
Modular Lagrange Interpolation of the Mod Function for

Bootstrapping for Approximate HE

Charanjit S. Jutla
IBM T. J. Watson Research Center

Nathan Manohar
UCLA

Abstract

We introduce a novel variant of Lagrange interpolation called modular Lagrange inter-
polation that allows us to obtain and prove error bounds for explicit low-degree polynomial
approximations of a function on a union of equally-spaced small intervals even if the func-
tion overall is not continuous. We apply our technique to the mod function and obtain
explicit low-degree polynomial approximations with small error. In particular, for every k
and N >> k, we construct low-degree polynomials that approximate f(x) = x mod N ,
for |f(x)| ≤ 1 and |x| ≤ kN , to within O(1/N) additive approximation. For k = O(logN),
the result is generalized to give O(d)-degree polynomial approximations to within O(N−d)
error for any d ≥ 1. Literature in approximation theory allows for arbitrary precision poly-
nomial approximation of only smooth functions, whereas the mod function is only piecewise
linear.

These polynomials can be used in bootstrapping for approximate homomorphic encryp-
tion, which requires computing the mod function near multiples of the modulus. Our work
bypasses the fundamental error of approximation in prior works caused by first approximat-
ing the mod function by a scaled sine function. For typical settings of N , these polynomials
have lower error than the fundamental error introduced by using the scaled sine function
at degrees computable in multiplicative depth seven or eight.

1

Contents

1 Introduction 3

2 Preliminaries 8

3 Good Polynomial Approximation of the Mod Function 11

4 O(1/N)-approximation for Large N 14

5 General Case: Obtaining an O(N−d)-error Upper Bound 18

6 Enhanced Interpolation for Small N 19

7 Upper Bounding the Coefficients in the Chebyshev Basis 21

8 Lower Bound on Standard Error Analysis for Lagrange Interpolation 22

9 Application to Bootstrapping for Approximate HE 25

10 Modular Lagrange Interpolation Beyond the Mod Function 32

11 Conclusion 33

A Upper Bound on Lagrange Basis Polynomial 36

B Proof of Lemma 4 37

C Proof of Lemma 5 39

D Proof of General Case Theorem 47

E Proof of Theorem 10 for Small N 56

F Explicit Polynomials 57

2

1 Introduction

Polynomial interpolation is a fundamental problem in mathematics. It is well known that
given n + 1 distinct points x0, x1, . . . , xn and their corresponding values y0, y1, . . . , yn, there
is a unique polynomial p(x) of degree at most n such that p(xi) = yi for all i ∈ {0, 1, . . . , n}.
Using Lagrange interpolation, it is possible to easily determine this unique polynomial p(x).
Polynomial interpolation’s utility goes beyond finding polynomials that pass through points in
a dataset. Suppose we are given some arbitrary smooth function f(x) on a contiguous interval.
Then, using Lagrange interpolation, we can hope to find a low-degree polynomial that is a
good approximation of f on this interval. This immediately raises two questions: 1) How
many points should we use for interpolation? and 2) How should these points be chosen?

It is well-known that Lagrange interpolation of even a smooth function (on a contigu-
ous interval) where the interpolation points are chosen as equally spaced points leads to bad
approximations (see e.g. [BT04]). This is known as the “Runge phenomenon”, and a more
technical explanation can be found in Section 3. However, it is also known that such smooth
functions can be asymptotically approximated with high precision if the density of the points in
the contiguous interval, say [−1, 1], is proportional to (1−x2)−1/2 (that is, the density of points
is higher near the edges of the interval, see e.g. [For96, BT04]). A common choice of points are
the Chebyshev nodes or roots of the nth Chebyshev polynomial Tn(x), which asymptotically
satisfy this density function, which we will refer to as the Chebyshev density function. These
lie in the interval [−1, 1] and are defined by the formula

xj = cos

(
π

2(j + 1)

2n

)
for j = 0, 1, . . . , n− 1. Figure 1 shows the function sin(πx) on the interval [−1, 1] with points
chosen according to the above formula for n = 25 and 50. For an arbitrary interval [a, b], one
can simply scale the the distribution of points on [−1, 1] to this interval.

In fact, for a polynomial f(x) that is n + 1 times differentiable on an interval [a, b], the
polynomial pn of degree ≤ n obtained via Lagrange interpolation at n + 1 distinct points
t0, t1, . . . , tn ∈ [a, b] will have error at any point x ∈ [a, b] given by the formula

f(x)− pn(x) =
f (n+1)(ψx)

(n+ 1)!
·
n∏
i=0

(x− ti),

where ψx is some point in [a, b] depending on x. Since determining ψx is difficult, error analysis
typically proceeds by upper bounding f (n+1)(·) on [a, b] and then bounding |

∏n
i=0(x− ti)|. It

is known that setting the ti’s as the Chebyshev nodes scaled to [a, b] minimizes this latter

3

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(a) 25 Chebyshev points

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(b) 50 Chebyshev points

Figure 1: Plots of sin(πx) on [−1, 1] with Chebyshev points.

quantity. Thus, for a single contiguous interval, it is known how to obtain a good low-degree
polynomial approximation and prove a good bound on the error. Algorithmic search methods
that determine the minimax polynomial approximation of a continuous function on a closed
interval are also well-studied, e.g. the Remez Algorithm [Rem34]. However, in this work we
will focus on constructive methods as that leads to better understanding of the tradeoffs in
target applications. This is discussed in more detail in Section 9.

In this work, we ask a related question, motivated by its applications to cryptography.
Suppose we have many far apart, equally spaced, (contiguous) intervals and a piecewise smooth
function f on these intervals, such that f is not continuous on a single closed interval containing
these set of intervals. Is it possible to obtain a low-degree polynomial that approximates f
well, restricted to the set of small intervals?

We show how to achieve the above and prove good error bounds for bounded piecewise
linear (or low-degree) functions using a new technique that we call modular Lagrange inter-
polation. If we simply tried to apply standard Lagrange interpolation, we would immediately
run into problems trying to prove an error bound, since the Lagrange interpolation theorem
requires the function to be n + 1 times differentiable, but the piece-wise smooth function is
not continuous (or even necessarily defined) on a closed interval that contains these intervals.
A common approach in previous works has been to approximate the piecewise linear function
with a continuous function such as the sine function. But, this limits the approximation pos-
sible due to the error inherent in the continuous approximation. However, as discussed above,
on a single interval, we know how to use Lagrange interpolation to find a low-degree poly-
nomial approximation. Modular Lagrange interpolation refers to the method of “combining”
these low-degree polynomials that work well on one specific interval into a single low-degree

4

polynomial that simultaneously approximates the function well on all intervals. Crucial to the
modular Lagrange interpolation technique is that the construction allows one to prove good er-
ror bounds. We remark that it is not equivalent to Lagrange interpolation on judiciously picked
points in the intervals, e.g. those approximating the Chebyshev density function. However,
our “combiners” will mimic the Chebyshev density function. The combiners behave similarly
to Lagrange basis polynomials, which have the “delta function” property meaning that they
evaluate to one at a specific point and to zero at all other points. However, the combiners must
still approximate this delta function by a low-degree polynomial over intervals that are small
but not negligible. To keep the degree small, we leverage the trade-off between the number of
unit-sized intervals k and the size N separating these intervals, and a strategy similar to the
Chebyshev density function works well to avoid the Runge phenomenon.

While this strategy of making the “combiners” similar to Chebyshev-weighted Lagrange
basis polynomials works well for simple approximations, to get approximations of O(N−c) (for
c > 1) we must use a more advanced application of Lagrange interpolation, which approximates
the function in each interval by at least (c+ 1) points, and the combiners now depend on each
such point rather than just the whole interval. A more technical introduction to modular
Lagrange interpolation is given in Section 3.

1.1 Application to Cryptography

The problem of finding a single low-degree polynomial approximation to a piece-wise function
over many intervals is a natural math question and interesting in its own right. However, it
turns out that this problem also has a major application to cryptography with regards to FHE
bootstrapping, which we will now describe.

[CKKS17, CHK+18b] presented a new homomorphic encryption (HE) scheme for approx-
imate arithmetic (called the CKKS HE scheme) over real/complex numbers. The CKKS HE
scheme was considerably more efficient than other schemes for evaluating arithmetic circuits
and leveraged properties of approximate arithmetic to achieve these efficiency gains. It has
found many applications, among them privacy-preserving machine learning and secure genome
analysis (see [KSK+18, MHS+20, BHHH19, KSW+18, SPTP+20, KHB+20] for some exam-
ples). However, the initial CKKS HE scheme lacked a bootstrapping procedure, and, thus, it
was not a fully homomorphic encryption (FHE) scheme. This was remedied when [CHK+18a]
introduced the first bootstrapping procedure for the CKKS HE scheme, which followed the
general template introduced by Gentry [Gen09] of evaluating the decryption circuit homomor-
phically. The challenge here is that the decryption procedure for CKKS requires computing
the mod function, which is not easily representable via an arithmetic circuit. In fact, the mod
function modulo q on the interval [−Kq,Kq] for some integer K is not even a continuous

5

function. However, [CHK+18a] made the clever observation that in the CKKS HE scheme, we
have an upper bound m on the size of the message, which can be made much smaller than q.
In this situation, we actually only need to be able to compute the mod function on points in
[−Kq,Kq] that are a distance at most m from a multiple of q. In this case, the mod function
is periodic with period q and is linear on each of the small intervals around a multiple of q.
Figure 2 shows the mod function along with the small intervals for approximation.

-20 -10 10 20

-4

-2

2

4

Figure 2: The mod function with modulus q = 10. The solid red lines represent the small
intervals on which we need to approximate.

[CHK+18a] observed that the mod function [t]q on these intervals can be approximated via

a scaled sine function S(t) = q
2π sin

(
2πt
q

)
. This approximation introduces an inherent error

that depends on the message upper bound m. Let ε denote the ratio m
q . Then, it can be shown

that

|[t]q − S(t)| ≤ 2π2

3
qε3.

If ε is small enough, then this error can be sufficiently small for use in bootstrapping pro-
vided that S(t) can be well-approximated by a low degree polynomial. [CHK+18a] along with
several followup works [CCS19, HK20] proceeded to provide methods of approximating this
scaled sine function (or scaled cosine function in the case of [HK20]) by a low-degree polyno-
mial, which can then be plugged into the bootstrapping procedure of [CHK+18a]. However,
due to the inherent error between the mod function [t]q and the scaled sine function S(t), this
approach has a “fundamental error” that will occur regardless of how S(t) is approximated.
One of the problems with this is that in order for the error to be O(1) (and, therefore, not

6

destroy the message), m must be O(q2/3). This means that we must begin bootstrapping while
the size of the encrypted message is considerably smaller than q, which is a source of inefficiency
in the bootstrapping procedure, particularly in applications that require high precision. Thus,
finding polynomial approximations of the mod function with error smaller than the “funda-
mental error” (by directly approximating the mod function instead of first approximating it
via a scaled sine function) is one of the main ways one can hope to improve bootstrapping
for approximate homomorphic encryption. Finding such a method was explicitly posed as an
open problem in [HK20], which stated that they believe “finding another approximation of [·]q
operation ... can be a new breakthrough of improving the bootstrapping.”

1.2 This Work

In this work, we introduce a method called modular Lagrange interpolation that can be used
to obtain explicit low-degree polynomials that are provably good approximations of the mod
function on small intervals around multiples of q, exactly what is required for bootstrapping
for approximate homomorphic encryption. Moreover, by avoiding approximating the mod
function by a scaled sine function, our approximation does not inherently have a flat error
associated with this approximation, and we are able to obtain more accurate approximations.
Furthermore, we can explicitly upper bound the size of the coefficients of the polynomial in
the Chebyshev polynomial basis, which is the preferred basis as it leads to a more stable
calculation. The size of the coefficients in the Chebyshev polynomial basis directly affects the
precision required for computing the approximating polynomial itself.

In particular, we give a degree sixty-three polynomial that approximates the mod function
to O(N−1) on intervals of size one, modulo N . The constants hide the dependence on the
number of intervals k, but we show that these polynomials work well for k = 12, a common
parameter setting of current HE schemes, with N = 106. We generalize this result to obtain
O(N−d) error-approximation for any d ≥ 1, with O(d)-degree polynomials. For d = 4, we
get a polynomial of degree 127 with an approximation error of 2−72, which improves upon the
fundamental error of 2−57 associated with the sine approximation found in previous approaches.
A degree 127 polynomial can be computed by a circuit with multiplicative depth 7, a crucial
parameter in the HE-levels consumed in bootstrapping. For k = 12, polynomials that work well
for smaller N , i.e. N ≥ 128, are shown with degree sixty-nine. Similarly, the result generalizes
to O(N−d) error-approximation for any d ≥ 1. Once again, we find that setting d = 4 is
sufficient to obtain an approximation error of 2−22, which improves upon the fundamental
error of 2−18 associated with the sine approximation. This degree 159 polynomial can be
computed by a circuit with multiplicative depth 8. Even better approximations can be found
in Tables 1 through 4 in Section 9.

7

1.3 Organization

In Section 2, we provide some background on Lagrange interpolation and the Chebyshev basis
polynomials and show lemmas that will be useful in proving error bounds. In Section 3, we
introduce our modular Lagrange interpolation for the mod function by considering the simpler
setting of only 3 intervals. In Section 4, we increase the number of intervals to be parameterized
by k and show an O(1/N)-approximation for large N . In Section 5, we show a more general
method that leads to O(N−d) approximations for each d ≥ 1. In Section 6, we show how to
obtain O(N−d) approximations for small N (≈ 100). In Section 7, we provide an upper bound
on the magnitude of coefficients of our polynomials in the Chebyshev basis. In Section 8, we
show that using standard error analysis for Lagrange interpolation cannot lead to as good of
error bounds as modular Lagrange interpolation. In Section 9, we describe the application
to bootstrapping for approximate homomorphic encryption in more detail and evaluate the
performance of our polynomials for typical parameter settings. In Section 10, we discuss how
to apply modular Lagrange interpolation to functions other than the mod function.

2 Preliminaries

For integers a, b, we use the notation [a..b] to represent the set {a, a+ 1, . . . , b}. For reals a, b,
the notation [a, b] will represent the usual closed interval.

We recall some background on Lagrange interpolation and relevant lemmas that will be
useful when proving error bounds.

2.1 Lagrange Interpolation

Given m+ 1 distinct points t0, ..., tm, the jth Lagrange basis polynomial `
(m)
j (x) is given by

`
(m)
j;t0,...,tm

(x)
4
=

∏
i∈[0..m]\{j}

x− ti
tj − ti

(1)

When m is clear from context, we drop the superscript. Similarly, when t0, ..., tm is clear from
context, we drop these from the subscript. When t0, ..., tm are collectively referred to as a set
S, we also abuse notation and write, for any z ∈ S,

`
(m)
z;S (x)

4
=

∏
t∈S\{z}

x− t
z − t

(2)

8

The Lagrange interpolation theorem states that for any polynomial f(x) (over a unique
factorization domain) of degree m

f(x) =
∑

j∈[0..m]

f(tj) ∗ `(m)
j (x).

Using the Lagrange interpolation theorem, we can prove the following lemma 2, which will
be useful later in proving our error bounds. We start by proving a simpler version of the
lemma.

Lemma 1 Let R be a unique-factorization domain. If m ≥ 1, then for any distinct t0, ..., tm
in R,

∑
j∈[0..m](x− tj) ∗ `

(m)
j;t0,...,tm

(x) is identically zero.

Proof: This follows from the fact that∑
j∈[0..m]

(x− tj) ∗ `(m)
j;t0,...,tm

(x)

= x ∗
∑

j∈[0..m]

`
(m)
j (x)−

∑
j∈[0..m]

tj ∗ `(m)
j (x)

= x ∗ 1− x = 0,

where we use the Lagrange interpolation theorem twice, as both 1 and x are polynomials of
degree ≤ m. �

The above lemma generalizes as follows.

Lemma 2 Let R be a unique-factorization domain. Let F (x,y) be a bivariate polynomial
(over R) of degree m′ in y and with a factor (x−y). In other words F (x,y) can be written as

F (x,y) = (x− y) ∗
∑

k∈[0..m′−1]

ak(x) yk

where ak(x) are polynomials (over R) in x. If m′ ≤ m, then for any distinct t0, ..., tm in R,∑
j∈[0..m] F (x, tj) ∗ `(m)

j;t0,...,tm
(x) is identically zero.

9

Proof: We have∑
j∈[0..m]

F (x, tj) ∗ `(m)
j;t0,...,tm

(x)

=
∑

j∈[0..m]

(x− tj) ∗ `(m)
j (x) ∗

∑
k∈[0..m′−1]

ak(x) tkj

=
∑

k∈[0..m′−1]

ak(x) ∗
∑

j∈[0..m]

(x− tj) ∗ `(m)
j (x) ∗ tkj

=
∑

k∈[0..m′−1]

ak(x) ∗

x ∗
∑

j∈[0..m]

`
(m)
j (x) ∗ tkj −

∑
j∈[0..m]

`
(m)
j (x) ∗ tk+1

j

=

∑
k∈[0..m′−1]

ak(x) ∗ [x ∗ xk − xk+1]

= 0

where the second last equality follows by Lagrange interpolation theorem, recalling that m′ ≤
m. �

The following is a well-known bound on the error of polynomial interpolation on an interval
[a, b].

Theorem 3 (Polynomial Interpolation) Let f be an n + 1 times differentiable function
on [a, b] and pn be a polynomial of degree ≤ n that interpolates f at n + 1 distinct points
t0, t1, . . . , tn ∈ [a, b], meaning pn(ti) = f(ti) for all 0 ≤ i ≤ n. Then, for each t ∈ [a, b], there
exists a point ψt ∈ [a, b] such that

f(t)− pn(t) =
f (n+1)(ψt)

(n+ 1)!
·
n∏
i=0

(t− ti).

2.2 Chebyshev Basis Polynomials and Nodes

Instead of the standard polynomial basis {1, x, x2, . . .}, one can instead work with the Cheby-
shev basis {T0(x), T1(x), T2(x), . . .}. The Chebyshev basis polynomials mimic the double-angle
cosine formula. We have eix = cosx + i sinx, and hence e2ix = cos 2x + i sin 2x = (eix)2

= cos2 x − sin2 x + 2i sinx cosx. The real part of this is the same as 2 cos2 x − 1. In general,
Re(enix) = cos(nx) and Im(enix) = sin(nx). The n-th Chebyshev basis polynomial Tn(x) is
defined to be cos(n arccos(x)). Thus, T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, and so on. In-
ductively we have, T2n(x) = 2Tn(x)2−1 and T2n+1(x) = 2xT2n(x)−T2n−1(x). The Chebyshev

10

basis polynomials form an orthogonal basis under the following inner product.

〈Ti, Tj〉 =
d−1∑
k=0

Ti(xk)Tj(xk) =

0 if i 6= j and i, j < d
d if i = j = 0
d
2 if i = j 6= 0 and i < d

where xk are Chebyshev nodes (roots) of Td(x), i.e.

xk = cos

(
π

2k + 1

2d

)
for k = 0, 1, ...,d− 1.

The orthogonality relation is proved using trigonometric identities (see e.g. [Fik68] or see [Str04]
for an alternate proof).

Polynomials expressed in the Chebyshev basis have the nice property that the Chebyshev
basis polynomials always evaluate to within −1 and 1 on the interval [−1, 1]. Thus, for numer-
ical stability of evaluation, it is better to work in the Chebyshev basis, since the precision to
which the Chebyshev basis polynomials Tn(x) must be evaluated is dictated by the magnitude
of the coefficients.

3 Good Polynomial Approximation of the Mod Function

In this section, we describe modular Lagrange interpolation and show how to obtain a good
polynomial approximation of the mod function on small intervals in the simpler case where we
only care about 3 intervals. Let the three intervals be the intervals of size one centered at −N ,
0, and N , with N >> 11. More precisely, the three intervals are −N+[−1/2, 1/2], [−1/2, 1/2],
and N + [−1/2, 1/2]. For any d ≥ 1, consider d+ 1 (possibly equally-spaced) points in each of
the three intervals. For each ` ∈ {−1, 0, 1}, define S` to be the set containing the d+ 1 points
in the `-th interval. We will let S stand for the union of these sets, i.e. S−1 ∪ S0 ∪ S1.

Let fN be the mod function modulo N . In other words, fN (z) = z − `N for z in the `-th
interval.

For any c ≥ 1, define the polynomial gc,d (of degree 3d+ 2c) as

gc,d(x) =
∑

`∈{−1,0,1}

∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

 ∗ ∏
`′∈{−1,0,1}

`′ 6=`

(
x− `′N
z − `′N

)d+c
(3)

1Earlier works consider intervals of size 2ε with mod taken with respect to 1. Thus, N can be viewed as 1/2ε.

11

Observe that if c is set to one, then gd,1(x) is almost the degree 3d+ 2 polynomial that is
the Lagrange interpolation of fN (x) at the 3(d + 1) points S. This follows since gd,1(x) can
then be written as

gd,1(x) =
∑

`∈{−1,0,1}

∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

 ∗ ∏
`′∈{−1,0,1}

`′ 6=`

(
x− `′N
z − `′N

)d+1

=
∑

`∈{−1,0,1}

∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

 ∗ ∏
`′∈{−1,0,1}

`′ 6=`

∏
w∈S`′

(
x− `′N
z − `′N

)

≈
∑

`∈{−1,0,1}

∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

 ∗ ∏
`′∈{−1,0,1}

`′ 6=`

∏
w∈S`′

(
x− w
z − w

)
(4)

=
∑
z∈S

fN (z) ∗

 ∏
w∈S\{z}

x− w
z − w

 . (5)

Note, the last expression (5) is the degree 3d+2 polynomial that is the Lagrange interpolation
of fN (x) at the 3(d + 1) points S. Observe that the difference from gd,1 is that when adding
in the term for Lagrange interpolation with respect to some z, for points w that are not in
the same interval as z, we consider the ratio x−`′N

z−`′N instead of x−w
z−w (that is, we replace w

with the central point `′N of the interval that w is in). The reason for this alteration is that,
as we will soon discuss, c will not be a constant, and will be required to depend to `′. In
particular, c′ can be much larger than d, and hence more than the number of points chosen in
each interval. Experiments we have conducted show that low-degree Lagrange interpolation on
points chosen in the intervals, even mimicking an overall Chebyshev density, does not lead to
good approximation, and especially so when we are seeking approximations of error O(N−c), for
c > 1. Moreover, the standard error analysis also does not produce good bounds. See Section 8
for a lower bound on the standard error analysis for low-degree Lagrange interpolation.

We will refer to the above interpolation gd,c(x), as well as its slight variations that we will
consider later, as the modular Lagrange interpolation of the 3(d+ 1) points.

It is easy to see that for x ∈ S` (` ∈ {−1, 0, 1}), the summand in the definition of gd,1(x)
corresponding to ` is still equal to fN (x) (as in Lagrange interpolation). However, the other
summands are no longer zero. Nevertheless, we will show that the other summands are close
to zero. Thus, in this simple case, modular-Lagrange interpolation is almost the polynomial
interpolation of the 3(d + 1) points. We now discuss, why keeping c constant does not lead

12

to a good approximation, especially when the number of intervals is increased to more than
three. To this end, we first discuss why Lagrange interpolation of a smooth function is a bad
approximation if the points are chosen equally-spaced.

The contributions of the denominator in the Lagrange interpolation (5) are known as the
barycentric weights, i.e. for each z ∈ S, the barycentric weight is

wz =
1∏

w∈S\z(z − w)
.

When interpolating a smooth function over a contiguous interval, if the interpolation points,
e.g. S above, are chosen equally spaced then the barycentric weights are lopsided. In particular,
they are larger near the center (when z ∈ S is near the center of the contiguous interval)
compared to at the edges (when z ∈ S is near the edge of the contiguous interval) by a factor
of 2d, where d is the number of points. Now, the evaluation of the Lagrange interpolation
(5) at x near the edge, and in particular near a point z′ ∈ S near the edge, is supposed to
approximate f(x) (which for a smooth function should be close to f(z′)). Indeed, the summand
in (5) corresponding to (z =) z′ is close to f(z′). Additional error in the approximation comes
from the other summands, i.e. for z 6= z′. This error, for any z 6= z′, is proportional to the
product of wz and

∏
w∈S,w 6=z(x − w), the latter being more or less independent of z. Also,

this latter product is large when x is near the edge, as compared to when it is near the center.
Since the barycentric weights are large when z is near the center, this then implies that the
summand corresponding to z near the center, for x near the edge, has a significantly larger
error. This is in contrast to the error for x near the center, and any z, whether near the center
or near the edge. The reader may wonder if the different summands may have opposing signs
and some cancellation of error may ensue. While there is some such cancellation, the overall
lopsided error accumulation continues to hold. This is known as the “Runge phenomenon”.
To get a good approximation to the smooth function, the points are therefore chosen using the
Chebyshev density function.

In the modular-Lagrange interpolation above, the barycentric weights can be defined as (for
z ∈ S`),

wz =
1∏

w∈S`\z(z − w) ∗
∏
`′∈{−1,0,1}

`′ 6=`
(z − `′N)d+1

With N >> 1, these are almost the same as the original barycentric weights, and hence
the lopsided nature of these weights continues to hold, especially when there are many more
intervals than the simple case of three intervals we have considered so far. Thus, instead of
keeping c constant as in definition (3), we will make it vary with the interval number, with

13

-10 -5 5 10

1.×10-18

2.×10-18

3.×10-18

4.×10-18

Figure 3: The barycentric weights wz for the point set [−12..12].

larger values for intervals at the edges. The idea is similar to choosing points for Lagrange
interpolation with density proportional to (1−x2)−1/2; however, the rate at which c increases,
especially at the edges, will be less drastic as we also capitalize on both the intervals being
tiny compared to N as well as the number of intervals being small. Thus, we will will be able
to keep the degree of the polynomial reasonably low.

4 O(1/N)-approximation for Large N

If one is satisfied with O(1/N)-error approximation, then there is an even simpler polynomial
than gd,c(x) given above. Moreover, the analysis is also considerably simpler. So, in this sec-
tion, we first define this simpler polynomial, but generalized to 2k + 1 intervals, and prove
approximation bounds for it. In later sections, we will define polynomials that are generaliza-
tions of definition (3) and give better approximations with error O(N−d), for any d > 1.

For the simpler polynomial, it suffices to take d = c = 1 and also remove the dependence
on z in the multiplicative term with power (d+ c) in definition (3).

Let the (2k + 1) intervals be −kN + [−1/2, 1/2] to kN + [−1/2, 1/2]. For each integer
` ∈ {−k,−k+1, . . . , k}, consider (d+1 =)2 distinct points S` = {z`0, z`1} in each of the (2k+1)
intervals. In particular, z`i = `∗N + i/2 for i ∈ [0..1]. In other words, S` = {`∗N, `∗N +1/2}.

We will now define a polynomial of degree (4k+1)+ν, that approximates the mod function
on these intervals. The value ν is defined below. Recall, the mod function f is defined as
fN (x) = x− `N for all x ∈ `N + [−1/2, 1/2].

14

Let L = {−k,−k + 1, . . . , k}. Define

ĝ(x) =
∑
`∈L

∑
z∈S`

fN (z) ∗
∏

w∈S`\{z}

x− w
z − w

∗
∏
`′∈L
`′ 6=`

(
x− `′N

(`− `′)N

)2+p(`′)

(6)

where p(`′) is defined as

p(`′) =

0 for |`′| ≤ bk/2c
1 for b(11/12) ∗ kc ≥ |`′| > bk/2c
2 for |`′| > b(11/12) ∗ kc

With Lagrange interpolation on each S`, the above definition (6) simplifies to

ĝ(x) =
∑
`∈L

(x− `N) ∗
∏
`′∈L
`′ 6=`

(
x− `′N

(`− `′)N

)2+p(`′)

(7)

The value ν is defined to be sum of p(`′) over all `′ ∈ L. With the above definition of p(`′),
ν = 4 ∗ k − 2 ∗ bk/2c − 2 ∗ b11/12 ∗ kc. If k is a multiple of 12, then the degree of ĝ is 31

6 k + 1
(= 4k+1+ν). It is not difficult to check that ĝ is an odd polynomial, i.e. ĝ(−x) = −ĝ(x). We
make k a multiple of 12 since k = 12 is a typical parameter setting that results in bootstrapping
for approximate homomorphic encryption. By defining p(`′) with 12 in the denominator and
setting k to be a multiple of 12, we make the analysis simpler by ensuring that the values in
the definition of p(`′) are all integers. This can easily be generalized to arbitrary values of k.

We will show that ĝ(x) is a good approximation to the mod function via two lemmas. First,
Lemma 4 shows that the error between the summand corresponding to the interval that x is
in and the mod function is small. Then, Lemma 5 shows that the summand corresponding to
the interval that x is not in is close to 0. Combining Lemmas 4 and 5, we immediately arrive
at Theorem 6, which shows that ĝ(x) approximates the mod function well on all the intervals.

Lemma 4 For N > k, for every ` ∈ [−k..k], if x is in the `-th interval, then∣∣∣∣∣∣∣∣fN (x)− fN (x) ∗
∏
`′∈L
`′ 6=`

(
x− `′N

(`− `′)N

)2+p(`′)

∣∣∣∣∣∣∣∣ ≤
2 ∗ ln(e ∗ k)

N
+

2 ∗ k2

N2

15

Lemma 5 For N > k, and k a multiple of 12, for every t ∈ [−k..k] and x in the t-th interval,∣∣∣∣∣∣∣∣
∑
`∈L
6̀=t

(x− `N) ∗
∏
`′∈L
`′ 6=`

(
x− `′N
`N − `′N

)2+p(`′)

∣∣∣∣∣∣∣∣ ≤
1

2
∗ ln(e ∗ k) ∗max {0.924 ∗ k

1
2 ∗ 1.1221k

N
, 0.098 ∗ k

3
2 ∗ 3.81k

2
, 0.014 ∗ k2 ∗ 9.813k

N3
}

A brief proof sketch of Lemma 5 follows below in section 4.1. The detailed proofs of
Lemmas 4 and 5 can be found in Supplementary Material B and C, respectively. Combining
the above lemmas gives the following theorem.

Theorem 6 For N > k, and for k a multiple of 12, for the mod function fN , for any x such
that −1/2− k ∗N ≤ x ≤ k ∗N + 1/2, we have

|ĝ(x)− fN (x)| < N−1 ∗
(

2 ∗ ln(e ∗ k) +
2 ∗ k2

N
+

0.462 ∗ ln(e ∗ k) ∗
√
k ∗ 1.1221k ∗max {1, 0.106 ∗ k ∗ 3.4k

N
, 0.015 ∗ k

3
2 ∗ 8.745k

N2
}
)

Focusing on the typical parameter setting k = 12, we obtain the following corollary.

Corollary 7 For the mod function fN (·), for k = 12, N > 12, for any x such that |x−t∗N | ≤
1/2 with t ∈ {−k,−k + 1, . . . , k}, we have that ĝ is an odd polynomial with deg(ĝ) = 63, and

|ĝ(x)− fN (x)| < N−1 ∗
(

7 +
300

N
+ 22.3 ∗ max{1, 3.03 ∗ 106

N
,

1.25 ∗ 1011

N2
}
)

With N ≥ 106, we get the following corollary.

Corollary 8 For the mod function fN (·), for k = 12, N ≥ 106, for any x such that |x−t∗N | ≤
1/2 with t ∈ {−k,−k + 1, . . . , k}, we have that ĝ is an odd polynomial with deg(ĝ) = 63, and

|ĝ(x)− fN (x)| < 75/N

Remark. If we want good bounds for N ≈ 100 with the degree of ĝ only marginally higher than
63, then we need a more complicated definition of ĝ (in particular, p(`′)), which we describe
in a later section (Section 6).

16

4.1 Proof Sketch of Lemma 5

While the detailed proof of Lemma 5 can be found in Supplementary Material C, we give a
brief sketch of the proof here. We start by analyzing, for every t, ` ∈ [−k..k], t 6= `, and x in
the t-th interval (writing x = x′ + tN), the quantity

(x− `N) ∗
∏
`′∈L
`′ 6=`

(
x− `′N
`N − `′N

)2

= (x′ + (t− `)N) ∗
∏
`′∈L
`′ 6=`

(
x′ + (t− `′)N

(`− `′)N

)2

i.e. when p(`′) is removed from the exponent. Since |x′| ≤ 1/2 and N >> 1, the absolute value
of the above is approximately

|(t− `)|N ∗
(

1/2

|`− t|N

)2

∗
∏
`′∈L
`′ 6=`
`′ 6=t

(
|t− `′|
|`− `′|

)2

=
1/4

|`− t|N
∗
∏
`′∈L
`′ 6=`
`′ 6=t

(
|t− `′|
|`− `′|

)2

.

When t = k and ` = 0, the denominator in the big product is close to (k!k!)2, whereas the
numerator is close to (2k!)2, making the product about (2k!/k!k!)2, which is well approximated
by 24k. Even with N ≈ 220, this then leads to an error of 248−20, for k = 12. Note however,
if t = 1 and ` = 0, then the product is close to 1, and we get an error of about 1/N . This
is indeed the lopsided barycentric weight problem, also known as the Runge phenomenon,
described earlier. So, to correct this phenomenon, we add more weights in the exponent for
larger |`′|, and this is the function p(`′). For example, since p(k) = 2, then the above expression
for t = k will now be close to

|(k − `)|N ∗
(

1/2

|`− k|N

)2+2

∗
∏
`′∈L
`′ 6=`
`′ 6=t

(
|k − `′|
|`− `′|

)2+p(`′)

If the big product at ` = 0 remained as before, i.e. (2k!/k!k!)2 ≈ 24k, then the above is
quantity is now approximately 24k/N3. With k = 12 and N = 220, this quantity is less than
1. However, the big product is not exactly (2k!/k!k!)2 anymore, because of the p(`′) in the
exponent. However, using good upper and lower bounds on the factorial function, we can
upper bound this quantity by about 10k, which is even better than the previous 24k = 16k. It
is possible that this product changes for the worse for other values of t and `. However, we
can show that this quantity behaves in a fairly smooth fashion, with only one local minima
and one local maxima as t varies from 0 to k (while ` is kept fixed at 0). The quantity is also
lower bounded by 1, and, thus, the upper bound also holds for any `.

17

When k is fixed, such as k = 12, one can also explicitly calculate all possible 12∗25 values of
the above product, say, conveniently using a computer. However, since we can prove a general
bound for arbitrary k, we state the result in general terms, since other or future applications
may require larger k, say for enhanced security. However, we do report this computer-assisted
bound in Appendix C.2, which shows an improvement of a factor of ten from the more general
analysis. We also take this computer-assisted approach in Section 6 where more complicated
p(·) functions are considered.

5 General Case: Obtaining an O(N−d)-error Upper Bound

In this section, we give a modular Lagrange interpolation that leads to an approximation of the
mod function with error O(N−d) for each d ≥ 1. As opposed to the interpolation in Section 4,
specifically definition (6), where the second product was independent of z, to get the improved
bound we must have the second product depend on z, similar to that in (3).

Let L = {−k,−k+ 1, . . . , k}. Let the 2k+ 1 intervals be `N + [−1/2,+1/2] for ` ∈ L. For
each ` ∈ L, consider d + 1 distinct points S` = {z`0, ..., z`d} in each of the (2k + 1) intervals
(chosen symmetrically around `N).

With the aim of obtaining a polynomial approximation of the mod function with error
O(N−d) for every d ≥ 1, we now define polynomials of degree O(kd). The mod function fN is
defined as fN (x) = x− `N for all x ∈ [`N − 1/2, `N + 1/2].

For any b, d ≥ 1 and c ≥ 0, let

gb,c,d(x) =
∑
`∈L

∑
z∈S`

fN (z) ∗
∏

w∈S`\{z}

x− w
z − w

∗
∏
`′∈L
`′ 6=`

(
x− `′N
z − `′N

)d+c+b∗p(`′)
(8)

where p(`′) is defined as before in Section 4. When b = dd/2e and d+ c = 2b, we refer to the
polynomial simply as gd(x). Since the points S` are chosen symmetrically around `N , and the
intervals are also symmetric around zero, and further p(`′) = p(|`′|), it is an easy exercise to
check that gb,c,d(x) is an odd function, i.e. gb,c,d(−x) = −gb,c,d(x).

Note that the degree of the polynomial gd(x) is d+b∗(4k+ν), where the value ν is defined
to be sum of p(`′) over all `′ ∈ L. Let m = b ∗ (4k + ν).

Theorem 9 For the mod function fN (·), for any d > 0, N > 0.22 ∗ k ∗ 3.4k and N >
(m + d+ 1)/(d+ 1), k ≥ 12 and k a multiple of twelve, for any x such that |x− t ∗N | ≤ 1/2

18

with t ∈ {−k,−k + 1, . . . , k}, we have

|g2d(x)− fN (x)| < N−2d ∗ 22d ∗
(

1 +
em

d

)2d
+

N−2d ∗
(

4k ∗N + (4d+ 6) ∗ (33 ∗ k2)d
)
∗
(√

k ∗ 1.1221k/2
)d

and

|g2d+1(x)− fN (x)| < N−2d−1 ∗ 22d+1 ∗
(

1 +
2em

2d+ 1

)2d+1

+

N−2d−1 ∗
(

4k + (4d+ 10) ∗ (33 ∗ k2)d+1/N
)
∗
(√

k ∗ 1.1221k/2
)d+1

The proof of this theorem is similar to the proof of Theorem 6, but now it uses the more
advanced Lagrange interpolation lemma 2. The detailed proof can be found in Supplementary
Material D.

Note that a small calculation shows that, for k ≥ 12, (17k2+1/21.1221k) < (.22∗k∗3.4k)1/4,
hence the above is upper bounded by N−2d(N ∗ Nd/4 + (4d + 10)Nd/4), which in turn is
upper bounded by (4d + 10) ∗ N−7/4d+1. Thus, if N is exponential in 2k + 1, more precisely
N > e2k+1 > 0.22 ∗ k ∗ 3.4k, then the density of the points need not grow as drastically as
(1− x2)−1/2, and the error can still approach zero, asymptotically as N−(7/4)∗d+1, with degree
at most 3(d+1)k. Note that the above is referring to the weights of p(`′) for modular Lagrange
interpolation, and not the number of points per interval as in standard Lagrange interpolation.

6 Enhanced Interpolation for Small N

While the modular Lagrange interpolation defined in Section 4 works well for large N , and
in particular N ≥ 106, to get a good approximation that works for smaller N , e.g. N ≈ 100,
we need to make the p(`′) function rise faster with `′. Thus, we can define a new modular
Lagrange interpolation with the following p(`′) function to get a better approximation.

p(`′) =

0 for |`′| ≤ bk/2c
1 for b(10/12) ∗ kc ≥ |`′| > bk/2c
2 for b(11/12) ∗ kc ≥ |`′| > b(10/12) ∗ kc
4 for |`′| > b11/12 ∗ kc

A theorem bounding the approximation-error similar to Theorem 6 can be proven, but the
case analysis is proportionately more complicated. Moreover, while in the proof of Lemma 5

19

we could lower bound Pt/P0 by 1, that is no longer the case for this new definition. This makes
the approximation-error less than ideal. In other words, as t increases from 0 to k, there are
regions where Pt/P0 starts decreasing, and goes below 1. Recall, the “Runge phenomenon”
occurred because Pt/P` tended to be large when |t| is near k and |`| is near zero. Thus, there
is no need to make the correction using the additional powers due to p(`′) when ` itself is close
to k. We can do this seamlessly by defining the p(`′) function in a more nuanced manner,
and, in particular, make it depend on ` itself. Thus, consider a new function p(`, `′) defined as
follows (essentially forcing p(`, `′) to be zero whenever |`| ≥ |`′|):

p(`, `′) =

0 for |`| ≥ |`′| or |`′| ≤ bk/2c
1 for b(10/12) ∗ kc ≥ |`′| > max{bk/2c, |`|}
2 for b(11/12) ∗ kc ≥ |`′| > max{b(10/12) ∗ kc, |`|}
4 for |`′| > max{b11/12 ∗ kc, |`|}

and the modular Lagrange interpolation of the mod function defined by the following polyno-
mial of degree (4k + 1) + ν,

ĝ(x) =
∑
`∈L

∑
z∈S`

fN (z) ∗
∏

w∈S`\{z}

x− w
z − w

∗
∏
`′∈L
`′ 6=`

(
x− `′N
`N − `′N

)2+p(`,`′)

(9)

The value ν is defined to be sum of p(0, `′) over all `′ ∈ L. With the above definition of
p(`, `′), ν = 8 ∗ k − 2 ∗ bk/2c − 2 ∗ b10/12 ∗ kc − 4 ∗ b11/12 ∗ kc. If k is a multiple of 4, then
the degree of ĝ (= 4k + 1 + ν) is 17

3 k + 1.

The proof of a version of Theorem 6 is now much more complicated. Instead, we will
restrict ourselves to k = 12, and then a proof can be given by explicitly calculating (say, using
a computer) the ratios Pt/P` for all t, ` ∈ [−12..12].

Theorem 10 For the mod function fN (·), for k = 12, N > 12, for any x such that |x−t∗N | ≤
1/2 with t ∈ {−k,−k + 1, . . . , k}, we have that ĝ defined in (9) is an odd polynomial with
deg(ĝ) = 69, and

|ĝ(x)− fN (x)| < 1

N
∗
(

1

4
+

3.5

N
+

144

N2

)
∗
(

2 + max {1.347,
73

N
,
3503

N2
,
1.46 ∗ 107

N4
}
)

The proof can be found in Supplementary Material E.

To get approximation error of O(N−d), we generalize the above definition of ĝ as in Sec-
tion 5. We define a polynomial of degree (25 ∗ d + 24 ∗ c + 20 ∗ b), for b, d ≥ 1 and c ≥ 0,

20

as

gb,c,d(x) =
∑
`∈L

∑
z∈S`

fN (z) ∗
∏

w∈S`\{z}

x− w
z − w

∗
∏
`′∈L
`′ 6=`

(
x− `′N
z − `′N

)d+c+b∗p(`,`′)
(10)

When b = dd/2e and d+ c = 2b, we just write gb,c,d(x) as gd(x).

We have the following upper bound on the approximation-error of gd(x).

Theorem 11 For the mod function fN (·), for any d > 0, b = dd/2e, k = 12, and N > 60, for
any x such that |x− t ∗N | ≤ 1/2 with t ∈ {−k,−k+ 1, . . . , k}, we have for gd defined in (10),

|gd(x)− fN (x)| ≤ N−d ∗ (744)d +
(

24 ∗N + 1 + (2d+ 3) ∗ (2310)d
)
∗ 1.347b ∗N−2b

The proof of Theorem 11 in Appendix E.1 is a generalization of the proof of Theorem 10
and is analogous to the proof of Theorem 9 generalizing Theorem 6. While the theorem as
stated would only give useful bounds for N > 2310, the number 2310 above was obtained by a
very loose analysis. As experiments described in Section 9 show, for N = 1024, the polynomials
described have maximum error close to N−2/3∗d for d = 3..9.

7 Upper Bounding the Coefficients in the Chebyshev Basis

The modular Lagrange interpolation as described previously is in the usual polynomial basis
{1, x, x2, . . .}. However, for the stability of evaluation of this polynomial at points in the
various intervals, it is better to first transform the polynomial into the Chebyshev basis. The
transformed polynomial will be referred to as the Chebyshev transform. Recall that polynomials
expressed in the Chebyshev basis have the nice property that the Chebyshev basis polynomials
always evaluate to within −1 and 1 on the interval [−1, 1], and hence the precision to which
these basis values need to be calculated is dictated by the magnitude of the coefficients of the
Chebyshev transform.

The Chebyshev transform of f(x) of degree d is then given by {a`}`∈[0..d] such that f(x) =∑d
`=0 a` ∗ T`(x). Using the orthogonality relations of the Chebyshev basis polynomials (see

Section 2), we can obtain

a` =
〈T`, f〉
〈T`, T`〉

.

Moreover, by Cauchy-Schwartz inequality, for each `, |a`| ≤ 〈f, f〉. Thus, the coefficients of
the Chebyshev transform (of f) are upper bounded by the L2-norm of f evaluated at the

21

Chebyshev nodes, which is at most d times the max-norm of f . While, Theorem 6 and
other similar theorems bound ĝ (more precisely, the difference from the mod function) at the
specified small intervals, here we need the max-norm of ĝ at the Chebyshev nodes, or more
conservatively, at any point in [−kN−1/2, kN+1/2] (this range being normalized to be [−1, 1]
before obtaining the Chebyshev transform). So, we now estimate the maximum value of ĝ(x)
for any x ∈ [−kN − 1/2, kN + 1/2]. In the proof of Lemma 5, while bounding (15) by (17),
now instead of x′ being small, i.e. |x′| ≤ 1/2, we now have that |x′| < N/2. Thus, in (17), the
factor x′2+p(t) ∗N−1−p(t) now becomes N . Thus, we get the following upper bound on absolute
value of each coefficient a` (for all ` ∈ {0, . . . ,d}) of Chebyshev transform of (6)

(
31

6
k + 1) ∗ 0.5 ∗ ln(e ∗ k)∗

max {0.924 ∗ k
1
2 ∗ 1.1221k ∗N, 0.098 ∗ k

3
2 ∗ 3.81k ∗N, 0.014 ∗ k2 ∗ 9.813k ∗N}

which is easily seen to be less than 0.007 ∗ (316 k + 1) ∗ ln(e ∗ k) ∗ k2 ∗ 9.813k ∗ N. A simple
calculation shows that for k = 12, N = 106, this value is 1.8 ∗ 1020.

Similarly, we get the following upper bound on absolute value of each coefficient a` (for all
` ∈ {0, . . . ,d}) of Chebyshev transform of (9): 69 ∗ N ∗ 1.46 ∗ 107, which for N = 210 (and k
set to 12), is about 1012.

The size of the coefficients of the Chebyshev transform is important as one can round these
coefficients to be integers (or to the nearest decimal upto which approximation-error is sought),
and then the Chebyshev basis polynomials (which take values in [−1, 1]) need to be computed
to a precision which is same as the precision of the rounded coefficients.

8 Lower Bound on Standard Error Analysis for Lagrange In-
terpolation

In this section, we provide an argument that using standard Lagrange interpolation as in [HK20]
to approximate the mod function on multiple small intervals cannot be improved to obtain as
good of error bounds as our modular Lagrange interpolation when using the standard error
analysis for Lagrange interpolation. They had the clever idea of using Lagrange interpolation,
but instead of picking the points for interpolation via the Chebyshev method (which would
end up picking points over the entire space), they only picked points inside the small intervals
on which we wish to approximate the mod function. The points in each interval were picked
according to the Chebyshev method, and the number of points to pick inside each interval was
determined via a greedy algorithm. We will show that it is not possible to allocate numbers of

22

points to these small interval and then pick points inside these small intervals and obtain error
bounds that match our modular Lagrange interpolation using the standard error analysis.

We note that standard Lagrange interpolation can only be applied to a continuous function.
Thus, in [HK20], they first approximate the mod function [t]q by a scaled sine function2. We
will ignore the inherent error associated with approximating the mod function by the scaled
sine function and, instead, focus on the error that occurs when the scaled sine function is
approximated by a degree n polynomial. We show that even this error cannot be as good as
our bounds using standard Lagrange interpolation using the standard error analysis.

Recall the following well-known theorem regarding the error of polynomial interpolation
from Section 2.

Theorem 12 (Polynomial Interpolation) Let f be an n + 1 times differentiable function
on [a, b] and pn be a polynomial of degree ≤ n that interpolates f at n + 1 distinct points
t0, t1, . . . , tn ∈ [a, b], meaning pn(ti) = f(ti) for all 0 ≤ i ≤ n. Then, for each t ∈ [a, b], there
exists a point ψt ∈ [a, b] such that

f(t)− pn(t) =
f (n+1)(ψt)

(n+ 1)!
·
n∏
i=0

(t− ti).

Error analysis for Lagrange interpolation proceeds by upper bounding f (n+1)(·) on [a, b]
and then bounding

∏n
i=0(t− ti). We are interested in approximating

S(t) = sin(2πkt)

on the 2k + 1 intervals of width 2ε/k centered at (1/k) ∗ [−k, . . . , k]. Observe that since sinx
and cosx lie between −1 and 1, we can bound

|S(n+1)(ψt)| ≤ (2πk)n+1

for any ψt. So the error analysis will be able to bound the error between S(t) and the polynomial
pn(t) by

|S(t)− pn(t)| ≤ (2πk)n+1‘

(n+ 1)!
·

∣∣∣∣∣
n∏
i=0

(t− ti)

∣∣∣∣∣ .
We will now show that no matter how the ti’s are chosen in these small intervals3, the resulting
error bound will be worse than that obtained via modular Lagrange interpolation.

2By shifting the center of the intervals, [HK20] approximates the mod function by a scaled cosine function.
We will perform our analysis on the scaled sine function and not shift the center of the intervals

3One could consider taking points not inside these intervals, but this can be seen to be suboptimal if the
number of points is even. Since approximations to the mod function are odd polynomials, the number of points
chosen for interpolation will be even.

23

Let di be the number of points for interpolation chosen in the interval centered at i/k for
i ∈ {−k, . . . , k}. Then, the points in the ith interval can be written as ti,j = i/k + δi,j for

δi,j ∈ [−ε/k, ε/k] and 1 ≤ j ≤ di. It follows that n+ 1 =
∑k
−k di. Consider an arbitrary point

t` = `/k + δ in the interval centered around `/k. Then,∣∣∣∣∣∣
k∏

i=−k

di∏
j=1

(t` − ti,j)

∣∣∣∣∣∣ =
k∏

i=−k

di∏
j=1

|(`/k − i/k + δ − δi,j)|

≥

 d∏̀
j=1

|(δ − δ`,j)|

 k∏
i=−k,i6=`

di∏
j=1

(1/k) ∗ (|`− i| − 2ε)

≥
(

ε

k ∗ d`

)d` k∏
i=−k,i6=`

di∏
j=1

(1/k) ∗ (|`− i| − 2ε)

for the worst-case δ ∈ [−ε/k, ε/k] when d` ≥ 1. Considering only the highest order in ε error
term, we will approximate (|`− i| − 2ε) with |`− i|.

To obtain an O(ε2) approximation (consistent with our O(1/N) approximation), we must
set di ≥ 2 for all i. However, if we set di ≥ 3, then we exceed the degree of our O(1/N)
approximation in Section 4. Let w(i) be a function that represents the number of points
beyond 2 that are in the ith interval. That is, w(i) = di − 2. Let ν =

∑k
i=−k w(i). Thus,

n+ 1 = 2 ∗ (2k + 1) + ν. Then, for a worst-case interval ` (one where d` = 2), the above error
approximation gives

(2π)n+1

(n+ 1)!
∗
(ε

2

)2
∗

 k∏
i=−k,i6=`

(|`− i|)2
 ∗

 k∏
i=−k,i6=`

(|`− i|)w(i)
 .

Since
(∏k

i=−k,i6=`(|`− i|)2
)

is minimized when ` = 0 and increases as |`| increases, a reasonable

assumption to minimize the error across all intervals is that w(i) is an increasing function with
|i| and is symmetric (w(i) = w(−i)). Let α denote the largest |i| for which w(i) = 0. Then,

24

the error in the 0th interval can be bounded by

(2π)4k+2+ν

(4k + 2 + ν)!
∗
(ε

2

)2
∗ (k!)4 ∗

(
k!

α!

)2

∗ (α+ 1)ν−2(k−α)

≥ (2π)4k+2+ν

(4k + 2 + ν)2+ν
∗
(ε

2

)2
∗ (k!)4

(4k)!
∗
(
k!

α!

)2

∗ (α+ 1)ν−2(k−α)

≈ (2π)4k+2+ν

(4k + 2 + ν)2+ν
∗
(ε

2

)2
∗ 1

44k
∗
(
k!

α!

)2

∗ (α+ 1)ν−2(k−α)

= ε2 ∗ π4k+2+ν

24k−ν ∗ (4k + 2 + ν)2+ν
∗
(
k!

α!

)2

∗ (α+ 1)ν−2(k−α)

When k is a multiple of 12, we give polynomials in Section 4 with ν = 14(k/12). Thus, the
minimum possible value of α is k − 7(k/12) = 5(k/12). The lower bound then becomes

ε2 ∗ π(31k/6)+2

2(17k/6) ∗ ((31k/6) + 2)2+7(k/6)
∗
(

k!

(5k/12)!

)2

.

For k = 12, this gives a lower bound of 769137ε2. For comparison, we obtained a bound of
75ε2. Note that this lower bound only focused on the error for the 0th interval, and this error
is already larger than the error of our polynomials.

9 Application to Bootstrapping for Approximate HE

In Section 1.1, we explained that approximating the mod function on small intervals around
the modulus is a necessary step in bootstrapping for approximate homomorphic encryption
(CKKS). In this section, we will briefly overview the bootstrapping procedure for the CKKS-
FHE scheme introduced in [CHK+18a] and explain how our modular Lagrange interpolation
leads to explicit polynomials that increase the flexibility of bootstrapping (by allowing boot-
strapping to be possible in situations where it was previously unknown). We evaluate the
performance of our polynomials for various typical settings of parameters and find that they
bypass the fundamental error introduced by approximating the mod function with a scaled
sine function even for low-degree polynomials computable in depth 7 or 8.

Notation and Necessary Preliminaries: Let M be a power of 2 and ΦM (X) = XN + 1
be the Mth cyclotomic polynomial of degree N = M/2. Let R = Z[X]/ΦM (X). For an
integer q, let Rq = Zq[X]/ΦM (X). Using the canonical embedding σ, it is possible to map an

25

element m(X) ∈ R into CN by evaluating m(X) at the Mth primitive roots of unity. Using the
same canonical embedding, it is also possible to define an isometric ring isomorphism between
S = R[X]/ΦM (X) and CN/2, where for an element m(X) ∈ S, it has the canonical embedding
norm ||m||can∞ = ||σ(m)||∞.

Overview of the CKKS-FHE Scheme: The CKKS-FHE scheme [CKKS17] is an FHE
scheme for approximate arithmetic over real/complex numbers. Its security is based on the
ring-LWE (RLWE) assumption. The message space of the scheme is polynomials m(X) in R
with ||m||can∞ < q/2 for a prime q. Using the canonical embedding and appropriate scaling, one
can map a vector in CN/2 of fixed precision into R. The fact that canonical embedding induces
an isometric ring isomorphism between S and CN/2 implies that operations on the message
space R map to the same operations performed coordinate-wise on CN/2. Thus, the CKKS-
FHE scheme supports packing N/2 complex numbers into a single plaintext and operating on
them in single instruction multiple data (SIMD) manner. Please refer to [CKKS17] for more
details on this encoding procedure. We will refer to m(X) ∈ R as the plaintext/message and
the corresponding vector in CN/2 as the plaintext “slots.”

A ciphertext ct encrypting a message m ∈ R is an element of R2
q`

for some ` ∈ {0, . . . , L}.
` refers to the “level” of the ciphertext. In [CKKS17], q` = p` ∗ q for primes p and q. However,
q` can be set in other ways (such as via an RNS basis [CHK+18b]). The decryption structure
is 〈ct, sk〉 mod q` = m+ e for some small error e ∈ R. Observe that there is no way to remove
e and some of the least significant bits of m are unrecoverable. A fresh ciphertext is generated
at the highest level L. Homomorphic operations increase the magnitude of the error and the
message and one must apply a rescaling procedure or modular reduction to bring a ciphertext
to a lower level to continue homomorphic computation. Eventually, a ciphertext is at the
lowest level (an element of R2

q), and no further operations can be performed.

Bootstrapping Procedure for CKKS-FHE: [CHK+18a] introduced the first bootstrap-
ping procedure for the CKKS-FHE scheme. Subsequent works [CCS19, HHC19, HK20] im-
proved various aspects of bootstrapping, but the overall procedure remains the same. The goal
is to take a ciphertext at the lowest level and bring it up to a higher level so that homomorphic
computation can continue. Thus, given a ciphertext ct at the lowest level, we want to obtain
another ciphertext ct′ such that

〈ct, sk〉 mod q ≈ 〈ct′, sk〉 mod q`

for some ` > 1. For simplicity in the following, we will include the starting decryption error in
the message m. That is, we will assume that 〈ct, sk〉 mod q = m.

Bootstrapping is done via the following sequence of steps:

26

1. Modulus Raising: By simply considering ct as a ciphertext at the highest level, it
follows that 〈ct, sk〉 mod qL = qI +m for some I ∈ R.

2. Coefficients to Slots: We need to perform the modular reduction on the polynomial
coefficients of t = qI + m. However, recall that homomorphic computations evaluate
coordinate-wise on the plaintext “slots,” not the polynomial coefficients. Thus, we need
to transform our ciphertext so that the polynomial coefficients are in the “slots.” This
can be done by evaluating a linear transformation homomorphically.

3. Compute the Mod Function: We need a procedure to compute/approximate the
mod function homomorphically. This is a significant challenge since we can only com-
pute arithmetic operations homomorphically.

4. Slots to Coefficients: Finally, we need to undo the coefficients to slots step. This can
be done by homomorphically evaluating the inverse of the previous linear transform.

Observe that if we can approximate the mod function, then the above procedure will give
us a ct′ at some higher level ` that decrypts to m + e for some small error e. Since we are
dealing with approximate arithmetic, this error from bootstrapping can be absorbed into the
other errors that occur during approximate arithmetic and homomorphic evaluation.

Prior Approaches to Approximating the Mod Function: We can upper bound |I| < K
for some integer K (a typical value is K = 12) so that we only need to approximate the mod
function on the interval [−Kq−m,Kq+m], where we have overloaded notation to make m an
upper bound on the size of the message for consistency of notation with prior works. However,
finding a good polynomial approximation for the mod function on this interval is difficult since
it is not even a continuous function.

As described in the introduction, [CHK+18a] observed that if m is sufficiently small, then

the mod function [t]q can be approximated by the scaled sine function S(t) = q
2π sin

(
2πt
q

)
.

This approximation introduces a “fundamental error” of 2π2

3 qε3, where ε = m/q. Thus, to

obtain O(1) error, we require m = O(q2/3), meaning that we must begin bootstrapping prior
to m becoming too large.

The work [CHK+18a] then proceeded by approximating S(t) using a Taylor expansion
to degree O(Kq) so that the error of approximation with S(t) is about the same as the error

27

between S(t) and [t]q. Since they are approximating a scaled sine function, they are able to use
double-angle formulas for sine to reduce the computational cost of evaluating the approximation

polynomial by first approximating a scaled-down version sin
(

2πt
2r∗q

)
to a degree d0 = O(1) and

then using this approximation to approximate S(t). The required setting of r is O(logKq) and
so the multiplicative depth (alternatively, the ciphertext levels consumed) remains the same.

The work [CCS19] improved upon this method by instead using Chebyshev interpolation
to approximate S(t), which lowered the error of approximation and the required degree. In
Chebyshev interpolation, instead of working with the polynomial basis {1, x, x2, . . .}, one works
with the Chebyshev basis {T0(x), T1(x), T2(x), . . .} and uses the Chebyshev nodes as points for
interpolation. Approximating S(t) via Chebyshev interpolation pn(t) of degree ≤ n gives an
error of

|S(t)− pn(t)| ≤ qKn+1 πn

(n+ 1)!
.

Observe that the above error does not depend on ε (that is, it is a good approximation on
the entire space [−Kq,Kq] and does not utilize the fact that we only need a good approximation
close to multiples of q). However, for a typical parameter setting K = 12, this error bound
only improves on the trivial bound of q for degree n ≥ 98.

The work [HK20] improved on the approximation of the scaled sine function by leveraging
the fact that we only care that our approximation is good near multiples of q. To do this,
[HK20] uses Chebyshev interpolation on the union of these small intervals instead of the entire
space [−Kq,Kq]. Implicit in this, they consider the ratio between the maximum size of a
message and q. This procedure allows them to reduce the degree of the polynomial required
for approximation and allows the error of approximation to depend on the ratio ε = m/q.
For approximating the scaled sine function on 2K + 1 intervals near multiples of q (near
−Kq, . . . ,Kq), the error of approximation in any particular interval is O

(
εd
)
, where d is the

number of points chosen for Chebyshev interpolation in that interval. However, due to the
constants hidden in the big-O notation (which can depend exponentially on K), choosing the
same number of points for Chebyshev interpolation in all intervals does not give the best
approximation, and the authors choose d for each interval via a greedy algorithm.

The above approaches all require first approximating [t]q via a scaled sine function, and,

therefore, will always at least have error 2π2

3 qε3. If we want to have a smaller error, it is nec-
essary to use a different method that avoids the scaled sine function. A pair of recent works
by the same authors [LLKN20, LLL+20] avoid the scaled sine function by instead trying to
find the optimal minimax polynomial of a fixed degree that approximates the mod function
via algorithmic search. [LLKN20] uses L2-norm minimization and [LLL+20] uses a variant of
the Remez algorithm [Rem34] to obtain an approximation to the optimal minimax polynomial

28

of a given degree that approximates the modular reduction function on the union of intervals
containing points close to multiples of q. However, in both of these works, the polynomial is
found via algorithmic search. Moreover, the degree of the polynomial is fixed a priori before
any approximation is computed. Without any bounds showing trade-offs between the poly-
nomial degree, size of the coefficients, and the error of approximation, it is hard to develop
strategies for picking the degree. In particular, the authors observe that there are large “flat
regions” where increasing the degree does not decrease the error of approximation. Thus, in
practice, one would want to use a polynomial of the smallest degree in the “flat region,” but
without any bounds, one must determine this degree via numerical analysis. This “flat region”
phenomena of the mod function on these intervals is emphasized by our error bounds, which
show that the biggest gains occur when we increase the number of points per interval, which
corresponds to jumps in the total degree of the polynomial. In order to use the polynomi-
als of [LLKN20, LLL+20], one would have to go through the process of running the search
algorithm for a fixed degree, numerically determining the error, adjusting the polynomial de-
gree accordingly, and then repeating this process again until a suitable polynomial has been
found. Furthermore, in [LLL+20], although the Remez algorithm converges uniformly to the
optimal minimax polynomial of a fixed degree, the error of the kth iteration is bounded by
Aθk for unknown constants A and θ that depend on the function. Thus, they must also de-
termine a stopping condition and without knowledge of the rate of convergence, this can be
difficult. A final point is that in practice, for numerical stability, the polynomials are com-
puted in the Chebyshev basis. The size of the coefficients of the polynomial in the Chebyshev
basis determines the precision to which the basis polynomials Ti(x) must be evaluated. These
works do not provide information regarding the magnitude of the coefficients, and without any
bounds, the precision to which the Ti(x)’s must be evaluated will also have to be determined
experimentally.

Our Approach to Approximating the Mod Function: In contrast to the above ap-
proaches, using modular Lagrange interpolation, we give explicit low-degree polynomials that
directly approximate the mod function on intervals around multiples of the modulus to arbi-
trarily small error. We are able to formally prove error bounds for our polynomials and bounds
on the magnitudes of the coefficients in the Chebyshev basis. Our approach avoids the “funda-
mental error” associated with using the scaled sine function as an intermediate approximation,
and, therefore, the restriction that m = O(q2/3) is removed. Thus, our approach enables
bootstrapping to settings where it was not possible under the scaled sine approach. The p(`′)
function weighting the various intervals was chosen with the setting K = 12 in mind. However,
our approach is general, and for a different value of K, one could define an appropriate p(`′)
function to obtain good approximations.

29

Table 1: Polynomials for m/q = 2−7

Degree Points/Interval (d+ 1) b c Depth Precision Error

69 3 1 0 7 30 bits 2−11

89 3 2 0 7 20 bits 2−12

115 4 2 0 7 37 bits 2−15

159 5 3 0 8 40 bits 2−22

185 6 3 0 8 60 bits 2−26

229 7 4 0 8 63 bits 2−30

255 8 4 0 8 83 bits 2−34

299 9 5 0 9 83 bits 2−37

325 10 5 0 9 107 bits 2−37

Table 2: Polynomials for m/q = 2−10

Degree Points/Interval (d+ 1) b c Depth Precision Error

69 3 1 0 7 37 bits 2−17

115 4 2 0 7 40 bits 2−24

139 5 2 0 8 67 bits 2−34

185 6 3 0 8 73 bits 2−40

209 7 3 0 8 97 bits 2−49

255 8 4 0 8 103 bits 2−57

279 9 4 0 9 127 bits 2−65

325 10 5 0 9 133 bits 2−72

Our polynomials are defined in terms of a modulus N and intervals of length 1. Thus, to
evaluate [t]q for bootstrapping, where t = qI +m′ for some |m′| < m and |I| < K, one would

first compute t
2m = q

2mI + m′

2m . Setting N = q
2m and evaluating the appropriate polynomial

gives an approximation to m′

2m , which can then be multiplied by 2m to obtain an approximation
of m′ as desired.

Tables 1, 2, 3, and 4 show experimental results of implementations of polynomials obtained
for various settings of m/q = ε. Consistent with prior works, we set K = 12 and evaluate
the scaled down mod function that takes an input in a small interval [I − ε, I + ε] for I ∈

30

Table 3: Polynomials for m/q = 2−15

Degree Points/Interval (d+ 1) b c Depth Precision Error

63 3 1 0 6 50 bits 2−22

77 3 2 0 7 50 bits 2−28

103 4 2 0 7 83 bits 2−40

141 5 3 0 8 103 bits 2−56

167 6 3 0 8 130 bits 2−65

205 7 4 0 8 153 bits 2−81

231 8 4 0 8 177 bits 2−86

269 9 5 0 9 203 bits 2−105

295 10 5 0 9 220 bits 2−107

Table 4: Polynomials for m/q = 2−20

Degree Points/Interval (d+ 1) b c Depth Precision Error

63 3 1 0 6 67 bits 2−36

103 4 2 0 7 93 bits 2−55

127 5 2 0 7 127 bits 2−72

167 6 3 0 8 153 bits 2−92

191 7 3 0 8 187 bits 2−106

231 8 4 0 8 213 bits 2−129

255 9 4 0 8 247 bits 2−140

295 10 5 0 9 277 bits 2−166

Table 5: Fundamental Error Between the Scaled Sine and Mod Functions

m/q Error

2−7 2−18

2−10 2−27

2−15 2−42

2−20 2−57

31

{−K, . . . ,K}. The precision refers to the number of bits of precision we need to evaluate the
Chebyshev basis polynomials in order to obtain the best error. The polynomials in Tables 1
and 2 were obtained using the enhanced interpolation from Section 6, while the polynomials in
Tables 3 and 4 are from Section 5 (Section 4 for the degree 63 polynomials)4. Table 5 shows the
fundamental error between the scaled sine function and the mod function for various settings
of m/q. We observe that once we take d + 1 = 5 points per interval (and set b to 2 or 3),
our polynomials have smaller error than this fundamental error by many orders of magnitude.
This gain is only increased as we increase the number of points per interval. These polynomials
are computable in depth 7 for m/q = 2−20 and in depth 8 for m/q = 2−7, 2−10, 2−15. If one is
willing to use a depth 8 circuit for m/q = 2−20 or a depth 9 circuit for m/q = 2−7, 2−10, 2−15,
then the error decreases even further.

10 Modular Lagrange Interpolation Beyond the Mod Function

The techniques developed in earlier sections, also apply to other bounded piecewise smooth
functions, especially of low-degree. However, many times, a more judicious algebraic manip-
ulation can lead to a smaller degree or better approximation interpolation. For example, for
x ∈ `N + [−1/2, 1/2], ` ∈ [−k..k], define I(x) to be `. Then the mod function fN (x) on
these intervals can be written as x− I(x) ∗N . and I(x) = (x− fN (x))/N . Thus, an O(N−1)-
approximation g(x) of fN (x) gives us a O(N−2) approximation of I(x), as (x−g(x))/N . This is
not surprising, as a linear function already approximates I(x) to O(N−1) and, thus, the modu-
lar interpolation is likely to give a much better approximation, i.e. an O(N−2)-approximation,
whereas the bounds in Theorem 6 only give O(N−1).

We have the following generalization of Theorem 9. Let {f`}`∈[−k..k] be a set of functions
each of degree s, with |f`(x)| bounded by B when x is in the `-th interval `N + [−1/2, 1/2].
Define, for b, d ≥ 1, and c ≥ 0,

gb,c,d(x) =
∑
`∈L

∑
z∈S`

f`(z) ∗
∏

w∈S`\{z}

x− w
z − w

∗
∏
`′∈L
`′ 6=`

(
x− `′N
z − `′N

)d+c+b∗p(`′)
(11)

where p(`′) is defined as before in Section 4. When b = dd/2e and d+ c = 2b, we refer to the
polynomial simply as gd(x).

4The polynomials in these Tables 3 and 4 used the enhanced strategy as described in Section 6 where p(`′)
is forced to zero if |`| ≥ |`′|.

32

Theorem 13 For any k, d > 0, N > 0.22 ∗ k ∗ 3.4k and N > (m+ d+ 1)/(d+ 1), k ≥ 12, and
k a multiple of twelve, for any x such that |x − `N | ≤ 1/2 with ` ∈ {−k,−k + 1, . . . , k}, we
have

|g2d(x)− f`(x)| < N−2d+s ∗B ∗ 22d ∗
(

1 +
em

d

)2d
+

N−2d+s ∗
(

4k ∗N + (4d+ 6) ∗ (33 ∗ k2)d
)
∗
(√

k ∗ 1.1221k/2
)d

and

|g2d+1(x)− f`(x)| < N−2d−1+s ∗B ∗ 22d+1 ∗
(

1 +
2em

2d+ 1

)2d+1

+

N−2d−1+s ∗
(

4k + (4d+ 10) ∗ (33 ∗ k2)d+1/N
)
∗
(√

k ∗ 1.1221k/2
)d+1

11 Conclusion

In this work, we introduced a novel technique called modular Lagrange interpolation that al-
lows one to find low-degree polynomial approximations of a function on the union of small
intervals even if the function is not continuous. By using modular Lagrange interpolation, we
are able to prove explicit error bounds on these polynomials. We demonstrated the efficacy
of our technique by constructing explicit low-degree polynomials that approximate the mod
function well on intervals around the modulus. These polynomials have major applications
to bootstrapping for approximate homomorphic encryption and allow us to bypass the funda-
mental error of approximation inherent in prior works which first used a scaled sine function
to approximate the mod function on these intervals. In this work, we focused on constructing
explicit polynomials for parameter settings typical in CKKS-FHE. However, our modular La-
grange interpolation is general and allows us to construct explicit polynomials for CKKS-FHE
bootstrapping that perform well for whatever parameter settings one desires. Although we
focused on approximating the mod function in this work due to its applications to CKKS-FHE
bootstrapping, our modular Lagrange interpolation technique is general and extends to other
piecewise smooth functions. An interesting question is to find more applications of modular
Lagrange interpolation. Additionally, while we prove asymptotic error bounds of O(N−d) for
any d > 0, our error bounds greatly overestimate the experimental error for small d, which is
used in practice. Thus, another interesting question would be to provide better error bounds
for small d.

33

References

[BHHH19] Flavio Bergamaschi, Shai Halevi, Tzipora T. Halevi, and Hamish Hunt. Homo-
morphic training of 30,000 logistic regression models. In Robert H. Deng, Valérie
Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, Applied Cryptography
and Network Security, pages 592–611, Cham, 2019. Springer International Pub-
lishing. 1.1

[BT04] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric lagrange interpolation.
SIAM Review, 46, No. 3:501–517, 2004. 1

[CCS19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping for ap-
proximate homomorphic encryption. In EUROCRYPT, pages 34–54, 2019. 1.1,
9, 9

[CHK+18a] Jung Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Boot-
strapping for approximate homomorphic encryption. In EUROCRYPT, pages
360–384, 01 2018. 1.1, 1.1, 9, 9, 9

[CHK+18b] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
A full rns variant of approximate homomorphic encryption. In Selected Areas in
Cryptography – SAC 2018, 2018. 1.1, 9

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In ASIACRYPT, 2017. 1.1, 9

[Fik68] C.T. Fike. Computer evaluation of mathematical functions. Princeton Hall, 1968.
2.2

[For96] B. Fornberg. A practical guide to pseudospectral methods. Cambridge univ. Press,
1996. 1

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009. 1.1

[HHC19] K. Han, M. Hhan, and J. H. Cheon. Improved homomorphic discrete fourier
transforms and fhe bootstrapping. IEEE Access, 7:57361–57370, 2019. 9

[HK20] Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate homo-
morphic encryption. In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA
2020, pages 364–390, Cham, 2020. Springer International Publishing. 1.1, 8, 2, 9,
9

34

[KHB+20] Miran Kim, Arif Harmanci, Jean-Philippe Bossuat, Sergiu Carpov, Jung Cheon,
Ilaria Chilotti, Wonhee Cho, David Froelicher, Nicolas Gama, Mariya Georgieva,
Seungwan Hong, Jean-Pierre Hubaux, Duhyeong Kim, Kristin Lauter, Yiping Ma,
Lucila Ohno-Machado, Heidi Sofia, Yongha Son, Yongsoo Song, and Xiaoqian
Jiang. Ultra-fast homomorphic encryption models enable secure outsourcing of
genotype imputation. bioRxiv, 2020. 1.1

[KSK+18] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon. Logis-
tic regression model training based on the approximate homomorphic encryption.
BMC Medical Genomics, 11(4):83, 2018. 1.1

[KSW+18] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian Jiang. Se-
cure logistic regression based on homomorphic encryption: Design and evaluation.
JMIR Med Inform, 6(2):e19, Apr 2018. 1.1

[LLKN20] Y. Lee, J. Lee, Y. Kim, and J. No. Near-optimal polynomial for modulus reduction
using l2-norm for approximate homomorphic encryption. IEEE Access, 8:144321–
144330, 2020. 9

[LLL+20] J. Lee, Eunsang Lee, Y. Lee, Y. Kim, and J. No. Optimal minimax polynomial ap-
proximation of modular reduction for bootstrapping of approximate homomorphic
encryption. IACR Cryptol. ePrint Arch., 2020:552, 2020. 9

[MHS+20] Oliver Masters, Hamish Hunt, Enrico Steffinlongo, Jack Crawford, Flavio Berga-
maschi, Maria E. Dela Rosa, Caio C. Quini, Camila T. Alves, Feranda de Souza,
and Deise G. Ferreira. Towards a homomorphic machine learning big data pipeline
for the financial services sector. In RWC, 2020. 1.1

[Rem34] Gilbert Remez, E. Sur la determination des polynomes d’approximation de degre’
donnee’. Comm. of the Kharkov Math. Soc., 10(196):41–63, 1934. 1, 9

[Rob55] Herbert Robbins. A remark on stirling’s formula. The American Mathematical
Monthly, 62(1):26–29, Jan. 1955. C

[SPTP+20] Sinem Sav, Apostolos Pyrgelis, Juan R. Troncoso-Pastoriza, David Froelicher,
Jean-Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. Poseidon:
Privacy-preserving federated neural network learning, 2020. 1.1

[Str04] Gilbert Strang. The discrete cosine transform. SIAM Review, 41, No. 1:135–147,
2004. 2.2

35

Supplementary Material

A Upper Bound on Lagrange Basis Polynomial

In this section, we will determine an upper bound on the absolute value of the Lagrange

basis polynomials `
(m)
j;t0,...,tm

(x) when t0, . . . , tm are evenly spaced points in the closed interval

[−1/2, 1/2] and x ∈ [−1/2, 1/2]. We can write these points as ti = i
m −

1
2 for i ∈ {0, . . . ,m}.

First, we will consider the denominator of `
(m)
j;t0,...,tm

(x), which is independent of x. For the jth
Lagrange basis polynomial, the denominator is given by∏

i∈{0,...,m}\{j}

tj − ti.

The term tj − ti = j−i
m . Thus, the absolute value of the denominator can be written as

j!(m− j)!
mm

.

Now, we will consider the numerator. For the jth Lagrange basis polynomial, the numerator
can be written as ∏

i∈{0,...,m}\{j}

x− ti =
∏

i∈{0,...,m}\{j}

x−
(
i

m
− 1

2

)
for x ∈ [−1/2, 1/2]. Setting y = x + 1

2 , we have∏
i∈{0,...,m}\{j}

y− i

m

for y ∈ [0, 1]. Consider the m + 1 points 0, 1
m ,

2
m , . . . , 1. The maximum possible value of the

numerator occurs when y is set to maximize the product of the distances between y and all
but one these points. First, we observe that for any fixed y, the value is maximized when we
exclude the point closest to y. Having done this, we observe that the maximum occurs when
y = 1 and we remove the point 1. This follows from the fact that the nearest point is 1

m away,
which is the maximum possible. The second nearest point is 2

m away, which, again, is the
maximum possible and so forth. Thus, the maximum absolute value of the numerator can be
bounded by m!

mm . Dividing the numerator and denominator, we arrive at the bound

m!

j!(m− j)!
=

(
m

j

)
for the jth Lagrange basis polynomial.

36

B Proof of Lemma 4

For any ` ∈ [−k..k], and x ∈ [−1/2 + `N,+1/2 + `N],

∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

 ∗ ∏
`′∈L
`′ 6=`

(
x− `′N

(`− `′)N

)2+p(`′)

=
∏
`′∈L
`′ 6=`

(
x− `′N

(`− `′)N

)2+p(`′)

∗
∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

= (x− `N) ∗

∏
`′∈L
`′ 6=`

(
x− `′N

(`− `′)N

)2+p(`′)

= (x− `N) ∗
∏
`′∈L
`′ 6=`

(
1− (x− `N)/((`′ − `)N)

)2+p(`′)
= x′ ∗

∏
`′∈L
`′ 6=`

(
1− x′/((`′ − `)N)

)2+p(`′)
(12)

where we let x′ stand for (x− `N). If ` is zero, then the big product above can be simplified,
by noting that p(`′) = p(−`′), to ∏

`′∈[1..k]

(
1− (x)2/(`′N)2

)2+p(`′)
When ` 6= 0, we can still try to pairoff (`′ − `) around ` as much as possible, but we must
address the slight complication due to p(`′). So, define L(1) to be subset of L where p(`′) ≥ 1,
and similarly L(2) to be subset of L where p(`′) ≥ 2. Then, we have∏

`′∈L
`′ 6=`

(
1− x′/((`′ − `)N)

)2+p(`′)

=
∏
`′∈L
`′ 6=`

(
1− x′

(`′ − `)N

)2

∗
∏

`′∈L(1)
`′ 6=`

(
1− x′

(`′ − `)N

)
∗
∏

`′∈L(2)
`′ 6=`

(
1− x′

(`′ − `)N

)

37

Since, the above is one plus or minus other terms involving x′/N , it follows that the quan-
tity (12) differs from fN (x) = x′ (with x in the `-th interval) in absolute value by at most

1

2
∗

−1 +
∏
`′∈L
`′ 6=`

(
1 +

|x′|
|`′ − `| ∗N

)2

∗
∏

`′∈L(1)
`′ 6=`

(
1 +

|x′|
|`′ − `| ∗N

)
∗
∏

`′∈L(2)
`′ 6=`

(
1 +

|x′|
|`′ − `| ∗N

)
(13)

Focusing just on one of these products we have, and assuming N > k,

∏
`′∈L
`′ 6=`

(
1 +

|x′|
|`′ − `| ∗N

)

≤
∏

i∈[1..k]

(
1 +

|x′|
i ∗N

)2

≤

1 +
∑
i∈[1..k]

|x′|
i ∗N

+
∑

j∈[2..k]

(
k

j

)(
|x′|
N

)j2

≤

1 + ln(ek) ∗ |x
′|
N

+
∑

j∈[2..k]

kj ∗
(
|x′|
N

)j2

≤

1 + ln(ek) ∗ |x
′|
N

+
∑

j∈[2..k]

(
|x′| ∗ k
N

)j2

≤

(
1 + ln(ek) ∗ |x

′|
N

+

(
|x′| ∗ k
N

)2

∗ 1

1− |x′| ∗ k/N

)2

≤

(
1 + 2 ∗ ln(ek) ∗ |x

′|
N

+ 4 ∗
(
|x′| ∗ k
N

)2
)

≤
(

1 + 2 ∗ ln(ek) ∗ |x
′|
N

+
k2

N2

)
(14)

38

Thus, using (13), it follows that the quantity (12) differs from fN (x) = x′ (with x in the `-th
interval) in absolute value by at most

2 ∗ ln(ek)

N
+

2k2

N2

C Proof of Lemma 5

Proof: With |x− tN | ≤ 1/2 for t ∈ {−k,−k+ 1, . . . , k}, we now analyze the other summands
(i.e. ` 6= t) of (7). Let x = x′ + tN , with |x′| ≤ 1/2. We have (recalling ` 6= t),

∑
z∈S`

fN (z) ∗
∏

w∈S`\{z}

x′ + t ∗N − w
z − w

∗
∏
`′∈L
`′ 6=`

(
x′ + t ∗N − `′N

`N − `′N

)2+p(`′)

= (x′ − (`− t)N) ∗
∏
`′∈L
`′ 6=`

(
x′ − (`′ − t)N

(`− `′)N

)2+p(`′)

(15)

For N >> 1, the absolute value of the above is upper bounded by approximately

(x′)2+p(t) ∗N−1−p(t) ∗ |t− `|−1−p(t) ∗
∏
`′∈L
`′ 6=`
`′ 6=t

(
|`′ − t|
|`′ − `|

)2+p(`′)

(16)

We can be more precise and use (12), (13) and (14) to get that expression 15 is upper bounded
by

(x′)2+p(t) ∗ (1 + 4 ∗ ln(ek)

N
+

4k2

N2
) ∗N−1−p(t) ∗ |t− `|−1−p(t) ∗

∏
`′∈L
`′ 6=`
`′ 6=t

(
|`′ − t|
|`′ − `|

)2+p(`′)

(17)

We now upper bound this quantity for different values of t and `. Along the way, we will show
that the denominator above is smallest when ` is zero. We will split the analysis according to
the three cases depending on the value of p(t). So, we first consider t ≤ k/2, where p(t) = 0.
In this case the above quantity has factor N−1, i.e. has no additional negative powers of N .

39

Thus, we would like to prove that, for ` = 0 and t ≤ k/2, the following quantity is small:

|t− `|−1−p(t) ∗
∏
`′∈L
`′ 6=`
`′ 6=t

(
|`′ − t|
|`′ − `|

)2+p(`′)

= |t− `|−1−p(t) ∗ |t− `|p(t)−p(`) ∗ Pt
P`

= |t− `|−1−p(`) ∗ Pt
P`

(18)

where Pi =
∏
`′∈L,`′ 6=i |`

′ − i|2+p(`′).
Consider the following sequence of integers: a0 = 0, a1 = bk/2c, a2 = b(11/12) ∗ kc, and

a3 = k. Since, we assume that k is a multiple of 12, a1 = k/2 and a2 = (11/12) ∗ k. Then,
p(`′) = k for integers `′ in the range [ak + 1..ak+1], for all k ∈ [0..2]. Also, p(a0) = 0. Thus, for
i ≤ a1,

Pi = ((a3 − i)!(a3 + i)!)4 ∗ ((a1 − i)!(a1 + i)!)−1 ∗ ((a2 − i)!(a2 + i)!)−1 ,

and for a1 < i ≤ a2,

Pi = ((a3 − i)!(a3 + i)!)4 ∗ ((a1 + i)!/(i− a1)!)−1 ∗ ((a2 − i)!(a2 + i)!)−1 ,

and for a2 < i ≤ a3 = k,

Pi = ((a3 − i)!(a3 + i)!)4 ∗ ((a1 + i)!/(i− a1)!)−1 ∗ ((a2 + i)!/(i− a2)!)−1 .

In Lemma 14 below we show that for all |`| ≤ k and all |t| ≤ k/2, we have

Pt/P` < 0.924 ∗
√
k ∗ (1.1221)k,

and, for all |`| ≤ k and all |t| ≤ 11/12 ∗ k, we have

Pt/P` < 0.098 ∗
√
k3 ∗ (3.81)k,

and, for all |`| ≤ k and all |t| ≤ k, we have

Pt/P` < e ∗ 0.0051 ∗ k2 ∗ (9.813)k ≤ 0.014 ∗ k2 ∗ 9.813k.

Thus, in definition 6 of ĝ(x), using 17, and well-known bound on harmonic series, and
assuming N > max{k, 80∗ln(ek)}, we have for all t ∈ L, and for all x ∈ [−1/2+t∗N, 1/2+t∗N],∣∣∣∣∣∣∣∣
∑
`∈L
6̀=t

∑
z∈S`

fN (z) ∗
∏

w∈S`\{z}

x− w
z − w

∗
∏
`′∈L
`′ 6=`

(
x− `′N
z − `′N

)2d+p(`′)

∣∣∣∣∣∣∣∣ (19)

≤ (1/4) ∗ 1.1 ∗ 2 ∗ ln(ek) ∗ max{0.9 ∗ k
1
2 ∗ 1.1221k

N
, 0.24 ∗ k

3
2 ∗ 3.81k

N2
, 0.014 ∗ k2 ∗ 9.813k

N3
}

40

�

Lemma 14 For k a multiple of twelve, and k ≥ 12, for all |`| ≤ k and all |t| ≤ k/2, we have

Pt/P` < 0.924 ∗
√
k ∗ (1.1221)k,

and, for all |`| ≤ k and all |t| ≤ 11/12 ∗ k, we have

Pt/P` < 0.098 ∗
√
k3 ∗ (3.81)k,

and, for all |`| ≤ k and all |t| ≤ k, we have

Pt/P` < e ∗ 0.0051 ∗ k2 ∗ (9.813)k ≤ 0.014 ∗ k2 ∗ 9.813k.

Proof: We will prove the lemma by upper bounding Pt/P0 in each of the three regions. Along
the way, we will also prove that Pt/P0 is lower bounded by one, for all t, 0 ≤ t ≤ k. We first
focus on t ≤ a1 = k/2. Then,

Pt
P0

=

(
(a3 − t)!(a3 + t)!

a3!a3!

)4

∗
(

(a1 − t)!(a1 + t)!

a1!a1!

)−1
∗
(

(a2 − t)!(a2 + t)!

a2!a2!

)−1
=

(
(a3 − t)!(a3 + t)!

a3!a3!

)4

∗ a1!a1!

(a1 − t)!(a1 + t)!
∗ a2!a2!

(a2 − t)!(a2 + t)!
,

To upper bound this quantity, we will use Robbins inequalities [Rob55], which are explicit
bound versions of Sterling’s approximation of the factorial function.

√
2π nn+

1
2 e−ne

1
12n+1 < n! <

√
2π nn+

1
2 e−ne

1
12n . (20)

Using the fact that t ≤ k/2, we get

Pt
P0
≤ e

12
12·1 ∗

(
((k + t)(k − t))4

k8
∗ a21

(a1 − t)(a1 + t)
∗ a22

(a2 − t)(a2 + t)

)1/2

∗ (21)(
((k − t)k−t(k + t)k+t)4

(a1 − t)a1−t(a1 + t)a1+t ∗ (a2 − t)a2−t(a2 + t)a2+t

)
∗

(
k8k

a2a11 ∗ a2a22

)−1
(22)

Writing the second factor in (21) as Ct and the quantity (22) as Qt, the above inequality can
be written as

Pt
P0
≤ Ct ∗Qt (23)

41

The same inequalities (20) also yield

Pt
P0
≥ e

12
12·1+1 ∗ Ct ∗Qt (24)

For t = a1 = k/2 In section C.1, we show that 1 ≤ Ct ≤ 0.34
√
k. As for Qt, we have

Qt =

(
((k − t)k−t(k + t)k+t)4 ∗ (a1)

2a1(a2)
2a2

(a1 − t)a1−t(a1 + t)a1+t ∗ (a2 − t)a2−t(a2 + t)a2+t ∗ k8k

)
=

(
((1− τ)k−t(1 + τ)k+t)4

(α1 − τ)a1−t(α1 + τ)a1+t ∗ (α2 − τ)a2−t(α2 + τ)a2+t
∗ (α1)

2a1 ∗ (α2)
2a2

)

=

 ((1− τ2)(1+τ1−τ)τ)4

(α2
1 − τ2)α1

(
α1+τ
α1−τ

)τ
∗ (α2

2 − τ2)α2

(
α2+τ
α2−τ

)τ ∗ (α1)
2α1 ∗ (α2)

2α2

k

, (25)

where α1 = a1/k = 1/2 and α2 = a2/k = 11/12. In order to find the value of τ , 0 < τ ≤ 1/2,
where the above quantity is maximized, we take the derivative of the logarithm of the above
quantity (25) w.r.t. τ , using the fact that

d

dt

(
a ∗ log(a2 − t2) + t ∗ log

(
a+ t

a− t

))
= log

(
a+ t

a− t

)
.

The required derivative (w.r.t. τ) is then

k ∗
(

4 ∗ log

(
1 + τ

1− τ

)
− log

(
α1 + τ

α1 − τ

)
− log

(
α2 + τ

α2 − τ

))
Thus, the derivative is zero at roots of

(1 + τ)4(α1 − τ)(α2 − τ)− (1− τ)4(α1 + τ)(α2 + τ)

= τ ∗ (124 ∗ τ4 − 128 ∗ τ2 + 20)

Thus, the roots are 0, ±
√

(16± 10
√

1.01)/31. Other than zero, the only root in the region

[0, 1/2] is
√

(16− 10
√

1.01)/31 which is approximately 0.438109. It is not difficult to check

that this value of τ makes a local maxima of (25). Using this value of τ in (25), we get that
for t ≤ k/2,

Qt < (1.1221)k

42

Since, the above had a single maxima at τ is 0.438109, one can also calculate this expression
at τ = 1/2. In that case, the expression has declined to (1.067)k. Thus, Qt is lower bounded
in this region by 1 (i.e. its value at t = 0).

Hence, for t > 0,
1 ≤ Pt/P0 ≤ e ∗ 0.34

√
k ∗ (1.1221)k

Thus, for all |`| ≤ k/2 and all |t| ≤ k/2, we have

Pt/P` < 0.34 ∗
√
k ∗ e ∗ (1.1221)k

In the region a1 ≤ |t| ≤ a2, we have

Pt
P0
≤ e ∗

(
((k + t)(k − t))4

k8
∗ a

2
1(t− a1)
(a1 + t)

∗ a22
(a2 − t)(a2 + t)

)1/2

∗ (26)(
((k − t)k−t(k + t)k+t)4

(t− a1)a1−t(a1 + t)a1+t ∗ (a2 − t)a2−t(a2 + t)a2+t

)
∗

(
k8k

a2a11 ∗ a2a22

)−1
(27)

Writing the second factor in (26) as C
(1)
t and the quantity in (27) as Q

(1)
t , we can write the

above as (in the region a1 ≤ t ≤ a2)

C
(1)
t ∗Q

(1)
t ≤

Pt
P0
≤ e ∗ C(1)

t ∗Q
(1)
t (28)

Using the same techniques as above, one can show that in the region a1 ≤ |t| ≤ a2, the above
expression (25) (but, with (1/2 − τ) now replaced by (τ − 1/2)) has a (single) local minima
at τ = 0.5335 (where the value is (1.0285)k, which is more than Q0 (= 1)), and attains its
maximum value at |t| = (0.916644) ∗ k of (3.81)k . Moreover, at τ = 8/12, its value is 1.256.

As for C
(1)
t , we show in Section C.1 that for a1 ≤ t ≤ 8/12, 0.26 ∗

√
k ≤ C

(1)
t ≤ 0.036 ∗

√
k3,

and for 8/12 ≤ t ≤ 11/12, 0.011 ∗ k ≤ C(1)
t ≤ 0.036 ∗

√
k3.

Thus, in this region (a1 ≤ t ≤ a2), the upper bound is given by

Pt/P0 ≤ e ∗ 0.036
√
k3 ∗ 3.81k.

As for the lower bound, we have for a1 ≤ t ≤ 8/12,

0.26 ∗
√
k ∗ 1.0285k ≤ Pt/P0,

and for 8/12 ≤ t ≤ 11/12,
0.011 ∗ k ∗ 1.256k ≤ Pt/P0.

43

Now, for k ≥ 12, both these lower bounds are more than 1, and hence in this entire region
Pt/P0 > 1.

Thus, for all |`| ≤ 11/12 ∗ k and all |t| ≤ k/2, we have

Pt/P` < e ∗ 0.34 ∗
√
k ∗ (1.1221)k ≤ 0.924 ∗

√
k ∗ (1.1221)k,

and, for all |`| ≤ 11/12 ∗ k and all |t| ≤ 11/12 ∗ k, we have

Pt/P` < 0.098 ∗
√
k3 ∗ (3.81)k.

Next, in the region a2 ≤ |t| ≤ a3, we have

Pt
P0
≤ e ∗

(
((k + t)(k − t))4

k8
∗ a

2
1(t− a1)
(a1 + t)

∗ a
2
2(t− a2)
(a2 + t)

)1/2

∗ (29)(
((k − t)k−t(k + t)k+t)4

(t− a1)a1−t(a1 + t)a1+t ∗ (t− a2)a2−t(a2 + t)a2+t

)
∗

(
k8k

a2a11 ∗ a2a22

)−1
(30)

Writing the second factor in (29) as C
(2)
t and the quantity in (30) as Q

(2)
t , we can write the

above as (in the region a2 ≤ t ≤ a3)

e
8

12k+1
+ 4

13 ∗ C(2)
t ∗Q

(2)
t ≤

Pt
P0
≤ e ∗ C(2)

t ∗Q
(2)
t (31)

Using the same techniques as above, the above expression (25) (but, now additionally (11/12−
τ) replaced by (τ − 11/12)) is strictly increasing, attaining its maximum value at |t| = k of

(9.813)k. Moreover, in Section C.1 we show that in this region, 0.7/
√
k ≤ C

(2)
t ≤ .0051 ∗ k2.

Thus, in this region Pt/P0 > e
8

12k+1
+ 4

13 ∗ 0.7/
√
k ∗ 3.81k which is greater than 1 (for k ≥ 12).

Thus, for all |`| ≤ k and all |t| ≤ k/2, we have

Pt/P` < 0.924 ∗
√
k ∗ (1.1221)k,

and, for all |`| ≤ k and all |t| ≤ 11/12 ∗ k, we have

Pt/P` < 0.098 ∗
√
k3 ∗ (3.81)k,

and, for all |`| ≤ k and all |t| ≤ k, we have

Pt/P` < e ∗ 0.0051 ∗ k2 ∗ (9.813)k ≤ 0.014 ∗ k2 ∗ (9.813)k.

�

44

C.1 Analysis of Ct, C
(1)
t and C

(2)
t

Ct: Recall, for 0 ≤ t ≤ a1 = k/2, we defined

Ct =

(
((k + t)(k − t))4

k8
∗ a21

(a1 − t)(a1 + t)
∗ a22

(a2 − t)(a2 + t)

)1/2

Robbin’s bounds (20) only apply for n ≥ 1, and for n = 0, we have n! = 1. Thus, Ct is
more correctly defined as follows5.

Ct =

(
((k + t)(k − t))4

k8
∗ a21
µ(a1 − t) ∗ (a1 + t)

∗ a22
(a2 − t)(a2 + t)

)1/2

where µ(x) = x for x ≥ 1, and µ(x) = 1 for x < 1. Now, at the boundaries we have
C0 = 1 and Ca1 = Ck/2 = ((3/4)4 ∗ (1/4)k ∗ 1/(1 − (6/11)2))1/2 = 0.34 ∗

√
k. For the

intermediate region, one can calculate that the roots of the derivative of Ct lie outside this
intermediate region. Thus, for k ≥ 12, the minimum value of Ct is 1 and the maximum
value is 0.34 ∗

√
k.

C
(1)
t : We have, for t such that k/2 = a1 ≤ t ≤ a2 = 11/12 ∗ k,

C
(1)
t =

(
((k + t)(k − t))4

k8
∗ a

2
1 ∗ µ(t− a1)

(a1 + t)
∗ a22
µ(a2 − t) ∗ (a2 + t)

)1/2

.

Again, at the boundaries we have, C
(1)
k/2 = 0.34 ∗

√
k, and

C
(1)
11/12∗k =

(
(1− (11/12)2)4 ∗ (1/4) ∗ 11/12− 1/2

11/12 + 1/2
∗ k

3

k
∗ (11/12)2 ∗ k

11/12 + 11/12

)1/2

= 0.005 ∗ k3/2

In the intermediate region, instead of computing the roots of the derivative of C
(1)
t , we

compute the extremum of both the numerator and the denominator to bound C
(1)
t . The

numerator has a root at t = 0.623∗k, whereas the denominator has no root in the region.
At t = 0.623k, the numerator is (0.00357k13)1/2, which is a local maxima. For k ≥ 12,
the denominator has minimum value at t = a2, which is ((a2 + 1/2) ∗ (a2 + a2)k

10)1/2.

5 No such correction is required in the definition of Qt, as it is well known that limit of nn, as n tends to 0,
is one.

45

Thus, C
(1)
t is upper bounded in the intermediate region by 0.036 ∗ k3/2. Note that for

k ≥ 12, 0.036∗k > 0.34. Thus, the maximum value in the whole region is upper bounded
by 0.036 ∗ k3/2.
The minimum value is lower bounded by splitting the region into two parts: (a) from a1
to 10/12∗k, and (b) from 8/12∗k to a2. In each region, the minimum is lower bounded by
taking the ratio of the minimum of the numerator and the maximum of the denominator.
Note, that the numerator has a single local extremum (maxima) at 0.623 ∗ k, and hence
the minimum of the numerator in both regions is at the boundaries.

– At t = 11/12 ∗ k, the numerator is (5.7 ∗ 10−5 ∗ k13)1/2.
– At t = 8/12 ∗ k, the numerator is (0.0033 ∗ k13)1/2. Thus, the minimum of the

numerator in region (b) is at t = 11/12 ∗ k.

– At t = k/2, the numerator is ((0.0665/k) ∗ k13)1/2. Since, for k ≥ 12, 0.0033 ∗ k =
0.04, in region (a) the numerator is lower bounded by ((0.04/k) ∗ k13)1/2

Again, since the denominator’s derivative has no zeroes in the entire region, it is a strictly
decreasing function for k ≥ 12. At t = 8/12 ∗ k, the denominator is (0.462 ∗ k11)1/2. At
t = k/2, the denominator is (0.59 ∗ k11)1/2.
Thus, the minimum is lower bounded in region (a) by 0.26 ∗

√
k. And the minimum is

lower bounded in region (b) by 0.011 ∗ k.

To summarize, for a1 ≤ t ≤ 8/12,

0.011 ∗ k ≤ C(1)
t ≤ 0.036 ∗

√
k3,

and for 8/12 ≤ t ≤ a2,
0.26 ∗

√
k ≤ C(1)

t ≤ 0.036 ∗
√
k3.

C
(2)
t : We have, for t such that 11/12 ∗ k = a2 ≤ t ≤ a3 = k,

C
(2)
t =

(
((k + t)µ(k − t))4

k8
∗ a

2
1 ∗ µ(t− a1)

(a1 + t)
∗ a

2
2 ∗ µ(t− a2)

(a2 + t)

)1/2

.

Again, at the boundaries we have, C
(2)
11/12∗k = 0.005 ∗ k3/2, and C

(2)
k = ((2k)4/k8 ∗

k2/12 ∗ (11/12)2k2 ∗ (1/23))1/2 = 0.221.

Since, k ≥ 12, the numerator is upper bounded in the region by ((2k)4 ∗ (k/12)4 ∗
k3/8 ∗ (11/12)2k2 ∗ (k/12))1/2. The denominator is lower bounded by (k8 ∗ (17/12) ∗ k ∗

46

(22/12)∗k)1/2. Thus, C
(2)
t is upper bounded by .0051∗k2. Similarly, it is lower bounded

by (((1 + 11/12)k)4 ∗ k3/8 ∗ (11/12)2 ∗ k2)1/2 divided by (k8 ∗ (3/2) ∗ k ∗ (23/12 ∗ k))1/2,
which is 0.7 ∗ k−1/2. Since, this is less than 0.221 for k ≥ 12, we have, for a2 ≤ t ≤ a3,

0.7/
√
k ≤ C(2)

t ≤ .0051 ∗ k2

C.2 Alternate Computer Assisted Proof for k = 12

When k is fixed, for example k = 12, we can compute all possible 12 ∗ 25 possibilities in (17).
The computer-assited proof leads to the following upper bound.

For N > k, and k = 12, for every t ∈ [−k..k] and x in the t-th interval,∣∣∣∣∣∣∣∣
∑
`∈L
6̀=t

(x− `N) ∗
∏
`′∈L
`′ 6=`

(
x− `′N
`N − `′N

)2+p(`′)

∣∣∣∣∣∣∣∣ ≤
N−1 ∗ 1

2
∗ ln(e ∗ k) ∗ 1.622 ∗max {1, 4.5 ∗ 105

N
,

1.68 ∗ 109

N2
}

D Proof of General Case Theorem

Proof: (of Theorem 9)

In this section we prove the counterpart of Lemma 4 for the general case. In the next
subsection we prove the counterpart of Lemma 5 for the general case.

Let’s analyze the `-th summand in gb,c,d(x) defined in (11), assuming |x− `N | ≤ 1/2 (and
noting z ∈ S` implies |x− z| ≤ 1, and writing x′ for (x− `N) and z′ for (z − `N))

∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

 ∗ ∏
`′∈L
`′ 6=`

(
1 +

x′ − z′

z′ + (`− `′)N

)d+c+b∗p`′)
(32)

47

Focusing on the second product we have

∏
`′∈L
`′ 6=`

(
1 +

x′ − z′

z′ + (`− `′)N

)d+c+b∗p`′)
∏
`′∈L
`′ 6=`

(
1 +

z′ − x′

(`′ − `)N(1− z′/((`− `′)N)

)d+c+b∗p`′)
∏
`′∈L
`′ 6=`

(
1 +

(z′ − x′)

(`′ − `)N
∗ (1− z′/((`− `′)N))−1

)d+c+b∗p`′)
(33)

Since fN (z) = 0, for z′ = z − `N = 0, we can exclude such z from the sum in (32), and then
the power series expansion of (1− z′/((`− `′)N))−1 is convergent. So, suppose the above (33)
is

1 +
∑
i>0

∑
j≥0

ai,j(z
′ − x′)i ∗ (z′)j ∗N−i−j

Then, (32) can be written as

∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

 ∗
1 +

∑
i>0

∑
j≥0

ai,j(z
′ − x′)i ∗ (z′)j ∗N−i−j

=
∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

 ∗
1 +

∑
i>0

∑
j≥0,i+j≥d

ai,j(z
′ − x′)i ∗ (z′)j ∗N−i−j

= (x− `N) +

∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

 ∗∑
i>0

∑
j≥0,i+j≥d

ai,j(z
′ − x′)i ∗ (z′)j ∗N−i−j ,

where the first equality follows from Lemma 2, and the second by Lagrange interpolation over

48

S`. Now, consider the following alternate expression (instead of (33))

∏
`′∈L
`′ 6=`

(
1 +

z′ − x′

N
∗ (1− z′/N)−1

)d+c+b∗p`′)

=

(
1 +

z′ − x′

N
∗ (1− z′/N)−1

)(d+c)∗2k+b∗
∑

`′ 6=` p(`
′)

= 1 +
∑
i>0

∑
j≥0

bi,j(z
′ − x′)i ∗ (z′)j ∗N−i−j

for some bi,j . Since |(`− `′)| ≥ 1, it follows that for all i, j, |bi,j | ≥ |ai,j |. Then (32) differs from
(x− `N) in absolute value by at most

∑
z∈S`

|fN (z)| ∗

∣∣∣∣∣∣
∏

w∈S`\{z}

x− w
z − w

∣∣∣∣∣∣ ∗
∑
i>0

∑
j≥0,i+j≥d

|ai,j | ∗ |z′ − x′|i ∗ |z′|j ∗N−i−j

≤
∑
z∈S`

|fN (z)| ∗

∣∣∣∣∣∣
∏

w∈S`\{z}

x− w
z − w

∣∣∣∣∣∣ ∗
∑
i>0

∑
j≥0,i+j≥d

|bi,j | ∗ |z′ − x′|i ∗ |z′|j ∗N−i−j (34)

Now, |bi,j | is itself upper bounded by (let m = (d+ c) ∗ 2k + b ∗ ν ≥ d)(
m

i

)(
i− 1 + j

j

)

49

Thus, we have the following inequalities∑
i>0

∑
j≥0,i+j≥d

|bi,j | ∗ |z′ − x′|i ∗ |z′|j ∗N−i−j

≤
∑

m≥i>0

∑
j≥0,i+j≥d

(
m

i

)(
i− 1 + j

j

)
∗ 2−j ∗N−i−j

=
∑
j≥0

∑
m≥i>0,i+j≥d

(
m

i

)(
i− 1 + j

j

)
∗ 2−j ∗N−i−j

=
∑
j≥0

∑
m+j≥i+j>j,i+j≥d

(
m

i

)(
i− 1 + j

j

)
∗ 2−j ∗N−i−j

=
∑
j≥0

∑
m+j≥i>j,i≥d

(
m

i− j

)(
i− 1

j

)
∗ 2−j ∗N−i

=
∑
i≥d

N−i ∗
∑

m+j≥i>j≥0

(
m

i− j

)(
i− 1

j

)
∗ 2−j

≤
∑
i≥d

N−i ∗
∑

m+j≥i>j≥0

(m)i−j

(i− j)!

(
i

j

)
∗ 2−j

≤
∑
i≥d

N−i ∗
∑
i≥j≥0

(m)i−j

(i− j)!
∗ 2i−j

≤
∑
i≥d

N−i ∗
∑
i≥j≥0

j!

i!
∗
(
i

j

)
∗ (2m)i−j

≤
∑
i≥d

N−i ∗
∑
i≥j≥0

(
i

j

)
∗
(e
i

)i−j
∗ (2m)i−j

≤
∑
i≥d

N−i ∗
(

1 +
2em

i

)i
≤
∑
i≥d

N−i ∗
(

1 +
2em

d

)i
≤ N−d ∗

(
1 +

2em

d

)d∑
i≥0

N−i ∗
(

1 +
2em

d

)i
≤ 2 ∗N−d ∗

(
1 +

2em

d

)d
Thus, using (34), and the upper bound on Lagrange basis polynomials (see Section A), we

50

have that (32) differs from (x− `N) in absolute value by at most

(d+ 1) ∗ 2d ∗N−d ∗
(

1 +
2em

d

)d
, (35)

where m = (d+ c) ∗ 2k + b ∗ ν. This proves the counterpart of Lemma 4 for the general case.

D.1 General Upper Bound on x in another interval

In this subsection we prove the counterpart of Lemma 5 for the general case. For this part of
the prove, we will assume that d+ c = 2b, as that makes the proof simpler.

Let x be in the t-th interval, |x− t ∗N | < 1/2, and let ` 6= t, for t, ` ∈ L. Let

R`(x)
4
=
∏
`′∈L
`′ 6=`

(
x− `′N

(`− `′)N

)d+c+b∗p(`′)
,

and

L`,z(x)
4
= fN (z) ∗

∏
w∈S`\{z}

x− w
z − w

.

Then, for z ∈ S`, writing z = z′ + `N ,∑
z∈S`

fN (z) ∗
∏

w∈S`\{z}

x− w
z − w

∗
∏
`′∈L
`′ 6=`

(
x− `′N

z′ + (`− `′)N

)d+c+b∗p(`′)

= R`(x) ∗
∑
z∈S`

L`,z(x) ∗
∏
`′∈L
`′ 6=`

(
1

1 + z′/((`− `′)N)

)d+c+b∗p(`′)

= R`(x) ∗

(x− `N) +
∑
z∈S`

L`,z(x) ∗

−1 +
∏
`′∈L
`′ 6=`

(
1

1 + z′/((`− `′)N)

)d+c+b∗p(`′)
 (36)

where the last equality follows by Lagrange interpolation of (x− `N).

Now consider the second summand inside the big parenthesis:

∑
z∈S`

L`,z(x) ∗

−1 +
∏
`′∈L
`′ 6=`

(
1 + z′/((`− `′)N)

)−(d+c+b∗p(`′))

51

Since fN (`N) = 0, in the above sum we can exclude z such that z = `N , i.e. z′ = 0. Moreover,
|z′|/N < 1, and hence the power series of the big product above is convergent. Suppose the
power series of the above product is 1 +

∑
i>0 ai ∗ (z′/N)i, then the absolute value of above

can be written as∣∣∣∣∣∣
∑
z∈S`

L`,z(x) ∗
∑
i>0

ai ∗ (z′/N)i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
d>i>0

ai ∗ (x− `N)i ∗N−i +
∑
z∈S`

L`,z(x) ∗
∑
i≥d

ai ∗ (z′/N)i

∣∣∣∣∣∣
≤
∑
d>i>0

|ai| ∗ |x− `N |i ∗N−i +
∑
z∈S`

|L`,z(x)| ∗
∑
i≥d
|ai| ∗ |z′/N |i (37)

Now, consider an alternate expression, where m = (d+ c) ∗ 2k + b ∗ ν ≥ d,

∑
z∈S`

L`,z(x) ∗

−1 +
∏
`′∈L
`′ 6=`

(
1− z′/N

)−(d+c+b∗p(`′))
 =

∑
z∈S`

L`,z(x) ∗
(
−1 +

(
1− z′/N

)−m)

and let the convergent power series of the second factor above be
∑

i>0 bi ∗ (z′/N)i. Note for

every i, bi ≥ 0. Indeed, bi =
(m+i−1

m
)
. Also, for each i, bi = |bi| ≥ |ai|, as |`− `′| ≥ 1.

52

Thus, (37) is upper bounded as follows, for N > m+d+1
(d+1) ,∑

d>i>0

|ai| ∗ |x− `N |i ∗N−i +
∑
z∈S`

|L`,z(x)| ∗
∑
i≥d
|ai| ∗ |z′/N |i

≤
∑
d>i>0

bi ∗ |x− `N |i ∗N−i +
∑
z∈S`

|L`,z(x)| ∗
∑
i≥d

bi ∗ |z′/N |i

≤
∑
d>i>0

bi ∗ |1 + (t− `)N |i ∗N−i + 2d ∗ |1 + (t− `)N |d ∗
∑
i≥d

bi ∗ |z′/N |i

≤
∑
d>i>0

(
m + i− 1

m

)
∗ |N−1 + (t− `)|i + (d+ 1) ∗ 2d ∗ |1 + (t− `)N |d ∗

∑
i≥d

N−i ∗
(
m + i− 1

m

)
∗ 2−i

≤
∑
d>i>0

(
m + i− 1

i− 1

)
∗ |N−1 + (t− `)|i + (d+ 1) ∗ |N−1 + (t− `)|d ∗

∑
i≥0

N−i ∗
(
m + d+ i− 1

m

)
∗ 2−i

≤
(
m + d− 2

d− 2

)
∗
∑
d>i>0

|N−1 + (t− `)|i

+ (d+ 1) ∗ |N−1 + (t− `)|d ∗
∑
i≥0

(2N)−i ∗
(
m + d

m

)
∗
(
m + d+ 1

d+ 1

)i−1
≤
(
m + d− 2

d− 2

)
∗ |N−1 + (t− `)|d + (d+ 1) ∗ |N−1 + (t− `)|d ∗

(
m + d

m

)
∗ 1

1− m+d+1
(d+1)∗2N

≤ (2d+ 3) ∗ |N−1 + (t− `)|d ∗
(
m + d

m

)
≤ (2d+ 3) ∗ (2k + 1)d ∗

(
m + d

d

)
where we used bounds on Lagrange basis polynomials from Section A and the following in-
equality (which is easily proved by induction on i ≥ 0), for m ≥ s,(

m + i

s

)
≤
(

m + 1

m + 1− s

)i
∗
(
m

s

)
.

Thus, 36 is upper bounded by

|R`(x)| ∗
(

(x− `N) + (2d+ 3) ∗ (2k + 1)d ∗
(
m + d

d

))
≤ |R`(x)| ∗

(
2k ∗N + 1 + (2d+ 3) ∗ ((2k + 1) ∗ e ∗ (m + d)/d)d

)
(38)

53

Now, R`(x) is same as 15 in proof of Lemma 5. So, it is bounded similarly as follows, by
writing x = x′ + tN , and recalling t 6= `,

R`(x) =
∏
`′∈L
`′ 6=`

(
x− `′N

(`− `′)N

)d+c+b∗p(`′)

=

(
x′

(`− t)N

)d+c+b∗p(t)
∗
∏
`′∈L
`′ 6=`
`′ 6=t

(
x− `′N

(`− `′)N

)d+c+b∗p(`′)

=

(
x′

(`− t)N

)d+c+b∗p(t)
∗
∏
`′∈L
`′ 6=`
`′ 6=t

(
(t− `′)N
(`− `′)N

)d+c+b∗p(`′)
∗
∏
`′∈L
`′ 6=`
`′ 6=t

(
x′ + (t− `′)N

(t− `′)N

)d+c+b∗p(`′)

(39)

Now, we upper bound the third product as in Lemma 4, and the second product as in Lemma 5.
Here we will assume that d+ c = 2b, as that makes the proof simpler. Starting with the third
product, just as in the proof of Lemma 4 (even though one factor is missing now, namely
`′ = t) ∏

`′∈L
`′ 6=`
`′ 6=t

(
x′ + (t− `′)N

(t− `′)N

)b(2+∗p(`′))
≤
(

1 +
4 ∗ ln(ek)

N
+

4k2

N2

)b
(40)

For the first two products above, following proof of Lemma 5, and in particular (18), we have(
x′

(`− t)N

)2d+d∗p(t)
∗
∏
`′∈L
`′ 6=`
`′ 6=t

(
(t− `′)N
(`− `′)N

)2b+b∗p(`′)

≤ (1/2)2b+b∗p(t)
(

1

|`− t|N

)2b+b∗p(`)
∗
(
Pt
P`

)b
≤ (2|l − t|N)−2b ∗

(
Pt

Np(`)P`

)b
≤ (2|l − t|N)−2b ∗

(
max{0.9 ∗ k

1
2 ∗ 1.1221k, 0.24 ∗ k

3
2 ∗ 3.81k

N
, 0.014 ∗ k2 ∗ 9.813k

N2
}
)b

54

Thus, R`(x) is upper bounded by(
1 + 4∗ln(ek)

N + 4k2

N2

4|l − t|2N2

)b
∗
(

max{0.9 ∗ k
1
2 ∗ 1.1221k, 0.24 ∗ k

3
2 ∗ 3.81k

N
, 0.014 ∗ k2 ∗ 9.813k

N2
}
)b

Thus, using (38) we have that (36) is upper bounded by

(
2k ∗N + 1 + (2d+ 3) ∗ ((2k + 1) ∗ e ∗ (m + d)/d)d

)
∗

(
1 + 4∗ln(ek)

N + 4k2

N2

4|l − t|2N2

)b
∗

(
max{0.9 ∗ k

1
2 ∗ 1.1221k, 0.24 ∗ k

3
2 ∗ 3.81k

N
, 0.014 ∗ k2 ∗ 9.813k

N2
}
)b

This completes the proof of the counterpart of Lemma 5 for the general case. �

To simplify the presentation of the above result, note that

max{0.9 ∗ k
1
2 ∗ 1.1221k, 0.24 ∗ k

3
2 ∗ 3.81k

N
, 0.014 ∗ k2 ∗ 9.813k

N2

= 0.9 ∗
√
k ∗ 1.1221k ∗max {1, 0.22 ∗ k ∗ 3.4k

N
, 0.015 ∗ k

3
2 ∗ 8.745k

N2
}

Thus, if we assume N > 0.22∗k∗3.4k, k ≥ 12, b = dd/2e, and also noting that m = b∗(4k+ν),
the above upper bound simplifies to(

2k ∗N + (2d+ 3) ∗ (33 ∗ k2)d
)
∗

(√
k ∗ 1.1221k

2|l − t|2N2

)b
Combining with the upper bound (35), we have that for the mod function fN (·), for any

d > 0, N > 0.22 ∗ k ∗ 3.4k, k ≥ 12, k a multiple of twelve, for any x such that |x− t ∗N | ≤ 1/2
with t ∈ {−k,−k + 1, . . . , k}, we have

|g2d(x)− fN (x)| < 22d ∗N−2d ∗
(

1 +
2em

2d

)2d

+

N−2d ∗
(

4k ∗N + (4d+ 6) ∗ (33 ∗ k2)d
)
∗
(√

k ∗ 1.1221k/2
)d

and

|g2d+1(x)− fN (x)| < 22d+1 ∗N−2d−1 ∗
(

1 +
2em

2d+ 1

)2d+1

+

N−2d−1 ∗
(

4k + (4d+ 10) ∗ (33 ∗ k2)d+1/N
)
∗
(√

k ∗ 1.1221k/2
)d+1

55

E Proof of Theorem 10 for Small N

Proof: (of Theorem 10)

The proof that

∑
z∈S`

fN (z) ∗

 ∏
w∈S`\{z}

x− w
z − w

 ∗ ∏
`′∈L
`′ 6=`

(
x− `′N

(`− `′)N

)2+p(`,`′)

(41)

differs from fN (x) = x′ (with x in the `-th interval) in absolute value by at most 2∗ln(ek)
N +2k2

N2

(now with k = 12), remains the same as the proof of Lemma 4.

The proof of a lemma similar to Lemma 5 is also similar except for the bounds on Pt/P`,
for t, ` ∈ [−12..12].

Just as in the proof of Lemma 5, we have similar to (17) (recalling, |x − tN | ≤ 1/2 for
t ∈ {−k..k}, t 6= `, and x = x′ + tN , and now k = 12)∑

z∈S`

fN (z) ∗
∏

w∈S`\{z}

x′ + t ∗N − w
z − w

∗
∏
`′∈L
`′ 6=`

(
x′ + t ∗N − `′N

`N − `′N

)2+p(`,`′)

≤ 1

4
∗ (1 + 4 ∗ ln(ek)

N
+

4k2

N2
) ∗N−1−p(`,t) ∗ |t− `|−1−p(`,t) ∗

∏
`′∈L
`′ 6=`
`′ 6=t

(
|`′ − t|
|`′ − `|

)2+p(`,`′)

(42)

For each of m = 0..4, for all t, ` ∈ [−12..12], such that p(`, t) = m, we can calculate the
upper bound on

Γm
4
= |t− `|−1−p(`,t) ∗

∏
`′∈L
`′ 6=`
`′ 6=t

(
|`′ − t|
|`′ − `|

)2+p(`,`′)

A simple computer program shows that Γ0 ≤ 1.347, Γ1 ≤ 73, Γ2 ≤ 3503 and Γ4 ≤ 1.46∗107.
Note Γ3 is undefined. Thus,∑

z∈S`

fN (z) ∗
∏

w∈S`\{z}

x′ + t ∗N − w
z − w

∗
∏
`′∈L
`′ 6=`

(
x′ + t ∗N − `′N

`N − `′N

)2+p(`,`′)

≤ N−1 ∗ (
1

4
+

3.5

N
+

144

N2
) ∗ max {1.347,

73

N
,
3503

N2
,
1.46 ∗ 107

N4
} (43)

56

Combining (41) and (43) we have For the mod function fN (·), for k = 12, N ≥ 320, for
any x such that |x− t ∗N | ≤ 1/2 with t ∈ {−k,−k + 1, . . . , k}, we have that ĝ defined in 9 is
an odd polynomial with deg(ĝ) = 69, and

|ĝ(x)− fN (x)| < 1

N
∗
(

1

4
+

3.5

N
+

144

N2

)
∗
(

2 + max {1.347,
73

N
,
3503

N2
,
1.46 ∗ 107

N4
}
)

�

E.1 General Case

Following the proof in section D, we also have in the general case that the mod function fN (·),
for any d > 0, b = dd/2e, N > 60, k = 12, for any x such that |x − t ∗ N | ≤ 1/2 with
t ∈ {−k,−k + 1, . . . , k}, we have

|gd(x)− fN (x)| ≤ 2d ∗N−d ∗
(

1 +
2em

d

)d
+

(
2k ∗N + 1 + (2d+ 3) ∗ ((2k + 1) ∗ e ∗ (m + d)/d)d

)
∗

(
1 + 4∗ln(ek)

N + 4k2

N2

4|l − t|2N2

)b
∗

(
max {1.347,

73

N
,
3503

N2
,
1.46 ∗ 107

N4
}
)b

≤ 2d ∗N−d ∗ (372b/d)d +
(

24 ∗N + 1 + (2d+ 3) ∗ (2310)d
)
∗N−2b ∗ 1.347b

F Explicit Polynomials

In this section, we give some explicit polynomials for approximating the mod function obtained
via modular Lagrange interpolation. The following (odd) polynomials are listed with the
constant term first and the highest degree term last.

Suppose q = N ∗M , where M is the maximum size of the message m, and the input x is
of the form I ∗ q +m, for I ∈ [−12..12]. Then, the input x should be first normalized to be in
the interval [−1, 1] (so as to be evaluated by Chebyshev polynomials) by dividing by 12q + 1,
up to the required precision. Call the normalized input x′. Next, the various (odd) Chebyshev
basis polynomials T2j+1, with 1 ≤ 2j+ 1 ≤ d, should be evaluated on x′. Here, d is the degree

of the polynomial. The result, which approximates m, is
∑(d−1)/2

j=0 a2j+1 ∗ T2j+1. This result
is shifted right by s bits (multiplied by 2s), where s is the scaling used as listed next to each
polynomial. The scaling is used so that the coefficients of the Chebyshev polynomials can be

57

given as integers (as opposed to real numbers). They are scaled by just the right amount to
get the required minuscule error.

F.1 N = 128

Polynomial for N = 128, d = 7, c = 0, b = 4, max-error = 10−10 (additive to m/q), degree
d = 255, precision required for Cheby polys: 83 bits, scaling s is 32 (bits) (the following odd
polynomial is listed with the constant term first and the highest degree term last):

0, −7134316358514435156083478, 0, −5185157685368397375144553,
0, −1834626815136606183787245, 0, 1979808923968361684933612,
0, 5200417704200378444740842, 0, 6950521687586135884042068,
0, 6779664826917496675162044, 0, 4782292382735524898460787,
0, 1557996009352739065090225, 0, −1971458964543010602826092,
0, −4831532372777775695034634, 0, −6270300189581719369409498,
0, −5960277633285148400564927, 0, −4071463279870756250751059,
0, −1200107492846130403020437, 0, 1819662039534917804080851,
0, 4161503665455939771369859, 0, 5236420225189154306859126,
0, 4841523836653961069893972, 0, 3190494357446004339672119,
0, 824756029782012040936437, 0, −1561093993342249504175260,
0, −3323673441285714810321205, 0, −4044603817582768789251116,
0, −3626762841154350754856778, 0, −2292174167574301952194682,
0, −490754290030144734097607, 0, 1246064570001217236507271,
0, 2460118453705578292208165, 0, 2885040253787635007331721,
0, 2498699496569100618320122, 0, 1501730048579733857500607,
0, 236330504937249271301782, 0, −924932799411697433213379,
0, −1685379170266447789803715, 0, −1896094212507500564833447,
0, −1577405413150753918484310, 0, −890344889346186310561731,
0, −72756724830076570270373, 0, 637106692914129151967761,
0, 1066170345478690225447561, 0, 1144319489769044790625095,
0, 907780104901439562183479, 0, 472312796009526091769494,
0, −11553165369823859438752, 0, −405753713556480857592102,
0, −620628389714884919315011, 0, −631251094419063299447959,
0, −472832099425126828576126, 0, −220100558035761768851000,
0, 40662731781754415389427, 0, 237678441144880445057049,
0, 330753036492585151419442, 0, 316213051407369331197258,

58

0, 220605430854688483827036, 0, 87148571411761171405543,
0, −39759861355154797009319, 0, −127159368824702704596190,
0, −160251287457073494054063, 0, −142541541701169229543601,
0, −90765421047788253438619, 0, −27185545279503717692032,
0, 27940059945483951343420, 0, 61586063464063622124814,
0, 69899835499136769123505, 0, 57055698822214135726983,
0, 32085164783351001726406, 0, 5091383748954491845994,
0, −15898484811826375473872, 0, −26682148411149076175907,
0, −27073456228344480142928, 0, −19879211795568613134152,
0, −9278315433849093985726, 0, 761337845237962547169,
0, 7570597938376696431303, 0, 10183675860293809830209,
0, 9127501673098937483760, 0, 5830517993285278097435,
0, 1935810929210506188870, 0, −1247323795210990793891,
0, −3028094785648113990254, 0, −3346939331503918822193,
0, −2594176045142499325787, 0, −1349307510916755939571,
0, −145590424625870454916, 0, 675565090163708454710,
0, 1004033950659904011195, 0, 916345835210576261266,
0, 588390582290141627704, 0, 206861799837755487730,
0, −92333622817035047123, 0, −248371198742461680149,
0, −267536666229721956675, 0, −196700875420009160196,
0, −93315255505427308400, 0, −2957595620622009405,
0, 50892847433693995509, 0, 65931871053751420422,
0, 53429038765535095917, 0, 29058124015668066738,
0, 5887059769019824551, 0, −8926863342178146823,
0, −14086253481172796125, 0, −12125697845768839407,
0, −6914596106342271366, 0, −1745697141812524480,
0, 1570532629154733974, 0, 2705362178974347733,
0, 2279444104955861521, 0, 1209794409585313597,
0, 226901324224860316, 0, −325241160609736233,
0, −446360877955691773, 0, −315213312471959597,
0, −125341622771579889, 0, 7313077331488841,
0, 56333360160464086, 0, 48978867594868363,
0, 23364142477118447, 0, 3496576293347522,
0, −4486038433685150, 0, −4534728170473689,
0, −2173267580835042, 0, −426926017026531,
0, 188308185803902, 0, 193656419964565,
0, 77923503386969, 0, 15208077198747.

59

F.2 N = 1024

Polynomial for N = 1024, d = 7, c = 0, b = 4, max-error = 6 ∗ 10−18 (additive to m/q), degree
d = 255, precision required for Cheby polys: 103 bits, scaling s is 44 (bits) (the following odd
polynomial is listed with the constant term first and the highest degree term last):

0, −1869406780235588833459622462783, 0, −1358739127427276488076197499904,
0, −480901804383393572540455666706, 0, 518521425875638634951933520617,
0, 1362429987240637669545336460266, 0, 1821134948279595817479826669376,
0, 1776584810347308939357672891552, 0, 1253464688063976268554276970691,
0, 408798405548113556220834521963, 0, −515965455183732401158650628068,
0, −1265513066425247033515035516008, 0, −1642805671260850827430189569886,
0, −1561961596460632208621116371229, 0, −1067414684076687767618804282900,
0, −315283145898997423238870265164, 0, 475952340890445843572651599482,
0, 1089790331529302090679520418991, 0, 1371848830115176627431977104122,
0, 1268857798590454614406772660665, 0, 836671284763341330280194667531,
0, 217033938006492266321780472311, 0, −408124120247525151119571157564,
0, −870220171061058303896578208541, 0, −1059556018364161369790467395878,
0, −950560374642873384443505644646, 0, −601272529880238676975354715184,
0, −129471709029178146904722274182, 0, 325646285830167460080850485551,
0, 644013181655693985841998361973, 0, 755753729470292522631690742867,
0, 654952176526029651570646316608, 0, 394061246919968530449742838076,
0, 62659455843079142172204445937, 0, −241663071799979728710372409035,
0, −441140641430291026504601175453, 0, −496678969544209191075258123711,
0, −413507263087901690004831871641, 0, −233729893984728041188834946147,
0, −19609446213529394117135691396, 0, 166439743941466462743656713453,
0, 279037505284877795064411184729, 0, 299751103238065497585469829462,
0, 238001453911581848963711677444, 0, 124060258644355779114070086936,
0, −2664349787675490505840861191, 0, −105998136858818415075771825082,
0, −162421307878707500073828959688, 0, −165358886579804978252314610402,
0, −123990511446705984992637024257, 0, −57861357668242856078896799948,
0, 10437712374831866086862558112, 0, 62095033556138407379679409133,
0, 86559030067844929200932731180, 0, 82839334925068409462753997157,
0, 57865206927419887137739612032, 0, 22942569681759939308096378625,
0, −10301742673044735998332856317, 0, −33226232143639632108291146915,
0, −41940357134657116365883927167, 0, −37347075482411776378985172028,

60

0, −23817927848408162529313656206, 0, −7178240137667129505560235051,
0, 7265333899187237094372878203, 0, 16095706673951434474300386094,
0, 18296061476878099069809114662, 0, 14952409016669461645013089137,
0, 8425310720873224510629227467, 0, 1359207327069931775677174559,
0, −4142269529833378211273824371, 0, −6975397326672933974241780621,
0, −7087789152078033671729533249, 0, −5211567175390924538071938902,
0, −2439533477347527537632648941, 0, 189322718362376588420672050,
0, 1975030868700948962018079323, 0, 2663173123709906881559588216,
0, 2390292665100999901213176587, 0, 1529470511751111913651992056,
0, 510607875267939257605298838, 0, −323261290292731528580521536,
0, −790736826063345144178201411, 0, −875630631243878534107832483,
0, −679676399517033142284866369, 0, −354366897751588604563730494,
0, −39310718419608535853469637, 0, 175957871510409682460716831,
0, 262398388957250296063073069, 0, 239861136335415130232440115,
0, 154280793751001822100419725, 0, 54502141710218989808051329,
0, −23862862836096173804543517, 0, −64827422281890101053602400,
0, −69973332193642438269132659, 0, −51526825026782361308889900,
0, −24510258917887921505803046, 0, −859671181629785429593145,
0, 13261706441878470451514750, 0, 17231763181020528531182798,
0, 13986553006710696351244265, 0, 7622542002220277238305293,
0, 1560662686497379754430762, 0, −2321527758235739539727046,
0, −3679485977388395471695744, 0, −3172875371567811462318236,
0, −1812705875041020209046734, 0, −460788337651270866837853,
0, 408046227218481691723173, 0, 706580776243389180242789,
0, 596396585247222180374279, 0, 317134646285727268410136,
0, 60021405413739085360870, 0, −84673725397726887565254,
0, −116634613302365260295185, 0, −82498135429663843083892,
0, −32881506028408983154924, 0, 1839734593767768520021,
0, 14702854876228738297342, 0, 12808180642760938384808,
0, 6119235487521086305565, 0, 922113729805420665247,
0, −1169719431391864471779, 0, −1185335314780410216575,
0, −568752968719597439579, 0, −112032024263850269128,
0, 49087887026572237655, 0, 50614218259692861820,
0, 20380662925045023564, 0, 3979573810929239069.

61

F.3 N = 220

Polynomial for N = 220, d = 8, c = 0, b = 4, max-error = 6 ∗ 10−43 (additive to m/q), degree
d = 255, precision required for Cheby polys: 247 bits, scaling s is 108 (bits) (the following odd
polynomial is listed with the constant term first and the highest degree term last):

0, 31818554197203596506917214413175259699868598412791240392438914957708941518,
0, 24906530189244319292981387638213802962209481049976047297113498000687973730,
0, 12653917664349300929034422704659329374425140449636245244471773048991559621,
0, −2169105503489698199750549190721790867256428785963587488289138380770611236,
0, −16247062673113339088352184997146001078945575585437640376336716701427471208,
0, −26493019838206768355358881738580734057057820207187722482491098891393381850,
0, −30754892619490878749949484528799913276946573464746714056923396519152658976,
0, −28286073286944609589574300777184873481760897824140033165647044608987839650,
0, −19873559988315699405600366293025863907139801034950175936412974674479644767,
0, −7603188531319266209693361015787299771067003526531788654950497763557481227,
0, 5669457827069592121869188527590892411345118874245319712394722451075639354,
0, 17004908364016080248563095580887084965001719006445703797912770796548838117,
0, 24052580704191549514441698779547905146027481622216594131080929640292637661,
0, 25551640278598577485920016012234686164791682777412391596576127982576139461,
0, 21550737909837490135662275880907323890720236414341062994980484766909110388,
0, 13311291325477247429161718524006000331403801204148524740311982383268300659,
0, 2937285464855681158986858123687629413812709514822497225288962014080888500,
0, −7162517563549552372660707022460526002710188986854884140867228177295808367,
0, −14841265418547532914484607728990094795207609447702989962402282560574007676,
0, −18674338004810708671476491626685044494198649430716584271571004152574589652,
0, −18214223505399242760819816759785581704583180423490386085354063730003997753,
0, −13998274910618159091350555710344202091677810337384310283423493037814682326,
0, −7330332592300340195044344816487022694350786221635250712021572402747927550,
0, 90872607013090715201344160663093070450070637949759086893881632787961739,
0, 6594298678393815732013114966389370812473112280875209803376057277612330411,
0, 10906292149256343253064744488773306205731830039795951696579637412868806297,
0, 12387251452326303651590508262854458716555730146271140440328087816199827964,
0, 11095637823419455471250351091023643880322895509269204935549428853227490684,
0, 7685266275974134705146472325617122012631231951503375457999866075817439059,
0, 3180580754773821077481184914935348875966336707717846282870492922643305885,

62

0, −1302128286946252464509558135929867363291264500077958835289276835927337328,
0, −4815685328686929627244252434867434617900931972666473201299154807517038302,
0, −6767212575768267219226418216569740457759076692933134637532703198336416935,
0, −6995573531833188487348454805770449177002089952676578607699771115527332393,
0, −5739167005156173107460577830882421055512292737175103330368800725194723831,
0, −3518323360250564805015994737441158839069319174950323934611734321335060239,
0, −972977547654065291685335071486091308564329018062389381945908178600775619,
0, 1299592630223027361010441144602778656884129203350947427122945478729660325,
0, 2869481703979478041901170426137492144712539619604803156177152283170758646,
0, 3538971163661787393351266214700870775948997667079960885624917106312740095,
0, 3343056186171443213418440272430691734580810949814704477461899747800970626,
0, 2497226366868176798685107287945225915841906603854187458043217047303151785,
0, 1314382821806541656177957378491506329122405847729380098928036690439445423,
0, 115979588496234437048798396262581226952781171815020520502815145403268673,
0, −840945061184833278024625921828215401335842040271828781338489415969754999,
0, −1407162628200344265351644764823873147454570237278158839029019805838121650,
0, −1551104803344150730768988604558046637339514870115330850114235321489502996,
0, −1339931790348821436854310771467848250329099606466467717807809613249939584,
0, −902379686884722878637895987722939539259731956211725797148792072639163421,
0, −385991203703080641295937881298182772174107423371341355874706262594808517,
0, 80097744425004967616580173255083615187810612898883552185681590575440413,
0, 409457096340721106337502151615171374465487594716933489399121163591943785,
0, 567128384960017981152435345510235015964656503558234354257639274648046479,
0, 564530753670584026720153580366464879969149995169970120573182621234348202,
0, 445070444994306353659730541154576314564836268142125465944696638256826065,
0, 266116198920562915151015842556167982795695902345827139946848176809439063,
0, 82463883114580442735720360889422272715394118775464059898346450071799784,
0, −65235404932800342182187758847495703739262319273330947610919966119972970,
0, −155687540007000491682328886417567732624550199706883309825699727747623407,
0, −186296194779065306351845559005962648082968020531427412389877656621244485,
0, −168393510933230650440697354905084985798861697241220991736474300195668953,
0, −120626000735029324627480145507341847022461556944037641798737865663305947,
0, −62574829864840506800162861002647817999229931515886606655321206292042339,
0, −10045844362504229325441274789118164675875303568476900879223981399655354,
0, 27350065754882498524913655627494945553900700672156574513191040056967639,
0, 46439709567234106318120985496410190340852258647445600406748322860873557,
0, 49159155257608108732482210363733672410647317961254858842490901356316661,
0, 40456712802687105070437426451299604568418917505701037498127728904931538,

63

0, 26168988511715492692253196775747735982978413397874284775837175060764534,
0, 11385573484246348100491972069510076044135646139132329114582391535433266,
0, −465726594899681559963766153745871005849839167812818662975777556820595,
0, −7832647093238049913360334638800356897455790185346770228066236324119022,
0, −10736184336720624501868085179994616733128936960516290093109126295158151,
0, −10202122892376911507951981609896813799404909858394392482336527100949264,
0, −7656698243041836402993136334183451876250458415977752337125935548121393,
0, −4445792269790874790246699425685789790959548324664867924078342513238049,
0, −1550272051057187800123505345109876047041310935619072644430507908316901,
0, 504740254345839543304433347339712551311188053717066359254321120800977,
0, 1596527255207706899805389666189075120632921190329362694617285963589475,
0, 1874925506485490234858142114619461460788390301129685962169646041024733,
0, 1617411655926653180882950268274557108410827743908525877261681712991483,
0, 1110935985848590393134042869175141198777191136325245647989334336419493,
0, 579322942458950173164384281229373211971354276988090578571845541474302,
0, 156040940383036213658626771178263194283748993222598044895101003269704,
0, −109382422998307912537626838984999298208566767702741157814801265675797,
0, −226902811622512091303225929478372688183009667936032353268378049446029,
0, −237276050314739615029676917177695427745419837693063811352833541537643,
0, −188265557854974805325999182321159661851291070424292063303633674372149,
0, −119696332415016059332965620344853333143352978985814137042219383571544,
0, −57281139503296331977969914954209890860677181356469266249596115332297,
0, −12867415436723823882323913498556114335029372293992524842048880061861,
0, 11895239810340552760781475804786239006956844757264456425453453764784,
0, 21015005684486128720721921475299053743751259424222394192665548110517,
0, 20350818824927385623486596175867051328255859007923680156243786203855,
0, 15193469801640424647682307417765294942752989291239374159888136341128,
0, 9201497693724979504056919935392819324579753783206895628232910333691,
0, 4305284903678143664065129084691937231961786623116647265109062373445,
0, 1117417363820751969168591023683277014806972666571154268978222040289,
0, −521260701693063603331586119680874236048332527402895765458321513480,
0, −1079646175894778932767377196552569929498678413051911646230483658194,
0, −1040960968671293126557803446478024784565532744636160654333084324325,

64

0, −766060769465747186073745646279927692529052459431351736847008907976,
0, −466725410094372429406720372693266257917852810772748070329344938113,
0, −235227720469448574175068078016529896892997542156021281138086128161,
0, −89959609903249710197782125912459862236181209760780937032528418364,
0, −14860128759183597902952498335174575771770276906530186168497685526,
0, 15056791359819196108257956810341401890445155916618774479157401214,
0, 21189621792534832268492871754649529304839800627440002459041607173,
0, 17618056614937140182213560288237671537396476164195552262490780221,
0, 11837188630840932589623608636196343118227097073399965768340703399,
0, 6937443650453616214850949851761730216230173462279070304199150875,
0, 3654507848530520198198717065079832300075173760818675333336255217,
0, 1754656958455513502209305236358797540651776376212889123646991704,
0, 772984357027567331651515074714238937872012278414498432611039648,
0, 313247051023519137570092592143504466659382523119971935867280950,
0, 116764821202691388278632893204538447624938881776625246010512831,
0, 39951445784849695735724023667176687013795602832717061288944133,
0, 12498149822596999153389827797141285517018311877745266517624542,
0, 3554213384393409827303200360179946624225245731949314573208852,
0, 911592244650014445965988651752173343144942634968524915167602,
0, 208666694392807146184834252158213781859452815841394652524974,
0, 42035628697762081731556784416636363024421180618258552801724,
0, 7312134610680438082033981675925540995041623095447905176442,
0, 1069477128189285888823149672718297295317764593530483834415,
0, 126452110741947755051111030738745305920641152161907594648,
0, 11348250063764858647845131547381683013675290993108333260,
0, 688147427849396701483086808903701497278465779636115759,
0, 21179318008959901595191566163181932975810764070357526.

65

	Introduction
	Preliminaries
	Good Polynomial Approximation of the Mod Function
	O(1/N)-approximation for Large N
	General Case: Obtaining an O(N-d)-error Upper Bound
	Enhanced Interpolation for Small N
	Upper Bounding the Coefficients in the Chebyshev Basis
	Lower Bound on Standard Error Analysis for Lagrange Interpolation
	Application to Bootstrapping for Approximate HE
	Modular Lagrange Interpolation Beyond the Mod Function
	Conclusion
	Upper Bound on Lagrange Basis Polynomial
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of General Case Theorem
	Proof of Theorem 10 for Small N
	Explicit Polynomials

