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Abstract. In a hybrid key encapsulation construction, multiple inde-
pendent key encapsulation mechanisms are combined in a way that en-
sures the resulting key is secure according to the strongest mechanism.
Such constructions can combine mechanisms that are secure in different
settings and achieve the combined security of all mechanisms. For exam-
ple classical and post-quantum mechanisms can be combined in order to
secure communication against current threats as well as future quantum
adversaries. This paper contains proofs of security for two hybrid key
encapsulation mechanisms along with the relevant security definitions.
Practical interpretation of these results is also provided in order to guide
the use of these mechanisms in applications and standards.

Keywords: key encapsulation · post quantum

1 Introduction

Widespread methods of session key establishment, such as elliptic curve Diffie-
Hellman, are insecure against quantum adversaries that may exist in the future.
This quantum threat has motivated the development of numerous key encapsu-
lation mechanisms (KEMs) that are conjectured to be secure against quantum
computers. A KEM is a protocol that uses public key cryptography to establish a
shared secret between two or more parties. A pressing concern is that encrypted
communication could be recorded today and then decrypted in the future after
such quantum computers have been developed. This concern could be addressed
by using quantum-secure KEMs today, but there is some risk that using these
novel cryptosystems could weaken security against existing classical adversaries.

Hybrid KEMs[6][3] can be used to enable security against future quantum ad-
versaries while retaining security against current adversaries. In a hybrid KEM,
multiple KEMs are composed such that the security of the composite is deter-
mined by the security of the strongest KEM. Moreover, if the component KEMs
are secure against different classes of adversary, then the hybrid KEM is se-
cure against all such adversaries. The challenge in developing a hybrid KEM is
that one or more component KEM is allowed to be completely insecure against
some class of adversary, and it is necessary to ensure that the adversary cannot
leverage this insecurity to defeat the hybrid KEM.

This work examines two hybrid KEM combiners that accept the shared se-
crets produced by multiple KEMs and produce a single shared secret. The first



2 Matthew Campagna and Adam Petcher

combiner concatenates the secrets before giving them to a key derivation func-
tion (KDF). The second combiner executes the KDF multiple times in a cascade
in which one KEM secret is provided in each iteration. Both hybrid KEMs are
proved secure when the KDF is modeled as a random oracle and one input KEM
is assumed to be one-way against chosen plaintext attack (OW-CPA). The OW-
CPA security definition ensures that no efficient adversary that knows the public
information produced by the KEM is able to guess the whole shared secret. The
concatenation-based KEM is also proved secure under the assumption that the
KDF is secure and that at least one KEM is secure according to indistinguisha-
bility under chosen plaintext attack (IND-CPA). The KDF security definition
states that the KDF outputs are indistinguishable from random as long as the
input keying material is drawn from an appropriate source. An IND-CPA KEM
is one in which any efficient adversary is unable to distinguish the resulting secret
from a random value, even after learning all of the public information produced
by the KEM.

The security proofs ensure that these hybrid KEMs retain the security of
the underlying KEMs, and that the composition is secure even when one or
more KEM is insecure. All theorems include concrete bounds to provide insight
into the security of each hybrid KEM when deployed at scale. In order to rule
out trivial proof errors, the proofs are mechanically checked by the Coq proof
assistant[4] using the Foundational Cryptography Framework[10].

2 Security Definitions

2.1 Key Encapsulation Mechanisms

A key encapsulation mechanism is a tuple of probabilistic algorithms
(KGen,Enc,Dec).

– KGen is a key generation algorithm that produces a pair (sk, P ), where sk
is a secret key and P is a public key.

– Enc is an encapsulation algorithm that takes a public key produced by KGen.
Enc produces a pair (k,R), where k is a shared secret and R is a public
encapsulation.

– Dec is a decapsulation algorithm that takes a secret key produced by KGen
and a public encapsulation produced by Enc. Dec produces the shared secret
k.

The Enc and Dec algorithms may fail to produce a valid result, and the ⊥
function is used in definitions to test for this failure. The symbol ⊥ is also used
to describe a constant value x for which ⊥(x) = 1.

A key encapsulation is carried out in practice between two parties, Alice and
Bob. Alice runs KGen to produce (sk, P ) and sends P to Bob. Bob runs Enc(P )
to produce (k,R) and sends R to Alice. Alice runs Dec(sk,R) to obtain k. At the
conclusion of this protocol, k is a shared secret known to both parties. To prevent
man-in-the-middle attacks, the values P and R must be sent over authenticated
channels.



Security of Hybrid Key Encapsulation 3

Indistinguishability under Chosen Plaintext Attack A KEM achieves in-
distinguishability under chosen plaintext attack (IND-CPA) against adversary
A if A cannot distinguish the shared secret from a random shared secret, ex-
cept with acceptably small probability. A is given all of the public information
produced by the KEM. This definition is parameterized by a distribution S that
describes a secure source of shared secrets. Note: A KEM has no plaintext, and
the word “plaintext” only appears in this definition due to the fact that it is
derived from similar definitions used for encryption.

Game G0ind-cpa
KEM (A)

(·, P )←$KGen()

(k,R)←$Enc(P )

if ⊥(k,R) return 0

return A(P,R, k)

Game G1ind-cpa
KEM,S (A)

(·, P )←$KGen()

(k,R)←$Enc(P ), k′ ←$S()

if ⊥(k,R) return 0

return A(P,R, k′)

Fig. 1: IND-CPA games

Game Gow-cpa
KEM,c(A)

(·, P )←$KGen()

(k,R)←$Enc(P )

if ⊥(k,R) return 0

s←$A(P,R)

return ∃q ∈ s, c(q, k)

Fig. 2: OW-CPA game

Definition 1 (IND-CPA Advantage). Let KEM be a key encapsulation mech-
anism and A be an algorithm, then the advantage of A against IND-CPA of KEM
w.r.t. source S is

Advind-cpaKEM,S(A)=
∣∣∣ Pr

[
G0ind-cpaKEM (A) = 1

]
− Pr

[
G1ind-cpaKEM,S(A) = 1

] ∣∣∣
One Way under Chosen Plaintext Attack A KEM is one-way under chosen
plaintext attack (OW-CPA) against an adversary A if A can only produce the
resulting shared secret with acceptably small probability. In this definition, A is
given all of the public information produced by the KEM and produces a list of
values. The adversary wins if the shared secret is contained in any element in
this list. The definition is parameterized by a function c that determines whether
the secret is contained within some value. For example, the adversary may win
the game if the list includes a larger string that contains the shared secret as a
substring.

Definition 2 (OW-CPA Advantage). Let KEM be a key encapsulation mech-
anism and A be an algorithm, then the advantage of A against OW-CPA of KEM
with function c is

Advow-cpa
KEM,c(A)= Pr

[
Gow-cpa

KEM,c(A) = 1
]
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Key Reuse IND-CPA security and OW-CPA security do not imply that the
KEM result k is secret when the values produced by KGen are reused in multiple
protocol instances. That is, a new sk value must be produced for each protocol
instance, and it must be discarded after the shared secret is produced. If key
reuse is desired, then the KEM must be secure according to a stronger notion
such as IND-CCA, in which the adversary is given access to a Dec oracle for sk.

2.2 Key Derivation Functions

A key derivation function (KDF) is a function on four arguments KDF(s, r,
c, `), where s is the keying material, r is salt, c is any additional information
information (often associated with the context), and ` is the desired output key
material length.

Secure Key Derivation Function To prove the security of the hybrid key
exchange mechanisms, we can use a weaker form of the secure key derivation
function definition from [9], in which the adversary is not given access to a KDF
oracle. The definition is also modified to allow the source S to fail to produce a
value.

Game G0kdf-weak
KDF (A)

(s, a)←$S()

if ⊥(s, a) return 0

r←$ Salt()

(c, `)←$A(a, r)

o← KDF(s, r, c, `)

return A(o)

Game G1kdf-weak
KDF (A)

(s, a)←$S()

if ⊥(s, a) return 0

r←$ Salt()

(c, `)←$A(a, r)

o←$ {0, 1}`

return A(o)

Fig. 3: KDF weak security games

Definition 3 (Weakly Secure KDF Advantage). Let KDF be a function,
S be a source of keying material, Salt be a source of salt, and A be an algorithm,
then the advantage of A against weak security of KDF when extracting from S
using Salt is

Advkdf-weak
KDF,S,Salt(A)=

∣∣∣ Pr
[
G0kdf-weak

KDF,S,Salt(A) = 1
]
− Pr

[
G1kdf-weak

KDF,S,Salt(A) = 1
] ∣∣∣

Key Derivation Functions as Random Oracles In some of the proofs in
this paper, the KDF is modeled as a random oracle. More precisely, the KDF
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is modeled as a family of distinct random oracles for each length value `, where
each random oracle takes a query tuple (s, r, c) and returns a random bit string
of length ` if the query is not entirely equal to a previous query value.

3 Constructions

Hybrid Enc(P)

for i = 1 . . . n do

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return ⊥
return (C(k, P,R), R)

Fig. 4: Hybrid KEM Enc
Algorithm

A hybrid key exchange scheme is composed of key
exchange mechanisms KEMi for i ∈ 1 . . . n. The
components of KEMi are (KGeni,Enci,Deci). The
scheme also includes a combiner C that takes the
information produced from each KEM and pro-
duces a secure shared secret. If any Enci fails to
produce a value, then the hybrid scheme fails. The
hybrid Enc process used by the responder to pro-
duce a shared secret is shown in Figure 4. The
hybrid KGen and Dec algorithms (not shown) are
similar.

This work describes two combiners, CtKDF
and CasKDF. These names also refer to the KEMs
that are constructed using these combiners. Both combiners accept additional
context and label parameters, as well as a desired output length (`) and an
optional pre-shared key (psk).

3.1 CtKDF

The concatenation KDF (CtKDF) combiner produces an intermediate secret
by concatenating the shared secrets produced by the KEMs. This intermediate
secret is given to the KDF along with a context that is derived from all of the
public information produced by the KEMs using a formatting function f . The
output of the KDF is the shared secret produced by the hybrid KEM.

CtKDF(context, label, `, psk, k, P, R)

secret← psk‖k1‖k2‖ . . . ‖kn
context’← f(context, P,R)

return KDF(secret, label, context’, `)

Fig. 5: CtKDF combiner

CasKDF(context, label, `, psk, k, P, R)

c0 = psk

for i = 1 . . . n do

secret← (ci−1, ki)

context’← (contexti, Pi, Ri)

ci‖ri ← KDF(secret, labeli, context’, d + `)

return r

Fig. 6: CasKDF combiner
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3.2 CasKDF

The cascade KDF (CasKDF) combiner produces a shared secret using a cascade
that accepts a single secret in each iteration. The combiner accepts a value `
that determines the length of the output key, and there is an additional length
value d that determines the length of an intermediate secret used in the cascade.
The context and label values are lists of length n, where contexti and labeli are
used in iteration i of the cascade. The cascade produces n values, where only the
last value is a secret, and the first n− 1 values are computationally independent
of the secret.

4 Security Proofs

4.1 CtKDF

Security proofs for CtKDF are provided in both the random oracle model and
in the standard model.

Random Oracle Model In the random oracle model, CtKDF is IND-CPA
secure as long as at least one KEM is OW-CPA secure. In this setting, the KDF
is modeled as a random oracle as described in Section 2.2. The component KEM
schemes may not query the random oracle.

Theorem 1 (CtKDF Security in the Random Oracle Model). For any
m ≤ n and any algorithm A the advantage of A against IND-CPA of CtKDF is

Advind-cpa
CtKDF,{0,1}`(A) ≤ Advow-cpa

KEMm,c(B(A,m))

where c is a function that takes a query and a secret, and returns true iff the
whole secret appears anywhere in the query, and B is defined in Figure 7.

B(A, m, P̂ , R̂)

for i = 1 . . . (m− 1) do

(·, Pi)←$KGeni(), (·, Ri)←$Enci(Pi)

for i = (m + 1) . . . n do

(·, Pi)←$KGeni(), (·, Ri)←$Enci(Pi)

Pm ← P̂ , Rm ← R̂, k←$ {0, 1}`

AO(P,R, k)

return queries(AO)

Fig. 7: Constructed adversary against OW-CPA
in CtKDF random oracle model security proof

In Figure 7, AO de-
notes the interaction be-
tween A and the random
oracle O. The procedure
returns the list of dis-
tinct queries that were
produced during this in-
teraction.

Proof. The only differ-
ence between G0 and G1
in Advind-cpa

CtKDF,{0,1}`(A) is

that G1 gives an inde-
pendent random value to
A instead of the value
produced by CtKDF. This
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value has the same distribution as the one produced by the combiner, and the
adversary can only distinguish these values by querying the random oracle on
the appropriate value. This oracle query includes the shared secret produced by
KEMm as a substring, so A will only produce this query value if B wins the
OW-CPA game for KEMm. ut

Standard Model In the standard model, CtKDF is IND-CPA secure as long
as at least one KEM is IND-CPA secure and the KDF is a weakly secure key
derivation function for the appropriate source of key material.

Theorem 2 (CtKDF Security in the Standard Model). For any m ≤ n
and any algorithm A the advantage of A against IND-CPA of CtKDF is

Advind-cpa
CtKDF,{0,1}`(A) ≤ Advind-cpaKEMm,Sm

(B(A,m)) + Advkdf-weak
KDF,S+(Sm,m),label(C(A))

where B is defined in Figure 8 and C is defined in Figure 9. Sm is the secure
distribution of secrets associated with KEMm, and S+ is the derived source of
keying material defined in Figure 10.

B(A, m, P̂ , R̂, k̂)

for i = 1 . . . (m− 1) do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return 0

for i = (m + 1) . . . n do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return 0

Pm ← P̂ , Rm ← R̂

km ← k̂

k′ ← CtKDF(context, label, `, psk, k, P,R)

return A(P,R, k′)

Fig. 8: Constructed adversary against
IND-CPA in CtKDF standard model
security proof

C(A,(P, R), r)

save(P,R)

return (f(context, P,R), `)

C(A, o)

(P,R)← load()

return A(P,R, o))

Fig. 9: Constructed adversary
against KDF weak security in
CtKDF standard model secu-
rity proof. The save(. . .) and
load(. . .) operations allow the
stateful adversary to save ar-
bitrary information and re-
trieve it later.

Proof. Follows from Theorem 3 and Theorem 4. ut
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S+(S,m)

for i = 1 . . . (m− 1) do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return ⊥
for i = (m + 1) . . . n do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return ⊥
(·, Pm)←$KGenm

(·, Rm)←$Encm(Pm)

km ←$S

return (psk‖k, (P,R))

Fig. 10: Derived keying ma-
terial source in CtKDF stan-
dard model security proof

CtKDF a(A, m)

for i = 1 . . . (m− 1) do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return 0

(·, Pm)←$KGenm()

(k̂, Rm)←$Encm(Pm)

if ⊥(k̂, Rm) return 0

km ←$ {0, 1}`

for i = (m + 1) . . . n do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return 0

k′ ← CtKDF(context, label, `, psk, k, P,R)

return A(P,R, k′)

Fig. 11: Intermediate game in CtKDF stan-
dard model security proof

Theorem 3. For m ≤ n and any algorithm A,∣∣∣ Pr
[
G0ind-cpaCtKDF(A) = 1

]
− Pr[CtKDF a(A,m) = 1]

∣∣∣ ≤ Advind-cpaKEMm,Sm
(B)

Proof. After splitting the loop at location m, the IND-CPA assumption for
KEMm can be applied to replace the shared secret with an independent ran-
dom value. The remaining code in CtKDF a is the constructed adversary B. ut

Theorem 4. For m ≤ n and any algorithm A,∣∣∣ Pr[CtKDF a(A,m) = 1]− Pr
[
G1ind-cpaCtKDF(A) = 1

] ∣∣∣ ≤
Advkdf-weak

KDF,S+(Sm,m),label(C(A))

Proof. CtKDF a is identical to G0kdf-weak
KDF,S+(Sm,m),label(C(A)), and the weakly-

secure KDF assumption is applied to replace the output of the KDF with an
independent random value. After this transformation, the game is equivalent to
G1ind-cpaKEM (A). ut

4.2 CasKDF

CasKDF is proved secure in the random oracle model only, though it may be
possible to prove CasKDF secure in the standard model by assuming KDF is
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a secure key derivation function similar to what is described in Section 4.1. In
the IND-CPA security game for CasKDF, the first n− 1 values produced by the
cascade are given to the adversary as auxiliary information. This arrangement
models an expected case in which the earlier values are used as part of a protocol
while the cascade is in progress. The proof ensures that the final value produced
by the cascade is secret even if the earlier values are used in any way.

Random Oracle Model In the random oracle model, CasKDF is IND-CPA
secure as long as at least one KEM is OW-CPA secure. In this setting, the KDF
is modeled as a distinct random oracle for each label and length d+` as described
in Section 2.2. The component KEM schemes may not query the random oracle.

Theorem 5 (CasKDF Security in the Random Oracle Model). For any
m ≤ n and any algorithm A that queries the random oracle at most q times, the
advantage of A against IND-CPA of CasKDF is

Advind-cpa
CasKDF,{0,1}`(A) ≤ Advow-cpa

KEMm,c(B(A,m)) +2n2/2d + q ∗ n/2d

where c is a function that takes a query and a secret, and returns true iff the
whole secret appears in the appropriate location in the query, and B is defined
in Figure 12.

Proof. Follows from Theorem 6 and Theorem 7. ut

B(A, m, P̂ , R̂)

for i = 1 . . . (m− 1) do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

(·, v1...(m−1))← CasKDFO
$

1...(m−1)

(context, label, `, psk, k, P,R)

vm ←$ {0, 1}`, x←$ {0, 1}d

Pm ← P̂ , Rm ← R̂

for i = (m + 1) . . . n do

(·, Pi)←$KGeni()

(·, Ri)←$Enci(Pi)

(·, v(m+1)...n)← CasKDFO
$

(m+1)...n

(context, label, `, x, k, P,R)

k̂←$ {0, 1}`,AO(P, (v1...(m−1), R), k̂)

return queries(AO)

Fig. 12: Constructed adversary against
OW-CPA in CasKDF random oracle
model security proof

In Figure 12, CasKDFO$

j...k de-
notes iterations j though k of the
CasKDF combiner that returns
the next chain secret and all out-
put values as a list. This combiner
accesses a modified random oracle
O$ that always returns a new ran-
dom value for each query, and it
updates the state of O so that this
value will be returned when O is
queried on the same input.

The second term (2n2/2d) in
Theorem 5 results from the fact
that secret values produced in
the cascade may collide with se-
crets produced by earlier itera-
tions. Such a collision would cause
secrets to be reused in the cascade
if the corresponding context infor-
mation is also identical. If the la-
bel/context used in each iteration
of the cascade is distinct, then
this term can be removed from the
bound.
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CasKDF 0a(A, m)

for i = 1 . . . (m− 1) do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return 0

(c, v1...(m−1))← CasKDFO
$

1...m−1

(context, label, `, psk, k, P,R)

(·, Pm)←$KGenm()

(km, Rm)←$Encm(Pm)

if ⊥(km, Rm) return 0

c′‖vm ←$O$

((Pm, Rm, contextm), (km, c))

for i = (m + 1) . . . n do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return 0

(·, v(m+1)...n)← CasKDFO
$

m+1...n

(context, label, `, c′, k, P,R)

return AO(P, (v1...(m−1), R), vn)

Fig. 13: Intermediate game 0a in
CasKDF random oracle model se-
curity proof

CasKDF 1a(A, m)

for i = 1 . . . (m− 1) do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return 0

(c, v1...(m−1))← CasKDFO
$

1...m−1

(context, label, `, psk, k, P,R)

(·, Pm)←$KGenm()

(km, Rm)←$Encm(Pm)

if ⊥(km, Rm) return 0

c′‖vm ←$O$

((Pm, Rm, contextm), (km, c))

for i = (m + 1) . . . n do

(·, Pi)←$KGeni()

(ki, Ri)←$Enci(Pi)

if ⊥(ki, Ri) return 0

(·, v(m+1)...n)← CasKDFO
$

m+1...n

(context, label, `, c′, k, P,R)

r←$ {0, 1}`

return AO(P, (v1...(m−1), R), r)

Fig. 14: Intermediate game 1a in
CasKDF random oracle model se-
curity proof
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Theorem 6. For m ≤ n and any algorithm A,∣∣∣ Pr
[
G0ind-cpaKEM (A) = 1

]
− Pr[CasKDF 0a(A,m) = 1]

∣∣∣ ≤ n2/2d

and∣∣∣ Pr
[
G1ind-cpaKEM (A) = 1

]
− Pr[CasKDF 1a(A,m) = 1]

∣∣∣ ≤ n2/2d

Proof. After splitting the loops at location m, the only remaining transformation
is the replacement of the random oracle O with the modified oracle O$ which
returns a new random value for all queries. This modification produces identical
results unless the oracle is called twice on the same value during the cascade,
which can only happen if there is a collision in the random c values. This collision
happens with probability n2/2d. ut

Theorem 7. For m ≤ n and any algorithm A that queries the random oracle
at most q times,

| Pr[CasKDF 0a(A,m) = 1]− Pr[CasKDF 1a(A,m) = 1] | ≤
Advow-cpa

KEMm,c(B(A,m))+q ∗ n/2d

Proof. CasKDF 1a gives the adversary a random value with the same distribu-
tion as the value produced by the cascade in CasKDF 0a, except that the value
produced in CasKDF 1a is independent of the random oracle. The adversary
cannot distinguish these values unless it queries the oracle on the input that
was used to produce it in the last iteration of the cascade. The probability of
this event is less than the probability that the adversary queries on the input
produced in iteration m or in any iteration after m. This is a sum of the prob-
abilities of two events, the first of which is that B wins the OW-CPA game for
KEMm. In the second event, one of the q adversary queries is identical to one
of the cascade queries, and each cascade query includes a uniformly random bit
string of length d. The probability of such a collision is at most q ∗ n/2d. ut

4.3 Proof Mechanization

The proofs in this paper are mechanized and checked using the Foundational
Cryptography Framework[10], a computational cryptography library for the Coq
proof assistant. FCF includes a simple probabilistic programming language along
with a probability theory and program logic that enables reasoning on programs
in this language. The library also includes reusable cryptographic definitions and
arguments that were used in these proofs.

The proof is checked by Coq to ensure that it contains no errors. In partic-
ular, the mechanized proof rules out some classes of error that have troubled
cryptographic proofs in the past:

– All cryptographic assumptions are applied correctly. [7]
– All numeric bounds resulting from the probability of collision are correct. [8]
– All arguments and transformations are valid and are applied correctly. [5]
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The mechanized definitions and results are identical to the ones presented
in this paper, except that the constructions in the mechanized proof operate on
octet strings instead of bit strings. The mechanized proof artifacts are available
at https://github.com/aws-samples/hybrid-kem-fcf.

5 Interpretation and Caveats

Constructed Adversaries and Complexity Classes The results in Section 4
accept an arbitrary adversaryA, and the adversaries that are constructed fromA
in the reduction appear in the theorem statements. These constructed adverary
procedures define the class of adversary against which security assumptions hold.
For example, instead of assuming that a KEM is IND-CPA secure against all
probabilistic polynomial time (PPT) adversaries in Theorem 2, we can inspect
the constructed adversary B and see that it is PPT if A is PPT.

All definitions and reductions in this paper are classical, which implies that
the constructions are secure against a computationally-bounded classical adver-
sary. The results also imply security against a quantum adversary that only has
classical access to the random oracle.

Salting the Key Derivation Function The constructions in this paper use
a fixed label to salt the KDF. In practice, this label must be distinct from any
other label used with the KDF on the same secrets. Otherwise, an attacker might
be able to leverage this other use of the KDF to obtain knowledge of the secrets.

The two parties may produce a random label through an authenticated ex-
change that occurs before the exchanges related to the KEM. By doing so, they
can ensure (with overwhelming probability) that the label is distinct from other
labels used with the KDF. Further, using a random label to salt the KDF allows
the provable security of these constructions to benefit from existing results re-
lated to salted functions. In particular, the KDF can be assumed to be a generic
extractor, which is provably true in the case of HKDF.

Without salt, the standard model CtKDF security result of Theorem 2 relies
on the assumption that the KDF is a deterministic extractor for a particular
source in which a random bit string is combined with bits that are chosen ar-
bitrarily and independent of the random string. This assumption deserves some
scrutiny due to well-known limitations on deterministic extraction. [11]

IND-CCA Security We can transform the IND-CPA security definition (Defi-
nition 3) into IND-CCA by giving the adversary access to a decapsulation oracle
on the secret key. This definition is useful for demonstrating the security of a
KEM when secret keys are reused across multiple sessions, or when an attacker
may have some access to the secret key while a session is in progress.

Additional investigation and proof is necessary to determine whether these
constructions are IND-CCA secure under the appropriate assumptions on the
underlying KEMs. The inclusion of the complete transcript of public informa-
tion in the KDF context prevents the sort of malleability that leads to obvious

https://github.com/aws-samples/hybrid-kem-fcf
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attacks against IND-CCA. In the random oracle model, any allowed query to
the decapsulation oracle will result in a random value that is independent of
the shared secret. In the standard model, the decapsulation oracle allows the at-
tacker to mount related-key attacks against the KDF, so it is necessary to make
a stronger assumption on the KDF to ensure it is secure against such attacks.

Component KEM Random Oracle Access In the security proofs in the
random oracle model in Section 4, the component KEMs used in the hybrid
constructions are not allowed to query the random oracle. In practice, these
KEMs may use the same function that is modeled as a random oracle, and the
proof will still apply as long as the KEMs are given distinct clones of the random
oracle. For example, each component KEM could use a distinct label with the
KDF.

6 Standards

The constructions in this paper are modeled after similar constructions in inter-
national standards, and the security of these standards can be derived from the
results in Section 4 and additional assumptions.

6.1 ETSI

The CtKDF and CasKDF constructions in Draft ETSI TS 103 744 [1] are spe-
cializations of the ones defined in Section 3.

CtKDF The ETSI CtKDF uses HKDF, which is modeled as a random oracle
in Theorem 1 and assumed to be a weakly secure KDF for a class of key source
in Theorem 2. Both of these theorems require no additional assumptions on the
behavior of the formatting function f . For practical purposes, and to support
stronger security properties, f should be collision resistant.

CasKDF The KDF in ETSI CasKDF is implemented using HMAC, HKDF, and
a formatting function f as shown in Figure 15. In Theorem 5, KDF is modeled
as a random oracle on all arguments. The Draft ETSI TS 103 744 CasKDF KDF
function is indistinguishable from a random oracle on all arguments if HKDF is
modeled as a random oracle and f and HMAC are collision resistant.

Diffie-Hellman Draft ETSI TS 103 744 describes a key exchange abstrac-
tion which can be implemented using a KEM or with a construction based
on ephemeral Diffie-Hellman. This key exchange abstraction is identical (up
to naming) to the KEM definition used in this paper, and the Diffie-Hellman
key exchange mapping described in the standard can be viewed as a particular
Diffie-Hellman-based KEM. So the results in this paper apply to both KEM and
Diffie-Hellman key exchange schemes allowed by the standard.
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KDF(secret, label, context, `, psk)

(s, k)← secret

(c, P,R)← context

return HKDF(HMAC(s, f(k, P,R)), label, c, `)

Fig. 15: Draft ETSI TS 103 744 CasKDF KDF

6.2 NIST

NIST SP 800-56A Rev. 2[2] allows hybrid shared secrets that are produced by
concatenating a “standard” shared secret Z with an arbitrary secret T to pro-
duce Z ′ = Z‖T . Note that this standard requires the “standard” secret to be
placed first in the concatenation. The rest of the concatenation can contain an
arbitrary number of additional secrets. The CtKDF combiner described in this
paper complies with this NIST recommendation if all of the following are true:

– The pre-shared key (PSK) is the empty string.
– The first shared secret in the concatenation is produced by an approved key

establishment scheme as specified in NIST SP 800-56A and SP 800-56B.
– The KDF is an approved ”Two-Step” KDF (such as HKDF) as specified in

NIST SP 800-56C.
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