
A preliminary version of this paper appears in the proceedings of INDOCRYPT 2020. This is the
full version.

Incremental Cryptography Revisited: PRFs, Nonces
and Modular Design

Vivek Arte1 Mihir Bellare2 Louiza Khati3

October 2020

Abstract

This paper gives the first definitions and constructions for incremental pseudo-random
functions (IPRFs). The syntax is nonce based. (Algorithms are deterministic but may take
as input a non-repeating quantity called a nonce.) The design approach is modular. First,
given a scheme secure only in the single-document setting (there is just one document on which
incremental updates are being performed) we show how to generically build a scheme that
is secure in the more realistic multi-document setting (there are many documents, and they
are simultaneously being incrementally updated). Then we give a general way to build an
IPRF from (1) an incremental hash function with weak collision resistance properties and (2) a
symmetric encryption scheme. (This adapts the classic Carter-Wegman paradigm used to build
message authentication schemes in the non-incremental setting.) This leads to many particular
IPRFs. Our work has both practical and theoretical motivation and value: Incremental PRFs
bring the benefits of incrementality to new applications (such as incremental key derivation),
and the movement from randomized or stateful schemes to nonce based ones, and from UF
(unforgeability) to PRF security, bring incremental symmetric cryptography up to speed with
the broader field of symmetric cryptography itself.
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1 Introduction

Data isn’t static. We routinely edit our videos, photos, MS-Word /Apple-Pages files or text
files. (We’ll use the term “documents” to cover these types of data and more.) Incremental
cryptography [BGG94, BGG95] was conceived to harmonize cryptography with this world of
dynamic data. The idea is that, just as we edit the document, we can “edit” the already-computed
result of a cryptographic function of the document, via a special, fast “update” algorithm, to obtain
the result of the cryptographic function on the edited document much more quickly than if we had
computed it from scratch. The challenge is not only to give schemes allowing updates, but to ensure
that the updates are secure.

The relevance of incremental cryptography is even greater now in the world of big data, where
the volume and size of documents makes from-scratch re-computations of cryptographic functions
prohibitively expensive. In this light we revisit the subject.

Contributions in brief. Incremental cryptography has previously been considered for many
primitives [BGG94, BGG95, Fis97a, BM97, BKY02, MPRS12, MGS15, SY16, GP17, KV19].
But one for which it has surprisingly not so far been considered is Pseudo-Random Functions
(PRFs) [GGM86], arguably the most basic primitive, and important building block, in symmetric
cryptography. Our work fills this gap by giving the first definitions and constructions for incremental
pseudo-random functions (IPRFs).

We do this, not in isolation, but as part of a broader effort. Its first component is a new framework.
We adopt a nonce-based setting [RBBK01, Rog02] (algorithms are deterministic but may take
input a non-repeating quantity called a nonce), defining a syntactic object called an incremental
function family (iFF). For it we define two security metrics, namely incremental unforgeability (IUF)
and incremental pseudo-randomness (IPRF), and show that the latter implies the former. The
second component is modular design. Where the most related prior work (on incremental message
authentication) gave ad hoc, dedicated schemes, we instead give general transforms. First we show
how, given a scheme secure only in the single-document setting (there is just one document to which
updates are being applied), to build a scheme secure in the more realistic multi-document setting
(the scheme can handle many documents on which updates are being performed simultaneously).
Then we show how to achieve security in the single-document setting through an extension of the
Carter-Wegman paradigm [WC81]. (Recall that the latter has been extensively used to obtain
non-incremental UF-secure schemes such as [BHK+99, Rog95, Sho96, HK97].) The result is that,
even ignoring PRF security and considering only the UF security goal targeted in incremental
message authentication work [BGG94, BGG95, Fis97a, KV19], we bring stronger schemes (able to
use, and be secure with, any non-repeating nonce) and modular ways of building and analyzing
them.

Background and context. Recall that a function family F takes a key K and input X to
deterministically return an output Y = F(K,X). For this syntax, one can define both PRF and
UF security. Classical examples include HMAC [BCK96] and CMAC [Dwo05], but these are not
incremental. To achieve incrementality, schemes, starting with [BGG94, BGG95] and continuing with
[Fis97a, KV19], use randomization or state (a counter), making them, even just as syntactic objects,
different from function families. They are usually called message authentication schemes because
the goal is UF. But PRFs are inherently deterministic and stateless, so that PRF security cannot
even be defined, let alone achieved, under this syntax. Our solution is to move to a nonce-based
setting. iFF algorithms are deterministic but may take input a nonce. Security will require only
that nonces are not reused. Now it becomes possible to define both UF and PRF security, and
consider achieving them, either via nonce-based extensions of prior schemes, or in other ways.
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Why IPRFs? IPRF security (as opposed to just IUF) is valuable because it brings the possibility
of efficiency improvement via incrementality to a broader range of applications, namely ones that,
like key-derivation, require pseudo-randomness. For example, an application holding key K may at
regular intervals i = 1, 2, . . . derive a sub-key Ki by applying a PRF to a quantity Xi that contains
both static data (application-dependent context) and dynamic data (the counter i). An incremental
PRF allows the application to update Ki to Ki+1 in a way that is faster than computing Ki+1 from
scratch.

Why nonces? Nonce-based schemes are valuable (beyond allowing IPRF security) because, in
practice, randomness is fragile (system RNGs are prone to failure) and state may not be maintainable
(due to system resets), so schemes that maintain security for arbitrary (non-repeating) nonces are
more versatile and robust, and correspondingly less error-prone.

Beyond this, the movement from randomized or stateful schemes to nonce based ones, and from
UF to PRF, “modernizes” incremental message authentication, bringing it up to speed with the
broader field of symmetric cryptography in which, over the last 20 years, we have seen these same
movements, not just in academic work but also in standards and deployment. The rest of this
Introduction discusses our contributions, and related work, in more detail.

New framework. As indicated above, prior work considered many types of syntax (randomized,
stateful, deterministic). We define and consider just a single type: nonce-based. We call the object
in question an incremental function family (iFF). It provides tagging, update and verification
algorithms that are all deterministic, the first two (but not the last) taking as input a nonce.
Thus, the tagging algorithm of an iFF iF takes the key K, a nonce N , document identifier id, and
document D to return a tag. The update algorithm takes K,N, id, D, a description (consisting of an
operation code op and corresponding argument arg) of the edit to be performed on the document,
and current tag t, to return an updated tag t′ for the edited document. Verification algorithm Ver
takes K, id, D, t to return a boolean decision on the validity of t.

We define incremental unforgeability (IUF) of an iFF iF via a game that gives the adversary access
to oracles Tag,Upd,Vf for tagging, update and verification (respectively) under a game-chosen
key, winning requiring forging, via the last oracle, a valid tag for a new document. More novel and
interesting is that this syntax permits us to define, for the first time in the incremental setting, a
notion of PRF security, that we denote IPRF. The oracles in our game formalizing IPRF security
have the same names as for IUF, but the first two return either real or random tags depending
on a challenge bit that the adversary has to determine to win, while the last returns either real
verifications or just rejects. Both definitions require that nonces cannot be re-used, except in the
degenerate case that the scheme itself allows just one choice of nonce. (The exception allows us to
capture nonce-free schemes as a special case.)

Crafting these definitions was delicate, in part due to our wanting PRF security to imply UF
security. Recall that for regular (no nonces, no incrementality) function families, the implication
is true [BKR00, GGM86]. But nonces can disrupt this. Indeed, for the prevailing definitions of
PRF and UF security for nonce-based (not incremental) function families, the implication fails
[PS16]. Through the (unusual) step of including a verification oracle in the IPRF game, we obtain
(cf. Proposition 2) the “best of both worlds:” Nonces are allowed yet IPRF security does imply IUF
security. This is valuable because establishing the former now obviates us from having to separately
establish the latter.

In addition to a standard correctness requirement, we define strong correctness, which asks that
updated tags produced by the update algorithm be identical to the ones that would have been
computed by tagging the edited document from scratch with the tagging algorithm. For schemes
with this property, Proposition 1 says that updates (the Upd oracle) may effectively be neglected in
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proving security. The security of updates having been, historically, the main new security concern
brought by incrementality [BGG94, BGG95], Proposition 1 results in significant proof simplification.

From single- to multi-document security. With new (and stronger) target definitions in
place, we turn to designing efficient schemes that meet them. We aim for modularity as a way to
simplify both design and analysis. The first angle we consider here is single-document (sd) versus
multi-document (md) security.

The tagging, update and verification algorithms in our syntax all take as input a document
identifier id (for example myphoto.jpg) that names the document on which the operation is to
be performed. In the sd setting, there is only one allowed choice of id, as though your filesystem
contained just one file that you keep editing. In the more realistic md setting, any number of
document identifiers may coexist, the adversary choosing them in its queries. The treatment in
prior work (the two settings originate in [BGG95]) has been ad hoc, with schemes and proofs given
first for the sd setting, then separately for md. We step back to take a higher-level view. We
show how sd-secure iFFs can be generically turned into md-secure ones, giving for this purpose
two general “bootstrapping” transforms, StM1 and StM2. Each turns a given iFF iFsd that is
IUF/IPRF-secure in the sd setting into an iFF iFmd that is IUF/IPRF-secure in the md-setting.
The first transform is simple and natural, working for all choices of document edit operations, but
the reduction (Theorem 3) is not tight. The second transform allows a tight reduction (Theorem 4).
It requires strong correctness (discussed above) of iFsd and also that the document edit operations
are what we call “translating,” but the first is met by our constructions discussed below, and the
second is generous enough to include common operations like replace, insert, delete.

Incremental Carter-Wegman. The above has simplified our task of designing iFFs that are
IUF/IPRF-secure in the md setting, reducing it to the same task in the sd setting. We now further
simplify the latter task, reducing it, via an extension of the Carter-Wegman paradigm, to the task
of designing incremental hash functions satisfying weak collision-resistance properties.

The standard Carter-Wegman (CW) paradigm [WC81] builds a nonce-based message authentica-
tion scheme by first applying a hash function to the message, and then masking the result h in some
way using the key and nonce to get the tag. In our “incremental Hash-then-Encrypt” variant iHtE,
the hash function iHF is assumed incremental for some set of edit operations. Now we need to extend
CW so that (1) the incrementality of iHF is inherited by iF, and (2) IPRF security (as opposed to
just the UF provided by CW) is provided. The change is in the masking. The general CW paradigm
does not require this to be reversible, but, to allow incremental updates, we do, accordingly using
for the purpose a symmetric encryption scheme SE. Furthermore, SE is required to meet the NBE2
syntax of [BNT19]. This means the nonce is not required for decryption. (Otherwise, one has to
include the nonce in the tag. This would provide IUF but violate IPRF.) The full construction
in Section 5 also uses a key-derivation function that we omit here. Theorem 6 says that iHtE
provides IPRF security assuming iHF is cau-secure and SE is AE2 secure. (Recall that cau [Bel06],
the computational relaxation of the almost universality notion of [WC81], is a very weak form of
collision resistance for secretly-keyed hash functions. AE2 is the notion of authenticated encryption
security for NBE2 schemes from [BNT19].)

Instantiations. We give many choices of cau-secure hash functions that are incremental for the
replace operation, yielding, via iHtE, corresponding iFFs that are IPRF secure in the sd setting and
incremental for the same operation. These hash functions are implicit in message authentication
schemes already in the literature, and we only need to extract them.

Section 6 takes a systematic approach. We look at different message authentication schemes
in the literature including XOR-MACs [BGR95], GMAC [MV04], Poly1305-AES [Ber05], PMAC
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[BR02], PWC [PS16], ZHASH [IMPS17] and more. For each, we extract an underlying incremental
hash function. In some cases (eg. [BR02, Ber05]), the authors have already noted that their
algorithms allow incremental updates, but stopped short of showing that any formal notion of
incremental security is met. To fill this gap, we cast their schemes as iFFs. Their results in some
cases can be used to conclude IPRF security of our iFF. But more often, they only yield IUF
security (because of inclusion of the nonce in the tag). In this case, we go back to the underlying
hash function and use iHtE to get an IPRF. Some of the original message authentication schemes,
however, are not themselves incremental, usually due to a non-invertible masking function in an
(implicit or explicit) use of CW paradigm. In these cases, again, we go back to the underlying hash
function and use iHtE to get an IPRF. Figure 8 summarizes the instantiations obtained.

Limitations and extensions. Incrementality is with respect to some set of edit operations on
the documents. (This is formalized as a document editing system in the body of this paper.) Our
“boosting” results —from sd security to md via StM1,StM2, or from incremental cau-hash functions
to incremental IPRFs via iHtE— are general in this regard, preserving the allowed set of operations.
(That is, if the starting scheme is incremental for some set of edit operations, the constructed scheme
is incremental for the same set, with the above-discussed caveat that for StM2 the operations must
be translating.) However, we currently know of examples of incremental cau-secure hash functions
only for the replace operation, so obtain IPRFs only for this. Via nonce-based extensions of the
randomized schemes of [BGG95, KV19], we can obtain iFFs that are incremental for insert, delete
and that provide IUF security. These, however, will not provide IPRF security. We leave IPRFs for
insert, delete as an open problem.

For incremental message authentication, [BGG95] considered security that was either “basic”
(the adversary can request updates only on documents resulting from prior tagging or update
operations) or “tamper-proof” (the restriction is dropped). Our definitions and results are all for
basic security. This already suffices for many applications. We can define and achieve tamper-proof
IUF security, but for IPRFs we do not know how to do this extension, and leave it as an open
problem.

Overall we view our work as initiating the study of incremental PRFs, and leave extensions to
future work.

Related work. Incrementality has been considered for (UF-secure) message authentication
[BGG94, BGG95, Fis97a, KV19], encryption [BGG95, BKY02, SY16], collision-resistant hashing
[BGG94, BM97, MGS15], digital signatures [BGG94, Mic97, Fis97b], deterministic PKE [MPRS12],
program obfuscation [GP17] and beyond [ACJ17]. Early work on incremental symmetric encryp-
tion [BGG95, BKY02] used the classical randomized setting. Sasaki and Yasuda [SY16] were the
first to bring nonces into this, treating nonce-based authenticated encryption. We follow in their
vein, bringing nonces also to UF and PRF security.

2 Preliminaries

Notation. By [1..n] we abbreviate the set {1, . . . , n} and by [i . . . j] the set {i, . . . , j}, for integers
n ≥ 1 and j ≥ i. We denote the number of coordinates of a vector D by |D| and its i-th coordinate
by D[i]. By B∗ we denote the set of all vectors over B, meaning vectors D with D[i] ∈ B for all
i ∈ [1..|D|]. The empty vector is denoted (). The empty string is denoted ε. If x ∈ {0, 1}∗ is a
string then |x| is its length and x[i] is its i-th bit. We let x[i..j] = x[i] . . . x[j] be the concatenation
of bits i through j of x if i ≤ j and ε otherwise. If S is a finite set then |S| its is size or cardinality.
We use ⊥ (bot) as a special symbol to denote rejection, and it is assumed to not be in {0, 1}∗.
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By FUNC(D,R) we denote the set of all functions f : D → R and by PERM(D) the set of all
permutations π : D → D.

If X is a finite set, we let x←←X denote picking an element of X uniformly at random and
assigning it to x. Algorithms may be randomized unless otherwise indicated. If A is an algorithm,
we let y ← AO1,...(x1, . . . ;ω) denote running A on inputs x1, . . . and coins ω, with oracle access to
O1, . . ., and assigning the output to y. By y←←AO1,...(x1, . . .) we denote picking ω at random and
letting y ← AO1,...(x1, . . . ;ω). We let Out(AO1,...(x1, . . .)) denote the set of all possible outputs of A
when run on inputs x1, . . . and with oracle access to O1, . . .. An adversary is an algorithm. Running
time is worst case, which for an algorithm with access to oracles means across all possible replies
from the oracles.

Games. We use the code-based game-playing framework of BR [BR06]. A game G (see Figure 1
for an example) starts with an optional Init procedure, followed by a non-negative number of
additional procedures called oracles, and ends with a Fin procedure. Execution of adversary A
with game G consists of running A with oracle access to the game procedures, with the restrictions
that A’s first call must be to Init (if present), its last call must be to Fin, and it can call these
procedures at most once. The output of the execution is the output of Fin. By Pr[G(A)] we denote
the probability that the execution of game G with adversary A results in this output being the
boolean true.

The running time of an adversary playing some game, as referred to in theorem statements, is
defined as the worst-case time of the execution of the adversary in the game, so that the time for
game procedures to compute responses to oracle queries is included. This convention means that
reductions usually preserve adversary running time, up to small terms that we will ignore.

Note that our adversaries have no inputs or outputs. The role of what in other treatments is the
adversary input is, for us, played by the response to the Init query, and the role of what in other
treatments is the adversary output is, for us, played by the query to Fin.

Different games may have procedures (oracles) with the same names. If we need to disambiguate,
we may write G.O to refer to oracle O of game G. In games, integer variables, set variables, boolean
variables and string variables are assumed initialized, respectively, to 0, the empty set ∅, the boolean
false and ⊥.

Security. We generally say a scheme is X-secure (for some definition of X-security usually provided
by a game) if the x-advantage (as defined along with the game for X-security) of any “efficient”
adversary is “small.” In an asymptotic setting, “efficient” would mean polynomial time and “small”
would mean negligible in the security parameter, but in our concrete setting, the quantities in quotes,
and thus the notion of a scheme being “secure,” remain informal, and theorems explicitly bound
adversary x-advantage as a function of its resources, for results of more direct value in practice.

PRFs and MACs. Recall that a function family F : F.KS× F.I→ F.O is a deterministic algorithm.
Here, F.KS is the key space, F.I is the input space and F.O (required to be finite) is the output
space. For this syntax, one can define PRF security as well as UF (MAC) security. Game Guf

F
on the left of Figure 1 defines UF security of function family F. The UF advantage of adversary
Auf is Advuf

F (Auf) = Pr[Guf
F (Auf)]. Game Gprf

F on the right of Figure 1 defines PRF security of
function family F. The PRF advantage of adversary Aprf is Advprf

F (Aprf) = 2 Pr[Gprf
F (Aprf)] − 1.

In these games the adversary is required to be domain respecting in the sense that X ∈ F.I across
all its queries. It is well known that PRF security implies UF security as long as the set F.O is
large [BKR00, GGM86].

CR hashing. A variable output length keyless hash function H takes a string X ∈ {0, 1}∗ and a
desired output length ` and returns an `-bit string H(X, `). The cr-advantage Advcr

H,`(B) of an
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Game Guf
F

oracle Init

1 K←←F.KS ; f ← F(K, ·)

oracle Fn(X)
2 UX← UX ∪ {X} ; return f(X)

oracle Vf(X, Y )
3 If X ∈ UX then return ⊥
4 Y ′ ← f(X)
5 If Y ′ = Y then win← true
6 return (Y ′ = Y )

oracle Fin

7 return win

Game Gprf
F

oracle Init

1 b←←{0, 1}
2 if b = 1 then
3 K←←F.KS ; f ← F(K, ·)
4 Else f←←FUNC(F.I, F.O)

oracle Fn(X)
5 return f(X)

oracle Fin(b′)
6 return (b = b′)

Figure 1: Games defining UF (left) and PRF (right) security for function family F.

op arg Ed(D, op, arg)

replace i, x (D[1], . . . , D[i− 1], x,D[i+ 1], . . . , D[nb])
insert i, x (D[1], . . . , D[i− 1], x,D[i], . . . , D[nb])
delete i (D[1], . . . , D[i− 1], D[i+ 1], . . . , D[nb])

Figure 2: Examples of edit operations. The first column shows the edit-operation code, the second column
shows the arguments and the third shows the resulting, edited document. Here i ∈ [1..nb], where nb = |D|,
and x ∈ BS.

adversary B against H for output-length ` is defined as the probability that H(X1, `) = H(X2, `)
and X1 6= X2 when (X1, X2)←←B(`). Obviously, this can only be small if ` is large. In our usage, `
is either large and we assume H(·, `) is collision-resistant, or ` = 0, in which case H(X, `) = ε for all
X.

3 Framework: iFFs, IUF and IPRF
Here we give a framework of definitions and basic results that has two main new elements. The first
is that the setting is nonce based, and the second is that, besides defining incremental UF security,
we give the first definitions for incremental PRFs.

Nonce-based means algorithms in our iFF syntax are deterministic and may take as input a
quantity called a nonce that, for security, is only required to be non-repeating. This generalizes and
extends prior schemes, that used randomness or counters, yielding schemes that are more versatile
and robust. An added benefit is that this setting allows us to define PRF security and also to define
and achieve a strong form of correctness which asks that updated tags coincide with ones that would
have been computed from scratch. This in turn allows us to neglect updates in proving security.

We start with document editing systems, then give our syntax of nonce-based incremental
function families, then define UF and PRF security, and then give some basic results and relations.

Document editing systems. An incremental cryptographic scheme works for (sits atop) what
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we call a document editing system. Extending what [BGG95] call text modification operations,
a document editing system describes the format of documents and a set of modification (edit)
operations on them. It is an entirely non-cryptographic object.

The specification of a document editing system DE = (bl,BS,OpC,OpA,Ed) starts with a block
length bl ≥ 1. The block space is then set to BS = {0, 1}bl. Documents (also called messages)
are vectors over BS, meaning members of BS∗. There is a set OpC of edit-operation codes, which
are names or formal symbols to indicate different edit operations on documents. The actual edit
operations are defined and performed by a deterministic edit algorithm Ed : BS∗×OpC×OpA→ BS∗
which takes, as inputs, a document D ∈ BS∗, an operation code op ∈ OpC and arguments arg ∈ OpA
to return an updated document Ed(D, op, arg) ∈ BS∗. If necessary to disambiguate, we write DE.bl,
DE.BS,DE.OpC,DE.OpA,DE.Ed in place of bl,BS,OpC,OpA,Ed.

Figure 2 shows three common edit operations, namely replace, insert and delete. Their operation
codes, denoted respectively by insert, replace and delete, are shown in the first column. By nb we
denote the number of blocks in the starting document D. The insert operation allows inserting a
block x ∈ BS at position i ∈ [1..nb] in the document D, the delete operation allows deletion of the
i-th block of D, and the replace operation allows replacement of the i-th block of D by the block x.
Of course a scheme which is incremental for the insert and delete operations is also incremental
for the replace operation (the latter can be implemented by using the former two). Other possible
operations are append or prepend of a block to a document. (They are special cases of insert, but
some schemes are incremental for append or prepend, but not for insert [BGR95, SY16].)

Incremental function families. We define incremental function families as the syntax that will
underly both incremental MACs and PRFs. An incremental function family iF = (KS,NS,Rng,Tg,
Up,Ver) for a document editing system DE = (bl,BS,OpC,OpA,Ed) specifies numerous algorithms
and sets, as follows:
— A key space KS, a nonce space NS, and an output space Rng.
— A tagging algorithm Tg : KS × NS × {0, 1}∗ × BS∗ → Rng that takes the key K, a nonce N ,

document identifier id, and document D to deterministically return a tag t← Tg(K,N, id, D).
— A tag update algorithm Up : KS× NS× {0, 1}∗ × BS∗ × OpC× OpA× Rng→ Rng that takes

the key K, a nonce N , a document identifier id, a document D, an operation code op, the
operation arguments arg, and a current tag t to deterministically return an updated tag
t′ ← Up(K,N, id, D, op, arg, t).

— A tag verification algorithm Ver : KS× {0, 1}∗ × BS∗ × {0, 1}∗ → {true, false} that takes a key
K, a document identifier id, a document D and a candidate tag t to deterministically return
either true or false.

We say that iF has (fixed) nonce-length nl if NS = {0, 1}nl. We require that if |iF.NS| = 1 then
iF.NS = {ε}, meaning has nonce-length zero. In this case, we refer to iF as nonce-less.

Update time. For an iFF to have practical value, the update time should be less than the time to
compute the tag, on the modified document, from scratch via the tagging algorithm. The actual
time for updates varies across schemes, and no formal condition on it is mandated. Ideally this time
is proportional only to the time to perform the modification and the number of blocks modified, but
in fact even an update time linear in the length of the document can be interesting if it is cheaper
than from-scratch tagging. Most of our results are general transforms that preserve update time.

Correctness and strong correctness. Correctness requires that tags generated by the tagging
and update algorithms are accepted by the verification algorithm. It is a little more delicate to
define than usual because it is required only for tags that arise through legitimate applications of
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Games Gcorr
iF,DE, Gscorr

iF,DE

oracle Init

1 K←←KS ; return K

oracle Tag(N, id, D)
2 Did ← D ; tid ← Tg(K, N, id, Did)
3 if (Ver(K, id, Did , tid) = false) then win← true
4 return ⊥

oracle Upd(N, id, op, arg)
5 if (Did = ⊥) then return ⊥
6 D′id ← Ed(Did , op, arg) ; t′id ← Up(K, N, id, Did , op, arg, tid)
7 if (Ver(K, id, D′id , t′id) = false) then win← true
8 t′′id ← Tg(K, N, id, D′id) // Game Gscorr

iF,DE
9 if t′id 6= t′′id then win← true // Game Gscorr

iF,DE
10 return ⊥

oracle Fin

11 return win

Figure 3: Games defining correctness and strong correctness for an incremental function family iF. If a line
indicates a game it means that line is included only in that game.

the tagging or update algorithms. The clearest way we know to formalize this is via a game. We
say that iF = (KS,NS,Rng,Tg,Up,Ver) satisfies correctness relative to DE = (bl,BS,OpC,OpA,Ed)
if Pr[Gcorr

iF,DE(A)] = 0 for all adversaries A (regardless of their running time), where game Gcorr
iMA,DE

is shown in Figure 3. (Lines 8, 9 are excluded from this game. The game including them will be
discussed next.) As per Init, the adversary is given the key K. Correctness is required regardless
of whether or not nonces repeat. What oracles Tag,Upd return doesn’t matter since they are
deterministic, so we have them return ⊥.

We also introduce a notion of strong correctness. It asks that tags returned by the update
algorithm are the same as if the updated document had instead been tagged directly, from scratch,
via the tagging algorithm. Formally we say that iF = (KS,NS,Rng,Tg,Up,Ver) satisfies strong
correctness for DE = (bl,BS,OpC,OpA,Ed) if Pr[Gscorr

iF,DE(A)] = 0 for all adversaries A (regardless of
their running time), where game Gscorr

iF,DE is shown in Figure 3. Strong correctness implies correctness,
since the lines of the latter game are present in the former. But there are two additional, important
dividends. The first is Proposition 1, which says that when strong correctness is present, we can,
in evaluating security, ignore the Upd oracle. This will significantly simplify proofs. The second
dividend is that strong correctness implies privacy of updates, meaning updated tags do not reveal
the modification history of the document [Mic97].

Correctness will be the default, unstated assumption. If strong correctness is assumed or achieved,
we will say so explicitly.

IUF security. We define Incremental Unforgeability (IUF) of an incremental function family
iF = (KS,NS,Rng,Tg,Up,Ver), relative to document editing system DE = (bl,BS,OpC,OpA,Ed),
extending the notion of basic security [BGG94] to our nonce-based setting. Consider game Giuf

iF,DE of
Figure 4 and let Adviuf

iF,DE(A) = Pr[Giuf
iF,DE(A)] be the iuf-advantage of an adversary A. For any “live”

document identity id, the game maintains: (1) Did , the current version of the document associated
to id (2) tid , its tag (3) NLid , a set storing nonces used so far for id, and (4) DLid , a set storing
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Game Giuf
iF,DE

oracle Init

1 K←←KS

oracle Tag(N, id, D)
2 if (N ∈ NLid and |NS| 6= 1) then
3 return ⊥
4 Did ← D ; tid ← Tg(K, N, id, Did)
5 NLid ← NLid ∪ {N}
6 DLid ← DLid ∪ {Did}
7 return tid

oracle Upd(N, id, op, arg)
8 if Did = ⊥ then return ⊥
9 if (N ∈ NLid and |NS| 6= 1) then

10 return ⊥
11 tid ← Up(K, N, id, Did , op, arg, tid)
12 Did ← Ed(Did , op, arg)
13 NLid ← NLid ∪ {N}
14 DLid ← DLid ∪ {Did}
15 return tid

oracle Vf(id, D, t)
16 if D ∈ DLid then return ⊥
17 d← Ver(K, id, D, t)
18 if d then win← true
19 return d

oracle Fin

20 return win

Game Giprf
iF,DE

oracle Init

1 b←←{0, 1} ; K←←KS
2 f←←FUNC(NS× {0, 1}∗ × BS∗, Rng)

oracle Tag(N, id, D)
3 if (N ∈ NLid and |NS| 6= 1) then
4 return ⊥
5 Did ← D ; t1

id ← Tg(K, N, id, Did)
6 t0

id ← f(N, id, Did)
7 NLid ← NLid ∪ {N}
8 DLid ← DLid ∪ {Did}
9 return tb

id

oracle Upd(N, id, op, arg)
10 if Did = ⊥ then return ⊥
11 if (N ∈ NLid and |NS| 6= 1) then
12 return ⊥
13 t1

id ← Up(K, N, id, Did , op, arg, t1
id)

14 Did ← Ed(Did , op, arg)
15 t0

id ← f(N, id, Did)
16 NLid ← NLid ∪ {N}
17 DLid ← DLid ∪ {Did}
18 return tb

id

oracle Vf(id, D, t)
19 if D ∈ DLid then return ⊥
20 if b = 1 then return Ver(K, id, D, t)
21 else return false

oracle Fin(b′)
22 return (b′ = b)

Figure 4: Games defining IUF (left) and IPRF (right) security of an incremental function family iF = (KS,
NS,Rng,Tg,Up,Ver) relative to document editing system DE = (bl,BS,OpC,OpA,Ed).

versions of the document with identity id tagged so far. Variable Did starts out ⊥. An adversary
initializes an id via its Tag oracle. The adversary is returned the tag as computed by the tagging
algorithms Tg. Now id is live, and the adversary can make Upd queries, and also further Tag
queries, with it. An Upd query for id takes a nonce and the description of the update. Document
Did is updated (edited) according to the latter, and the tag computed by the Up algorithm is
returned to the adversary. Each Tag and Upd query adds entries to the sets NLid ,DLid , thus
keeping track of which nonces have been used and which documents have been tagged. Lines 2, 8
disallow nonce reuse for any individual document identity, except if the scheme is nonce-less, in
which case this restriction is dropped. The latter is important to capture nonce-less schemes as
special case of our framework. It is always permitted to re-use the same nonce across different
document identities. To win the adversary must make a query to Vf that is successful (algorithm
Ver accepts) and non-trivial (the document was not previously tagged for this identity). Any number
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of Vf queries are allowed and they may be interleaved arbitrarily with other queries. The adversary
cannot make an Upd query with some document identity prior to having initialized that identity
via a Tag query with that identity, but can make a Vf query without such initialization.

IPRF security. We define Incremental Pseudorandom Function (IPRF) security of an incremental
function family iF = (KS,NS,Rng,Tg,Up,Ver), relative to document editing system DE = (bl,BS,
OpC,OpA,Ed). Consider game Giprf

iF,DE of Figure 4 and let Adviprf
iF,DE(A) = 2 Pr[Giprf

iF,DE(A)] − 1 be
the iprf-advantage of an adversary A. The game picks a random challenge bit b ∈ {0, 1}, samples a
key K from the key space, and picks a random function with domain the Cartesian product of the
nonce space, the document identity space, and the message space, and range the output space Rng.
The game responds to Tag oracle queries depending on the value of the bit b, either generating tags
using the tagging algorithm (when b = 1) or using the random function f (when b = 0). Similarly
for responses to Upd, with the document used in the b = 0 case at line 13 being the updated one.
The Vf oracle verifies as prescribed by iF if b = 1 and otherwise returns false. Inclusion of this
oracle is important for showing that IPRF security implies IUF security. The adversary ends with a
Finalize query that is a bit b′ representing its guess as to the challenge bit b, and the game returns
true iff this guess is correct.

Dropping updates. In giving the first security definitions for incremental cryptography, [BGG94,
BGG95] are at pains to warn that one must allow the adversary Upd queries, because updated
tags may be different from from-scratch ones, and allow forgery. Their definitions and analyses
reflect this. Nonetheless, below, we show that, for both IUF and IPRF security, we can assume that
adversaries make no queries to their Upd oracles if the function family satisfies strong correctness.
This will simplify later proofs. We provide the proof of the following Proposition in Appendix A.

Proposition 1 Let iF = (KS,NS,Rng,Tg,Up,Ver) be an incremental function family satisfying
strong correctness relative to document editing system DE. Let (x,X) ∈ {(iuf, IUF), (iprf, IPRF)}.
Suppose A is an adversary against the X-security of iF making qt, qu, qv queries to its Tag, Upd,
Vf oracles. Then we can construct an adversary A0, also against the X-security of iF, making
qt + qu queries to its Tag oracle, zero queries to its Upd oracle, and qv queries to its Vf oracle
such that Advx

iF,DE(A0) = Advx
iF,DE(A). Adversary A0 has the same running time as A.

Adversary classes. If A is a class (set) of adversaries, then we will say that an incremental
function family iF is IPRF[A] (resp. IUF[A]) -secure relative to DE if the iprf (resp. iuf) -advantage
of adversaries in A is small. Considering different classes of adversaries gives us a precise way to
discuss special cases of our broad notion. Some of the adversary classes we consider are as follows:
— Asd — The class of single-document adversaries. These, across all their queries, use only one

document identity, that we can (wlog) assume to be ε. By restricting to this class we capture
what prior work called the single-document setting .

— Amd — The class of multi-document adversaries, this is simply the class of all adversaries. We
give it this name just for later emphasis.

— A1T — Adversaries in this class make only one Tag query per document identity, as per the
definition of [BGG95].

— A1V — Adversaries in this class make only one Vf query. This is the case in all prior work.
However we know that in general security for adversaries making multiple verification queries is a
strictly stronger requirement than security for adversaries making just one such query [BGM04]
and, even when a hybrid argument works to show there is no qualitative difference, there is a
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significant quantitative difference that makes it worth allowing multiple verification queries in
the definition.

— Arn — The class of random-nonce adversaries. These are ones whose choices of nonces, across
all queries, are made independently and uniformly at random . This restriction allows us to
recover (in our nonce-based setting) the setting of randomized schemes used in all prior work.

Recovering prior notions. We recover some prior notions in the literature using our notation
for adversary classes, as follows:
— IUF[A1T ∩ A1V ∩ Arn] — This is the basic security notion of [BGG95]. Their definition allows

only a single Tag query per document identifier. (We will see below that this is strictly weaker
than allowing multiple Tag queries.) They also allow only one Vf query and schemes are
randomized, not nonce-based.

— IUF[A1T ∩ A1V ∩ Arn ∩ Asd] — This is the notion of [BGG94], which additionally restricts to
the single document setting.

— IUF[A1V ∩ Arn] — This is the basic security notion of [Fis97a].
Prior works have considered both basic and tamper-proof security [BGG95, Fis97a]. We clarify that
our formulation of IUF here only covers basic, where documents submitted for update cannot be
tampered by the adversary.

IPRF security implies IUF security. For regular (no nonces, no incrementality) function fam-
ilies, it is well known that PRF security implies UF security [BKR00, GGM86]. This is useful, since
establishing the former obviates establishing the latter, and we would like to preserve it. Nonces,
however, bring a challenge here. Indeed, prior work has defined notions of PRF and UF security
for nonce-based (not incremental) function families [PS16], but (as they point out), PRF does not
imply UF under their definitions. It is to remedy this that our IPRF game, unusually for a PRF
definition, included a verification oracle. This allows us to recover the implication. The following
says that an iFF that is IPRF-security will also be IUF-secure. The proof is in Appendix B. A
useful consequence is that an iFF which is shown to satisfy IPRF security can directly be used to
perform incremental message authentication.

Proposition 2 Let iF = (KS,NS,Rng,Tg,Up,Ver) be an incremental function family relative to
document editing system DE. Let Auf be an adversary against the IUF security of iF making qt, qu, qv

queries to its Tag,Upd,Vf oracles, respectively. Then we can construct an adversary Aprf against
the IPRF security of iF making qt, qu, qv queries to its Tag,Upd,Vf oracles, respectively, such that
Adviuf

iF,DE(Auf) = Adviprf
iF,DE(Aprf). Adversary Aprf has about the same running time as Auf .

The result of [BKR00], saying that PRF implies UF for regular function families, requires that the
size of the range set F.O of the function family F be large. This shows up as an added qv/|F.O| in
the concrete bound. This term is absent in Proposition 2 because our definition of IPRF security
has the verification oracle reject in the random case. But in practice, one should still ensure that
the range set is large enough to avoid forgery by tag guessing.

4 From Single- to Multi-Document Security

The work that introduced incremental message authentication [BGG94] considered security only in
the single-document (SD) setting. In practice one would however expect the user to have many
documents that it wants to incrementally process with a single key. This lead [BGG95] to introduce
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the multi-document (MD) setting. (In our definitions, this is the default.) They, and later [Fis97a],
gave and analyzed schemes directly for this setting.

We take a more abstract and high-level view, asking how IPRF and IUF security in the single
and multi document settings relate. First we give a separation, showing that there exist schemes
secure in the SD setting but insecure in the MD setting. This shows that the latter is a strictly
stronger requirement than the former, and motivates making it the target. Next, to reach this
target, we give two general “boosting” results: given a scheme secure only in the SD setting, we
(efficiently) transform it into a scheme secure in the MD setting. This lets us simplify design and
analysis by, in the end, doing this only in the original and simpler single-document setting, relying
on our transform to boost security to the MD setting. The difference between the two transforms is
in the tightness of the reductions, as we will see below.

Separation result. Let iF = (KS,NS,Rng,Tg,Up,Ver) be an incremental function family that
is IPRF[Asd] relative to the document editing system DE = (bl,BS,OpC,OpA,Ed). Let X ∈
{IUF,PRF}. We modify iF to an incremental function family iF′ = (KS,NS,Rng,Tg′,Up′,Ver′)
—the key space, nonce space and range are unchanged, but the algorithms are changed— that has
the following properties. (1) iF′ remains X[Asd]-secure relative to document editing system DE, but
(2) iF′ is not X-secure, meaning there is an attack showing that it is insecure in the MD setting.

The modification is simple, namely have the algorithms of iF′ ignore their id input and run
the corresponding iF algorithms with the document identity set to the empty string. In detail, let
Tg′(K,N, id, D) return Tg(K,N, ε,D) and let Up′(K,N, id, D, op, arg, t) return Up(K,N, ε,D, op,
arg, t). Then (1) is true because queries of an adversary A ∈ Asd already only have id = ε, so nothing
is really changed from the perspective of such an adversary. For (2), we give separate attacks IPRF
and IUF, beginning with the former. Let id1, id2 be some two distinct document identities, N some
nonce and D some document. An adversary A can easily obtain an iprf-advantage of (1− 1/|Rng|)
as follows. Having started with its mandatory Init query, it then makes query t1 ← Tag(N, id1, D),
followed by query t2 ← Tag(N, id2, D). (Although the nonce N is the same in both queries, it is
for two different identities, so the adversary is nonce-respecting.) Then A calls Fin(1) if t1 = t2,
and Fin(0) otherwise. For the IUF case, an adversary A can obtain an iuf-advantage of 1 as follows.
It starts with its mandatory Init query, then makes query t1 ← Tag(N, id1, D), followed by query
d← Vf(id2, D, t1). The adversary then ends with its Fin call.

Boosting results. The above says that a scheme having sd security need not have md. We now
show, however, that the sd-secure scheme can be generically transformed into one that is md secure.
We give two transforms. The first uses a natural technique, namely to apply a PRF under the key
K to the document-id to obtain a sub-key under which the SD scheme may be used. It works, but
security degrades by a factor equal to the number of document identities. The second transform
gives a tight reduction by a different technique. It uses, as an auxiliary tool, a variable-output-length
hash function. The relevant definitions for the auxiliary tools (function families satisfying PRF
security in the first case, and CR hash functions in the second) are provided in Appendix ??.

StM1. Given an incremental function family iFsd for a document editing system DE that is IPRF-
secure only in the single-document setting, our transform StM1 uses as auxiliary tool a PRF
F : F.KS × {0, 1}∗ → iFsd.KS to construct the incremental function family iFmd = StM1[iFsd,F]
that is defined as follows. Its key space iFmd.KS = F.KS is that of the PRF . Its nonce space
iFmd.NS = iFsd.NS is that of the given scheme. Its algorithms are shown in the top panel of Figure 5.
The following theorem says that if iFsd provides security in the single-document setting and F is a
secure PRF then iFmd provides security in the multi-document setting. The proof is in Appendix C.
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Alg iFmd.Tg(K, N, id, D):
1 Kid ← F(K, id) ; return iFsd.Tg(Kid , N, ε, D)

Alg iFmd.Up(K, N, id, D, op, arg, t):
1 Kid ← F(K, id) ; t′ ← iFsd.Up(Kid , N, ε, D, op, arg, t) ; return t′

Alg iFmd.Ver(K, id, D, tid):
1 Kid ← F(K, id) ; return iMAsd.Ver(Kid , ε, D, t)

Alg iFmd.Tg(K, N, id, D):
1 d← H(id, bl) ; D′ ← Prepend(d, D) ; N ′ ← H(id‖N, nl)
2 return iFsd.Tg(K, N ′, ε, D′)

Alg iFmd.Up(K, N, id, D, op, arg, t):
1 d← H(id, bl) ; D′ ← Prepend(d, D) ; N ′ ← H(id‖N, nl)
2 t′ ← iFsd.Up(K, N ′, ε, D′, op, OpTr(op, arg), t) ; return t′

Alg iFmd.Ver(K, id, D, tid):
1 d← H(id, bl) ; D′ ← Prepend(d, D) ; return iFsd.Ver(K, ε, D′, t)

Figure 5: Algorithms of the incremental function family iFmd = StM1[iFsd,F] (top) and iFmd = StM2[iFsd,H]
(bottom).

Theorem 3 Let (x,X) ∈ {(iuf, IUF), (iprf, IPRF)}. Let iFsd is an incremental function family for
the document editing system DE. Let F : F.KS×{0, 1}∗ → iFsd.KS be a PRF. Let iFmd = StM1[iFsd,F]
be the scheme constructed as above. Suppose we are given an adversary Amd against the X security
of iFmd making qt, qu, qv queries per document to its Tag,Upd,Vf oracles, respectively. Let q denote
the number of distinct document identifiers across all these queries. Then we construct an adversary
Asd ∈ Asd against the X security of iFsd and an adversary B against the PRF security of F such that

Advx
iFmd,DE(Amd) ≤ q ·Advx

iFsd,DE(Asd) + Advprf
F (B) .

Adversary Asd makes qt, qu, qv queries to its Tag,Upd,Vf oracles, respectively, all involving just
the one document identity ε, and its running time is about that of Amd. The number of distinct Fn
queries of B is q, and its running time is about that of Amd. If Amd ∈ Arn then Asd ∈ Arn.

StM2. Our second transform StM2 tightly reduces the IPRF security of the constructed multi-
document function family iFmd to the IPRF security of the given single-document function family
iFsd, meaning the factor q in Theorem 3 disappears. This requires that iFsd satisfies strong correctness
and the operations of DE = (bl,BS,OpC,OpA,Ed) satisfy a translation condition we will define. We
assume iFsd has a fixed nonce length nl ≥ 0. The transform uses as auxiliary tool a variable output
length hash function H as defined in Section 2, constructing iFmd = StM2[iFsd,H] as follows. The
key space iFmd.KS = iFsd.KS is that of the starting scheme. The nonce space iFmd.NS is {ε} if nl = 0
and is {0, 1}∗ otherwise. Its algorithms are shown in the bottom panel of Figure 5.

Here, if D is a document and d is a block, we have defined Prepend(d,D) to be the document
(d,D[1], . . . , D[|D|]) obtained by pre-pending d to D as its first block. If D′ ∈ BS∗ is a document
then we let First(D′) be its first block and Rest(D′) the rest. Thus, in the iFmd.Tg algorithm in
Figure 5, we have First(D′) = d and Rest(D′) = D. One must take care, however, that what is the
“document” differs for iFmd —for which it is D, to which we want to apply op— and for iFsd —for
which it is D′ = Prepend(d,D). So, for example, if the requested operation is replace on block 3 of
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D, we need to perform the replace on block 4 of D′. We call this operation translation, and assume
it is possible.

More precisely, we assume there is a function OpTr such that if we compute X ← Ed(D′, op,
OpTr(op, arg)) then First(X) = D′[1] —the first block is unchanged— and Rest(X) = Ed(Rest(D′),
op, arg) —the edit is performed correctly on the remaining document. For example, OpTr(replace,
(i, v)) = (i+ 1, v), OpTr(insert, (i, v)) = (i+ 1, v) and OpTr(delete, i) = i+ 1, showing that these
operations translate. (Not all operations translate, however. For example, prepend, the operation of
pre-pending a block, does not, because it changes the first block of the document.) Note translation
is a property of, and assumption on, the document editing system, not the incremental function
families.

The following theorem gives the tight reduction result. The proof is in Appendix D.

Theorem 4 Let (x,X) ∈ {(iuf, IUF), (iprf, IPRF)}. Let DE be a document editing system whose
operations are translatable, and let OpTr denote the translation function. Let iFsd be an incremental
function family that satisfies strong correctness for DE. Let H be a variable output length hash
function. Let iFmd = StM2[iFsd,H] be the incremental function family constructed as above.
Suppose we are given an adversary Amd against the X security of iFmd, making qt, qu, qv queries to
its Tag,Upd,Vf oracles, respectively. Then we construct an adversary Asd ∈ Asd against the X
security of iFsd and adversaries B1, B2 against the CR security of H such that

Advx
iFmd,DE(Amd) ≤ Advx

iFsd,DE(Asd) + Advcr
H,bl(B1) + ε ,

where ε = Advcr
H,nl(B2) if nl 6= 0 and ε = 0 otherwise. Adversary Asd makes qt + qu queries to its

Tag oracle, qv queries to its Vf oracle and zero queries to its Upd oracle, all involving just one
document identity ε. The running times of the constructed adversaries is about the same as that of
AiF. If Amd ∈ Arn then Asd ∈ Arn.

5 Incremental Hash-then-Encrypt (iHtE) construction
In this Section we give a construction of an incremental PRF for a document editing system DE
from the following ingredients: (1) an incremental hash function iHF for DE (2) a symmetric
encryption scheme SE (2) a key-derivation function KDF. The construction is called iHtE for
“incremental Hash-then-Encrypt,” and we write iF = iHtE[iHF,SE,KDF]. The construction adapts
the Carter-Wegman paradigm. We target security in the single-document setting, since the results
of Section 4 can be used to boost security to the multi-document setting.

We show that one can obtain many examples of iHF, SE,KDF such that iHF is incremental for
replace and iHtE[iHF, SE,KDF] is IPRF[Asd]-secure. Thus , we obtain, via iHtE, many particular
constructions of incremental PRFs for replace.

We do not currently know of hash functions iHF that are incremental for operations other than
replace, but, if these are found, iHtE would yield incremental PRFs for these operations. Meanwhile,
we will see later how to obtain results for insert, delete in other ways.

Ingredients. Our iHtE construction will need the following three objects:
— An incremental hash function iHF for document editing system DE = (bl,BS,OpC,OpA,Ed). It

specifies a key space iHF.KS and an output length iHF.ol. Then, via h← iHF.Hsh(KiHF , D), the
deterministic hash computation algorithm determines the iHF.ol-bit hash of a message D ∈ BS∗
. Via h′ ← iHF.Up(KiHF , D, op, arg, h), the deterministic hash update algorithm can update
a hash value h. The update must be correct: iHF.Up(KiHF , D, op, arg, iHF.Hsh(KiHF , D)) =
iHF.Hsh(KiHF ,Ed(D, op, arg)).
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Alg iF.Tg(K, N, id, D):
1 (KiHF , KSE)← KDF(K) ; h← iHF.Hsh(KiHF , D) ; t← SE.Enc(KSE, N, h)
2 return t

Alg iF.Up(K, N, id, D, op, arg, t):
1 (KiHF , KSE)← KDF(K) ; h← SE.Dec(KSE, t)
2 h′ ← iHF.Up(KiHF , D, op, arg, h) ; t′ ← SE.Enc(KSE, N, h′) ; return t′

Alg iF.Ver(K, id, D, t):
1 (KiHF , KSE)← KDF(K) ; h← iHF.Hsh(KiHF , D) ; h′ ← SE.Dec(KSE, t)
2 return (h = h′)

Figure 6: Algorithms of the incremental function family iF = iHtE[iHF, SE,KDF].

— A symmetric encryption scheme SE. This has a key space SE.KS, nonce length SE.nl and a
ciphertext space denoted Rng. We encrypt via t← SE.Enc(KSE, N, h) . Decryption, operating
as h← SE.Dec(KSE, t), does not take the nonce. (This is the NBE2 syntax of [BNT19].) We
require of course that decryption reverses encryption: SE.Dec(KSE,SE.Enc(KSE, N, h)) = h.

— A key-derivation function KDF : KDF.KS→ iHF.KS× SE.KS that via (KiHF ,KSE)← KDF(K)
maps a base key K into keys for iHF and for SE. The two may be related, or even the same ,
which is why a KDF is needed.

One important way in which the above differs from, or extends, the classical Carter-Wegman
paradigm, is that, in the latter, the object playing the role of SE is not required to be invertible, and
in some cases is not invertible. For allowing updates (incrementality), it is not only crucial that SE
is invertible (that is, the SE.Dec operation above exists) but also, as assumed above, that decryption
does not require the nonce, meaning the syntax is NBE2. Also, in the usual Carter-Wegman
paradigm, keys for hashing and encryption are independent. The above extends this by introducing
a key-derivation function, which allows the hashing and encryption keys to be related, as happens
in some constructions.

We clarify that we do not, at this point, mandate any particular security conditions for
iHF, SE,KDF. Different results (eg. Theorem 6) or constructions may assume different things
that they will state as necessary.

iHtE construction. We specify incremental function family iF = iHtE[iHF,SE,KDF]. We set
the key space to iF.KS = KDF.KS. The nonce space is that of SE: we set iF.NS = {0, 1}SE.nl. The
range is Rng. The tagging, update and verification algorithms are in Figure 6. The idea for updates
is to decrypt t via SE.Dec to recover the iHF-hash h, exploit incrementality of iHF to update h to
h′, and then re-encrypt h′ to get the updated tag t′. It is crucial that decryption is possible and
also that decryption does not use the nonce used for encryption. In classical Carter-Wegman, the
nonce is placed in the tag, but we cannot do this for (I)PRF security, so we must be able to decrypt
without the nonce.

The following proposition, which we prove in Appendix E, says that iHtE provides strong
correctness. This allows us to exploit Theorem 4 to obtain a IPRF[Amd]-secure scheme without loss
of quantitative security.

Proposition 5 Let iF = iHtE[iHF,SE,KDF] be the incremental function family built as above, and
let DE be the underlying document editing system. Then iF satisfies strong correctness relative to
DE.
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Game Gcau
iHF

oracle Init

1 K←← iHF.KS

oracle Hash(D)
2 n← n + 1 ; Dn ← D

3 hn ← iHF.Hsh(K, Dn)
4 return ⊥

oracle Fin

5 for 1 ≤ i < j ≤ n do
6 if ((hi = hj) and (Di 6= Dj))
7 then win← true
8 return win

Game Gae2
SE

oracle Init

1 b←←{0, 1} ; K←←SE.KS
2 f←←FUNC(NS× {0, 1}ol, Rng)

oracle Enc(N, h)
3 if (N ∈ NL) then return ⊥
4 c0 ← f(N, h) ; c1 ← SE.Enc(K, N, h)
5 NL← NL ∪ {N} ; HT[cb]← h

6 return cb

oracle Dec(c)
7 if (HT[c] 6= ⊥) then return HT[c]
8 if (b = 0) then return ⊥
9 return SE.Dec(K, c)

oracle Fin(b′)
10 return (b′ = b)

Figure 7: Left: Game defining CAU security for an incremental hash function iHF. Right: Game defining
AE2 security for a symmetric encryption scheme SE.

IPRF security from the iHtE construction. We now proceed to provide a result showing
how to achieve IPRF security from specific security notions for the incremental hash function and
the symmetric encryption scheme. To do this, we use a notion of computationally almost universal
(CAU) security [Bel06] for the incremental hash function, and a notion of AE2 security [BNT19] for
the symmetric encryption scheme. We start by defining these notions formally.

CAU security. Consider the game Gcau
iHF described on the left in Figure 7, and let Advcau

iHF(A) =
Pr
[
Gcau

iHF(A)
]
be the cau-advantage of an adversary A. The game starts by sampling a key at random

from the key space of the incremental hash function. When the adversary queries a document to
the Hash oracle, the game stores the queried document along with the hash for that document,
and returns ⊥ to the adversary (that is, the adversary does not receive any output from the Hash
oracle). When the adversary calls the Fin procedure, the game checks for collisions between hashes
of distinct documents queried by the adversary. The adversary wins the game iff such a collision
exists. Note that the standard definition corresponds to the case where the adversary is restricted
to making exactly two Hash queries. We use the more general definition as it simplifies proofs. It
follows from the union bound that the advantage of a q-query adversary is at most

(q
2
)
times the

advantage of a 2-query adversary.

AE2 security. Next consider the game Gae2
SE on the right in Figure 7, and let Advae2

SE (A) =
2 Pr

[
Gae2

SE (A)
]
− 1 be the ae2-advantage of an adversary A. The game picks a random bit b ∈ {0, 1},

and samples a key at random from the key space SE.KS. The game responds to Enc queries either
by performing the real encryption (when b = 1) or by picking an element of the ciphertext range
Rng at random (when b = 0). Note (line 2) that nonce re-use is not allowed during Enc queries.
The game responds to Dec queries either by performing real decryption (when b = 1), or by always
returning ⊥ (when b = 0), unless the output of an Enc query is asked, in which case the stored
decryption value corresponding to the queried ciphertext is returned. The adversary wins if it is
able to correctly guess the bit b in its mandatory Fin query.
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Message Authentication
Scheme (M)

iFF
Security

IUF IPRF

PMAC1 [Rog04] iFM Yes Yes
PMAC [BR02] iFM Yes Yes

XORMAC [BGR95]
iFM-1 Yes No
iFM-2 Yes Yes

GMAC [MV04]
iFM-1 Yes No
iFM-2 Yes Yes

Poly1305-AES [Ber05]
iFM-1 Yes No
iFM-2 Yes Yes

PWC [PS16]
iFM-1 Yes No
iFM-2 Yes Yes

PMAC_Plus [Yas11] iFM Yes Yes
ZMAC [IMPS17] iFM Yes Yes

Figure 8: Table summarizing the constructed iFFs for different instantiations.

Given the above definitions, the following shows that iHtE provides IPRF security in the sd
setting. The proof of this is deferred to Appendix F.

Theorem 6 Let hash function iHF and symmetric encryption scheme SE be as above. Let KDF
return (KiHF ,KSE) with the two keys chosen independently and at random. Let iF = iHtE[iHF,
SE,KDF] be the incremental function family built as above, and let DE be the underlying document
editing system. Suppose we are given an adversary AiF ∈ Asd against the IPRF security of iF,
making qt, qu, qv queries to its Tag,Upd,Vf oracles, respectively, and let q = qt + qu + qv. Then we
construct an adversary AH against the CAU security of iHF and an adversary ASE against the AE2
security of SE such that

Adviprf
iF,DE(AiF) ≤ 2 ·Advcau

iHF(AH) + 2 ·Advae2
SE (ASE) .

Adversary AH makes q queries to its Hash oracle and adversary ASE makes qt + qu queries to its
Enc oracle, and qv queries to its Dec oracle. The running times of the constructed adversaries is
about the same as that of AiF.

6 Instantiations

Armed with the tools from the previous sections, we turn to finding specific IUF/IPRF-secure iFFs
with efficient update algorithms. In the following, incrementality is always for the replace operation,
and security always means in the single document setting.

The first examples of incremental message authentication schemes, given in [BGG95], were the
XORMACs of [BGR95], but these are not nonce based and need to be recast in our syntax before
we can even talk of security. We begin by identifying, underlying these schemes, a hash function iHF
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that is incremental. Thence, we directly obtain an iFF iFXORMAC-1 that is the natural nonce-based
extension of the original schemes. This is IUF-secure, but (due to inclusion of the nonce in the tag),
not IPRF-secure. To get an IPRF-secure iFF (viz. iFXORMAC-2), we use iHtE and Theorem 6 in
conjunction with the identified iHF.

Many message authentication schemes have appeared subsequent to [BGG94]. We divide them
into groups. The first group is ones (eg. PMAC [BR02], PMAC1 [Rog04], Poly1305-AES [Ber05])
that come with explicit claims of incrementality by their authors. The works however stop short
of establishing that the schemes meet any formal notion of incremental security. We revisit these
schemes to fill these gaps and/or go beyond to obtain IUF/IPRF-secure iFFs. We use, broadly,
the same approach as outlined above for XORMACs. First, we identify, underlying the schemes, a
hash function iHF that is incremental. Thence, we attempt first to recover the natural expression
of the original scheme as an iFF. In some cases, existing results can be used to show this iFF is
IPRF secure, but this is rare. (The only examples we have are PMAC1 and PMAC.) In other cases
(eg. Poly1305-AES), this iFF is IUF secure but not IPRF secure. (Because of inclusion of the nonce
in the tag.) In this case, we go back to the incremental hash function iHF, and use iHtE and
Theorem 6 to obtain an IPRF-secure iFF.

In the second group are existing message authentication schemes that are not incremental but
underlying which we can nevertheless identify an incremental hash function iHF. (These schemes,
explicitly or implicitly, use the CW paradigm. Incrementality fails due to the masking step not being
invertible.) In these cases, we again use iHtE and Theorem 6 in conjunction with the identified iHF
to obtain IPRFs. Figure 8 summarizes our analysis of different works . We now provide details of
our analysis. In the following, let DE = (bl,BS,OpC,OpA,Ed) be the underlying document editing
system. Recall that the only operation supported is replace.

iFXORMAC-1, iFXORMAC-2. The original XORMAC [BGR95] comes in two forms, randomized and
counter based. We generalize these to create nonce-based iFFs.

Let E : {0, 1}k × T × {0, 1}bl → {0, 1}bl be a tweakable blockcipher [LRW11] with tweak space
T = N. Define iHF : {0, 1}k × BS∗ → {0, 1}bl to take input K,D and return h← E(K, 1, D[1])⊕
· · · ⊕ E(K,m,D[m]), where m ← |D| is the number of blocks in D. This hash function is easily
seen to be incremental for replace [BGG95], and we denote the update algorithm by iHF.Up.

Define iFXORMAC-1 as follows. The nonce space is {0, 1}bl. The tagging algorithm Tg takes K,N,
ε,D —recall we are in the sd setting, so the document id is ε— and returns tag (N, c) where c←
E(K, 0, N)⊕ iHF(K,D). The update algorithm Up takes K,N ′, ε,D, replace, arg, (N, c) and returns
(N ′, c′) obtained by setting h′ ← iHF.Up(K,D, replace, arg, E(K, 0, N)⊕c) and c′ ← E(K, 0, N ′)⊕h′.
The verification algorithm Ver takes K, ε,D, (N, c) and returns true iff Tg(K,N, ε,D) = (N, c). We
can see that the iFF is strongly correct, whence the proofs of [BGR95] (for their randomized and
counter-based message authentication schemes) extend to our nonce-based setting to show that
iFXORMAC-1 is IUF secure.

The inclusion of the nonce N in the tag t = (N, c) in iFXORMAC-1, however, precludes its being
IPRF secure. To obtain an iFF that is IPRF secure, we can simply use the underlying incremental
hash function iHF in iHtE. Namely, we pick some suitable symmetric encryption SE —there are
many choices— and apply Theorem 6 to get an IPRF iFXORMAC-2 = iHtE[iHF, SE,KDF] that is
incremental for DE.

iFPMAC1, iFPMAC. We show how to cast PMAC1 [Rog04] as an iFF, that we denote iFPMAC1, that is
IPRF secure and incremental for DE. PMAC [BR02] can be treated analogously. The versions of
PMAC1,PMAC we consider are without tag truncation.

Assume bl is even. Let E : {0, 1}k × T × {0, 1}bl → {0, 1}bl be a tweakable blockcipher with
tweak space T = {0, 1}bl × [1..2bl/2]× {2, 3, 4} → {0, 1}bl. Define iHF : {0, 1}k × BS∗ → {0, 1}bl to
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take input K,D and return h← E(K, (0bl, 1, 2), D[1])⊕ · · ·⊕E(K, (0bl,m− 1, 2), D[m− 1])⊕D[m],
where m← |D| is the number of blocks in D. This hash function is easily seen to be incremental
for replace [Rog04], and we denote the update algorithm by iHF.Up.

The nonce space of iFPMAC1 is {ε}. The tagging algorithm Tg takes K, ε, ε,D and returns
tag t ← E(K, (0n, |D|, 3), iHF(K,D)). The update algorithm Up takes K, ε, ε,D, replace, arg,
t and returns t′ obtained by setting h′ ← iHF.Up(K,D, replace, arg, E−1(K, (0n, |D|, 3), t)) and
t′ ← E(K, (0n, |D|, 3), h′). The verification algorithm Ver takes K, ε,D, t and returns true iff
Tg(K, ε, ε,D) = t. Then iFPMAC1 is just PMAC1 recast in our syntax, and the proof of PRF security
of the latter from [Rog04], along with the strong correctness of the former and Proposition 1, imply
IPRF security of the former. (Note that iFPMAC1 is nonce-less, so here we are exploiting the fact
that our definitions dealt with this as a special case in which the nonce non-repetition requirement
was dropped.) We do not need iHtE in this case.

iFGMAC-1, iFGMAC-2. The GMAC scheme [MV04] is nonce-based, and is claimed to be incremental
by the authors. Let E : {0, 1}128 × {0, 1}128 → {0, 1}128 be a blockcipher, and let a · b denote
multiplication in the field GF(2128). We set bl← 128 to be the block length. Define iHF : {0, 1}128×
BS∗ → {0, 1}128 to take inputK,D and return h← D[1]·Hm+1⊕D[2]·Hm⊕· · ·⊕D[m]·H2⊕〈m〉·H,
where H ← E(K, 0128), m ← |D| is the number of blocks in D, and 〈m〉 is the representation of
m mod 2128 as an m-bit string. This hash function is incremental for replace, and we denote the
update algorithm by iHF.Up. Note that this hash function is denoted as the GHASH function
in [MV04].

We define iFGMAC1 as follows. The key space is {0, 1}128 and the nonce space is {0, 1}96. The
tagging algorithm takes K,N, ε,D and returns a tag (N, c) with c← E(K,N ||0311)⊕ iHF(K,D).
The update algorithm Up takes K,N ′, ε,D, replace, arg, (N, c) and returns (N ′, c′) obtained by
setting h′ ← iHF.Up(K,D, replace, arg, E(K,N ||0311) ⊕ c) and c′ ← E(K,N ′||0311) ⊕ h′. The
verification algorithm Ver takes K, ε,D, (N, c) and returns true iff Tg(K,N, ε,D) = (N, c). It is
easy to show that iFGMAC1 satisfies strong correctness, after which we can use Proposition 1 and the
security proofs of [MV04] to show that the scheme is IUF secure.

Note however, that the inclusion of the nonce in the tag does not allow for IPRF security. To
obtain IPRF security, we instead use the iHtE transform with the underlying incremental hash
function defined above, and a suitable symmetric encryption scheme SE, and then use Theorem 6 to
get an IPRF iFGMAC2 = iHtE[iHF, SE,KDF] that is incremental for DE.

iFPoly1305-AES-1, iFPoly1305-AES-2. The Poly1305-AES scheme [Ber05] is nonce-based, and is claimed to
be incremental by the authors. Let E : {0, 1}128 × {0, 1}128 → {0, 1}128 be a blockcipher (which is
set to be AES for concreteness by the authors). Let a · b and a+ b denote multiplication and addition
modulo p = 2130−5. We set bl← 128 to be the block length. Define iHF : {0, 1}106×BS∗ → {0, 1}128

to take inputK,D and do the following. It parses the keyK as r0||r1||r2||r3 ← K where r0 ∈ {0, 1}28,
r1, r2, r3 ∈ {0, 1}26. It then computes r ← r0 + r1 · 234 + r2 · 266 + r3 · 298, and returns a hash value
h← ((D[1]||071) · rm + (D[2]||071) · rm−1 + . . .+ (D[m]||071) · r mod p) mod 2128. Note that at
each point, bitstrings are decoded as integers in little-endian representation. This hash function is
incremental for replace, and we denote the update algorithm by iHF.Up.

We define iFPoly1305-AES1 as follows. The key space is {0, 1}234 and the nonce space is {0, 1}128.
The tagging algorithm takes K,N, ε,D, splits the key into K1,KiHF , and returns a tag (N, c) with
c ← (E(K1, N) + iHF(KiHF , D)) mod 2128. The update algorithm Up takes K,N ′, ε,D, replace,
arg, (N, c) and returns (N ′, c′) obtained by setting h′ ← iHF.Up(K,D, replace, arg, (E(K1, N) + c)
mod 2128) and c′ ← (E(K1, N

′) + h′) mod 2128. The verification algorithm Ver takes K, ε,D, (N, c)
and returns true iff Tg(K,N, ε,D) = (N, c). It is easy to show that iFPoly1305-AES1 satisfies strong
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correctness, after which we can use Proposition 1 and the security proofs of [Ber05] to show that
the scheme is IUF secure.

The inclusion of the nonce in the tag does not allow for IPRF security. To obtain IPRF
security, we instead use the iHtE transform with the underlying incremental hash function defined
above, and a suitable symmetric encryption scheme SE, and then use Theorem 6 to get an IPRF
iFPoly1305-AES2 = iHtE[iHF, SE,KDF] that is incremental for DE.

iFPWC-1, iFPWC-2. The PWC scheme [PS16] is a nonce-based scheme. We start by extracting a hash
function iHF from the scheme description. Let E : {0, 1}k × T × {0, 1}bl → {0, 1}bl be a tweakable
blockcipher with tweak space T = {2, 3} × [1..L]. L here denotes the maximum number of blocks
that can be in a single document. We define iHF : {0, 1}k×BS∗ → {0, 1}bl to take as input K,D and
return h← E(K, (3, 1), D[1])⊕ . . .⊕E(K, (3,m), D[m]), where m← |D| is the number of blocks in
the document. This hash function is incremental for replace, and we denote the update algorithm
by iHF.Up.

We define iFPWC1 as follows. The nonce space is {0, 1}bl. The tagging algorithm takes K,N, ε,D,
and returns a tag (N, c) with c ← E(K, (2, 0), N) ⊕ E(K, (2, 1), N) ⊕ iHF(KiHF , D). The up-
date algorithm Up takes K,N ′, ε,D, replace, arg, (N, c) and returns (N ′, c′) obtained by setting
h′ ← iHF.Up(K,D, replace, arg, (E(K, (2, 0), N)⊕ E(K, (2, 1), N)⊕ c)) and c′ ← E(K, (2, 0), N ′)⊕
E(K, (2, 1), N ′) ⊕ h′. The verification algorithm Ver takes K, ε,D, (N, c) and returns true iff
Tg(K,N, ε,D) = (N, c). This iFF satisfies strong correctness, and this allows us to use Proposition 1
and extend the proofs of [PS16] to show the IUF security of this iFF.

Again, the inclusion of the nonce in the tag does not allow for IPRF security. To obtain IPRF
security, we instead use the iHtE transform with the underlying incremental hash function defined
above, and a suitable symmetric encryption scheme SE, and then use Theorem 6 to get an IPRF
iFPWC2 = iHtE[iHF,SE,KDF] that is incremental for DE.

iFPMAC_Plus. We next study the PMAC_Plus scheme [Yas11]. The original scheme is not incremental
due to the non-invertible nature of the masking. However, we identify an incremental hash function
present within the construction. This allows us to then provide a nonce-based iFF. There are two
versions of the scheme, one which uses three different keys, and another which uses the same key,
and uses different tweaks of a tweakable blockcipher. However, the two schemes differ only in the
masking phase, and therefore we get the same iFF in both cases.

Let E : {0, 1}k × {0, 1}bl → {0, 1}bl be a blockcipher, and let a · x denote multiplication in the
field GF(2bl). We define the incremental hash function iHF : {0, 1}k × BS∗ → {0, 1}2bl to take as
input K,D and return h← (Y1 ⊕ Y2 ⊕ · · · ⊕ Ym) ||

(
Y1 ⊕ 2 · Y2 ⊕ · · · ⊕ 2m−1 · Ym

)
, where m← |D|

is the number of blocks in D, and Yi ← E(K,D[i]⊕ 2i ·∆0 ⊕ 22i ·∆1) is defined for each i ∈ [1..m],
with ∆0 ← E(K, 0bl) and ∆1 ← E(K, 0bl−11). This hash function is incremental for replace, and we
denote the update algorithm by iHF.Up.

Now, to obtain an iFF that is IPRF secure, we can use the above defined incremental hash
function iHF in iHtE, along with some suitable symmetric encryption scheme, as in Theorem 6.
We denote this iFF by iFPMAC_Plus.

The constructions PMAC_TBC3k and PMAC_TBC1k from [Nai15] can also be studied in the
same fashion, with only minor changes in the definition of the incremental hash function.

iFZMAC. The universal hash function used in the construction of the ZMAC is called ZHASH [IMPS17].
Note that the ZMAC does not use nonces, and that the masking (that is, the finalization procedure
ZFIN in [IMPS17]) is non-invertible. As a result, the original scheme is not incremental. We cast
ZHASH as an incremental hash function – for simplicity we focus on the case where the size of the
tweak is not greater than the size of the blockcipher input (i.e. the t ≤ n case in [IMPS17]) – the
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other case can be studied analogously.
Let E : K×T ×{0, 1}n → {0, 1}n be a tweakable blockcipher with tweak space T = {0, 1}t×[0..9].

Let the operation a · b denote multiplication in the field GF(2n). The block length is bl = n + t.
Define iHF : K×BS→ {0, 1}bl to take as input K,D, split each document block into n and t bit parts
as D`[i]||Dr[i]← D[i] for i ∈ [1..m] where m← |D| is the number of blocks in the document (where
D`[i] ∈ {0, 1}n and Dr[i] ∈ {0, 1}t), and return h← (2m ·C`[1]⊕ . . .⊕2 ·C`[m] , Cr[1]⊕ . . .⊕Cr[m]),
where for each i ∈ [1..m], C`[i]← E(K, (2i−1Lr ⊕Dr[i], 8), 2i−1L`⊕D`[i]) and Cr[i]← C`[i]⊕Dr[i].
In the above, L` ← E(K, (0t, 9), 0n) and Lr ← E(K, (0t−11, 9), 0n). It is easy to see that this hash
function is incremental for the replace operation, and we denote the update algorithm by iHF.Up.

In order to obtain an iFF that is IPRF secure, we can use the above defined incremental hash
function iHF in iHtE, along with some suitable symmetric encryption scheme, as in Theorem 6.
We denote this iFF by iFZMAC.
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A Proof of Proposition 1

There are two versions of the statement of Proposition 1, corresponding to the two choices of (x,X)
∈ {(iuf, IUF), (iprf, IPRF)}. We proceed to prove the version where (x,X) = (iprf, IPRF), and then
discuss how to adapt the proof to the remaining version, where (x,X) = (iuf, IUF).

Proof of Proposition 1, (x,X) = (iprf, IPRF): Consider the game G0 described in Figure 9. This
game is exactly the IPRF security game for the incremental function family iF and the document
editing system DE. Games G0 and G1 are identical-until-bad games, which means that, by the
Fundamental Lemma of Game Playing [BR06], we have

Pr [G0(A)]− Pr [G1(A)] ≤ Pr [G0(A) sets bad] .

Further, we can see that Pr [G0(A) sets bad] = Pr[Gscorr
iF,DE(A)] = 0 due to the strong correctness of

the incremental function family iF relative to the document editing system DE. This means that
Pr [G0(A)] = Pr [G1(A)].
We then construct, in Figure 10, the adversary A0, which runs the adversary A, giving the latter its
own Init, Vf, and Fin oracles, and simulating the Tag and Upd oracle. Tag0 perfectly simulates
the Tag oracle for A, while Upd0 perfectly simulates the Upd oracle for A in game G1. This
gives us Pr [G1(A)] = Pr [G1(A0)] with A0 making qt + qu Tag queries and zero Upd queries. We
again invoke the strong correctness property to assert that Pr [G1(A0)] = Pr [G0(A0)]. Putting this
together gives us Adviprf

iF,DE(A0) = Adviprf
iF,DE(A), which completes the proof.

We now discuss adapting the above proof for the version of the proposition where (x,X) =
(iuf, IUF). The games used in this version are analogous to those in the above proof – game G0 is the
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Game G0, G1

oracle Init

1 b←←{0, 1} ; ; K←←KS ; f←←FUNC(NS× {0, 1}∗ × BS∗, Rng)

oracle Tag(N, id, D)
2 if (N ∈ NLid and |NS| 6= 1) then return ⊥
3 Did ← D ; t1

id ← Tg(K, N, id, Did) ; t0
id ← f(N, id, Did)

4 NLid ← NLid ∪ {N} ; DLid ← DLid ∪ {Did} ; return tb
id

oracle Upd(N, id, op, arg)
5 if Did = ⊥ then return ⊥
6 if (N ∈ NLid and |NS| 6= 1) then return ⊥
7 t1

id ← Up(K, N, id, Did , op, arg, t1
id) ; Did ← Ed(Did , op, arg)

8 t← Tg(K, N, id, D[]id) ; t0
id ← f(N, id, Did)

9 if t 6= t1
id then bad← true ; t1

id ← t

10 NLid ← NLid ∪ {N} ; DLid ← DLid ∪ {Did} ; return tb
id

oracle Vf(id, D, t)
11 if D ∈ DLid then return ⊥
12 if b = 1 then return Ver(K, id, D, t) else return false

oracle Fin(b′)
13 return (b′ = b)

Figure 9: Games G0 and G1 for the proof of Proposition 1. The boxed code is only included in G1.

Adversary AInit,Tag,Upd,Vf,Fin
0 :

1 AInit,Tag0,Upd0,Vf,Fin

subroutine Tag0(N, id, D)
2 D∗id ← D

3 return Tag(N, id, D)

subroutine Upd0(N, id, op, arg)
4 if D∗id = ⊥ then return ⊥
5 D∗id ← Ed(D∗id , op, arg)
6 return Tag(N, id, D∗id)

Figure 10: Adversary A0 for the proof of Proposition 1. It runs A and answers the oracle queries of the latter
via the shown subroutines.

IUF security game, and games G0,G1 are identical-until-bad, where G1, during Upd queries, sets
the tag to be the result of the tagging algorithm rather than the update algorithm. The adversary
A′0 is constructed by running A′, giving the latter its own Init, Vf, and Fin oracles and simulating
the Tag and Upd oracle, in the same manner as in the above proof. The analysis proceeds as
before, and therefore we get the claimed equation between the advantages of the adversaries as in
the first version of the proposition.

B Proof of Proposition 2

Proof of Proposition 2: We assume the adversary Auf does not make any trivial queries, such
as repeating nonces across its Tag, Upd queries, querying Vf(id, D, t) if D ∈ DLid , and querying
Upd with id such that Did = ⊥. This allows us to remove the checks for these occurrences and

27



Adversary AInit,Tag,Upd,Vf,Fin
prf :

1 AInit,Tag,Upd,VfM,FinM
uf

subroutine VfM(id, D, t)
2 d← Vf(id, D, t)
3 if d then win← true
4 return d

subroutine FinM

5 Fin(win)

Figure 11: Adversary Aprf for the proof of Proposition 2. It runs Auf and answers the oracle queries of the
latter via the shown subroutines.

simplify the IUF game. The adversary Aprf passes to Auf its Init,Tag,Upd oracles, and simulates
the latters Vf queries as described by VfM in Figure 11. From the definition of the irf-advantage
of an adversary, we have

Adviprf
iF,DE(Aprf) = 2 Pr[Giprf

iF,DE(Aprf)]− 1
= 2 Pr[win = b]− 1
= Pr[win|b = 1]− Pr[win|b = 0]
= Adviuf

iMA,DE(Auf)

This completes the proof.

C Proof of Theorem 3

We prove the case where (x, (X)) = (iprf, IPRF).

Proof of Theorem 3, (x, (X)) = (iprf, IPRF): We assume Amd makes no trivial queries. This
means it does not query Upd with id such that Did = ⊥. This allows us to simplify the games and
adversaries by removing the check related to this item. Now consider games G0,G1 of Figure 12.
The only difference is in the choice of g made in Init. We have

Adviprf
iFmd,DE(Amd) = Pr[G0(Amd)]

= Pr[G1(Amd)] + (Pr[G0(Amd)]− Pr[G1(Amd)]) .

We design adversary B so that

Pr[G0(Amd)]− Pr[G1(Amd)] ≤ Advprf
F (B) .

The design is standard. Briefly, adversary B runs Amd, responding to the latter’s Tag,Upd queries
as per the code of the corresponding oracles in G1 except that calls to g are substituted by calls to
B’s own Fn oracle. When Amd ends by calling Fin, adversary B returns 1 if b′ = b and 0 otherwise.
In game G1, the keys of distinct document identities are uniformly and independently distributed.
Game G2 picks them directly that way, no longer using g. Therefore we have

Pr[G2(Amd)] = Pr[G1(Amd)] .

We now proceed via a hybrid argument. It is easy to see that
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Games G0,G1,G2

oracle Init

1 b←←{0, 1} ; f←←FUNC(NS× {0, 1}∗ × BS∗, Rng)
2 K←←KS ; g ← F(K, ·) // Game G0
3 g←←FUNC({0, 1}∗, iFsd.KS) // Game G1
4 For j = 1, . . . , q do Lj←← iFsd.KS // Game G2

oracle Tag(N, id, D)
5 Kid ← g(id) // Game G0,G1
6 if Kid = ε then i← i + 1 ; Kid ← Li // Game G2
7 Did ← D ; t1

id ← iFsd.Tg(Kid , N, ε, Did) ; t0
id ← f(N, id, Did) ; return tb

id

oracle Upd(N, id, op, arg)
8 Kid ← g(id) // Game G0,G1
9 t1

id ← iFsd.Up(Kid , N, ε, Did , op, arg, t1
id)

10 Did ← Ed(Did , op, arg) ; t0
id ← f(N, id, Did) ; return tb

id

oracle Vf(id, D, t)
11 Kid ← g(id) // Game G0,G1
12 if Kid = ε then i← i + 1 ; Kid ← Li // Game G2
13 if b = 1 then return iFsd.Ver(Kid , ε, D, t)
14 else return false

oracle Fin(b′)
15 return (b′ = b)

Games G3,` where 0 ≤ ` ≤ q

oracle Init

1 f←←FUNC(NS× {0, 1}∗ × BS∗, Rng)
2 For j = 1, . . . , q do Lj←← iFsd.KS

oracle Tag(N, id, D)
3 if Kid = ε then i← i + 1 ; Kid ← Li ; C[id]← i

4 Did ← D ; t1
id ← iFsd.Tg(Kid , N, ε, Did) ; t0

id ← f(N, id, Did)
5 if (C[id] ≤ `) then return t0

id else return t1
id

oracle Upd(N, id, op, arg)
6 t1

id ← iFsd.Up(Kid , N, ε, Did , op, arg, t1
id)

7 Did ← Ed(Did , op, arg) ; t0
id ← f(N, id, Did)

8 if (C[id] ≤ `) then return t0
id else return t1

id

oracle Vf(id, D, t)
9 if Kid = ε then i← i + 1 ; Kid ← Li ; C[id]← i

10 if (C[id] ≤ `) then return false
11 return iFsd.Ver(Kid , ε, D, t)

oracle Fin(b′)
12 return (b′ = 1)

Figure 12: Top: Games G0,G1,G2 for the proof of Theorem 3. Line 2 is included only in game G0, line 3 is
included only in line G1, while lines 4 and 6 are included only in game G2. Lines 5 and 8 are included only in
games G0 and G1. Bottom: Hybrid games G3,` for the proof of Theorem 3.
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Adversary AInit,Tag,Upd,Fin
j :

1 Lj+1, . . . , Lq←← iFsd.KS ; f←←FUNC(NS× {0, 1}∗ × BS∗, Rng)
2 AInit,Tagmd,Updmd,Vfmd,Fin

md

subroutine Tagmd(N, id, D)
3 Did ← D

4 if (Kid = ε) then i← i + 1 ; C[id]← i

5 if (C[id] < j) then return f(N, id, D)
6 if (C[id] = j) then return Tag(N, ε, D)
7 Kid ← Li ; tid ← iFsd.Tg(Kid , N, ε, Did) ; return tid

subroutine Updmd(N, id, op, arg)
8 if (C[id] = j) then return Upd(N, ε, op, arg)
9 if (C[id] < j) then D′ ← Ed(Did , op, arg) ; return f(N, id, D′)

10 tid ← iFsd.Up(Kid , N, ε, Did , op, arg, t)
11 Did ← Ed(Did , op, arg) ; return tid

subroutine Vfmd(id, D, t)
12 if (Kid = ε) then i← i + 1 ; C[id]← i

13 if (C[id] = j) then return Vf(ε, D, t)
14 if (C[id] < j) then return false
15 Kid ← Li ; return iFsd.Ver(Kid , ε, D, t)

Figure 13: Adversary Aj ∈ Asd against the IRF security of iFsd for the proof of Theorem 3. It runs Amd and
answers the oracle queries of the latter via the shown subroutines.

Pr[G2(Amd)] = Pr[G3,0(Amd)]− Pr[G3,q(Amd)]
= (Pr[G3,0(Amd)]− Pr[G3,1(Amd)]) + (Pr[G3,1(Amd)]− Pr[G3,2(Amd)])

+ . . .+ (Pr[G3,q−1(Amd)]− Pr[G3,q(Amd)]) ,

where G3,`, 0 ≤ ` ≤ q are the hybrid games described in Figure 12. We now design adversary Aj in
Figure 13 such that

Pr[G3,j−1(Amd)]− Pr[G3,j(Amd)] ≤ Adviprf
iFsd,DE(Aj) .

We let Asd denote the adversary among Aj , 1 ≤ j ≤ q that achieves the maximum iprf-advantage.
Then, we can write

Pr[G2(Amd)] ≤ q ·Adviprf
iFsd,DE(Asd) .

Using this in the earlier equations gives us the bound claimed in the theorem, and completes the
proof.

We now discuss adapting to prove for the case where (x,X) = (iuf, IUF). The game transitions
used are analogous to those in the above proof, but for the IUF case – game G0 is the IUF security
game, game G1 differs from game G0 in the use of a random function in place of the PRF, while
game G2 samples the sub-keys at random just as in the above proof. The hybrid games G3,j and
adversaries Aj are adapted in the same manner. Then, the analysis proceeds along the same lines
as the above case, and we get the claimed equation as in the first version of the proposition.
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Games G0,G1,G2,G3

oracle Init

1 b←←{0, 1} ; f←←FUNC(NS× {0, 1}∗ × BS∗, Rng) ; K←←KS

oracle Tag(N, id, D)
2 Did ← D ; d← H(id, bl)
3 if HT1[d] /∈ {⊥, id} then coll1 ← true
4 HT1[d]← id ; D′ ← Prepend(d, D) ; N ′ ← H(id‖N, nl)
5 if HT2[N ′] /∈ {⊥, id||N} then coll2 ← true
6 HT2[N ′]← id||N ; t1

id ← iFsd.Tg(K, N ′, ε, D′)
7 t0

id ← f(N, id, Did) ; return tb
id // Games G0,G1,G2

8 t0
id←←Rng ; return tb

id // Game G3

oracle Vf(id, D, t)
9 d← H(id, bl)

10 if HT1[d] /∈ {⊥, id} then coll1 ← true
11 HT1[d]← id ; D′ ← Prepend(d, D)
12 if b = 1 then return iFsd.Ver(K, ε, D′, t)
13 else return false

oracle Fin(b′)
14 if coll1 then bad1 ← true ; return false
15 if coll2 then bad2 ← true ; return false
16 return (b′ = b)

Figure 14: Games G0,G1,G2,G3 for the proof of Theorem 4. The boxed code is excluded in game G0, while
the highlighted code is excluded in games G0,G1.

Adversary AInit,Tag,Fin
sd :

1 AInit,Tagmd,Vfmd,Fin
md

subroutine Tagmd(N, id, D)
2 d← H(id, bl) ; D′ ← Prepend(d, D)
3 N ′ ← H(id‖N, nl) ; return Tag(N ′, ε, D′)

subroutine Vfmd(id, D, t)
4 d← H(id, bl) ; D′ ← Prepend(d, D)
5 return Vf(ε, D, t)

Figure 15: Adversary Asd ∈ Asd against the IPRF security of iFsd for the proof of Theorem 4. It runs Amd
and answers the oracle queries of the latter via the shown subroutines.

D Proof of Theorem 4

We prove the case where (x,X) = (iprf, IPRF) , and where nl 6= 0, .

Proof of Theorem 4, (x, (X)) = (iprf, IPRF), nl 6= 0: We begin by recalling Proposition 1, which
tells us that since iFsd satisfies strong correctness, we can replace any adversary making qt Tag
queries and qu Upd queries with an adversary that makes qt + qu Tag queries and zero Upd queries.
Therefore, we can assume without loss of generality that the adversary AiF does not make any Upd
queries, which allows us to remove this oracle from consideration for this proof. We further assume
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Amd makes no trivial queries. This allows us to simplify the games and adversaries by removing
various checks related the reuse of nonces. Consider the game G0 described in Figure 14, which is
essentially the IPRF game along with some additional bookkeeping. We have that

Adviprf
iFmd,DE(Amd) = Pr[G0(Amd)]

= Pr[G1(Amd)] + (Pr[G0(Amd)]− Pr[G1(Amd)]) .

Now, games G0 and G1 are identical-until-bad1 games, and therefore we use the Fundamental
Lemma of Game Playing [BR06] to say

Pr[G0(Amd)]− Pr[G1(Amd)] ≤ Pr [G0(Amd) sets bad1] .

We design adversary B1 such that

Pr [G0(Amd) sets bad1] ≤ Advcr
H,bl(B1) .

The adversary is standard – it runs adversary Amd in the game G0, and stores hash queries in the
table HT1 as in the game. In the event of the coll1 flag being set to true, the adversary returns the
pair consisting of the document identity already in the table for that hash value, and the currently
queried document identity.
Next, note that games G1 and G2 are identical-until-bad2 games, and therefore we again use the
Fundamental Lemma of Game Playing to say

Pr[G1(Amd)]− Pr[G2(Amd)] ≤ Pr [G1(Amd) sets bad2] .

We can design adversary B2 along the lines of the strategy described for adversary B1, such that

Pr [G1(Amd) sets bad2] ≤ Advcr
H,nl(B2) .

The game G3 picks the tags at random rather than using the random function f in the Tag
and Upd queries. Since every input to the random function is new (since the adversary Amd is
nonce-respecting), the games G2 and G3 are equivalent, and we have that

Pr[G2(Amd)] = Pr[G3(Amd)] .

We now provide an adversary Asd ∈ Asd in Figure 15 such that

Pr[G3(Amd)] ≤ Adviprf
iFsd,DE(Asd) .

Note that in game G3, we can assume that the choice of nonces and document identitities picked
by the adversary Amd is such that no collisions are generated (as otherwise the Fin procedure
would return false). This means that every input to the Tagmd and Updmd queries made by Asd is
unique, and therefore we can assume t0id to be picked freshly at random for each query. Putting
these equations together achieves the claimed inequality, and completes the proof.

The proof in the case where (x,X) = (iuf, IUF) follows from an adaptation of the games above
to the IUF setting. The analysis then proceeds in a similar manner to the proof above, which gives
us the claimed equation. When nl = 0, then we are in the setting where the hash function H always
returns ε. Note that the underlying single-document scheme also does not take nonces as input.
This allows us to skip the game G2 in the game transitions, and jump directly from game G1 to
game G3. This leads to the term ε being set to 0 in this setting, and gives us the claimed equation.
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Game G0

oracle Init

1 K←←KS ; (KiHF , KSE)← KDF(K) ; return K

oracle Tag(N, id, D)
2 Did ← D ; h← iHF.Hsh(KiHF , Did)
3 tid ← SE.Enc(KSE, N, h) ; h′ ← SE.Dec(KSE, tid)
4 if (h 6= h′) then win← true
5 return ⊥

oracle Upd(N, id, op, arg)
6 D′id ← Ed(Did , op, arg) ; h← SE.Dec(KSE, tid)
7 h′ ← iHF.Up(KiHF , Did , op, arg, h) ; t′id ← SE.Enc(KSE, N, h′)
8 h1 ← iHF.Hsh(KiHF , D′id) ; h′1 ← SE.Dec(KSE, t′id)
9 if (h1 6= h′1) then win← true

10 t′′id ← SE.Enc(KSE, N, h1)
11 if t′id 6= t′′id then win← true
12 return ⊥

oracle Fin

13 return win

Figure 16: Game G0 for the proof of Proposition 5.

E Proof of Proposition 5

Proof of Proposition 5: We assume that the adversary makes no trivial queries – that is, it does
not make Upd queries with id such that Did = ⊥. We can then simplify the games and adversaries
by removing the checks associated with them.

Consider game G0, which is the strong correctness game rewritten for the function family iF =
iHtE[iHF,SE,KDF]. An adversary A can win by setting the win flag to true in any of lines 4, 9,
and 11. For line 4, the requirement on SE that decryption reverses encryption ensures that h = h′

for any Tag query made by A. From the correctness requirement of the incremental hash function
and the requirement on SE that decryption reverses encryption, we know that h′ = h1, where h′ is
defined on line 7 and h1 is defined on line 8. Therefore, analogous to line 4, in line 9 we are assured
that h1 = h′1 in any Upd query made by A due to the requirement on SE that decryption reverses
encryption. Further, since the encryption in SE is deterministic, we also have that t′id = t′′id in line
11, for any Upd query made by A.

All these together give us that for any adversary A, Pr[Gscorr
iF,DE(A)] = 0, and therefore the constructed

incremental function family iF satisfies strong correctness. This completes the proof.

F Proof of Theorem 6

Proof of Theorem 6: We begin by recalling Proposition 1, which tells us that since the iHtE
construction provides strong correctness (Proposition 5), we can replace any adversary making
qt Tag queries and qu Upd queries with an adversary that makes qt + qu Tag queries and zero
Upd queries. Therefore, we can assume without loss of generality that the adversary AiF does not
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Games G0, G1, G2, G3, G4

oracle Init

1 b←←{0, 1} ; KiHF←← iHF.KS ; KSE←←SE.KS
2 f←←FUNC(NS× {ε} × BS∗, Rng)
3 g←←FUNC(NS× {0, 1}ol, Rng)

oracle Tag(N, id, D)
4 t0 ← f(N, id, D) // Game G0
5 t0←←Rng // Games G1, G2, G3, G4
6 h← iHF.Hsh(KiHF , D)
7 if (HT[h] 6= {⊥, D}) then bad← true ; return t0

8 HT[h]← D

9 t1 ← SE.Enc(KSE, N, h) // Games G0, G1
10 t1 ← g(N, h) // Games G2, G3
11 t1←←Rng // Game G4
12 return tb

oracle Vf(id, D, t)
13 h← iHF.Hsh(KiHF , D)
14 if (HT[h] 6= {⊥, D}) then bad← true ; return false
15 HT[h]← D

16 h′ ← SE.Dec(KSE, t) // Games G0, G1
17 h′ ← ⊥ // Games G2, G3, G4
18 if (b = 1) then return (h = h′) // Games G0, G1, G2, G3
19 if (b = 1) then return false // Game G4
20 return false

oracle Fin(b′)
21 return (b′ = b)

Figure 17: Games for the proof of Theorem 6. The boxed code is excluded in games G0, G1 and G2.

make any Upd queries, which allows us to remove this oracle from consideration for this proof. We
also assume the adversary does not make any trivial queries, such as re-using nonces between Tag
queries, and querying Vf with a document that has already been queried to the Tag oracle. This
allows us to remove the checks for these conditions and further simplifies the games for the proof.
Note that since we are in the sd setting, the document identity is assumed to always be the empty
string ε.
Consider the game G0 described in Figure 17. This is exactly the Giprf

iF,DE expanded for the construction
iF = iHtE[iHF, SE,KDF]. The game G1 differs from game G0 in that the tag t0 is sampled at
random instead of picked as the output of a random function f . Since the input arguments to f are
always different, the two games are equivalent, and we have that Pr [G0(AiF)] = Pr [G1(AiF)]. We
then get

Adviprf
iF,DE(AiF) = 2 · Pr [G0(AiF)]− 1

= 2 · Pr [G1(AiF)]− 1 + 2 · (Pr [G0(AiF)]− Pr [G1(AiF)])
= 2 · Pr [G1(AiF)]− 1 .

Game G2 differs from game G1 in two ways – (1) the tag t1 is now the output of a random function
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Adversary AInit,Enc,Dec,Fin
SE :

1 b←←{0, 1} ; KiHF←← iHF.KS ; f←←FUNC(NS× {ε} × BS∗, Rng)
2 AInit,TagSE,VfSE,FinSE

iF

subroutine TagSE(N, id, D)
3 t0←←Rng ; h← iHF.Hsh(KiHF , D)
4 if (HT[h] 6= {⊥, D}) then return t0

5 HT[h]← D ; t1 ← Enc(N, h) ; return tb

subroutine VfSE(id, D, t)
6 h← iHF.Hsh(KiHF , D)
7 if (HT[h] 6= {⊥, D}) then return false
8 HT[h]← D ; h′ ← Dec(t)
9 if (b = 1) then return (h = h′)

10 return false

subroutine FinSE(b′)
11 Fin ; return (b′ = b)

Adversary AInit,Hash,Fin
H :

1 b←←{0, 1} ; KSE←←SE.KS ; f←←FUNC(NS× {ε} × BS∗, Rng)
2 g←←FUNC(NS× {0, 1}ol, Rng) ; AInit,TagH,VfH,FinH

iF

subroutine TagH(N, id, D)
3 Hash(D) ; t←←Rng ; return t

subroutine VfH(id, D, t)
4 Hash(D) ; return false

subroutine FinH(b′)
5 Fin ; return (b′ = b)

Figure 18: Adversaries for the proof of Theorem 6.

g instead of the output of the encryption algorithm of the symmetric scheme, and (2) the variable h′
is set to ⊥ instead of the output of the decryption algorithm of the symmetric scheme. We construct
an adversary ASE such that

Pr [G1(AiF)]− Pr [G2(AiF)] ≤ Advae2
SE (ASE) .

This gives us that

Adviprf
iF,DE(AiF) = 2 · Pr [G1(AiF)]− 1

= 2 · Pr [G2(AiF)]− 1 + 2 · (Pr [G1(AiF)]− Pr [G2(AiF)])
≤ 2 · Pr [G2(AiF)]− 1 + 2Advae2

SE (ASE) .

The games G2 and G3 are identical-until-bad games, which means that by the Fundamental Lemma
of Game Playing, we can write

Pr [G2(AiF)]− Pr [G3(AiF)] ≤ Pr [G3(AiF) sets bad] .

We construct an adversary AH against cau-security such that

Pr [G3(AiF) sets bad] ≤ Advcau
iHF(AH) .
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This gives us that

Adviprf
iF,DE(AiF) ≤ 2 Pr [G2(AiF)]− 1 + 2 ·Advae2

SE (ASE)
= 2 Pr [G3(AiF)]− 1 + 2 (Pr [G2(AiF)]− Pr [G3(AiF)]) + 2Advae2

SE (ASE)
≤ 2 Pr [G3(AiF)]− 1 + 2Advcau

iHF(AH) + 2Advae2
SE (ASE) .

The game G4 differs from game G3 in two ways – (1) the Vf oracle now returns false when b = 1, and
(2) t1 is sampled at random from the range set. Games G3 and G4 are equivalent, since the output
of the incremental hash function will never be ⊥, and since the h values queried to g will always be
unique, and therefore can be sampled lazily. Therefore, we have that Pr [G3(AiF)] = Pr [G4(AiF)].
Furthermore, notice that the game G4 responds in the same fashion irrespective of whether the bit
b is 0 or 1. This means that Pr [G4(AiF)] = 1/2. We then get

Adviprf
iF,DE(AiF) ≤ 2 Pr [G3(AiF)]− 1 + 2 ·Advcau

iHF(AH) + 2 ·Advae2
SE (ASE)

= 2 Pr [G4(AiF)]− 1 + 2 ·Advcau
iHF(AH) + 2 ·Advae2

SE (ASE)
= 2 ·Advcau

iHF(AH) + 2 ·Advae2
SE (ASE) ,

which is the claimed inequality. Note that the adversary AH makes qt + qu + qv queries to its Hash
oracle, and the adversary ASE makes qt + qu queries to its Enc oracle and qv queries to its Dec
oracle. This completes the proof.
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