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Abstract. There are lots of applications of inner-product functional
encryption (IPFE). In this paper, we consider two important extensions
of it. One is to enhance IPFE with access control such that only users
with a pre-defined identity are allowed to compute the inner product,
referred as identity-based inner-product functional encryption (IBIPFE).
We formalize the definition of IBIPFE, and propose the first adaptive-
secure IBIPFE scheme from Decisional Bilinear Diffie-Hellman (DBDH)
assumption. In an IBIPFE scheme, the ciphertext is related to a vector
x and a new parameter, identity ID. Each secret key is also related to a
vector y and an identity ID′. The decryption algorithm will output the
inner-product value 〈x,y〉 only if ID = ID′.
The other extension is to make IBIPFE leakage resilient. We consider
the bounded-retrieval model (BRM) in which an adversary can learn at
most l bits information from each secret key. Here, l is the leakage bound
determined by some external parameters, and it can be set arbitrarily
large. After giving the security definition of leakage-resilient IBIPFE, we
extend our IBIPFE scheme into a leakage-resilient IBIPFE scheme in the
BRM by hash proof system (HPS).

Keywords: Identity-based access control · Inner-product functional en-
cryption · Bounded-retrieval model · Hash proof system

1 Introduction

Functional encryption (FE) [11, 42] is a cryptographic primitive that addresses
the “all-or-nothing” issue of traditional Public key encryption (PKE). FE allows
users with secret keys to learn specific functional values of the encrypted data.
Roughly speaking, in an FE scheme, given a ciphertext of x, a user who holds
secret key skf for function f can only learn f(x) and nothing else. Further,
FE is the most general form of encryption. Identity-based encryption (IBE) [10,
29, 44, 46], Attribute-based encryption (ABE) [32, 47] and Predicate encryption
(PE) [45] are considered as special cases of FE.

FE schemes for general functionalities (such as general circuits, Turing ma-
chines) have been proposed in many works [7,28,30,31,48]. But they have to rely
on impractical and not well studied assumptions such as indistinguishability ob-
fuscation (IO) or multilinear maps. Attacks were found for some constructions
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of IO and multilinear maps [8, 14, 15, 17]. It is not clear if these FE schemes,
based on IO and multilinear maps, are secure or not.

From 2005, researchers started to focus on giving FE schemes more restricted
functionalities with security guaranteed by simple and well studied assump-
tions [1–3,9,51]. [1] first proposed FE schemes for inner-product (IPFE), which
were proved selective-secure under DDH and LWE assumptions. [3] improved its
work to achieve adaptive-secure under DDH, LWE and Composite residuosity
hardness assumptions. In IPFE schemes, given an encryption of vector x and
a secret key sky based on a vector y, the decryption algorithm will output the
inner-product value 〈x,y〉.

IPFE has numerous applications, such as computing the weighted mean. It
is important to make it more powerful and secure. First, we consider adding
access control to it. Similar to IBE, we can allow users specify an identity ID in
their ciphertext ct(ID,x). Each secret key sk(ID′,y) is also related to an identity
ID′. The decryption algorithm with input ct(ID,x) and sk(ID′,y) will output the
inner-product 〈x,y〉 only if ID = ID′. We call it identity-based inner-product
functional encryption (IBIPFE). There is only one work [23] that considers such
identity-based access control of FE. They proposed an unbounded inner-product
functional encryption scheme with identity-based access control as a byproduct
without giving the formal descriptions of the definitions. And the scheme is only
proven to be selective-secure in the random oracle model.

1.1 Our contributions

As the first contribution of our work, in Section 3, we formalize the IND-security
definition1 of IBIPFE, and give the first adaptive-secure IBIPFE scheme under
the DBDH assumption. As another benefit, our security proof is simpler than
the security proof in the selective case [23]. We use the fact that the master
secret key is known to the reduction at any time, then it can handle secret key
queries without knowing the challenge messages in advance. Actually, IBIPFE
can be viewed as a variation of functional encryption as follows:

F ((ID,x), (ID′,y)) =

{
〈x,y〉, If ID = ID′

⊥, otherwise

Both the plaintext and the key consist of 2 parts: an identity and a vector. So
the IND-security states that the adversary who can query the secret keys for
a set of (ID,y) cannot distinguish which of the challenge messages (ID∗,x0)
or (ID∗,x1) was encrypted under the condition that: For all pairs (ID,y) have
been queried, it must hold that F ((ID∗,x0), (ID,y)) = F ((ID∗,x1), (ID,y)).

1 Unlike traditional PKE, the simulation-based security is not always achievable for
FE [42]. So Indistinguishability-based security (IND-security) is widely used in FE
research. Generally speaking, IND-security states that the adversary who has the
secret keys for functions {fi}i∈[η] cannot distinguish which of the challenge messages
x0 or x1 was encrypted under the condition that for all i ∈ [η], fi(x0) = fi(x1).
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The main difference between selective-IND-security and adaptive-IND-security
is: in the adaptive-IND-security game, the adversary is given the master public
key at the beginning and chooses the challenge messages after the first round of
secret key queries. While in the selective-IND-security game, the adversary has
to decide the challenge messages before the generation of master public key and
master secret key.

In Sections 4 and 5, we further enhance the security of IPFE by allowing an
adversary to learn some information about the secret keys, i.e. leakage-resilience.
We extend our IBIPFE scheme under the bounded-retrieval model (BRM) [18,
24], one of the most widely used models in leakage-resilient cryptography. It
states that our scheme can be proven secure even if an adversary can obtain l
bits from a secret key sk, where l is the leakage bound and is decided by external
factors. So in the security definition of leakage-resilient IBIPFE, in addition to
secret key query, the adversary can make leakage query, in which the adversary
chooses a pair (ID,y) and a leakage function f∗, and the challenger will reply
with f∗(sk(ID,y)) as long as the bit-length of output is at most l. The adversary
can know all secret keys in the form sk(ID,·) by making secret key query when
ID 6= ID∗ (ID∗ is the challenge identity). Thus, the key issue in the leakage
query is the queries on the challenge identity ID∗. Also, the BRM requires that
all efficiency parameters other than the secret key size (such as public key size,
encryption time, decryption time and even master secret key size) only depend
on the security parameter, and not the leakage bound l.

Our leakage-resilient IBIPFE scheme and its security proof build on hash
proof system (HPS). [5, 39] showed how to use an HPS to construct leakage-
resilient PKE and IBE schemes. An HPS can be viewed as a key encapsulation
mechanism (KEM) with specific structure. A KEM allows a sender that knows
the public key, to securely agree on randomness k with a receiver possesses the
secret key, by sending an encapsulation ciphertext. A KEM consists of a key
generation algorithm to generate public key and secret key, an encapsulation
algorithm to generate a pair of ciphertext and encapsulated key, and a decapsu-
lation algorithm which uses the secret key to recover the encapsulated key from
a ciphertext.

An HPS is a KEM with the following properties: (1) It includes an invalid-
encapsulation algorithm to generate invalid ciphertexts. And the invalid cipher-
texts are computationally indistinguishable from those valid ciphertexts gener-
ated by a valid-encapsulation algorithm. (2) The output of decapsulation algo-
rithm with input a fixed invalid ciphertext and a secret key is related to the
random numbers used to generate the invalid ciphertext and the secret key. The
main benefit of using HPS to construct encryption scheme is that, when proving
the security, after switching the valid ciphertext into invalid ciphertext in the
first step, we can argue the leakage using information-theoretic analysis.

However, existing HPS schemes such as IB-HPS [5] cannot be applied to
our cases. When we build an encryption scheme from an HPS scheme, we usu-
ally use the encapsulated key as a mask to hide the plaintext in the encryption
algorithm, and recover the plaintext from the ciphertext by running the decap-
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sulation algorithm to get the encapsulated key. When we apply it to IBIPFE, if
the decapsulation algorithm of the underlying HPS still outputs the encapsulated
key directly, then the decryption of IBIPFE will reveal the plaintext vector, other
than only an inner-product value. (Recall that IBIPFE requires that the decryp-
tion result only reveals an inner-product value and nothing else. ) In order to
guarantee the security of resulting IBIPFE scheme, modifications are necessary.
We first develop the notion Identity-based inner-product hash proof system(IBIP-
HPS), which can yield an IBIPFE scheme. Different from other HPS schemes, in
an IBIP-HPS scheme, the decapsulation algorithm with input a ciphertext ctID
and a secret key sk(ID′,y) will only output an inner-product value of y and the
encapsulated key k when ID = ID′, and nothing else. Now, we can get a secure
IBIPFE from IBIP-HPS very easily, by simply using the encapsulated key as a
one-time pad to encrypt a plaintext vector.

Next, we briefly introduce a key property of IBIP-HPS: Leakage-smoothness.
Leakage-smoothness states that the distribution of encapsulated key derived
from an invalid ciphertext and a set of secret keys is almost uniform over the
key space, even if the adversary can learn at most l′ bits information from the
secret keys, where l′ is a pre-determined leakage bound. Then, we move our focus
from the leakage-resilience of IBIPFE to the leakage-smoothness of IBIP-HPS
by proving the following theorem:

Theorem 1 (informal). Given a leakage-smooth IBIP-HPS with leakage bound
l′, which satisfies the efficiency requirements of the BRM, we can obtain a
leakage-resilient IBIPFE with leakage bound l = l′

n in the BRM, where n is
the length of vectors.

Now our goal is to design a l′-leakage-smooth IBIP-HPS, which meets the
efficiency requirements of the BRM. To make it simple, we would like to design an
IBIP-HPS scheme from simple assumptions, regardless the requirements of the
leakage-smoothness and efficiency. We build an IBIP-HPS Π1 from our IBIPFE
scheme Π. The main challenge is that, the key generation algorithm in Π is
deterministic, while in IBIP-HPS, the secret key should be generated randomly.
We first choose a random number z and define a new vector y∗ by concatenating
y and z. After that, we get the secret key by running the key generation algorithm
of Π with input the new vector y∗. Thus, the secret key is related to the random
number z. Then, we study the 0-universality of the decapsulation algorithm,
where the 0-universality ensures that it is unlikely that any two distinct secret
keys for the same pair (ID,y) will decapsulate a ciphertext to the same value. The
formal definition of 0-universality is given in Definition 10. Now, we show that
we can convert Π1 into a l′-leakage-smooth IBIP-HPS that allows for arbitrarily
large leakage-bounds l′. We prove a theorem here:

Theorem 2 (informal). Given an 0-universal IBIP-HPS Π1, we can get a
l′-leakage-smooth IBIP-HPS Π2 for arbitrarily large leakage bound l′. And Π2

meets the efficiency requirements of the BRM.

To handle arbitrarily large leakage bound l′, [5] used a leakage amplification
method, which can be viewed as parallel-repetition with small public key size.
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However, it cannot be applied to our cases here. In IB-HPS, the output of the
decapsulation is already the encapsulated key, then the leakage-smoothness of
their scheme can be proved directly from the 0-universality by leftover-hashing
lemma [40]. Thus the only thing they need to do is to amplify the leakage bound
while meeting the efficiency requirements of the BRM. However, in IBIP-HPS,
the output of the decapsulation is only an inner-product value between the
encapsulated key and the vector in the secret key. In order to determine an
encapsulated key, we need at least n secret keys for n linear independent vectors.
Thus, we cannot find the relation between leakage-smoothness and universality
very easily, which is one of the most challenging part in our work.

Although the leakage amplification method cannot be applied directly, there
are some ideas we can borrow. We introduce a key-size parameter m, which gives
us flexibility in the size of secret key and will depend on the desired leakage
bound l′. And also, due to the efficiency requirements, the encapsulation will
choose only target on a small subset from {1, ...,m}, and show that the size of
the subset (denote by t) is independent of l′. Then, recall that we need n secret
keys to recover one encapsulated key. In order to finish the proof of leakage-
smoothness, the key generation will take an invertible n× n matrix Y as input
and the encapsulation algorithm will output n ciphertexts which shares the same
encapsulated key.

In the proof, we use a similar idea with approximately universal hashing
defined in [5], where we only insist that two secret keys generated by running
the key generation algorithm with the same input Y which are different enough
are unlikely to result in a same encapsulated key. Then we obtain the leakage-
smoothness by applying a variant of leftover-hash lemma, and show our scheme
meets the efficiency requirements of the BRM by giving a lower bound of t, which
is independent of the leakage bound l′.

In summary, we do the followings:
- Formalize the definitions of IBIPFE and give an adaptive-IND-secure IBIPFE
scheme Π from DBDH assumption.
- Propose the definition of IBIP-HPS and desired properties. Then, we give an
IBIP-HPS construction Π1 based on our adaptive-secure IBIPFE scheme Π.
- Construct a leakage-smooth IBIP-HPS Π2 from Π1 for arbitrarily large leakage
bound l′, while Π2 still satisfies the efficiency requirements of the BRM.
- Build a leakage-resilient IBIPFE scheme Π3 in the BRM from Π2.

1.2 Related works: Leakage-resilient cryptography

Due to the advancement of side channel attacks [33–36], traditional crypto-
graphic model, where an adversary can know nothing about the secret values,
becomes insufficient. Leakage-resilient cryptography was proposed to formalize
the security guarantees when the adversary can obtain some information of the
secret values. Lots of leakage models were proposed to measure what and how
much information of secrets the adversary can learn.

[38] introduced the first leakage model: only computation leaks information.
In this model, a function of only the bits accessed is leaked when the crypto-
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graphic system is called each time. Many cryptographic schemes were proposed
under this model, such as stream ciphers [26, 43] and signature schemes [27].
However, a famous type of side-channel attacks, cold-boot attack [33] was pro-
posed and was not captured by this model, where all memory contents can leak
information, regardless of whether it is accessed.

Relative-leakage model was proposed for these attacks. In this model, an
adversary can learn a proportion of secret values. And also, there are many
schemes were proposed under this model, such as PKE schemes [4, 39], IBE
scheme [16]. After that, Bounded-retrieval model was introduced by [18, 24]. In
this model, the amount of information can be leaked is bounded by a leakage
bound l, where l is decided by an external parameter. And it requires that the
efficiency of the system, except the length of secret key, should be independent
of the leakage bound l. Many schemes [5, 13, 25, 41, 52] were proposed under
this model. Then, Auxiliary inputs model was proposed by [21]. In this scheme,
an adversary can learn an auxiliary input h(s) of secret values s subject to the
condition that it is computationally hard to find s from h(s). Many works [19,49]
proposed different kinds of cryptographic systems under this model.

As another line of work, Continual leakage model was introduced by [12,20].
This model considers the setting that there is a notion of time periods and secret
values will be updated at the end of each time period. Here, an adversary can
only learn a bounded amount of information in each time period, but it can learn
an unbounded amount of information in all time periods. [37, 49, 50] proposed
many cryptographic systems under this model.

2 Preliminaries

Notations. Let [n] denote the set {1, . . . , n}. For vectors x and y, let x||y be
their concatenation. For a set S, define US as the uniform distribution over S.
Similarly, for an integer v ∈ N, let Uv be the uniform distribution over {0, 1}v.

2.1 Functional Encryption (FE)

We give the definition of FE and its indistinguishable security. Following [11],
we define functional encryption scheme for functionality F .

Definition 1 (FE scheme). A functional encryption scheme for functionality
F consists of 4 PPT algorithms: (Setup,KeyGen,Encrypt,Decrypt). The algo-
rithms have the following syntax.

– Setup(1λ): It takes the security parameter λ as input, and produces the mas-
ter public key mpk and the master secret key msk. The following algorithms
implicitly include mpk as input.

– KeyGen(msk, k): It uses the master secret key msk and key k ∈ K to sample
a secret key skk.

– Encrypt(x): It uses the master public key mpk and a message x ∈ X to
generate a ciphertext ctx.
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– Decrypt(skk, ctx): It takes a ciphertext ctx and a secret key skk as input and
outputs F(k, x)

We require that a FE scheme satisfies the following properties:
Correctness. For any (mpk,msk) generated by Setup(1λ), any k ∈ K and
x ∈ X , we have:

Pr

[
F(k, x) 6= γ

∣∣∣∣ skk ← KeyGen(msk, k)

ctx ← Encrypt(mpk, x), γ = Decrypt(ctx, skk)

]
≤ negl(λ) .

Indistinguishable security. We define the indistinguishable security game,
parameterized by a security parameter λ as the game between an adversary A
and a challenger in table 1. The advantage of an adversary A in the indistin-
guishable security game is defined by AdvFE-IND

FE,A (λ) := |Pr[A wins]− 1
2 |.

Table 1: FE-IND(λ)

Setup: The challenger computes (mpk,msk)← Setup(1λ) and sends mpk to the adversary
A.
Query 1: The adversary A can adaptively ask the challenger for the following queries:

Secret key query : On input k ∈ K, the challenger replies with skk.
Challenge: The adversary A chooses two vectors x0, x1 ∈ X subject to the restriction
that for all k that the adversary have make the secret key query in Query 1, it holds
that F(k, x0) = F(k, x1). The challenger chooses b ← {0, 1} uniformly at random and
computes ctb ← Encrypt(mpk, xb) and gives ctb to the adversary A.
Query 2: The adversary can make secret key query for arbitrary k as long as F(k, x0) =
F(k, x1).
Output: The adversary A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

Definition 2 (IND-secure FE). A FE scheme is IND-secure, if (1) it sat-
isfies the correctness, and (2) the advantage of any PPT adversary A in the
indistinguishable security game is AdvFE-IND

FE,A (λ) = negl(λ).

Inner-product functionality. In this paper, we are interested in the inner-
product functionality over the field Zp defined in [1]. It is a family of functionali-
ties with vector space V consisting of vectors in Zp of length n: for any y,x ∈ V,
the functionality F(y,x) = 〈y,x〉.

2.2 Bilinear groups

Our construction relies on the widely-used technique: bilinear map.

Definition 3 (Bilinear map). Let G1, G2 and GT be cyclic groups of order
p. Define function e : G1 × G2 → GT . Then e is an efficient computable (non-
degenerate) bilinear map if it is:
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1. Bilinear: ∀a, b ∈ Zp, (x1, x2) ∈ G1 ×G2, e(x
a
1 , x

b
2) = e(x1, x2)ab .

2. Non-degenerate: e does not map all pairs in G1 ×G2 to the identity in GT .
3. Efficiently computable: There’s an efficient algorithm to compute any of the

function value of e.

Let gi be the generator of Gi, for each i ∈ {1, 2, T}. Given an efficient com-
putable (non-degenerate) bilinear map e, by definition we have e(g1, g2) = gT .

We will use a generator which on input 1λ, it will efficiently return (G1,G2, p, g1, g2, e)
satisfying the above description.

[10] introduce an assumption for the case when G1 = G2, and it has been
adapted to asymmetric setting in [23]. We use the latter one and give the defi-
nition.

Definition 4 (Decisional Bilinear Diffie-Hellman Assumption). The De-
cisional Bilinear Diffie-Hellman Assumption(DBDH) Assumption in the asym-
metric case is, given (G1,G2, p, g1, g2, e) returned by our generator, no PPT ad-
versary can distinguish between the two following distributions with non-negligible

advantage:

(
ga1 , g

b
1, g

a
2 , g

c
2, g

q
T

)
,

(
ga1 , g

b
1, g

a
2 , g

c
2, g

abc
T

)
, where a, b, c, q are sampled

from Zp.

2.3 Entropy, extractors and hashing

We introduce the definition of min-entropy which measures the worst-case pre-
dictability of a random variable. Further, for a randomized function f , let f(x; r)
be the unique output of f for input x, with random coins r. For simplicity, we
will write f(x) to denote a random variable for the output of f(x; r) over the
random coins r.

Definition 5. The min-entropy of a random variable X is H∞(X) := − log(
maxx Pr[X = x]).

A generalized version from [22] is called the average conditional min-entropy:

H̃∞(X|Z) : = − log
(
Ez←Z

[
max
x

Pr [X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
,

where Z is another random variable.

Lemma 1 (Lemma 2.2 in [22]). Let X,Y, Z be random variables where Z
takes on values in a set of size at most 2l. Then H̃∞(X|(Y, Z)) ≥ H̃∞((X,Y )|Z)−
l ≥ H̃∞(X|Z)− l. In particular, H̃∞(X|Y ) ≥ H∞(X)− l.

Statistical distance and Extractors. For two random variables X,Y , we can
define the statistical distance between them as SD(X,Y ) := 1

2

∑
x |Pr[X =

x]−Pr[Y = x]|. If SD(X,Y ) ≤ ε then we write X ≈ε Y . Further, if SD(X,Y )
is negligible, we write X ≈ Y . An extractor [40] can be used to extract uniform
randomness out of a weakly-random variable which is only assumed to have
sufficient min-entropy.
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Definition 6. An efficient randomized function Ext : {0, 1}a → {0, 1}v is
a (β, ε)-extractor if for all X,Z such that X is distributed over {0, 1}a and
H̃∞(X|Z) ≥ β, we get (Z,R,Ext(X;R)) ≈ε (Z,R,Uv) where R is a random
variable for the coins of Ext.

Definition 7 (ρ-Universal Hashing). A family H, consisting of (determin-
istic) functions h : {0, 1}a → {0, 1}v, is ρ-universal hash family if for any
x1 6= x2 ∈ {0, 1}a, we have Prh←H[h(x1) = h(x2)] ≤ ρ.

[40] states that universal hash functions are good extractors in the following
leftover-hash lemma.

Lemma 2 (Leftover-Hash Lemma [40]). Assume that the family H of func-
tions h : {0, 1}a → {0, 1}v is ρ-universal hash family. Then the random extractor
Ext(x;h) = h(x), where h is uniform over H, is an (β, ε)-extractor as long as:

β ≥ v + 2 log(1/ε)− 1, ρ ≤ 2−v(1 + ε2) .

Also, we say that e is efficiently computable if given the description of e we are
able to obtain a polynomial time algorithm for computing e.

3 Adaptive-secure IBIPFE scheme

3.1 Definitions

Identity-based inner-product functional encryption. Firstly, we give
the definition of IBIPFE as follows: An IBIPFE scheme consists of 4 PPT al-
gorithms just like IBE and IPFE: (Setup,KeyGen,Encrypt,Decrypt). The algo-
rithms have the following syntax. 2

– Setup(1λ, 1n): It takes the security parameter λ and n as input, and produces
the master public key mpk and the master secret key msk. The following
algorithms implicitly include mpk as input.

– KeyGen(msk, ID,y): It uses the master secret key msk, an identity ID ∈ ID
and a vector y ∈ V with length n to sample a secret key sk(ID,y).

– Encrypt(ID,x): This is the encryption algorithm. It uses ID ∈ ID and x ∈ V
to output a ciphertext ct(ID,x).

– Decrypt(ct(ID,x), sk(ID′,y)): This is the decryption algorithm(deterministic).
It takes a ciphertext and a secret key as input and outputs the inner product:
〈x,y〉 if ID = ID′.

Here, we define a function F : (ID,V)× (ID,V)→ IP, where

F ((ID,x), (ID′,y)) =

{
〈x,y〉, If ID = ID′

⊥, otherwise

2 Here, let ID be the identity space, V be the vector space, and IP be the inner-
product value space.
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Correctness. Given msk,mpk from Setup(1λ, 1n), any ID ∈ ID, and x,y ∈ V,
we have:

Pr

[
〈x,y〉 6= γ

∣∣∣∣sk(ID,y) ← KeyGen(msk, ID,y), ct(ID,x) ← Encrypt(ID,x)

γ = Decrypt(ct(ID,x), sk(ID,y))

]
≤ negl(λ) .

Indistinguishable security. We define the indistinguishable security game,
parametrized by a security parameter λ, a parameter of vector length n, as the
game between an adversary A and a challenger C in Table 2.

Table 2: IBIPFE-IND(λ, n)

Setup: The challenger computes (mpk,msk) ← Setup(1λ, 1n) and sends mpk to the ad-
versary.
Query 1: The adversary A adaptively queries C with (ID,y) ∈ ID×V. And the challenger
C responds with sk(ID,y).
Challenge: The adversary A chooses an challenge identity ID∗ ∈ ID and two messages
x0,x1 ∈ V subject to the condition that for all (ID,y) A has queried in Query 1, it must
hold that F ((ID∗,x0), (ID,y)) = F ((ID∗,x1), (ID,y))
Query 2: The adversary A adaptively queries C with (ID,y) as long as
F ((ID∗,x0), (ID,y)) = F ((ID∗,x1), (ID,y)).
Output: The adversary A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

Note: F ((ID∗,x0), (ID,y)) = F ((ID∗,x1), (ID,y)) holds if and only if (1) ID 6= ID∗,
or (2) ID = ID∗ and 〈x0,y〉 = 〈x1,y〉.

Definition 8 (Adaptive-IND-secure IBIPFE). An IBIPFE scheme is adaptive-
IND-secure, if (1) it satisfies the correctness, and (2) the advantage of any ad-
missible PPT adversary A in the indistinguishable security game is: AdvIBIPFE-IND

IBIPFE,A (λ, n) =
negl(λ).

3.2 Adaptive-IND-secure IBIPFE scheme

Now, we present our adaptive-IND-secure IBIPFE scheme Π. Here we set IP =
Zp, V = Znp and ID = {0, 1}log p−logn. Also, the set [n] can be seen as the set

of all non-zero (0, 1)-strings with length log n (i.e. {0, 1}logn \ 0logn). For any
i ∈ [n] and ID ∈ ID, let i01 be the binary representation of i (we will use this
notion below), then ID||i01 is in fact a non-zero (0, 1)-string with length log p
(i.e. {0, 1}log p \ 0log p).

– Setup(1λ, 1n) : Pick a bilinear group BG = (G1,G2,GT , g1, g2, e, p) of prime
order p, where g1 and g2 are generators of G1 and G2, and we have gT =
e(g1, g2). Choose random numbers w, v, s, t ←R Z∗p Now we can pick a ran-

dom one-to-one function h : {0, 1}log p \ 0log p → Z∗p. And set h1 = gw1 , h2 =



Adaptive-secure IBIPFE in the BRM 11

gv2 , k1 = gs1·ht1, f(·) = v·h(·). 3 Output: mpk = (G1,G2,GT , e, g1, g2, h1, h2, k1, f),
msk = (s, t, h).

– Encrypt(mpk, ID,x) : Pick a random number r ←R Zp and set C = gr1,

D = e(h1, h2)r, and for i ∈ [n], Ei = gxiT ·e(k1, g
f(ID||i01)
2 )r. Output: ct(ID,x) =

(C,D,E1, ..., En).

– KeyGen(msk, ID,y) : Set d1 = (
∏n
i=1 g

f(ID||i01)yi
2 )−s and d2 = −t

(∑n
i=1 h(ID||i01)yi

)
.

Output: sk(ID,y) = (d1, d2).

– Decrypt(ct(ID,x), sk(ID′,t)) : Compute: IP = e(C, d1) ·Dd2 ·(
∏n
i=1E

yi
i ). Then,

compute and output the discrete logarithm loggT IP.

For simplicity we use ID||i to represent ID||i01 in the following of this paper.

Correctness. When ID = ID′, we have

IP = e(C, d1) ·Dd2 · (
n∏
i=1

Eyii )

= e

(
gr1, (

n∏
i=1

g
f(ID′||i)yi
2 )−s

)
· e(h1, h2)r(−t

∑n
i=1 h(ID

′||i)yi) · (
n∏
i=1

Eyii )

= g
−rv(s+wt)

∑n
i=1 h(ID

′||i)yi
T

n∏
i=1

(
gxiyiT g

rv(s+wt)
∑n
i=1 h(ID||i)yi

T

)
= g
〈x,y〉
T · grv(s+wt)

∑n
i=1(h(ID||i)−h(ID

′||i))yi
T = g

〈x,y〉
T .

Therefore Decrypt(ct(ID,x), sk(ID,y)) outputs 〈x,y〉.
Similar to many IPFE works based on DDH assumption and its variants, the

decryption algorithm of Π requires to compute the discrete logarithm. We can
use some methods to reduce the cost of it (see the analysis in [3]). The security
analysis follows similar arguments to [3] in that at some steps, the challenge
ciphertext is generated using msk instead of mpk. It will perfectly hide which
challenge message is encrypted as long as msk retains a sufficient amount of
entropy from the adversary’s view. We state the security in the following theorem
and the proof are shown in Supporting material A.

Theorem 3 (adaptive-IND security). The IBIPFE scheme Π described above
is adaptive-IND-secure under the DBDH assumption.

3 Here we keep function h secret and set function f to be a black box, which means
that one can only get the function value of f by making a query to the oracle, instead
of computing it directly.
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4 Identity-based Inner-product hash proof
system(IBIP-HPS)

4.1 Definitions

To construct a leakage-resilient IBIPFE scheme, we introduce the notion, IBIP-
HPS, and the required properties:
An Identity-based Inner-product hash proof system (IBIP-HPS) consists of 5
PPT algorithms: (Setup,KeyGen,Encap,Encap∗,Decap). The algorithms have
the following syntax. (ID is the identity space, V is the vector space.)

– Setup(1λ, 1n): It takes the security parameter λ and n as input, and produces
the master public key mpk and the master secret key msk. The following
algorithms implicitly include mpk as input.

– KeyGen(msk, ID,y): It uses the master secret key msk, an identity ID ∈ ID
and a vector y ∈ V with length n to sample a secret key sk(ID,y).

– Encap(ID): This is the valid encapsulation algorithm. It uses ID ∈ ID to
output a valid ciphertext ctID and a encapsulated key k ∈ V.

– Encap∗(ID): This is the invalid encapsulation algorithm. It uses ID ∈ ID to
output only an invalid ciphertext ctID.

– Decap(ctID, sk(ID′,y)): This is the decapsulation algorithm(deterministic). It
takes a ciphertext as input and outputs a functional value of the encapsulated
key and y: 〈k,y〉 if ID = ID′.

Correctness. Given msk,mpk from Setup(1λ, 1n), any ID ∈ ID, and y ∈ V,
we have:

Pr

[
〈k,y〉 6= γ

∣∣∣∣ sk(ID,y) ← KeyGen(msk, ID,y)

(ctID,k)← Encap(ID), γ = Decap(ctID, sk(ID,y))

]
≤ negl(λ) .

Valid/Invalid Ciphertext Indistinguishability. The valid ciphertexts gen-
erated by Encap and the invalid ciphertexts generated by Encap∗ should be
computationally indistinguishable, even if an adversary can obtain one secret
key per pair for at most n linear independent vectors with the challenge identity
ID∗. For an adversary A, we define the following experiment for an IBIP-HPS
Π in Table 3.

Definition 9. A PPT adversary A is admissible if in the whole experiment,
for the challenge identity ID∗, A can make at most n secret key queries in the
form (ID∗,yi), i ∈ [n], where y1, ...,yn are linear independent. Then, we say
that an IBIP-HPS Π is adaptively secure if for any admissible adversary A, the

advantage satisfies: Adv
V/I-IND
Π,A (λ, n) :=

∣∣∣∣Pr[A wins]− 1
2

∣∣∣∣ = negl(λ).

We will explain why such restriction on key queries is needed after show the
following property: Smoothness and leakage-smoothness. Intuitively, this prop-
erty is to ensure that there are many possible results for the decapsulation algo-
rithm with input an invalid ciphertext.
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Table 3: V/I-IND(λ, n)

Setup: The challenger C computes (mpk,msk) ← Setup(1λ, 1n), and gives mpk to the
adversary A,
Query 1: The adversary A adaptively queries C with (ID,y) ∈ ID × V, and C responds
with sk(ID,y).
Challenge: The adversary A chooses an arbitrary ID∗ ∈ ID, and the challenger C chooses
a random bit b ∈ {0, 1}
If b = 0, then C computes (ctID∗ ,k) ← Encap(ID∗). If b = 1, then C computes ctID∗ ←
Encap∗(ID∗).
The challenger C gives ctID∗ to the adversary A.
Query 2: The adversary A adaptively queries C with (ID,y) ∈ ID × V, and C responds
with sk(ID,y).
Output: The adversary A outputs a bit b′ ∈ {0, 1}, and A wins the game if b′ = b.

Note: In Query 1,2 the challenger computes sk(ID,y) ← KeyGen(msk, ID,y) the
first time that the pair (ID,y) is queried and responds to all future queries on the
same pair (ID,y) with the same sk(ID,y).

Smoothness and leakage-smoothness. Define a matrix Y := [y1, . . . ,yn]
consisting of n linear independent vectors. We say that an IBIP-HPS Π is smooth
if, for any fixed values of mpk,msk from Setup(1λ, 1n), any fixed Y and ID ∈ ID,
we have

SD ((ct,k), (ct,k′)) ≤ negl(λ) ,

where ct ← Encap∗(ID), k′ ← UV , and k is determined by first choosing
sk(ID,yi) ← KeyGen(msk, ID,yi) for each i ∈ [n] and then computing kT :=
[Decap(ct, sk(ID,y1)), ...,Decap(ct, sk(ID,yn))]Y

−1.
An IBIP-HPS Π is l′-leakage-smooth if, for any (possible randomized and

inefficient) function f with at most l′-bit output, we have:

SD
(
(ct, f({sk(ID.yi)}

n
i=1),k), (ct, f({sk(ID.yi)}

n
i=1),k′)

)
≤ negl(λ) ,

where ct,k′,k and each sk(ID,yi) are sampled as above.

Definition 10 (0-universal IBIP-HPS). For any fixed mpk,msk returned by
Setup(1λ), any fixed ID ∈ ID, and any fixed vector y, we let SK be the support
of all possible output of KeyGen(msk, ID,y). Then we say that an IBIP-HPS is
0-universal if, for any fixed distinct values skID 6= sk′ID, we have

Prc←Encap∗(ID)[Decap(c, skID) = Decap(c, sk′ID)] = 0 .

We also say that its decapsulation algorithm is 0-universal.

The restriction on key queries with the challenge identity in this game is due
to the fact that, like all other HPS schemes, in order to achieve the smoothness/leakage-
smoothness, the key generation algorithm should be a randomized algorithm. It
means that we will get different output from KeyGen with the same input in
different running. As a result of it, the output of the decapsulation algorithm
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with input an invalid ciphertext and a secret key is also random, which de-
pends on the random numbers used to generate the secret key. However, no
matter what random numbers are used in the secret key, the output of the
decapsulation algorithm with input a valid ciphertext and the secret key is al-
ways the real inner-product value when the identities in ciphertext and secret
key are the same. If we do not have any restriction on the key queries with
the challenge identity, the adversary can distinguish between valid and invalid
ciphertexts easily, by making use of the above properties. For example, the adver-
sary makes 2 queries: (ID∗,y1 = (1, 0, ..., 0)) and (ID∗,y2 = (2, 0, ..., 0)). If the
ciphertext ctID∗ is a valid ciphertext, then we have Decap(ctID∗ , sk(ID∗,y2)) −
Decap(ctID∗ , sk(ID∗,y1)) = 2k1 − k1 = Decap(ctID∗ , sk(ID∗,y1)). While if it is
an invalid ciphertext, then Decap(ctID∗ , sk(ID∗,y2)) − Decap(ctID∗ , sk(ID∗,y1)) 6=
Decap(ctID∗ , sk(ID∗,y1)) in general.

Instead of aiming at building an IBIP-HPS scheme which satisfies correctness,
valid/invalid ciphertext indistinguishability and leakage-smoothness at the same
time, we first consider how to construct an IBIP-HPS scheme which only satisfies
orrectness and valid/invalid ciphertext indistinguishability. We show that we
can get an IBIP-HPS scheme Π1 from our IBIPFE scheme Π easily, by adding
random numbers into key generation algorithm.

We construct an IBIP-HPSΠ1 from our adaptive-IND-secure IBIPFE scheme
Π.

– Setup(1λ, 1n) : It runs (mpk,msk)← Π.Setup(1λ, 1n+1), and outputs mpk,msk.
– KeyGen(msk, ID,y) : It samples a random number z ←R Zp and sets
y∗ = y||z. Then it runs sk0

(ID,y∗) ← Π,KeyGen(msk, ID,y∗) and outputs

sk(ID,y) := (sk0
(ID,y∗), z).

– Encap(ID) : It samples x ←R V and sets x∗ = x||0. It chooses a random
number r ←R Zp and computes ct0(ID,x∗) = Π.Encrypt(mpk, ID,x∗) with

randomness r. It outputs (ctID = ct0(ID,x∗),k = x).

– Encap∗(ID) : It samples x ←R V and sets x∗ = x||0. It chooses a random
number r, r′ ←R Zp and r 6= r′. It sets C = gr1, D = e(h1, h2)r

′
and for

i ∈ [n + 1], Ei = g
x∗i
T · e(k1, g

f(ID||i)
2 )r, where f is obtained from mpk. It

outputs ctID = (C,D,E1, ..., En+1).
– Decap(ctID, sk(ID′,y)) : It outputs Π.Decrypt(ctID, sk(ID′,y)).

Both the correctness and valid/invalid ciphertext indistinguishability of IBIP-
HPS Π1 can be easily proved from the correctness and the adaptive-IND security
of the underlying IBFE scheme Π. We have the following theorem and the proof
are shown in Supporting material B.

Theorem 4. Under DBDH assumption, the above IBIP-HPS construction Π1

satisfies the correctness requirement and valid/invalid ciphertext indistinguisha-
bility.

We also show that the decapsulation function of Π1 is a 0-universal, which
could help us to construct a leakage-smooth IBIP-HPS in the next section.
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0-Universality of the decapsulation function. For any fixed mpk,msk pro-
duced by Π1.Setup(1λ, 1n), a set of linear independent vectors {yi}ni=1 and iden-
tity ID, let ctID be some output ofΠ1.Encap∗(ID), so that ctID = (C,D,E1, ..., En+1)

for C = gr1, D = e(h1, h2)r
′
, and for i ∈ [n + 1], Ei = g

x∗i
T e(k1, g

f(ID||i)
2 )r where

r 6= r′. Then for any secret key sk(ID,y) = (d1, d2, z), which is generated by
Π1.KeyGen(msk, ID,y) with y ∈ {yi}ni=1. Then we can get:

Π1.Decap(ctID, sk(ID,y)) = Π.Decrypt(ctID, sk(ID,y))

= loggT

(
e(C, d1) ·Dd2 · (

n+1∏
i=1

E
y∗i
i )

)

= loggT

(
e(gr1, (

n+1∏
i=1

g
f(ID||i)y∗i
2 )−s) · e(h1, h2)r

′(−t
∑n+1
i=1 h(ID||i)y

∗
i ) · (

n+1∏
i=1

E
y∗i
i )

)
= loggT

(
g
−v(sr+twr′)(

∑n+1
i=1 h(ID||i)y

∗
i )

T · g
∑n+1
i=1 x

∗
i y
∗
i

T · grv(s+wt)(
∑n+1
i=1 h(ID||i)y

∗
i ))

T

)
= loggT

(
g
〈x,y〉
T · gwvt(r−r

′)(
∑n+1
i=1 h(ID||i)y

∗
i ))

T

)
= 〈k,y〉+ wvt(r − r′)

n∑
i=1

h(ID||i)yi + wvt(r − r′)h(ID||(n+ 1))z .

(1)
From r 6= r′, we can get that ifΠ1.Decap(ctID, sk(ID,y)) = Π1.Decap(ctID, sk

′
(ID,y))

and sk(ID,y), sk
′
(ID,y) are outputs of Π1.KeyGen(msk, ID,y), then sk(ID,y) =

sk′(ID,y). This implies 0-universality of the decapsulation function.

4.2 leakage-smooth IBIP-HPS

In this section, we show how to construct an l′-leakage-smooth IBIP-HPS, for
arbitrarily large values of l′, meeting the efficiency requirements of the BRM.
We start with the IBIP-HPS scheme Π1 = (Π1.Setup, Π1.KeyGen, Π1.Encap,
Π1.Encap∗, Π1.Decap) and compile it into a new IBIP-HPS scheme Π2 =
(Π2.Setup, Π2.KeyGen, Π2.Encap, Π2.Encap∗, Π2.Decap).

Before showing our construction, we introduce our main idea of leakage am-
plification. In order to tolerate arbitrarily large leakage l′, we introduce a key-size
parameter m and map each secret key in Π2 into m secret keys generated by
Π1. And m will depend on the desired leakage parameter l′. Recall that the en-
capsulated key k in the definition of leakage-smoothness is recovered by n secret
keys for n linear independent vectors. In the proof of leakage-smoothness, we
need to use the same random numbers to generate the n secret keys for each yi.
Thus, the key generation algorithm will take n linear independent vectors (an
invertible matrix Y ) as input.

In order to meet the efficiency requirements, the encapsulation and decapsu-
lation algorithms should be independent of m. So they will target only a small
subset of t-out-of-m of the secret keys. The encapsulation algorithm will choose t
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random indices from {1, ...,m} to generate t ciphertexts. And the decapsulation
algorithm will read only the corresponding t secret keys. Finally, since the key
generation algorithm will output n secret keys for n vectors and one identity ID′,
the encapsulation algorithm will also run n times to get n ciphertexts. These n
ciphertexts share one identity ID and one encapsulated key k. If ID = ID′, then
the i-th ciphertext can be decapsulated by the i-th secret key.

IBIP-HPS construction. LetΠ1 = (Π1.Setup, Π1.KeyGen, Π1.Encap, Π1.Encap∗,
Π1.Decap) be an IBIP-HPS with identity space ID1, vector space V and secret
key randomness space R.

For simplicity, we use sk(ID,y) = Π1.KeyGen(msk, ID,y, z′) to denote that
sk(ID,y) is generated by computing Π1.KeyGen(msk, ID,y) with random value z′

(setting z = z′ in Π1.KeyGen), and use (ctID,k) = Π1.Encap(ID,x′) to denote
that (ctID,k) is generated by computing Π1.Encap(ID) with vector x′ (setting
x = x′ in Π1.Encap).
Let H : ID2 × [m]× [n]→ ID1 be a one-to-one function for some set ID2.
DefineΠ2 = (Π2.Setup, Π2.KeyGen, Π2.Encap, Π2.Encap∗, Π2.Decap) with iden-
tity space ID2 as follows:

– Setup(1λ, 1n): This is the same as Π1.Setup.
– KeyGen(msk, ID, Y ): Prase Y = [y1, ...,yn]. Sample z1, ..., zm ←R R. For i ∈

[n], j ∈ [m], ski,j is generated by computingΠ1.KeyGen(msk, H(ID, j, i),yi, zj).
Set sk(ID,yi) = (ski,1, ..., ski,m) for i ∈ [n]. It outputs

sk(ID,Y ) := (sk(ID,y1), ..., sk(ID,yn)) .

– Encap(ID): First it samples a vector k = (k1, ..., kn) ∈ V. This algorithm
will run the following steps for n times. In step τ :
(1) Choose t random indices α[τ ] = (α1[τ ], ..., αt[τ ]) ← [m]t, and β[τ ] =
(β1[τ ], ..., βt[τ ])← Ztp.
(2) For j ∈ [t], sample k∗j [τ ] = (k∗j1[τ ], ..., k∗jn[τ ])← V, s.t.

∑t
j=1 βj [τ ]k∗ji[τ ] =

ki, i ∈ [n].
(3) For j ∈ [t], compute (ctj [τ ],k∗j [τ ])← Π1.Encap(H(ID, αj [τ ], τ),k∗j [τ ]).
It outputs

ctID := ({ct1[τ ], ..., ctt[τ ],α[τ ],β[τ ]}nτ=1),k .

For simplicity, we just omit the subscription ID in each term of ctID, when
we only consider one specified ID.

– Encap∗(ID): First it samples a vector k = (k1, ..., kn) ∈ V. This algorithm
will run the following steps for n times. In step τ :
(1) Choose t random indices α[τ ] = (α1[τ ], ..., αt[τ ]) ← [m]t, and β[τ ] =
(β1[τ ], ..., βt[τ ])← Ztp.
(2) For j ∈ [t], sample k∗j [τ ] = (k∗j1[τ ], ..., k∗jn[τ ])← V, s.t.

∑t
j=1 βj [τ ]k∗ji[τ ] =

ki, i ∈ [n].
(3) For j ∈ [t], compute ctj [τ ]← Π1.Encap∗(H(ID, αj [τ ], τ),k∗j [τ ]).
It outputs

ctID := ({ct1[τ ], ..., ctt[τ ],α[τ ],β[τ ]}nτ=1) .
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– Decap(ctID, sk(ID,yτ )): For any τ ∈ [n], prase sk(ID,yτ ) = (skτ,1, ..., skτ,m).
For j ∈ [t], compute γj [τ ] := Π1.Decap(ctj [τ ], skτ,αj [τ ]). Then, it outputs∑t
j=1(βj [τ ]γj [τ ]).

The correctness and valid/invalid ciphertext indistinguishability of Π2 can be
easily extended from such properties of Π1, and they are shown in Supporting
material C.1.
Efficiency. We will show that Π2 meets the efficiency requirements of the BRM
by giving a lower bound of t, which is independent of the leakage bound l′ in
the proof of the leakage-smoothness.
leakage-smoothness. Firstly, in Supporting material C.2, we show that the
decapsulation algorithm of Π2 is not 0-universal, so we cannot directly obtain
the leakage-smoothness by the leftover-hash lemma(Lemma 2).

We try to relax the condition in the definition of universality. We use a similar
idea as in [5], where we only insist that sk(ID,Y ) and sk′(ID,Y ) are different enough
so that they are unlikely to result in the same k. More precisely, we state the
following theorem, and will prove it in Supporting material C.3.

Theorem 5. For any ε > 0, there exists some setting of η = O(log p), so that
for any polynomial m(λ), the above construction of Π2 from Π1 is l′-leakage-
smooth as long as: l′ ≤ (1− ε)m log p− n log p− 2λ.

5 Leakage-resilient IBIPFE in the BRM

Here, we define the security for an IBIPFE scheme, which is resistant to key
leakage attacks in the Bounded-retrieval model (BRM). Then we show how to
construct such an IBIPFE scheme from an leakage-smooth IBIP-HPS we pre-
sented in the above section. Our security notion only allows leakage attacks
against the secret keys of the various functions, but not the master secret key.
And we only allow the adversary to perform leakage attacks before seeing the
challenge ciphertext. As shown in [4, 6, 39], this limitation is inherent to en-
cryption schemes since otherwise the leakage function can simply decrypt the
challenge ciphertext and output its first bit.

5.1 Definitions

Recall that in our leakage-smooth IBIP-HPS scheme, the encapsulation algo-
rithm will output n ciphertexts sharing the same encapsulated key k. The key
generation algorithm will also output n secret keys for n vectors, and the i-th
ciphertext can be decapsulated by the i-th secret key. But the input of IBIPFE’s
key generation algorithm contains only one vector, instead of n vectors, so it
cannot output n secret keys in one round. And actually we only need one secret
key to get the decryption result 〈k,y〉 since all n ciphertexts share the same
encapsulated key k. Therefore, in our leakage-resilient IBIPFE scheme, we will
allow the user to choose an index τ ∈ [n] in the key generation algorithm to
indicate which ciphertext it wants to decrypt with this secret key. It means that
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the syntax of Setup,Encrypt,Decrypt is the same as that in IBIPFE (Section
3.1), and KeyGen has the following syntax:
sk(ID,y,τ) ← KeyGen(msk, ID,y, τ): The key generation algorithm generates the
secret key sk(ID,y,τ), which can decrypt the τ -th ciphertext output by Encrypt(ID,x).

Indistinguishable security with key leakage. We define the indistinguish-
able security game, parametrized by a security parameter λ, a parameter of
vector length n and a leakage parameter l, as the following game between an
adversary A and a challenger in Table 4. The advantage of an adversary A in
the security game is AdvIBIPFE-IND

IBIPFE,A (λ, l) := |Pr[A wins]− 1
2 |.

Table 4: IBIPFE-IND(λ, n)

Setup: The challenger C computes (mpk,msk) ← Setup(1λ, 1n) and sends mpk to the
adversary A. The challenger keeps a list RID to store the random numbers which is
sampled in leakage-query stage.
Query 1: The adversary A can adaptively ask the challenger for:
Secret key query: On input an identity ID, a vector y and an index τ , the challenger replies
with sk(ID,y,τ) ← KeyGen(msk, ID,y, τ).
Leakage query: On input an identity ID, a vector y and a PPT function f∗, if there is no
tuple (ID,y, ·) has been queried to leakge query before, the challenger first check whether
ID is in the list RID:

– If it is not, then the challenger first runs sk(ID,y,1) ← KeyGen(msk, ID,y, 1), then store
the tuple (ID, r, 1) in the list RID, where r denotes the random numbers sampled by
KeyGen(msk, ID,y, 1).

– If ID is in RID, then the challenger reads and deletes the tuple (ID, r, τ) from RID

and generates sk(ID,y,τ+1) with the randomness r, and puts (ID, r, τ + 1) into RID.

Then the challenger replies with f∗(sk(ID,y,·)) if
∑
f∈{f ′}(ID,y)∪{f∗}

|f(sk(ID,y,·))| ≤ l,

where {f ′}(ID,y) denotes the set of leakage functions that the adversary have queried on the
secret key sk(ID,y,·), and |f(sk(ID,y,·))| is the bit-length of the function value f(sk(ID,y,·)).
Challenge: The adversary A chooses an challenge identity ID∗ ∈ ID and two messages
x0,x1 ∈ V subject to the conditions that (1) ID∗ never appeared in any secret key query
(2) There are at most n different vectors {yi}ni=1 appeared in leakage query in the form
(ID∗,yi, f

∗) and these n vectors should be linear independent. The challenger chooses
b ∈ {0, 1} uniformly at random and returns ct← Encrypt(mpk, ID∗,xb) to the adversary.
Query 2: The adversary A adaptively makes secret key query with (ID,y) as long as
ID 6= ID∗

Output: The adversary A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

Notes: a) For secret key queries in Query 1 and 2, the challenger computes
sk(ID,y,τ) ← KeyGen(msk, ID,y, τ) only in the first time that the tuple (ID,y, τ)
is queried and responds to all future queries on the same tuple (ID,y, τ) with the
same sk(ID,y,τ).
b) For leakage queries in Query 1, the challenger computes sk(ID,y,τ) ←
KeyGen(msk, ID,y, τ) only in the first time that the tuple (ID,y, ∗) is queried
and responds to all future queries on the tuples (ID,y, ∗) with the same secret key.
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We now give some explanation about the definition. The restrictions of the
definition come from the definitions and proofs of properties of IBIP-HPS. Recall
that there are only 3 items in the definition of leakage-smoothness: ct, f({skID,yi}ni=1),k.
The secret keys {skID,yi}ni=1 used to compute k do not appear in the equation
directly. In order to rely our security of Π3 on the leakage smoothness of Π2, for
the secret keys used to compute k (we need n secret keys of n linear independent
vectors to determine a k), the adversary can only know a functional value f(·),
instead of the secret keys. Thus, we only allow the adversary to perform leakage
queries on the challenge identity ID∗ and arbitrary vector y, instead of secret
key queries on ID∗ and y subject to the condition that 〈x0,y〉 = 〈x1,y〉.

From the definition of valid/invalid ciphertext indistinguishability in IBIP-
HPS, the adversary can make one key query for the challenge identity ID∗ with
an n × n invertible matrix. So we also restrict that there are at most n differ-
ent linear independent vectors appearing in the leakage queries with the form
(ID∗,y, f∗). And such n vectors mentioned above are generated from the same
random numbers and are corresponding to the 1-th,...,n-th ciphertexts respec-
tively.
Remark on stateful key authority. Similar with [5], in the query stage of
our security game, some secret keys are computed only once and reused sub-
sequently. In reality, this requires that key authority that issues secret keys is
stateful, and caches the secret keys that it computes. As the analysis in [5], this
requirement can be overcome easily by adding a pseudo-random function to the
master secret key.

Definition 11 (Leakage-resilient IBIPFE). An IBIPFE scheme is l-leakage-
resilient, if (1) it satisfies the correctness, and (2) the advantage of any admis-
sible PPT adversary A in the indistinguishable security game with leakage l
(defined in Table 4) is AdvIBIPFE-IND

IBIPFE,A (λ, n, l) = negl(λ). We define the leakage

ratio of the scheme to be µ = l
|sk(ID,y,τ)|

, where |sk(ID,y,τ)| is the number of bits

needed to efficiently store a secret key sk(ID,y,τ).

Definition 12 (leakage-resilient IBIPFE in the BRM). We say that an
IBIPFE scheme is adaptively leakage-resilient in the bounded-retrieval model
(BRM), if the scheme is adaptive-secure, and the master public key size, mas-
ter secret key size, ciphertext size, encryption time, and decryption time (and
the number of secret-key bits read by decryption) are independent of the leakage-
bound l. More formally, there exist polynomials mpksize,msksize, ctsize, encTime,
decTime, such that, for any polynomial l and any (mpk,msk)← KeyGen(1λ, 1n, 1l),
x ∈ V, ctx ← Encrypt(mpk,x), the scheme satisfies:

– Master public key size is |mpk| ≤ O(mpksize(λ)), master secret key size is
|msk| ≤ O(msksize(λ)), and ciphertext size is |ct(|ID|,x)| ≤ O(ctsize(λ, |ID|, |x|)).

– Run-time of Encrypt(mpk, ID,x) is ≤ O(encTime(λ, |ID|, |x|)).
– Run-time of Decrypt(sk(ID,y), ct(ID,x)), and the number of bits of sk(ID,y)

accessed, are ≤ O(encTime(λ, |ID|, |x|)).
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5.2 Construction of Leakage-resilient IBFE for inner-product

Given an leakage-smooth IBIP-HPS schemeΠ2 = (Setup,KeyGen,Encap,Encap∗,
Decap) where the vector space is V, we construct a leakage-resilient IBIPFE
scheme with the same vector space V. We show our construction in Table 5.

Table 5: Leakage-resilient IBIPFE scheme Π3.

Setup(1λ, 1n): The Setup procedure is the same as Π2.Setup.
KeyGen(msk, ID,y, τ): It chooses n−1 random vectors y1, ...,yτ−1,yτ+1, ...,yn, such that
Y = [y1, ...,yτ = y, ...,yn] is a n× n invertible matrix. It gets (sk(ID,y1), ..., sk(ID,yn))←
Π2.KeyGen(msk, ID, Y ) and returns sk(ID,y,τ) = sk(ID,yτ ).
Encrypt(ID,x): It computes (ctID,k)← Π2.Encap(ID). It sets c1 = ctID and c2 = k + x.
And output ctID,x = (c1, c2).
Decrypt(ct(ID,x), sk(ID,y)): Parse ct(ID,x) = (c1, c2) and output y · c2 −
Π2.Decap(ctID, sk(ID,y,τ)).

Theorem 6. If we start with an l′-leakage-smooth IBIP-HPS Π2, then the con-
struction in Table 5 yields a l = l′

n -leakage-resilient IBIPFE.

We use a series of games argument in our security analysis, which begins with the
real security game and ends with a game whose challenge ciphertext is indepen-
dent of the bit b chosen by the challenger. And these games are indistinguishable
from each other. The details of proof of Theorem 6 are shown in Supporting ma-
terial D.

Theorem 7. Using the l′-leakage-smooth IBIP-HPS construction Π2, we can
get an l-leakage-resilient IBIPFE scheme in the BRM with vector space V = Znp
and it satisfies:
(1) The master public-key size and the master secret-key size are the same as in
Π2, and are independent of l.
(2) The size of the ciphertext and the number of secret-key bits read by decryption
are the same as in Π2, both of which are independent of l.
(3) Encryption time consists of the Encap time of Π2 and the time of one vector
addition operation with length n. Decryption time consists of the Decap time of
Π2, the time of inner-product operation with vector length n, and a subtraction.
Both the encryption time and decryption time are independent of l.
(4) The leakage ratio is µ = 1−ε

3n , for sufficiently large values of the leakage-
parameter l.

Proof. The first 3 statements are easy to check from the construction. For the

leakage ratio, by Theorem 5, we have l = l′

n ≤
(1−ε)m log p−n log p−2λ

n . From it we

can get the lower bound of m is that m ≥ l′+n log p+2λ
(1−ε) log p . Then the leakage ratio

for a given l is defined as:

µ =
l

|sk(ID,y,τ)|
=

l

3m log p
=

(1− ε)l
3nl + 3n log p+ 6λ

.

For sufficiently large l, the ratio is approximately 1−ε
3n .
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8. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguishabil-
ity obfuscations of circuits over ggh13. In: LIPIcs-Leibniz International Proceedings
in Informatics. vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

9. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Annual In-
ternational Cryptology Conference. pp. 67–98. Springer (2017)

10. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: An-
nual international cryptology conference. pp. 213–229. Springer (2001)

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Theory of Cryptography Conference. pp. 253–273. Springer (2011)

12. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: Public-key cryptography resilient to continual memory leakage. In: 2010
IEEE 51st Annual Symposium on Foundations of Computer Science. pp. 501–510.
IEEE (2010)

13. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R., Walfish, S.: Intrusion-resilient
key exchange in the bounded retrieval model. In: Theory of Cryptography Confer-
ence. pp. 479–498. Springer (2007)

14. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 278–307. Springer (2017)

15. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
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A Adaptive IND-security of IBIPFE Π (Proof of
Theorem 3).

Proof. We have shown the correctness of our scheme, so we only need to show
that the advantage of any admissible PPT adversary A in the indistinguishable
security game (defined in Table 2) is negligible.

The proof uses a sequence of games which begins with the real indistinguish-
able security game and ends with a game where the adversary has no advantage
at all. For i ∈ {0, 1, 2}, we use Wi to denote the event that the adversary wins
in Game i.

Game 0: This is the real game. In this game, the adversary A is given
mpk ← Π.Setup(1n, 1λ). And after the Query 1 stage, A chooses two vectors
x0,x1 and one challenge identity ID∗. ThenA obtains an encryption of (ID∗,xb),
for some random b ← {0, 1}. For any pair (ID,y) submitted to the secret key
query, it must be the case that F ((ID∗,x0), (ID,y)) = F ((ID∗,x1), (ID,y)).

Game 1: In this game, we modify the generation of the challenge ciphertext
ct(ID∗,xb) = (C,D,E1, ..., En) as follows. The challenger C first computes

C = gr1, D = e(h1, h2)r,

for randomly chosen r ←R Zp. Then C uses msk to compute

Ei = gxiT · e(C
s, g

f(ID∗||i)
2 ) ·Dth(ID∗||i), i ∈ [n].

It is easy to be verified that the challenge ciphertext ct(ID∗,xb) has the same
distribution as in Game 0. So we have Pr[W0] = Pr[W1].

Game 2: In this game, we modify the generation of the challenge ciphertext
again. C first samples two random number r, r′ ←R Zp and sets

C = gr1, D = e(h1, h2)r+r
′
, Ei = gxiT · e(C

s, g
f(ID∗||i)
2 ) ·Dth(ID∗||i), i ∈ [n].

Now we show that |Pr[W2]−Pr[W1]| ≤ AdvDBDH
C (λ), which means that if A can

distinguish between Game 1 and Game 2, then we can construct an adversary
B to break the DBDH assumption. B receives a DBDH tuple (ga1 , g

b
1, g

a
2 , g

c
2, g

q
T ),

and its task is to distinguish whether q = abc or q is randomly chosen from
Zp. B sets C = ga1 , h1 = gb1, h2 = gc2, D = gqT and sends mpk and the challenge
ciphertext to A. When answering secret key queries, B computes d1 by d1 =

(
∏n
i=1 h

h(ID||i01)yi
2 )−s = (

∏n
i=1 g

f(ID||i01)yi
2 )−s. If A outputs that the ciphertext

is generated in Game 1 (which means D = e(h1, h2)r = e(g1, g2)abc = gabcT ), then
B outputs q = abc. Otherwise B outputs: q is randomly chosen from Zp.

The last thing we have to prove is that the challenge ciphertext in Game 2
perfectly hides b ∈ {0, 1}, so that Pr[W2] = 1

2 . Firstly, we have that for i ∈ [n],

Ei = gxiT · e(C
s, g

f(ID∗||i)
2 ) ·Dth(ID∗||i)

= gxiT · g
rsvh(ID∗||i)
T · g(r+r

′)wvth(ID∗||i)
T
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= g
xi+r

′wvth(ID∗||i)
T · grv(s+wt)h(ID

∗||i)
T .

This means that a PPT adversary can only infer zb = xb + r′wvthID∗ , where
hID∗ = (h(ID∗||1), ..., h(ID∗||n)) from the challenge ciphertext in Game 2.

We define x = (x0 − x1) mod p and deterministically generate a Zp-basis

Yt ∈ Zn×(n−1)p of the (n − 1)-dimensional subspace x⊥ = {y ∈ Znp |〈x,y〉 = 0
mod p}. We define the invertible matrix

Y = [Yt,x
′] ∈ Zn×np ,

where x′ is a vector outside the subspace x⊥ which we also choose in a deter-
ministic way. Since all the columns of matrix Y are deterministically generated
from x ∈ Znp , they are known to A. Thus, it suffices to prove that Y T · zb ∈ Znp
is information-theoretically independent of b ∈ {0, 1} to prove that zb does not
leak anything about the value of b either. The first n− 1 elements of Y T · zb are
clearly independent of b since we have Y Tt x0 = Y Tt x1 by construction. Now, we

are left with

[
〈xb,x′〉+ r′wvt〈hID∗ ,x

′〉
]

mod p.

Let (s0, t0,h
0
ID∗) ∈ Zp×Zp×Znp denote an arbitrary tuple of vectors satisfying

k1 = gs01 h
t0
1 , and

sk(ID∗,yi) =

(
d1 := (

n∏
j=1

g
vh0(ID∗||j)yij
2 )−s0 , d2 := −t0

( n∑
j=1

h0(ID∗||j)yij
))
,

for all secret key queries with {(ID∗,yi)}n−1i=1 . Since all secret key queries with
challenge identity ID∗ involve vectors yi in x⊥, so the distribution of hID∗ is
{h0

ID∗ + µx mod p|µ ∈ Zp} in the adversary’s view. Then the conditional dis-
tribution of r′wvt〈hID∗ ,x

′〉 mod p is

D = {r′wvt(〈h0
ID∗ ,x

′〉+ µ〈x,x′〉) mod p|µ ∈ Zp}.

Since 〈x,x′〉 6= 0 by construction, so D is the uniform distribution over Zp.
Further, since r′ = 0 only happens with only negligible probability, the term
r′wvt〈hID∗ ,x

′〉 mod p perfectly hides 〈x′,xb〉 in the inner product 〈x′, zb〉
mod p.

B Analysis of IBIP-HPS Π1 (Proof of Theorem 4)

Proof. Correctness. From the correctness of Π, when ID = ID′, we have

Π1.Decap(ctID, sk(ID′,y)) = Π.Decrypt(ctID, sk(ID′,y))

= 〈x∗,y∗〉
= 〈x||0,y||z〉
= 〈x,y〉 = 〈k,y〉 .



26 L. Zhang et al.

Valid/Invalid ciphertext indistinguishability. We show how to use an
adversary A, which can distinguish valid and invalid ciphertexts, to construct
an adversary B, which can distinguish whether q = abc or q is randomly chosen
in the DBDH assumption.
B receives a DBDH tuple (ga1 , g

b
1, g

a
2 , g

c
2, g

q
T ), and its task is to distinguish

whether q = abc or q is randomly chosen from Zp. B sets C = ga1 , h1 = gb1, h2 =
gc2, D = gqT and sends mpk and the challenge ciphertext to A. If A outputs
D = e(h1, h2)r = e(g1, g2)abc = gabcT (which means it is a valid ciphertext), then
B outputs q = abc. Otherwise B outputs that q is randomly chosen from Zp.

C Analysis of leakage-smooth IBIP-HPS Π2

C.1 Correctness and valid/invalid ciphertext indistinguishability

Correctness. For the correctness, for any ID ∈ ID2, Y = [y1, ...,yn] ∈ V,
y ∈ {y1, ...,yn} and any correctly generated mpk,msk, sk(ID,y), if a ciphertext
ctID = ({ct1[τ ], ..., ctt[τ ],α[τ ],β[τ ]}nτ=1) is generated by Π2.Encap(ID), then we
have: For any τ ∈ [n]:

Π2.Decap(ctID[τ ], sk(ID,yτ )) =

t∑
j=1

(βj [τ ]γj [τ ])

=

t∑
j=1

(
βj [τ ]

n∑
i=1

k∗ji[τ ]yτ,i

)

=

t∑
j=1

n∑
i=1

yτ,iβj [τ ]k∗ji[τ ]

=

n∑
i=1

yτ,i

t∑
j=1

βj [τ ]k∗ji[τ ]

=

n∑
i=1

yτ,iki = 〈yτ ,k〉 .

Valid/Invalid ciphertext indistinguishability. When talking about the
valid/invalid ciphertext indistinguishability of Π2, we edit the definition of ad-
missible adversary in Definition 9. The input of Π2.KeyGen is an n× n matrix
instead of a vector with length n. So here we allow the adversary to make key
query for the challenge identity with one n × n invertible matrix, instead of
at most n linear independent vectors. Thus, the valid/invalid ciphertext indis-
tinguishability of Π2 can be easily extended from the valid/invalid ciphertext
indistinguishability of Π1.
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C.2 Universality of the decapsulation function in Π2.

Here, we consider the universality of decapsulation function in Π2. Follow the
same routine as Equation (1), for an invalid ctID we can obtain that for each
j ∈ [t], τ ∈ [n]:

γj [τ ] = 〈k∗j ,yτ 〉+ wvt(rj [τ ]− r′j [τ ])

n∑
i=1

u[H(ID, αj [τ ], τ)||i]yτ,i

+ wvt(rj [τ ]− r′j [τ ])u[H(ID, αj [τ ], τ)||(n+ 1)]zαj [τ ] .

Here rj [τ ] and r′j [τ ] are from the invalid ciphertext ctj [τ ], and yτ,i is the i-th
term of yτ . Therefore the result of Π2.Decap(ctID, sk(ID,yτ )) is:

t∑
j=1

βjγj [τ ] = 〈k,yτ 〉+

t∑
j=1

βj [τ ]

(
wvt(rj [τ ]− r′j [τ ])

n∑
i=1

u[H(ID, αj [τ ], τ)||i]yτ,i
)

+

t∑
j=1

βj [τ ]wvt(rj [τ ]− r′j [τ ])u[H(ID, αj [τ ], τ)||(n+ 1)]zαj [τ ] .

Given invertible Y = [y1, . . . ,yn] we still have:

kT = [Π2.Decap(ctID, sk(ID,y1)), . . . ,Π2.Decap(ctID, sk(ID,yn))]Y
−1 .

We can take it as a function of ctID and sk(ID,Y ) and use notation k(ctID, sk(ID,Y )).
Unfortunately, we cannot directly show that the hash familyH := {k(ctID, ·)|ctID ←
Π2.Encap∗(ID)} is 0-universal.

In fact, note that for each i ∈ [n], sk(ID,yi) shares the same random vector
z = (z1, . . . , zm). From our construction, sk(ID,Y ) and sk′(ID,Y ) only differ in z
and z′. For example, if z and z′ only differ in one position, say, α∗, then:

k(ctID, sk(ID,Y )) = k(ctID, sk
′
(ID,Y )) ,

for any ctID that never chooses α∗ in any of the vector α[τ ]. This will happen
with high probability.

C.3 Leakage-smoothness of Π2 (Proof of Theorem 5)

We first introduce the new notion approximate universal hashing and a vari-
ant leftover-hash lemma from [6]. Then we prove Theorem 5. Let Σ be some
alphabet.

Definition 13 (Approximately Universal Hashing [6]). A function family
H, consisting of functions h : Σm → Γ , is called (δ, τ)-approximately universal
if for all x, x′ ∈ Σm with dH(x, x′) ≤ δm we have Prh←H[h(x) = h(x′)] ≤ τ ,
where dH(·, ·) is the Hamming metric.
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Theorem 8 (Approximate Leftover-hash Lemma [6]). Assume that H is
(δ, τ)-approximately universal. Let q = |Σ|, v = log |Γ |. Let δ ∈ [ 1

m , 1 −
1
q ].

Let X,Z be arbitrary random variables where X is distributed over Σm and let
β′ := H̃∞(X|Z). Let h be uniformly random over H. Then:

SD

(
(h, Z, h(X), (h, Z, UΓ ))

)
≤ 1

2

√
2Hq(δ)m log(q)+v−β′ + τ2v − 1

where Hq is q-ary Shannon entropy function. In particular, the statistical dis-
tance above is at most ε as long as:

β′ ≥ Hq(δ)m log q + v + 2 log
1

ε
− 1, and τ ≤ 1

2v
(1 + ε2) ,

where Hq(x) := x logq(q−1)−x logq x− (1−x) logq(1−x) is the q-ary Shannon
entropy function.

Now, we move to prove the l′-leakage-smoothness of Π2. First fix an invertible
Y . For simplicity, we define c := ctID = ({ct1[τ ], ..., ctt[τ ],α[τ ],β[τ ]}nτ=1) ←
Π2.Encap ∗ (ID), x := sk(ID,Y ), and xi := sk(ID,yi) := (ski,1, . . . , ski,m) is a
sample of secret key for yi in Π2. Let xi,j := ski,j , j ∈ [m]. Then

kT (c, x) = [Π2.Decap(c, x1), . . . ,Π2.Decap(c, xn)]Y −1 .

Π2.Decap(c, xi) =

t∑
j=1

βj [i]Π1.Decap(ctj [i], xi,αj [i]) .

Let Fj,i : Zp → Zp be a hash function family{
fctj [i](·) := Π1.Decap(ctj [i], ·)

∣∣∣∣ctj [i]← Π1.Encap(H(ID, αj [i], i),k
∗
j [i])

}
.

In Section 3 we already show that the family Fj,i is 0-universal.
Further, set gβ : Ztp → Zp, gβ(d) = 〈β,d〉. The family G := {gβ |β ← Zηp},

and it’s 1
p -universal.

Now we write kT (c, x) as a hash function

hc(x) = (gβ[1](fct1[1](x1,α1[1]), ..., fctt[1](x1,αt[1])), ...,

gβ[n](fct1[n](xn,α1[n]), ..., fctt[n](xn,αt[n])))Y
−1 .

Let Φ := {hc(·)|c ← Π2.Encap∗(ID)}. Note that it’s equivalently a family of
Zmp → Znp , for any fixed invertible Y . This is because the random variable x
given Y is determined by vector z ∈ Zmp . Firstly, we show that the family Φ is
approximately universal in the following lemma.

Lemma 3. Let F be a family of ρ-universal hash functions and G be a family
of ρ′-universal hash functions, then the above family Φ is (δ, φ)-approximately
universal for any δ > 0 and φ ≤ ((1− δ)t + ρ′)n.
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Proof. For any x, x′ ∈ Znp , where dH(x, x′) ≤ δm, we have

Prhc←Φ[hc(x) = hc(x
′)]

=

n∏
i=1

Prhc←Φ

[
gβi

(
fct1[i](xi,α1[i]), ..., fctt[i](xi,αt[i])

)
= gβi

(
fct1[i](x

′
i,α1[i]

), ..., fctt[i](x
′
i,αt[i]

)

]

≤
n∏
i=1

(
Pr

[(
fct1[i](xi,α1[i]), ..., fctt[i](xi,αt[i])

)
=
(
fct1[i](x

′
i,α1[i]

), ..., fctt[i](x
′
i,αt[i]

)
)]

+ ρ′
)

≤
n∏
i=1

( t∑
j=0

Pr

[
dH
(
(xi,α1[i], ..., xi,αt[i]), (x

′
i,α1[i]

, ..., x′i,αt[i]) = j
)]
ρj + ρ′

)

≤
n∏
i=1

(

t∑
j=0

(Cjt δ
j(1− δ)t−jρj) + ρ′)

≤
[
(1− δ(1− ρ))t + ρ′

]n
From the constructions of Π1 and Π2, we can know that ρ = 0, ρ′ = 1

p ,

so we can get φ ≤ ((1 − δ)t + 1
p )n. From Theorem 8, in order to ensure that

SD
(
(c, f(sk(ID,Y )),k), (c, f(sk(ID,Y )),k

′)
)
≤ 2−λ, we should have φ ≤ 1

pn (1 +

(2−λ)2). So we get lower bounds of t and β′ := H̃∞(sk(ID,Y )|f(sk(ID,Y ))) are:

t ≥ log p− 1

log 1
1−δ

, and β′ ≥ Hp(δ)m log p+ n log p+ 2λ− 1

.
In our case, β′ ≥ H∞(sk(ID,Y )) − l′ = m log p − l′(Lemma 1). For any con-

stants ε > 0, there exists some constant c ≥ 0, such that for any n ≥ 1, p ≥
2, t ≥ c log p,m ≥ 0, we have that: If m log p − l′ ≥ εm log p + n log p + 2λ,
then SD

(
(c, f(sk(ID,Y )),k), (c, f(sk(ID,Y )),k

′) ≤ 2−λ. It means that Π2 is an
l′-leakage-smooth IBIP-HPS for l′ = (1− ε)m log p− n log p− 2λ.

D Security of leakage-resilient IBIPFE Π3(Proof of
Theorem 6)

Proof. The correctness of decryption follows by the correctness of decapsulation
in Π2. We use a series of games to analyze the security:

– Game 0: Define Game 0 to be the IND-security game with leakage l.
In the challenge stage of Game 0, the challenger computes ct(ID∗,xb) ←
Encrypt(ID∗,xb) which we parse ct(ID∗,xb) = (c1, c2), where c1 = ctID∗ , c2 =
k + xb.

– Game 1: We modify the challenge stage, so that the challenger uses the
secret keys sk(ID∗,yi,i), i ∈ [η], η ≤ n generated by the leakage query in Query
1, together with some new keys sk(ID∗,yη+1,η+1), ..., sk(ID∗,yn,n) generated
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by running Π3.KeyGen(msk, ID∗,yη+j , η + j), j ∈ [n − η] with the same
random numbers as sk(ID∗,yi,i), i ∈ [η], where yη+j , j ∈ [n− η] are randomly
chosen subject to the condition that Y = [y1, ...,yn] is an n × n invertible
matrix. It computes (c1,k1) ← Encap(ID∗), then finds k2 such that kT2 =
[Decap(c1, sk(ID,y1,1)), ...,Decap(c1, sk(ID,yn,n))]Y

−1 and computes c2 = k2+
xb.
The difference between Game 0 and Game 1 is only the use of k1 versus
k2. However, by the correctness of Decapsulation, we have k1 6= k2 with
negligible probability, given that y1, ...,yn are linear independent. So Game
0 and Game 1 are statistically indistinguishable.

– Game 2: We modify the challenge stage again, so that the challenger uses
Encap∗ to compute the ciphertext. It computes c1 ← Π2.Encap∗(ID∗), then
finds k2 such that kT2 = [Decap(c1, sk(ID∗,y1,1)), ...,Decap(c1, sk(ID∗,yn,n))]Y

−1,
and computes computes c2 = k2 + xb.
We claim that Game 1 and Game 2 are computationally indistinguishable by
the valid/invalid ciphertext indistinguishability of IBIP-HPS. Although there
is no leakage query in the valid/invalid indistinguishability game, it allows
the adversary to learn at most n secret keys for the challenge identity ID∗.
The total number of secret keys in the form sk(ID∗,·,·) involved in the leakage
queries and computation of k2 is also n, and all of these keys were generated
by the same random number stored in RID. Thus, the indistinguishability
between Game 1 and Game 2 holds.

– Game 3: The challenge ciphertext ct(ID,xb) = (c1, c2) is computed by: c1 ←
Π2.Encap∗(ID∗), c2 = (c2,1, ..., c2,n)← UV .
We claim that Game 2 and Game 3 are statistically indistinguishable by the
l′-leakage-smoothness of IBIP-HPS. The only things in Game 2 correlated to
sk(ID∗,·,·) are outputs of leakage queries and k2. There are at most l′ = l×n
bits outputted by the leakage queries for the identity ID∗. And according
to the l′-leakage-smoothness of IBIP-HPS, the statistical distance between
the two games is negligible. Then, k2 is indistinguishable from choosing a
completely independent random variable from UV .

Therefore Game 0 and Game 3 are indistinguishable by any PPT adversary. And
the advantage of any adversary in Game 3 is 0, since the challenge ciphertext in
Game 3 is independent of the bit b.


