiaan Indesteege, Özgül Küçük, Nicky Mouha, and Bart
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Appendix: Key Schedule Applied in the Experiments

Most of the results presented in this paper are based on the application of a key schedule to derive the keys
applied to each round from the cipher key. There is no typical key schedule algorithm, but we have chosen
to model our approach to a realistic key schedule after the key schedule of the PRESENT cipher [2]. To
this end, we describe a generalized version of the key schedule and then define the parameters applied to
both the 16-bit SPN and the 64-bit SPN.

Consider a cipher key K = kκ−1kκ−2...k1k0 of size κ bits, used for an SPN cipher with a block size
of B bits and n-bit S-boxes. It is assumed that κ ≥ B. Let K ′ = k′κ−1k

′
κ−2...k

′
1k
′
0 represent the key state

bits that are processed during the key schedule. Let R represent the number of round keys generated and
assume that R < 32 and, hence, the round number can be represented in binary by 5 bits.12 To represent
the round number, we use variable r, referred to as the round count, where the 5 bits of r are given
by [r4r3r2r1r0]. Variable α represents a rotational value used during the key schedule. The key schedule
(derived from the PRESENT key schedule), illustrated in Figure 27, consists of the following steps:

1. Let r = 1 and assign the bits of cipher key K to key state K ′:

[k′κ−1k
′
κ−2...k

′
1k
′
0]← [kκ−1kκ−2...k1k0]

2. If r > R, then stop.
3. Use the leftmost B bits of K ′, [k′κ−1k

′
κ−2...k

′
κ−B+1k

′
κ−B ] as round key r, RKr.

4. Update K ′ as follows:
(a) Rotate K ′ left by α positions:

[k′κ−1k
′
κ−2...k

′
1k
′
0]← [k′κ−α−1k

′
κ−α−2...k

′
κ−α+1k

′
κ−α]

(b) Process the leftmost n bits with the n-bit S-box:

[k′κ−1k
′
κ−2...k

′
κ−n]← S(k′κ−1, k

′
κ−2, ..., k

′
κ−n)

(c) XOR the round count into round key bits from position γ down to γ − 4:

[k′γk
′
γ−1k

′
γ−2k

′
γ−3k

′
γ−4]

← [k′γk
′
γ−1k

′
γ−2k

′
γ−3k

′
γ−4]⊕ [r4r3r2r1r0]

5. Increment r and return to step 2.

Note that operation “⊕” represents the bitwise XOR operation and S(·) represents the S-box mapping.
In this paper, we make use of two versions of the key schedule. For the 16-bit SPN using 4-bit S-boxes

(i.e., B = 16 and n = 4), we let κ = 20, α = 13, and γ = 8 for the experiments where a key schedule
is applied to generate the round keys. For the 64-bit SPN using 4-bit S-boxes (i.e., B = 64 and n = 4),
similarly to the PRESENT cipher with an 80-bit key, we let κ = 80, α = 61, and γ = 19. Overall this
key schedule derives informational content in a balanced way from all cipher key bits, mixes in a complex
nonlinear operation on the bits through the S-box, and ensures that each round has a distinct operation
by adding a constant derived from the round number (thereby preventing attacks such as related key
attacks [24]).

12 The limit of 32 rounds is a reasonable limit satisfied by practical ciphers. However, it is a trivial matter to
extend the size of the round count to more bits if necessary.
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Fig. 27: Key Schedule Structure
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