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Abstract. Most efficient zero-knowledge arguments lack a concrete security analysis, making parame-
ter choices and efficiency comparisons challenging. This is even more true for non-interactive versions
of these systems obtained via the Fiat-Shamir transform, for which the security guarantees generically
derived from the interactive protocol are often too weak, even when assuming a random oracle.
This paper initiates the study of state-restoration soundness in the algebraic group model (AGM) of Fuchs-
bauer, Kiltz, and Loss (CRYPTO ’18). This is a stronger notion of soundness for an interactive proof or
argument which allows the prover to rewind the verifier, and which is tightly connected with the concrete
soundness of the non-interactive argument obtained via the Fiat-Shamir transform.
We propose a general methodology to prove tight bounds on state-restoration soundness, and apply it
to variants of Bulletproofs (Bootle et al, S&P ’18) and Sonic (Maller et al., CCS ’19). To the best of our
knowledge, our analysis of Bulletproofs gives the first non-trivial concrete security analysis for a non-
constant round argument combined with the Fiat-Shamir transform.
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1 Introduction

The last decade has seen zero-knowledge proof systems [GMR85] gain enormous popularity in
the design of efficient privacy-preserving systems. Their concrete efficiency is directly affected by
the choice of a security parameter, yet concrete security analyses are rare and, as we explain below,
hit upon technical barriers, even in ideal models (such as the random-oracle [BR93] or the generic-
group models [Sho97,Mau05]). This has led to parameter choices not backed by proofs, and to
efficiency comparisons across protocols with possibly incomparable levels of security. This paper
addresses the question of narrowing this gap for protocols whose security can be analyzed in the
Algebraic Group Model [FKL18].
A CONCRETE EXAMPLE. It is convenient to start with an example to illustrate the challenges
encountered in proving concrete security of proof systems. We focus on Bulletproofs [BBB�18],
which are argument systems with applications across the cryptocurrencies and in verifiably de-
terministic signatures [NRSW20], which in turn optimize prior work [BCC�16]. The soundness1

analysis (of their interactive version) is asymptotic, based on the hardness of the discrete logarithm
problem (DLP). Even when instantiated from 256-bit elliptic curves, due to the absence of a tight,
concrete, reduction, we have no formal guarantee on concrete security. Indeed, recent work [JT20]
gives concrete soundness bounds in the generic-group model with somewhat unfavorable depen-
dence on the size of the statement being proved, and no better analysis is known.

Even more importantly, existing bounds are for the interactive version of the protocol, but Bul-
letproofs are meant to be used non-interactively via the Fiat-Shamir (FS) transform [FS87]. As these
are Θplogpnqq-round protocols, where n roughly corresponds to the instance size, the (folklore)
analysis of the FS transform gives no useful guarantees:2 Namely, for a soundness bound ε on
the interactive ZK proof system, the resulting NIZK has soundness qrε, where q is the number
of random-oracle queries, and r is the number of challenges. For a DLP-based protocol, we cer-
tainly have ε ¥ 2�256 (this is the probability of merely guessing the discrete log), and if (say)
r � Θplogpnqq ¥ 16, we only get security for (at best) q ¤ 216 queries, which is clearly insufficient.
OVERVIEW OF THIS PAPER. This paper studies the concrete security of interactive arguments based
on the hardness of the DLP and related problems, in the algebraic group model (AGM) [FKL18]. In
the AGM, the adversary provides representations of group elements to the reduction (or to the ex-
tractor), and the model has been used already for a number of analyses in the literature. In contrast
to prior work [FKL18] on AGM concrete security analysis for linear-PCP based SNARKs [Gro16],
which are obtained from two-round protocols, we look at multi-round public-coin protocols and
their non-interactive version obtained via the Fiat-Shamir transform. We aim for bounds with lin-
ear degradation in the number of random oracle queries, which is essentially tight. (In fact, we will
target tightness even with respect to the statement size to be proved.)

The analysis of such protocols is equivalent to analyzing the stronger notion of soundness –
state-restoration soundness [BCS16,Hol19] – for the interactive protocol, where the cheating prover
can rewind the verifier as it pleases, until it manages to complete a full accepting interaction with
the verifier. State-restoration soundness is tightly related to the soundness of the non-interactive ar-
gument obtained via the Fiat-Shamir transform. No non-trivial bounds on state-restoration sound-
ness are currently known on any non-constant round argument.

1 In this introduction, security is with respect to soundness – usually the analysis of zero-knowledge security is much
more straightforward.

2 We are actually not aware of any pointer to a write up of this folklore analysis, and we give it for completeness in the
paper below
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We propose a general framework to quantitatively study state-restoration soundness in the
AGM, and apply it to three case studies. (In fact, we target a stronger property of witness-extended
emulation [Lin01,GI08] that establishes a proof-of-knowledge property.) We give concrete bounds
for Bulletproofs, as well as for the Sonic proof system [MBKM19]. Both protocols have previously
been analyzed only with respect to plain soundness in the interactive setting, using the forking
lemma of Bootle et al. [BCC�16], which was only very recently made concrete in [JT20].

We in fact believe that our technique can apply to a number of other protocols based on DLP-
variants and that support the AGM, such as Hyrax [WTs�18] or pairing-based instantiations of
IOPs [BFS20,CHM�20], and leave their analysis for future work.

We stress that our approach differs formally from recent works (e.g., [MBKM19,CHM�20])
which use the AGM to give a heuristic validation of the security of a component of a scheme (e.g., a
polynomial commitment scheme), which is then however assumed to satisfy extractability proper-
ties compatible with that of a standard-model proof (i.e., an AGM extractor is used as a standard-
model extractor.) Here, we aim for full analyses in the AGM. (As we point out in our technical
overview below, these results actually do not give a full-fledged proof in the AGM for a series of
subtle reasons, and modularity is non-obvious in AGM proofs.)

BULLETPROOFS. We apply our framework to two instantiations of Bulletproofs – the first is for
range proofs, and the other is for general satisfiability of arithmetic circuits.3 For example, in the
former, a prover shows in Oplog nq rounds that for a given C � gv in a cyclic group G of prime
order pwe have v P r0, 2nq. (In fact, this also works as a PoK when v is in a Pedersen’s commitment,
but we stick with the easier case here, as it allows us to express the quantitative aspects in terms
of soundness, as opposed to proof-of-knowledge security.)

For the final non-interactive protocol obtained via the FS transform, our result implies that an
(algebraic) t-time prover making q random-oracle queries can break soundness with probability,
roughly, at most

εpt, qq ¤ Opqn{pq � AdvdlGptq , (1)

where AdvdlGptq is the advantage of breaking the DLP within time t. In the generic group model, this
is roughly Opt2{pq, and this bound justifies the instantiation of Bulletproofs from a 256-bit curve.
For arithmetic circuit satisfiability, we obtain a similar bound – and similar bounds also hold on
concrete version of proof-of-knowledge security in the AGM.

TIGHTNESS AND DISCUSSION. Given q   t, the above bound implies in particular that for most
values of n (one should think of n � 220 and p � 2256 as representative values), the term Opqn{pq
is not leading for groups where generic attacks against the DLP are best possible. Still, we show
that the dependence on n is necessary – in particular, we show that there exist n, p for which we
can construct a cheating prover that can break soundness with probability Ωpqn{pq, meaning that
this part of the bound is tight. (Our argument can be extended to all bounds claimed in the paper.)
Also, the term AdvdlGptq is tight, given that breaking the DLP would directly give us an attack. This
makes our bound essentially exact (up to small constants).

The interesting feature of the bound is that both terms are decoupled (this was not the case
in the concrete analysis from [JT20] for the interactive case, where a term n3t{?p appears in the
generic-group model bound.) Particular care in our proof is needed to ensure that the DLP term

3 For arithmetic circuit satisfiability (ACS), [BBB�18] gives an argument for a more general relation (a special case of
the relation is ACS). We only consider the protocol for ACS, and we in fact do not know whether the more general
case admits tight bounds.
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is not multiplied by q – as this would be a problem. In the generic-group model, for example,
this would result in a term qt2{p � t3{p (assuming q � t), which only gives us roughly 85 bits of
security on a 256-bit curve. Such a multiplicative term q is for example unavoidable if we obtain
a bound in the interactive setting first (for plain soundness), and then apply a generic analysis of
the FS transform, even if the protocol has just three rounds (i.e., one single challenge).

AGM AND COMPOSITION. A challenging aspect of our analysis is the difficulty of dealing with
composition. The core of the Bulletproofs is indeed its Oplogpnqq-round inner-product argument. In
the standard model, and in the interactive case, it is not hard to reduce the security (as a proof of
knowledge) of the full-fledged system using Bulletproofs to the analysis of the underlying inner-
product argument, but it is not that clear how to do this generically in the AGM. In particular,
in the AGM, the adversary provides representations of group elements to the reduction (or the
extractor), and these are as a function of all priorly given group elements. The problem is that
when analyzing a protocol in isolation (such as the inner-product argument) the bases to which
elements are described are not necessarily the same as those that would be available to a cheating
algebraic prover against the full protocol. This makes it hard to use an extractor for the inner-
product argument in isolation as a sub-routine to obtain an extractor for a protocol using it. Also,
because we consider state-restoration soundness, a sub-protocol can be initiated by a cheating
prover several times, with several choices of these basis elements.

The downside of this is that our analyses are not modular, at least not at a level which consid-
ers sub-protocols are isolated building blocks – we give two different analyses for two different
instantiations of Bulletproofs, and the shared modularity is at the algebraic level.

We discuss this further at the end of our technical overview below.

SONIC. As a second application, we study Sonic [MBKM19]. This is a constant-round protocol,
and in particular with two challenges. In this case, the folklore analysis of the FS transform can be
used to obtain a non-trivial bound, incurring a multiplicative loss of q2 from the soundness of the
interactive version. Here, we want to show that this loss is not necessary and also obtain a bound
which degrades linearly in q. Moreover, no concrete bound on the concrete soundness of Sonic
was given in the interactive setting.

We only consider a simpler version of Sonic that omits the signature of correct computation.
We believe that our proofs extend to the more efficient variant presented in [MBKM19], but our
pedagogical point here is that our framework can improve soundness even for constant-round
protocols. Similarly, we ignore the stronger requirement of updatable witness-extended emula-
tion.

We also note that Sonic’s proof already uses the AGM to justify security of the underlying poly-
nomial commitment scheme, but follows a (heuristic) pattern described above where the resulting
extractor is expected to behave as a standard-model one, and is used within a standard-model
proof.

RELATED WORK: PROOFS VS ARGUMENTS. We clarify that state-restoration soundness has been
studied for several forms of interactive proofs [BCS16,Hol19,CCH�18,CCH�19], also in its equiv-
alent form of “round-by-round” soundness. Some proof systems satisfy it directly (such as those
based on the sumcheck protocol [LFKN90]), whereas any proof with non-trivial (plain) soundness
can be amplified into one with sufficient stare-restoration soundness (e.g., with parallel repeti-
tion). This is because (similar to our statement about the Fiat-Shamir transform above) one can
naı̈vely infer that a concrete soundness bound ε implies a state-restoration soundness bound qrε,
where r is the number of challenges, and thus ε needs to be smaller than q�r.
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However, we do not know of any non-trivial bounds on state-restoration soundness for multi-
round arguments based on computational assumptions (as opposed to, say, arguments in the
ROM), and moreover, soundness amplification (e.g., [Hai09,HPWP10,CL10,BHT20]) does not re-
duce soundness beyond the largest negligible function, and this is insufficient to absorb the qr

loss.
BEYOND THE AGM. Our results are inherently based on online extraction, which is only mean-
ingful in ideal models or using knowledge assumptions. One scenario where ideal models are in-
herently used is in the compilation of IOPs into NIZKs in the ROM via the BCP transform [BCS16]
– it is unclear whether our technique can be used to give tight state-restoration soundness bounds
for systems such as Aurora [BCR�19] and STARK [BBHR19].

1.1 Overview of our Techniques

We give a general framework to derive tight bounds on state-restoration soundness in the AGM. In
fact, we will target the stronger notion of witness-extended emulation [Lin01,GI08], which we adapt
to state-restoration provers. Recall first that the main characteristic of the AGM is that it allows the
reduction, or in our case the extractor, to access representations of group elements. A contribution
of independent interest is to set up a formal framework to define extraction in the AGM – unlike
prior work [FKL18], our framework in particular allows us to handle protocol inputs which are
also group elements.
PREFACE: ONLINE EXTRACTION IN THE AGM. In the AGM, the reduction (or an extractor) obtains
representations of each group element in terms of all previously seen group elements. A useful
feature of the AGM is that it often (but not always) allows us to achieve online witness extraction, as
already observed in [FKL18,FPS20]. For example, consider Schnorr’s protocol [Sch90] for a cyclic
group G � xgy with prime order |G| � p, which, given an input X P G proves knowledge of a
witness w such that gw � X . In this protocol, the prover sends A Ð ga for a random aÐ$ Zp, the
verifier responds with a random challenge cÐ$ Zp, and the prover finally sends d � cw � a to
the verifier, which accepts if and only if A �Xc � gd. In the standard model, security follows from
special soundness – the fact that given two accepting transcripts τ � pA, c, dq and τ 1 � pA, c1, d1q
with c � c1 we know that w � pd � d1q{pc � c1q. Given a prover succeeding with probability ε, we
obtain an algorithm computing w from X with probability ε2 by the Forking Lemma [PS00].

In contrast, in the AGM, from a single accepting transcript τ � pA, c, dq, the extractor learns
additionally aX , ag P Zp such that A � XaX � gag . Therefore,

gd�aG � XaX�c ,

and thus, unless c�aX � 0 (which would have happened with probability 1{p after fixing aX ), the
extractor can output w � pd � aGq{paX � cq. (This fact was recently exploited in [FPS20] to show
tight bounds for Schnorr Signatures in the AGM.)

We also note that the AGM is not a panacea and does not trivialize the problem. In fact, there
are protocols which do not allow for online extraction. We give an example in Appendix A. This
makes the question of whether AGM online extraction is possible very subtle.
A GENERAL FRAMEWORK. The above discussion refers to conventional provers, which have a sin-
gle interaction with a verifier. Online extraction however immediately appears to be very useful to
tame the complexity of state-restoration provers. Indeed, one can visualize an interaction of an ad-
versarial state-restoration prover P� with the verifier V as defining an execution tree. In particular,
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P� wins if it manages to create a path in the execution tree associated with an accepting (simple)
transcript τ � pa1, c1, a2, . . . , cr, ar�1q, where a1, a2, . . . , ar�1 are P�’s messages, and c1, . . . , cr are
the verifier’s challenges. (We focus on public-coin protocols here.) Online extraction from a single
transcript τ directly implies extraction here, because a witness can directly be extracted locally from
the path τ (and the corresponding representations of group elements), disregarding what hap-
pened in the rest of the execution tree. In particular, the probability that P� succeeds equals the
probability that a witness is extracted. Without online extraction, we would have to use rewinding
– but current techniques [BCC�16,JT20] do not seem to easily extend to state-restoration provers.

However, this only holds for perfect online extraction – in general, we may be able to gener-
ate transcripts which are accepting, but for which no witness can be extracted. This is typically
because of two reasons:

- Bad Challenges. A bad choices of challenges may prevent witness extraction – in Schnorr’s
protocol, this is exactly the case when c� aX � 0.

- Violating an assumption. A transcript is accepting, but the resulting interaction corresponds
to a violation of some underlying assumption (i.e., one can extract a non-trivial discrete loga-
rithm relation).

Our framework will exactly follow this pattern. For an r-challenge public-coin protocol, we iden-
tify bad challenges, i.e., for each i P rrs, input x, and partial transcript τ 1 � pa1, c1, . . . , ai�1, ci�1, aiq,
we define a set of bad challenges ci which would make extraction impossible. Crucially, these sets
are defined according to a simple interaction transcript (i.e., not a state-restoration one) and can be
defined according to the representation of group elements in the transcript so far. Then, given a
transcript τ with no bad challenges, we show that:

- We can either extract a witness for x from τ (and the representations of the group elements in
τ ).

- We can use τ (and the representation of the group elements in terms of the public parameters)
to break some underlying assumption.

The above example with Schnorr’s protocol only encounters the first situation – indeed, it is a
proof of knowledge (as opposed to an argument of knowledge). However, we give a more involved
example next, which considers a simplified instance of the inner product argument at the core of
Bulletproofs.
INNER-PRODUCT ARGUMENT OF BULLETPROOFS. In the inner product argument the prover proves
that a group element P P G is a well-formed commitment to vectors a,b P Znp and their inner-
product xa,by.4 More precisely, the prover wants to prove to the verifier that P � gahbuxa,by

where g P Gn,h P Gn, u P G are independent generators of G.
Here, we shall focus on the special case n � 2 first, and below discuss challenges in scaling our

analysis up to any n. The prover first sends to the verifier group elements L,R where

L � ga12 h
b2
1 u

a1b2 , R � ga21 h
b1
2 u

a2b1 .

The verifier samples x uniformly at random from Z�
p and sends it to the prover. We then define

P 1 � Lx
2
PRx

�2
, g1 � gx

�1

1 gx2 , h
1 � hx1h

x�1

2 .

4 We use boldface to denote vectors. For two vectors a � pa1, . . . , anq,g � pg1, . . . , gnq, we use ga to denote
n±
i�1

gaii .
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The prover sends a1 � a1x � a2x
�1 and b1 � b1x

�1 � b2x to the verifier, which in turns accepts if
and only if

P 1 � pg1qa1ph1qb1ua1b1 .
EXRACTION FOR n � 2. To see how extraction works, let

τ � ppL,Rq, x, pa1, b1qq

be an accepting transcript for the protocol, i.e., P 1 � pg1qa1ph1qb1ua1b1 . Now, in the AGM, the tran-
script contains the representations of the group elements L � g

lg1
1 g

lg2
2 h

lh1
1 h

lh2
2 uluP lP and R �

g
rg1
1 g

rg2
2 h

rh1
1 h

rh2
2 uruP rP , which we can use to find eg1 , eg2 , eh1 , eh2 , eP , eu such that

P eP � g
eg1
1 g

eg2
1 h

eh1
1 h

eh2
2 ueu . (2)

For example eg1 � x�1a1 � lg1x
2 � rg1x

�2 and eP � 1 � lPx
2 � rPx

�2. If eP � 0 (which is
true with high probability over the choice of x), an extraction procedure can simply return a1 �
peg1{eP , eg2{eP q and b1 � peh1{eP , eh2{eP q as the witness. At first, it looks like we are done – how-
ever, we must additionally verify that xa1,b1y � eu{eP , for otherwise we failed to find a valid
witness.

We will prove that if this is not true, then we can solve the discrete logarithm problem in
the group G. To this end, we construct an adversary A that takes as inputs g1, g2, h1, h2, u and
attempts to return a non-trivial discrete logarithm relation between them. (Breaking this is tightly
equivalent to breaking the discrete logarithm.) Concretely, the adversary A gives g1, g2, h1, h2, u as
input to the cheating prover P , which first returns an adaptively chosen input P P G, along with
is algebraic representation

P � g
pg1
1 g

pg2
2 h

ph1
1 h

ph2
2 upu .

It is important here that the representation of P is available to the reduction, i.e., to A, but was not
to the extractor. Then, A simulates the verifier to P – if an accepting transcript is generated, we get
values eg1 , eg2 , eh1 , eh2 , eu, eP P Zp as above, but because we know the representation of P , A can
actually find e1g1 , e

1
g2 , e

1
h1
, e1h2 , e

1
u P Zp such that

g
e1g1
1 g

e1g2
2 h

e1h1
1 h

e1h2
2 ue

1
u � 1 . (3)

For example, e1g1 � eg1 � eP pg1 , and the other values can be derived analogously. So, what we
need to prove is that if pe1g1 , e1g2 , e1h1 , e1h2 , e1uq are all zero, then xa1,b1y � eu{eP , which is equivalent
to saying that if the latter condition does not hold, then A has found a non-trivial relation. Note
that these values being all 0 implies in particular that

eg1 � eP pg1 , eg2 � eP pg2 , eh1 � eP ph1 , eh2 � eP ph2 , eu � eP pu .

Therefore,
xa1,b1y � pg1ph1 � pg2ph2 .

Hence, the goal is to show that pg1ph1 � pg2ph2 � pu � eu{eP .
Assuming that x � 0, plugging in the values of eg1 , eP from above into eg1 � eP pg1 , and solving

for a1, gives us
a1 � x3plg1 � lP pg1q � xpg1 � x�1prg1 � rP pg1q .
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We get another such equation via eg2 � eP pg2 ,

a1 � xplg2 � lP pg2q � x�1pg2 � x�3prg2 � rP pg2q .

With high probability over the choice of x’s, by the Schwartz-Zippel Lemma, we can infer by
equating both right-hand sides that

a1 � xpg1 � x�1pg2 .

Similarly, from eh1 � eP ph1 and eh2 � eP ph2 , we obtain that

b1 � x�1ph1 � xph2

for most x’s. Finally, from eu � eP pu, we similarly learn that

a1b1 � x2plu � lpPuq � pu � x�2pru � rP puq .

But by the above,
a1b1 � pg1ph1 � pg2ph2 � pg1ph2x

2 � pg2ph1x
�2 .

Therefore, again by equating the right-hand sides, and the Schwartz-Zippel Lemma, we must have
pu � pg1ph1 � pg2ph2 , as we wanted to show.

THE RECURSIVE PROTOCOL FOR n � 4. Scaling the protocol to an arbitrary n proceeds via recur-
sion. For concreteness, let us focus on the case n � 4. The prover first sends to the verifier group
elements L,R where

L � ga13 g
a2
4 h

b3
1 h

b4
2 u

a1b3�a2b4 , R � ga31 g
a4
2 h

b1
3 h

b2
4 u

a3b1�a4b2 .

The verifier samples x uniformly at random from Z�
p and sends it to the prover. The prover and

the verifier both compute

P 1 � Lx
2
PRx

�2
, g11 � gx

�1

1 gx3 , g
1
2 � gx

�1

2 gx4 , h
1
1 � hx1h

x�1

3 , h12 � hx2h
x�1

4 .

The prover also computes a11 � a1x�a3x�1, a12 � a2x�a4x�1, b11 � b1x
�1�b3x and b12 � b2x

�1�b4x.
Observe that

P 1 � pg11qa
1
1pg12qa

1
2ph11qb

1
1ph13qb

1
2ua

1
1b

1
1�a

1
2b

1
2 .

Now, the prover and the verifier engage, recursively, in the protocol for n � 2 with inputs

pg11, g12q, ph11, h12q, u, P 1, pa11, a12q, pb11, b12q .

The difficulty in analyzing this is that we would like our proof strategy to be recursive, i.e., given
we analyzed the protocol for n secure, we can now infer that the one for 2n also is secure. This will
not be so direct, unfortunately. One major technical issue is for example that the recursive call uses
different generators than the ones used for the calling protocol – in our case, here, pg11, g12q, ph11, h12q
– however, when looking at the combined protocol in the AGM, all element representations would
be with respect to the generators g1, . . . , g4, h1, . . . , h4, and this makes it difficult to directly recycle
the above analysis.
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THE CHALLENGES WITH COMPOSITION. The inability to leverage recursion to simplify the ap-
proach from the previous paragraph is not an isolated incident. We note that a non-trivial aspect
of our analyses is due to the lack of easy composition properties in the AGM. In particular, we
encounter the following problem – if we have a protocol Π 1 (e.g., the inner-product argument)
which is used as a sub-protocol for Π (a Bulletproofs range proof), and we prove extractability
for Π 1, it is not clear we can infer extractability for Π in a modular way by just calling the extrac-
tor for Π 1. This is because a stand-alone analysis of Π 1 may assume group elements output by a
malicious prover P 1 are represented with respect to some set of basis elements – say, the genera-
tors g1, . . . , gn, h1, . . . , hn, u in the concrete example of inner-product argument described above.
However, when Π 1 is used within Π , the generators of the inner-product argument are functions
of different group elements. When studying a prover P attacking Π , then, representations of group
elements are with respect to this different set of group elements, and this makes it hard to use an
extractor for Π 1 directly, as it assumes different representations.

This is a problem we encounter in our analyses, and which prevents us from abstracting a
theorem for the inner-product argument which we could use, in a plug-and-play way, to imply
security of higher-level protocols using it. The flip side is that this lack of composability also comes
to our advantage – our extractors will in fact not even need to extract anything from the transcript
of an accepting execution of the inner-product argument, but only use the fact that it is accepting
to infer correctness of the extracted value.

THE ISSUE WITH PRIOR AGM ANALYSES. Composition issues seemingly affect existing analyses of
proof systems in the literature (e.g., [MBKM19,CHM�20]), whenever some components are ana-
lyzed in the AGM (typically, a polynomial commitment scheme), but the overall proof is expressed
in the standard model. As far as we can tell, unlike this work, one cannot directly extract a full
AGM analysis from these works – let us elaborate on this.

Obviously, from a purely formal perspective, the standard model and the algebraic group
model cannot be quite mixed, as in particular the AGM extractor for the component cannot be
used in the standard model – the only formally correct way to interpret the analysis is as fully in
the AGM, but part of the analysis does not leverage the full power of the model, and is effectively
a standard-model reduction. Yet, in order for composition to be meaningful, it is important to ver-
ify that the basis elements assumed in the AGM analysis of the components are the same available
to a prover attacking the complete protocol. While we cannot claim any issues (in fact, we give an
analysis of the core of Sonic in this paper with a concrete bound), it does appear that all existing
works do not attempt to provide a formal composition – they use the existence of an AGM extrac-
tor as a heuristic validation for the existence of a standard-model extractor, rather than making
formally correct use as an AGM extractor within an AGM proof. Making this composition sound
is potentially non-trivial. Having said this, for pairing-based polynomial commitment schemes,
the basis elements are generally the same, and thus this can likely be made rigorous fairly easily
(unlike the case of inner-product arguments).

2 Preliminaries

Let N � t0, 1, 2, . . .u represent the set of all natural numbers and let N� � Nzt0u. For N P N�, let
rN s � t1, . . . , Nu. The symbolH denotes the empty set. The cardinality of a set S is denoted by |S|.
Sampling c uniformly at random from a set S is denoted by cÐ$ S. We let yÐ$ AOpx1, x2, . . . , q
denote the execution of a non-deterministic algorithm A on input x1, x2, . . . that has oracle ac-
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cess to O. We use ^,_ for logical operators “and”, “or” respectively. We use Pr rGs to denote the
probability that the game G returns true.

Let G be a cyclic group of prime order p with identity 1 and let G� � Gzt1u be the set of its
generators. We use boldface to denote a vector, e.g., g P Gn is a vector of n group elements with
its ith element being gi, i.e., g � pg1, . . . , gnq. For two vectors a � pa1, . . . , anq,g � pg1, . . . , gnq, we
use ga to denote

±n
i�1 g

ai
i . We use python notation to denote slices of vectors:

gr:ls � pg1, . . . , glq P Gl , grl:s � pgl�1, . . . , gnq P Gn�l .

For z P Z�
p , we use zn to denote the vector p1, z, z2, . . . , zn�1q. Similarly, we use z�n to denote the

vector p1, z�1, z�2, . . . , z�n�1q. If Z is a variable, Zn represents the vector p1, Z, Z2, . . . , Zn�1q. Our
vectors are indexed starting from 1, so zn�1

r1:s is the vector pz, z2, . . . , znq. The operator � denotes the
Hadamard product of two vectors, i.e.,

a � pa1, . . . , anq , b � pb1, . . . , bnq , a � b � pa1b1, . . . , anbnq .

We use capitalized boldface letters to denote matrices, e.g., W P Zn�mp is a matrix with n rows and
m columns.

We denote the inner product of two vectors a,b P Znp using xa,by. We also define vector poly-
nomials, e.g.,

fpXq �
ḑ

i�0

fiX
i ,

where each coefficient fi is a vector in Znp . The inner product between two vector polynomials is
defined as

xlpXq, rpXqy �
ḑ

i�0

i̧

j�0

xli, rjyXi�j .

Note that evaluating two vector polynomials at some point x and taking their inner product gives
the same result as taking their inner product and then evaluating the resulting polynomial at x.

The function bitpk, i, tq returns the bit ki where pk1, . . . , ktq is the t-bit representation of k. All
logarithms in this paper have base 2.
SCHWARTZ-ZIPPEL LEMMA. Let fpX1, . . . , Xnq be a n variate polynomial. We use fpx1, . . . , xnq to
denote the evaluation of f at the point px1, . . . , xnq throughout the paper. The polynomial ring in
variables X1, . . . , Xn over the field F is denoted by FrX1, . . . , Xns.
Lemma 1 (Schwartz-Zippel Lemma). Let F be a finite field and let f P FrX1, . . . , Xns be a non-zero
n variate polynomial with maximum degree d. Then Pr rfpx1, . . . , xnq � 0s ¤ d

|F| , where the probability is
over the choice of x1, . . . , xn according to xiÐ$ F.

THE DISCRETE LOGARITHM PROBLEM. The game Gdl
G in Figure 1 is used for is used for defining

the advantage of a non-uniform adversary A � tAλuλPN� against the discrete logarithm problem
in a family of cyclic groups G � tGλuλPN� of prime order p � ppλq with identity 1 and set of
generators G� � tG�

λuλPN� � tGλzt1uuλPN� . We define

AdvdlGpA, λq � Pr
�
Gdl

GpA, λq
�
.
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Game Gdl
GpA, λq:

gÐ$ Gλ�; hÐ$ Gλ
aÐ$ Aλpg, g

vq
Return pga � hq

Game Gdl-rel
G,n pA, λq:

g1, . . . , gnÐ$ Gλ
pa1, . . . , anq Ð$ Aλpg1, . . . , gnq

Return p
n±
i�1

gaii � 1^ pa1, . . . , anq � 0nq

Game Gq-dl
G pA, λq:

gÐ$ Gλ�; xÐ$ Zppλq
x1 Ð$ Aλptg

xuqx��qq
Return px � x1q

Fig. 1. The games used to define the advantage of a non-uniform adversary A � tAλuλPN� against the discrete
logarithm problem, the discrete logarithm relation problem and the q-DLOG problem in a family of cyclic groups
G � tGλuλPN� with prime order order p � ppλq. The set Gλ� is the set of generators of Gλ.

THE DISCRETE LOGARITHM RELATION PROBLEM. The game Gdl-rel
G,n in Figure 1 is used for defining

the advantage of a non-uniform adversary A � tAλuλPN� against the discrete logarithm relation
problem in a family of cyclic groups G � tGλuλPN� . We define A � tAλuλPN� as

Advdl-relG,n pA, λq � Pr
�
Gdl-rel

G,n pA, λq
�
.

The following lemma shows that hardness of the discrete logarithm relation problem in G is tightly
implied by the hardness of discrete logarithm problem in a family of cyclic groups G � tGλuλPN� .

Lemma 2. Let n P N�. Let G � tGλuλPN� be a family of cyclic groups with order p � ppλq. For every
non-uniform adversary A � tAλuλPN� there exists a non-uniform adversary B � tBλuλPN� such that for
all λ P N� Advdl-relG,n pA, λq ¤ AdvdlGpB, λq � 1

p . Moreover, B is nearly as efficient as A.

We refer the reader to [JT20] for a proof of this lemma.

THE q-DLOG PROBLEM. The game Gq-dl
G in Figure 1 is used for defining the advantage of a

non-uniform adversary A � tAλuλPN� against the q-DLOG problem in a family of groups G �
tGλuλPN� . We define

Advq-dlG pA, λq � Pr
�
Gq-dl

G pA, λq
�
.

3 Interactive Proofs and Arguments

3.1 Interactive Proofs and State-restoration Soundness

We introduce our formalism for handling interactive proofs and arguments, which is particularly
geared towards understanding their concrete state-restoration soundness.

INTERACTIVE PROOFS. An interactive proof [GMR85] is a triple IP � pIP.Setup, IP.P, IP.Vq of algo-
rithms: (1) the setup algorithm IP.Setup which generates the public parameters pp, (2) the prover
IP.P and (3) the verifier IP.V. In particular, the prover and the verifier are interactive machines
which define a two-party protocol, where the prover does not produce any output, and the veri-
fier outputs a decision bit d P t0, 1u. We let xIP.Ppxq, IP.Vpyqy denote the algorithm which runs an
execution of the prover and the verifier on inputs x and y, respectively, and outputs the verifier’s
decision bit. We say that IP is public coin if all messages sent from IP.V to IP.P are fresh random
values from some understood set (which we refer to as challenges).
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Game SRSP
IPpλq:

win Ð false; tr Ð ε
pp Ð$ IP.Setupp1λq
px, stPq Ð$ Pλpppq
Run POext

λ pstPq
Return win

Oracle Oextpτ � pa1, c1, . . . , ai�1, ci�1q, aiq:
If τ P tr then

If i ¤ r then
ciÐ$ Chi; tr Ð tr } pτ, ai, ciq; Return ci

Else if i � r � 1 then
dÐ IP.Vppp, x, pτ, aiqq; tr Ð tr } pτ, aiq
If d � 1 then win Ð true
Return d

Return K

Fig. 2. Definition of state-restoration soundness. The game SRS defines state-restoration soundness for a non-uniform
prover P and a public-coin interactive proof IP. Here, IP has r � rpλq challenges and the i-th challenge is sampled from
Chi.

COMPLETENESS. A relation R is (without loss of generality) a subset of t0, 1u� � t0, 1u� � t0, 1u�.
We denote a relation R that uses specified public parameters pp, instance x and witness w as
tppp, x, wq : fRppp, x, wqu where fRppp, x, wq is a function that returns true if ppp, x, wq P R and
false otherwise. For every λ P N� and every A, define the following experiment:

ppÐ$ IP.Setupp1λq , px,wq Ð$ Apppq , dÐ$ xIP.Pppp, x, wq, IP.Vppp, xqy .

Then, we say that IP is an interactive proof for the relation R if for all A and all λ P N�, in the
above experiment the event pd � 1q _ pppp, x, wq R Rq holds with probability one.

STATE-RESTORATION SOUNDNESS. We target a stronger notion of soundness – state-restoration
soundness (SRS) [BCS16,Hol19] – which (as we show below) tightly reduces to the soundness of
the non-interactive proof obtained via the Fiat-Shamir transform. The SRS security game allows
the cheating prover rewind the verifier as it pleases, and wins if and only if it manages to pro-
duce some accepting interaction. We only consider an rpλq-challenge public-coin interactive proof
IP, and consider the case where challenges are drawn uniformly from some sets Ch1, . . . ,Chr.
We also assume that the verifier is described by an algorithm which given pp, x, and a transcript
τ � pa1, c1, . . . , ar, cr, ar�1q, outputs a decision bit d P t0, 1u. We overload notation and write
IP.Vppp, x, τq for this output.

Our definition considers a game SRSPIPpλq (which is formalized in Figure 2) that involves a
non-uniform cheating prover P � tPλuλPN. (Henceforth, whenever we have any non-uniform
adversary A, it is understood A � tAλuλPN – we shall not specify this explicitly). The prover is
initially responsible for generating the input x on which it attempts to convince the verifier on
some execution. Its rewinding access to the verifier is ensured by an oracle Oext, to which it has
access. Roughly speaking, the oracle allows the prover to build an execution tree, which is extended
with each query to it by the prover. This execution tree can be inferred from tr, which sequentially
logs all (valid) queries to Oext by the prover. For a partial transcript τ 1, we write τ 1 P tr to mean
that a partial execution corresponding to τ 1 can be inferred from tr.

We then associate the probability of winning the game with the srs advantage metric, AdvsrsIP pP, λq �
Pr
�
SRSIPP pλq

�
. For notational convenience, we do not restrict the input x not to have a witness.

Therefore, if IP is an interactive proof for a relation R, we cannot hope to show that AdvsrsIP pP, λq
is small for all P . Clearly, if P outputs px, aq such that ppp, x, aq P R, then a is a witness and P
can simply (honestly) convince the verifier. The classical notion of state-restoration soundness is
recovered by only considering P’s which output x such that ppp, x, wq R R for any w.
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The following lemma shows a (generally loose) connection between (plain) soundness and
state restoration soundness.

Lemma 3 (Naı̈ve Reduction). Let IP be a rpλq-challenge public-coin interactive proof. Then, for every
non-uniform prover P invoking Oext at most q � qpλq times, there exists a linear prover P 1 (with com-
plexity similar to that of P) such that for all λ P N�,

AdvsrsIP pP, λq ¤
�

qpλq
rpλq � 1



� AdvsrsIP pP 1, λq .

We omit the (simple) proof – the adversary P 1 simply “guesses” the accepting path, which
consists of r � 1 queries.

If IP is publicly verifiable, we can prove the following slightly improved bound.

AdvsrsIP pP, λq ¤
�
qpλq
rpλq



� AdvsrsIP pP 1, λq .

In this case the adversary P 1 would need to guess only the first r messages and use the public
verification procedure to check if any of the q queries is a valid last message.

3.2 The Fiat-Shamir Transform

The Fiat-Shamir transform uses a family of hash functions H to convert a r-challenge public coin
interactive protocol (proof or argument) IP to a non-interactive argument FSrIP,Hs. When H is
modelled as a random oracle, we denote the non-interactive argument using FSROrIPs. Suppose
the length of the ith challenge in IP is cLeni. In FSrIP,Hs, a hash function H is first sampled from
H. A proof on public parameters pp and input x is a transcript τ � pa1, c1, a2, c2, . . . , ar, cr, ar�1q,
such that

ci � Hppp, x, a1, c1, . . . , ai�1, ci�1, aiqr: cLenis
for i P t1, . . . , ru, and IP.V returns 1 on input ppp, x, τq.

We use the game FSROIP in Figure 3 to formally capture the soundness of the non-interactive
argument FSROrIPs against a non-uniform prover P . For security parameter λ, the advantage of
P against the soundness of FSROrIPs is Advsnd

FSROrIPs
pP, λq � Pr

�
FSROP

IPpλq
�
.

The following theorem connects the state-restoration soundness of a public-coin protocol IP
and the soundness of non-interactive protocol FSROrIPs, obtained by applying the Fiat-Shamir
transform using a random oracle.

Theorem 1. Let IP be a r � rpλq-challenge public coin interactive protocol where the length of the ith

challenge is cLenipλq such that sLenpλq ¤ cLenipλq ¤ hLenpλq for i P t1, . . . , ru. For every non-uniform
cheating prover P� making q � qpλq random oracle queries, there exists a non-uniform prover P such that
for all λ P N�

Advsnd
FSROrIPs

pP�, λq ¤ AdvsrsIP pP, λq �
q � 1

2sLenpλq
.

Moreover, P makes at most q queries to its oracle and is nearly as efficient as P�.

12



Game FSROP
IPpλq:

pp Ð IP.Setupp1λq; px, stPq Ð$ Pλpppq; HÐ$ΩhLenpλq

pa1, c1, a2, c2 . . . , ar, cr, ar�1q Ð$ PHλ pstPq
For Di: ci � Hppp, x, a1, c1, . . . , ai�1, ci�1, aiqr: cLenipλqs then return false
Return IP.Vppp, x, pa1, c1, . . . , ar, cr, ar�1qq

Fig. 3. Soundness for the Fiat-Shamir transform. This game defines the advantage a non-uniform prover P against
the soundness of FSROrIPs. Here, IP has r � rpλq challenges where the ith challenge is of length cLenipλq such that
sLenpλq ¤ cLenipλq ¤ hLenpλq. The set ΩhLenpλq contains all hash functions mapping t0, 1u� to t0, 1uhLenpλq.

Proof. We shall construct a prover P playing SRSIP that runs the cheating prover P� and simulates
the game FSROIP to it.

Let r � rpλq, hLen � hLenpλq, sLen � sLenpλq and cLeni � cLenipλq for i � 1, . . . , r. Let the
length of the ith prover message in IP be li � lipλq bits for i P t1, . . . , r � 1u. Without loss of
generality we assume that P� does not repeat any queries to the random oracle.

The first stage of P on input pp shall run the first stage of the P� on pp. If P� returns px, stP�q,
P returns px, stP � pstP� , pp, xqq. The second stage of P maintains set of states called S – each
state is of the form pa1, c1, a2, c2, . . . , ai, ciq. We say the length of such a state is i. On input stP �
pstP� , pp, xq, it first intializes S to tεu where ε is the empty string . Then it runs P� on stP� . It
simulates the random oracle H to P� as follows. On receiving a H query on y

1. P first checks if there exists s P S of length i such that ppp, x, sq is a prefix of y i.e. y � ppp, x, s, tq
and t is of length li�1. If the check fails, P returns a randomly sampled string from t0, 1uhLen.
If the check succeeds, P chooses the longest such state s.

2. P parses as y as ppp, x, s, tq and makes a query to Oext on ps, tq ans receives c as the response.
P adds ps, t, cq to the set S, samples a string c1 from t0, 1uhLen�cLeni�1 and returns pc, c1q.

Finally, when P� returns an output τ , P queries Oext on τ and stops. It follows that P makes no
more than q queries to its oracle and is nearly as efficient as P�.

Suppose the game FSROP�

IP returns true. In other words P� returns an accepting proof, i.e.,
it returns τ � pa1, c1, . . . , ar, cr, ar�1q such that ci � Hppp, x, a1, c1, . . . , ai�1, ci�1, aiqr: cLenis for
i P t1, . . . , ru and IP.Vppp, x, τq returns true.

Let τi � pa1, c1, . . . , ai�1, ci�1, aiq. Now, let E be the event that P� made H queries on all
of ppp, x, τ1q, . . . , ppp, x, τrq in order, i.e., for all i P t1, . . . , r � 1u, it queried Hppp, x, τiq before
Hppp, x, τi�1q. IfE happens, P must have queried Oext on τ1, τ2, . . . , τr in order and finally queried
τ . Since these queries to Oext were in this order, Oext must have set win to true when finally
queried on τ . Therefore, when the game FSROP�

IP returns true and E happens, the game SRSPIP
returns true.

Hence, we need to upper bound the probability that τ is an accepting transcript and the event
E does not happen, in order to upper bound Advsnd

FSROrIPs
pP�, λq in terms of AdvsrsIP pP, λq.

If τ is an accepting transcript and the event E does not happen either there exists an i P
t1, . . . , ru such that Hppp, x, τiq was never queried by P� or there exists i P t1, . . . , r � 1u such
that Hppp, x, τi�1q was queried before Hppp, x, τiq. The probability of the former happening is at
most 1{2sLen since Hppp, x, τiq was never queried but ci � Hppp, x, τiqr: cLenis is satisfied. The
probability of the latter is upper bounded by the probability that a H query was made on some
y before the H query on ppp, x, τiq such that the last cLeni � li�1 bits of y were pci, ai�1q. Since ci
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was not fixed before the H query on ppp, x, τiq, this happens with probability no more than 1{2sLen
for every query before the H query on ppp, x, τiq. Hence, the probability that for all i P t1, . . . , ru,
Hppp, x, τiqwas queried by P� but there exists i P t1, . . . , r�1u such thatHppp, x, τi�1qwas queried
before Hppp, x, τiq is q{2sLen.

Therefore, the probability that τ is an accepting transcript but E does not happen is at most
pq � 1q{2sLen. Hence

Advsnd
FSROrIPs

pP�, λq ¤ AdvsrsIP pP, λq �
q � 1

2sLenpλq
.

[\
Here we considered challenges in IP to be bitstrings – however, this can be adapted to protocols
where the challenges are from sets that are not bitstrings. The denominator of the fraction of the
bound would become the size of smallest set from which the challenges are sampled, e.g., if the
challenges in the a protocol were all from the set Z�

p , the fraction would become pq � 1q{pp� 1q.
ZERO-KNOWLEDGE. An interactive protocol IP for a relation R is said to be honest verifier zero-
knowledge (HVZK) if there exists an efficient simulator S such that for all ppp, x, wq P R, the
output of Sppp, xq is indistinguishable from the view of IP.V that has as input ppp, xq and is inter-
acting with IP.P with input ppp, x, wq. The view of IP.V consists of the transcript of the interaction
and its randomness.

If a public coin protocol IP is HVZK, applying the Fiat-Shamir transform to it produces a non-
interactive zero-knowledge argument. The interactive protocols we consider in this paper (Bullet-
proofs, Sonic) are HVZK.

4 Arguments of Knowledge in the AGM

This paper focuses on arguments of knowledge based on a (cyclic) group, for which we prove con-
crete security in the algebraic group model (AGM) [FKL18]. More specifically, the security property
we target is an extension of witness-extended emulation [Lin01,GI08] to consider state-restoration
provers. Via Theorem 2, this will give us tight proof of knowledge bounds (in the random-oracle
model) for the NIZK argument obtained by applying the Fiat-Shamir transform to these argu-
ments. This section will develop in particular a definition for the specific case of online extraction
in the AGM. (A more general definition could be given, but this is sufficient for our purposes.) We
also provide a framework that we will adopt to study concrete protocols below.

4.1 Proofs of Knowledge in the AGM

THE ALGEBRAIC GROUP MODEL. We start here with a brief review of the AGM [FKL18]. For
an understood group G with prime order p, an algebraic algorithm Aalg is an interactive algorithm
whose inputs and outputs are made of distinct group elements and strings. Furthermore, each (en-
coding) of a group elementX output by Aalg is accompanied by a representation pxA1 , xA2 , . . . , xAkq P
Zkp such thatX �±k

i�1A
xAi
i , whereA1, . . . , Ak are all group elements previously input and output

by Aalg. Generally, we denote a group element by itself with a capital letter X , and write rXs for a
group element X enhanced with its representation, e.g.,

rXs � pX,xA1 , xA2 , . . . , xAkq .
In particular, when we use a group element X output by Aalg, e.g. it is input to a reduction or
used in a cryptographic game, we write rXs to make explicit that the representation is available,
whereas write X only when the representation is omitted.
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Game WEE-1Palg,D
IP pλq:

tr Ð ε
pp Ð$ IP.Setupp1λq
px, stPq Ð$ Palg,λpppq

Run PO1
ext

alg,λ pstPq
bÐ$ Dptrq
Return pb � 1q

Oracle O1
extpτ � pa1, c1, . . . , ai�1, ci�1q, aiq:

If τ P tr then
If i ¤ r then
ciÐ$ Chi; tr Ð tr } pτ, ai, ciq; return ci

Else if i � r � 1 then
dÐ IP.Vppp, x, τ } aiq
If d � 1 then return d

Return K
Game WEE-0E,Palg,D

IP,R pλq:
tr Ð ε
pp Ð$ IP.Setupp1λq
px, stPq Ð$ Palg,λpppq
stE Ð p1λ, pp, xq

Run PO0
ext

alg,λ pstPq
wÐ$ EpstE ,Kq
bÐ$ Dptrq
Return pb � 1q ^ pAccptrq ñ ppp, x, wq P Rq

Oracle O0
extpτ, aq:

If τ P tr then
presp, stEq Ð$ EpstE , rpτ, aqsq
tr Ð tr } pτ, a, respq
Return resp

Return K

Fig. 4. Definition of online srs-wee security in the AGM. The games WEE-1,WEE-0 define online srs-wee security in
the AGM for a non-uniform algebraic prover Palg, a distinguisher D, an extractor E and a public-coin interactive proof
IP. We assume here that IP has r � rpλq challenges and the i-th challenge is sampled from Chi.

The notation extends to a mix of group elements and strings a – ras enhances each group
elements with its representation.

DEFINING AGM EXTRACTION. We formalize a notion of proof-of-knowledge (PoK) security in
the AGM, following the lines of witness-extended emulation [Lin01,GI08], which we extend to
provers that can rewind the verifier.

We will be interested in cases where the AGM allows for online extraction, i.e., the addi-
tional group representations will allow for extraction without rewinding the prover. (Note that
the prover itself can rewind the verifier, which is a little different.) This requires a little care, as we
target an adaptive notion of security, where the input is generated by the adversarial prover itself,
depending on the public parameters pp, and can contain group elements. The extractor should
not learn too much in order not to trivialize its task. It is also important to note that a group-based
interactive proof does not necessarily allow for AGM online extraction – we elaborate on this in
Appendix A.

ONLINE SRS-WEE SECURITY. The definition consists of two games – denoted WEE-1Palg,D
IP and

WEE-0E,Palg,D
IP,R , and described in Figure 4. The former captures the real game, lets our prover

P � tPλuλPN interact with an oracle O1
ext as in the state-restoration soundness game defined above,

which additionally stores a transcript tr. The latter is finally given to a distinguisher D which out-
puts a decision bit. In contrast, the ideal game delegates the role of answering P’s oracle queries
to a (stateful) extractor E . The extractor, at the end of the execution, also outputs a witness can-
didate for w. The extractor in particular exploits here the fact that P is algebraic by learning the
representation of every input to the oracle O0

ext. (This representation can be thought, without loss
of generality, as being in terms of all group elements contained in pp and in the input x.) Here,
the final output of the game is not merely D’s decision bit – should the latter output 1, the output
of the game is true only if additionally the extracted witness is correct assuming the interaction
with O0

ext resulted in an accepting execution – a condition we capture via the predicate Accptrq.
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Game FS-EXT
Palg,E
IP,R pλq:

pp Ð$ IP.Setupp1λq; px, stPq Ð$ Palg,λpppq
stE Ð p1λ, pp, xq; τ Ð PROext

alg,λ pstPq; wÐ$ EpstE , rτ sq
Return pIP.Vppp, x, τq � 1^ ppp, x, wq R Rq

Oracle ROextpyq:
presp, stEq Ð$ EpstE , rysq
Return resp

Fig. 5. Definition of fs-ext security in the AGM. The game FS-EXT defines fs-ext security in the AGM for a non-uniform
algebraic prover Palg, an extractor E and a non-interactive argument obtained by applying the Fiat-Shamir transform to
an interactive protocol IP.

For an interactive proof IP and an associated relation R, non-uniform algebraic prover Palg, a
distinguisher D, and an extractor E , we define

Advsr-weeIP,R pPalg,D, E , λq � Pr
�
WEE-1Palg,D

IP pλq
�
� Pr

�
WEE-0E,Palg,D

IP,R pλq
�
. (4)

FS-EXT SECURITY. We formalize a notion of proof-of-knowledge (PoK) security in the AGM for
non-interactive arguments obtained by applying the Fiat-Shamir transform to an interactive pro-
tocol IP. For simplicity, this notion just captures extractability instead of witness-extended emula-
tion. It is defined by the game FS-EXTPalg,E

IP,R in Figure 5. The game is similar to FSRO with the main
difference being that the extractor E simulates the random oracle to the prover Palg and outputs a
witness after the prover has output a proof. The extractor exploits the fact that Palg is algebraic by
learning the representation of every input to the oracle ROext. Here, the final output of the game
is true if Palg outputs an accepting proof τ (i.e., IP.Vppp, x, τq returns 1) but the witness output by
the extractor is not a valid one. For an interactive proof IP and an associated relation R, algebraic
prover Palg, and an extractor E , we define Advfs-ext

FSROrIPs,R
pPalg, E , λq � Pr

�
FS-EXTPalg,E

IP,R pλq
�
.

The following theorem connects the online srs-wee of a public-coin protocol IP and the fs-ext
soundness of non-interactive protocol FSROrIPs, obtained by applying the Fiat-Shamir transform
using a random oracle.

Theorem 2. Let R be a relation. Let IP be a r � rpλq-challenge public coin interactive protocol for the
relation R where the length of the ith challenge is cLenipλq such that sLenpλq ¤ cLenipλq ¤ hLenpλq
for i P t1, . . . , ru. Let E be an extractor for IP such that it always responds to queries with bit-strings of
appropriate length chosen uniformly at random. We can construct an extractor E� for FSROrIPs such that
for every non-uniform algebraic prover P�

alg against FSROrIPs that makes q � qpλq random oracle queries,
there exists a non-uniform algebraic prover Palg and D such that for all λ P N�

Advfs-ext
FSROrIPs,R

pP�
alg, E , λq ¤ Advsr-weeIP,R pPalg,D, E , λq � q � 1

2sLenpλq
.

Moreover, Palg makes at most q queries to its oracle and is nearly as efficient as P�
alg. The extractor E� is

nearly as efficient as E .

Proof (Sketch). This proof is very similar to the proof of Theorem 1, so we just provide a proof
sketch.

Without loss of generality we assume that P�
alg does not repeat random oracle queries. Let

r � rpλq, hLen � hLenpλq, sLen � sLenpλq and cLeni � cLenipλq for i � 1, . . . , r. Let the length of
the ith prover message in IP be li � lipλq bits for i P t1, . . . , r � 1u.
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First we define the extractor E� that simulates the game WEE-0 to E . Suppose E� has initial
state p1λ, pp, xq. It initializes stE to p1λ, pp, xq. It maintains a set of states S which is initialized to
tεuwhere ε is the empty string. For every query y that it receives, it checks if for some state s P S of
length i, there exists y � ppp, x, s, tq where t is li�1 bits long. If the check fails, it returns a random
string in t0, 1uhLenpλq. Otherwise, it chooses the longest such s and queries ps, tq to E , receives a
string c. It samples c1 uniformly at random from t0, 1uhLen�cLeni�1 and returns pc, c1q (we omit the
state book-keeping here). When invoked on τ , it runs E on pstE , τq and then pstE ,Kq and returns
whatever E returns. It follows that E� is nearly as efficient as E .

We set Dp�q � Accp�q. So, Advsr-weeIP,R pPalg,D, E , λq is essentially the probability that in WEE-0, Acc
returns true and E fails to return a valid witness.

We define adversary Palg that runs adversary P�
alg in the same way as P ran P� in the proof

of Theorem 1. It follows that Palg makes at most q queries to its oracle and is nearly as efficient as
P�
alg.

Suppose the game FS-EXT returns true. In other words P�
alg returns an accepting proof, i.e., it

returns τ � pa1, c1, . . . , ar, cr, ar�1q such that IP.Vppp, x, τq � 1, and E� fails to extract a witness w.
Let τi � pa1, c1, . . . , ai�1, ci�1, aiq. Now, let E be the event that P�

alg made ROext queries on all
of ppp, x, τ1q, . . . , ppp, x, τrq in order, i.e., for all i P t1, . . . , r � 1u, it queried ROextppp, x, τiq before
ROextppp, x, τi�1q. If E happens, it is easy to see that Palg must have succeeded (same reasoning
as we used in the proof of Theorem 1) and E must have failed (since E� fails only when E fails).

Since ROext queries are always chosen uniformly at random from t0, 1uhLenpλq, and no queries
are repeated, one can think of it as a random oracle H with image t0, 1uhLenpλq. So the event E is
same as in the proof of Theorem 1, where we upper bounded the probability that P�

alg produces an
accepting proof and E does not happen to pq � 1q{2sLenpλq.

Therefore it follows that

Advfs-ext
FSROrIPs,R

pP�
alg, E , λq ¤ Advsr-weeIP,R pPalg,D, E , λq � q � 1

2sLenpλq
.

[\
Here we considered challenges in IP to be bitstrings – however, this can be adapted to protocols
where the challenges are from sets that are not bitstrings. The denominator of the fraction of the
bound would become the size of smallest set from which the challenges are sampled, e.g., if the
challenges in the a protocol were all from the set Z�

p , the fraction would become pq � 1q{pp� 1q.
SOUNDNESS FROM POK. The definition of state-restoration soundness from Section 3.1 also ap-
plies to any algebraic prover. The following theorem relates soundness to the witness-extended
emulation – the proof is immediate.

Lemma 4. Let IP be an interactive proof for a relation R, and let Palg an algebraic prover which, on input
pp, outputs x such that ppp, x, wq R R for all w. Then, for any extractor E , and Dp�q � Accp�q, we have for
all λ P N�

AdvsrsIP pPalg, λq ¤ Advsr-weeIP,R pPalg,D, E , λq .

4.2 The Basic Framework

We develop a general framework that we will use, via Theorem 3, to derive concrete AGM bounds
on srs-wee security. Our goal, in particular, is to give conditions on single path executions – i.e.,
executions not involving any rewinding of the verifier by the prover, which could be seen as root-
to-leaf paths in an execution tree generated by the interaction of a state-restoration prover.
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TRANSCRIPTS. From now on, let us fix an interactive public-coin proof IP � pIP.Setup, IP.P, IP.Vq
for a relation R. Assume further this protocol has exactly r rounds of challenges. Then, we rep-
resent a (potential) single-execution transcript generated by an algebraic prover in different forms,
depending on whether we include the representations of group elements or not. Specifically, we
let the (plain) transcript be

τ � ppp, x, a1, c1, a2, c2, . . . , ar, cr, ar�1q ,
where pp are the generated parameters, x is the input produced by Palg, ci P Chi for all i P t1, . . . , ru
are the challenges, and a1, . . . , ar�1 are the prover’s messages. The corresponding extended tran-
script with representations is denoted as

rτ s � ppp, rxs , ra1s , c1, ra2s , c2, . . . , rars , cr, rar�1sq .
In particular, the representation of each group element contained in ai is with respect to all ele-
ments contained in pp, x, a1, . . . , ai�1. We let T IP be the set of all possible extended transcripts rτ s.
We also let T IP

Acc � T IP be the set of accepting transcripts rτ s, i.e., IP.Vpτq � 1.
PATH EXTRACTION. We now would like to define a function e which extracts a witness from any
accepting transcript rτ s P T IP

Acc. We need to however be a little careful, since the extractor cannot
leverage a representation of the group elements in x, as this trivializes extraction. To this end, for
an extended transcript rτ s, we write rτ s � ppp, x, ra1s , c1, ra2s , c2, . . . , rars , cr, rar�1sq, i.e., rτ s omits
the representation of the input x. For a particular function e we now define the set of extended
transcripts on which it succeeds in extracting a valid witness, i.e.,

T IP,e,R
correct �

!
rτ s � ppp, rxs , . . .q P T IP

Acc : w Ð eprτ sq, ppp, x, wq P R
)
.

Therefore, a natural extractor E just answers challenges honestly, and applies e to a path in the
execution tree which defines an accepting transcript, and returns the corresponding witness w.
The probability of this extractor failing can be upper bounded naı̈vely by the probability that
the prover generates, in its execution tree, a path corresponding to an extended transcript rτ s P
T IP
AcczT IP,e,R

correct . This is however not directly helpful, as the main challenge is to actually estimate this
probability.
BAD CHALLENGES. In all of our examples, the analysis of the probability of generating a transcript
in T IP

AcczT IP,e,R
correct will generally consist of an information-theoretic and a computational part.

The information-theoretic part will account to choosing some bad challenges. We capture such
choices of bad challenges by defining, for any partial extended transcript�

τ 1
� � ppp, rxs , ra1s , c1, . . . , raisq ,

a set BadChpτ 1q � Chi of such bad challenges. (Crucially, whether a challenge is bad or not only
depends on the extended transcript so far.) We now denote as T IP

BadCh the set of all extended tran-
scripts which contain at least one bad challenge. It turns out that the probability of generating
such a bad challenge is easily bounded by q � ε for a prover making q oracle queries, assuming
|BadChpτ 1q| { |Chi| ¤ ε.

The only case that the extractor can now fail is if the execution tree contains an extended
transcript rτ s in the set

T IP,e,R
fail � T IP

Acc z pT IP,e,R
correct Y T IP

BadChq . (5)
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We denote the probability that this happens in SRS
Palg

IP pλq as pfailpIP,Palg, e, R, λq. Generally, in all
of our applications, upper bounding this probability for a suitably defined extractor will constitute
the computational core of the proof – i.e., we will prove (generally tight) reductions to breaking
some underlying assumption.
THE MASTER THEOREM. We are now ready to state our master theorem, which assumes the formal
set up.

Theorem 3 (Master Theorem). Let IP be an r � rpλq-challenge public coin interactive proof for a
relation R. Assume that BadCh and e are given above. Further, assume that for an i P t1, . . . , ru, we have��BadChpτ 1q�� { |Chi| ¤ ε

for some ε P r0, 1s. Then, there exists an extractor E such that for any non-uniform algebraic prover Palg

making at most q � qpλq queries to its oracle, and any (computationally unbounded) distinguisher D, for
all λ P N�

Advsr-weeIP,R pPalg,D, E , λq ¤ qε� pfailpIP,Palg, e, R, λq .
The time complexity of the extractor E is Opq � tV � teq where tV is the time required to run IP.V and te is
the time required to run e.

Proof. The extractor E , as stated above, just answers challenges honestly, and applies e to a path
in the execution tree which defines an accepting transcript, and returns whatever e returns. The
running time of the extractor E consists of the time required to answers q queries, run IP.V in at
most q paths in the execution tree and the time required to run e. Hence it’s time complexity is
Opq � tV � teq.

Since, E answers challenges honestly, the view of Palg is identical in the games WEE-1Palg,D
IP and

WEE-0E,Palg,D
IP,R . So, tr will be identical in both games and hence b will be identical in both games.

Therefore, the output of WEE-0E,Palg,D
IP,R differs from the output of WEE-1Palg,D

IP only if pAccptrq ñ
ppp, x, wq P Rq � false i.e., if Accptrq is true but ppp, x, wq R R.

Since Accptrq is true, there is an accepting transcript τ such that E gives rτ s as input to e. Now,
e outputs w such that ppp, x, wq R R only if τ P T IP,e,R

fail or τ P T IP
BadCh (these sets are defined above).

By definition, τ P T IP
BadCh only if any of the challenges ci P BadChpτ 1q for some partial transcript

τ 1 that is a prefix of τ . Now, since there are at most q queries and each of the challenges are sampled
uniformly at random from Chi, and |BadChpτ 1q| { |Chi| ¤ ε, the probability that τ P T IP

BadCh is at most
q � ε.

The probability that τ P T IP,e,R
fail is pfailpIP,Palg, e, R, λq in game SRSPIP. Since E answers chal-

lenges honestly, the probability that τ P T IP,e,R
fail in WEE-0E,Palg,D

IP,R is pfailpIP,Palg, e, R, λq as well.

Therefore, the probability that the output of WEE-0E,Palg,D
IP,R differs from the output of WEE-1Palg,D

IP
is at most qε� pfailpIP,Palg, e, R, λq, i.e.,

Advsr-weeIP,R pPalg,D, E , λq ¤ qε� pfailpIP,Palg, e, R, λq .
[\

5 Online srs-wee Security of Bulletproofs

In this section, we shall apply our framework to prove online srs-wee security in the AGM for
two instantiations of Bulletproofs- range proofs (RngPf) and proofs for arithmetic circuit satisfi-
ability (ACSPf). We first introduce the Bulletproof inner product argument (InPrd) in Section 5.1
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InPrd.Ppppn,g,h, uq, P q, pa,bqq InPrd.Vppn,g,h, uq, P q

gp0q Ð g;hp0q Ð h gp0q Ð g;hp0q Ð h

n0 Ð n;P p0q Ð P ;ap0q Ð a;bp0q Ð b n0 Ð n;P p0q Ð P
For i � 1, . . . , logn For i � 1, . . . , logn
ni Ð ni�1{2 ni Ð ni�1{2
cL Ð xar: nis,brni :sy
cR Ð xarni :s,br: nisy

Li Ð
�
g
pi�1q
rni:s

	ar:nis
�
h
pi�1q
r:nis

	brni:s

ucL

Ri Ð
�
g
pi�1q
r:nis

	arni:s
�
h
pi�1q
rni:s

	br:nis

ucR
Li,RiÝÝÝÝÑ
xiÐÝÝÝÝ xiÐ$ Z�

p

gpiq Ð
�
g
pi�1q
r:nis

	x�1
i

�
�
g
pi�1q
rni:s

	xi
gpiq Ð

�
g
pi�1q
r:nis

	x�1
i

�
�
g
pi�1q
rni:s

	xi
hpiq Ð

�
h
pi�1q
r:nis

	xi
�
�
h
pi�1q
rni:s

	x�1
i

hpiq Ð
�
h
pi�1q
r:nis

	xi
�
�
h
pi�1q
rni:s

	x�1
i

P piq Ð L
x2i
i P

pi�1qR
x�2
i
i P piq Ð L

x2i
i P

pi�1qR
x�2
i
i

apiq Ð api�1qr: nisx
�1 � apiqrni :sx

bpiq Ð bpi�1qr: nisx� bpiqrni :sx
�1

g Ð gplognq;hÐ hplognq g Ð gplognq;hÐ hplognq

aÐ aplognq; bÐ bplognq a,b
ÝÝÝÝÑ Return pP plognq � gahbuabq

Fig. 6. Bulletproofs inner-product argument InPrd.

which forms the core of both RngPf and ACSPf. Then, in Sections 5.2 and 5.3 we introduce and
analyze online srs-wee security of RngPf and ACSPf respectively.

5.1 Inner Product Argument InPrd

We shall assume that InPrd � InPrdrGs is instantiated on an understood family of groups G �
tGλuλPN� of order p � ppλq. Using InPrd, a prover can convince a verifier that P P G is a well-
formed commitment to vectors a,b P Znp and their inner-product xa,by. More precisely, the prover
wants to prove to the verifier that P � gahbuxa,by where g P Gn,h P Gn, u P G are independent
generators of G. We assume that n is a power of 2 without loss of generality since if needed, one
can pad the input appropriately to ensure that this holds. The prover and the verifier for InPrd is
formally defined in Figure 6. It is a log n round recursive protocol where in every round the prover
and the verifier engage in InPrd with vectors of dimension half of that in the previous round.

5.2 Online srs-wee Security of RngPf

We shall assume that RngPf � RngPfrGs is instantiated on an understood family of groups G �
tGλuλPN� of order p � ppλq. The argument RngPf is an argument of knowledge for the relation

R �
!�
pn P N, g, h P Gq, V P G, pv, γ P Zpq

	
: gvhγ � V ^ v P r0, 2n � 1s

)
. (6)

DESCRIPTION OF RngPf . The RngPf.Setup procedure on input 1λ returns a positive integer n, g P
Gn,h P Gn, g, h, u P G where g,h are vectors of independent generators and g, h, u are other
independent generators of the group G. The instance for RngPf is V P G such that an honest
prover knows a witness pv, γq that satisfies V � gvhγ and v P r0, 2n � 1s.

20



RngPf.Ppppn,g,h, g, h, uq, V q, pv, γqq RngPf.Vppn,g,h, g, h, uq, V q

aL Ð BinReppv, nq;aR Ð aL � 1n

αÐ$ Zp;AÐ hαgaLhaR

sLÐ$ Znp ; sRÐ$ Znp
ρÐ$ Zp;S Ð hρgsLhsR A,S

ÝÝÝÝÑ
y,z

ÐÝÝÝÝ y, zÐ$ Z�
p

lpXq Ð paL � z � 1nq � sL �X δpy, zq Ð pz � z2q � x1n,yny � z2 � 2n

rpXq Ð yn � paR � z � 1n � sR �Xq � z2 � 2n

tpXq Ð xlpXq, rpXqy � t0 � t1X � t2X
2

τ1, τ2 Ð$ Zp
Ti Ð gtihτi for i P t1, 2u T1,T2ÝÝÝÝÑ

x
ÐÝÝÝÝ xÐ$ Z�

p

l Ð lpxq; r Ð rpxq; t̂Ð xl, ry

τx Ð τ2 � x
2 � τ1 � x� z2γ;µÐ α� ρ � x

τx,µ,t̂ÝÝÝÝÑ
o

ÐÝÝÝÝ oÐ$ Z�
p

h1 Ð hy�n ;u1 Ð uo h1 Ð hy�n ;u1 Ð uo

P Ð ASxg�z�1
n

h1z�y
n�z2�2n

P Ð ASxg�z�1
n

h1z�y
n�z2�2n

P 1 Ð h�µP pu1qt̂ P 1 Ð h�µP pu1qt̂

InPrd.Pppg,h1, u1, P 1q, pl, rqq ðùùùñ InPrd.Vpg,h1, u1, P 1q Ñ b

RÐ V z
2

gδpy,zqT x1 T
x2

2

If b � 1^ gt̂hτx � R then
Return 1

Return 0

Fig. 7. Prover and Verifier for RngPf. The function BinReppv, nq outputs the n-bit representation of v. The symbol ðñ
denotes the interaction between InPrd.P and InPrd.V with the output of the InPrd.V being b.

The prover and verifier for RngPf are defined in Figure 7. In this protocol the prover computes
aL – the n-bit representation of v, aR � aL � 1n and commits to aL,aR and proves to the verifier
that aL � aR � 1n, aL � aR � 0n and xaL,2ny � v. (The prover and the verifier of RngPf engage in
InPrd in the final step to avoid the prover sending over vectors of length n). The first two equalities
imply that aL P t0, 1un. Combining this with the third equality gives that v P r0, 2n � 1s.

We shall prove the following theorem to establish an upper bound on the online srs-wee secu-
rity for RngPf.

Theorem 4. Let G � tGλuλPN� be a family of groups of order p � ppλq. Let RngPf � RngPfrGs be the
interactive argument as defined in Figure 7, for the relation R in (6). We can construct an extractor E such
that for any non-uniform algebraic prover Palg making at most q � qpλq queries to its oracle, there exists
a non-uniform adversary F with the property that for any (computationally unbounded) distinguisher D,
for all λ P N�

Advsr-weeRngPf,RpPalg,D, E , λq ¤ p14n� 8qq
p� 1

� AdvdlGpF , λq �
1

p
.

Moreover, the time complexity of the extractor E is Opq � nq and that of adversary F is Opq � nq.
We show that the bound above is tight in Theorem 5. Using Theorem 2, we get the following
corollary.
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Corollary 1. Let G � tGλuλPN� be a family of groups of order p � ppλq. Let RngPf � RngPfrGs be
the interactive argument as defined in Figure 7, for the relation R in (6). Let FSROrRngPfs be the non-
interactive argument obtained by applying the Fiat-Shamir transform to RngPf using a random oracle. We
can construct an extractor E such that for any non-uniform algebraic prover Palg making at most q � qpλq
queries to the random oracle there exists a non-uniform adversary F with the property that for all λ P N�

Advfs-ext
FSROrRngPfs,R

pPalg, E , λq ¤ p14n� 9qq � 1

p� 1
� AdvdlGpF , λq �

1

p
.

Moreover, the time complexity of the extractor E is Opq � nq and that of adversary F is Opq � nq.
Proof (Theorem 4). In order to prove this theorem, we invoke Theorem 3 by defining BadCh and e
and showing that ε ¤ 14n�8

p�1 and there exists an adversary F such that

pfailpRngPf,Palg, e, R, λq ¤ AdvdlGpFq �
1

p
.

DEFINING BadCh AND UPPER BOUNDING ε. To start off, we define BadChpτ 1q for all partial tran-
scripts τ 1. Let Ch be the set from which the challenge that just follows τ 1 is sampled. We use a
helper function CheckBad to define BadChpτ 1q. The function CheckBad takes as input a partial ex-
tended transcript rτ 1s and a challenge c P Ch and returns true if and only if c P BadChpτ 1q. For
each verifier challenge in RngPf, there is a definition of CheckBad in Figure 8. Every CheckBad func-
tion defines several bad conditions that depend on τ 1 – most of these bad conditions are checked
using the predicate SZ. This predicate takes as input a vector of polynomials and a correspond-
ing vector of points to evaluate the polynomial on and returns true iff any of the polynomials is
non-zero but its evaluation at the corresponding point is zero. One can safely ignore the details of
the definitions of CheckBad functions for now – the rationale behind their definitions shall become
apparent later on.

The following lemma establishes an upper bound of p14n� 8q{pp� 1q on |BadChpτ 1q|{|Ch|.
Lemma 5. Let τ 1 be a partial transcript for RngPf. Let Ch be the set from which the challenge that comes
right after τ 1 is sampled. Then, |BadChpτ 1q|

|Ch| ¤ 14n�8
p�1 .

Proof. The proof of this lemma proceeds by computing an upper bound on the maximum fraction
of c’s in Ch for which CheckBadpτ 1, cq will return true, for all the definitions of CheckBad, using
the Schwartz-Zippel Lemma.

The function CheckBadpτ 1, py, zqq returns true if any of SZpfipZq, zq for i � 1, 2, 3 is true
or if SZpf4pY,Zq, py, zqq is true. Since f1pZq is a vector of n polynomials of degree 2, the frac-
tion of z’s in Z�

p for which SZpf1pZq, zq is true is at most 2n{pp� 1q using the Schwartz-Zippel
Lemma and the union bound. Similarly, the fraction of z’s for which SZpf2pZq, zq and SZpf3pZq, zq
is true is at most 2n{pp� 1q and 2{pp� 1q respectively. The polynomial f4pY,Zq is a polynomial
of degree at most n� 1. So, the fraction of py, zq’s for which SZpf4pY,Zq, py, zqq is true is at most
pn� 1q{pp� 1q. Using the union bound, the fraction of y, z P Z�

p for which CheckBadpτ 1, py, zqq
returns true is at most p5n� 3q{pp� 1q.

The function CheckBadpτ 1, xq returns true if any of SZpfipXq, xq for i � 1, 2, 3, 4 is true. Since
f1pXq and f2pXq are vectors of n polynomials, each polynomial of degree 2, we get that the fraction
of x’s in Z�

p for which SZpfipXq, xq is true for i � 1, 2 is at most 2n{pp� 1q. The polynomials
f3pXq, f4pXq are polynomials of degree at most 2. The fraction of x’s in Z�

p for which SZpf3pXq, xq
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or SZpf4pXq, xq is true is at most 2{pp� 1q. The fraction of x’s for which z2�t1V x�t2V x2 � 0 is at
most 2{pp� 1q. Using the union bound, the fraction of x’s in Z�

p such that CheckBadpτ 1, xq returns
true is at most p4n� 6q{pp� 1q.

The function CheckBadpτ 1, oq returns true if SZpfpOq, oq is true. The polynomial fpOq is a
polynomial of degree 1, hence using the Schwartz-Zippel Lemma the fraction of o’s in Z�

p for
which CheckBadpτ 1, oq returns true is at most 1{pp� 1q.

The function CheckBadpτ 1, xmq returns true if and only if SZ is true for any of the
°m�1
t�1 2n{2t

polynomials of degree at most 4 (the degree here is the difference between highest and lowest
degree), 2n{2m polynomials of degree at most 6 and one polynomial of degree at most 8. Using
Schwartz Zippel Lemma and the union bound the fraction of xm’s for which CheckBadpτ 1, xmq
returns true is at most

8

p� 1

�
m�1̧

t�1

n

2t

�
� 12n

2mpp� 1q �
8

p� 1
.

This fraction is at most p14n� 8q{pp� 1q for m P t1, . . . , log nu.
Therefore the maximum value of |BadChpτ 1q|{|Ch| for any partial transcript τ 1, i.e., the maxi-

mum fraction of c’s for which CheckBadpτ 1, cq is true is upper bounded by p14n� 8q{pp� 1q.
[\

DEFINING e. Let τ be a transcript of RngPf as defined below.

τ ��pn,g,h, u, g, hq, V ; pA,Sq, py, zq, pT1, T2q, x, pτx, µ, t̂q, o, pL1, R1q, x1, pL2, R2q, x2, . . . ,
pLlogn, Rlognq, xlogn, pa, bq

�
.

(7)

Let us represent using τ |c the prefix of τ just before the challenge c. For example

τ |py,zq �
�pn,g,h, u, g, hq, V, pA,Sq� .

Observe from the definition of RngPf.V that if τ as defined in (7) is an accepting transcript,

V z2gδpy,zqT x1 T
x2

2 � gt̂hτx . (8)

Now, e can plug in the representations of T1, T2 into (8) and compute eV , eg, eh, eu, eg, eh such
that V eV � geghehueugegheh . For example

eg � t̂� δpy, zq � t1gx� t2gx
2 , eV � z2 � t1V x� t2V x

2 .

Note that the x for which eV � 0 is in BadChpτ |xq. The procedure e (formally defined in Fig. 9)
returns eg{eV and eh{eV . However, its output is a valid witness only if eg � eh � 0n, eu � 0 and
eg{eV P r0, 2n � 1s. It follows from the description of e runs in time Opnq. Note that RngPf.V runs
in time Opnq. Therefore, using Theorem 3, the time complexity E is Opq � nq.
PROVING AN UPPER BOUND ON pfailpRngPf,Palg, e, R, λq. We construct an adversary H against the
discrete logarithm relation problem that takes as input independent generators g,h, g, h, u of the
group G and works as follows. It simulates the game SRSRngPf to Palg using public parameters
n,g,h, g, h, u. If Palg manages to produce an accepting transcript τ , H calls a helper function h on
input rτ s and outputs whatever h outputs. We shall define h in such a way that for τ R T RngPf

BadCh

if hprτ sq returns a trivial discrete logarithm relation, then eprτ sq returns a valid witness. Taking
the contrapositive, we have that whenever eprτ sq fails to extract a valid witness for an accepting
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Procedure CheckBadp
�
τ 1
�
, py, zqq:

//
�
τ 1
�
�
�
pn,g,h, u, g, hq, rV s , prAs , rSsq

�
f1pZq Ð vgZ

2; f2pZq Ð vhZ
2; f3pZq Ð vuZ

2; f4pY,Zq Ð Z2pvg � xag,2
nyq � Zxag � ah � 1n,Yny � xag � ah,Y

ny
Return SZpf1pZq, zq _ SZpf2pZq, zq _ SZpf3pZq, zq _ SZpf4pY,Zq, py, zqq

Procedure CheckBadp
�
τ 1
�
, xq:

//
�
τ 1
�
�
�
pn,g,h, u, g, hq, rV s , prAs , rSsq, py, zq, prT1s , rT2sq

�
If z2 � t1V x� t2V x

2 � 0 then return true
f1pXq Ð vgpz

2 � t1VX � t2VX
2q � t1gX � t2gX

2; f2pXq Ð vhpz
2 � t1VX � t2VX

2q � t1hX � t2hX
2

f3pXq Ð vupz
2 � t1VX � t2VX

2q � t1uX � t2uX
2

lpXq Ð pag � z � 1nq � sg �X ; rpXq Ð yn � pah � z � 1n � sh �Xq � z2 � 2n; δpy, zq Ð pz � z2qx1n,yny � z3x1n,2ny
f4pXq Ð vgpz

2 � t1VX � t2VX
2q � δpy, zq � t1gX � t2gX

2 � xlpXq, rpXqy
Return SZpf1pXq, xq _ SZpf2pXq, xq _ SZpf3pXq, xq _ SZpf4pXq, xq

Procedure CheckBadp
�
τ 1
�
, oq:

//
�
τ 1
�
�
�
pn,g,h, u, g, hq, rV s , prAs , rSsq, py, zq, prT1s , rT2sq, x, pτx, µ, t̂q

�
l Ð pag � z � 1nq � sg � x; r Ð pah � xsh � z1nq � yn � z22n; fpOq Ð Ot̂�Oxl, ry
Return SZpfpOq, oq

Procedure CheckBadp
�
τ 1
�
, xmq:

//
�
τ 1
�
�
�
pn,g,h, u, g, hq, rV s , prAs , rSsq, py, zq, prT1s , rT2sq, x, pτx, µ, t̂q, o, prL1s , rR1sq, x1, . . . , prLms , rRmsq

�
p1g Ð ag � xsg � z1n; p1h Ð ah � xsh � y�n � pzyn � z22nq; p1u Ð au � xsu � ot̂
For j � 0, . . . , n� 1 do

fg
m,jpXq Ð lmg1�j �X2 � rmg1�jX

�2 � p1g1�j �
m�1°
i�1

plig1�jx
2
i � rig1�jx

�2
i q

fh
m,jpXq Ð lmh1�jX

2 � rmh1�jX
�2 � p1h1�j

�
m�1°
i�1

plih1�jx
2
i � rih1�jx

�2
i q

fumpXq Ð lmuX
2 � rmuX

�2 � p1u �
m�1°
i�1

pliux
2
i � riux

�2
i q

flag Ð false
For t � 1, . . . ,m� 1 do for j � 0, . . . , n{2t � 1 do

flag Ð flag _ SZpfg
m,jpXq � x

2
t � fg

m,j�n{2t
pXq, xmq _ SZpfh

m,jpXq � fh
m,j�n{2tpXq � x

2
t , xmq

For j � 0, . . . , n{2m � 1 do
flag Ð flag _ SZpfg

m,jpXq �X
2 � fg

m,j�n{2mpXq, xmq _ SZpfh
m,jpXq � fh

m,j�n{2mpXq �X
2, xmq

flag Ð flag _ SZ
�
fumpXq � o �

n{2m�1°
j�0

fg
m,jpXq � f

h
m,jpXq � y

j , xm
	

Return flag

Fig. 8. The functions CheckBad function for the RngPf.

Procedure eprτ sq:

//rτ s �
�
pn,g,h, u, g, hq, V ; prAs , rSsq, py, zq, prT1s , rT2sq, x, pτx, µ, t̂q, o, prL1s , rR1sq, x1, . . . , prLlogns , rRlognsq, xlogn,
pa, bq

�
If z2 � t1V x� t2V x

2 � 0 then return K
δpy, zq Ð pz � z2qx1n,yny � z3x1n,2ny

v� Ð
t̂�δpy,zq�t1gx�t2gx

2

z2�t1V x�t2V x
2 ; γ� Ð τx�t1hx�t2hx

2

z2�t1V x�t2V x
2 ; Return pv�, γ�q

Fig. 9. The function e for RngPf.
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transcript τ R T RngPf
BadCh , hprτ sq outputs a non-trivial discrete logarithm relation, i.e., H succeeds. So

we have that
pfailpRngPf,Palg, e, R, λq ¤ Advdl-relG,2n�3pHq .

Using Lemma 2 we would have that there exists an adversary F such that

pfailpRngPf,Palg, e, R, λq ¤ AdvdlGpFq �
1

p
.

We also have that F is nearly as efficient as H.
DEFINING h. We next describe the h function. Let τ , as defined in (7), be an accepting transcript.
The following equality must hold since τ is an accepting transcript.

V z2gδpy,zqT x1 T
x2

2 � gt̂hτx .

Like e, h can plug in the representations of T1, T2 into the above equation and compute the values
eV , eg, eh, eu, eg, eh such that V eV � geghehueugegheh . Additionally, h has the representation of V -
plugging that in h can compute ep1qg , e

p1q
h , e

p1q
g , e

p1q
h , e

p1q
u such that

ge
p1q
g he

p1q
h ge

p1q
g he

p1q
h ue

p1q
u � 1 .

If not all of these are zero, h returns ep1qg , e
p1q
h , e

p1q
g , e

p1q
h , e

p1q
u . Note that ep1qg � eg � eV vg, ep1qh �

eh � eV vh, ep1qg � eg � eV vg, ep1qh � eh � eV vh and ep1qu � eu � eV vu.
Again since τ is an accepting transcript, InPrd.V must have returned 1 and hence the following

equality must hold.
P plognq � pgplognqqaphplognqqbuab . (9)

Using the definition of P piq’s in InPrd.V, the left hand side of (9) can be written as�
logn¹
i�1

L
x2i
i

�
h�µASxg�z�1

npphqy�nqz�yn�z2�2npuoqt̂
�

logn¹
i�1

R
x�2
i
i

�
.

Let the function bitpk, i, tq return the bit ki where pk1, . . . , ktq is the t-bit representation of k. Using
the definition of gpiq’s and hpiq’s in InPrd.V, the right hand side of (9) can be written as

gplognq �
n�1¹
k�0

g

logn±

i�1
x
p�1q1�bitpk,i,lognq

i

1�k , hplognq �
n�1¹
k�0

h
yp�1�kq

logn±

i�1
x
p�1qbitpk,i,lognq

i

1�k .

Plugging these into (9), one can compute ep2qg , e
p2q
h , e

p2q
g , e

p2q
h , e

p2q
u such that

ge
p2q
g he

p2q
h ge

p2q
g he

p2q
h ue

p2q
u � 1 .

The function h computes and returns ep2qg , e
p2q
h , e

p2q
g , e

p2q
h , e

p2q
u . We define the function h formally in

Figure 10. It follows from the description of h that it runs in time Opnq. The running time of H
consists of the time required to answers q queries, run RngPf.V in at most q paths in the execution
tree and the time required to run h. Hence its time complexity is Opq � nq. Using Lemma 2, time
complexity of F is Opq � nq.
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Procedure hprτ sq:

//rτ s �
�
pn,g,h, u, g, hq, rV s ; prAs , rSsq, py, zq, prT1s , rT2sq, x, pτx, µ, t̂q, o, prL1s , rR1sq, x1, . . . ,
prLlogns , rRlognsq, xlogn, pa, bq

�
δpy, zq Ð pz � z2qx1n,yny � z3x1n,2ny

e
p1q
g Ð vgpz

2 � t1V x� t2V x
2q � t1gx� t2gx

2; ep1qh Ð vhpz
2 � t1V x� t2V x

2q � t1hx� t2hx
2

e
p1q
u Ð vupz

2 � t1V x� t2V x
2q � t1ux� t2ux

2; ep1qg Ð vgpz
2 � t1V x� t2V x

2q � δpy, zq � t1gx� t2gx
2 � t̂

e
p1q
h Ð vhpz

2 � t1V x� t2V x
2q � t1hx� t2hx

2 � τx

If pep1qg , e
p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q � p0n,0n, 0, 0, 0q then return pep1qg , e

p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q

p1V Ð aV � xsV ; p1g Ð pag � aV vgq � xpsg � sV vgq � z1n

p1h Ð pah � aV vhq � xpsh � sV vhq � y�n � pzyn � z22nq; p1g Ð pag � aV vgq � xpsg � sV vgq
p1h Ð pah � aV vhq � xpsh � sV vhq � µ; p1u Ð pau � aV vuq � xpsu � sV vuq � ot̂
For k � 0 to n� 1 do

e
p2q
gk�1 Ð

�
p1g1�k � p1V vg1�k �

logn°
i�1

plig1�k � liV vg1�k qx
2
i � prig1�k � riV vg1�k qx

�2
i

	
� a �

�
logn±
i�1

x
p�1q1�bitpk,i,lognq

i




e
p2q
hk�1

Ð
�
p1h1�k

� p1V vh1�k �
logn°
i�1

plih1�k � liV vh1�k qx
2
i �prih1�k � riV vh1�k qx

�2
i

	
� byp�pkqq �

�
logn±
i�1

x
p�1qbitpk,i,lognq

i



e
p2q
g Ð pe

p2q
g1 , . . . , e

p2q
gn q; e

p2q
h Ð pe

p2q
h1
, . . . , e

p2q
hn
q

e
p2q
u Ð

�
p1u � p1V vu �

logn°
i�1

pliu � liV vuqx
2
i � priu � riV vuqx

�2
i



� o � ab

e
p2q
g Ð

�
logn°
i�1

plig � liV vgqx
2
i � prig � riV vgqx

�2
i



� p1g � p1V vg

e
p2q
h Ð

�
logn°
i�1

plih � liV vhqx
2
i � prih � riV vhqx

�2
i



� p1h � p1V vh

Return pep2qg , e
p2q
h , e

p2q
u , e

p2q
g , e

p2q
h q

Fig. 10. The function h for RngPf.

RELATING h, e. In order to complete the proof of Theorem 4, in the following lemma we show that
– for an accepting transcript τ such that τ R T RngPf

BadCh if hprτ sq returns a trivial discrete logarithm
relation, then eprτ sq returns a valid witness.

Lemma 6. Let τ , as defined in (7), be an accepting transcript of RngPf such that τ R T RngPf
BadCh . If hprτ sq

returns p0n,0n, 0, 0, 0q then eprτ sq returns pv�, γ�q such that

gv
�
hγ

� � V and v� P r0, 2n � 1s .

Proving this lemma would conclude the proof of Theorem 4.
[\

Proof (Lemma 6). The proof of this lemma will proceed by deriving several equalities given that
hpτq returns a trivial discrete logarithm and that τ R T RngPf

BadCh .
In order to prove gv

�
hγ

� � V and v� P r0, 2n � 1s, it suffices to show that eg � eh � 0n,
eu � 0 and eg{eV P r0, 2n � 1s as argued before. Recall that, ep1qg � eg � eV vg, ep1qh � eh � eV vh,
e
p1q
g � eg � eV vg, ep1qh � eh � eV vh and ep1qu � eu � eV vu.

Let us denote using τ |c the partial transcript that is the prefix of τ just before the challenge c.
For example

τ |py,zq �
�pn,g,h, u, g, hq, V, pA,Sq� .
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Since τ R T RngPf
BadCh we have that x R BadChpτ |xq. So, z2 � t1V x � t2V x

2 � 0, i.e., eV � 0. Since
hprτ sq returns p0n,0n, 0, 0, 0q, we have that pep1qg , e

p1q
h , e

p1q
g , e

p1q
h , e

p1q
u q � pep2qg , e

p2q
h , e

p2q
g , e

p2q
h , e

p2q
u q �

p0n,0n, 0, 0, 0q.
Writing out the expression for ep1qg we get

vgpz2 � t1V x� t2V x
2q � t1gx� t2gx

2 � 0n .

Since τ R T RngPf
BadCh , we have that x R BadChpτ |xq. Therefore, SZpf1pXq, xq is false where f1 is as de-

fined in CheckBadpτ 1, xq. Since we have here that f1pxq � 0, the polynomial f1pXq is the zero vector
polynomial. In particular, its constant term vgz

2 � 0n. Again since τ R T RngPf
BadCh , we have that py, zq R

BadChpτ |py,zqq. Therefore, SZpf1pZq, zq is falsewhere f1 is as defined in CheckBadpτ 1, py, zqq. Since
we have here that f1pzq � 0, the polynomial f1pZq is the zero vector polynomial. In particular its
constant term vg � 0n. Using ep1qg � eg � eV vg, we can conclude that eg � 0n.

Similarly using ep1qh � 0n we can show that vh � 0n and eh � 0n. Using ep1qu � 0 we can show
that that vu � 0 and eu � vueV � 0.

Writing out the expression for ep1qg we have vgpz2� t1V x� t2V x2q�δpy, zq� t1gx� t2gx2� t̂ � 0.
Hence,

t̂ � vgpz2 � t1V x� t2V x
2q � δpy, zq � t1gx� t2gx

2 . (10)

Further, using ep1qg � eg � eV vg, we get that vg � eg{eV .
So we have shown that eg � 0n, eh � 0n, eg{eV � vg and eu � 0. Now, we need to show

eg{eV P r0, 2n � 1s.
Since vg � 0n, vh � 0n, vu � 0 the p1g, p1h, p

1
u as defined in h can be simplified to p1g � ag�xsg�

z1n, p1h � ah � xsh � y�n � pzyn � z22nq, p1u � au � xsu � ot̂.
Using ep2qg � 0n and vg � 0n we get for all k P t0, . . . , n� 1u

� log ņ

i�1

plig1�kx2i � rig1�kx
�2
i q � p1g1�k

	
� a �

�
logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
� 0 . (11)

Using ep2qh � 0n and vh � 0n we get for all k P t0, . . . , n� 1u
� log ņ

i�1

plih1�kx2i � rih1�kx
�2
i q � p1h1�k

	
� byp�pkqq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
� 0 . (12)

Using ep2qu � 0 and vu � 0 we get that�
log ņ

i�1

pliux2i � riux
�2
i q

�
� p1u � o � ab � 0 . (13)

We shall next use the following lemma which essentially says that if all of ep2qg , e
p2q
h , e

p2q
u , e

p2q
g , e

p2q
h

are zero and τ R T RngPf
BadCh , then o � xp1g, p1h � yny � p1u.

Lemma 7. Let τ , as shown in (7), be an accepting transcript of RngPf such that τ R T RngPf
BadCh . Let

p1g � ag � xsg � z1n , p1h � ah � xsh � y�n � pzyn � z22nq , p1u � au � xsu � ot̂ .
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Procedure Badpparams, x,mq:

//params �
!
tlig, lih, liu, rig, rih, riuu

logn
i�1 , p

1
g, p

1
h, p

1
u

)
For j � 0, . . . , n� 1 do

fg
m,jpXq Ð lmg1�j �X2 � rmg1�jX

�2 � p1g1�j �
m�1°
i�1

plig1�jx
2
i � rig1�jx

�2
i q

fh
m,jpXq Ð lmh1�jX

2 � rmh1�jX
�2 � p1h1�j

�
m�1°
i�1

plih1�jx
2
i � rih1�jx

�2
i q

fumpXq Ð lmuX
2 � rmuX

�2 � p1u �
m�1°
i�1

pliux
2
i � riux

�2
i q

For t � 1, . . . ,m� 1 do
For j � 0, . . . , n{2t � 1 do

flag Ð flag _ SZpfg
m,jpXq � x

2
t � fg

m,j�n{2t
pXq, xq _ SZpfh

m,jpXq � fh
m,j�n{2tpXq � x

2
t , xq

For j � 0, . . . , n{2m � 1 do
flag Ð flag _ SZpfg

m,jpXq �X
2 � fg

m,j�n{2mpXq, xq _ SZpfh
m,jpXq � fh

m,j�n{2mpXq �X
2, xq

flag Ð flag _ SZ

�
fumpXq � o �

n{2m�1°
j�0

fg
m,jpXq � f

h
m,jpXq � y

j , x

�

Return flag

Fig. 11. The function Bad for Lemma 8.

Suppose, the for all k P t0, . . . , n� 1u

� log ņ

i�1

plig1�kx2i � rig1�kx
�2
i q � p1g1�k

	
� a �

�
logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
� 0 ,

� log ņ

i�1

plih1�kx2i � rih1�kx
�2
i q � p1h1�k

	
� byp�pkqq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
� 0 .

Also,

�
logn°
i�1

pliux2i � riux
�2
i q

�
� p1u � o � ab � 0. Then o � xp1g, p1h � yny � p1u.

The proof of this lemma is a generalization of the proof that we gave for the inner product argu-
ment for n � 2 in the technical overview.

Proof (Lemma 7). We define a function Bad in Figure 11 that takes as input x P Z�
p and an index

m P t1, . . . , log nu. It returns true if and only if x P BadChpτ |xmq. We shall then use Lemma 8,
which is a purely algebraic lemma.

Lemma 8. Let n P N� be a power of 2. Let tlig P Znp , lih P Znp , liu P Zp, rig P Znp , rih P Znp , riu P Zpulogni�1 .

Let a, b, p1g, p1h, p
1
u P Zp. Let params �

!
tlig, lih, liu, rig, rih, riuulogni�1 , p

1
g, p

1
h, p

1
u

)
. Let x1, . . . , xlogn P Z�

p

such that Badpparams, xi, iq � false for i � 1, . . . , log n where Bad is defined in Figure 11. Suppose,
the following equalities hold.

1. For all k P t0, . . . , n� 1u
� log ņ

i�1

plig1�kx2i � rig1�kx
�2
i q � p1g1�k

	
� a �

�
logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
� 0 .
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2. For all k P t0, . . . , n� 1u
� log ņ

i�1

plih1�kx2i � rih1�kx
�2
i q � p1h1�k

	
� byp�pkqq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
� 0 .

3. �
log ņ

i�1

pliux2i � riux
�2
i q

�
� p1u � o � ab � 0 .

Then
o � xp1g, p1h � yny � p1u .

Let params �
!
tlig, lih, liu, rig, rih, riuulogni�1 , p

1
g, p

1
h, p

1
u

)
. Note that Badpparams, x, jq returns true if

and only if x P BadChpτ |xj q. Therefore, we have that x1, . . . , xlogn in τ satisfy the condition for xi’s
in Lemma 8. Moreover all the equalities required in Lemma 8 hold and p1g, p1h, p

1
u P Zp. So we using

Lemma 8 we have that
o � xp1g, p1h � yny � p1u .

The proof of Lemma 8 is deferred to Section 5.4.
[\

Since τ is an accepting transcript of RngPf and τ R T RngPf
BadCh and (11) to (13) hold, using Lemma 7,

we get oxp1g, p1h � yny � p1u. Plugging in the values of p1g, p1h, p
1
u (using the fact vg � vh � 0n, vu � 0

and simplifying) we get

o � xag � xsg � z1n, pah � xsh � z1nq � yn � z22ny � au � xsu � ot̂ .

Since τ R T RngPf
BadCh , we have that o R BadChpτ |oq. Therefore, SZpfpOq, oq is false where f is as

defined in CheckBadpτ 1, oq. Since we have here that fpoq � 0, the polynomial fpOq must be the
zero polynomial. In particular its O term must be zero, i.e.,

xag � xsg � z1n, pah � xsh � z1nq � yn � z22ny � t̂ .

Plugging in the value of t̂ obtained in (10), we have that

pvgpz2 � t1V x� t2V x
2q � δpy, zq � t1gx� t2gx

2q � xag � xsg � z1n, pah � xsh � z1nq � yn
� z22ny � 0 .

Since τ R T RngPf
BadCh , we have that x R BadChpτ |xq. Therefore, SZpf4pXq, xq is false where f4 is as

defined in CheckBadpτ 1, xq. Since we have here that f4pxq � 0, the polynomial f4pXq must be the
zero polynomial. In particular its constant term must be zero, i.e.,

vgz
2 � δpy, zq � xag � z1n, pah � z1nq � yn � z22ny � 0 .

Plugging in the value of δpy, zq, rearranging and simplifying we get

z2pvg � xag,2nyq � zxag � ah � 1n,yny � xag � ah,yny � 0 .

Since τ R T RngPf
BadCh , we have that py, zq R BadChpτ |py,zqq. Therefore, SZpf4pY, Zq, py, zqq is false

where f4 is as defined in CheckBadpτ 1, py, zqq. Since we have here that f4py, zq � 0, the polynomial
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f4pY, Zq is the zero polynomial. Therefore, equating all the coefficients of f4pY,Zq to zero, we get
that

vg � xag,2ny � 0 , ag � ah � 1n � 0n , ag � ah � 0n .

Note that ag�ah�1n � 0n and ag �ah � 0n imply that ag P t0, 1un. Further vg�xag,2ny � 0, i.e.,
vg � xag,2ny. So, vg P r0, 2n�1s. Therefore, eV , eg, eg, eh output by eprτ sq satisfy eg{eV P r0, 2n�1s,
eg � eh � 0n and eu � 0. So, V � gv

�
hγ

�
and v� P r0, 2n � 1s.

This concludes the proof of Lemma 6.
[\

TIGHTNESS OF THEOREM 4. We next argue that the factor Opnq{pp� 1qq in Theorem 4 is tight. We
first note that the protocol RngPf can be used for the following relation

R1 �
!
pn P N, g, V P G, v P Zpq : gv � V ^ v P r0, 2n � 1s

)
, (14)

by fixing γ to 0.
We shall construct a cheating prover P (that makes Opqq queries to Oext) for the relation R1

that outputs an instance V � gv such that v R r0, 2n � 1s but can still convince the RngPf verifier
with probability Ωpnq{pp � 1qq if n divides p � 1. In other words, we show that there exist n, p
such that AdvsrsRngPfpP, λq � Ωpnq{pp � 1qq. This would imply that for any λ P N�, D � Accp.q,
Advsr-weeRngPf,RpPalg,D, E , λq � Ωpnq{pp�1qq for any extractor E – meaning that the bound in Theorem 4
is tight up to constant factors.

Theorem 5. Let G � tGλuλPN� be a family of groups of prime order p � ppλq. Let RngPf � RngPfrGs
be the interactive argument for the relation R1 in (14) obtained by setting γ � 0 in the protocol defined in
Figure 7. If n divides p� 1, we can construct a non-uniform prover P making at most q� log n� 1 queries
to its oracle, such that for all λ P N�

AdvsrsRngPfpP, λq �
pn� 1qq
p� 1

.

Proof. In SRSRngPf , on receiving n,g,h, g, h, u as input, the first stage of P fixes v � 2n�1 � 2 and
outputs stP � v and V � gv. The second stage of the cheating prover P interacts with the game
SRSRngPf as follows.

1. It initializes attemptsÐ 0.
2. If attempts ¡� q, it just aborts. Otherwise it increments attempts by 1.
3. It sets aL � 2 � 1n,aR � 1n. It samples sL, sR uniformly at random from Znp and α, ρ uniformly

at random from Zp. It computes A � hα, S � hρgsLhsR and queries Oext with pε, pA,Sqq and
receives y, z. In other words, it restores the state of the verifier to the initial state and sends
A,S as the first message and receives y, z.

4. It checks if
°n�1
i�0 y

i � 0. If the check succeeds, it moves to step 5. Otherwise it moves to step 2.
5. It now behaves like the honest prover RngPf.P till the end of the protocol. In particular, it does

not attempt any more state-restorations.

First, we claim that if P reaches step 5, the game SRSRngPf outputs true. Since P behaves like the
honest prover after it has sent A,S and received y, z it is easy to see that the InPrd.V shall return
1. We need to argue that the check R � gt̂hτ succeeds. Since P behaves like an honest prover after
receiving y, z, we have that

t̂ � tpxq � xlpxq, rpxqy � t0 � t1x� t2x
2 .
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This would give us
t0 � xaL � z � 1n,yn � paR � z � 1nq � z2 � 2ny

Further, τx � τ1x � τ2x
2, R � V z2gδpy,zqT x1 T

x2
2 � gz

2v�t1x�t2x2�δpy,zqhτ1x�τ2x
2
. Now since t̂ �

t0 � t1x� t2x
2 we have

pz2v � t1x� t2x
2 � δpy, zqq � t̂ � z2v � δpy, zq � t0 � z2pv � xaL,2nyq � zxaL � aR � 1n,yny

� xaL � aR,yny .
Since P had set v � 2n�1 � 2,aL � 2 � 1n,aR � 1n we have

pz2v � t1x� t2x
2 � δpy, zqq � t̂ � �2

n�1̧

i�0

yi � 0 .

Therefore
R � gz

2v�t1x�t2x2�δpy,zqhτ1x�τ2x
2 � gt̂hτx .

Hence, if P reaches step 5, the game SRSRngPf outputs true. We need to compute the probability
that

°n�1
i�0 y

i � 0 for a random y in Z�
p . First, we observe that

py � 1q
n�1̧

i�0

yi � 0 � yn � 1 .

Now, if n divides p� 1, we claim that there are n distinct y’s in Z�
p that satisfy yn� 1 � 0. Consider

a generator g of Z�
p (since p is a prime, the group Z�

p is cyclic). Now gj is a root of the equation
yn � 1 � 0 if gjn � 1 � 0, i.e., if p� 1 divides jn. Since n divides p� 1, this condition is equivalent
to pp � 1q{n divides j. So, gj is a root of the equation yn � 1 � 0 for j � t0, pp � 1q{n, 2pp �
1q{n, . . . , pn � 1qpp � 1q{nu. In other words yn � 1 � 0 has n distinct roots in Z�

p . So, the equation°n�1
i�0 y

i � 0 has n � 1 distinct roots because the factorization of a polynomial in a finite field is
unique. Since y is picked uniformly at random, the probability that

°n�1
i�0 y

i � 0 is pn� 1q{pp� 1q.
Since P tries at most q different pA,Sq, the probability that it reaches step 5, is pn � 1qq{pp � 1q –
therefore AdvsrsRngPfpP, λq � pn� 1qq{pp� 1q.

[\

5.3 Online srs-wee Security for ACSPf

In this section, we introduce ACSPf and apply our framework to prove online srs-wee security. As
shown in [BCC�16], any arithmetic circuit with n multiplication gates can be represented using a
constraint system that has three vectors aL,aR,aO P Znp representing the left inputs, right inputs,
and outputs of multiplication gates respectively, so that aL � aR � aO, with additional Q ¤ 2n
linear constraints. The linear constraints can be represented as aL �WL � aR �WR � aO �WO � c,
where WL,WR,WO P ZQ�np .

We shall assume that ACSPf � ACSPfrGs is instantiated on an understood family of groups
G � tGλuλPN� of order p � ppλq. The argument ACSPf is an argument of knowledge for the
relation

R �
! �pn,Q P Nq, pWL,WR,WO P ZQ�np , c P ZQp q, paL,aR,aO P Znp q

�
:

aL � aR � aO ^WL � aL �WR � aR �WO � aO � c
)
.

(15)
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ACSPf.Ppppn,Q,g,h, g, h, uq, ACSPf.Vppn,Q,g,h, g, h, uq,

pWL,WR,WO, cqq, paL,aR,aOqq pWL,WR,WO, cqq

αÐ$ Zp;AÐ hαgaLhaR

sLÐ$ Znp ; sRÐ$ Znp
α, β, ρÐ$ Zp;S Ð hρgsLhsR

AI Ð hαgaLhaR ;AO Ð hβgaO
AI ,AO,SÝÝÝÝÝÝÝÝÝÝÝÝÑ

y,z
ÐÝÝÝÝÝÝÝÝÝÝÝÝ y, zÐ$ Z�

p

lpXq Ð aLX � aOX
2 � y�n � pzQ�1

r1:s �WRq �X δpy, zq Ð xy�n � pzQ�1
r1:s �WRq, z

Q�1
r1:s �WLy

�sLX
3

rpXq Ð yn � aR �X � yn � zQ�1
r1:s � pWL �X �WOq

�yn � sR �X
3

tpXq Ð xlpXq, rpXqy �
6°
i�1

tiX
i

τiÐ$ Zp for i P t1, 3, 4, 5, 6u

Ti Ð gtihτi for i P t1, 3, 4, 5, 6u T1,T3,T4,T5,T6ÝÝÝÝÝÝÝÝÝÝÝÝÑ
x

ÐÝÝÝÝÝÝÝÝÝÝÝÝ xÐ$ Z�
p

l Ð lpxq; r Ð rpxq; t̂Ð xl, ry

τx Ð τ1 � x�
6°
i�3

τi � x
i

µÐ α � x� β � x2 � ρ � x3
τx,µ,t̂ÝÝÝÝÝÝÝÝÝÝÝÝÑ
o

ÐÝÝÝÝÝÝÝÝÝÝÝÝ oÐ$ Z�
p

h1 Ð hy�n ;u1 Ð uo h1 Ð hy�n ;u1 Ð uo

WL Ð h1z
Q�1
r1:s

�WL WL Ð h1z
Q�1
r1:s

�WL

WR Ð g
y�n�pz

Q�1
r1:s

�WRq WR Ð g
y�n�pz

Q�1
r1:s

�WRq

WO Ð h1z
Q�1
r1:s

�WO WO Ð h1z
Q�1
r1:s

�WO

P Ð AxI �A
x2

O � h1�yn
�W x

L �W
x
R �WO � S

x3 P Ð AxI �A
x2

O � h1�yn
�W x

L �W
x
R �WO � S

x3

P 1 Ð h�µP pu1qt̂ P 1 Ð h�µP pu1qt̂

InPrd.Pppg,h1, u1, P 1q, pl, rqq ðùùùùùùùùùùñ InPrd.Vpg,h1, u1, P 1q Ñ b

RÐ g
x2pδpy,zq�xz

Q�1
r1:s

,cyq
� T x1 �

6±
i�3

T x
i

i

If b � 1^ gt̂hτx � R then
Return 1

Return 0

Fig. 12. Bulletproofs argument for arithmetic circuit satisfiability ACSPf.

We note that in [BBB�18], an argument for a more generalized relation was given of which this is
a special case. The generalized relation contained additional commitments. We are able to prove
srs-wee only for the above relation. Having many different commitments with generators g, h does
not allow us to build an online extractor. Our proof would work if the different commitments were
made with different generators. Here, for simplicity we only consider the above relation R that is
enough for proving arithmetic circuit satisfiability.

DESCRIPTION OF ACSPf . The ACSPf.Setup procedure on input 1λ returns positive integers n,Q
and independent generators g P Gn,h P Gn, g, h, u P G of the group G. The instance for ACSPf
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is WL,WR,WO P ZQ�np , c P ZQp such that an honest prover knows a witness paL,aR,aOq that
satisfies aL � aR � aO and WL � aL �WR � aR �WO � aO � c.

The prover and verifier for ACSPf is shown in Figure 12. The prover commits to aL,aR,aO and
proves to the verifier that these vectors satisfy the relation in (15). The prover and the verifier of
ACSPf engage in InPrd in the final step to avoid the prover sending over vectors of length n.

We prove the following theorem that gives an upper bound on the online srs-wee security of
ACSPf.

Theorem 6. Let G � tGλuλPN� be a family of groups of order p � ppλq. Let ACSPf � ACSPfrGs be the
interactive argument as defined in Figure 12, for the relationR in (15). We can construct an extractor E such
that for any non-uniform algebraic prover Palg making at most q � qpλq queries to its oracle, there exists
a non-uniform adversary F with the property that for any (computationally unbounded) distinguisher D,
for all λ P N�

Advsr-weeACSPf,RpPalg,D, E , λq ¤ p14n� 8qq
p� 1

� AdvdlGpF , λq �
1

p
.

Moreover, the time complexity of the extractor E is Opq � nq and that of adversary F is Opq � nq.
We can show that the bound in Theorem 6 is tight by constructing a cheating prover like we did
in Theorem 5. Using Theorem 2, we get the following corollary.

Corollary 2. Let G � tGλuλPN� be a family of groups of order p � ppλq. Let ACSPf � ACSPfrGs be
the interactive argument as defined in Figure 12, for the relation R in (15). Let FSROrACSPfs be the non-
interactive argument obtained by applying the Fiat-Shamir transform to ACSPf using a random oracle. We
can construct an extractor E such that for any non-uniform algebraic prover Palg making at most q � qpλq
queries to the random oracle there exists a non-uniform adversary F with the property that for all λ P N�

Advfs-ext
FSROrACSPfs,R

pPalg, E , λq ¤ p14n� 9qq � 1

p� 1
� AdvdlGpF , λq �

1

p
.

Moreover, the time complexity of the extractor E is Opq � nq and that of adversary F is Opq � nq.
We next prove Theorem 6 – the proof is similar to the proof of Theorem 4.

Proof (Theorem 6). In order to prove this theorem, we invoke Theorem 3 by defining BadCh and e
and showing that ε ¤ 14n�8

p�1 and there exists an adversary F such that pfailpACSPf,Palg, e, R, λq ¤
AdvdlGpFq � 1

p .

DEFINING BadCh AND UPPER BOUNDING ε. To start off, we shall define BadChpτ 1q for all partial
extended transcripts τ 1. Let Ch be the set from which the challenge that comes right after τ 1 is
sampled. We define a helper function CheckBad that takes as input a partial extended transcripts
rτ 1s and a challenge c P Ch and returns true if and only if c P BadChpτ 1q. For each verifier challenge
in ACSPf, there is a definition of CheckBad in Figure 8. Every CheckBad function defines several
bad conditions that depend on τ 1 – most of these bad conditions are checked using the predicate
SZ (as defined before). One can safely ignore the details of the definitions of CheckBad functions
for now – the rationale behind their definitions shall become apparent later on.

Next, we need to compute an upper bound ε on the size of |BadChpτ 1q|{|Ch|. To this end, we
compute an upper bound on the maximum fraction of c’s in Ch for which CheckBadpτ 1, cq will
return true, for all the definitions of CheckBad, using the Schwartz-Zippel Lemma.
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Procedure CheckBadp
�
τ 1
�
, py, zqq:

//
�
τ 1
�
�
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAI s , rAOs , rSsq

�
fpY,Zq Ð xZQ�1

r1:s , c�WL � aIg �WR � aIh �WO � aOgy � xaIg � aIh � aOg,Y
ny

Return SZpfpY,Zq, py, zqq

Procedure CheckBadp
�
τ 1
�
, xq:

//
�
τ 1
�
�
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAI s , rAOs , rSsq, py, zq, prT1s , rT3s , rT4s , rT5s , rT6sq

�
f1pXq Ð t1gX �

6°
i�3

tigX
i; f2pXq Ð t1hX �

6°
i�3

tihX
i; f3pXq Ð t1uX �

6°
i�3

tiuX
i

lpXq Ð aIg �X�aOg �X
2�y�n �pzQ�1

r1:s �WRq �X�sh �X
3; rpXq Ð yn �aIh �X�yn�zQ�1

r1:s � pWL �X�WOq�yn �sh

δpy, zq Ð xy�n � pzQ�1
r1:s �WRq, z

Q�1
r1:s �WLy; f4pXq Ð X2pδpy, zq � xzQ�1

r1:s , cyq � t1gX �
3°
i�1

tigX
i � xlpXq, rpXqy

Return SZpf1pXq, xq _ SZpf2pXq, xq _ SZpf3pXq, xq _ SZpf4pXq, xq

Procedure CheckBadp
�
τ 1
�
, oq:

//
�
τ 1
�
�
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAI s , rAOs , rSsq, py, zq, prT1s , rT3s , rT4s , rT5s , rT6sq, x, pτx, µ, t̂q

�
l Ð aIg � x� aOg � x

2 � y�n � pzQ�1
r1:s �WRq � x� sh � x

3

r Ð yn � aIh � x� yn � zQ�1
r1:s � pWL � x�WOq � yn � sh; fpOq Ð Ot̂�Oxl, ry

Return SZpfpOq, oq

Procedure CheckBadp
�
τ 1
�
, xmq:

//
�
τ 1
�
�
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAI s , rAOs , rSsq, py, zq, prT1s , rT3s , rT4s , rT5s , rT6sq, x, pτx, µ, t̂q, o,
prL1s , rR1sq, x1, . . . , prLms , rRmsq

�
p1g Ð aIg � x� aOg � x

2 � y�n � pzQ�1
r1:s �WRq � x� sg � x

3; p1u Ð aIu � x� aIu � x
2 � su � x

3 � ot̂

p1h Ð aIh � x� aOh � x
2 � 1n � y�n � pzQ�1

r1:s �WLq � x� y�n � pzQ�1
r1:s �WOq � sg � x

3

For j � 0, . . . , n� 1 do

fg
m,jpXq Ð lmg1�j �X2 � rmg1�jX

�2 � p1g1�j �
m�1°
i�1

plig1�jx
2
i � rig1�jx

�2
i q

fh
m,jpXq Ð lmh1�jX

2 � rmh1�jX
�2 � p1h1�j

�
m�1°
i�1

plih1�jx
2
i � rih1�jx

�2
i q

fumpXq Ð lmuX
2 � rmuX

�2 � p1u �
m�1°
i�1

pliux
2
i � riux

�2
i q

flag Ð false
For t � 1, . . . ,m� 1 do

For j � 0, . . . , n{2t � 1 do
flag Ð flag _ SZpfg

m,jpXq � x
2
t � fg

m,j�n{2t
pXq, xmq _ SZpfh

m,jpXq � fh
m,j�n{2tpXq � x

2
t , xmq

For j � 0, . . . , n{2m � 1 do
flag Ð flag _ SZpfg

m,jpXq �X
2 � fg

m,j�n{2mpXq, xmq _ SZpfh
m,jpXq � fh

m,j�n{2mpXq �X
2, xmq

flag Ð flag _ SZ

�
fumpXq � o �

n{2m�1°
j�0

fg
m,jpXq � f

h
m,jpXq � y

j , xm

�

Return flag

Fig. 13. The function CheckBad function for the ACSPf.
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Procedure eprτ sq:

//rτ s �
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAs , rSsq, py, zq, prT1s , rT3s , rT4s , rT5s , rT6sq, x, pτx, µ, t̂q, o,
prL1s , rR1sq, x1, . . . , prLlogns , rRlognsq, xlogn, pa, bq

�
Return paIg, aIh, aOg q

Fig. 14. The function e for ACSPf.

The function CheckBadpτ 1, py, zqq returns true if SZpfpY,Zq, py, zqq is true. The polynomial
fpY, Zq is a polynomial of degree at most n� 1. So, the fraction of y, z for which SZpfpY,Zq, py, zqq
is true is at most pn� 1q{pp� 1q. So the the fraction of y, z in Z�

p for which CheckBadpτ 1, py, zqq
returns true is at most pn� 1q{pp� 1q.

The function CheckBadpτ 1, xq returns true if at least one of SZpfipXq, xq is true for i P r4s.
Since f1pXq and f2pXq are vector of n polynomials, each polynomial of degree 6, using the union
bound the fraction of x’s in Z�

p for which SZpf1pXq, xq or SZpf2pXq, xq is true is at most 12n{pp� 1q.
The polynomial f3pXq is a polynomial of degree at most 6. The fraction of x’s in Z�

p for which
SZpf3pXq, xq is true is at most 6{pp� 1q. The polynomial f4pXq is a polynomial of degree at most
4. The fraction of x’s for which SZpf4pXq, xq is true is at most 4{pp� 1q. Using the union bound,
the fraction of x’s in Z�

p for which CheckBadpτ 1, xq returns true is at most p12n� 10q{ppp� 1qq.
The function CheckBadpτ 1, oq returns true if SZpfpOq, oq is true. The polynomial fpOq is a

polynomial of degree 1, hence using the Schwartz-Zippel Lemma the fraction of o’s in Z�
p for

which CheckBadpτ 1, oq returns true is at most 1{pp� 1q.
The function CheckBadpτ 1, xmq for m P t1, . . . , log nu returns true if and only if SZ is true for

any of the
°m�1
t�1 2n{2t polynomials of degree at most 4, 2n{2m polynomials of degree at most 6

and one polynomial of degree at most 8. Using Schwartz Zippel Lemma and the union bound the
fraction of xm’s in Z�

p for which CheckBadpτ 1, xmq is true is at most

8

p� 1

�
m�1̧

t�1

n

2t

�
� 12n

2mpp� 1q �
8

p� 1
.

This fraction is at most p14n� 8q{pp� 1q for m P t1, . . . , log nu. Therefore the fraction of c’s in
Ch for which CheckBadpτ 1, cq will return true for any partial transcript τ 1 is upper bounded by
p14n� 8q{pp� 1q, i.e., in the context of Theorem 3, ε ¤ 14n�8

p�1 .

DEFINING e AND PROVING AN UPPER BOUND ON pfailpACSPf,Palg, e, R, λq. The function e simply
outputs paIg, aIh, aOgq and outputs them. It follows from the description of e that it runs in time
Opnq. Note that ACSPf.V runs in time Opnq. Therefore, using Theorem 3, the time complexity of E
is Opq � nq.

In order to complete our proof we need compute an upper bound on pfailpACSPf,Palg, e, R, λq.
To do so we shall construct an adversary H (that runs Palg) against that takes as input independent
generators g,h, g, h, u of the group G and finds a non-trivial discrete logarithm relation between
them, i.e., computes peg, eh, eg, eh, euq � p0n,0n, 0, 0, 0q such that geghehgeghehueu � 1. Then we
shall invoke Lemma 2 to transform H into an F against the discrete logarithm problem.

The adversary H has inputs g,h, g, h, u, it chooses Q ¤ 2n and runs Palg on public parameters
n,Q,g,h, g, h, u and simulates the game SRSACSPf to it. If Palg manages to produce an accepting
transcript τ , H calls a helper function h on input rτ s and outputs whatever h outputs.
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Procedure hprτ sq:

//rτ s �
�
pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; prAs , rSsq, py, zq, prT1s , rT3s , rT4s , rT5s , rT6sq, x, pτx, µ, t̂q, o,
prL1s , rR1sq, x1, . . . , prLlogns , rRlognsq, xlogn, pa, bq

�
δpy, zq Ð xy�n � pzQ�1

r1:s �WRq, z
Q�1
r1:s �WLy; e

p1q
g Ð t1gx�

6°
i�3

tigx
i; ep1qh Ð t1hx�

6°
i�3

tihx
i; ep1qu Ð t1ux�

6°
i�3

tiux
i

e
p1q
g Ð x2pδpy, zq � xzQ�1

r1:s , cyq � t1gx�
6°
i�3

tigx
i � t̂; ep1qh Ð t1hx�

6°
i�3

tihx
i � τx

If pep1qg , e
p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q � p0n,0n, 0, 0, 0q then

Return pep1qg , e
p1q
h , e

p1q
u , e

p1q
g , e

p1q
h q

p1g Ð aIg � x� aOg � x
2 � y�n � pzQ�1

r1:s �WRq � x� sg � x
3

p1h Ð aIh � x� aOh � x
2 � 1n � y�n � pzQ�1

r1:s �WLq � x� y�n � pzQ�1
r1:s �WOq � sg � x

3

p1g Ð aIg �x�aIg �x
2� sg �x

3; p1h Ð aIh �x�aIh �x
2� sh �x

3�µ; p1u Ð aIu �x�aIu �x
2� su �x

3� ot̂; p1V Ð aV �xsV
For k � 0 to n� 1 do

e
p2q
gk�1 Ð

� logn°
i�1

plig1�kx
2
i � rig1�kx

�2
i q � p1g1�k

	
� a �

�
logn±
i�1

x
p�1q1�bitpk,i,lognq

i




e
p2q
hk�1

Ð
� logn°
i�1

plih1�kx
2
i � rih1�kx

�2
i q � p1h1�k

	
� byp�pkqq �

�
logn±
i�1

x
p�1qbitpk,i,rq

i



e
p2q
g Ð pe

p2q
g1 , . . . , e

p2q
gn q; e

p2q
h Ð pe

p2q
h1
, . . . , e

p2q
hn
q

e
p2q
u Ð

�
logn°
i�1

pliux
2
i � riux

�2
i q � p1u



� o � ab; ep2qg Ð

�
logn°
i�1

ligx
2
i � rigx

�2
i



� p1g ; ep2qh Ð

�
logn°
i�1

lihx
2
i � rihx

�2
i



� p1h

Return pep2qg , e
p2q
h , e

p2q
u , e

p2q
g , e

p2q
h q

Fig. 15. The function h for ACSPf.

DEFINING h. The function h is defined in Figure 15. It follows from the description of h that it runs
time at most Opnq. The running time of H consists of the time required to answers q queries, run
ACSPf.V in at most q paths in the execution tree and the time required to run h. Hence its time
complexity is Opq � nq. Using Lemma 2, time complexity of F is Opq � nq.

We shall next discuss the rationale behind the definition of h. Let τ be a transcript of ACSPf as
shown below.

τ ��pn,Q,g,h, u, g, hq, pWL,WR,WO, cq; pAI , AO, Sq, py, zq, pT1, T3, T4, T5, T6q, x, pτx, µ, t̂q, o,
pL1, R1q, x1, pL2, R2q, x2, . . . , pLlogn, Rlognq, xlogn, pa, bq

�
.

(16)

The following equality must hold if τ is an accepting transcript.

gt̂hτx � g
x2pδpy,zq�xzQ�1

r1:s
,cyq
T x1 �

6¹
i�3

T x
i

i .

Writing out T1, T3, T4, T5, T6 in terms of their representations and rearranging we shall get that

ge
p1q
g he

p1q
h ge

p1q
g he

p1q
h ue

p1q
u � 1 ,

where ep1qg , e
p1q
h , e

p1q
g , e

p1q
h , e

p1q
u are as defined in h. Again since τ is an accepting transcript the inner

product verifier must have returned 1 and hence the following equality must hold.

P plognq � pgplognqqaphplognqqbuab .
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Now we can write the left hand side of the above equality as

�
logn¹
i�1

L
x2i
i

�
h�µAxI �Ax

2

O � h�1n � phy�nqz
Q�1
r1:s

�WL
x

� gy�n�pzQ�1
r1:s

�WRq
x

� phy�nqz
Q�1
r1:s

�WO � Sx3 � puoqt̂ �
�

logn¹
i�1

R
x�2
i
i

�
.

Let the function bitpk, i, tq return the bit ki where pk1, . . . , ktq is the t-bit representation of k. Then
we can write

gplognq �
n�1¹
k�0

g

logn±

i�1
x
p�1q1�bitpk,i,lognq

i

1�k ,

and

hplognq �
n�1¹
k�0

h
yp�1�kq

logn±

i�1
x
p�1qbitpk,i,lognq

i

1�k .

Plugging these into the inequality and rearranging we shall get that

ge
p2q
g he

p2q
h ge

p2q
g he

p2q
h ue

p2q
u � 1 ,

where ep2qg , e
p2q
h , e

p2q
g , e

p2q
h , e

p2q
u are as defined in h.

Therefore, h always returns a valid discrete logarithm relation when it gets an accepting tran-
script as input.
RELATING h, e. In order to complete the proof of Theorem 6, in the following lemma we show that
– if on an accepting transcript τ such that τ R T ACSPf

BadCh if hprτ sq returns a trivial discrete logarithm
relation, then eprτ sq returns a valid witness.

Lemma 9. Let τ , as shown in (16), be an accepting transcript of ACSPf such that τ R T ACSPf
BadCh . If hprτ sq

returns p0n,0n, 0, 0, 0q then eprτ sq returns pa�L,a�R,a�Oq such that

a�L � a�R � a�O and WL � a�L �WR � a�R �WO � a�O � c .

Taking the contrapositive, we have that whenever eprτ sq fails to extract a valid witness for an
accepting transcript τ R T ACSPf

BadCh , hprτ sq outputs a non-trivial discrete logarithm relation, i.e., H
succeeds. So we have that

pfailpACSPf,Palg, e, R, λq ¤ Advdl-relG,2n�3pHq

Using Lemma 2 we would have that there exists an adversary F such that

pfailpACSPf,Palg, e, R, λq ¤ AdvdlGpFq �
1

p
.

Moreover, F is nearly as efficient as H.
[\

We next prove Lemma 9.
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Proof (Lemma 9). For simplicity let us represent using τ |c the prefix of τ just before the challenge
c. For example

τ |py,zq �
�pn,Q,g,h, u, g, hq, pWL,WR,WO, cq, pAI , AO, Sq

�
.

Since hprτ sq returns p0n,0n, 0, 0, 0q, we have that

e
p1q
g � 0n, e

p1q
h � 0n, ep1qu � 0, ep1qg � 0, e

p1q
h � 0, e

p2q
g � 0n, e

p2q
h � 0n, ep2qu � 0, ep2qg � 0, e

p2q
h � 0 .

Since ep1qg � 0 we have that x2pδpy, zq � xzQ�1
r1:s , cyq � t1gx�

6°
i�3

tigx
i � t̂ � 0. Hence

t̂ � x2pδpy, zq � xzQ�1
r1:s , cyq � t1gx�

6̧

i�3

tigx
i . (17)

We define p1g, p1h, p
1
u as defined in h, i.e.,

p1g � aIg � x� aOg � x2 � y�n � pzQ�1
r1:s �WRq � x� sg � x3 ,

p1h � aIh � x� aOh � x2 � 1n � y�n � pzQ�1
r1:s �WLq � x� y�n � pzQ�1

r1:s �WOq � sg � x3 ,
p1u � aIu � x� aIu � x2 � su � x3 � ot̂ .

Since ep2qg � 0n, we have that for all k P t0, . . . , n� 1u
� log ņ

i�1

plig1�kx2i � rig1�kx
�2
i q � p1g1�k

	
� a �

�
logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
� 0 . (18)

We also have ep2qh � 0n, i.e., for all k P t0, . . . , n� 1u
� log ņ

i�1

plih1�kx2i � rih1�kx
�2
i q � p1h1�k

	
� byp�pkqq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
� 0 . (19)

From e
p2q
u � 0 we have that �

log ņ

i�1

pliux2i � riux
�2
i q

�
� p1u � o � ab � 0 . (20)

We shall next use the following lemma which essentially says that if none of ep2qg , e
p2q
h , e

p2q
u , e

p2q
g , e

p2q
h

are non-zero and τ R T ACSPf
BadCh , then o � xp1g, p1h � yny � p1u. It is very similar to Lemma 7 that we

encountered in the analysis of RngPf. This similarity is due to both ACSPf and RngPf use the
inner-product argument.

The equalities in the statement of this lemma hold if the inner-product argument verifier ac-
cepts and the discrete logarithm problem is hard in group G. The lemma shows that if none of the
challenges in the inner-product argument were bad, then the inner-product of the vectors p1g and
p1h � yn is p1u{o. This is a generalization of the proof that we saw in the technical overview where
we analysed the inner-product argument for n � 2.
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Lemma 10. Let τ , as shown in (16), be an accepting transcript of ACSPf such that τ R T ACSPf
BadCh . Let

p1g �aIg � x� aOg � x2 � y�n � pzQ�1
r1:s �WRq � x� sg � x3 ,

p1h �aIh � x� aOh � x2 � 1n � y�n � pzQ�1
r1:s �WLq � x� y�n � pzQ�1

r1:s �WOq � sg � x3 ,
p1u �aIu � x� aIu � x2 � su � x3 � ot̂ .

Suppose, the for all k P t0, . . . , n� 1u

� log ņ

i�1

plig1�kx2i � rig1�kx
�2
i q � p1g1�k

	
� a �

�
logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
� 0 ,

� log ņ

i�1

plih1�kx2i � rih1�kx
�2
i q � p1h1�k

	
� byp�pkqq �

�
logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
� 0 .

Additionally, �
log ņ

i�1

pliux2i � riux
�2
i q

�
� p1u � o � ab � 0 . (21)

Then
o � xp1g, p1h � yny � p1u .

Proof (Lemma 10). We shall invoke Lemma 8 to prove this lemma. Let

params �
!
tlig, lih, liu, rig, rih, riuulogni�1 , p

1
g, p

1
h, p

1
u

)
.

Consider the function Bad defined in Figure 11. Note that since Badpparams, x, jq returns true if
and only if x P BadChpτ |xj q, x1, . . . , xlogn in τ satisfy the condition for xi’s in Lemma 8. Moreover
all the equalities required in Lemma 8 hold and p1g, p1h, p

1
u P Zp. So we using Lemma 8 we have that

o � xp1g, p1h � yny � p1u .

[\
Since τ is an accepting transcript of ACSPf and τ R T ACSPf

BadCh and (18) to (20) hold, using
Lemma 10, we get

oxp1g, p1h � yny � p1u .

Plugging in the values of p1g, p1h, p
1
u we get

o �
〈�
aIgx� aOgx

2 � y�n � pzQ�1
r1:s �WRqx� sgx

3
�
,yn � �aIhx� aOhx

2 � 1n

� y�n � pzQ�1
r1:s �WLq � x� y�n � pzQ�1

r1:s �WOq � sgx
3
�〉 � aIux� aIux

2 � sux
3 � ot̂ .

Since τ R T ACSPf
BadCh , we have that o R BadChpτ |oq. Therefore, SZpfpOq, oq is false where f is as

defined in CheckBadpτ 1, oq. Since we have here that fpoq � 0, the polynomial fpOq must be the
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zero polynomial. In particular its O term must be zero, i.e.,

t̂ �
〈�
aIgx� aOgx

2 � y�n � pzQ�1
r1:s �WRqx� sgx

3
�
,

yn � �aIhx� aOhx
2 � 1n � y�n � pzQ�1

r1:s �WLqx� y�n � pzQ�1
r1:s �WOq � sgx

3
�〉

.

Plugging in the value of t̂ obtained in (17), we have that

x2pδpy, zq � xzQ�1
r1:s , cyq � t1gx�

6̧

i�3

tigx
i �

〈
aIgx� aOgx

2 � y�n � pzQ�1
r1:s �WRqx� sgx

3,

yn � �aIhx� aOhx
2 � 1n � y�n � pzQ�1

r1:s �WLqx� y�n � pzQ�1
r1:s �WOq � sgx

3
�〉 � 0 .

Since τ R T ACSPf
BadCh , we have that x R BadChpτ |xq. Therefore, SZpf4pXq, xq is false where f4 is as

defined in CheckBadpτ 1, xq. Since we have here that f4pxq � 0, the polynomial f4pXq must be the
zero polynomial. In particular its X2 term must be zero, i.e.,

δpy, zq � xzQ�1
r1:s , cy � xaIg,yn � aIhy � xaIg, zQ�1

r1:s �WLy � xaOg,y
ny

� xy�n � pzQ�1
r1:s �WRq,yn � aIhy � xy�n � pzQ�1

r1:s �WRq, pzQ�1
r1:s �WLqy � 0 .

Plugging in δpy, zq � xy�n � pzQ�1
r1:s �WRq, pzQ�1

r1:s �WLqy, we get

xzQ�1
r1:s , cy � xaIg,yn � aIhy � xaIg, zQ�1

r1:s �WLy � xaOg,y
ny � xy�n � pzQ�1

r1:s �WRq,yn � aIhy
� xaOg, z

Q�1
r1:s �WOy � 0 .

Simplifying and rearranging we get

xzQ�1
r1:s , c�WL � aIg �WR � aIh �WO � aOgy � xaIg � aIh � aOg,y

ny � 0 .

Since τ R T ACSPf
BadCh , we have that py, zq R BadChpτ |py,zqq. Therefore, SZpfpY,Zq, py, zqq is falsewhere

f is as defined in CheckBadpτ 1, py, zqq. Since we have here that fpy, zq � 0, the polynomial fpY,Zq
is the vector polynomial. Equating all its coefficients to zero, we get

WL � aIg �WR � aIh �WO � aOg � c , aIg � aIh � aOg .

Since pa�L,a�R,a�Oq returned by e is paIg, aIh, aOgq we have that

a�L � a�R � a�O and WL � a�L �WR � a�R �WO � a�O � c .

[\
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5.4 Proof of Lemma 8

From the statement of the algebraic lemma, it is evident that we need to eliminate everything
except for p1g, p1h, y, p

1
u, o to obtain a relation between them. Our first step would be to plug in the

values of a, b from the first two sets of equalities into the third – this would eliminate a, b. Then we
shall exploit the first two sets of equalities and the definition of Bad to arrive at an equation solely
in terms of p1g, p1h, y, p

1
u, o.

Proof (Lemma 8).
First we observe that given that Badpparams, x, jq � true, if for any of the polynomials ppXq

on which SZ is called in Bad, ppxq is zero, then the polynomial ppXq is the zero polynomial. We
shall use this observation repeatedly in this proof.

SIMPLIFYING NOTATION. We introduce some new notation for simplicity. We define the following
polynomials. For all k P t1, . . . , log nu, for all j P t0, . . . , n� 1u

fgk,jpXq � lkg1�jX
2 � rkg1�jX

�2 � p1g1�j �
k�1̧

i�1

plig1�jx2i � rig1�jx
�2
i q ,

fhk,jpXq � lkh1�jX
2 � rkh1�jX

�2 � p1h1�j �
k�1̧

i�1

plih1�jx2i � rih1�jx
�2
i q .

(22)

For all k P t1, . . . , log nu

fuk pXq � lkuX
2 � rkuX

�2 � p1u �
k�1̧

i�1

pliux2i � riux
�2
i q . (23)

Using our notation in (22) and (23), we can re-write our given equalities as

1. for k � 0, . . . , n� 1

a � fglogn,kpxlognq �
�

logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
.

2. for k � 0, . . . , n� 1

b � fhlogn,kpxlognq � yppkqq �
�

logn¹
i�1

x
p�1q1�bitpk,i,lognq

i

�
.

3.
fulognpxlognq � o � ab � 0 .

ELIMINATING a, b IN THE THIRD EQUALITY. First off, we plug the values of a, b we obtain for k � 0
into the third equality. We obtain

fulognpxlognq � o � fglogn,1pxlognq � fhlogn,1pxlognq � 0 . (24)

In order to eliminate all variable except p1g, p1h, y, p
1
u, o, we need to use the first two sets of equalities

to obtain relations that we can plug back into (24).
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RELATIONS FROM THE FIRST SET OF EQUALITIES. The first set of equalities gave us that for k �
0, . . . , n� 1

a � fglogn,kpxlognq �
�

logn¹
i�1

x
p�1qbitpk,i,lognq

i

�
. (25)

Let t P t1, . . . , log nu and j P t0, . . . , n{2t � 1u. Equating the values of a for k � j and k � j � n{2t,
we get

fglogn,jpxlognq �
�

logn¹
i�1

x
p�1qbitpj,i,lognq

i

�
� fglogn,j�n{2tpxlognq �

�
logn¹
i�1

x
p�1qbitpj�n{2

t,i,lognq

i

�
.

Since j P t0, . . . , n{2t� 1u, j and j�n{2t differ only in the tth bit. So, we have for t P t1, . . . , log nu,
j P t0, . . . , n{2t � 1u

fglogn,jpxlognq � x2t � fglogn,j�n{2tpxlognq . (26)

We shall next show that for all t P t1, . . . , log nu, for all j P t0, . . . , n{2t � 1u

ltg1�j � 0 , rtg1�j � fgt�1,j�n{2tpxt�1q .

First we show it for t � log n- in this case j can take the value only 0. We have that

fglogn,0pxlognq � x2logn � fglogn,1pxlognq � 0 .

Since Badpparams, xlogn, log nq � false

fglogn,0pXq �X2 � fglogn,1pXq

is the zero polynomial. Equating the constant term to 0 we get

rplognqg1 � fglogn�1,1pxlogn�1q ,

Equating the X4 term to 0 we get,
lplognqg1 � 0 .

Hence, it holds for t � log n. Now let t � t1   log n. We have that for j P t0, . . . , n{2t1 � 1u.

fglogn,jpxlognq � x2t1 � fg
logn,j�n{2t1

pxlognq � 0 .

Since Badpparams, xlogn, log nq � false

fglogn,jpXq � x2t1 � fg
logn,j�n{2t1

pXq

is the zero polynomial. Therefore, its constant term is 0, i.e.,

fglogn�1,jpxlogn�1q � x2t1 � fg
logn,j�n{2t1

pxlogn�1q � 0 .

Using similar series of arguments (since for all j P tlog n�1, log n�2, . . . , t1u : Badpparams, xj , jq �
false) we can arrive at

fgt1,jpxt1q � x2t1 � fg
t1,j�n{2t1

pxt1q � 0 .
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Now, since Badpparams, x1t, t
1q � false

fgt1,jpXq �X2 � fg
t1,j�n{2t1

pXq

must be the zero polynomial. Equating the constant term to 0 we get for t1 ¡ 1

rt1gj � fg
t1�1,j�n{2t1

pxt1�1q ,

and for t1 � 1

r1g1�j � p1g1�j�n{2 .

Equating the X4 term to 0 we get,
lt1gj � 0 .

Hence for all t P t2, . . . , log nu, for all j P t0, . . . , n{2t � 1u

ltg1�j � 0 , rtg1�j � fgt�1,j�n{2tpxt�1q , (27)

and for all j P t0, . . . , n{2� 1u

r1g1�j � p1g1�j�n{2 , l1g1�j � 0 . (28)

RELATIONS FROM THE SECOND SET OF EQUALITIES. Now, we can go through an identical process
for the second set of equalities and obtain that (we omit the calculations since they are identical to
the ones we saw previously)

1. for all t P t2, . . . , log nu, for all j P t0, . . . , n{2t � 1u

rth1�j � 0 , lth1�j � fht�1,j�n{2tpxtq � yn{2
t
. (29)

2. for all j P t0, . . . , n{2� 1u

r1h1�j � 0 , l1h1�j � p1h1�j�n{2 � yn{2 . (30)

PUTTING IT ALL TOGETHER. Finally, we are ready to use the obtained relations. We shall show
using induction on k that for all k P t1, . . . , log nu

fuk pxkq � o �
n{2k�1¸
j�0

fgk,jpxkq � fhk,jpxkq � yj � 0 .

The base case for k � log n is true since (24) holds.
Now assuming it holds for some k � k1 we shall show that it holds for k1 � 1 as well. Using

induction hypothesis we have that

fuk1pxk1q � o �
n{2k

1
�1¸

j�0

fgk1,jpxk1q � fhk1,jpxk1q � yj � 0 .
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Since Badpparams, x1k, k
1q � true, the polynomial

fuk1pXq � o �
n{2k

1
�1¸

j�0

fgk1,jpXq � fhk1,jpXq � yj

must be the zero polynomial, i.e., in particular its constant term is zero. It’s constant term can be
written as

fuk1�1pxk1�1q � o �
n{2k

1
�1¸

j�0

fgk1�1,jpxk1�1q � fhk1�1,jpxk1�1q � yj

� o �
n{2k

1
�1¸

j�0

plk1g1�j � rk1h1�j � rk1g1�j � lk1h1�j q � yjq .

From (27) and (29) we have that for j P t0, . . . , n{2k1 � 1u

rk1g1�j � fg
k1�1,j�n{2k1

pxk1�1q , lk1g1�j � 0 , rk1h1�j � 0 , lk1h1�j � fh
k1�1,j�n{2k1

pxk1�1q � yn{2k
1

.

So, equating the constant term to 0 we have that

fuk1�1pxk1�1q � o �
n{2k

1
�1¸

j�0

pfgk1�1,jpxk1�1q � fhk1�1,jpxk1�1q � yjq

� o �
n{2k

1
�1¸

j�0

ppfg
k1�1,j�n{2k1

pxk1�1q � fhk1�1,j�n{2k1
pxk1�1qq � yj�n{2k

1

q � 0 .

This can be simplified to

fuk1�1pxk1�1q � o �
n{2k

1�1�1¸
j�0

pfgk1�1,jpxk1�1q � fhk1�1,jpxk1�1q � yj � 0 .

Hence we have shown that it holds for k � k1 � 1. Hence, by induction we arrive at

fu1 px1q � o �
n{2�1¸
j�0

pfg1,jpx1q � fh1,jpx1q � yj � 0 .

Since Badpparams, x1k, k
1q � true, the polynomial

fu1 pXq � o �
n{2�1¸
j�0

pfg1,jpXq � fh1,jpXq � yjq

is the zero polynomial, i.e., in particular its constant term is 0. So, we have that

p1u � o

n{2�1¸
j�0

p1g1�j � p1h1�j � yj � o

n{2�1¸
j�0

pl1g1�j � r1h1�j � r1g1�j � l1h1�j q � yj � 0 .
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From (28) and (30) we have that for j P t0, . . . , n{2� 1u

r1g1�j � p1g1�j�n{2 , l1g1�j � 0, r1h1�j � 0 , l1h1�j � p1h1�j�n{2 � yn{2 .

So, we have that

p1u � o

n{2�1¸
j�0

p1g1�j � p1h1�j � yj � o

n{2�1¸
j�0

pl1g1�j � r1h1�j � r1g1�j � l1h1�j � yn{2q � yj � 0 .

Simplifying we get that
p1u � o � xp1g, p1h � yny .

[\

6 Online srs-wee Security of Sonic

We apply our framework to prove srs-wee security of Sonic [MBKM19] which is an interac-
tive argument for arithmetic circuit satisfiability based on pairings (we refer to this argument as
SnACSPf). We consider a variant of Sonic that does not use the signature of correct computation.

Sonic represents arithmetic circuits using the same constraint system as the one used in Bullet-
proofs. The constraint system has three vectors aL,aR,aO P Znp representing the left inputs, right
inputs, and outputs of multiplication gates respectively, so that aL �aR � aO, with additional Q ¤
2n linear constraints. The linear constraints can be represented as aL �WL�aR �WR�aO �WO � c,
where WL,WR,WO P ZQ�np .

The argument SnACSPf is again an argument of knowledge for the relation (15).
PAIRINGS. As stated before, SnACSPf is based on pairings. Let G1,G2,GT be groups of prime order
pwith generators g P G1, h P G2. A pairing is a bilinear map e : G1�G2 Ñ GT such that epga, hbq �
epg, hqab for all a, b P Zp and epg, hq is a generator of GT . In our AGM analysis, we shall consider
symmetric pairings, i.e., G1 � G2 � G. We shall assume that SnACSPf � SnACSPfrG,GT , es
is instantiated on the understood families of groups G � tGλuλPN� (with order p � ppλq) and
GT � tGT,λuλPN� such that there exists a bilinear map e : G�GÑ GT .
DESCRIPTION OF SnACSPf . The setup algorithm SnACSPf.Setup on input 1λ fixes integers n, d such
that 3n   d   4n. It generates the generators g, h of the group G such that epg, hq is a generator of
GT and sets bp � pp,G,GT , e, g, hq. It sets

srs � tg, tgxiudi��d, thx
iudi��d, thαx

iudi��d, tgαx
iudi��d

i�0
, epg, hαqu .

It finally returns pn, d, bp, srsq. The prover and the verifier algorithms, SnACSPf.P, SnACSPf.V are
shown in Figure 16.

In the soundness analysis of SnACSPf in [MBKM19], only the bounded polynomial extractibil-
ity and evaluation binding of the commitment scheme is analysed in the AGM.5 Here we give an
analysis of the srs-wee of SnACSPf in the AGM.

We prove the following theorem that establishes an upper bound on the online srs-wee security
of SnACSPf.

5 The reduction of bounded polynomial extractibility to the variant of q-dl defined in the paper does not seem to
account for the fact that an algebraic adversary can represent the commitments in terms of powers of h as well.
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SnACSPf.Ppppbp, srs, n, dq, pWL,WR,WO, cqq, SnACSPf.Vppbp, srs, n, dq, pWL,WR,WO, cqq
paL,aR,aOqq

cn�1, cn�2, cn�3, cn�4 Ð$ Zp
rpX,Y q Ð xaL,X

n�1
r1:s �Y

n�1
r1:s y

�xaR,X
�n�1
r1:s �Yn�1

r1:s y

�xaO,X
�2n�1
rn�1:s �Y

�2n�1
rn�1:s y

�
4°
i�1

cn�iX
�2n�iY �2n�i

RÐ gαx
d�nrpx,1q R

ÝÝÝÝÝÝÝÝÝÝÝÑ
y

ÐÝÝÝÝÝÝÝÝÝÝÝ yÐ$ Z�
p

kpY q Ð xc,YQ�n�1
rn�1:s y kpY q Ð xc,YQ�n�1

rn�1:s y

spX,Y q Ð YQ�n�1
rn�1:s � pWL �X

�n�1
r1:s �WR �X

n�1
r1:s spX,Y q Ð YQ�n�1

rn�1:s � pWL �X
�n�1
r1:s

�WO �X
2n�1
rn�1:sq �WR �X

n�1
r1:s �WO �X

2n�1
rn�1:sq

�x�Yn�1
r1:s �Y�n�1

r1:s ,X2n�1
rn�1:sy �x�Yn�1

r1:s �Y�n�1
r1:s ,X2n�1

rn�1:sy

r1pX,Y q Ð rpX,Y q � spX,Y q
tpX,Y q Ð rpX, 1qr1pX,Y q � kpY q

T Ð gαtpx,yq
T

ÝÝÝÝÝÝÝÝÝÝÝÑ
z

ÐÝÝÝÝÝÝÝÝÝÝÝ zÐ$ Z�
p

aÐ rpz, 1q

wapXq Ð
rpX,1q�rpz,1q

X�z

Wa Ð gwapxq

bÐ rpz, yq

wbpXq Ð
rpX,1q�rpyz,1q

X�yz

Wb Ð gwbpxq

tÐ tpz, yq

wtpXq Ð
tpX,yq�tpz,yq

X�z

Wt Ð gwtpxq
a,Wa,b,Wb,WtÝÝÝÝÝÝÝÝÝÝÝÑ

tÐ apb� spz, yqq � kpyq

If epWa, h
αxqepgaW z

a , h
αq � epR, hx

�d�n

q then
Return 0

If epWb, h
αxqepgbW yz

b , hαq � epR, hx
�d�n

q then
Return 0

If epWt, h
αxqepgtW z

t , h
αq � epT, hq then

Return 0
Return 1

Fig. 16. The interactive argument for arithmetic circuit satisfiability in Sonic.
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Theorem 7. Let G � tGλuλPN� be a family of groups with order p � ppλq. Let GT � tGT,λuλPN� be a
family of groups such that there exists a bilinear map e : G�GÑ GT . Let SnACSPf � SnACSPfrG,GT , es
be the interactive argument as described in Figure 16, for the relation R in (15). We can construct an
extractor E such that for any non-uniform algebraic prover Palg making at most q � qpλq queries to
its oracle, there exist non-uniform adversaries F1,F2,F3 with the property that for any (computationally
unbounded) distinguisher D, for all λ P N�

Advsr-weeSnACSPf,RpPalg,D, E , λq ¤ 18nq

p� 1
� Adv4n-dl

G pF1, λq � AdvdlGpF2, λq � AdvdlGpF3, λq .

Moreover, the time complexities of the extractor E and adversaries F1,F2,F3 are all Opq � nq.
We can show that the bound in Theorem 7 is tight by constructing a cheating prover like we did
in Theorem 5. Using Theorem 2, we get the following corollary.

Corollary 3. Let G � tGλuλPN� be a family of groups with order p � ppλq. Let GT � tGT,λuλPN� be a
family of groups such that there exists a bilinear map e : G�GÑ GT . Let SnACSPf � SnACSPfrG,GT , es
be the interactive argument as described in Figure 16, for the relation R in (15). Let FSROrSnACSPfs be
the non-interactive argument obtained by applying the Fiat-Shamir transform to SnACSPf using a random
oracle. We can construct an extractor E such that for any non-uniform algebraic prover Palg making at most
q � qpλq queries to the random oracle there exist non-uniform adversaries F1,F2,F3 with the property that
for all λ P N�

Advfs-ext
FSROrSnACSPfs,R

pPalg, E , λq ¤ 18nq � q � 1

p� 1
� Adv4n-dl

G pF1, λq � AdvdlGpF2, λq � AdvdlGpF3, λq .

Moreover, the time complexities of the extractor E and adversaries F1,F2,F3 are all Opq � nq.
Proof. (Theorem 7) We shall invoke Theorem 3 by defining BadCh and e and showing that ε ¤ 18n

p�1
and there exists adversaries F1,F2,F3 such that

pfailpSnACSPf,Palg, e, R, λq ¤ Adv4n-dl
G pF1q � AdvdlGpF2q � AdvdlGpF3q .

DEFINING BadCh AND UPPER BOUNDING ε. To start off, we shall define BadChpτ 1q for all partial
extended transcripts τ 1. Let Ch be the set from which the challenge that comes right after τ 1 is
sampled. We define a helper function CheckBad that takes as input a partial extended transcripts
rτ 1s and a challenge c P Ch and returns true if and only if c P BadChpτ 1q. Since SnACSPf has two
challenges, there are two definitions of CheckBad in Figure 17. We again use the predicate SZ here
like before. Next, we need to compute an upper bound ε on the size of |BadChpτ 1q|{|Ch|. In other
words, we need to compute an upper bound on the fraction of c’s in Ch that CheckBadpτ 1, cq will
return true for all the definitions of CheckBad.

The function CheckBadpτ 1, yq returns true if SZpfpY q, yq is true. We shall use the Schwartz-
Zippel lemma to fraction bound the number of y’s that SZpfpY q, yq is true for y P Z�

p . The polyno-
mial fpY q is a polynomial of degree at most 2n�Q (the maximum positive degree is n�Q while
the maximum negative degree is �n). Since Q ¤ 2n, the degree of fpY q is at most 4n. So, for at
most at most 4n values of y P Z�

p , SZpfpY q, yq is true. So the CheckBadpτ 1, yq returns true for at
most 4n{pp� 1q fraction of y’s.

The function CheckBadpτ 1, zq returns true if SZpfpZq, zq is true. The polynomial fpZq is a
polynomial of degree at most 18n (the maximum positive degree is d   4n while the maximum
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Procedure CheckBadp
�
τ 1
�
, zq:

�
τ 1
�
�
�
bp, srs, n, d,WL,WR,WO, c; rRs , y, rT sq

kpY q Ð xc,YQ�n�1
rn�1:s y

spX,Y q Ð YQ�n�1
rn�1:s �WL �X

�n�1
r1:s �YQ�n�1

rn�1:s �WR �X
n�1
r1:s �YQ�n�1

rn�1:s �WO �X
2n�1
rn�1:s � x�Yn�1

r1:s �Y�n�1
r1:s ,X2n�1

rn�1:sy

fpZq Ð

�
� d°
i��d
i�0

Zit
gαx

i

�
�

�
� n°
i�n�2d
i�n�d

Zir
gαx

i�n�d

�

�
� n°
i�n�2d
i�n�d

pyZqir
gαx

i�n�d � spZ, yq

�
� kpyq

Return SZpfpZq, zq

Procedure CheckBadp
�
τ 1
�
, yq:

�
τ 1
�
�
�
bp, srs, n, d,WL,WR,WO, c; rRsq

For i � 1, . . . , n do
a�i Ð r

gαx
d�n�i ; b�i Ð r

gαx
d�n�i ; c�i Ð r

gαx
d�2n�i

a�L Ð pa�1 , . . . , a
�
nq;a

�
R Ð pb�1 , . . . , b

�
nq;a

�
O Ð pc�1 , . . . , c

�
nq

fpY q Ð r
gαx

d�n r
gαx

d�n �xa�L � a
�
R � a�O,Y

n�1
r1:s �Y�n�1

r1:s y�YQ�n�1
rn�1:s � pWL �a

�
L�WR �a

�
R�WO �a

�
Oq�xc,Y

Q�n�1
rn�1:s y

Return SZpfpY q, yq

Fig. 17. The function CheckBad function for the SnACSPf.

Procedure eprτ sq:

rτ s �
�
bp, srs, n, d,WL,WR,WO, c; rRs , y, rT s , z, pa, rWas , b, rWbs , rWtsq

�
For i � 1, . . . , n do
a�i Ð r

gαx
d�n�i ; b�i Ð r

gαx
d�n�i ; c�i Ð r

gαx
d�2n�i

a�L Ð pa�1 , . . . , a
�
nq;a

�
R Ð pb�1 , . . . , b

�
nq;a

�
O Ð pc�1 , . . . , c

�
nq

Return pa�L,a
�
R,a

�
Oq

Fig. 18. The function e for SnACSPf.

negative degree is 2n � 4d ¡ �16d). So, the fraction of z’s in Z�
p for which SZpfpZq, zq is true is

at most 18n{pp� 1q. So the fraction of z’s in Z�
p for which CheckBadpτ 1, zq returns true is at most

18n{pp� 1q. Therefore CheckBadpτ 1, cq will return true for any partial transcript τ 1 for a no more
than 18n{pp� 1q values of c, i.e., in the context of the Master Theorem ε ¤ 18n

p�1 .

DEFINING e. Next, we define the function e for SnACSPf in Figure 18. It gets as input an extended
accepting transcript rτ s with the representation of the input removed. Without loss of generality
we assume that the representations of all the messages of the prover in the transcript that are from
G are in terms of the elements of G in srs. The function e computes pa�L,a�R,a�Oq and outputs them.
It follows from the description of e that it runs in time Opnq. Note that SnACSPf.V runs in time
Opnq. Therefore, using Theorem 3, the time complexity of E is Opq � nq.
PROVING AN UPPER BOUND ON pfailpSnACSPf,Palg, e, R, λq. To that end, we construct the follow-
ing three adversaries.

1. Adversary F1 is an adversary against d-DLOG in the group G that runs Palg. It has inputs
pg, gx, gx2 , . . . , gxdq. It fixes a positive integer n such that 4n ¡ d ¡ 3n. It samples α, β P Zp, and
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Procedure h1prτ s, α, βq:

rτ s �
�
bp, srs, n, d,WL,WR,WO, c; rRs , y, rT s , z, pa, rWas , b, rWbs , rWtsq

�
kpY q Ð xc,YQ�n�1

rn�1:s y

spX,Y q Ð YQ�n�1
rn�1:s �WL �X

�n�1
r1:s �YQ�n�1

rn�1:s �WR �X
n�1
r1:s �YQ�n�1

rn�1:s �WO �X
2n�1
rn�1:sx�Yn�1

r1:s �Y�n�1
r1:s ,X2n�1

rn�1:sy

f1pXq Ð pX � zq

�
d°

i��d

Xiw
agx

i

�
� a�X�d�n

�
� d°
i��d
i�0

Xir
gαx

i

�


If f1pXq � 0 then solve for x� such that f1px�q � 0; If gx � gx
�

then return x�

f2pXq Ð pX � yzq

�
d°

i��d

Xiw
bgx

i

�
� b�X�d�n

�
� d°
i��d
i�0

Xir
gαx

i

�


If f2pXq � 0 then solve for x� such that f2px�q � 0; If gx � gx
�

then return x�

tÐ apb� spz, yqq � kpyq; f3pXq Ð pX � zq

�
d°

i��d

Xiw
tgx

i

�
� t�

�
� d°
i��d
i�0

Xit
gαx

i

�


If f3pXq � 0 then solve for x� such that f3px�q � 0; If gx � gx
�

then return x�

Return K

Fig. 19. The function h1 for SnACSPf.

Procedure h2prτ s, x, αq:

rτ s �
�
bp, srs, n, d,WL,WR,WO, c; rRs , y, rT s , z, pa, rWas , b, rWbs , rWtsq

�
kpY q Ð xc,YQ�n�1

rn�1:s y

spX,Y q Ð YQ�n�1
rn�1:s �WL �X

�n�1
r1:s �YQ�n�1

rn�1:s �WR �X
n�1
r1:s �YQ�n�1

rn�1:s �WO �X
2n�1
rn�1:s � x�Yn�1

r1:s �Y�n�1
r1:s ,X2n�1

rn�1:sy

num1 Ð �αpx� zq

�
� d°
i��d

xiw
agx

i �
d°

i��d
i�0

αxiw
agαx

i

�
� αa� x�d�n

�
� d°
i��d

xir
gx
i �

d°
i��d
i�0

αxir
gαx

i

�


den1 Ð αpx� zq

�
d°

i��d

xiw
ahx

i � αxiw
ahαx

i

�
� x�d�n

�
d°

i��d

xir
hx
i � αxir

hαx
i

�

If den1 � 0 and gnum1{den1 � h then return pnum1{den1q

num2 Ð �αpx� yzq

�
� d°
i��d

xiw
bgx

i �
d°

i��d
i�0

αxiw
bgαx

i

�
� αb� x�d�n

�
� d°
i��d

xir
gx
i �

d°
i��d
i�0

αxir
gαx

i

�


den2 Ð αpx� yzq

�
d°

i��d

xiw
bhx

i � αxiw
bhαx

i

�
� x�d�n

�
d°

i��d

xir
hx
i � αxir

hαx
i

�

If den2 � 0 and gnum2{den2 � h then return pnum2{den2q
tÐ apb� spz, yqq � kpyq

num3 Ð �αpx� zq

�
� d°
i��d

xiw
tgx

i �
d°

i��d
i�0

αxiw
tgαx

i

�
� αt�

�
� d°
i��d

xit
gx
i �

d°
i��d
i�0

αxit
gαx

i

�


den3 Ð αpx� zq

�
d°

i��d

xiw
thx

i � αxiw
thαx

i

�
�

�
d°

i��d

xit
hx
i � αxit

hαx
i

�

If den3 � 0 and gnum3{den3 � h then return pnum3{den3q
Return K

Fig. 20. The function h2 for SnACSPf.
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Procedure h3prτ s, x, βq:

rτ s �
�
bp, srs, n, d,WL,WR,WO, c; rRs , y, rT s , z, pa, rWas , b, rWbs , rWtsq

�
kpY q Ð xc,YQ�n�1

rn�1:s y

spX,Y q Ð YQ�n�1
rn�1:s �WL �X

�n�1
r1:s �YQ�n�1

rn�1:s �WR �X
n�1
r1:s �YQ�n�1

rn�1:s �WO �X
2n�1
rn�1:s � x�Yn�1

r1:s �Y�n�1
r1:s ,X2n�1

rn�1:sy

f1pAq Ð Apx� zq

�
� d°
i��d

xiw
agx

i �
d°

i��d
i�0

Axiw
agAx

i

�
�Aa� x�d�n

�
� d°
i��d

xir
gx
i �

d°
i��d
i�0

Axir
gαx

i

�


If f1pAq � 0 then solve for α� such that f1pα�q � 0; If gα � gα
�

then return α�

f2pAq Ð Apx� yzq

�
� d°
i��d

xiw
bgx

i �
d°

i��d
i�0

Axiw
bgAx

i

�
�Ab� x�d�n

�
� d°
i��d

xir
gx
i �

d°
i��d
i�0

Axir
gαx

i

�


If f2pAq � 0 then solve for α� such that f2pα�q � 0; If gα � gα
�

then return α�

tÐ apb� spz, yqq � kpyq

f3pAq Ð Apx� zq

�
� d°
i��d

xiw
tgx

i �
d°

i��d
i�0

Axiw
tgAx

i

�
�At�

�
� d°
i��d

xir
gx
i �

d°
i��d
i�0

Axit
gαx

i

�


If f3pAq � 0 then solve for α� such that f3pα�q � 0; If gα � gα
�

then return α�

Return K

Fig. 21. The function h3 for SnACSPf.

sets bp � pp,G,GT , e, g, g
βq and

srs � tg, tgxiudi��d, tgx
iβudi��d, tgx

iαβudi��d, tgx
iαudi��d

i�0
, epg, gαβqu .

Note that pn, d, bp, srsq is a valid output of SnACSPf.Setup. Adversary F1 runs Palg on public
parameters pn, d, bp, srsq and simulates the game SRSSnACSPf to it. If Palg manages to produce
an accepting transcript τ , F1 calls a helper function h1 on input rτ s , α, β and outputs whatever
h1 outputs. The function h1 is defined in Figure 19.

2. Adversary F2 is an adversary against DLOG in the group G that runs Palg. It has inputs
pg, V q. It fixes a positive integer n such that 4n ¡ d ¡ 3n. It samples α, x P Zp, and sets
bp � pp,G,GT , e, g, V q and

srs � tg, tgxiudi��d, tV xiudi��d, tV xiαudi��d, tgx
iαudi��d

i�0
, epg, V αqu .

Note that pn, d, bp, srsq is a valid output of SnACSPf.Setup. Adversary F2 runs Palg on public
parameters pn, d, bp, srsq and simulates the game SRSSnACSPf to it. If Palg manages to produce
an accepting transcript τ , F2 calls a helper function h2 on input rτ s , x, α and outputs whatever
h2 outputs. The function h2 is defined in Figure 20.

3. Adversary F3 is an adversary against DLOG in the group G that runs Palg. It has inputs
pg, V q. It fixes a positive integer n such that 4n ¡ d ¡ 3n. It samples β, x P Zp, and sets
bp � pp,G,GT , e, g, g

βq and

srs � tg, tgxiudi��d, tgβx
iudi��d, tV xiβudi��d, tV xiudi��d

i�0
, epg, V βqu .
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Note that pn, d, bp, srsq is a valid output of SnACSPf.Setup. Adversary F3 runs Palg on public
parameters pn, d, bp, srsq and simulates the game SRSSnACSPf to it. If Palg manages to produce
an accepting transcript τ , F3 calls a helper function h3 on input rτ s , x, β and outputs whatever
h3 outputs. The function h3 is defined in Figure 21.

We first make the following observations about adversaries F1,F2,F3

- Adversary F1 succeeds if h1prτ s , α, βq computes x� such that pgx� � gxq. From the code of h1
it is easy to see that that whenever h1 returns a non-K value x�, it satisfies pgx� � gxq, i.e.,
adversary F1 succeeds. Also, it follows from the description of h1 that it runs in time at Opnq.
The running time of F1 consists of the time required to answers q queries, run SnACSPf.V in at
most q paths in the execution tree and the time required to run h1. Hence its time complexity
is Opq � nq.

- Adversary F2 succeeds if h2prτ s , x, αq computes β� such that gβ
� � V . From the code of h2 it is

easy to see that that whenever h2 returns a non-K value β�, it satisfies pgβ� � hq, i.e., adversary
F2 succeeds. Also, it follows from the description of h2 that it runs in time Opnq. The running
time of F2 consists of the time required to answers q queries, run SnACSPf.V in at most q paths
in the execution tree and the time required to run h2. Hence its time complexity is Opq � nq.

- Adversary F3 succeeds if h3pτ, x, βq computes α� such that gα
� � V . From the code of h3 it is

easy to see that that whenever h3 returns a non-K value α�, it satisfies pgα� � gxq, i.e., adversary
F3 succeeds. Also, it follows from the description of h3 that it runs in time Opnq. The running
time of F3 consists of the time required to answers q queries, run SnACSPf.V in at most q paths
in the execution tree and the time required to run h3. Hence its time complexity is Opq � nq.

We shall prove the following lemma showing that if τ is an accepting transcript such that τ R
T SnACSPf
BadCh and h1prτ s , α, βq, h2prτ s , x, αq, h3pτ, x, βq all return K, then eprτ sq returns a valid witness.

Lemma 11. Let n, d P N such that d ¡ 3n. Let x, α, β P Zp. Let bp � pp,G,GT , e, g, hq. Let srs �
tg, tgxiudi��d, tgβx

iudi��d, tgαβx
iudi��d, tgαx

iudi��d
i�0

, epg, hαqu. Let

τ � �
bp, srs, n, d,WL,WR,WO, c; rRs , y, rT s , z, pa, rWas , b, rWbs , rWtsq

�
be an accepting transcript of SnACSPf such that τ R T SnACSPf

BadCh . If h1prτ s , α, βq, h2prτ s , x, αq and h3prτ s , x, βq
return K, then eprτ sq returns pa�L,a�R,a�Oq such that

a�L � a�R � a�O and a�L �WL � a�R �WR � a�O �WO � c .

Taking the contrapositive, we get that if τ is an accepting transcript such that τ R T SnACSPf
BadCh and

eprτ sq fails to return a valid witness, then one of h1prτ s , α, βq, h2prτ s , x, αq, h3pτ, x, βq returns a
non-K value, i.e., one of adversaries F1,F2,F3 succeed. Therefore

pfailpSnACSPf,Palg, e, R, λq ¤ Adv4n-dl
G pF1q � AdvdlGpF2q � AdvdlGpF3q .

[\
We shall next prove Lemma 11.

Proof (Lemma 11). Since τ is an accepting transcript the following equality holds.

epWa, h
αxqepgaW z

a , h
αq � epR, hx�d�nq .
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We can express Wa in terms of its representations, let h � gβ and re-write the first equality as

epg, hqf � 1 ,

where

f �αpx� zq

�
�� ḑ

i��d

xiw
agxi

� βxiw
ahxi

� αβxiw
ahαxi

�
ḑ

i��d
i�0

αxiw
agαxi

�
�� αa

� x�d�n

�
�� ḑ

i��d

xir
gxi

� βxir
hxi

� αβxir
hαxi

�
ḑ

i��d
i�0

αxir
gαxi

�
�.

We therefore have

αpx� zq

�
�� ḑ

i��d

xiw
agxi

� βxiw
ahxi

� αβxiw
ahαxi

�
ḑ

i��d
i�0

αxiw
agαxi

�
�

� αa� x�d�n

�
�� ḑ

i��d

xir
gxi

� βxir
hxi

� αβxir
hαxi

�
ḑ

i��d
i�0

αxir
gαxi

�
�� 0 .

(31)

Consider the values num1, den1 in h2prτ s , x, αq – the above equation can be re-written as �num1 �
βden1 � 0. Since h2prτ s , x, αq returned K we have that den1 must be 0, i.e.,

αpx� zq
�

ḑ

i��d

xiw
ahxi

� αxiw
ahαxi

�
� x�d�n

�
ḑ

i��d

xir
hxi

� αxir
hαxi

�
� 0 .

Plugging this into (31) we get that

αpx� zq

�
�� ḑ

i��d

xiw
agxi

�
ḑ

i��d
i�0

αxiw
agαxi

�
�� αa� x�d�n

�
�� ḑ

i��d

xir
gxi

�
ḑ

i��d
i�0

αxir
gαxi

�
�� 0 .

Therefore α is a root f1pAq � 0 in h3. Since h3prτ s , x, βq returned K it means that f1pAq is the zero
polynomial. In particular its A term is 0 i.e.

px� zq
�

ḑ

i��d

xiw
agxi

�
� a� x�d�n

�
�� ḑ

i��d
i�0

xir
gαxi

�
�� 0 .

Therefore x is a root f1pXq � 0 in h1. Now, since h1prτ s , x, βq returned K we have that f1pXq is the
zero polynomial, i.e.,

pX � zq
�

ḑ

i��d

Xiw
agxi

�
� a�X�d�n

�
�� ḑ

i��d
i�0

Xir
gαxi

�
� .
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is the zero polynomial. The above polynomial is an zero for any value of X . So, plugging in X � z
we get

a� z�d�n

�
�� ḑ

i��d
i�0

zir
gαxi

�
�� 0 .

So,

a �

�
�� ņ

i�n�2d
i�n�d

zir
gαxi�n�d

�
� .

Similarly, since τ is an accepting transcript, the equalities epWb, h
αxqepgbW yz

b , hαq � epR, hx�d�nq
and epWt, h

αxqepgtW z
t , h

αq � epT, hq hold. Using arguments similar to the ones we used above, we
can show that

b �

�
�� ņ

i�n�2d
i�n�d

pyzqir
gαx

i�n�d

�
� , t �

�
�� ḑ

i��d
i�0

zit
gαxi

�
� .

From the description of SnACSPf.V, we have that

t � apb� spz, yqq � kpyq .
Plugging the values of a, b, t into the above equation we get that�

�� ḑ

i��d
i�0

zit
gαxi

�
��

�
�� ņ

i�n�2d
i�n�d

zir
gαxi�n�d

�
�
�
�� ņ

i�n�2d
i�n�d

pyzqir
gαxi�n�d

� spz, yq

�
�� kpyq

Since τ |z R T SnACSPf
BadCh , we have that z R BadChpτ |zq. Therefore, SZpfpZq, zq is false where

f is as defined in CheckBadpτ 1, zq. Since we have here that fpzq � 0, the polynomial fpZq must
be the zero polynomial. In particular, its constant term must be zero. Writing out the constant
term of fpZq and using a�L � pr

gαx1�n�d
, . . . , r

gαxd
q, a�R � pr

gαx�1�n�d , . . . , rgαxd�2n q and a�O �
pr
gαx�1�2n�d , . . . , rgαxd�3n q) we get

r
gαxd�n

r
gαxd�n

� xa�L � a�R � a�O,y
n�1
r1:s � y�n�1

r1:s y
� yQ�n�1

rn�1:s � pWL � a�L �WR � a�R �WO � a�Oq � xc,yQ�n�1
rn�1:s y � 0

Since τ |y R T SnACSPf
BadCh we have that y R BadChpτ |yq. Therefore, SZpfpY q, yq is false where f is

as defined in CheckBadpτ 1, yq. Since we have here that fpyq � 0, the polynomial fpY q is the zero
polynomial. Therefore, equating all the coefficients of fpY q to zero, we have that

a�L � a�R � a�O and a�L �WL � a�R �WR � a�O �WO � c .
[\
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Supplementary Materials

A Online extraction in the AGM: Limitation

We present an interactive proof system DS that does not allow for online extraction. We shall
assume that DS � DSrGs is instantiated on an understood family of groups G � tGλuλPN� of
order p � ppλq. It is a proof of knowledge of discrete logarithm of two group elements. More
precisely, it is a proof of knowledge for the following relation

R �
!
pg, pX1, X2q, px1, x2qq : X1 � gx1 ^X2 � gx2

)
.

The setup algorithm DS.Setup on input 1λ returns a generator g of the group Gλ. The instance is
a pair of group elementsX1, X2 and the prover has witness x1, x2 which are the discrete logarithms
of X1, X2 with respect to g. The prover and the verifier are formally described in Figure 22.

The soundness of DS can be argued in the standard model as follows. Given three accepting
transcripts with the same first prover message, with high probability we can extract a witness
px�1 , x�2q that satisfy gx

�
1 � X1 and gx

�
2 � X2. More concretely let τ1, τ2, τ3 be three accepting

transcripts such that τi � tg, pX1, X2q;A, pci1, ci2q, diu for i � 1, 2, 3. Let x�1 , x
�
2 be the discrete

logarithm for X1, X2. Since τ1, τ2, τ3 are accepting transcripts, the following system of equation
holds.

d1 � c11x
�
1 � c12x

�
2 � a

d2 � c21x
�
1 � c22x

�
2 � a

d3 � c31x
�
1 � c32x

�
2 � a
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DS.PpppG, g, pq, pX1, X2qq, px1, x2qq DS.VppG, g, pq, pX1, X2qq

aÐ$ Zp;AÐ ga
A

ÝÝÝÝÑ
c1,c2ÐÝÝÝÝ c1, c2 Ð$ Zp

dÐ a� c1x1 � c2x2
d

ÝÝÝÝÑ Return pgd � Xc1
1 Xc2

2 Aq

Fig. 22. Interactive proof system DS that does not allow for online extraction in the AGM.

The above system of equation has three variables x�1 , x
�
2 , a. Since cij ’s are picked at random, with

high probability the system of equations can be solved. Therefore, the protocol DS is sound in the
standard model.

Next we argue that online extraction is not possible for DS in the AGM. In particular, we
look at an accepting transcript produced by an honest prover and argue that we cannot extract
a witness from the transcript. Given an accepting transcript τ � tg, pX1, X2q;A, pc1, c2q, du, using
the representation of A with respect to g (an honest prover must have provided the representation
of A only in terms of g), we can write

d � c1x
�
1 � c2x

�
2 � ag .

We have two variables x�1 , x
�
2 and just one equation. So, we cannot extract x�1 , x

�
2 just from one

accepting transcript, i.e., DS does not support online extraction in the AGM.
One reason why online extraction in the AGM was not possible for this protocol while it was

possible for RngPf,ACSPf is that here x�1 , x
�
2 were committed in the exponent of the same gen-

erator – this leads to us not having sufficient number of equations to solve for x�1 , x
�
2 from the

single transcript. For similar reasons, online extraction is not possible for the generalized version
of ACSPf that supports additional commitments and the aggregated range proofs in [BBB�18].
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