
Consistency for Functional Encryption

Christian Badertscher1 , Aggelos Kiayias1,2,
Markulf Kohlweiss1,2, and Hendrik Waldner1

1 University of Edinburgh, Edinburgh, UK
{christian.badertscher,aggelos.kiayias,markulf.kohlweiss,hendrik.waldner}@ed.ac.uk

2 IOHK

Abstract. In functional encryption (FE) a sender, Alice, encrypts plaintexts that a receiver, Bob, can
obtain functional evaluations of, while Charlie is responsible for initializing the encryption keys and
issuing the decryption keys. Standard notions of security for FE deal with a malicious Bob and how
the confidentiality of Alice’s messages can be maintained taking into account the leakage that occurs
due to the functional keys that are revealed to the adversary via various forms of indistinguishability
experiments that correspond to IND-CPA, IND-CCA and simulation-based security. In this work we
provide a complete and systematic investigation of Consistency, a natural security property for FE,
that deals with attacks that can be mounted by Alice, Charlie or a collusion of the two against Bob.
We develop three main types of consistency notions according to which set of parties is corrupted and
investigate their relation to the standard security properties of FE.
We then provide explicit constructions that achieve consistency either directly via a construction based
on MDDH for specific function classes of inner products over a modulo group or generically for all the
consistency types via compilers using standard cryptographic tools. Finally, we put forth a universally
composable treatment of FE and we show that our consistency notions naturally complement FE
security by proving how they imply (and are implied by) UC security depending on which set of parties
is corrupted thereby yielding a complete characterization of consistency for FE.

1 Introduction . 1
1.1 Contributions of this Work . 2
1.2 Comparison with Related Work . 3

2 Preliminaries . 4
2.1 Functional Encryption . 5
2.2 Security Definitions . 6
2.3 Standard Tools and Assumptions . 7
2.4 Inner-product Functionality Classes . 8
2.5 Non-interactive Proofs . 8
2.6 Verifiable Functional Encryption . 10
2.7 Universal Composability . 11

3 Consistency for Functional Encryption Schemes . 11
3.1 Consistency with a dishonest Input Provider . 11
3.2 Consistency with a dishonest Input Provider and Key Generator . 14
3.3 Consistency with a dishonest Parameter/Key Generator . 15

4 Relations (in)between Consistency and Confidentiality . 17
4.1 Relations among the Consistency Notions . 17
4.2 Consistency does not imply Confidentiality . 17
4.3 Confidentiality does not imply Consistency . 18
4.4 Consistency does not amplify Confidentiality . 21

5 Consistency Analysis of Selected Functional Encryption Schemes . 22
5.1 Inconsistency of the Plain Schemes . 23
5.2 Consistency for Inner-product Schemes . 24
5.3 Consistency of a related Predicate Scheme . 26

https://orcid.org/0000-0002-1353-1922
https://orcid.org/0000-0002-9083-5794
mailto:christian.badertscher@ed.ac.uk,aggelos.kiayias@ed.ac.uk,markulf.kohlweiss@ed.ac.uk,hendrik.waldner@ed.ac.uk

6 Consistency Compilers . 28
6.1 Input Consistency . 28
6.2 Setup Consistency . 37
6.3 Strong Input Consistency . 46

7 UC Consistency for Functional Encryption . 48
A Overview of the UC Framework . 56
B Consistency for Different Types of Functional Encryption . 57
C Details Of the UC Analysis . 57

C.1 Assumed Functionalities . 57
C.2 Proof of the UC Realization (Theorem 7.2) . 58

1 Introduction

Functional encryption (FE) [BSW11,O’N10] has emerged as an important and general purpose cryptographic
primitive, extending and generalizing earlier more specialized encryption concepts that include Identity-Based
Encryption [BF01], Attribute-Based Encryption [SW05,GPSW06] and Predicate Encryption [KSW08]. Similar
to these earlier primitives, in FE, there exists a setup algorithm that produces a master public-key mpk and
a master secret-key msk, and a key-generation algorithm that receives as input msk and a function f and
produces a function-specific secret-key skf . Subsequently, using skf along with the decryption algorithm, the
computation of the value f(x) is facilitated given any ciphertext that encrypts x. The potential applications of
FE are numerous and include any setting where there exist designated entities that are entitled to functional
views of encrypted information that is described in the form of a function f for which an associated functional
key skf is produced by the key-generation procedure.

In order to define correctness and security of FE it is helpful to identify three distinct entities associated
with the algorithms that comprise any FE scheme. Alice is the sender, wishing to transmit data x, Bob
is a recipient wishing to receive f(x) for some function f(·) and Charlie is an authority that issues the
(master) keys. Typically we think there are multiple Alice and Bob parties for any given setup instance
created by Charlie. Correctness mandates the natural requirement that Bob receives the value f(x) for
properly encrypted ciphertexts prepared by Alice that contain x. Security on the other hand is typically
captured as a game with an adversary who attempts to distinguish between two possible plaintexts x0, x1 for
which it holds that fi(x0) = fi(x1) for all functions fi whose key is possessed by the adversary. A stronger
notion of security puts forth a simulation-based formulation and asks that ciphertexts can be simulated in an
indistinguishable way given the partial knowledge of the master secret-key which is privy to the adversary.
Cf. [AKW18, IZ15,DIJ+13,GVW12,AGVW13,BSW11,O’N10,BF13,BO13]. The adversary controls multiple
different Bob sessions and typically interferes with the honest Alice only in the sense of chosen plaintext
attacks, however chosen ciphertext attacks have also been considered [BBL17] (in which case the adversary
may e.g., manipulate Alice’s ciphertext and submit it to Bob’s decryption oracle). Finally, a composable
formalization of FE in the context of fine-grained access control has been provided in [MM15].

Consistency problems in real-world applications of FE. A crucial problem for any cryptographic
primitive is to identify the exact set of correctness and security properties that are necessary and sufficient for
deploying the primitive within an intended real world system. To see that there is a fundamental property of
FE that is missing, it is helpful to recall the most well known applications of FE and showcase the problems
that emerge when consistent behavior of an FE scheme is not guaranteed.

Processing Encrypted Data. In [BSW11] the following motivating example for FE is presented: Alice encrypts
a photograph x and uploads to her cloud service provider while Bob, a law enforcement agent, wishes to
check whether any photographs in the cloud match a specific face. Using FE, Bob can achieve his objective,
taking advantage of a functional key which detects which encrypted photographs match the face being
searched without revealing any information about anything else. Given the above setting, it is in everyone’s
understanding that if a photograph contains someone that matches the specific face being searched, the law
enforcement agent will be able to detect it. Nevertheless, neither standard notions of security nor correctness
of FE can rule out the possibility that a malicious Alice creates a ciphertext that will be misclassified by
Bob, specifically, a ciphertext that decrypts to a photograph of the person being searched, and for which the
employed face recognition algorithm f works, but is not detected as such by Bob when employing skf . The
same “misclassification” inconsistency issue applies to any setting where FE is used to classify ciphertexts
in-transit or in-situ (e.g., for virus-detection, routing etc.).

Attribute Based Encryption. In an attribute-based encryption (ABE) scheme [GPSW06], which is a special
case of FE, Alice encrypts a message together with a set of attributes γ. Subsequently, Bob, who possesses a
key corresponding to an access structure A will be able to decrypt the message as long as γ ∈ A. Consider
now also another party, say Bob junior, possessing a key for the access structure A′ (A′. Given the above
setting, it is in everyone’s understanding that whatever messages Bob junior is able to see, Bob should see as

1

well. Nevertheless, neither standard notions of security nor correctness of FE can rule out the possibility that
a malicious Alice crafts a ciphertext that Bob junior will be able to decrypt but Bob would not.

Consistency as a fundamental property for FE. What do the above problems tell us? Similar to
advanced properties of ordinary PKE (such as e.g., robustness [ABN10]), advanced properties for FE are
needed when using the primitive in a real world setting because such properties are implied by the way
the primitive is understood in the real-world. Moreover, the level at which they should be defined is at the
level of the basic definition and syntax of FE. We call the enhanced property the above issues point to as
consistency; it addresses, at minimum, the adversarial setting where a malicious Alice produces a specially
crafted ciphertext that causes an honest Bob to misclassify it, or, perhaps even a malicious Charlie who
tampers with the setup to cause further types of misclassification. Interestingly and somewhat surprisingly,
such a consistency property has not been considered in the strict context of FE so far and enhanced FE
schemes, departing from the standard syntax such as [BGJS16], do only consider certain consistency aspects
(see below). We show that, as with the confidentiality of FE, the consistency of FE has several flavors, some
of which are very efficient to ensure, while others require more sophisticated techniques.

1.1 Contributions of this Work

We roll out consistency as a fundamental property for a generic FE scheme from first principles. We provide
a number of constructions for various consistency and security notions either directly for specific function
classes or generically via compilers that upgrade existing FE constructions to be consistent. To formally
cross-check our new notion, we show that the defined properties are necessary and sufficient in realizing
the UC characterization of an “ideally” secure and consistent FE-scheme abstraction derived from [MM15].
The modelling of all security properties as an ideal functionality assures that no important details were
omitted and that our game-based definitions interoperate correctly. In more details we make the following
contributions.

Formal definition of consistency. We identify three main types of consistency, each type naturally
corresponding to a particular set of corrupted parties. The formalization is given in Section 3.

– Input consistency considers a malicious Alice who computes a ciphertext ct as well as some candidate
functions fi. The ciphertext ct is decrypted under skfi to obtain the values yi and the adversary wins if
there is no single x that can explain ct in the sense that fi(x) = yi. We also incorporate in the definition of
input consistency a concept of extractability that facilitates the relation of the primitive to the universal
composable security of FE (see below).

– Strong input consistency couples the above goal with additional power, by considering the setting where
both Alice and Charlie are corrupted, and therefore, subverted parameters can assist the adversary in
breaking the scheme.

– Setup consistency is the consistency notion that deals with a malicious Charlie. In this setting the
adversary issues two plaintexts x1, x2 as well as a secret-key and a function f . The plaintexts are honestly
encrypted and subsequently their decryptions y1, y2 are evaluated. The adversary wins the game if exactly
one of the decryptions fails or yi 6= f(xi) for some i. While at first sight it seems that setup consistency
is implied by e.g. strong input consistency, we point out that this is not the case.

We highlight that consistency in the above sense complements security, as in the latter Alice and Charlie are
honest and Bob is malicious.

Systematic study of consistency vis-à-vis existing security properties. We carefully analyze the
relations in-between the consistency notions and between consistency and security. We confirm our intuition
that all notions define separate levels of consistency, the only exception being that strong input consistency
implies input consistency. With respect to security, namely IND-CPA, IND-CCA and CFE, which is composable
security for FE, we show that strong input consistency does not imply IND-CPA security constructively.

2

Furthermore, we show that IND-CPA together with strong input consistency does not imply any of the other
stronger security notions such as IND-CCA or CFE. Finally, IND-CCA and CFE individually do not imply
input consistency. We refer to Figure 8 for a relation diagram. Thus, it follows that consistency is independent
from existing notions of FE security. The proofs are given in Section 4.

Realizing FE with consistency. We first describe, in Section 5, concrete input-consistent constructions
for an inner-product type of FE under the Matrix DDH assumption for two different functional classes.
The first construction covers the modified inner-product functionality class over a modulo group and the
second construction the function class of exponentiated inner-products over a modulo group. Both of these
constructions are adapted from the construction of [ALS16]. Interestingly, we prove that previous efficient
constructions for the function class of inner-product over the integers all fail to provide input consistency (we
present explicit attacks).

Subsequently, in Section 6 we present several compilers that achieve consistency in a black-box manner
from an FE scheme:

– For input consistency we basically use NIZK, [GMW87,For87,BGG+90], to compile any FE scheme
into a corresponding one that satisfies input consistency. We show that the construction preserves CPA
and CFE security and provide an additional construction to lift the privacy to obtain a CCA-secure
input-consistent FE scheme only assuming a CPA secure FE scheme.

– For setup consistency we use a form of the twin encryption technique [NY90] and NIWIs, [GOS06,BOV07,
BP15], which allows Charlie to demonstrate that the secret-keys are properly generated. Here again, we
provide constructions that preserve CPA security (and CFE under certain assumptions) and provide an
advanced compiler that lifts an assumed CPA-secure FE scheme to a setup-consistent CCA-secure FE
scheme.

– Finally, for strong input consistency, we establish the formal connection to verifiable FE schemes as
introduced in [BGJS16] and show that any such scheme can be turned into a strong input consistent FE
scheme and thus one can deploy the compiler of [BGJS16] to extract a scheme from standard FE. The
reverse, however is not true and we elaborate on this in Section 6 as well as below in Section 1.2.

Universally Composable FE. To show that our definitions do formally capture what they are intended
for, we put forth in Section 7 a complete treatment of consistent FE in the universal composition (UC)
setting [Can01]. This reformulates and generalizes the treatment of [MM15] roughly speaking in the sense
that the adversary is also allowed to corrupt Alice and Charlie (as opposed to just the recipient Bob). Armed
with this stronger security definition we show how our game-based consistency notions relate to UC security.
Specifically, we prove that input consistency/setup consistency/strong input consistency is sufficient and
necessary for UC security in the case Alice/Charlie/Alice+Charlie are corrupted respectively. This pairs
and complements the result of [MM15] which implies that CFE security is sufficient (and necessary) for UC
security in the case Bob is corrupted. It also further highlights consistency as a natural property of FE.

1.2 Comparison with Related Work

Relation to robustness notions. As a first approximation, input-consistency for FE can be thought of as
a natural well-formedness property of FE ciphertexts which is the main reason why it is of relevance
to the cryptographic investigation of the FE primitive, arguably in the same way that other types of
consistency properties for regular public-key encryption are. For instance, plaintext-awareness [Dam92]
and non-malleability [DDN00] are security properties for public-key encryption that deal with ciphertext
well-formedness and are independent of weaker notions of security such as indistinguishability against chosen
plaintext attacks while related to stronger formulations of security such as indistinguishability against chosen
ciphertext attacks. Furthermore, a consistency-like property more closely related to FE is robustness of
identity-based encryption (IBE) [ABN10,FLPQ13]. In the strong robustness attack of Abdalla et al. [ABN10]
against IBE an adversary outputs two identities id1 6= id2 and a ciphertext ct. The game derives decryption
keys for both identities and the adversary wins if the decryption of ct is non-⊥ under both keys. IBE can

3

be viewed as a special case of FE: encrypt the pair identity and message and let the user with identity
id possess the key for the function “fid(id′,m) = m, if id = id′ else ⊥.” It is immediate that a robustness
attack is a consistency attack against the above FE scheme, since it cannot be that two distinct identities
id1, id2 equal the same id′. By this reduction, we see that our notion of consistency for general FE can be
instantiated—notably not only for IBE—to yield such related robustness notions for special cases directly.
Besides strong robustness, the authors also introduce the notion of weak robustness, in which the adversary
outputs a message and two identities and the challenger encrypts the message under the first identity and
tries to decrypt it using the second identity. The authors show that weak robustness is implied by strong
robustness, and since strong robustness mirrors our notion of input consistency, it follows immediately that
weak robustness is also implied by input consistency notion when instantiated for IBE as above.

A related kind of work is the task of generalizing the traditional notions of robustness, which roughly
captures that decryption with a secret key that is generated in some system A must indicate a failure when
presented with a ciphertext that was generated using (different) parameters of some system B. These notions
have been extended (also to FE) [FLPQ13,GNR19], but none of them looks at the much harder problem,
namely to ensure that decrypted values (for example within one system), make sense relatively to each other,
especially in FE, which we tackle in this work.

Relation to verifiable FE. Prior to our work, there was only one previous and very insightful work [BGJS16]
which identified some of the above deficiencies and, to address them, put forth a cryptographic primitive which
is substantially stronger than FE, called verifiable functional encryption (VFE) (and the compiler presented
in [BGJS16] has recently been instantiated using pairing-based NIWIs and a perfectly correct functional
encryption scheme for predicates over inner-products [SIR+20]). VFE extends the normal FE syntax by two
additional predicates to check validity of keys and ciphertexts, respectively. As already mentioned above,
VFE implies strong input-consistent FE but interestingly the reverse is not necessarily true as VFE requires
the public verifiability of ciphertext and functional key well-formedness whereas for strong input consistency
a private-key based test, for instance, would suffice.

Furthermore, VFE (as well as strong input-consistent FE) does not imply setup consistency, since it merely
guarantees that an encryption c of plaintext x would consistently decrypt to something but not necessarily to
functions of x that an honest sender has encrypted (i.e., the setting where genuinely generated ciphertexts
may be mangled due to a subverted setup). This, however, seems rather crucial, as additional guarantees for
this setting where only Charlie is dishonest might be desirable in various settings (see Section 3).

Relation to distributed setup-generation. One can view setup consistency as focusing on the important question
of setup subversion resistance (again w.r.t. misclassification attacks for honestly generated ciphertexts in
FE). A very different approach, namely generating setup parameters or keys in a decentralized fashion as for
example in [LW11], requires changes in the syntax of FE as multiple parties need to participate. But even in
this setting, our setup consistency notion additionally gives guarantees if all the parties (or a number of parties
exceeding a certain critical threshold) involved in the MPC protocol are corrupted. The two approaches to
securing the setup and countering subversion are thus orthogonal by nature.

2 Preliminaries

General Notation. We denote, the security parameter with λ ∈ N and use 1λ as its unary representation.
We call a randomized algorithm A probabilistic polynomial time (PPT), if there exists a polynomial p(·) such
that for every input x the running time of A(x) is bounded by p(|x|). A function negl : N → R+ is called
negligible if for every positive polynomial p(λ) a λ0 ∈ N exists, such that for all λ > λ0 : ε(λ) < 1/p(λ). The
set {1, . . . , n} is denoted as [n] for n ∈ N. For the equality check of two elements, we use “=”. The assign
operator is denoted with “:=”, whereas randomized assignment is denoted with a← A, with a randomized
algorithm A and where the randomness is not explicit. If the randomness is explicit we write a := A(x; r)
where x is the input and r is the randomness. For algorithms A and B, we write AB(·)(x) to denote that A
gets x as an input and has oracle access to B, that is, the response for an oracle query q is B(q). We use

4

A(·)[[s]] to denote that A gets an additional input s which it can update. In more detail, A(x)[[s]] corresponds
to the algorithm that invokes (y, s)← A(x, s) and returns y.

We write e`i for the unit vector of length ` that is 1 at position i and 0 everywhere else. We omit the
length when it is clear from the context.

For the generation of prime-order groups, let GGen be a PPT algorithm that on input 1λ returns a
description G = (G, p, g) of a cyclic group G of order p for a λ-bit prime p, whose generator is g. We use the
implicit representation [x]g for group elements of the form gx with a generator g ∈ G. This notation is also
used in the case of matrices. In more detail, for a matrix A = (ai,j) ∈ Zn×mp , we define [A]g as the implicit
representation of A in G:

[A]g :=

 ga1,1 . . . ga1,m

ga1n,1 . . . gan,m

2.1 Functional Encryption

We now introduce the relevant notation for functional encryption.

Definition 2.1. We denote by F = {Fλ}λ∈N a family of sets Fλ of functions f : Xλ → Yλ. We call Fλ a
functionality class such that all functions f ∈ Fλ have the same domain and the same range. We omit λ
when it is clear from the context.

For notational convenience, we further define an extension for functions f ∈ F in order to develop a
formal language that simplifies expressing consistency failures later in this work. We introduce two additional
error symbols ⊥, � and formally include them in the domain or range of the functions as defined below. We
note that both symbols do not have any influence on the behavior of the function f . Rather, we require that
the symbol ⊥ maps to ⊥ and that symbol � has no preimage:

Definition 2.2 (Function Extension). Let f : X → Y be a function of the functionality class F , we
define a function f̃ : (X ∪ {⊥})→ (Y ∪ {⊥, �}), with ⊥, � /∈ X ,Y. The function f̃ has the following behavior:

f̃(x) =
{
f(x) if x ∈ X
⊥ if x = ⊥

and f̃−1(y) =

f−1(y) if y ∈ Y
{⊥} if y = ⊥
∅ if y = � .

For a (standard) functionality class F , the induced extended class is the set of function extensions of all
f ∈ F . When clear from the context, we do not introduce a new symbol for the extended class.

A functional encryption scheme is defined in the following way, where we follow the syntax of [BGJS16].

Definition 2.3 (Functional Encryption). Let F = {Fλ}λ∈N be a family of sets Fλ of functions f : Xλ →
Yλ such that Fλ contains a distinguished leakage function3 f0. A functional encryption scheme (FE) for the
functionality class Fλ is a tuple of four algorithms FE = (Setup,KeyGen,Enc,Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ and outputs the master public
key mpk and the master secret key msk.

KeyGen(mpk,msk, f): Takes as input the master public mpk, the master secret key msk and a function f ∈ Fλ,
and outputs a functional key skf . The key for the leakage function f0 is the empty string denoted by ε.

Enc(mpk, x): Takes as input the master public key mpk and a string x ∈ Xλ, and outputs a ciphertext ct or
err (to denote an encryption error).

3 The leakage function is a modelling technique adopted from [BSW11] that can, e.g., reveal information about the
plaintext length.

5

Dec(mpk, f, skf , ct): Takes as input a functional key skf and a ciphertext ct and outputs a function value
y ∈ Yλ or one of the special symbols of the function extension: ⊥ indicates an invalid ciphertext and �
invalid keys.

A scheme FE is correct, if (for all λ ∈ N), for all pairs (mpk,msk) in the support of Setup(1λ) all functions
f ∈ Fλ and input values x ∈ Xλ, it holds that

Pr [Dec(mpk, f,KeyGen(mpk,msk, f),Enc(mpk, x)) = f(x)] = 1.

For notational simplicity, we omit certain input values when they are not required by a concrete scheme
(such as the additional mpk or f when decrypting).

The security of functional encryption is formally captured by the CPA [BSW11], CCA2 [BBL17], as well
as CFE [MM15] (composable) security notions, that formalize, roughly speaking that an attacker does not
learn anything beyond what he can anyway decrypt given a set of functional keys he requested (and in the
case of CCA, even if an additional decryption oracle is available).

2.2 Security Definitions

Definition 2.4 (CPA & CCA Security of FE). Let FE = (Setup,KeyGen,Enc,Dec) be a functional en-
cryption scheme, F = {Fλ}λ∈N a function family and β ∈ {0, 1}. We define the experiments IND-CPAFE

β (1λ,A)
and IND-CCAFE

β (1λ,A) in Fig. 1. The associated advantage of an adversary A = (A1,A2) for XX ∈
{CPA,CCA} is defined by

AdvIND-XX
FE,A (λ) = |Pr[IND-XXFE

0 (1λ,A) = 1]− Pr[IND-XXFE
1 (1λ,A) = 1]|.

An adversary A is valid if for the two submitted challenges x0 and x1 and all keys skf the attacker obtained for
f via calls to KeyGen (and including the empty key for f0), it holds that f(x0) = f(x1). For CCA security, the
adversary A is additionally not allowed to query the decryption oracle QDec(f, ct) on the obtained challenge
ciphertext ct = Enc(mpk, xβ).

A functional encryption scheme FE is IND-XX secure, if for any valid PPT adversary A = (A1,A2),
there exists a negligible function negl, such that AdvIND-XX

FE,A (λ) ≤ negl(λ).

IND-CPAFE
β (1λ,A)

(mpk,msk)← Setup(1λ)

(x0, x1, st)← AKeyGen(mpk,msk,·)
1 (mpk)

ct← Enc(mpk, xβ)

α← AKeyGen(mpk,msk,·)
2 (mpk, ct, st)

Output: α

IND-CCAFE
β (1λ,A)

(mpk,msk)← Setup(1λ)

(x0, x1, st)← AKeyGen(mpk,msk,·),QDec(·,·)
1 (mpk)

ct← Enc(mpk, xβ)

α← AKeyGen(mpk,msk,·),QDec(·,·)
2 (mpk, ct, st)

Output: α

Fig. 1: IND-CPA and IND-CCA security for functional encryption. The decryption oracle QDec(f, ct) in the
CCA game first generates the secret key skf = KeyGen(mpk,msk, f) and outputs Dec(mpk, f, skf , ct) for the
query (f, ct).

Beside the game based security definitions, we also recap a simulation based definition, composable
functional encryption (CFE), introduced by Matt and Maurer in [MM15]. The notion of composable functional
encryption (CFE) security.

6

RealFE(1λ,A)

(mpk,msk)← Setup(1λ)
(`, τ)← (0, 0)
Repeat

`← `+ 1

x` ← AKeyGen(mpk,msk,·)
1 (mpk)[[τ]]

ct` ← Enc(mpk, x`)
t← A2(ct`)[[τ]]

Until t = true
Output: τ

IdealFE(1λ,A,S)

(mpk, s)← S1(1λ)
(`, τ)← (0, 0)
Repeat

`← `+ 1

x` ← A
O(·,x1,...,x`−1)[[s]]
1 (mpk)[[τ]]

(f1, . . . , fq)← queries by A1

ct` ← S3(f0(x`), . . . , fq(x`))[[s]]
t← A2(ct`)[[τ]]

Until t = true
Output: τ

Fig. 2: CFE security definition

Definition 2.5 (Composable Functional Encryption Security). Let FE be a functional encryption
scheme, F = {Fλ}λ∈N a function family, define the experiments RealFE(1λ,A) and IdealFE(1λ,A,S) with a
PPT adversary A = (A1,A2) and a PPT simulator S = (S1,S2,S3) respectively in Fig. 2, where the oracle
O is defined as

O(f, x1, . . . , x`−1)[[s]] := S2(f, f(x1), . . . , f(x`−2))[[s]] .

The advantage of the experiments is defined by:

AdvD,CFE
FE,A,S(λ) = |Pr[D(RealFE(1λ,A)) = 1]− Pr[D(IdealFE(1λ,A,S)) = 1| ,

where D is a PPT distinguisher.
A functional encryption scheme FE is CFE secure, if there exists a PPT simulator S, such that for

any PPT distinguisher D it holds that AdvD,CFE
FE,A,S(λ) ≤ negl(λ) for any PPT adversary A, where negl(·) is a

negligible function.

Remark 2.6 (On the leakage function). As already noted in [MM15], the leakage function is a modeling
artifact specific to the confidentiality definitions: the information captured by f0 models the general leakage
that might be possible to compute by an adversary by just observing an honestly generated ciphertext, for
example the length of the underlying plaintext (which some works put in place by default). Because this
information is not guaranteed to be computable f0 does actually not model a real function as opposed to
fi, i > 0. As we will see later, our consistency guarantees will only require that the guaranteed functions
fi, i > 0 yield consistent results.

2.3 Standard Tools and Assumptions

Now, we recap the definition of a matrix distribution and the Matrix-Diffie-Hellman assumption as introduced
in [EHK+13]. We begin with the definition for a matrix distribution.

Definition 2.7 (Matrix Distribution). Let `, k ∈ N with ` > k. We call D`,k a matrix distribution if it
outputs matrices in Z`×kp of full rank k in polynomial time. We define Dk := Dk+1,k.

We assume, wlog, that the first k rows of A ← Dk form an invertible matrix. The Dk-Matrix Diffie-
Hellman problem is to distinguish the two distributions ([A], [Aw]) and ([A], [u]) where A← Dk,w ← Zkp
and u← Zk+1

p .
Now, we state the Dk-Matrix Diffie-Hellman Assumption (Dk-MDDH).

7

Definition 2.8 (Dk-Matrix Diffie-Hellman Assumption (Dk-MDDH)). Let Dk be a matrix distri-
bution. The Dk-Matrix Diffie-Hellman (Dk-MDDH) assumption holds relative to GGen if for all PPT
adversaries A,

AdvDk-MDDH
GGen,A (λ) := Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1] ≤ negl(λ) ,

where the probability is taken over G = (G, p, g),A ← Dk,w ← Zkp,u ← Zk+1
p and the coin tosses of

adversary A.

2.4 Inner-product Functionality Classes

In this work, we consider two different types of inner-product functionalities as defined in [ACF+18]:
Inner Product over ZP . Let F = {FmPλ}λ∈N be a family (indexed by λ) of sets FmPλ , where Pλ is a modulus

of length λ. Omitting the index λ, the set FmP = {fy : ZmP → ZP , for y ∈ ZmP } where

fy(x) = 〈x,y〉 mod P

defines the inner-product operation over ZP .
Bounded-Norm Inner Product over Z. Let F = {Fm,Xλ,Yλ}λ∈N be a family (indexed by λ) of sets Fm,Xλ,Yλ .

Omitting the index λ, the set Fm,X,Y = {fy : ZmX → Z, with y ∈ ZmY }, where ZmX := {x ∈ Zm, with ‖x‖∞ < X},
ZmY := {y ∈ Zm, with ‖y‖∞ < Y } and fy(x) = 〈x,y〉 defines the bounded-norm inner-product over Z.

2.5 Non-interactive Proofs

Now, we recapture the definition of non-interactive zero knowledge (NIZK) proofs [GMW87,For87,BGG+90]
and non-interactive witness indistinguishable (NIWI) proofs [GOS06,BOV07,BP15].

Definition 2.9 (Non-Interactive Zero-Knowledge Proofs). Let R be an NP Relation and consider
the language L = {x | ∃w with (x,w) ∈ R} (where x is called a statement or instance). A non-interactive zero-
knowledge proof (NIZK) for the relation R is a triple of PPT algorithms NIZK = (NIZK.Setup,NIZK.Prove,
NIZK.Verify):

NIZK.Setup(1λ): Takes as input a security parameter λ and outputs the common reference string CRS.
NIZK.Prove(CRS, x, w): Takes as input the common reference string CRS, a statement x and a witness w,

and outputs a proof π.
NIZK.Verify(CRS, x, π): Takes as input the common reference string CRS, a statement x and a proof π, and

outputs 0 or 1.

A system NIZK is complete, if (for all λ ∈ N), for all CRS in the support of Setup(1λ) and all statement-witness
pairs in the relation (x,w) ∈ R, it holds that

Pr[NIZK.Verify(CRS, x,NIZK.Prove(CRS, x, w)) = 1] = 1.

Besides completeness, a NIZK system also fulfills the notion of soundness and zero-knowledge, which we
introduce in the following two definitions:

Definition 2.10 (Soundness). Given a proof system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) for a
relation R and the corresponding language L, we define the soundness advantage of an adversary A as the
probability:

AdvSound
NIZK,A(λ) := Pr[CRS← NIZK.Setup(1λ); (x, π)← A(CRS) : NIZK.Verify(CRS, x, π) = 1 ∧ x /∈ L].

A NIZK proof system is called perfectly sound if AdvSound
NIZK,A(λ) = 0 for all algorithms A, and computationally

sound, if AdvSound
NIZK,A(λ) ≤ negl(λ) for all PPT algorithms A.

8

ZKNIZK
0 (1λ,A,S)

CRS← NIZK.Setup(1λ)

α← ANIZK.Prove(CRS,·,·)(CRS)
Output: α

ZKNIZK
1 (1λ,A,S)

(CRS, τ)← S1(1λ)

α← AS
′(CRS,τ,·,·)(CRS)

Output: α

Fig. 3: Zero-knowledge property of a NIZK proof system.

Definition 2.11 (Zero-Knowledge). Let NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a NIZK proof
system for a relation R and the corresponding language L, S = (S1,S2) a pair of algorithms (the simulator),
with S ′(CRS, τ, x, w) = S2(CRS, τ, x) for (x,w) ∈ R, and S ′(CRS, τ, x, w) = failure for (x,w) /∈ R. For
β ∈ {0, 1}, we define the experiment ZKNIZK

β (1λ,A) in Fig. 3. The associated advantage of an adversary A is
defined as

AdvZK
NIZK,A,S(λ) := |Pr[ZKNIZK

0 (1λ,A,S) = 1]− Pr[ZKNIZK
1 (1λ,A,S) = 1]|.

A NIZK proof system NIZK is called perfect zero-knowledge, with respect to a simulator S = (S1,S2), if
AdvZK

NIZK,A,S(λ) = 0 for all algorithms A, and computationally zero-knowledge, if AdvZK
NIZK,A,S(λ) ≤ negl(λ)

for all PPT algorithms A.

Furthermore, we say that a NIZK is one-time simulation-sound [Sah99], if the following holds.

Definition 2.12 (one-time simulation-soundness). Given a proof system NIZK = (NIZK.Setup,NIZK.Prove,
NIZK.Verify) for an NP relation R with corresponding language L and a simulator S = (S1,S2), we define
the simulation-soundness advantage of an algorithm A by

AdvSim-Sound
NIZK,A,S (λ) := Pr[(CRS, τ)← S1(1λ); (x, π)← AS2(CRS,τ,·)(CRS) : (x, π) /∈ Q

and x /∈ L and NIZK.Verify(CRS, x, π) = 1] ,

where Q is the set of all (x′, π′), such that A queried x′ to its oracle and π′ is the matching response.
A NIZK proof system is called one-time simulation sound with respect to the simulator S = (S1,S2), if

AdvSim-Sound
NIZK,A,S (λ) ≤ negl(λ) for all PPT algorithms A that make at most one query to oracle S2.

Besides these pretty standard NIZK proof systems, we also employ (CRS free) non-interactive witness
indistinguishable proofs [GOS06,BOV07,BP15]

Definition 2.13 (Non-Interactive Witness-Indistinguishable Proofs). Let R be an NP Relation
and consider the language L = {x | ∃w with (x,w) ∈ R} (where x is called a statement or instance). A
non-interactive witness-indistinguishable proof (NIWI) for the relation R is a tuple of PPT algorithms
NIWI = (NIWI.Prove,NIWI.Verify):

NIWI.Prove(1λ, x, w): Takes as input the unary representation of the security parameter λ, a statement x and
a witness w, and outputs a proof π.

NIWI.Verify(1λ, x, π): Takes as input the unary representation of the security parameter λ, a statement x and
a proof π, and outputs 0 or 1.

A system NIWI is complete, if for all statement-witness pairs in the relation (x,w) ∈ R, it holds that

Pr[NIWI.Verify(1λ, x,NIWI.Prove(1λ, x, w)) = 1] = 1.

A NIWI proof system fulfills additional properties besides completeness, namely soundness and witness-
indistinguishability.

9

WINIWI
β (1λ,A) (for relation R)

(x,w1, w2, st)← A1(1λ)

π ← NIWI.Prove(1λ, x, wβ)
α← A2(π, st)
Output: α ∧ (x,w1) ∈ R ∧ (x,w2) ∈ R

Fig. 4: Witness-indistinguishability of a NIWI proof system. The output condition enforces the use of valid
instance witness pairs.

Definition 2.14 (Soundness). Let NIWI = (NIWI.Prove,NIWI.Verify) be a NIWI proof system for a relation
R and the corresponding language L. We define the advantage of an adversary A as the following probability:

AdvSound
NIWI,A(λ) := Pr[(x, π)← A(1λ) : NIWI.Verify(x, π) = 1 ∧ x /∈ L].

A NIWI proof system NIWI is called perfectly sound if AdvSound
NIWI,A(λ) = 0 for all algorithms A, and computa-

tionally sound, if AdvSound
NIWI,A(λ) ≤ negl(λ) for all PPT algorithms A.

Definition 2.15 (Witness-Indistinguishability). Let NIWI = (NIWI.Prove,NIWI.Verify) be a NIWI proof
system for a relation R and the corresponding language L. For β ∈ {0, 1}, we define the experiment
WINIWI

β (1λ,A) in Fig. 4. The associated advantage of an adversary A = (A1,A2) is defined as

AdvWI
NIWI,A,S(λ) := |Pr[WINIWI

0 (1λ,A) = 1]− Pr[WINIWI
1 (1λ,A) = 1]|.

A NIWI proof system is called witness-indistinguishable, if AdvWI
NIWI,A(λ) = 0 for all algorithms A = (A1,A2),

and computationally witness-indistinguishable, if AdvWI
NIWI,A(λ) ≤ negl(λ) for all PPT algorithms A = (A1,A2).

As already described in [BGJS16], the construction in [GOS06] relies on the decisional linear (DLIN)
assumption and provides perfectly sound non-interactive witness indistinguishability. In [BOV07], the authors
rely on a complexity theoretic assumption and also present (less efficient) perfectly sound proofs. For the
construction in [BP15], the authors rely on one-way permutations and indistinguishability obfuscation.

2.6 Verifiable Functional Encryption

Now, we recap the definition of verifiable functional encryption as stated in [BGJS16].

Definition 2.16 (Verifiable Functional Encryption). A verifiable functional encryption scheme VFE =
(Setup,KeyGen,Enc,Dec,VerifyCT,VerifySK) extends a functional encryption scheme FE = (Setup,KeyGen,Enc,
Dec) by two algorithms VerifyCT and VerifySK which have the following behavior:

VerifyCT(mpk, ct): Takes as input the master public key mpk and a ciphertext ct and outputs 1 if the ciphertext
ct was correctly generated using the master public key mpk for some message x.

VerifySK(mpk, f, sk): Takes as input the master public key mpk, a function f and a functional key sk and
outputs 1 if the functional key sk was correctly generated as a functional key for the function f .

Beside the correctness and security definition, a verifiable functional encryption scheme also needs to
fulfill verifiability:

Definition 2.17 (Verifiability). A verifiable functional encryption scheme VFE for F is verifiable if, for
all mpk ∈ {0, 1}∗, for all ct ∈ {0, 1}∗, there exists x ∈ X such that for all f ∈ F and sk ∈ {0, 1}∗, the
following implication holds:

10

If VerifyCT(mpk, ct) = 1 and VerifySK(mpk, f, sk) = 1

then

Pr[Dec(mpk, f, sk, ct) = f(x)] = 1

2.7 Universal Composability

The necessary preliminaries for the UC analysis can be found in Appendix C.

3 Consistency for Functional Encryption Schemes

In this section, we formally define the notion of consistency for functional encryption schemes. We first put
forth a systematic treatment of consistency where an entity in a system is considered potentially malicious.

Consistency with respect to various corruption sets. Recall that there are three distinct tasks in functional
encryption: parameter/key generation, encryption and decryption which, according to [MM15], yield three
corresponding entities in a system: the input provider, the setup/key manager, and the decryptor. Consistency
must be seen as a guarantee that an honest decryptor can rely on even in the presence of malicious other
entities. To compare, confidentiality (in the sense of CPA/CCA or CFE) is a guarantee that an honest input
provider relies on against a potentially dishonest decryptor (in the presence of honestly generated setup and
keys). We summarize these combinations in Table 1. We remark that aside from the informal justification
that the games represent what we intend to capture, we cross-check the games against a constructive and
composable model in Section 7 to show that our consistency notions are able to realize the intended idealized
UC-functionality for FE.

In the following sections, we introduce different consistency notions, where each notion corresponds to
a different corruption set of untrusted entities. The different types of consistency are: input consistency
(in-CONS), strong input consistency (st-in-CONS), and setup consistency (set-CONS).

Entities
Notions Input Provider Setup+Key Generator Decryptor
Correctness Honest Honest Honest
in-CONS Corrupted Honest Honest
set-CONS Honest Corrupted Honest
st-in-CONS Corrupted Corrupted Honest
Confidentiality Honest Honest Corrupted

Table 1: The different consistency notions and the corrupted entities

In the rest of this section, whenever we refer to a function f , or a functionality class F , we implicitly
mean the induced function extension as defined in Definition 2.2.

3.1 Consistency with a dishonest Input Provider

An input consistency attack entails the malicious generation of a ciphertext ct, and the honest generation
of several non-trivial functional keys skf1 , . . . , skfn that interpret the ciphertext ct in an inconsistent way.
Informally, we call a ciphertext inconsistent, if there exists no plaintext x that can explain the decryption of
the ciphertext ct under the different functional keys skf1 , . . . , skfn .

11

While consistency should express that a set of output values does have a common explanation, it is
desirable to additionally capture conditions under which this explanation is actually unique and determinable.
To be able to express this additional property that the scheme can have, the security game includes an
efficient algorithm, Extract, that given a ciphertext ct and a set of functional decryption keys (with their
corresponding functions) returns either unknown or a bit string x ∈ X : in the former case, the game formalizes
the basic consistency guarantees, and in the latter case, the game formalizes the stronger guarantee that the
value x must be part of the preimage and hence ct is committed to contain x.4 If, for some considerations,
extractability is not of importance, then we can simply set Extract := unknown and obtain the basic form of
consistency in the following security game.

Definition 3.1 (Prediacte QFλλ). Given a functionality class Fλ we denote by QFλλ a monotone5 predicate
on function sets P(Fλ)→ {0, 1}.

We are ready to formally state input-consistency:

in-CONSFE(1λ,A,Extract)

(msk,mpk)← Setup(1λ)

ct← AKeyGen(mpk,msk,·)(1λ,mpk)
Let F := {(skfi , fi)}i∈[n] be the set of key-function pairs obtained by A.

If n < 1 then output 0
x := Extract(mpk, ct, F)
yi := Dec(mpk, fi, skfi , ct), for all i ∈ [n]
If x 6= unknown

If
⋂
i∈[n] f

−1
i (yi) 6= {x}

Output 1
Output 0

If x = unknown
If
⋂
i∈[n] f

−1
i (yi) = ∅

Output 1
Output 0

Fig. 5: Input Consistency Definition.

Definition 3.2 (Input Consistency). Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption
scheme, then we define the experiment in-CONSFE in Fig. 5. The scheme FE satisfies input consistency (or is
in-CONS for short), if there exists an extract algorithm Extract with the format as specified above such that
for any polynomial-time adversary A, there exists a negligible function negl such that:

Pr[in-CONSFE(1λ,A,Extract)] ≤ negl(λ) .

In addition, we say that the algorithm Extract satisfies QFλλ -input-extractability, if for any PPT adversary A
in the experiment in-CONSFE(1λ,A,Extract), it holds that:

Pr[QFλλ ({fi | (·, fi) ∈ F}) = 1 =⇒ x 6= unknown] = 1,
4 The exact role of Extract will be important once we discuss consistency in simulation-based frameworks where a
simulator often needs to extract the plaintext from the ciphertext (having simulated the secret keys).

5 Meaning that if QFλλ (F) = 1 and F ⊆ F ′ then QFλλ (F ′) = 1.

12

where the probability is taken over the random coins of the adversary and the scheme, and where F and x are
defined by the experiment.

Discussion. It is worth mentioning how the game reflects (in-)consistency: After the adversary A has
obtained the functional keys skf1 , . . . , skfn for all the functions {f1, . . . , fn} it has asked to the key generation
oracle KeyGen(msk, ·), it outputs a ciphertext ct trying to win the game. The adversary has two chances to
do so: First, the challenger uses the generated functional keys together with the corresponding functions
{skfi , fi}i∈[n] and tries to extract a plaintext x, out of the ciphertext ct, by executing the Extract algorithm. If
this yields a valid message x, it checks if the functional behavior of this message is the same as the functional
behavior on the ciphertext. In more detail, the challenger checks if Dec(skfi , ct) = fi(x) for all i ∈ [n]. If this
check does not hold, the adversary has generated a malicious ciphertext that produces inconsistent output
values, i.e., outputs that are not explained by the extracted value x. In addition, if the scheme is to satisfy
Q-input-extractability, then not only such a value x must exist, but x must be determined by this point if the
set of functions queried by A satisfies Q.

Since not every set F of functions allows extraction, there is a second phase, where “plain consistency”
is checked: If the algorithm Extract does not return a value x, the challenger checks whether all produced
outputs of the decryption algorithm can have a common explanation: The challenger checks if there exists a
set of messages that explains the functional decryption behavior of ct under the different functional keys
{skfi}i∈[n]. Formally, it computes the intersection

⋂
i∈[n] f

−1
i (Dec(mpk, fi, skfi , ct)) and if it is empty, there is

no explanation for the decryption behavior of ct, which means that the adversary has caused an inconsistency
and wins the game. Note that the plain consistency check does not imply that ct is a commitment to a
particular value. Nevertheless, consistency can be evaluated.

Also note that the intersection is well defined but not always efficiently computable, for example when the
fi’s are one-way functions. Whether a restriction of the function class w.r.t. efficiently computable preimages
is necessary depends on the bigger construction in which the FE scheme is employed—and in particular
on their reduction proof.6 On the other hand, when used as an assumption in a proof, then the efficiency
restriction is a simple way to make the assumption falsifiable [Nao03]. We make use of such a restriction for
our UC proof in Section 7.

It is furthermore interesting to see how the special symbols ⊥ and � obtain the intended semantic by this
game: If one of the decryption algorithm invocation outputs � at any time in the game, the adversary wins
because the preimage of � under every function is the emptyset, i.e. f−1(�) = ∅ (see Definition 2.2), which
results in an overall empty intersection; in particular there exists no x in the message space x ∈ X ∪{⊥} such
that f(x) = � due to the definition of the function extension (Definition 2.2), which makes the adversary win
the game. This captures that when the public parameters and the functional keys are honestly generated, then
the decryption algorithm is not allowed to output � (recall that the symbol is used to indicate an incorrect
key).

Analogously, if one of the decryption algorithm invocations outputs ⊥ and another decryption algorithm
invocation ouputs a value yi 6= ⊥ then the adversary wins the game, as the intersection must be empty since
the preimage of ⊥ is ⊥ which is not equal to the preimage of yi (Definition 2.2). This captures that the
corresponding ciphertext cannot be honestly generated, due to the disagreement of the keys on the validity of
the ciphertext.

Remark 3.3 (On the leakage function). As noted earlier, we deliberately ignore the leakage function f0 when
defining consistency requirements, since we perceive f0, as already noted in [MM15], as a modeling artifact
specific to the confidentiality definitions that we do not need to port to our new definition: the information
captured by f0 models the general leakage that might be possible to compute by an adversary by just
observing an honestly generated ciphertext. However, it seems unreasonable to assume that this must be
guaranteed to be computable. For instance, in the case of standard encryption schemes, computing the length
of the plaintext is not guaranteed by the scheme, but the definition does formally not require that this
6 Note that similar thoughts apply, e.g., to extractor games in interactive zero-knowledge proofs where the experiment
need not be bounded by a polynomial.

13

st-in-CONSFE(1λ,A,Extract)

(mpk, ct1, ct2, {(skj , fj)}j∈[n])← A(1λ) (Assume skj 6= ε)

yi,j := Dec(mpk, fj , skj , cti), for all j ∈ [n], i ∈ {1, 2}
Let F := {(skj , fj)}j∈[n]∧(y1,j 6=�∨y2,j 6=�)

If F is empty then output 0
xi := Extract(mpk, cti, F), for all i ∈ {1, 2}
For each i ∈ {1, 2} do:

If xi 6= unknown
If
⋂
j∈[n],(·,fj)∈F f

−1
j (yi,j) 6= {xi}

Output 1
Output 0

If xi = unknown
If
⋂
j∈[n],(·,fj)∈F f

−1
j (yi,j) = ∅

Output 1
Output 0

Output 0

Fig. 6: Strong Input Consistency Definition.

information must be hidden. The distinction will appear more clearly in the UC treatment of consistency,
where f0 is just treated as leakage to the adversary.

3.2 Consistency with a dishonest Input Provider and Key Generator

We turn our attention to a stronger coalition against an honest decryptor, which is the setting in which
both, the input provider and the parameter/key generation entities are dishonest. The capabilities of an
attacker entail the malicious generation of the master public key mpk, ciphertexts cti and a set of functional
keys {skfi}i∈[n]. The attacker’s goal is that the latter keys interpret the ciphertexts cti in an inconsistent
way. As, with input consistency, an adversary breaks consistency, if there exists no plaintext x, for at least
one of the challenge ciphertexts, that can explain the decryption of some ciphertext ct under the different
functional keys skf1 , . . . , skfn . Similar to input consistency, we capture the fact that the ciphertext might be
committing given a specific set of keys, and again introduce an algorithm Extract in the security to capture
this if needed.7 More formally:

Definition 3.4 (Strong Input-Consistency). Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryp-
tion scheme, then we define the experiment st-in-CONSFE in Fig. 6. The scheme FE satisfies strong input
consistency (or is st-in-CONS for short), if there exists an extract algorithm Extract with the format as
specified above, such that for any polynomial-time adversary A, there exists a negligible function negl such
that:

Pr[st-in-CONSFE(1λ,A,Extract)] ≤ negl(λ) .

In addition, we say that the algorithm Extract satisfies strong QFλλ -extractability, if for any PPT adversary
A in the experiment st-in-CONSFE(1λ,A,Extract), it holds that:

Pr[QFλλ ({fj | (·, fj) ∈ F}) = 1 =⇒ xi 6= unknown] = 1,
7 As for input-consistency, setting Extract := unknown in the experiment is an option to simply capture plain
consistency in this setting.

14

where the probability is taken over the random coins of the adversary and the scheme, and where F and xi
are defined by the experiment.

Discussion. The consistency experiment above is motivated by augmenting the attack capabilities of the
previous one. Here, the adversary can output a master public key mpk, ciphertexts {cti}i∈[2] and a set of
functional keys {skj , fj}j∈[n] (again, note that we do not give any guarantees for f0 and the empty key).

Compared to the weaker form in the previous section, however, not all keys will be deemed valid, and
hence the set F is defined as the set of those key-function pairs (skj , fj) that, for at least one ciphertext cti
yield a decryption yi,j 6= �. Only keys in F can provoke a consistency breach. This thereby again assigns
the intended meaning that obtaining � indicates that the decryption algorithm deems a key invalid (and
therefore, as we detail below, does only provoke an inconsistency if not all decryptions w.r.t. this key yield �).

Using F , the challenger again tries to extract a preimage xi for each ciphertext cti and the consistency
checks proceed similar to input-consistency: If xi was recovered, the game checks if the decryption of the
ciphertext cti under the different functional keys {skfj}j∈[n] is the same as the function applied on xi, i.e.
Dec(skfj , cti) = fj(xi) for all (skj , fj) ∈ F (expressed using the intersection-notation). If this is not the case,
the adversary has generated a ciphertext, for which the behavior under the different functional keys cannot
be explained and hence would win the game.

If an xi was not recovered, the existence of a common explanation is checked, i.e. whether there exists a
message in the intersection of the preimages under the different functions {fj}j∈[n],(·,fj)∈F . If the intersection
is empty, the adversary has generated a ciphertext cti with a decryption behavior that cannot be explained.

Again, the symbols � and ⊥ deserve a special observation. As before, if a key yields consistently the
“decryption” �, this key is detected as invalid; otherwise, if for some ciphertext cti we have that exactly one
decryption yi,j 6= �, the performed intersection check must yield the empty set by Definition 2.2. In other
words, this behavior captures our intention that a key’s validity cannot vary depending on what is decrypted,
as the decryptor in one case beliefs it is holding a valid key for the function f .

On the other hand, if a ciphertext is deemed invalid, i.e., yi,j = ⊥, then all functions in F must consistently
declare this ciphertext as invalid, as otherwise, the intersection will again be empty by the definition of
symbol ⊥ in Definition 2.2. Furthermore, if Extract returns a value, it must be ⊥ as well.

Finally, we note again that if a set of functions is strongly Q-extractable8 for some predicate Q, then this
means that given the set of valid functional keys and a ciphertext that the ciphertext is committing to a
specific value xi ∈ X ∪ {⊥}.

3.3 Consistency with a dishonest Parameter/Key Generator

We move on to a very interesting “intermediate” scenario, and define consistency in the case of an untrustworthy
parameter/key generator. This form is called setup-consistency. At first sight it seems as if this notion is
already covered by the previous sections but, surprisingly, it is not. Setup consistency captures the important
case where an authority might tamper with the system’s parameters and hence this notion captures retaining
consistent in the presence of subversion attacks. We formalize consistency attacks (i.e., the capabilities of an
adversary) by letting the adversary define inputs (out of which honest ciphertexts are generated), and where
the master public key mpk and a functional key sk are produced entirely by the attacker. Note that we allow
the attacker to specify two master public-keys (one for the input provider and one for the decryptor)9. An
attack breaks consistency, if the functional key sk together with the function f yields inconsistent output
values with respect to the ciphertexts, i.e. the decryption of the ciphertexts under the functional key sk
reveals a mismatch with respect to the input values and the declared function f (unless sk is identified as
bogus). In more detail, we define the following:

8 We just write Q-extractable because it is usually clear from the context.
9 Thanks to our UC treatment, we also see the need for this: if there is only one master public-key in the game, then
this would imply that one assumes a broadcast channel between the dishonest setup generator and the honest input
provider and decryptor.

15

set-CONSFE(1λ,A)

(mpk1,mpk2, sk, f, x1, x2)← A(1λ) (Assume xi ∈ X and sk 6= ε)
cti ← Enc(mpk1, xi), for all i ∈ {1, 2}
I := {i | i ∈ {1, 2} ∧ cti 6= err} (|I| 6= 1 for universal encryption property)
yi := Dec(mpk2, f, sk, cti) for all i ∈ I
If yi 6= � for some i ∈ I
If yi 6= f(xi) for some i ∈ I
Output 1

Output 0

Fig. 7: Setup Consistency Definition.

Definition 3.5 (Setup Consistency). Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption
scheme, then we define the experiment set-CONSFE in Fig. 7. The scheme FE satisfies setup consistency (or
set-CONS for short), if for any polynomial-time adversary A, there exists a negligible function negl such that:

Pr[set-CONSFE(1λ,A)] ≤ negl(λ) .

In addition, we say that the scheme satisfies the universal encryption property, if in the above experiment,
|I| ∈ {0, 2} with overwhelming probability (where the probability is taken over the random coins of the
adversary and the scheme and I is defined by the game).

Discussion. It is again instructive to see the nature of consistency attacks that an adversary can mount against
a scheme. After the adversary A outputted two master public keys mpk1 and mpk2, a functional key sk, a
function f and two chosen messages x1 and x2, the challenger encrypts the messages under mpk1 to generate
cti = Enc(mpk1, xi). Now, we are interested in the functional behavior of all valid encryptions that the input
provider produces (i.e., that do not return an err symbol upon encryption because of a bogus mpk1). At this
point, a stronger property that we term universal encryption could be desirable for applications. Namely, to
require that either both encryptions are valid or none is. If the property does not hold, a maliciously generated
mpk1 may only allow for the encryption of a subset of the plaintext space, which might be problematic in
some applications. Similar to the extractability property before, this property should be considered as an
add-on if needed, but not as lying at the core of a consistency definition. For example, such an all-or-nothing
encryption property can be obtained whenever an efficiently computable membership-test for the support of
Setup is available for an FE scheme with perfect correctness.

Let us, for concreteness, discuss the case where both encryptions are valid: if both decryption invocations
under sk return the special symbol � then the adversary does not win the game (in this case, the key is
deemed bogus). However, if only one of the two outputs � the adversary immediately wins the game (as
there can be no value xi in the domain that yields f(xi) = � (see Definition 2.2)). Recall that this behavior
captures our intention that a key’s validity cannot vary depending on what is decrypted, as the decryptor in
one case beliefs it is holding a valid key for the function f . Now, we consider the case where both decryption
attempts yield values yi 6= �. In this case, to fulfill consistency, both of these values must satisfy f(xi) = yi,
otherwise the attacker has broken consistency. If the decryption procedure would output yi = ⊥ a security
breach happens. In more detail, considering that honestly generated ciphertexts are committed to a real
message (otherwise the decryption must be considered as inconsistent), the adversary wins the game. The
reason that the adversary wins in this case follows by Definition 2.2 since no message xi 6= ⊥ maps to ⊥.

Strong robustness against subversion. Looking ahead to Section 7 where we present the justification of the
game by showing that they admit the realization of a natural ideal repository with access control, we see that
in fact, we must insist that the inputs provided by Alice do functionally match the values that Bob decrypts.

16

IND-CPA

IND-CCA in-CONS

IND-CPA &
st-in-CONS

st-in-CONS

CFE set-CONS

\

\

\

\

\

\

\

\

\

\

Fig. 8: Relations between consistency and confidentiality, where the crossed arrows indicate “does not imply”
and “&” denotes both properties simultaneously.

Otherwise, the guarantee for honest parties in this setting with subversion of parameters would be too weak,
as it would merely enforce consistent decryption—but potentially with respect to a common preimage x′
never intended by Alice! This is a form of robustness not implied by strong input consistency or verifiable
functional encryption [BGJS16]. This shows that a separate notion for the case of subverted setup, namely
setup-consistency, is indeed desirable to formalize.

4 Relations (in)between Consistency and Confidentiality

In this section, we formally examine the relationship among the consistency notions and between security
and consistency. The main result is depicted in Fig. 8 and shows that consistency is a property independent
of the known confidentiality properties. Namely, we prove that Consistency does not imply Confidentiality
in Section 4.2, that Confidentiality does not imply consistency in Section 4.3 and that Consistency does not
imply a confidentiality lifting in Section 4.4.

If not otherwise quantified, we denote by F a functionality class, the members of F by fi, and refer to
the number of functions (not counting the distinguished leakage function f0) as the size s of the functionality
class.

4.1 Relations among the Consistency Notions

Let us first summarize the relations between the notions which can all be seen by simple arguments: strong
input consistency implies input consistency since the attack model of input consistency is a strict subset of
strong input consistency. Furthermore, since the schemes we present in Section 5 are input consistent but
neither strong input consistent nor setup consistent. The only remaining non-implications are that strong
input consistency does not imply setup consistency and that setup consistency does not imply strong or
normal input consistency. Formally, both are easy to see: one can always take an input or strong-input
consistent scheme and introduce a special master public key mpk′ (that has probability zero of being generated
by setup) which takes all messages to special ciphertext c̄t that decrypts to ⊥. Such a scheme is obviously
not setup consistent but remains consistent because ct decrypts consistently. Along the same lines, one can
introduce a new special ciphertext c̄t in a setup consistent scheme, that decrypts to inconsistent outputs but
clearly has probability 0 to be output by the encryption algorithm. This scheme remains setup consistent but
is clearly not input consistent.

4.2 Consistency does not imply Confidentiality

To show that consistency does not imply confidentiality, we aim to construct a scheme that satisfies st-in-CONS
but is not IND-CPA secure. The scheme is described in Fig. 9. It is easy to see that the scheme described
in Fig. 9 does not provide any confidentiality guarantee since the ciphertext reveals the input message. We
prove the consistency of the scheme more formally:

17

Theorem 4.1 (Strong input consistency). The functional encryption scheme FE = (Setup,KeyGen,Enc,
Dec) described in Fig. 9 is strongly input consistent for any functionality class F = {Fλ}λ∈N. Namely, there
exists an algorithm Extract such that for any PPT adversary A, it holds that:

Pr[st-in-CONSFE(1λ,A,Extract)] ≤ negl(λ) .

Setup(1λ) :

Return (mpk,msk)← {0, 1}λ × {0, 1}λ

KeyGen(msk, f) :

Return skf = f

Enc(mpk, x) :

Return ct = x

Dec(mpk, f, skf , ct) :

Parse ct = x

If x /∈ Xλ
Return ⊥

If skf 6= f ∨ f /∈ Fλ
Return �

Return f(x)

Fig. 9: A strongly input consistent FE scheme which is not IND-CPA secure.

Proof. The extract-algorithm in this case can simply return the first argument, as encryption is the identity
function on bitstrings (in this sense, the scheme even fulfills Q-extractability for any Q).

Now, we analyze strong input consistency. After the challenger has received a ciphertext ct and some
functional keys {skfi , fi}i∈[n] from A, it executes the extract algorithm Extract(ct, {fi}i∈[n]) and obtains
ct = x by definition of the encryption algorithm. The challenger then checks if Dec(mpk, f, skfi , ct) 6= fi(x) for
at least one i ∈ [n]. However, due to the definition of the key generation algorithm, (i.e. KeyGen(msk, f) = f),
it holds that Dec(mpk, f, skfi , ct) = fi(x) for all i ∈ [n] and the scheme must be consistent. ut

The scheme is trivially setup consistent since the encryptor ignores any setup values and Bob just evaluates
the plain functions. Finally, input consistency follows, since it is implied by strong input consistency.

4.3 Confidentiality does not imply Consistency

Next, we prove that the strongest confidentiality notions in use, i.e., IND-CCA and CFE, do not imply
consistency with respect to dishonest input provider or parameter generator.

The IND-CCA case. At first glance, the notions of IND-CCA security and input consistency seem to be
related. In both games, the scheme must tame the adversaries capabilities of generating malicious ciphertexts.
We show however that there is no connection between IND-CCA security and input or setup consistency, by
presenting a scheme that is IND-CCA secure, but not input or setup consistent. The scheme is described in
Fig. 10, it is based on the brute-force construction of [BSW11, Section 4].

18

Setup(1λ) :

For i = 1, . . . , s run (pki, ski)← PK.Setup(1λ)
(mpk,msk) = ({pki}i∈[s], {ski}i∈[s])

KeyGen(msk, fi) :

Parse msk = {ski}i∈[s]

Return skfi = ski
Enc(mpk, x) :

Parse mpk = {pki}i∈[s]

Compute cti = PK.Enc(pki, fi(x)),∀i ∈ [s]
Return ct = (cti)i∈[s]

Dec(mpk, skfi , fi, ct) :

Parse mpk = {pki}i∈[s], skfi = ski, ct := (cti)i∈[s]

Return y := PK.Dec(ski, cti)

Fig. 10: An IND-CCA secure, but not consistent functional encryption scheme.

Game ct justification/remark

G0 Enc(mpk, fi(x0)), for all i ∈ [s] G0 = G0.0

G0.k
Enc(mpk, fi(x1)), for all i ≤ k

Enc(mpk, fi(x0)), for all i > k
IND-CCA of PKE

G1 Enc(mpk, fi(x1)), for all i ∈ [s] G1 = G0.s

Fig. 11: Overview of the games to prove the IND-CCA security of the functional encryption scheme described
in Fig. 10.

Theorem 4.2. Let PKE = (PK.Setup,PK.Enc,PK.Dec) be an IND-CCA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) in Fig. 10 is IND-CCA secure for any
functionality class F of polynomial size s (in the security parameter). Namely, for any PPT adversary A,
there exists a PPT adversary B such that

AdvIND-CCA
FE,A (λ) ≤ s · AdvIND-CCA

PKE,B (λ) .

Proof. To prove this statement, we use a hybrid argument over the games G0, . . . ,Gs as defined in Fig. 11.
Note that G0 corresponds to the game IND-CCAFE

0 and game Gs to the game IND-CCAFE
1 . By using the

triangle inequality, we get:

AdvIND-CCA
FE′,A (λ) ≤

s∑
k=1
|WinG0.k−1

A −WinG0.k
A | .

We conclude the proof by showing that for any k ∈ [s], there exists an adversary Bk such that:

|WinG0.k−1
A −WinG0.k

A | ≤ AdvIND-CCA
PKE,Bk (λ) .

The adversary B of the statement is then defined as the monolithic adversary that first samples k ← [s]
uniformly at random and then runs the code of Bk.

We build an adversary Bk that simulates G0.k−1+β toA, when interacting with the underlying IND-CCAPKE
β

experiment.

19

In the first step of the reduction, the adversary Bk receives the public key pk from the experiment. It sets
pkk = pk and generates public key instances (pki, ski)← PK.Setup(1λ) for all i ∈ [s] \ {k}, defines the master
public key as mpk := {pki}i∈[s] and sends it to A.

Whenever A asks for a functional key skfi , with i ∈ [s] \ {k}, Bk outputs ski to A. If A asks for the
functional key skfk the adversary Bk outputs a random value α← {0, 1} as its guess. Note that by definition,
A is in this case restricted to submit identical challenge messages w.r.t. the public key pk for which case the
behavior of G0.k−1 and G0.k are identical (and thus independent of β).

When A submits its challenge messages (x0, x1), the adversary Bk computes cti = PK.Enc(pki, fi(x1)) for
all i < k and cti = PK.Enc(pki, fi(x0)) for all i > k. To generate the ciphertext ctk, Bk creates the challenge
(fk(x0), fk(x1)) and submits it as its own challenge. Bk receives ctk = PK.Enc(pkk, fk(xβ)) as an answer and
creates the ciphertext ct := (cti)i∈[s], which it sends to A.

If A queries the decryption oracle QDec(fi, ct) with i ∈ [s] \ {k}, Bk computes fi(x) = PK.Dec(ski, ct)
and sends fi(x) to A. In the case A queries QDec(fk, ct), Bk forwards ct to its own decryption oracle and
sends the reply to A.

In the last step, the adversary Bk outputs the same bit β′ returned by A. Since Bk perfectly emulates
G0.k−1+β to A as long as the public key pkk is not asked, and since for the latter exception case, the advantage
of A is zero, Bk’s distinguishing advantage in the CCA game is at least the advantage of A distinguishing
systems G0.k−1+β , for β ∈ {0, 1}. ut

After showing the IND-CCA security of the scheme, we describe a successful attacker for the input
consistency game.

Theorem 4.3. Let PKE = (PK.Setup,PK.Enc,PK.Dec) be an IND-CCA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) in Fig. 10 is not input consistent for a
concrete functionality class F of size s = 2 (as described in the proof). Namely, for any algorithm Extract,
there exists a PPT adversary A such that

Pr[in-CONSFE(1λ,A,Extract) = 1] = 1 .

Proof. We consider a functionality class that contains two functions (s = 2), i.e. F = {f1, f2}, with
f1 : Xλ → {0, 1} and f2(x) := f1(x), where denotes the bit complement. The adversary A generates a
ciphertext ct = (ct1, ct2) = (Enc(pk1, 0),Enc(pk2, 0)), asks the KeyGen oracle for the two secret keys and
sends (ct, f1, f2) to the challenger.

We observe that independent of the output of Extract(ct, {ski, fi}i∈{1,2}), both decryptions will yield
yi = 0 as an output. Therefore, we have obtain in any case f−1

1 (0) ∩ f−1
2 (0) = f−1

1 (0) ∩ f−1
1 (0) = ∅, which

contradicts the input-consistency requirement. ut

The scheme described in Fig. 10 is also not setup consistent.

Theorem 4.4. Let PKE = (PK.Setup,PK.Enc,PK.Dec) be an IND-CCA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) in Fig. 10 is not setup consistent for a
concrete function class F of size s = 2 (as described in the proof). Namely, there exists a PPT adversary A
such that

Pr[set-CONSFE(1λ,A) = 1] = 1 .

Proof. Similarly to the proof of input consistency, we consider a functionality class that contains two functions
(s = 2), i.e. F = {f1, f2}, with f1 : Xλ → {0, 1} and f2(x) := f1(x). The adversary A executes the setup
algorithm Setup(1λ) to receive (mpk,msk) and generates a functional key skf1 ← KeyGen(msk, f1). It chooses
a message x← Xλ and sends (mpk1,mpk2, skf1 , f2, x, x) to the challenger, which uses mpk and x to compute
ct← Enc(mpk, x). In the next step, the challenger computes Dec(skf1 , f2, ct) = f1(x) (note that the scheme
by design does not aim at verifying skf1 vs. f2) but then then verification tests whether f1(x) = f2(x). This
check is always false, due to the definition of f2 (f2(x) = f1(x) 6= f2(x),∀x ∈ Xλ), and gives us the consistency
attack. ut

20

The CFE case. The analysis presented in the last section can be adapted to the case of CFE security. More
precisely, we show that CFE security does not imply consistency, by presenting a scheme that is CFE secure
but not consistent. The scheme is presented in Fig. 12, it is the CFE secure version of the brute force scheme
as introduced in [BSW11, Section 5] and further analyzed in [MM15].

Theorem 4.5. Let PKE = (PK.Setup,PK.Enc,PK.Dec) be an IND-CPA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) in Fig. 12 is CFE secure in the random
oracle model for H for any functionality class F of polynomial size s (in the security parameter). Namely, for
any PPT adversary A there is a PPT simulator S such that

AdvCFE
FE,A,S(λ) ≤ negl(λ) .

Proof. We refer to [MM15] for a security proof of the construction. ut

We show that this scheme does not imply input consistency.

Theorem 4.6. Let PKE = (PK.Setup,PK.Enc,PK.Dec) be an IND-CPA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) in Fig. 12 is not input consistent for a
concrete functionality class of size s = 2. Namely, for any algorithm Extract, there exists a PPT adversary A
such that

Pr[in-CONSFE(1λ,A,Extract) = 1] = 1 .

Proof. The attack described in the proof of Theorem 4.3 also applies here, since, for skfi , the scheme in Fig. 12
still performs a simple decryption at position i and hence will produce inconsistent outputs. ut

The scheme described in Fig. 12 is also not setup consistent.

Theorem 4.7. Let PKE = (PK.Setup,PK.Enc,PK.Dec) be an IND-CPA secure public-key encryption scheme,
then the functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) in Fig. 12 is not setup consistent for a
concrete functionality class of size s = 2. Namely, there exists a PPT adversary A such that

Pr[set-CONSFE(1λ,A) = 1] = 1 .

Proof. The attack described in the proof of Theorem 4.3 still applies here, since the scheme in Fig. 12 does
not verify the claim on the function to be decrypted (and simply takes the matching dimension). ut

4.4 Consistency does not amplify Confidentiality

To conclude the relationship graph in Fig. 8, we analyze if consistency allows to lift security, i.e., whether
consistency coupled with IND-CPA would directly yield (any of the) IND-CCA or CFE security notions.
Both of these results are answered in the negative in this section by showing that in general, malleability and
consistency are not contradicting requirements as can bee seen by existing ordinary PKE schemes (cast as
special cases of FE).

We provide an explicit proof of this insight for strong input consistency. For concreteness, let R be an
(efficiently computable) map on the plaintext space and let maulRFE be (an efficiently computable) map such
that for all plaintexts x and public parameters mpk in the range of Setup, and for any fixed randomness
r, maulFE(Enc(mpk, x; r),mpk) = Enc(mpk, R(x); r′) for some randomness string r′. We call the map R
separating for a function f ∈ F (or f -separating for short), if the composed map f ◦R : X → Y is an injective
map.

Theorem 4.8. If a functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) for a functionality class F
admits an efficiently computable map maulRFE for a plaintext map R that is f -separating (as defined above) for
a given f ∈ F then the scheme cannot be CCA-secure. Furthermore, such CPA-secure schemes and concrete
functionality classes exist in the standard model (under computational assumptions) which satisfy strong
input consistency but are neither CFE-secure nor CCA-secure.

21

Setup(1λ) :

For i = 1, . . . , s run (pki, ski)← PK.Setup(1λ)
(mpk,msk) = ({pki}i∈[s], {ski}i∈[s])

KeyGen(msk, fi) :

Return skfi = ski
Enc(mpk, x) :

Parse mpk = {pki}i∈[n]

Sampel ri ← Yλ, for all i ∈ [s]
Compute cti = (Enc(mpk, ri),H(ri)⊕ fi(x)), ∀i ∈ [s]
Return ct = (cti)i∈[s]

Dec(skfi , fi, (cti)i∈[s]) :

Parse cti = (cti,1, cti,2)
Compute ri = PK.Dec(skfi , cti,1)
Return y := H(ri)⊕ cti,2

Fig. 12: A CFE secure but inconsistent functional encryption scheme.

Proof. To prove the first part we construct a generic attack given the assumptions on R: the adversary does
never invoke its oracle KeyGen, picks two challenges x0 6= x1 of the same length and obtains the challenge
ciphertext ctβ as the encryption of mβ . The adversary can now query the decryption oracle for function f
on maulRFE(ctβ ,mpk) to obtain the function value y′β (by the perfect correctness of the scheme). Since R is
f -separating, y′β = f(R(xβ)) 6= f(R(x1−β)) and thus β can be guessed perfectly.

To prove the second part of the scheme we cast the El Gamal encryption scheme as an FE scheme with
function class F = {id, f0} which is therefore CPA-secure under DDH [BSW11]: Let G = 〈g〉 be a prime-order
group (for a prime 2λ−1 < q < 2λ) with generator g. More concretely, we let (mpk,msk) ← (ga, a) for a
random exponent a; an encryption of x is defined as (gr, grax) for a random exponent r; and finally, define
Dec(mpk, skid = msk = a, ct′ = (ct′0, ct′1)) to return � if ga 6= mpk, and otherwise to return x′ ← ct1 · (ct′0)−a.
The scheme satisfies strong input consistency, since given the ciphertext and the public-private key-pair
(ga, a), the underlying message is committed to. Furthermore, the scheme is malleable and the mapping
R : x 7→ c · x for a constant c is an injective mapping which is separating the identity function id ∈ F . We
conclude the proof of the second part of the theorem by observing that CFE security for this scheme is
impossible by the impossibility result given in [MM15, Theorem 5.1]. ut

5 Consistency Analysis of Selected Functional Encryption Schemes

In this section, we analyze the single-input functional encryption schemes for the inner product functionality
based on the MDDH assumption regarding input consistency. These schemes have been initially introduced
for the DDH assumption in [ALS16] and extended to the MDDH assumption in [AGRW17]. This analysis
contains of two parts: The analysis for the bounded-norm functionality class Fm,X,Y and the functionality
class Fmp over Zmp .

We observe that some schemes for the inner product functionality seem to be input consistent, but without
specific modifications they are not. Therefore, we analyze these schemes and the corresponding modifications
for input consistency in this section. For both of the mentioned functionality classes we obtain negative
results, i.e. the analyzed scheme is neither input consistent for the functionality class of bounded-norm inner
products nor for the inner products calculated over Zmp . To prove this, we present an attack for both cases.

Beside this, we introduce a natural modification of the above functionality class and denote it by FmP,L. It
turns out, that when instantiating the MDDH scheme of Fig. 13 with the modified inner product functionality

22

Setup(1λ) :

G := (G, p, g)← GGen(1λ),

A← Dk,W← Zm×(k+1)
p

mpk := (G, [A]g, [WA]g),msk := W
Return (mpk,msk)

Enc(mpk, x ∈ ZmX x ∈ Zmp) :

r ← Zkp,
(

c0
c1

)
:=
(
−Ar

x + WAr

)
Return ct := [(c0

c1)]g ∈ Gk+m+1

KeyGen(mpk,msk, y ∈ ZmY y ∈ Zmp) :

Return sky := W>y ∈ Zk+m+1
p

Dec(mpk,y, sky, ct) :

Parse ct := [(c0
c1)]g

C :=
[
c>1 y + c>0 sky

]
g

Return C

Return log(C)

Fig. 13: FE for the class Fm,X,Y , Fmp , Fmp,L and the predicate class Pmp based on the Dk-MDDH

assumption.

class that the resulting scheme is an input consistent functional encryption scheme. This is formally defined
and proven in Section 5.2.

In addition to this, we present a modification of the inner-product scheme described in Fig. 13, which
covers a more restricted functionality class, Pmp . This scheme again, is input consistent.

The standard tools and assumptions for this section can be found in Section 2.3.

5.1 Inconsistency of the Plain Schemes

We state the following theorem regarding the input consistency of the inner-product functional encryption
scheme described in Fig. 13.

Theorem 5.1. The functional encryption scheme FE described in Fig. 13 for the functionality class Fm,X,Y

and Fmp , with p prime, is not input consistent. Namely, for any algorithm Extract, there exists a PPT
adversary A such that

Pr[in-CONSFE(1λ,A,Extract) = 1] = 1 .

We prove Theorem 5.1 by separating it into two Lemmas. First, in Lemma 5.2, we show that the scheme
described in Fig. 13 is input inconsistent for the functionality class Fm,X,Y . Second, in Lemma 5.3, we show
that the same scheme is input inconsistent for the functionality class Fmp .

Lemma 5.2. The functional encryption scheme FE for the functionality class Fm,X,Y described in Fig. 13
is not input consistent. Namely, for any algorithm Extract, there exists a PPT adversary A such that:

Pr[in-CONSFE(1λ,A,Extract) = 1] = 1 .

Proof. For the computation of the final output in the decryption procedure, it is necessary to compute the
discrete logarithm of [〈x,y〉]g. As described in [ALS16], we assume that the computed inner product lies in
an polynomial bounded interval {0, . . . , L}, i.e. 〈x,y〉 ∈ {0, . . . , L} with a known L. This ensures that the
discrete logarithm computation can be performed in Õ(L1/2), using Pollard’s kangaroo method [Pol00] (or
even Õ(L1/3), by precomputing a table of size Õ(L1/3) [BL12]). Due to correctness, we assume that for every
encrypted vector x, with ‖x‖∞ < X, and every functional key corresponding to y, with ‖y‖∞ < Y , the
decryption gives us the right output 〈x,y〉. This results in the fact that L must be bigger than m ·X · Y . In
this case, the decryption procedure outputs ⊥.

23

Now, we describe the behavior of an attacker A against the input consistency of the scheme. After the
challenger has generated the parameters, (mpk,msk) ← Setup(1λ) and has sent mpk to the adversary, the
adversary generates a ciphertext ct, by encrypting the vector x := (L + 1) · e1 after the rules defined in
the encryption procedure. In the next step, A queries the key generation oracle for the vectors e1 and em,
receives ske1 and skem as a reply and sends ctx to the challenger.

After receiving ct, the challenger executes Extract(ct, {(ske1 , e1), (skem , em)}) and computes y1 = Dec(mpk,
e1, ske1 , ct) and y2 = Dec(mpk, em, skem , ct). We consider the computation of y1 and y2 in more detail. In
the decryption Dec(mpk, e1, ske1 , ct), the decryptor computes g〈(L+1)·e1,e1〉 = gL+1 and tries to perform the
discrete logarithm computation. This computation fails, due to the fact that L+ 1 is not part of the bounded
interval {0, . . . , L}, therefore the procedure outputs ⊥ (this argument can be made for any fixed bound L).
For the decryption procedure Dec(mpk, em, skem , ct), the decryptor computes g〈(L+1)·e1,em〉 = g0 = 1, for
which the discrete logarithm can be easily computed. This results in y1 := ⊥ and y2 = 0.

For the consistency check, we need to compute the preimages of the two different encryptions, i.e. f−1
e1

(⊥)
and f−1

em (0). The first preimage is defined as f−1
e1

(⊥) = {⊥} (due to Definition 2.2) and the second preimage
as f−1

em (0) = {x ∈ ZmX : 〈x, em〉 = 0} = {(x
0), with x ∈ Zm−1

X }. For the final step in the consistency check,
we compute the intersection of the two preimages f−1

e1
(⊥) ∩ f−1

em (0) = {⊥} ∩ {(x
0), with x ∈ Zm−1

X } = ∅
This results in a consistency attack regardless of the output of Extract(ct, {(ske1 , e1), (skem , em)}). This

shows, that the described adversary A always wins the game for every algorithm Extract. ut

Lemma 5.3. Let FE be the IND-CPA secure functional encryption scheme for the functionality class Fmp ,
with p prime, described in Fig. 13, then the scheme FE is not input consistent. Namely, for any algorithm
Extract, there exists a PPT adversary A such that:

Pr[in-CONSFE(1λ,A,Extract) = 1] = 1 .

Proof. The proof works in the same manner as for Lemma 5.2. The polynomial bound L for the discrete
logarithm computation in the last step must be smaller than p, such that we can still find a value L+ 1 for
which the described attack works. If this is not the case, and the decryption procedure still remains efficient,
it is possible to compute the discrete logarithm of gx for all x ∈ Zp by letting the decryption algorithm
perform the task on random group elements. This yields a contradiction against the MDDH assumption and
therefore, due to the fact that the security of the scheme is based on MDDH, a contradiction against the
IND-CPA security of the scheme. ut

5.2 Consistency for Inner-product Schemes

Now, we present the modified inner product functionality class and state the theorem that when instantiating
the scheme in Fig. 13 for this functionality class it achieves input consistency. The main idea of the new
functionality class is that we allow the decryption procedure to output a new error symbol oob in the case
that it is not able to do the discrete logarithm computation in the last step. The preimage of the oob symbol
is then defined as all the x such that 〈x,y〉 exceeds the polynomial bound necessary for the logarithm
computation. This allows to prevent the input consistency attack described in the proof of Theorem 5.1.

Modified Inner Product over ZP . Let F = {FmPλ,Lλ}λ∈N be a family (indexed by λ) of sets FmPλ,Lλ , where
Pλ is a modulus of length λ and Lλ . Omitting the index λ, the set FmP,L = {fy : ZmP → ZP , for y ∈ ZmP }
where

fy(x) =
{
〈x,y〉 mod P if 〈x,y〉 ∈ {0, . . . , L}
oob if 〈x,y〉 > L .

defines the inner-product operation over ZP . In addition to that, we define an out-of-bound symbol oob that
is defined as the output of the function when the resulting inner product computation does not lie within a
polynomial bound {0, . . . , L}. The preimage of the oob symbol is defined as follows

24

f−1
y (oob) = {x ∈ ZmP : 〈x,y〉 > L}.

The preimage for all other outcomes is defined as

f−1
y (z) = {x ∈ ZmP : 〈x,y〉 = z}.

When we consider the functional encryption scheme for the modified inner-product functionality Fmp,L, it
achieves input consistency.

Theorem 5.4. The functional encryption scheme FE described in Fig. 13 for the functionality class Fmp,L ,
with p prime, is input consistent. Namely, for any PPT adversary A, it holds that

Pr[in-CONSFE(1λ,A,Extract) = 1] = 0 ,

where Extract is the algorithm that always returns unknown.

Proof. To prove the input consistency of the scheme described in Fig. 13, we need to show that no matter what
ciphertext an adversary generates there exists at least one underlying plaintext that explains the decryption
behavior of ct under different functional keys skyi queried by the adversary A during the game. We prove
this by relying on the algebraic properties of the groups for which the functional encryption scheme is defined.
In more detail, we show that there exists always a solution for a linear equation system that is defined by the
different inner product computations between the functional keys and the submitted ciphertext. The existence
of a solution shows that there exists at least one plaintext that explains the functional decryption behavior.

Now, we describe how the game proceeds. In the first step, the challenger generates the master public
key and the master secret key by executing the setup procedure (mpk,msk) = ((G, [A]g, [WA]g),W) ←
Setup(1λ). In the next step, the adversary A receives mpk and has access to a key generation oracle
KeyGen(mpk,msk, ·). Whenever A queries the key generation oracle with a vector yi, the challenger generates
skyi = KeyGen(mpk,msk,yi), adds (skyi ,yi) to the list F and sends skyi to A. At some point in the game,
A sends ct to the challenger and the challenger computes [zi]g := Dec(mpk,yi, skyi , ct) for all (skyi ,yi) ∈ F .
We consider how the decryption works in more detail and determine [zi]g specifically corresponding to yi.

For the ciphertext, output by the adversary A, we write ct =
(

c′0
c′1

)
, with c′0 = [c0]g ∈ Gk+1 and

c′1 = [c1]g ∈ Gm. To be more specific, we also write c′0 ∈ Gk+1 and c′1 ∈ Gm as explicit group elements,

i.e. c′0 :=
(

gc0,1...
gc0,k+1

)
and c′0 :=

(
gc1,1...
gc1,m

)
with the generator g, c0 := (c0,1, . . . , c0,k+1) ∈ Zk+1

p and c1 :=

(c1,1, . . . , c1,m) ∈ Zmp . To show that the decryption procedure always decrypts to one underlying element,
we compute the decryption procedure for an arbitrary honestly generated key sky. We denote the master

secret key as W :=
(

w1 ... wk+1

)
, and correspondingly W> :=

(
w>1...

w>k+1

)
. Using the matrix description,

the functional key is defined as W> · y =
(
〈w>1 ,y〉...
〈w>k+1,y〉

)
∈ Zk+1

p . For the decryption, we need to compute two

different components: [c>0 sky]g and [c>1 y]g.
First, we describe how to compute [c>0 sky]g: We exponentiate all of the components of c′1 with the

components of sky and compute the product of the resulting vector components. In more detail, we compute∏
i∈[k+1] g

c0,i·〈w>i ,y〉 = g

∑
i∈[k+1]〈c0,i ·w>i ,y〉 = g

〈
∑
i∈[k+1] c0,i ·w>i ,y〉 = g〈W·c0,y〉. We proceed in the same

way for the second component
∏
i∈[m] g

c1,i·yi = g

∑
i∈[m] c1,i · yi = g〈c1,y〉.

For the final computation, before the discrete logarithm computation, we need to multiply the two
components, which results in g〈W·c0,y〉 · g〈c1,y〉 = g〈W·c0,y〉+〈c1,y〉 = g〈W·c0+c1,y〉.

In the final step of the decryption procedure the discrete logarithm computation happens. We denote the
final decryptions with respect to the different yi’s by zi := log(g〈W·c0+c1,y〉).

25

To prove the input consistency, we show that the preimage of zi contains the value W · c0 + c1 for the
case that zi = oob and the case that zi 6= oob. This leads to the fact that W · c0 + c1 ∈

⋂
i∈[n] f

−1
yi

(zi) for all
zi ∈ {0, . . . , L} ∪ {oob}, which covers all the possible values of zi.

Both of these cases follow directly from the definition of the preimage. In more detail, as described in the
beginning of Section 5.2, it holds that f−1

y (oob) contains all the vectors x such that 〈x,y〉 > L. For the case
that zi = oob it holds that 〈W ·c0 +c1,yi〉 > L, after the analysis above, and therefore W ·c0 +c1 ∈ f−1

yi
(oob).

For the case that zi ∈ {0, . . . , L} it holds that the preimage contains all the vectors x, such that 〈x,yi〉 = zi.
Therefore, again with the analysis above, it follows that W · c0 + c1 ∈ f−1

yi
(zi) for zi ∈ {0, . . . , L}. Overall,

this leads to the fact that W · c0 ∈
⋂
i∈[n] f

−1
yi

(zi) for all i ∈ [n] with zi ∈ {0, . . . , L} ∪ {oob}. ut

The scheme described in Fig. 13 is obviously CPA secure for the functionality class Fmp,L if the base FE
scheme is CPA secure.

Theorem 5.5. Let FE = (Setup,KeyGen,Enc,Dec) be the IND-CPA secure functional encryption scheme
for the functionality class Fmp , with p prime, described in Fig. 13. Then the functional encryption scheme

FE′ = (Setup′,KeyGen′,Enc′,Dec′) for the functionality class Fmp,L , with p prime, described in Fig. 13 is
IND-CPA secure. Namely, for any PPT adversary A, there exists a PPT adversary B such that

AdvIND-CPA
FE′,A (λ) ≤ AdvIND-CPA

FE,B (λ) .

5.3 Consistency of a related Predicate Scheme

The scheme used in this section, is another modified version of the inner product encryption scheme (described
in Fig. 13) for the functionality class of inner product predicates Pmp . We define the functionality class more
formally:

Inner Product Predicate over Zp. Let P = {Pmpλ}λ∈N be a family of sets Pmpλ , where p is a prime of length λ
and G a group of size p and generator g.10 The sets are defined by Pmp = {fg,y : (Zmp)→ G, with y ∈ Zmp }
where

fg,y(x) = g〈x,y〉 .

To modify the inner product encryption scheme to fit our new functionality class, we proceed without the
discrete logarithm computation in the end of the decryption procedure and just output the value g〈x,y〉. The
resulting scheme can now be used for the computation of inner-product predicates, e.g. for an inner product
of 0 the decryption procedure would output 1. For this scheme, the input consistency property can be proven
formally.

Theorem 5.6. The functional encryption scheme FE for the functionality class Pmp , with p prime,

described in Fig. 13 is input consistent. Namely, for any PPT adversary A, it holds that

Pr[in-CONSFE(1λ,A,Extract) = 1] = 0 ,

where Extract is the algorithm that always returns unknown.

Proof. We proceed in a similar way as in the proof of Theorem 5.4. To prove the input consistency of the
described scheme, we need to show that no matter what ciphertext an adversary generates there exists at
least one underlying plaintext that would explain the decryption behavior of ct under different functional
keys skyi queried by the adversary A during the game. We prove this by relying on the algebraic properties
of the groups for which the functional encryption scheme is defined. In more detail, we show that there exists
always a solution for a linear equation system that is defined by the different inner product computations
10 As already mentioned in Section 2, we omit λ when it is clear from the context.

26

between the functional keys and the submitted ciphertext. The existence of a solution shows that there exists
at least one plaintext that explains the functional decryption behavior.

Now, we describe how the game proceeds. In the first step, the challenger generates the master public
key and the master secret key by executing the setup procedure (mpk,msk) = ((G, [A]g, [WA]g),W) ←
Setup(1λ). In the next step, the adversary A receives mpk and has access to a key generation oracle
KeyGen(mpk,msk, ·). Whenever A queries the key generation oracle with a vector yi, the challenger generates
skyi = KeyGen(mpk,msk,yi), adds (skyi ,yi) to the list F and sends skyi to A. At some point in the game,
A sends ct to the challenger and the challenger computes [zi]g := Dec(mpk,yi, skyi , ct) for all (skyi ,yi) ∈ F .
We consider how the decryption works in more detail and determine [zi]g specifically corresponding to yi.

For the ciphertext, output by the adversary A, we write ct =
(

c′0
c′1

)
, with c′0 = [c0]g ∈ Gk+1 and

c′1 = [c1]g ∈ Gm. To be more specific, we also write c′0 ∈ Gk+1 and c′1 ∈ Gm as explicit group elements,

i.e. c′0 :=
(

gc0,1...
gc0,k+1

)
and c′0 :=

(
gc1,1...
gc1,m

)
with the generator g, c0 := (c0,1, . . . , c0,k+1) ∈ Zk+1

p and c1 :=

(c1,1, . . . , c1,m) ∈ Zmp . To show that the decryption procedure always decrypts to one underlying element,
we compute the decryption procedure for an arbitrary honestly generated key sky. We denote the master

secret key as W :=
(

w1 ... wk+1

)
, and correspondingly W> :=

(
w>1...

w>k+1

)
. Using the matrix description,

the functional key is defined as W> · y =
(
〈w>1 ,y〉...
〈w>k+1,y〉

)
∈ Zk+1

p . For the decryption, we need to compute two

different components: [c>0 sky]g and [c>1 y]g.
First, we describe how to compute [c>0 sky]g: We exponentiate all of the components of c′1 with the

components of sky and compute the product of the resulting vector components. In more detail, we compute∏
i∈[k+1] g

c0,i·〈w>i ,y〉 = g

∑
i∈[k+1]〈c0,i ·w>i ,y〉 = g

〈
∑
i∈[k+1] c0,i ·w>i ,y〉 = g〈W·c0,y〉. We proceed in the same

way for the second component
∏
i∈[m] g

c1,i·yi = g

∑
i∈[m] c1,i · yi = g〈c1,y〉.

To generate the final output, we need to multiply the two components, which results in g〈W·c0,y〉 ·g〈c1,y〉 =
g〈W·c0,y〉+〈c1,y〉 = g〈W·c0+c1,y〉.

Coming back to the initial description of the game, the decryption procedure outputs [zi]g := [〈W ·
c0 + c1,yi〉]g. Due to the fact that the vectors c0 and c1 are set by the adversary and the matrix W is
fixed after the setup procedure, the decryption relies only on the value yi. This results in the decryptions
g〈W·c0+c1,y1〉, . . . , g〈W·c0+c1,yn〉 for all the different secret key queries yi. Consequently,

W · c0 + c1 ∈ f−1
g,y1

([z1]g), . . . ,W · c0 + c1 ∈ f−1
g,yn

([zn]g), which further implies that

W · c0 + c1 ∈
⋂
i∈[n] f

−1
g,yi

([zi]g) .

This makes the intersection non-empty for every possible ciphertext ct generated by A. Therefore, the
scheme is input consistent. ut

The scheme described in Fig. 13 for the functionality class Pmp achieves IND-CPA security:

Theorem 5.7. Let FE = (Setup,KeyGen,Enc,Dec) be the IND-CPA secure functional encryption scheme
for the functionality class Fmp , with p prime, described in Fig. 13. Then the functional encryption scheme

FE′ = (Setup′,KeyGen′,Enc′,Dec′) for the functionality class Pmp , with p prime, described in Fig. 13 is

IND-CPA secure. Namely, for any PPT adversary A, there exists a PPT adversary B such that

AdvIND-CPA
FE′,A (λ) ≤ AdvIND-CPA

FE,B (λ) .

This statement follows by a straightforward reduction to CPA security by observing that the restriction on
the functional keys, i.e., the requirement fy(x0) = fy(x1) is preserved for all keys, because if 〈x0,y〉 = 〈x1,y〉
then it follows that g〈x0,y〉 = g〈x

1,y〉.

27

6 Consistency Compilers

In this section, we present black-box compilers that achieve consistency under the different corruption sets.
The goal is to apply the compiler on top of a functional encryption scheme to achieve the desired consistency
notion. For the case of CPA and CFE security, we present compilers that preserve the security of the
underlying functional encryption scheme. For the case of CCA security, we present so called “advanced”
compilers that lift the security of a CPA secure scheme into a CCA secure and consistent scheme. We note
in passing that establishing the Naor-Yung security lifting in the FE space is of independent interest. We
provide the first rigorous proof that the technique generalizes to the FE setting with a couple of technical
modifications compared to the PKE case. The section is organized as follows:

– In Section 6.1, we present a first compiler that takes a CPA or CFE secure FE scheme and makes it a
CPA resp. CFE-secure input consistent FE scheme. Input consistency is proven by Theorem 6.1 and
security preservation for CPA and CFE in Theorem 6.2 and Theorem 6.5, respectively. Next, we define an
advanced compiler that lifts any CPA secure FE scheme to an input consistent CCA secure FE scheme.
Input consistency is proven in Theorem 6.10 and security lifting in Theorem 6.6.

– In Section 6.2, we present one compiler that takes a CPA or CFE secure FE scheme and makes it setup
consistent, Theorem 6.11, and preserves CPA security, Theorem 6.12, and CFE security under natural
restrictions, Theorem 6.13. As above, we show that CCA secure setup-consistency is achievable by actually
presenting a second compiler that takes any CPA secure FE scheme and compiles it into a setup consistent
CCA secure FE scheme. This is proven in Theorem 6.14 and in Theorem 6.19.

– Finally, in Section 6.3 we present a construction that achieves strong input consistency based on any
verifiable FE scheme in a black-box way as proven in Theorem 6.20 (preserving the confidentiality notion
of the underlying scheme).

6.1 Input Consistency

First Compiler. To achieve input-consistency under CPA and CFE security, we augment the output of an
encryption algorithm with a non-interactive zero-knowledge (NIZK) proof that an underlying plaintext exists.
The NIZK proof is generated over the master public key, the encryption algorithm’s randomness and the
underlying plaintext. The zero-knowledge property of the NIZK makes sure that no information about the
underlying plaintext is leaked, whereas the soundness prevents a malicious party from generating a valid
proof over an invalid ciphertext. A formal description of this compiler is presented in Fig. 14 and the relation
Rin, that needs to be supported by the NIZK scheme, is defined in Fig. 15. We show that the described
construction indeed turns a functional encryption scheme into an input consistent functional encryption
scheme.

Theorem 6.1. Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme and NIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) a NIZK proof system for relation Rin, then the construction FE′ = (Setup′,KeyGen′,
Enc′,Dec′) defined in Figure 14 satisfies input consistency. Namely, for any PPT adversary A, there exists a
PPT adversary B such that:

|Pr[in-CONSFE′(1λ,A,Extract) = 1]| ≤ AdvSound
NIZK,B(λ),

where Extract is the algorithm that always returns unknown.

Proof. To prove the input consistency of the scheme FE′, we rely on the soundness of the NIZK proof system.
In more detail, we construct an adversary B that generates a malicious proof, by relying on an adversary A
for the input consistency experiment in-CONSFE.

In the beginning of the reduction, B receives a common reference string CRS from its underlying experiment,
it generates (mpk,msk)← Setup(1λ), sets mpk′ := (CRS,mpk) and sends mpk′ to A.

Whenever A asks a key generation query f , B computes the key skf ← KeyGen(msk, f), adds (skf , f) to
the list F and sends skf to A.

28

Setup′(1λ) :

CRS← NIZK.Setup(1λ)

(mpk,msk)← Setup(1λ)
Return (mpk′,msk′) = ((CRS,mpk),msk)
KeyGen′(mpk′,msk′, f) :

Parse mpk′ = (CRS,mpk),msk′ = msk
skf = KeyGen(mpk,msk, f)
Return sk′f = skf
Enc′(mpk′, x) :

Parse mpk′ = (CRS,mpk)

ct = Enc(mpk, x; r) with r ← {0, 1}λ

Generate π ← NIZK.Prove(CRS, (mpk, ct), (x, r)) for Rin (Fig. 15)
Return ct′ = (ct, π)
Dec′(mpk′, f, sk′f , ct′) :

Parse mpk′ := (CRS,mpk), sk′f = skf , ct′ = (ct, π)
If NIZK.Verify(CRS, (mpk, ct), π) = 1

Return Dec(mpk, f, skf , ct)
Else

Return ⊥

Fig. 14: Input consistency compiler

Relation Rin :
Instance: z = (mpk, ct)
Witness: w = (x, r), x ∈ X , random coins r
Rin(z, w) = 1 if and only if:

ct = Enc(mpk, x; r)

Fig. 15: Relation used in the input consistency compiler

29

At some point, A sends a ciphertext ct′ = (ct, π) to B. If NIZK.Verify((mpk, ct), π) = 0 then the adversary
B halts. In this case, Dec(mpk, fi, skfi , ct) yields ⊥ for all i ∈ [n], by definition of the compiler (and hence the
adversary A loses the game). If NIZK.Verify((mpk, ct), π) = 1, B simply outputs (mpk1, ct, π) as its forgery
and halts.

Let us analyze the output of A to see that the condition to break input consistency must imply a soundness
violation of the NIZK scheme. In more detail, we define the event E as the event that the adversary A
performs a consistency attack under the assumption that (mpk, ct) ∈ L and show that the occurrence of the
event E would contradict the assumption.

Now, we analyze the possible outcomes for the decryptions yi in the case of a consistency attack. We show
that yi 6= ⊥ for all i ∈ [n] (this is covered by event E1). Furthermore we show that if yi 6= ⊥ then there exists
an x such that x ∈

⋂
i∈[n] f

−1
i (yi) (this is denoted by event E2).

In the case of event E1, we assume that at least one of the decryptions is equal to ⊥, i.e. yi 6= ⊥. We
distinguish between two cases:

1. It holds that yi = ⊥ for all i ∈ [n]. In this case, the adversary A did not perform a consistency attack. In
more detail, the intersection

⋂
i∈[n] f

−1
i (yi) will contain the ⊥ value.

2. At least one, but not all, of the decryptions are equal to ⊥, i.e. yi = ⊥. Since ⊥ is not an element X ,
and therefore not an encryption value, then, by perfect correctness of the underlying FE scheme, it
follows that there exists no w such that ((mpk, ct), w) ∈ Rin (i.e. it cannot be a valid instance). This is a
contradiction to the assumption that (mpk, ct) ∈ L.

Considering both the above mentioned points, we can conclude that yi 6= ⊥ for all i ∈ [n].
For the analysis of event E2, we assume, for the sake of contradiction, that the intersection

⋂
i∈[n] f

−1
i (yi)

is empty and it holds (with respect to event E1) that yi 6= ⊥ for all i ∈ [n]. In this case, the adversary A has
generated a valid proof π for an x /∈ Lin. Again, by the perfect correctness of the FE scheme, the adversary B
broke the soundness of the NIZK scheme, because it has found a ciphertext ct and provided a proof to be a
valid encryption while the functional outputs say that there is no such underlying plaintext.

By combining the events E1 and E2, we have proven that event E cannot occur. To recap, whenever
(mpk, ct) ∈ L, it is not possible for an adversary A to perform a consistency attack. Hence the only way
the adversary can break setup consistency is by breaking the soundness property of the NIZK scheme, i.e.,
providing the statement (mpk, ct) /∈ L.

This yields the bound

|Pr[in-CONSFE′(1λ,A,Extract) = 1]| ≤ AdvSound
NIZK,B(λ) .

and therefore we obtain the theorem. ut

Besides proving that the compiler achieves input consistency, we also need to prove the security preservation
under the two different notions of IND-CPA security and CFE security.

We first prove the security preservation of the compiler under CPA security and conclude with the
preservation for CFE security.

Theorem 6.2. Let FE = (Setup,KeyGen,Enc,Dec) be an IND-CPA secure functional encryption scheme
and NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) a NIZK proof system, then the construction FE′ =
(Setup′,KeyGen′,Enc′,Dec′), defined in Figure 14, is IND-CPA secure. Namely, for any PPT adversary A,
there exist PPT algorithms B and B′ such that

AdvIND-CPA
FE′,A (λ) ≤ 2 · AdvZK

NIZK,B(λ) + AdvIND-CPA
FE,B′ (λ) .

Proof. To prove this statement, we use a hybrid argument with the games defined in Fig. 16. Note that G0
corresponds to the game IND-CPAFE

0 (1λ,A) and G3 to the game IND-CPAFE
1 (1λ,A). This results in:

AdvIND-CPA
FE′,A (1λ) = |WinG0

A (1λ)−WinG3
A (λ)| .

We describe the different games in more detail:

30

Game G1: In this game, we change from an honestly generated CRS and honestly generated proofs to a
simulated CRS and simulated proofs. The transition from G0 to G1 is justified by the zero-knowledge
property of the NIZK. Namely, in Lemma 6.3, we exhibit a PPT adversary B0 such that:

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Game G2: In this game, we change from an encryption of x0 to x1 for the encryption queries. The transition
from G1 to G2 is justified by the IND-CPA security of FE. Namely, in Lemma 6.4, we exhibit a PPT
adversary B1 such that:

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvIND-CPA
FE,B1

(λ) .

Game G3: This game is the IND-CPAFE
1 (1λ,A) game. The transition from G2 to G3 is almost symmetric

to the transition from G0 to G1 except from the fact that the reduction encrypts x1 instead of x0. As
in Lemma 6.3, the transition is justified by the zero-knowledge property of NIZK. Namely, we can exhibit
a PPT adversary B0 such that:

|WinG2
A (1λ)−WinG3

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Putting everything together, we obtain the theorem. ut

Lemma 6.3 (Transition from G0 to G1). For any PPT adversary A, there exists a PPT adversary B0
such that

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Proof. We build an adversary B0 that simulates Gβ towards A when interacting with the underlying ZKNIZK
β

experiment.
In the beginning of the reduction, B0 receives CRS from the ZKNIZK

β experiment. It generates a functional
encryption instance (mpk,msk)← Setup(1λ), sets mpk′ = (CRS,mpk) and gives mpk′ to the adversary.

Whenever A asks an encryption query (x0, x1), B0 generates the ciphertext ct = Enc(mpk, x0; r) with
r ← {0, 1}λ and sends y = (mpk, ct) and w = (x, r) as a statement-witness pair to its challenger. As an
answer, B0 receives a proof π for Rin. It sets ct′ = (ct, π) and sends it to A.

For a key generation query f , B0 generates skf ← KeyGen(mpk,msk, f) for and sends sk′f = skf as a reply
to A.

This covers the simulation of the game Gβ . Finally B0 outputs the same bit β′ returned by A. It follows,
from the perfect simulation, that the advantage of B0 is the same as the advantage of A. ut

Lemma 6.4 (Transition from G1 to G2). For any PPT adversary A, there exists a PPT adversary B1
such that

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvIND-CPA
FE,B1

(λ) .

Proof. We build an adversary B1 that simulates G1+β towards A when interacting with the underlying
IND-CPAFE

β experiment.
In the beginning of the reduction, B1 receives mpk from the experiment. It simulates a CRS, i.e. (CRS, τ)←

S1(1λ), sets mpk′ = (CRS,mpk) and gives mpk′ to the adversary.
Whenever A asks an encryption query (x0, x1), B1 forwards it to its own encryption oracle to receive

ct← Enc(mpk, xβ), simulates a proof for the relation Rin, i.e. π ← S2(CRS, τ, xβ) and sends ct′ = (ct, π) to A.
For a key generation query f , B1 queries its own key generation oracle on f to receive skf ← KeyGen(mpk,

msk, f), sets sk′f = skf and sends sk′f to A.
This covers the simulation of the game G1+β . Finally B1 outputs the same bit β′ returned by A. It follows,

from the perfect simulation, that the advantage of B1 is the same as the advantage of A. ut

31

Game CRS & π ct justification/remark

G0
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

Enc(mpk, x0)

G1
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk, x0) Zero-knowledge of NIZK

G2
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk, x1) IND-CPA security of FE

G3
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

Enc(mpk, x1) Zero-knowledge of NIZK

Fig. 16: Overview of the games to prove the IND-CPA security preservation of the input consistency compiler
described in Fig. 14.

Beside showing the IND-CPA security preservation, we also need to show the CFE security preservation.

Theorem 6.5. Let FE = (Setup,KeyGen,Enc,Dec) be a CFE secure functional encryption scheme, i.e., there
exists a simulator S = (S1,S2,S3) such that RealFE(1λ,A) ≈ IdealFE(1λ,A,S) w.r.t. any adversary A, and
let further NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a NIZK proof system for the relation Rin, then
for the construction FE′ = (Setup′,KeyGen′,Enc′,Dec′), defined in Figure 14, we can design a simulator
S ′ = (S ′1,S ′2,S ′3) such that for any adversary A′ = (A′1,A′2) against the new scheme we can design adversarys
A and B such that

AdvD
′,CFE

FE′,A′,S′(λ) ≤ AdvD,CFE
FE,A (λ) + AdvZK

NIZK,B(λ).

Proof. The simulator is defined as follows: S ′1 runs S1 to obtain the pair (mpk, s) and runs the simulator of
the NIZK scheme to obtain (CRS, τ) and outputs mpk′ := (mpk,CRS). Next, S ′2 := S2, and finally, S ′3 runs S3,
receives a ciphertext ct`, and simulates a NIZK proof using the trapdoor τ for instance (mpk′, ct). Note that
the internal state managed by S is managed by S ′. We obtain the statement again by a sequence of hybrid
steps. Let G0 be the real CFE experiment and G2 the ideal CFE experiment with the above simulator. Let G1
be a hybrid experiment, where the only change is that we replace the CRS and simulate all NIZK proofs.
Analogous to the proof of Theorem 6.2, an adversary B with advantage α in distinguishing the outputs of
experiments G0 and G1 (with respect to a certain adversary A′′) directly yields a distinguisher telling apart
simulated and genuine proofs with the same advantage. For the second step, we see that any pair (D′,A′)
with advantage α in distinguishing the outputs of the experiments G1 and G2 can be transformed into a pair
(D,A) such that the outputs of RealFE(1λ,A) and IdealFE(1λ,A,S) are distinguishable by D with advantage
α. To see this, note that by the modular design of the scheme, the adversary can be defined as follows: when
the first adversary A1 receives mpk it simulates CRS and internally runs an instance of A′1((mpk,CRS)). For
requests to the key-generation oracle, A1 simply relays them to the oracle of A′1. Besides this, any internal
state of A′1 is maintained by A1, and passed on to the second adversary. A1 outputs whatever A′1 outputs.
Second, whenever A2 receives some ciphertext, say ct`, it internally runs A′2 on input (ct`, π), where π is
a simulated proof for the relation Rin. Finally, A2 outputs whatever A′2 outputs. We see that the output
distribution of RealFE(1λ,A) is identical to the output of A′ in experiment G1 and the output distribution of
IdealFE(1λ,A,S) is identical to the output distribution of G2, the ideal experiment with FE′ and simulator S ′.
This proves the theorem. ut

Second Advanced Compiler. For the advanced input consistency compiler that takes a CPA secure
scheme and achieves CCA security, we make use of the Naor-Yung approach [NY90] and combine it with the
approach of the presented input consistency compiler. In more detail, we run two different instances of the

32

functional encryption scheme and create a proof that shows that both of these encryptions are generated in a
valid way, i.e. there exists a random ri and a message xi to create a ciphertext cti for i ∈ [2]. The compiler is
displayed in Fig. 17. In comparison to the NIZK proof system used in the input consistency compiler above,
we need to assume one-time simulation-soundness for this advanced case. This leads to the following theorem
which is of independent interest beyond the study of consistency.

Theorem 6.6. Let FE = (Setup,KeyGen,Enc,Dec) be an IND-CPA secure functional encryption scheme
and NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) a NIZK proof system satisfying one-time simulation
soundness, then the construction FE′ = (Setup′,KeyGen′,Enc′,Dec′), defined in Figure 17, is IND-CCA secure.
Namely, for any PPT adversary A, there exist PPT adversaries B,B′ and B′′, such that:

AdvIND-CCA
FE′,A (λ) ≤ AdvZK

NIZK,B(λ) + AdvSim-Sound
NIZK,B′ (λ) + 2 · AdvIND-CPA

FE,B′′ (λ).

Proof. To prove this statement, we use a hybrid argument with the games defined in Fig. 19. Note that G0
corresponds to the game IND-CCAFE

0 (1λ,A) and G4 to the game IND-CCAFE
1 (1λ,A). This results in:

AdvIND-CCA
FE′,A (1λ) = |WinG0

A (1λ)−WinG4
A (1λ)| .

We describe the different games in more detail:

Game G1: In this game, we change from an honestly generated CRS and honestly generated proofs to a
simulated CRS and simulated proofs. The transition from G0 to G1 is justified by the zero-knowledge
property of NIZK. Namely, in Lemma 6.7, we exhibit a PPT adversary B0 such that:

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Game G2: In this game, we change from an encryption of x0 to x1 in the first component of the ciphertext,
i.e. ct = (Enc(mpk1, x

1),Enc(mpk2, x
0),). The transition from G1 to G2 is justified by the IND-CPA

security of FE and the one-time simulation-soundness of NIZK. Namely, in Lemma 6.9, we exhibit PPT
adversaries B1 and B2 such that:

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ) + AdvIND-CPA
FE,B2

(λ) .

Game G3: In this game, we change from an encryption of x0 to x1 in the second component of the ciphertext,
i.e. ct = (Enc(mpk1, x

1),Enc(mpk2, x
1),). The transition from G2 to G3 is almost symmetric to the

transition from game G1 to G2 except that it is not necessary to rely on the one-time simulation soundness
of the NIZK system and the ciphertext contains an encryption of x1 in the first position. As in Lemma 6.9,
the transition is justified by the IND-CPA security of FE. Namely, we can exhibit a PPT adversary B2
such that:

|WinG2
A (1λ)−WinG3

A (1λ)| ≤ AdvIND-CPA
FE,B1

(λ) .

Game G4: This game is the IND-CCAFE
1 (1λ,A) game. The transition from G3 to G4 is almost symmetric

to the transition from G0 to G1 except from the fact that the reduction encrypts x1 instead of x0. As
in Lemma 6.7, the transition is justified by the zero-knowledge property of NIZK. Namely, we can exhibit
a PPT adversary B0 such that:

|WinG3
A (1λ)−WinG4

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Putting everything together, we obtain the theorem. ut

Lemma 6.7 (Transition from G0 to G1). For any PPT adversary A, there exists a PPT adversary B0
such that

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

33

Setup′(1λ) :

CRS← NIZK.Setup(1λ)

For i ∈ [2]

(mpki,mski)← Setup(1λ)

Return (mpk′,msk′) = ((CRS, {mpki}i∈[2]), {mski}i∈[2])

KeyGen′(mpk′,msk′, f) :

Parse mpk′ = (CRS, {mpki}i∈[2]),msk′ = {mski}i∈[2]

For i ∈ [2]

skf,i = KeyGen(mpki,mski, f)

Return sk′f = {skf,i}i∈[2]

Enc′(mpk′, x) :

Parse mpk′ = (CRS, {mpki}i∈[2])

For i ∈ [2]

cti = Enc(mpki, x; ri) with ri ← {0, 1}λ

If ∃i ∈ [2] : cti = err then return err

Generate π ← NIZK.Prove(CRS, (mpki, cti)i∈[2], (x, {ri}i∈[2])) for RCCA
in (Fig. 18)

If NIZK.Verify(CRS, (mpki, cti)i∈[2], π) = 0 return err

Return ct′ = ({cti}i∈[2] , π)

Dec′(mpk′, f, sk′f , ct′) :

Parse mpk′ := (CRS, {mpki}i∈[2]), sk′f = {ski,f}i∈[2] , ct′ = ({cti}i∈[2] , π)

If NIZK.Verify(CRS, (mpki, cti)i∈[2] , π) = 1

Return Dec(mpk1, f, skf,1, ct1)

Else
Return ⊥

Fig. 17: Advanced input consistency compiler. Shaded instructions indicate difference to the simpler input
consistency compiler.

Relation RCCA
in :

Instance: z = (mpki, cti)i∈[2]

Witness: w = (x, {ri}i∈[2]), x ∈ X , random coins ri
RCCA

in (z, w) = 1 if and only if:
cti = Enc(mpki, x; ri), for both i ∈ [2]

Fig. 18: Relation used in the advanced input consistency compiler.

34

Game CRS & π ct justification/remark

G0
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

Enc(mpk1, x
0)

Enc(mpk2, x
0)

G1
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
0)

Enc(mpk2, x
0)

Zero-knowledge of NIZK

G2
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
1)

Enc(mpk2, x
0)

IND-CPA of FE and
simulation-soundness of NIZK

G3
CRS← S1(1λ)
π ← S2(CRS, τ, x)

Enc(mpk1, x
1)

Enc(mpk2, x
1)

IND-CPA of FE

G4
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

Enc(mpk1, x
1)

Enc(mpk2, x
1)

Zero-knowledge of NIZK

Fig. 19: Overview of the games to prove the IND-CCA security of the advanced input consistency compiler
described in Fig. 17.

Proof. We build an adversary B0 that simulates Gβ towards A when interacting with the underlying ZKNIZK
β

experiment.
In the beginning of the reduction, B0 receives CRS from the ZKNIZK

β experiment. It generates two functional
encryption instance (mpki,mski)← Setup(1λ) for i ∈ [2], sets mpk′ = (CRS, {mpki}i∈[2]) and gives mpk′ to
the adversary.

Whenever A asks an encryption query (x0, x1), B0 generates the ciphertext cti = (Enc(mpki, x0; ri))i∈[2]
with ri ← {0, 1}λ for i ∈ [2] and sends y = (mpki, cti)i∈[2] and w = (x, {ri}i∈[2]) as a statement-witness pair
to its challenger. As an answer, B0 receives a proof π for the relation RCCA

in . It sets ct′ = ({cti}i∈[2], π) and
sends it to A.

For a key generation query f , B0 generates skf,i ← KeyGen(mpki,mski, f) for i ∈ [2] and sends sk′f =
{skf,i}i∈[2] as a reply to A.

Whenever A submits a decryption query (f, ct′), with ct′ = ({cti}i∈[2], π), B0 generates the functional key
skf,1 ← KeyGen(mpk1,msk1, f) and executes NIZK.Verify(CRS, (mpki, cti)i∈[2]). If NIZK.Verify(CRS, (mpki,
cti)i∈[2]) = 1, B0 computes y := Dec(mpk1, f, skf,1, ct1) and sends y to A. Otherwise, B0 sends ⊥ to A.

This covers the simulation of the game Gβ . Finally B0 outputs the same bit β′ returned by A. It follows,
from the perfect simulation, that the advantage of B0 is the same as the advantage of A.

ut

As in [Lin03], we prove a corollary that shows that whenever a decryption oracle query is asked and
this query contains a valid NIZK proof, then the corresponding ciphertext is explainable under the queried
function. This is necessary for the proof of the transition from G1 to G2 for the simulation of the decryption
oracle.

Proposition 6.8. For any PPT adversary A participating in G1+β for β ∈ {0, 1}, the probability that, during
the experiment, A queries its decryption oracle QDec with a function-ciphertext-pair that is not explainable
but has an accepting proof is negligible. Namely, we exhibit a PPT adversary B1, such that

Pr

∃(f, {ct′i}i∈[2], π
′) ∈ Q : ({ct′i}i∈[2], π

′) 6= ({cti}i∈[2], π),
NIZK.Verify(CRS, {ct′i}i∈[2], π

′) = 1 and
Dec(mpk1, skf,1, ct′1) 6= Dec(mpk2, skf,2, ct′2)

 ≤ AdvSim-Sound
NIZK,B1

(λ),

where skf,i ← KeyGen(mpki,mski, f) for i ∈ [2], ({cti}i∈[2], π) is the reply to the encryption query (x0, x1)
made by A and Q the list containing all the decryption queries (f, {ct′i}i∈[2], π

′) asked by A, knowing the

35

master public key mpk′ := (CRS, {mpki}i∈[2]), the reply to its challenge query ({cti}i∈[2], π) and by having
access to the key generation oracle KeyGen′(mpk′,msk′, ·), during the game.

Proof. We build an adversary B1 that simulates G1+β towards A when interacting with the underlying one
time simulation-soundness experiment.

After the adversary B1 has received CRS from the underlying experiment, it generates (mpki,mski)←
Setup(1λ) for i ∈ [2], sets mpk′ := (CRS, {mpki}i∈[2]) and sends mpk′ to A. Whenever A submits a key
generation query f , B1 generates the functional keys skf,i ← KeyGen(mpki,mski, f) for i ∈ [2], sets sk′f =
{skf,i}i∈[2] and sends it to A.

For the challenge query (x0, x1) asked by A, B1 computes ct1 = Enc(mpk1, x
β) and ct2 = Enc(mpk2, x

0)
(where β = 0 in game G1 and β = 1 in G2) and asks its experiment for a simulated proof π of the statement
(mpki, cti)i∈[2]. It sets ct′ := ({cti}i∈[2], π) and sends ct′ to A.

Whenever A outputs a decryption query (f, ct′ := ({ct}i∈[2], π)), B1 verifies the proof. If the output of
the verification is 1, B1 computes yf,1 = Dec(mpk1, skf,1, ct1) and yf,2 = Dec(mpk2, skf,2, ct2). If yf,1 6= yf,2,
B1 sends ({ct}i∈[2], π) as a proof forgery to its challenger. Otherwise it sends yf,1 to A. If the verification
outputs 0, B1 sends ⊥ to A. ut

After introducing and proving Proposition 6.8, we prove the transition from G1 to G2.

Lemma 6.9 (Transition from G1 to G2). For any PPT adversary A, there exist PPT adversaries B1
and B2, such that

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ) + AdvIND-CPA
FE,B2

(λ) .

Proof. We build an adversary B2 that simulates G1+β to A when interacting with the underlying IND-CPAFE
β

experiment.
In the beginning of the reduction, B2 receives mpk1 from the underlying experiment. It simulates a

CRS, i.e. (CRS, τ) ← S1(1λ), generates a functional encryption instance (mpk2,msk2) ← Setup(1λ) sets
mpk′ := (CRS, {mpki}i∈[2]) and sends mpk′ to A. Whenever A submits a key generation query f , B2 forwards
this query to its own key generation oracle KeyGen(mpk1,msk1, ·), to receive skf,1 as an answer. Then, B2
generates skf,2 ← KeyGen(mpk2,msk2, f) by itself, sets skf = {skf,i}i∈[2] and sends it to A.

For the challenge query (x0, x1) asked by A, B2 forwards it to its own encryption oracle and receives
ct1 = Enc(mpk1, x

β) as an answer. It generates ct2 = Enc(mpk2, x
0) by itself, simulates a valid proof π of the

relation Rin using the statement y = (mpki, cti)i∈[2], i.e. π ← S2(CRS, τ, y) and sends ct′ := ({cti}i∈[2], π) to
A.

Whenever A asks a decryption query (f, ct′ := ({cti}i∈[2], π)), B2 first verifies the proof π, i.e. it executes
NIZK.Verify(CRS, (mpki, cti)i∈[2], π). If the verification outputs 1, B2 generates skf,2 ← KeyGen(mpk2,msk2, f),
executes Dec(mpk2, f, skf,2, ct2) and sends the result to A. This is contrary to the actual decryption oracle,
which would always generate the key skf,1 ← KeyGen(mpk1,msk1, f) and use it to decrypt the first ciphertext
ct1. Since Proposition 6.8 shows that for all ciphertext queries made by A that have a valid proof (except
with negligible probability) it holds that Dec(mpk1, skf,1, ct1) = Dec(mpk2, skf,2, ct2). Therefore, it is possible
to generate a functional key for either of the position and use the corresponding decryption output as a reply
for A11. If the verification outputs 0, B2 sends ⊥ to A.

This covers the simulation of the game G1+β . Finally B2 outputs the same bit β′ returned by A. Together
with the analysis of adversary B1, this yields the advantage mentioned in the lemma. ut

After proving that the compiler does the security lifting from CPA to CCA, we also need to show that
the compiler achieves input consistency.

11 It is not necessary to rely on Proposition 6.8 in the transition from G2 to G3, since B2 is able to generate a functional
key for the first position and therefore is able to generate the decryption oracle perfectly.

36

Theorem 6.10. Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme and NIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) a NIZK proof system for RCCA

set (Fig. 24), then the construction FE′ = (Setup′,KeyGen′,
Enc′,Dec′) defined in Figure 17 is input consistent. Namely, for any PPT adversary A, exists a PPT adversary
B such that

|Pr[in-CONSFE′(1λ,A,Extract) = 1]| ≤ AdvSound
NIZK,B(λ),

where Extract is the algorithm that always returns unknown.

Proof. The proof proceeds exactly in the same way as the proof of Theorem 6.1. It is ensured by the soundness
of the NIZK proof that both of the ciphertexts encrypt the same underlying message. ut

Instantiations Our compilers can be instantiated with any NIZK scheme such as [Gro06,GOS06]. An
important special case are lattice based constructions. Since recent results [PS19, RSS19] show how to
construct NIZKs from LWE, it can be combined with a functional encryption scheme for all classes of circuits
from LWE known from [CVW+18,GKP+13], to obtain a specific instantiation of the presented compiler
from LWE. Furthermore, specific versions of the compiler for restricted classes, namely inner-product classes
achievable from standard assumptions [ALS16], could be obtained by employing designated verifier NIZKs
from [CH19,KNYY19,QRW19,CC18]. Since the latter are based on the Diffie-Hellman assumption, the
overall scheme is input-consistent based on standard assumptions. We note that it is an interesting research
direction to investigate efficient constructions of consistent FE schemes.

6.2 Setup Consistency

First Compiler. To achieve setup consistency, we need to prevent the generation of malicious functional
keys under maliciously generated parameters. While we can still rely on honest encryption procedures,
the parameters are chosen by the adversary beforehand and we cannot rely on a common-reference string
generated by the adversary.

We replace the role of the NIZK proof in the previous section by a non-interactive witness indistinguishable
(NIWI) proof. NIWI proofs allow us to achieve similar properties in terms of correctness and soundness, as
provided by the NIZK proof, without relying on a common reference string. As a trade-off, we cannot rely
on the zero-knowledge property but on witness-indistinguishability instead, which we prove to be sufficient.
However, our compiler needs to run three different instances of the same functional encryption scheme
in parallel. The decryption procedure then computes the decryption under all of the three instances and
outputs the majority of the decryptions. If no majority is reached, the algorithm outputs �. We give a formal
description of this compiler in Fig. 20. This compiler only preserves CPA and, under certain conditions, also
CFE security. Afterwards we also present a compiler that achieves CCA security by relying on a CPA secure
scheme.

We start by proving the setup consistency of the compiler.

Theorem 6.11. Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme and NIWI = (NIWI.Prove,
NIWI.Verify) a NIWI proof system for Rset (Fig. 21), then the construction FE′ = (Setup′,KeyGen′,Enc′,Dec′)
defined in Figure 20 is setup consistent. Namely, for any PPT adversary A, there exists a PPT adversary B
such that:

|Pr[set-CONSFE′(1λ,A) = 1]| ≤ AdvSound
NIWI,B(λ).

Proof. To prove the setup consistency of the scheme FE′, we rely on the soundness of the NIWI proof system.
In more detail, we construct an adversary B that successfully generates a valid proof for a statement not in
the language by assuming an adversary A for the setup consistency experiment set-CONS.

In the beginning of the reduction, B receives (mpk′ := (mpk1,mpk2,mpk3),mpk′′ := (mpk′1,mpk′2,mpk′3),
sk := ({ski}i∈[3], π), f, x1, x2) from A. If π is such that the condition NIWI.Verify(({mpk′′i }i∈[3], {ski}i∈[3], f),
π) = 0 or mpk′′ 6= mpk′, then B halts. Note that in this case, A would never win, as the outcome of
decryption procedure is equal to “�” for all ciphertexts. Another case, in which B halts, is the case in which
Dec′(mpk′′, f, sk,Enc(mpk′, xi)) = f(xi) for both i ∈ [2]. Here, the generated functional key and the public

37

parameters have an honest behavior and therefore A has not generated a forgery for the NIWI proof. Therefore
the adversary B halts. Otherwise, the adversary outputs the statement ({mpk′′i }i∈[3], {ski}i∈[3], f) and proof
π as a NIWI forgery.

Let us analyze the output of A to see that the condition to break setup consistency must imply a soundness
violation of the NIWI scheme. In more detail, we define the event E as the event that the adversary A
performs a consistency attack under the assumption that ({mpk′′i }i∈[3], {ski}i∈[3], f) ∈ L and show that the
occurrence of E would contradict the assumption. Let us compute ct′i := (mpk′, {ctj}j∈[3])← Enc′(mpk′, xi)
for i ∈ [2] and yi = Dec′(mpk′′, f, sk, ct′i) for i ∈ [2]. For concreteness, assume that both ciphertexts are not
equal to err (however, the argument holds for any pattern, since erroneous ciphertexts are ignored in the
setup consistency game).

Now, we analyze the possible outcomes for the decryptions y1 and y2 in the case of a consistency attack.
We show that yi 6= �, we denote this by event E1, enforces that yi = f(xi) for all i ∈ [2] and furthermore that
yi 6= � for all i ∈ [2].

In the case of event E1, we assume y1 6= � (we do the analysis for y1, the case for y2 follows respectively)
and, for the sake of contradiction, we also need to assume that ({mpk′′i }i∈[3], {ski}i∈[3], f) ∈ L holds. Under
these circumstances consistency must be satisfied.

By the perfect correctness of the underlying FE scheme and the validity of the proof, at least two functional
keys ski and skj , for i 6= j are correctly generated and matching to the master public keys mpki and mpkj in
the encryption (note that by the definition of Dec′ that decryption is only performed if both Enc′ and Dec′ use
the same triple (mpk1,mpk2,mpk3)) and thus y(i)

f,1 ← Dec(mpki, f, ski, ct1) and y(j)
f,1 ← Dec(mpki, f, ski, ct1)

are equal to f(x1). Therefore also the majority of the decryption values for ct1 is equal to f(x1) and the final
decryption outputs f(x1). Hence assuming y1 6= � implies y1 = f(x1).

For event E2, we need to show that y1 6= � and y2 6= � in the case of a consistency attack and under
the assumption that ({mpk′′i }i∈[3], {ski}i∈[3], f) ∈ L. We start by considering the case that y1 = y2 = �. If
y1 = y2 = �, then the adversary A did not perform a consistency attack. This is a contradiction to our
assumption and therefore this case cannot occur. In the next step we assume that y1 6= � and y2 = � (or
y1 = � and y2 6= � respectively). If y1 6= �, then follows, with the analysis for E1, that y1 = f(x1) and that
at least two of the functional keys ski and skj are correctly generated and matching the master public keys
mpki and mpkj . But this would also lead, due to perfect correctness of the functional encryption scheme, to a
correct decryption of the ciphertext ct′2, which yields y2 = f(x2). This shows that the case y1 6= � and y2 = �
(or y1 = � and y2 6= �) cannot occur.

By combining the events E1 and E2, we proved that event E cannot occur. To recap, whenever ({mpk′′i }i∈[3],

{ski}i∈[3], f) ∈ L, it is not possible for an adversary A to perform a consistency attack. Hence the only way
the adversary can break setup consistency is by breaking the soundness property of the NIWI scheme, i.e.,
providing the statement ({mpk′′i }i∈[3], {ski}i∈[3], f) 6∈ L.

This yields the bound
|Pr[set-CONSFE′(1λ,A) = 1]| ≤ AdvSound

NIWI,B(λ) .

and therefore we obtain the theorem.
ut

Besides proving that the compiler achieves setup consistency, we need to show that the security of the
underlying functional encryption scheme is preserved.

CPA case. We start with the CPA case, which is straightforward:

Theorem 6.12. Let FE = (Setup,KeyGen,Enc,Dec) be an IND-CPA secure functional encryption scheme
and NIWI = (NIWI.Prove,NIWI.Verify) a NIWI proof system for Rset (Fig. 21), then the construction FE′
defined in Figure 20 is IND-CPA secure. Namely, for any PPT adversary A, there exits a PPT adversary B
such that:

AdvIND-CPA
FE′,A (λ) ≤ 3 · AdvIND-CPA

FE,B (λ) .

38

Setup′(1λ) :

For i ∈ [3]:

(mpki,mski)← Setup(1λ; si)
mpk′ := {mpki}i∈[3]

msk′ := {(mski, si)}i∈[3]

Return (mpk′,msk′)

KeyGen′(mpk′,msk′, f) :

Parse mpk′ := {mpki}i∈[3],

msk′ := {(mski, si)}i∈[3]

For i ∈ [3]:

ri ∈ {0, 1}λ

skf,i = KeyGen(mski, f ; ri)
Generate π ← NIWI.Prove(y, w) with
z = ({mpki}i∈[3], {skf,i}i∈[3], f),

w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3])

and L defined corresponding to Rset (Fig. 21)
Return sk′f = ({skf,i}i∈[3], π)

Enc′(mpk′, x) :

Parse mpk′ := {mpki}i∈[3]

For i ∈ [3]:
cti ← Enc(mpki, x)

If ∃i ∈ [3] : cti = err then return err
Return ct′ = (mpk′, {cti}i∈[3])

Dec′(mpk′, f, sk′f , ct′) :

Parse mpk′ := {mpki}i∈[3],

sk′f = ({skf,i}i∈[3], π),

ct′ = (mpk′′, {cti}i∈[3])

z := ({mpki}i∈[3], {skf,i}i∈[3], f)

If mpk′ = mpk′′

If NIWI.Verify(z, π) = 1
For i ∈ [3]:
yf,i := Dec(mpki, f, sk

′
f,i, cti),

y ← MajVal({yf,i}i∈[3])

Return y
Return �

Fig. 20: Setup consistency compiler. MajVal(·) calculates and returns the majority value of the input values,
if there is a clear majority and � otherwise.

Relation Rset :
Instance: z = ({mpki}i∈[3], {skf,i}i∈[3, f)

Witness: w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3])

Rset(z, w) = 1 if and only if for at least two indices j1, j2 ∈ [3], j1 6= j2 we have:
1. The key skf,j1 for function f is generated using mskj1 with rj1 and

related to mpkj1 which is generated using sj1 . Formally:

skf,j1 = KeyGen(mpkj1 ,mskj1 , f ; rj1) ∧ (mpkj1 ,mskj1) = Setup(1λ; sj1)
(AND)

2. The key skf,j2 for function f is generated using mskj2 with rj2 and
related to mpkj2 which is generated using sj2 . Formally:

skf,j2 = KeyGen(mpkj2 ,mskj2 , f ; rj2) ∧ (mpkj2 ,mskj2) = Setup(1λ; sj2)

Fig. 21: Relation used in the setup consistency compiler

39

Game ct justification/remark

Gk

For i ≤ k
Enc(mpki, x0)

For i > k

Enc(mpki, x
1)

IND-CPA security of FE

Fig. 22: Overview of the games to prove the IND-CPA security preservation of the setup consistency compiler
described in Fig. 20.

Proof. To prove this statement, we use a hybrid argument with the games G0, . . . ,G3 as defined in Fig. 22.
Note that G0 corresponds to the game IND-CPAFE

0 (1λ,A) and G3 to the game IND-CPAFE
1 (1λ,A). By using

the triangle inequality, we get:

AdvIND-CPA
FE′,A (λ) ≤

3∑
i=k
|WinGk−1

A (1λ)−WinGk
A (1λ)| .

We conclude the proof by showing that for any k ∈ [3], there exists an adversary Bk, such that:

|WinGk−1
A (1λ)−WinGk

A (1λ)| ≤ AdvIND-CPA
FE,Bk (λ) .

The adversary B of the statement is defined as the monolithic adversary that first samples k ← [s]
uniformly at random and then runs the code of Bk.

We build an adversary Bk that simulates Gk+β towards A when interacting with the underlying IND-CPAFE
β

experiment.
In the beginning of the reduction, Bk receives mpkk from the experiment. It generates two other functional

encryption instances (mpki,mski)← Setup(1λ), for i ∈ [3] \ {k}, sets mpk′ = {mpki}i∈[3] and gives mpk′ to
the adversary.

Whenever A asks an encryption query (x0, x1), Bk forwards it to its own encryption oracle to receive
ctk ← Enc(mpkk, xβ), generates cti ← Enc(mpki, x1), for i < k, and cti ← Enc(mpki, x0), for i > k, on its
own and sends ct′ = {cti}i∈[3] to A.

For a key generation query f , Bk queries its own key generation oracle on f to receive skf,k ←
KeyGen(mpkk,mskk, f), generates skf,i ← KeyGen(mpki,mski, f) for i ∈ [3] \ {k} on its own and gener-
ates a proof π ← NIWI.Prove(y, w) with y = ({mpki}i∈[3], {skf,i}i∈[3], f), w = ({mski}i∈[3]\{k}, {ri}i∈[3]\{k},

{si}i∈[3]\{k}) for the relation Rset, by using its information of two-out-of-the-three different instances. As a
reply for the key generation query, Bk sends sk′f := ({skf,i}i∈[3], π) to A.

This covers the simulation of the game Gk+β . Finally Bk outputs the same bit β′ returned by A. It follows,
from the perfect simulation, that the advantage of Bk is the same as the advantage A. ut

CFE case. Due to the much stronger simulation-based security requirement of CFE, the existence of simulators
S1 (for setup generation), that outputs a simulated mpk and an initial (joint) state s = sinit, S2 for the
simulation of functional keys (based on the joint state s which might be update in this process), and finally
S3 for simulating ciphertexts (again with access to the joint state s) does formally not imply knowledge of
a master secret key that would be needed to create valid proofs for the relation Rset. Hence, the theorem
captures preservation only for a specific class of simulators and not all CFE secure schemes. We note that
for the brute-force scheme in Fig. 12 in Section 4 there exists a simulator that belongs to the class we are
proving the security preservation for.

More formally, we require S1 to output mpk and maintain state s such that (mpk,msk) = Setup(1λ; s)
holds with probability 1 in IdealFE(1λ,A,S). Additionally, we require that for any adversary A any functional
key skf output by S2 on input f satisfies skf = KeyGen(mpk,msk, f) with probability 1 in IdealFE(1λ,A,S)
where mpk and msk are the values obtained by Setup(1λ; s) where s is the initial private state output by S1.

40

Note that the simulator for the brute-force scheme described in [MM15] runs the normal setup-algorithm
in the simulation (and can hence provide the randomness used during the generation) and the master secret
key fixes all secret keys.

Theorem 6.13. Let FE = (Setup,KeyGen,Enc,Dec) be a CFE secure functional encryption scheme with
respect to simulators (S1,S2,S3) that satisfy the above condition in IdealFE(1λ,A,S) (for any adversary
A). Let further NIWI = (NIWI.Prove,NIWI.Verify) be a NIWI proof system for Rset (Fig. 21). Under the
assumption that KeyGen is deterministic, the construction FE′ defined in Figure 20 is CFE secure.

Proof. Under the theorem’s assumptions, the simulator S1’s output is essentially equivalent to the master
secret key. Together with the fact that key derivation is deterministic, we see that all NIWI proofs can be
simulated. More detailed, we can run three independent simulations of the FE scheme for the overall simulation.
That is, let S1,S2,S3 be the simulators for FE. Then the composite simulator S ′ = (S ′1,S ′2,S ′3) works as
follows: S ′1 runs S1 three times to obtain (mpki, si). To answer key-generation queries for functions f , S ′2 runs
S2 three times on the respective joint state (and the function values of all previous queries) to obtain skf,i.
Note that by the assumption on the simulation for the underyling scheme, for (mpki,mski) = Setup(1λ; si)
we have that skf,i = KeyGen(mpki,mski, f). By the theorem assumption, KeyGen is deterministic and hence
we have all witnesses to simulate a genuine proof π ← NIWI.Prove(y, w) with y = ({mpki}i∈[3], {skf,i}i∈[3], f)
and w = ({si}i∈[3], {ri}i∈[3]). Finally, simulating a ciphertext is done by invoking S3 three times on all three
simulated instances (and on the joint state and the function values of the actual plaintext). ut

Second Advanced Compiler. For the advanced setup consistency compiler that takes a CPA secure
scheme and achieves CCA security, we proceed in a similar way as in the input consistency case. This is
possible since security (in the sense of confidentiality) is only required w.r.t. an honest setup generator.
Therefore, as long as the stronger tools required by the Naor-Yung approach [NY90] do smoothly integrate
and not interfere with the tools needed to obtain setup consistency as of Theorem 6.11, we can follow a
similar path, but have to pay attention to the details regarding the interplay of the three FE instances. Due
to the fact that we already run three instances of the functional encryption scheme, we do not need to run
any additional instance, but we need to generate a NIZK proof for every generated encryption. In more detail,
we create a NIZK proof that shows that all of the three encryptions are generated in a valid way, i.e. there
exists a random ri and a message xi to create the ciphertext cti for all i ∈ [3]. The compiler is displayed
in Fig. 23.

The NIZK system here also needs to fulfill the notion of one-time simulation-soundness in this advanced
case. This leads to the following theorem:

Theorem 6.14. Let FE = (Setup,KeyGen,Enc,Dec) be an IND-CPA secure functional encryption scheme,
NIWI = (NIWI.Prove,NIWI.Verify) a NIWI proof system and NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify)
a NIZK proof system system satisfying one-time simulation soundness, then the construction FE′ defined in
Figure 23 is IND-CCA secure. Namely, for any PPT adversary A, there exist PPT adversaries B, B′ and B′′
such that:

AdvIND-CCA
FE′,A (λ) ≤ 2 · AdvZK

NIZK,B′(λ) + 3 · AdvSim-Sound
NIZK,B′ (λ) + 3 · AdvIND-CPA

FE,B′′ (λ).

Proof. To prove this statement, we use a hybrid argument with the games defined in Fig. 25. Note that G0
corresponds to the game IND-CCAFE

0 (1λ,A) and G3 to the game IND-CCAFE
1 (1λ,A). This results in:

AdvIND-CCA
FE′,A (1λ) = |WinG0

A (1λ)−WinG3
A (1λ)| .

We describe the different games in more detail:

Game G1: In this game, we change from an honestly generated CRS and honestly generated proofs to a
simulated CRS and simulated proofs. The transition from G0 to G1 is justified by the zero-knowledge
property of NIZK. Namely, in Lemma 6.15, we exhibit a PPT adversary B0 such that:

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

41

Setup′(1λ) :

CRS← NIZK.Setup(1λ)

For i ∈ [3]:

(mpki,mski)← Setup(1λ; si) with si ← {0, 1}λ

Return (mpk′,msk′) = (({mpki}i∈[3], CRS), {(mski, si)}i∈[3])

KeyGen′(mpk′,msk′, f) :

Parse mpk′ := ({mpki}i∈[3], CRS),msk′ := {(mski, si)}i∈[3]

For i ∈ [3]:

skf,i = KeyGen(mpki,mski, f ; ri) with ri ∈ {0, 1}λ

Generate πsk ← NIWI.Prove(y, w) with
y = ({mpki}i∈[3], {skf,i}i∈[3], f)

w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3])

where L is defined corresponding to Rset (Fig. 21)
Return sk′f = ({skf,i}i∈[3], πsk)

Enc′(mpk′, x) :

Parse mpk′ := ({mpki}i∈[3], CRS)

For i ∈ [3]:

cti ← Enc(mpki, x;ui) with ui ∈ {0, 1}λ

If ∃i ∈ [3] : cti = err return err

Generate πct ← NIZK.Prove(CRS, (mpki, cti)i∈[3], (x, {ui}i∈[3])),

for RCCA
set (Fig. 24)

If NIZK.Verify(CRS, (mpki, cti)i∈[3], πct) = 0 return err

Return ct′ = (mpk′, {cti}i∈[3], πct)

Dec′(mpk′, sk′f , f, ct′) :

Parse mpk′ := {mpki}i∈[3], sk
′
f = ({skf,i}i∈[3], πsk), ct′ = (mpk′′, {cti}i∈[3], πct)

If mpk′ = mpk′′

If NIZK.Verify(CRS, (mpki, cti)i∈[3], πct) = 1

If NIWI.Verify(({mpki}i∈[3], {skf,i}i∈[3], f), πsk) = 1

yf,i := Dec(mpki, skf,i, f, cti), for i ∈ [3]:
If there are indices a, b ∈ [3], a 6= b s.t. yf,a = yf,a

Return y ← MajVal(yf,1, yf,2, yf,3)
Return �

Fig. 23: Advanced setup consistency compiler. MajVal(·) calculates and returns the majority value of the
input values, if there is a clear majority and � otherwise. Shaded instructions again indicate the difference to
the simpler setup compiler.

42

Relation RCCA
set :

Instance: z = ({mpki}i∈[3], {cti}i∈[3])

Witness: w = (x, {ui}i∈[3])

RCCA
set (z, w) = 1 if and only if:

cti = Enc(mpki, x;ui) for all i ∈ [3]

Fig. 24: Relation used in the advanced setup consistency compiler

Game CRS & π ct justification/remark

G0
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

For i ∈ [3]
Enc(mpki, x0)

G1
CRS← S1(1λ)
π ← S2(CRS, τ, x)

For i ∈ [3]
Enc(mpki, x0)

Zero-knowledge of NIZK

G1.k
CRS← S1(1λ)
π ← S2(CRS, τ, x)

For i ≤ k

Enc(mpki, x
1)

For i > k

Enc(mpki, x0)

IND-CPA of FE and
one-time simulation-
soundness of NIZK

G2
CRS← S1(1λ)
π ← S2(CRS, τ, x)

For i ∈ [3]
Enc(mpki, x1)

G2 = G1.3

G3
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

For i ∈ [3]
Enc(mpki, x0)

Zero-knowledge of NIZK

Fig. 25: Overview of the games to prove the IND-CCA security of the advanced setup consistency compiler
described in Fig. 23.

43

Game G2: In this game, we change from an encryption of x0 to x1 in the three components of the ciphertext.
The transition from G1 to G2 is justified by the IND-CPA security of FE and the one-time simulation-
soundness of NIZK. Namely, in Lemma 6.17, we exhibit PPT adversaries B1 and B2 such that:

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ 3 · AdvSim-Sound
NIZK,B1

(λ) + 3 · AdvIND-CPA
FE,B2

(λ) .

Game G3: This game is the IND-CCAFE
1 (1λ,A) game. The transition from G4 to G5 is almost symmetric

to the transition from G0 to G1 except from the fact that the reduction encrypts x1 instead of x0. As
in Lemma 6.15, the transition is justified by the zero-knowledge property of NIZK. Namely, we can exhibit
a PPT adversary B0 such that:

|WinG3
A (1λ)−WinG4

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Putting everything together, we obtain the theorem. ut

Lemma 6.15 (Transition from G0 to G1). For any PPT adversary A, there exists a PPT adversary B0
such that

|WinG0
A (1λ)−WinG1

A (1λ)| ≤ AdvZK
NIZK,B0

(λ) .

Proof. We build an adversary B0 that simulates Gβ towards A when interacting with the underlying ZKNIZK
β

experiment.
In the beginning of the reduction, B0 receives CRS from the ZKNIZK

β experiment. It generates three functional
encryption instances (mpki,mski)← Setup(1λ; si) with si ← {0, 1}λ for i ∈ [3], sets mpk′ = (CRS, {mpki}i∈[3])
and gives mpk′ to the adversary.

Whenever A asks an encryption query (x0, x1), B0 generates the ciphertext cti = (Enc(mpki, x0;ui))i∈[3]
with ui ← {0, 1}λ for i ∈ [3] and sends y = (mpki, cti)i∈[3] and w = (x, {ui}i∈[3]) as a statement-witness pair
to its challenger. As an answer, B0 receives a proof πct for the relation RCCA

set . It sets ct′ = ({cti}i∈[3], πct) and
sends it to A.

For a key generation query f , B0 generates skf,i ← KeyGen(mpki,mski, f ; ri) with ri ← {0, 1}λ for i ∈ [3]
and creates a NIWI proof πsk over the relation Rset for the statement-witness pair y = ({mpki}i∈[3], {skf,i}i∈[3],

f) and w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3]). Then, B0 sends sk′f = ({skf,i}i∈[3], πsk) as a reply to A.
Whenever A submits a decryption query (f, ct′ = ({cti}i∈[2], πct)), B0 generates the functional keys ski,f ←

KeyGen(mpki,mski, f) for i ∈ [3] and executes NIZK.Verify(CRS, (mpki, cti)i∈[3]). If NIZK.Verify(CRS, (mpki,
cti)i∈[2]) = 1, B0 computes yf,i := Dec(mpki, f, skf,i, cti) for i ∈ [3] and sends the majority vote, y ←
MajVal(yf,1, yf,2, yf,3), to A. If the verification outputs 0, B0 sends ⊥ to A.

This covers the simulation of the game Gβ . Finally B0 outputs the same bit β′ returned by A. It follows,
from the perfect simulation, that the advantage of B0 is the same as the advantage of A. ut

As in [Lin03] and in the proof of Theorem 6.6, we prove a corollary that shows that whenever a decryption
oracle query is asked and this query contains a valid NIZK proof, then the corresponding ciphertext is
explainable under the queried function. This is necessary for the proof of the transition from G1 to G2 for the
simulation of the decryption oracle.

Proposition 6.16. For any PPT adversary A participating in G1.k for k ∈ [3], the probability that, during
the experiment, A queries its decryption oracle QDec with a function-ciphertext-pair that is not explainable
but has an accepting proof is negligible. Namely, we exhibit a PPT adversary B1, such that

Pr

∃(f, {ct′i}i∈[3], π
′) ∈ Q : ({ct′i}i∈[3], π

′) 6= ({ct′i}i∈[3], π
′),

NIZK.Verify(CRS, {ct′i}i∈[3], π
′) = 1 and for all i, j ∈ [3],

i 6= j : Dec(mpki, skf,i, ct′i) 6= Dec(mpkj , skf,j , ct′j)

 ≤ AdvSim-Sound
NIZK,B1

(λ),

where skf,i ← KeyGen(mpki,mski, f) for i ∈ [3], ({cti}i∈[3], π) is the reply to the encryption query (x0, x1)
made by A.where ({cti}i∈[3], π) is the reply to the encryption query (x0, x1) made by A and Q the list

44

containing all the decryption queries (f, {ct′i}i∈[2], π
′) asked by A, knowing the master public key mpk′ :=

(CRS, {mpki}i∈[2]), the reply to its challenge query ({cti}i∈[3], π) and by having access to the key generation
oracle KeyGen′(mpk′,msk′, ·), during the game.

Proof. We build an adversary B1 that simulates G1.k towards A when interacting with the underlying one-time
simulation-soundness experiment.

After the adversary B1 has received CRS from the underlying experiment, it generates (mpki,mski)←
Setup(1λ; si) with si ← {0, 1}λ for i ∈ [3], sets mpk′ := (CRS, {mpki}i∈[3]) and sends mpk′ to A. Whenever
A submits a key generation query f , B1 generates the functional keys skf,i ← KeyGen(mpki,mski, f ; ri)
for i ∈ [3] and creates a NIWI proof πsk over the relation Rset for the statement-witness pair y =
({mpki}i∈[3], {skf,i}i∈[3], f) and w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3]). Then, B1 sends sk′f = ({skf,i}i∈[3], πsk)
as a reply to A.

For the challenge query (x0, x1) asked by A, B1 computes cti = Enc(mpk1, x
1) for i ≤ k and cti =

Enc(mpki, x0) for i > k and asks its experiment for a simulated proof π of the statement (mpki, cti)i∈[3]. It
sets ct′ := ({cti}i∈[3], π) and sends ct′ to A.

Whenever A outputs a decryption query (f, ct′ := ({ct}i∈[3], π)), B1 verifies the proof. If the output
of the verification is 1, B1 computes yf,i = Dec(mpki, skf,i, cti) for all i ∈ [3]. Then, B1 computes y ←
MajVal(yf,1, yf,2, yf,3) and if y = � then B1 sends ({ct}i∈[3], π) as a proof forgery to its challenger. Otherwise
it sends y to A. If the verification outputs 0, B1 sends ⊥ to A. ut

After introducing and proving Proposition 6.16, we prove the transition from G1 to G2

Lemma 6.17 (Transition from G1 to G2). For any PPT adversary A, there exist PPT adversaries B1
and B2, such that

|WinG1
A (1λ)−WinG2

A (1λ)| ≤ 3 · AdvSim-Sound
NIZK,B1

(λ) + 3 · AdvIND-CPA
FE,B2

(λ) .

Proof. To prove that G1 is indistinguishable from G2 we apply a hybrid argument over the three slots.
Using the definition of the games in Fig. 25, we can see that

|WinG1
A (1λ)−WinG2

A (1λ)| ≤
3∑
k=1
|WinG1.k−1

A (1λ)−WinG1.k
A (1λ)| ,

where G1 corresponds to G1.0 and whereas G2 is identical to game G1.3.
Now, we bound the difference between each consecutive pair of games for all k ∈ [3]:

Corollary 6.18. For every k ∈ [3], there exist PPT adversaries B1 and B2.k such that

|WinG1.k−1
A (1λ)−WinG1.k

A (1λ)| ≤ AdvSim-Sound
NIZK,B1

(λ) + AdvIND-CPA
FE,B2.k

(λ) .

The adversary B of the statement is then defined as the monolithic adversary that first samples k ← [3]
uniformly at random and then runs the code of B1.k.

Proof. We build an adversary B2.k that simulates G1.(k−1+β) to A when interacting with the underlying
IND-CPAFE

β experiment.
In the beginning of the reduction, B2.k receives mpkk from the underlying experiment. It simulates a CRS,

i.e. (CRS, τ)← S1(1λ), generates several functional encryption instances (mpki,mski)← Setup(1λ; si) with
si ∈ {0, 1}λ for i ∈ [3] \ {k}, sets mpk′ := (CRS, {mpki}i∈[3]) and sends mpk′ to A. Whenever A submits a
key generation query f , B2.k forwards this query to its own key generation oracle KeyGen(mpkk,mskk, ·), to
receive skf,k as an answer. Then, B2.k generates skf,i ← KeyGen(mpki,mski, f ; ri) for i ∈ [3]\{k} by itself and
creates a NIWI proof πsk over the relation Rset for the statement-witness pair y = ({mpki}i∈[3], {skf,i}i∈[3], f)
and w = ({mski}i∈[3], {ri}i∈[3], {si}i∈[3]). Then, Bk.2 sends sk′f = ({skf,i}i∈[3], πsk) as a reply to A.

For the challenge query (x0, x1) asked by A, B2.k forwards it to its own encryption oracle and receives
ctk = Enc(mpkk, xβ) as an answer. It generates cti = Enc(mpki, x1;ui) with ui ← {0, 1}λ, for i < k, and

45

cti = Enc(mpki, x0;ui) with ui ← {0, 1}λ, for i > k, by itself, simulates a valid proof π of the relation RCCA
set

using the statment y = (mpki, cti)i∈[3], i.e. πct ← S2(CRS, τ, y) and sends ct′ := ({cti}i∈[3], πct) to A.
WheneverA asks a decryption query (f, ct′ := ({ct}i∈[3], πct)), B2.k first verifies the proof πct, i.e. it executes

NIZK.Verify(CRS, (mpki, cti)i∈[2], πct). If the verification outputs 1, B2.k generates skf,i ← KeyGen(mpki,mski,
f) for i ∈ [3] \ {k}, computes yf,i ← Dec(mpki, f, skf,i, cti) for i ∈ [3] \ {k} and y ← MajVal({yf,i}i∈[3]\{k}),
toA. Since Proposition 6.16 shows that for all ciphertext queries made byA that have a valid proof (except with
negligible probability), it holds that Dec(mpk1, f, skf,1, ct1) = Dec(mpk2, f, skf,2, ct2) = Dec(mpk3, f, skf,3, ct3).
Therefore, it is sufficient to generate the decryptions yf,1 and yf,2 and use them as the decryption output
and a reply for A. If the verification outputs 0, B2 sends ⊥ to A.

This covers the simulation of the game G1.(k−1+β). Finally B2 outputs the same bit β′ returned by A.
Together with the analysis of adversary B1, this yields the advantage mentioned in the lemma. ut

ut

Besides the security lifting, the compiler also achieves the desired setup consistency property. This can be
shown as in the proof for Theorem 6.11 .

Theorem 6.19. Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme, NIWI = (NIWI.Prove,
NIWI.Verify) a NIWI proof system for Rset (Fig. 21) and NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) a
NIZK proof system for RCCA

set (Fig. 24), then the construction FE′ = (Setup′,KeyGen′,Enc′,Dec′) defined
in Fig. 23 is setup consistent. Namely, for any PPT adversary A, exists a PPT adversary B such that

|Pr[set-CONSFE′(1λ,A) = 1]| ≤ AdvSound
NIWI,B(λ).

Proof (Sketch). The proof proceeds following the same reasoning as the proof of Theorem 6.11. The reason
is that the introduction of the additional proof of the ciphertext must always yield 1 (as otherwise, the
ciphertext will not be considered by set-CONS) and only those ciphertexts are considered by Dec′, as defined
in the compiler. Hence, we can invoke the same analysis, based on the invariant that for each ciphertext
ct′i = (cti, πi) (i = 1, 2), πi is valid therefore we can perform the identical case distinctions as in the proof
of Theorem 6.11 based on the ciphertexts cti. ut

6.3 Strong Input Consistency

In this section, we show that the verifiability property introduced in [BGJS16], can be understood as providing
strong input consistency. Due to this modular reduction, we also directly inherit their compiler, and in general
any compiler that achieves verifiable functional encryption.

We recall the syntax of VFE in Definition 2.16. In a nutshell, VFE extends standard FE by two additional
algorithms:
VerifyCT(mpk, ct): A predicate on ciphertexts (w.r.t. the public key) that decides whether ct is valid.
VerifySK(mpk, f, sk): A predicate on pairs (sk, f) (w.r.t. the public key) that decides whether the pair is a

valid key-function pair.

The verifiability property of [BGJS16] restated in Definition 2.17 of the supplemental material requires that
whenever VerifyCT(mpk, ct) = VerifySK(mpk, f, sk) = 1, we have Pr[Dec(mpk, f, sk, ct) = f(x)] = 1 (where
the implication must hold over all possible values of the involved arguments).

We define a simple compiler, defined Fig. 26, in that makes use of these two verification procedures to
achieve strong input consistency. Informally, the first algorithm is used as a ciphertext verification check (and
we return ⊥ if the check fails) and the second function is used to verify key-function pairs (and return � if
the check fails). Note that the transformation clearly preserves the confidentiality notion of the underlying
VFE scheme.

Theorem 6.20. Let VFE = (Setup,KeyGen,Enc,Dec,VerifyCT,VerifySK) be a verifiable functional encryption
scheme then the construction FE′ = (Setup′,KeyGen′,Enc′,Dec′) defined in Figure 26 is strongly input
consistent. Namely, for any PPT adversary A, it holds that:

|Pr[st-in-CONSFE′(1λ,A,Extract) = 1]| = 0 ,

46

Setup′(1λ) :

(mpk,msk)← Setup(1λ)
Return (mpk′,msk′) = (mpk,msk)
KeyGen′(mpk′,msk′, f) :

Parse mpk′ = mpk,msk′ = msk
skf = KeyGen(mpk,msk, f)
Return sk′f = skf
Enc′(mpk′, x) :

Parse mpk′ = mpkct = Enc(mpk, x)
Return ct′ = ct

Dec′(mpk′, f, sk′f , ct′) :

Parse mpk′ = mpk, sk′f = skf , ct′ = ct
If VerifyCT(mpk, ct) 6= 1

Return ⊥
If VerifySK(mpk, f, skf) 6= 1

Return �
y := Dec(mpk, f, skf , ct)
Return y

Fig. 26: Strong input consistency compiler

where Extract is the algorithm that always outputs unknown.

Proof. To prove the strong input consistency of the scheme FE′, we rely on the verifiability of the VFE scheme.
In more detail, we construct an adversary B that violates verifiability with the probability with which A wins
the strong input consistency experiment st-in-CONS.

In the beginning of the reduction, B receives a master public key mpk, two ciphertexts ct1, ct2, and a
tuple of secret keys with the corresponding functions {(skj , fj)}j∈[n] from A. In the next step, B computes
yj,i := Dec′(mpk′, fj , skj , cti) for all j ∈ [n], i ∈ {1, 2} and defines the set F as all the functional keys
that do not output �, i.e. F := {(skj , fj)}j∈[n]∧(yj,1 6=�∨yj,2 6=�). Let E denote the event that the intersection⋂
j∈[n],(·,fj)∈F f

−1
j (yj,i) is equal to ∅. We show that the occurrence of E contradicts the verifiability notion.

For the sake of contradiction, we assume that verifiability holds as stated. Now, we analyze the different
scenarios in which the intersection is empty and show that these cannot occur. For this purpose, we define
the events E1, E2, E3:

Event E1 denotes the case that if yj,i 6= ⊥ for a single j ∈ [n] and a fixed i ∈ {0, 1}, then yj,i 6= ⊥ for all
j ∈ [n] and the same fixed i ∈ {0, 1}. Event E2 denotes the case that if yj,i 6= � for a single i ∈ {0, 1} and a
fixed j ∈ [n], then yj,i 6= � for both i ∈ {0, 1} and the same fixed j ∈ [n]. The final event, event E3, denotes
the case that if yj,i /∈ {⊥, �}, then yj,i = fj(xi).

We start by analyzing event E1. Let one of the yj,i = ⊥ for a single j ∈ [n] and a fixed i ∈ {1, 2}. Now, if
VerifyCT was satisfied by cti, then by the verifiability condition, ⊥ is a valid output and thus by definition of
the special symbol ⊥, the only “preimage” explaining the output is ⊥ and all the decryptions of cti under
different functional keys would lead the same output. Therefore, under the above assumption, all other yj,i
must yield ⊥.

In the other case, the VerifyCT algorithm outputs 0 for the ciphertext cti (for a fixed i). However, then
the VerifyCT algorithm also outputs 0 on every other decrypt request since it is deterministic and does not
depend on any functional key skj′ , j′ ∈ [n] \ {j}. This leads to the fact that yj,i = ⊥ for all j ∈ [n] and a
fixed i ∈ {1, 2}. In this case, the intersection contains the ⊥ symbol.

For event E2, let one of the yj,i = � for a single i ∈ {1, 2} and a fixed j ∈ [n]. If this case occurs, then the
VerifySK algorithm must have output 0 for the functional key skj for a fixed j as otherwise, since by definition
of the special symbol �, there is no “preimage” explaining the output (and thus the verifiability property
violated). As before, the VerifySK algorithm also outputs 0 if it gets queried using another ciphertext cti′ but
the same functional key skj . This yields that yj,i′ = � for i′ 6= i and directly deletes the key skj from the list
F (due to the definition of F).

Finally, we analyze event E3. Let yj,i /∈ {⊥, �}, then both of the verify algorithms, VerifyCT and
VerifySK, output 1 in the decryption procedure. This ensures, together with the verifiability property,

47

i.e. Pr[Dec(mpk, fj , sk, cti) = fj(xi)] = 1, where fj is the function associated with skj and xi the plaintext
associated with cti, that yj,i = fj(xi).

Taking into account the analysis of event E1 and E2, the decryption yj′,i, corresponding to a different
functional key skj′ , is unequal to � (due to event E4 and the definition of F) and unequal to ⊥ (due to event
E1 and the fact that yj,i is a valid decryption). By doing the same analysis for yj′,i as for yj,i as in event E2,
we obtain that yj′,i = fj′(xi). We can do the same analysis for all the remaining yj′′,i with j′′ ∈ [n] \ {j, j′}
and therefore it follows that

⋂
j∈[n],(·,fj)∈F f

−1
j (yj,i) 6= ∅. The same analysis also needs to be done for the

second ciphertext cti′ with i′ 6= i.
This shows that event E cannot occur and therefore that the proposed construction achieves strong input

consistency. ut

By showing the relation above, our treatment nicely includes the verifiability property and hence the
analysis in the next section also gives a UC interpretation of the construction (achieved by both strong input
consistency and verifiability).

In comparison, our strong input consistency notion is more positioned as a property that an attacker tries
to break, rather than a general requirement of a scheme that holds for all arguments and follows directly as a
strengthening of input consistency.

While the verifiability property is also necessary for our concrete compiler (as long as Dec is deterministic),
strong input consistency does not achieve the verifiability property on its own. The reason for this is that
the definition of strong input consistency does not change the FE syntax, verification checks are inherently
done by Dec with access to at least one secret key. Thus, no guaranteed verifiability algorithm of the form
VerifyCT(mpk, ct) (or VerifySK(mpk, f, skf)) can be directly deduced from a generic FE scheme that is strongly
input-consistent according to our notion. Hence, our notion puts forth a seemingly weaker form of (implicit)
secret-key verifiability.

Also, when leaving the standard model (e.g. switching to the random-oracle model), Definition 2.17 could
technically be violated even though finding these values by an efficient adversary A—which the strong input
consistency definition asks for—might be infeasible. We further observe as an interesting open problem,
whether strong input consistent (and also verifiable) FE schemes exist that satisfy CCA or CFE security
(e.g., in the random-oracle model).

7 UC Consistency for Functional Encryption

Thanks to the foundational work of Matt and Maurer [MM15], we can accurately characterize the goal that
functional encryption tries to achieve in a constructive sense: the goal is to realize a repository, where an input
provider can store values x—and receive a unique handle h to access it—and where another entity can, using
the handle h, obtain the values f(x) if and only if the function f was explicitly granted for evaluation by a
third-party (the setup manager). This model puts forth a form of access control: even a malicious receiver
(or a coalition of malicious receivers) cannot obtain more information than what f(x) reveals. The goal of
plain functional encryption is to realize this strong repository from a public one, where the receivers have
read access to all values stored in the repository. While the treatment in [MM15] focuses on confidentiality
(in the sense that only the receiver is corrupted), we show how to extend the treatment to all other cases,
including malicious input providers and/or malicious setup generators. We thereby extend their functionality
to precisely capture the realistic composable notion of consistency in functional encryption. We then prove
that the security game we put forward in the previous sections are adequate characterization of this ideal
functionality. Furthermore, we directly model the case of multiple receivers.

In the following, we let F denote the concrete functionality class of an FE scheme (dropping the index
λ). We denote by f0 the distinguished leakage function and let F+ := F \ {f0}. We denote by X the input
domain and by Y the range of the functions. Further, let Q be a monotone predicate on function sets of F .
We further assume three distinct identifiers A, B, C. Furthermore, if x is an identifier, xi denotes the unique
identifier derived from x that includes a (prefix-free) encoding of the the number i.

48

The Ideal Functionality. Our ideal functionality FuncA,B,C,t
Rep,(F+,f0,Q) is a natural relaxation of the one

provided in [MM15] and is formally described below. The functionality is defined to interact with three types
of parties or roles, denoted by A for the input provider, B for the receiver or decryptor, and C for the third
party that manages setup and key distribution. The ideal functionality provides perfect confidentiality by
only allowing the corrupted receivers to learn the function values f(x) for inputs x of the input provider and
functions f assigned to the corrupted receivers.

Turning towards UC consistency, we see that it is a property that protects an honest receiver against
malicious input providers and/or setup generator: an honest receiver, when requested to provide the function
value corresponds to an entry in the repository, will always output values that are consistent with any function
he was assigned, i.e., he will never encounter a situation, in which a set of output values would indicate that
the underlying value in the repository can actually not exist. We separate two important aspects here:

– Consistency is the property that the input provider, at any time, is committed per handle h to a set
of possible valuesM⊆ X that are consistent with any output y generated by an honest receiver when
requesting the output of the function value for an assigned function f for handle h.

– Commitment to exactly one value per handle is captured via predicate Q(): if the set of functions R
assigned to the receiver satisfies Q(R), then the functionality enforces that to each handle h only one
value x ∈ X exists and must be fixed even if Alice is corrupted (if Alice is honest, the value is the value
provided by Alice). Once Q(R) = 1, the repository has an identical behavior to the one defined in [MM15].
Note that the predicate allows us to have a more realistic notion (because the task of a simulator is easier
since it does not need to extract the value x immediately when seeing a ciphertext).

Overview of the technical description. If A is corrupted, we allow it to not only provide inputs in the domain,
but also to specify that the input is not fixed (x = unknown), in which case the functionality associates with
a handle h a set of allowed values (initially the entire domain). However, these inputs are only allowed if the
set of functions assigned to the receivers Bi does not satisfy predicate Q(R), in which case the functionality
demands that the value assigned to handle h must be a singleton set. The functions assigned to the receivers
are steered by party C. Note that even if this party is corrupted, the only capability the setup manager has is
to stop the ideal functionality from accepting Alice’s inputs (which is unavoidable as Alice waits for the public
parameters of the system anyway). For an honest party Bi, the ideal functionality implements the following
guarantees: whenever requested to obtain an output value corresponding to a function f and handle h, f(x)
is returned, if the handle h is associated to a unique element x. Otherwise, the functionality lets the adversary
choose the return value y upon this request but enforces that the set of values assigned to handle h is reduced
accordingly to stay consistent with this output. For the sake of generality—and in order to make sure that
the behavior of the functionality can be captured as an efficient program as required in UC—we assume
an efficiently computable map preMap() at this step satisfying preMap(M, f, y) = {x′ ∈ M| f(x′) = y} to
formulate the ideal consistency guarantees. Finally, if the predicate Q(R) becomes satisfied at any point
during the execution, then the functionality enforces that the adversary commits to a unique value x at
this point. Additionally, as in [MM15], we assume a function getHandle that returns unique identifiers (but
abstract our treatment from a concrete instantiation).

We note that the above consistency checks are only enforced if party Bi is honest. If only receivers are
dishonest (i.e., the input provider and the setup manager are honest) then the functionality outputs f(x)
for the unique x input by honest party A if and only if f was either assigned by the setup manager C or if
the leakage function f = f0 is queried (which is exactly the behavior implemented in [MM15]). Last but not
least, note that we do not provide ideal confidentiality guarantees when either the input provider or the setup
manager are dishonest (e.g., a malicious setup generator could produce arbitrary secret keys and collude with
the corrupted receivers).

49

Functionality FuncA,B,C,t
Rep,(F+,f0,Q)

The functionality is parameterized by the function class F , a predicate Q(·) : 2F → {0, 1}, and by
three distinct party identities (of the dummy parties) interacting with the functionality denoted by
P := {A, B, C} (that identify a particular role), and the number t of decryptors/receivers.

Setup. Upon receiving input (setup, sid) via dummy party C (or from the adversary on behalf of
corrupted C), set setup ← true, Ri ← ∅, for each i ∈ [t]. Ignore the request if the party-id does not
correspond to C. Output (setup, sid) to the adversary to indicate that setup is completed.

Input. Upon receiving input (write, sid, x) via dummy party A (or from the adversary on behalf of
corrupted A), and if setup = true, do the following:
– If pid A is honest then verify that x ∈ X (ignore request otherwise). If party C is honest, then compute

handle h← getHandle and store M [h]← (x, {x}). Return (written, sid, h) to the calling party. If
party C is corrupted, then provide private delayed-output to the adversary and do the previous
actions only upon receiving ACK for this operation.

– If pid A is marked as corrupted and Q(∪ti=1Ri) holds, verify that x ∈ X ∪ {⊥} (and ignore the
request otherwise). Choose h← getHandle and store M [h]← (x, {x}). Output (written, sid, h) to
the adversary.

– If pid A is marked as corrupted and ¬Q(∪ti=1Ri), just verify that x ∈ X ∪ {⊥, unknown} (and ignore
the request otherwise) and perform the same actions as for the previous case.

Access Management. Upon receiving input (assign, sid, f, i) via dummy party C (or from the adversary
on behalf of C), do the following: if f ∈ F+, then update Ri ← Ri ∪ {f} and output (assigned, sid, f, i)
to the adversary.

Output. Upon receiving (read, sid, h, f) from some caller via dummy party Bi (or from the adversary on
behalf of corrupted B), first parse M [h] as (x,M). In case M [h] = ⊥, return noData.
– If Bi is honest do:

1. If f 6∈ Ri then give up activation. Otherwise, if x ∈ X and f ∈ Ri, then return (Read, sid, f(x))
to the caller; else if x = ⊥ then return (Read, sid,⊥) to the calling party. (? ? ?)

2. Otherwise, output (read, sid, h, f) to the adversary. Upon receiving (read, sid, h, f, (x, y)) from
the adversary, do the following:
(a) If x ∈M, set M [h]← (x, {x}). Output(Read, sid, f(x)) to the calling party.
(b) Else, if Q(∪ti=1Ri) (but x 6∈ M) then pick x′ at random fromM and store M [h]← (x′, {x′}).

Output (Read, sid, f(x′)) the calling party. (?)
(c) Else (i.e. ¬Q(∪ti=1Ri) and x 6∈ M) computeMnew ← preMap(M, f, y).

i. If Mnew = ∅ then pick x′ at random from M and store M [h] ← (x′, {x′}). Output
(Read, sid, f(x′)) the calling party. (??)

ii. Otherwise, update M [h] ← (unknown,Mnew) and output (Read, sid, y) to the calling
party.

– If Bi is marked as corrupted but none of A or C, then do:
1. If f ∈ Ri then return (Read, sid, f(x)) (for the x guaranteed to exist since the input provider

is honest) and if f = f0 then return (Read, sid, f0(x)) to the adversary. Otherwise, give up
activation.

– If Bi is corrupted alongside A or C, then output (read, sid, h, f) to the adversary and upon receiving
(read, sid, h, f, (x, y)) from the adversary output (read, sid, y) to the calling party.

Additional adversarial interaction.
– On top of the standard pid-wise corruption mechanism of UC, the following additional capability is

given to the adversary: If and only if some Bi and at least one more party among {A, C} is corrupted,
then the adversary is allowed to query (reveal, sid, h) upon which M [h] is revealed to the adversary.

50

Remark 7.1. As a minor observation, it is interesting to see how the additional universal encryption property,
as discussed in Definition 3.5, would strengthen the ideal world. The relatively small change would reduce the
power of the adversary when corrupting the setup manager C: instead of the capability to decide per message
whether a write request by the input provider succeeds (which is formalized above), the adversary could only
decide once and for all at the point the first message is written. We prove here the weaker version, since it is
not clear to what extent this additional guarantee simplifies the usage of FuncA,B,C,t

Rep,(F+,f0,Q) in applications.

The FE Protocol. We define the protocol πA,B,C,t
FE for parties A, Bi and C, where party A acts as an input

provider, parties Bi act as the receivers, and party C acts as the setup manager. The distribution of the
public key to the input provider and the receivers is done via an authentic broadcast channel between C
and A and between C and the receivers {Bi}i∈[t]. Note that we do not require broadcast from C to every
participant, but only to the set of parties having the same role, which is the minimal assumption we have
to make. (To see this, note that otherwise, there could be two parties with the same role that operate with
public parameters belonging to different schemes—among which clearly no consistency has to exist: for
example when one scheme deems all legitimate encryptions w.r.t. to the other public key invalid under its
own public key.) In addition, the protocol requires a point-to-point secret channel between C and each of
the receivers Bi. Finally, we assume a basic storage repository, where the input provider (and only the input
provider) can store messages of its choice (and only the receivers Bi can access them). Note that in UC,
these hybrid functionalities are defined and invoked by the protocol. Hence, if a scheme would require the
random oracle model, πA,B,C,t

FE would additionally invoke a random-oracle functionality (which is needed to
achieve CFE security for example). The channel functionalities and the basic real-world repository are given
in Appendix C.1 for completeness. In a nutshell, the protocol works as follows: Party C generates the public
keys (and sends them to the other parties) and assigns functions to parties Bi by sending the functional keys.
Party A does provide the input to the real-world repository by encrypting the input x ∈ X , and storing valid
ciphertexts in the repository. Using the obtained handle h, the ciphertext can be accessed by some party Bi
and decrypted using a (valid) sk corresponding to an assigned function f and the result is provided as output.
The protocol is specified below.

UC Realization. We provide a detailed security analysis with respect to the different corruption sets
possible in the system and conclude that each of our consistency games captures exactly what we intended.
The theorem therefore also gives guarantees for a scheme that does only achieve a subset of the properties
(such as CFE and setup or input consistency): in this case, the scheme can only be safely used in contexts,
where certain people are trusted.12

Theorem 7.2. FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme for functionality class F ,
let Q be a monotone predicate 2F → {0, 1}, and let A, B, C be three identifiers. Protocol πA,B,C,t

FE UC-realizes
FuncA,B,C,t

Rep,(F+,f0,Q) (under static corruption) under the following conditions:

– If party A is corrupted, and C is honest (and potentially a subset of receivers is corrupted), then in-CONS
w.r.t. a Q-extractable algorithm Extract is a sufficient requirement on FE such that πA,B,C,t

FE realizes
FuncA,B,C,t

Rep,(F+,f0,Q).
– If party C is corrupted and party A is honest (and possibly a subset of receivers are corrupted), then

set-CONS is a sufficient requirement on FE such that πA,B,C,t
FE realizes FuncA,B,C,t

Rep,(F+,f0,Q).
– If parties A and C are corrupted (and possibly a subset of receivers are corrupted), then st-in-CONS
w.r.t. a Q-extractable algorithm Extract is a sufficient requirement on FE such that πA,B,C,t

FE realizes
FuncA,B,C,t

Rep,(F+,f0,Q).
– If both A and C are honest, and only a subset of receivers is corrupted, then CFE security is a sufficient
requirement on FE such that πA,B,C,t

FE realizes FuncA,B,C,t
Rep,(F+,f0,Q).

12 Technically, this could even be enforced by the UC model in that certain parties are marked incorruptible and the
corresponding protocol would ignore corruption requests.

51

Protocol πA,B,C,t
FE

– Upon each invocation, protocol πA,B,C,t
FE first verifies that this ITIs party identifier matches pid ∈ {A, Bi, C}

(i ∈ [t]) and rejects the message otherwise. This means that the ITI running the protocol must have the
extended identity eidpid = (πA,B,C,t

FE , sid||pid) for some sid and pid ∈ {A, Bi, C} (for some i ∈ [t]).
– Depending on the encoded pid, match the input to the following commands:
pid = C: The behaviour of the manager is as follows:

• On input (setup, sid) execute (mpk,msk) ← Setup(), store the pair internally and send mpk via
FunceidC,eidA

auth to the input provider and via FunceidC,eidB1 ,...,eidBt
auth to the decryptor.

• On input (assign, sid, f, i), ensure that f ∈ F and otherwise ignore the input. Execute skf =
KeyGen(mpk,msk, f) and send skf via FunceidC,eidBi

sec to the decryptor.

pid = A: The behaviour of the input provider is as follows:
• On input (write, sid, x), ensure that x ∈ X and that an msk has been received (otherwise ignore the

input). Then, execute ct← Enc(mpk, x) and if ct 6= err output (write, sid, ct) to FuncA,B,t
basic-rep,C and

return the obtained handle h from the basic repository back to the caller by returning (Written, sid, h).
(Give up activation if an error occurs).
• On receiving the master public key msk from FunceidC,eidA

auth and if this is the first time the key is
delivered, store it internally for future reference. Ignore any future message from the channel.

pid = Bi: The behaviour of the decryptor is as follows:

• On input (read, sid, h, f) output (read, sid, h) to FuncA,B,t
basic-rep,C to obtain a ciphertext ct. If no

ciphertext is received or a pair (skf , f) is not recorded, then give up activation. Next, execute
y ← Dec(mpk, f, skf , ct) for each candidate pair (skf , f) recorded and delete the pair if y = � is
obtained. Finally, give up the activation if all values returned �. Otherwise, return the first y ∈ Y∪{⊥}
obtained by decrypting and output (Read, sid, y) to the caller.

• On receiving the master public key mpk from FunceidC,eidB1 ,...,eidBt
auth and if this is the first time the

master public key is delivered, store it internally for future reference.
• On receiving a pair (sk, f) from FunceidC,eidBi

sec and if f ∈ F , then store the pair (sk, f) in the list of
received functional keys.

– Ignore the input if no case applies.

Additionally, in-CONS, set-CONS, and st-in-CONS are the respectively necessary requirements on the scheme
FE in order for πA,B,C,t

FE to realize the specified security guarantees by FuncA,B,C,t
Rep,(F+,f0,Q) w.r.t. a given corruption

set in the above listing.
Note that the second part of the theorem justifies our game-based notions for consistency and matches our
motivation. We refer to Appendix C for the proof.

References
ABG+13. P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation and applications.

Cryptology ePrint Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689. (Page 57.)
ABG19. M. Abdalla, F. Benhamouda, and R. Gay. From single-input to multi-client inner-product functional

encryption. In ASIACRYPT 2019, Part III, LNCS 11923, pages 552–582. Springer, Heidelberg, December
2019. (Page 57.)

ABKW19. M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner. Decentralizing inner-product functional
encryption. In PKC 2019, Part II, LNCS 11443, pages 128–157. Springer, Heidelberg, April 2019.
(Page 57.)

ABN10. M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In TCC 2010, LNCS 5978, pages 480–497.
Springer, Heidelberg, February 2010. (Pages 2 and 3.)

ACF+18. M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input functional encryption for inner
products: Function-hiding realizations and constructions without pairings. In CRYPTO 2018, Part I,
LNCS 10991, pages 597–627. Springer, Heidelberg, August 2018. (Page 8.)

52

http://eprint.iacr.org/2013/689

AGRW17. M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product functional encryption from
pairings. In EUROCRYPT 2017, Part I, LNCS 10210, pages 601–626. Springer, Heidelberg, April / May
2017. (Page 22.)

AGVW13. S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption: New perspectives and
lower bounds. In CRYPTO 2013, Part II, LNCS 8043, pages 500–518. Springer, Heidelberg, August 2013.
(Page 1.)

AJ15. P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional encryption. In
CRYPTO 2015, Part I, LNCS 9215, pages 308–326. Springer, Heidelberg, August 2015. (Page 57.)

AKW18. S. Agrawal, V. Koppula, and B. Waters. Impossibility of simulation secure functional encryption even
with random oracles. In TCC 2018, Part I, LNCS 11239, pages 659–688. Springer, Heidelberg, November
2018. (Page 1.)

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from standard
assumptions. In CRYPTO 2016, Part III, LNCS 9816, pages 333–362. Springer, Heidelberg, August 2016.
(Pages 3, 22, 23, and 37.)

BBL17. F. Benhamouda, F. Bourse, and H. Lipmaa. CCA-secure inner-product functional encryption from
projective hash functions. In PKC 2017, Part II, LNCS 10175, pages 36–66. Springer, Heidelberg, March
2017. (Pages 1 and 6.)

BCP14. E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In TCC 2014, LNCS 8349, pages
52–73. Springer, Heidelberg, February 2014. (Page 57.)

BF01. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In CRYPTO 2001, LNCS
2139, pages 213–229. Springer, Heidelberg, August 2001. (Page 1.)

BF13. M. Barbosa and P. Farshim. On the semantic security of functional encryption schemes. In PKC 2013,
LNCS 7778, pages 143–161. Springer, Heidelberg, February / March 2013. (Page 1.)

BGG+90. M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Rogaway. Everything
provable is provable in zero-knowledge. In CRYPTO’88, LNCS 403, pages 37–56. Springer, Heidelberg,
August 1990. (Pages 3 and 8.)

BGJS15. S. Badrinarayanan, D. Gupta, A. Jain, and A. Sahai. Multi-input functional encryption for unbounded
arity functions. In ASIACRYPT 2015, Part I, LNCS 9452, pages 27–51. Springer, Heidelberg, Novem-
ber / December 2015. (Page 57.)

BGJS16. S. Badrinarayanan, V. Goyal, A. Jain, and A. Sahai. Verifiable functional encryption. In ASIACRYPT 2016,
Part II, LNCS 10032, pages 557–587. Springer, Heidelberg, December 2016. (Pages 2, 3, 4, 5, 10, 17, 46,
and 57.)

BKS18. Z. Brakerski, I. Komargodski, and G. Segev. Multi-input functional encryption in the private-key setting:
Stronger security from weaker assumptions. Journal of Cryptology, 31(2):434–520, April 2018. (Page 57.)

BL12. D. J. Bernstein and T. Lange. Computing small discrete logarithms faster. In INDOCRYPT 2012, LNCS
7668, pages 317–338. Springer, Heidelberg, December 2012. (Page 23.)

BO13. M. Bellare and A. O’Neill. Semantically-secure functional encryption: Possibility results, impossibility
results and the quest for a general definition. In CANS 13, LNCS 8257, pages 218–234. Springer, Heidelberg,
November 2013. (Page 1.)

BOV07. B. Barak, S. J. Ong, and S. P. Vadhan. Derandomization in cryptography. SIAM J. Comput., 37(2):380–400,
2007. (Pages 3, 8, 9, and 10.)

BP15. N. Bitansky and O. Paneth. ZAPs and non-interactive witness indistinguishability from indistinguishability
obfuscation. In TCC 2015, Part II, LNCS 9015, pages 401–427. Springer, Heidelberg, March 2015. (Pages 3,
8, 9, and 10.)

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In TCC 2011,
LNCS 6597, pages 253–273. Springer, Heidelberg, March 2011. (Pages 1, 5, 6, 18, 21, and 22.)

Can01. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October 2001. (Pages 3, 56, and 57.)

CC18. P. Chaidos and G. Couteau. Efficient designated-verifier non-interactive zero-knowledge proofs of knowledge.
In EUROCRYPT 2018, Part III, LNCS 10822, pages 193–221. Springer, Heidelberg, April / May 2018.
(Page 37.)

CDG+18a. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentralized multi-client functional
encryption for inner product. In ASIACRYPT 2018, Part II, LNCS 11273, pages 703–732. Springer,
Heidelberg, December 2018. (Page 57.)

CDG+18b. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Multi-client functional encryption
with repetition for inner product. Cryptology ePrint Archive, Report 2018/1021, 2018. https://eprint.
iacr.org/2018/1021. (Page 57.)

53

https://eprint.iacr.org/2018/1021
https://eprint.iacr.org/2018/1021

CH19. G. Couteau and D. Hofheinz. Designated-verifier pseudorandom generators, and their applications. In
EUROCRYPT 2019, Part II, LNCS 11477, pages 562–592. Springer, Heidelberg, May 2019. (Page 37.)

CVW+18. Y. Chen, V. Vaikuntanathan, B. Waters, H. Wee, and D. Wichs. Traitor-tracing from LWE made simple
and attribute-based. In TCC 2018, Part II, LNCS 11240, pages 341–369. Springer, Heidelberg, November
2018. (Page 37.)

Dam92. I. Damgård. Towards practical public key systems secure against chosen ciphertext attacks. In CRYPTO’91,
LNCS 576, pages 445–456. Springer, Heidelberg, August 1992. (Page 3.)

DDN00. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing, 30(2):391–
437, 2000. (Page 3.)

DIJ+13. A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth, and G. Persiano. On the achievability of simulation-
based security for functional encryption. In CRYPTO 2013, Part II, LNCS 8043, pages 519–535. Springer,
Heidelberg, August 2013. (Page 1.)

EHK+13. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for Diffie-Hellman
assumptions. In CRYPTO 2013, Part II, LNCS 8043, pages 129–147. Springer, Heidelberg, August 2013.
(Page 7.)

FLPQ13. P. Farshim, B. Libert, K. G. Paterson, and E. A. Quaglia. Robust encryption, revisited. In PKC 2013,
LNCS 7778, pages 352–368. Springer, Heidelberg, February / March 2013. (Pages 3 and 4.)

For87. L. Fortnow. The complexity of perfect zero-knowledge (extended abstract). In 19th ACM STOC, pages
204–209. ACM Press, May 1987. (Pages 3 and 8.)

GGG+14. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-S. Zhou. Multi-
input functional encryption. In EUROCRYPT 2014, LNCS 8441, pages 578–602. Springer, Heidelberg,
May 2014. (Page 57.)

GGH+13. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society
Press, October 2013. (Page 57.)

GGHZ16. S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional encryption without obfuscation. In TCC 2016-A,
Part II, LNCS 9563, pages 480–511. Springer, Heidelberg, January 2016. (Page 57.)

GKP+13. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable garbled circuits
and succinct functional encryption. In 45th ACM STOC, pages 555–564. ACM Press, June 2013. (Pages 37
and 57.)

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem for
protocols with honest majority. In 19th ACM STOC, pages 218–229. ACM Press, May 1987. (Pages 3
and 8.)

GNR19. R. Géraud, D. Naccache, and R. Rosie. Robust encryption, extended. In CT-RSA 2019, LNCS 11405,
pages 149–168. Springer, Heidelberg, March 2019. (Page 4.)

GOS06. J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive zaps and new techniques for NIZK. In CRYPTO 2006,
LNCS 4117, pages 97–111. Springer, Heidelberg, August 2006. (Pages 3, 8, 9, 10, and 37.)

GPSW06. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control
of encrypted data. In ACM CCS 2006, pages 89–98. ACM Press, October / November 2006. Available as
Cryptology ePrint Archive Report 2006/309. (Page 1.)

Gro06. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In
ASIACRYPT 2006, LNCS 4284, pages 444–459. Springer, Heidelberg, December 2006. (Page 37.)

GVW12. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded collusions via
multi-party computation. In CRYPTO 2012, LNCS 7417, pages 162–179. Springer, Heidelberg, August
2012. (Pages 1 and 57.)

IZ15. V. Iovino and K. Zebrowski. Simulation-based secure functional encryption in the random oracle model.
In LATINCRYPT 2015, LNCS 9230, pages 21–39. Springer, Heidelberg, August 2015. (Page 1.)

KNYY19. S. Katsumata, R. Nishimaki, S. Yamada, and T. Yamakawa. Designated verifier/prover and preprocessing
NIZKs from Diffie-Hellman assumptions. In EUROCRYPT 2019, Part II, LNCS 11477, pages 622–651.
Springer, Heidelberg, May 2019. (Page 37.)

KSW08. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations,
and inner products. In EUROCRYPT 2008, LNCS 4965, pages 146–162. Springer, Heidelberg, April 2008.
(Page 1.)

Lin03. Y. Lindell. A simpler construction of cca2-secure public-key encryption under general assumptions. In
EUROCRYPT 2003, LNCS 2656, pages 241–254. Springer, Heidelberg, May 2003. (Pages 35 and 44.)

LW11. A. B. Lewko and B. Waters. Decentralizing attribute-based encryption. In EUROCRYPT 2011, LNCS
6632, pages 568–588. Springer, Heidelberg, May 2011. (Page 4.)

54

MM15. C. Matt and U. Maurer. A definitional framework for functional encryption. In IEEE 28th Computer
Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015, pages 217–231, 2015.
(Pages 1, 2, 3, 6, 7, 11, 13, 21, 22, 41, 48, 49, 61, and 62.)

Nao03. M. Naor. On cryptographic assumptions and challenges (invited talk). In CRYPTO 2003, LNCS 2729,
pages 96–109. Springer, Heidelberg, August 2003. (Page 13.)

NY90. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In
22nd ACM STOC, pages 427–437. ACM Press, May 1990. (Pages 3, 32, and 41.)

O’N10. A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556,
2010. http://eprint.iacr.org/2010/556. (Page 1.)

Pol00. J. M. Pollard. Kangaroos, monopoly and discrete logarithms. Journal of Cryptology, 13(4):437–447,
September 2000. (Page 23.)

PS19. C. Peikert and S. Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors. In
CRYPTO 2019, Part I, LNCS 11692, pages 89–114. Springer, Heidelberg, August 2019. (Page 37.)

QRW19. W. Quach, R. D. Rothblum, and D. Wichs. Reusable designated-verifier NIZKs for all NP from CDH. In
EUROCRYPT 2019, Part II, LNCS 11477, pages 593–621. Springer, Heidelberg, May 2019. (Page 37.)

RSS19. R. D. Rothblum, A. Sealfon, and K. Sotiraki. Towards non-interactive zero-knowledge for NP from LWE.
In PKC 2019, Part II, LNCS 11443, pages 472–503. Springer, Heidelberg, April 2019. (Page 37.)

Sah99. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In 40th
FOCS, pages 543–553. IEEE Computer Society Press, October 1999. (Page 9.)

SIR+20. N. Soroush, V. Iovino, A. Rial, P. B. Roenne, and P. Y. A. Ryan. Verifiable inner product encryption scheme.
Cryptology ePrint Archive, Report 2020/122, 2020. https://eprint.iacr.org/2020/122. (Page 4.)

SW05. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, LNCS 3494, pages
457–473. Springer, Heidelberg, May 2005. (Page 1.)

55

http://eprint.iacr.org/2010/556
https://eprint.iacr.org/2020/122

A Overview of the UC Framework

We use the universal composability (UC) framework introduced by Canetti [Can01] and provide a brief
overview in this section. The goal of the UC framework is to capture what it means for a protocol to securely
carry out a task. For this, we need to describe an ideal process and prove that no (efficient) environment
can distinguish the real process and the ideal process, where the real-process is an execution of the protocol.
Ideal processes are typically captured by ideal functionalities, which can be thought of as an incorruptible
machine providing capabilities to different parties. These guarantees can depend on the corruption status of
the parties in the system.

Protocol and protocol instances. Formally, a protocol π is an algorithm for a distributed system and formalized
as an interactive Turing machine. An ITM has several tapes, for example an identity tape (read-only), an
activation tape, or input/output tapes to pass values to its program and return values back to the caller. A
machine also has a backdoor tape where (especially in the case of ideal functionalities) interaction with an
adversary is possible or corruption messages are handled. While an ITM is a static object, UC defines the
notion of an ITM instance (denoted ITI), which is defined by the extended identity eid = (M, id), where M
is the description of an ITM and id = (sid,pid) is a string consisting of a session identifier sid and a party
identifier pid ∈ P . An instance, also called a session, of a protocol π (represented as an ITM Mπ) with respect
to a session number sid is defined as a set of ITIs {(Mπ, idpid)}pid∈P where idpid = (sid,pid).

The real process can now be defined by an environment Z (a special ITI) that spawns exactly one session
of the protocol in the presence of an adversary A (also a special ITI), where A is allowed to corrupt ITIs and
gain their control. Which ITIs and in which form they can be corrupted is defined in a corruption model. In
this work, we follow the static corruption model, which says that a party is either corrupted right from the
beginning of the execution, or never. While static corruption is often needed when encryption schemes are
involved, it also makes it possible to reason in a fine-grained fashion about the security of a system by looking
at the specific set of corrupted parties. We note that this corruption set in the system is always known to the
environment.

The output of the execution is the bit output by Z and is denoted by execπ,A,Z(k, z, r) where k is the
security parameter, z ∈ {0, 1}∗ is the input to the environment, and randomness r for the entire experiment.
Let execπ,A,Z(k, z) denote the random variable obtained by choosing the randomness r uniformly at random
and evaluating execπ,A,Z(k, z, r). Let execπ,A,Z denote the ensemble {execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

Ideal-world process The ideal process is formulated with respect to an ITM Func which is called an ideal
functionality. In the ideal process, the environment Z interacts with Func, an ideal-world adversary (often
called the simulator) S and a set of trivial, i.e., dummy ITMs representing the protocol machines that forward
to the functionality whatever is provided as inputs to them by the environment (and return back whatever
received from the functionality). In the ideal world, the ideal-world adversary (aka the simulator) can decide
to corrupt parties. All corruptions are handled by the functionality which can assign more or less capabilities
to the adversary depending on which parties are declared as corrupted in the system.

We denote the output of this ideal-world process by execFunc,A,Z(k, z, r) where the inputs are as in
the real-world process. Let execFunc,S,Z(k, z) denote the random variable obtained by choosing the ran-
domness r uniformly at random and evaluating execFunc,S,Z(k, z, r). Let execFunc,S,Z denote the ensemble
{execFunc,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Hybrid worlds To model setup, the UC framework knows so-called hybrid worlds, which are worlds where the
protocol under considerations invoke make use of ideal functionalities as subroutines (i.e., they invoke an
ideal process as a subroutine). In this work, we use an authenticated repository and channel as assumed ideal
functionalities.

Secure Realization and Composition In a nutshell, a protocol securely realizes an ideal functionality Func
if the real-world process (where the protocol is executed) is indistinguishable from the ideal-world process
(relative to Func):

56

Definition A.1. Let us denote by X = {X(k, z)}k∈N,z∈{0,1}∗ and Y = {Y (k, z)}k∈N,z∈{0,1}∗ two distribution
ensembles over {0, 1}. We say that X and Y are indistinguishable if for any c, d ∈ N there exists a k0 ∈ N
such that |Pr[X(k, z) = 1]− Pr[Y (k, z) = 1]| < k−c for all k > k0 and all z ∈

⋃
κ≤kd{0, 1}κ. We use the

shorthand notation X ≈ Y to denote two indistinguishable ensembles.

Definition A.2. Let Func be an ideal functionality and let π be a protocol. We say that π securely realizes
Func if for any (efficient) adversary A there exists an (efficient) ideal-world adversary (the simulator) S such
that for every (efficient) environment Z it holds that execπ,A,Z ≈ execFunc,S,Z , as defined above.

Note that the definition in [Can01] allows to capture in a more fine-grained way the context in which
a protocol is executed as a further condition on the environment. We do not need this in our work and
the statement holds for all contexts. The realization notion is composable, which is roughly speaking the
guarantee that whenever in a certain context, the ideal process is used (e.g. as setup in a hybrid world) then
it can be replaced by the protocol realizing it.

B Consistency for Different Types of Functional Encryption

In the present treatment we considered the standard public-key single-input FE setting. Nevertheless, our
consistency notions can be relevant also when considering other FE settings. In particular it is easy to extend
our treatment and results to give some meaningful guarantees for secret-key [ABG+13,BCP14,GGH+13,
GGHZ16,GKP+13,GVW12] and multi-input/multi-client FE [GGG+14,BGJS15,AJ15,BKS18]. It is worth
noting that stronger (more tailored) notions of consistency might be conceivable in these cases, which depends
on the intended applications. This may lead to a new modeling of these properties as an interesting further
direction.

For secret-key FE, since the input provider and the setup generator is one party (e.g., consider medical
record and a system that assigns different access rights to different doctors) strong input consistency seems
to be the only reasonable formulation and is basically covered in the verifiable FE paper [BGJS16].

Regarding Multi-Client FE, our notion still ensures that it is not efficiently possible to output a ciphertext
ct (now consisting of n components) such that ct would not be explainable by a vector of input values
(x1, . . . , xn) given output values yi (derived from ct) for functions fi. However, a stronger notion could be
derived and analyzed in the UC setting that captures consistency across the components of a ciphertext (while
allowing also ciphertexts that can be “mixed”). In the Multi-client setting, our notion gives again similar
guarantees as above where the master public key is a vector. In this setting, it must be impossible to generate
a ciphertext that yields inconsistent output values in the sense that no input vector (x1, . . . , xn) would exist.
As in the case of Multi-Client FE, it might be interesting to define stronger and more specific notions of
consistency for this setting. Especially setup consistency remains important in the case of Decentralized
Multi-Client FE [CDG+18a,CDG+18b,ABKW19,ABG19], where a part of Charlie’s task, i.e., the functional
key generation, is distributed among the clients. Although these schemes are proven with respect to a passive
adversary, as soon as moving to the active case, consistency, as we define it in this work, is needed.

C Details Of the UC Analysis

C.1 Assumed Functionalities

For completeness, we describe here the channels that we assume as setup in this work. The authenticated
broadcast channel between sender S and receiver R leaks the message to the adversary. We assume that the
functionality follows the standard UC corruption model, i.e., in case sender S is corrupted, the adversary can
choose the message that is sent but cannot send different messages to different recipients. Note that since we
consider static corruption, our channels are slightly simplified in that we do not have to capture the case that
a message that has been input before would be changed before delivery (since either the sender is corrupted
upon sending or he is never corrupted).

57

Functionality FuncS,R1,...,Rn
auth

The functionality is parameterized by sender (extended) identity S and receiver (extended) identities Ri.
The functionality initializes an empty array M .

– On input (Send, sid,m) from S, store M ←M ||m and output (Sent,m) to every Ri.
– Upon input (GetMsgs, sid) from the adversary (on the backdoor tape) output M to the adversary.

Furthermore, we have point-to-point secure channels that are specified as follows:

Functionality FuncS,Rsec

The functionality is parameterized by sender S and receiver R. The functionality initializes an empty
array M .

– On input (Send, sid,m) from S, store M ←M ||length(m) and output (Sent,m) to R.
– Upon input (GetMsgs, sid) from the adversary (on the backdoor tape) output M to the adversary.

The assumed, real-world repository is defined as follows:

Functionality FuncA,B,t
basic-rep,C

The functionality is parameterized by a set C ⊆ {0, 1}∗ and the party identifiers A, Bi, i ∈ [t], it interacts
with. The functionality manages a lookup table M , which is initially empty.

Input. Upon receiving (write, sid, x) from a party with party-id A do: If c ∈ C, then compute handle
h← getHandle and store M [h]← c. Return h to the calling party.

Output. Upon receiving (read, sid, h) from a party with party-id Bi, i ∈ [t], do: If M [h] = ⊥ then return
noData. Otherwise, i.e., if M [h] ∈ C, return M [h] to the calling party.

C.2 Proof of the UC Realization (Theorem 7.2)

Proof. We start by proving the first part of the theorem and only then prove the necessary direction.

Consistency implies the UC realization. We first describe the simulator S for the dummy UC adversary D,
which basically means that S receives the instructions by the environment Z. We are in the static corruption
case and thus can structure the proof by a case distinction according to the actual corruption set in the
system to obtain the detailed claims of the theorem for each case, which we cast as separate lemmata below.

Simulation with only a corrupted input provider. Upon receiving (setup, sid) from FuncA,B,C,t
Rep,(F+,f0,Q),

the simulator S executes (msk,mpk) ← Setup() to obtain the master public and private key and provides
mpk to the environment as the message received by the dishonest input provider and decryptors (or leaked
by the authenticated broadcast channel). Upon receiving (assigned, sid, f, i) from FuncA,B,C,t

Rep,(F+,f0,Q) then S
computes F0 ← F0∪{f} (where F0 is initially empty) and evaluates skf ← KeyGen(mpk,msk, f) and provides
skf to the environment when asked (read, sid) (meant for the secure channel between the setup generator
and some corrupted decryptor that receives the functional key for f). Finally, update F ← F ∪ {(skf , f)}
(again F is initially empty).

When given the adversarial input (write, sid, ct) (an input meant for the real-world repository), the
simulator does the following: it computes x← Extract(ct, F) and outputs (write, sid, x) to FuncA,B,C,t

Rep,(F+,f0,Q)
in the name of A and returns the obtained handle to the environment.

58

Upon receiving (read, sid, h, f) from FuncA,B,C,t
Rep,(F+,f0,Q), recall the ciphertext ct associated to h (previously

input by the corrupted input provider). Then compute y ← Dec(mpk, f, skf , ct), run x← Extract(ct, F), and
provide the input (read, sid, h, f, (x, y)) to FuncA,B,C,t

Rep,(F+,f0,Q).
If any receiver is corrupted, the adversary can instruct them to input (read, sid, h) to directly obtain the

ciphertext associated to h. The simulated answer simply returns the previously input ciphertext ct for handle
h.

Lemma C.1. For any environment Z (and dummy adversary) with non-negligible advantage in distinguishing
the real and ideal worlds (w.r.t. simulator S above) when only corrupting party A (and possibly a subset of
the receivers), we give a reduction ρ1 to construct an adversary A := ρ1(Z) that violates (at least one of)
input-consistency or Q-extractability with non-negligible probability.

Proof. For the reduction to the input-consistency game, consider the following events defined in the real-world
execution: Let E1 denote the event that at any point in the execution of Z (with the protocol and dummy
adversary D), there is a handle h such that the set of associated output values y(h)

i obtained by party B on
queries (read, h, fi) are such that {x′ ∈M|∀i : f(x′) = y

(h)
i } = {}. Further, let E2 be the event that at any

point in the execution, Extract(ct, F) 6∈ X ∪ {⊥} but Q(F0), where F and F0 are the assigned functions and
function-key pairs, respectively.

As long as ¬E1 ∩¬E2 holds in the execution, the simulator S executes the real-world view perfectly, since
none of the instructions marked with (?) and (??) must be ever executed in the ideal world and any value
y returned to an honest decryptor is explainable by an element x ∈ X ∪ {⊥} that fulfills f(x) = y for the
queried function f ∈ F (and thus also � is never observed).

Hence, let A := ρ1(Z) be the consistency adversary that internally runs Z and emulates the real-world
view towards Z, i.e., upon any request by Z, ρ1 emulates the actions of the protocol when generating its replies
to Z. Note that such an emulation is possible with access to the honestly generated master public-key and
with access to the key-generation oracle provided by the input-consistency game. Once event E1 is observed,
ρ1 identifies the handle h that caused the event and outputs the associated ciphertext cth stored for handle h.
If event E2 is observed, then ρ1 outputs the ciphertext ct provided by the environment Z that provoked event
E2. Note that A is efficiently implementable by the assumption of (the efficiently implementable function)
preMap() which can be used to detect E1 (and further events in the other cases).13

The proof for this case is concluded by observing that A contradicts the theorem assumptions: we either
have that Extract does not satisfy Q-extractability (event E2), or that the evaluation of a set of functions
f1, . . . , fn for a handle h returned values y1, . . . , yn that do not have a common explanatin (event E1) which
implies that in-CONSFE(1λ,A,Extract) returns 1 with the same probability as the event that Z provokes
event E1. ut

Simulation with a corrupted setup generator. If only the setup generator is corrupted, this means that
all inputs provided to party A must define a valid base value x ∈ X and thus, upon read queries by an honest
receiver/decryptor Bi only 2. (a) in the description of FuncA,B,C,t

Rep,(F+,f0,Q) is triggered. Thus the only thing the
simulator S has to do in this simulation is to translate dishonest actions of party C when sending values towards
the other two parties and controlling the influence on Alice actions. Thus, upon receiving (Send, sid,m) for
the channel from C to A, S just remembers that mpk1 ← m (and similarly for the message sent to the receivers
which is defined to be mpk2). For messages (Send, sid,m) for the channel from C to some honest receiver Bi,
the simulator does the following: it first parses m as (sk, f) and if f 6∈ F , it gives up activation. Otherwise,
it encrypts a fixed message ct← Enc(mpk1, m̄) and performs a trial decryption y ← Dec(mpk2, f, sk, ct). If
y = � then give up activation. Otherwise, output (assign, sid, f, i) to FuncA,B,C,t

Rep,(F+,f0,Q) to assign the function
f to be available for the decryptor. Note that in case the decryptor is dishonest, simply simulate the receipt
13 We note that by picking one ciphertext at random, ρ1 could avoid the dependence on preMap() at the cost of

obtaining a security loss. However, since in order to define the ideal UC functionality (which must be an efficient
program) such an efficient map must exist, and since assuming it here yields more straightforward arguments, we
rely on it throughout this proof.

59

of message m. Finally, whenever activated by FuncA,B,C,t
Rep,(F+,f0,Q) with a private-delayed output (write, sid),

the S performs a case distinction: if C is the only corrupted party it simply sets x to be a random element
from domain X . If additionally, some decryptors are dishonest (and therefore might be forced to simulate
ciphertexts), the simulator obtains the real x from the repository by exercising the additional power to
query (reveal, sid, h). The simulator performs a trial encryption ct← Enc(mpk1, x) and sends ACK for this
operation if and only if ct 6= err. Otherwise, the simulator activates the environment as next entity. Note
that in case ct is the ciphertext for the real element x (since some decryptors are dishonest), the simulator
remembers that ct is the ciphertext stored at location h to properly simulate the real-world repository’s reply
to a dishonest decryptor’s query (read, sid, h).

Lemma C.2. For any environment Z (and dummy adversary) with non-negligible advantage in distinguishing
the real and ideal worlds (w.r.t. simulator S above) when only corrupting party C (possibly alongside a subset
of receivers), we give reductions ρ2 and ρ3 to construct adversaries Ai := ρi(Z) such that at least one of the
Ai violates setup-consistency with non-negligible probability.

Proof. For this case, we first make a hybrid argument: consider the protocol π′, which is defined as πA,B,C,t
FE but

where party A provides its received master-public key mpk1 to parties Bi via an additional covert broadcast
channel and where parties Bi, already upon receiving a functional key (sk, f), performs a trial decryption and
rejects the key if Dec(mpk2, f, sk,Enc(mpk1, m̄)) = �, where mpk2 is the master public key sent from part C
to parties Bi. We observe that protocol π′ and πA,B,C,t

FE have equivalent behaviors as long as the environment
is not able to provide an input (write, sid, x) to party A that provokes event E3 defined by the condition
that Dec(mpk2, f, sk,Enc(mpk1, m̄)) = � but Dec(mpk2, f, sk,Enc(mpk1, x)) 6= � (of course within an honest
receiver/decryptor and where f and sk have been received together from party C). In case ¬E3, the function
f is never evaluated upon input (read, h, f) (for any h) by protocol π′, whereas in πA,B,C,t

FE it might. Hence,
let A := ρ2(Z) be the adversary for the setup consistency game defined as follows: ρ2 internally runs Z and
emulates the execution of protocol πA,B,C,t

FE towards Z (by monolithically executing all required protocol steps)
until event E3 is observed. In this case, ρ2 outputs (mpk1,mpk2, sk, x, m̄), where x and sk are the values
fulfilling the condition of event E3. ρ2 wins set-CONSFE(1λ,A) with the same probability as event E3 in the
execution with Z.

For the final argument, we proceed with the same pattern. This time, let E4 be the event that in an
execution with π′, Z provokes for some handle h that a query (read, sid, h, f) to party B, following a write
instruction (write, sid, x) to party A that returned this handle h, yields an output value y 6= f(x). Again, the
simulation S interacting with the repository FuncA,B,C,t

Rep,(F+,f0,Q) is a perfect simulation of π′: in both worlds,
functions are assigned that pass the trial-decryption test, and all function evaluations, for some assigned
function f , yield f(x) as output as in this case only instruction (???) of the ideal-world repository is executed.
Again, we can upper bound the distinguishing advantage of the real and ideal world by the probability that
Z provokes E4. The corresponding reduction A := ρ3(Z) emulates a real-world execution towards Z, where
it mimics the protocol actions of the honest parties A and Bi. This includes the receipt of two message mpk1
and mpk2 for parties A and Bi, respectively. The reduction ρ3, once it detects event E4 is provoked, can
output (mpk1,mpk2, sk, f, x, x), where (sk, f) is defined as the key function pair provoked event E4. Hence, A
achieves set-CONSFE(1λ,A) = 1 with at least the probability of Z provoking E4. ut

Simulation with a corrupted input provider and setup generator. The simulator in this case needs
to combine parts of the above two simulation strategies for maliciously generated setup parameters. That is, it
defines mpk as the claimed master public key that party C sends to an honest party Bi. For the other messages
(Send, sid,m) for the channel from C to Bi, the simulator again parses it as a key-function pair (sk, f) and
does the validity tests as above and in case f ∈ F and the trial decryption Dec(mpk, f, sk,Enc(mpk, m̄))
(with respect to one master public key) does not yield �, then output (assign, sid, f, i) to FuncA,B,C,t

Rep,(F+,f0,Q).
Simulating a dishonest receiver is straightforward.

For adversarial inputs by party A, S again computes x← Extract(ct, F) for the current set of key-function
pairs provides (write, sid, x) to FuncA,B,C,t

Rep,(F+,f0,Q) in the name of A and returns the obtained handle to the
environment.

60

Finally, upon receiving (read, sid, h, f) from FuncA,B,C,t
Rep,(F+,f0,Q) (upon a reading instruction by honest

party Bi), obtain the ciphertext ct associated to h, compute y ← Dec(mpk, f, skf , ct) and x← Extract(ct, F)
and provide the input (read, sid, h, f, (x, y)) to FuncA,B,C,t

Rep,(F+,f0,Q).

Lemma C.3. For any environment Z (and dummy adversary) with non-negligible advantage in distinguishing
the real and ideal worlds (w.r.t. simulator S above) when only corrupting parties A and C (and possibly alongside
a subset of receivers), we give reductions ρ4 and ρ5 to construct adversaries Ai := ρi(Z) such that at least
one of the Ai violates input-consistency or Q-extractability with non-negligible probability.

Proof. We again make a first hybrid step and consider the protocol π′′, where each party Bi, upon receiving a
functional key sk together with its claimed function f , performs a trial decryption Dec(mpk, f, sk, c̄t), where
c̄t← Enc(mpk, m̄) (i.e., just with respect to the claimed master public key). Analogously to above, let E5 be
the event defined for an execution characterized by the condition that the environment provides a ciphertext
ct and a secret key (sk, f) to some honest party Bi such that Dec(mpk, f, sk, c̄t) 6= � and Dec(mpk, f, sk, ct) = �.
Again, πA,B,C,t

FE and π′′ have an identical behavior for any honest party Bj until event E5 is triggered. As above,
this yields a reduction A := ρ4(Z), which emulates party B’s actions towards Z and if Z provokes E5, it
outputs (mpk, c̄t, ct, {sk}), where the triple c̄t, ct and sk are the values provided by Z that trigger event E5.

The final reduction is obtained by defining, for an execution of Z with π′′ the two events E6 and E7
(analogous to E1 and E2 above): Let E6 denote the event that at any point in the execution of Z (with the
protocol and dummy adversary D), there is a handle h such that the set of associated output values y(h)

i

obtained by some honest receiver/decryptor Bi on queries (read, h, fi) are such that {x′ ∈M|∀i : f(x′) =
y

(h)
i } = {}. Further, let E2 be the event that at any point in the execution, Extract(ct, F) 6∈ X ∪ {⊥} but
Q(F0), where F and F0 are the accepted functions and function-key pairs by the union of honest receivers.
As long as ¬E6 ∩ ¬E7, the outputs generated by any honest party Bi are the decrypted values computed
by the simulator and thus computed as in the real-world execution and none of the instructions (?) and
(??) are executed in this case (this includes that � is not computed by the simulator as a return value y
in this case). The final adversary A := ρ5(Z) for st-in-CONSFE(1λ,A,Extract) is now designed analogous
to ρ1: Here, ρ5 only emulates the honest receivers’ actions towards an environment. When it detects event
E6, it outputs (mpk, ct, ct, F) where ct is the ciphertext that provoked the output and F the key-function
pairs provided (and simulated) w.r.t. the union of honest receivers. When it detects E7, then ρ5 outputs the
ciphertext ct that was input by the environment and obtained handle h. Again, we see that the adversary
A contradicts the theorem assumptions, since it either wins st-in-CONSFE(1λ,A,Extract) (event E6) or it
proves that Q-extractability does not hold (event E7). ut

Simulation only with corrupted receivers. This case handles the scenario when the input provider and
the setup generator are honest, and we have to argue anything that the union of dishonest receivers/decryptors
can do in the real world—where they have access to all ciphertexts and received a set of secret keys—is
simulatable in the ideal world, where we by definition only leak the information f(x) if x is an input and f is
an assigned function to one of the dishonest receivers in the corruption set.

Since our repository construction is functionally equivalent to the construction presented by Matt and
Maurer [MM15], we inherit the security statement in this case by their statement: in particular, assume
the algorithms S1,S2, and S3 guaranteed to exist by CFE security. The simulator acts as follows (where
the union of corrupted receivers is simply seen as one “large corrupted decryptor” and treat it as the one
corrupted party): it first simulates the public parameter by executing (mpk, s) ← S1(). Upon receiving
(assigned, sid, f, j) (for some index i) from FuncA,B,C,t

Rep,(F+,f0,Q) then S computes computes F0 ← F0 ∪ {f} and
outputs (Read, hi, f) for each available label h1, . . . , hn in FuncA,B,C,t

Rep,(F+,f0,Q) to obtain the associated value
yi, and execute skf ← S2(f, y1, . . . , yn)[[s]]. This key is then output whenever the simulator must simulate
the transmission of this key towards a dishonest receiver.

On input (read, sid, h) from a dishonest decryptor (expecting a real-world ciphertext), do the following: if
a handle h has been generated (i.e., assigned to a value by FuncA,B,C,t

Rep,(F+,f0,Q)) and a ciphertext cth has already
been simulated, then return cth to the adversary. Otherwise, the ciphertext for this handle is simulated as

61

follows: for all already assigned functions fi ∈ F0, ask (Read, h, fi) to FuncA,B,C,t
Rep,(F+,f0,Q) to obtain all function

values y1, . . . , yk for this handle (of the underlying input) and also y0, which is the output of the leakage
function f0. Simulate (and internally store) the ciphertext cth ← S3(y0, y1, . . . , yk)[[s]] and return ch as the
answer to the adversary.

The reduction to CFE security directly follows by [MM15, Lemma 4.2].

All parties honest. The remaining case is a straightforward simulation of the real-world view: if all parties
are honest, then the simulator simply has to generate and output honest public parameters as above.

The necessary direction. To prove that the consistency requirements described by in-CONS, set-CONS,
and st-in-CONS are also necessary, we show that if, for a given scheme FE and all algorithms Extract,
there are adversaries A1, A2, A3 such that Pr[in-CONSFE(1λ,A1,Extract)], Pr[set-CONSFE(1λ,A2)], or
Pr[st-in-CONSFE(1λ,A3,Extract)] is non-negligible, then we can distinguish a real execution of πA,B,C,t

FE from
any ideal-world execution for FuncA,B,C,t

Rep,(F+,f0,Q) and an arbitrary simulator S ′. Since we all-quantify over
Extract, for the sake of the argument, we choose it to be the constant function Extract := unknown. From the
assumed adversaries for this choice of Extract, we construct environments Z1 and Z2 that distinguish the
real and ideal worlds, the former for the case when only A is corrupted, and for the latter when only party
C is corrupted. For the sake of the argument, we only have to consider the simple setting with one honest
receiver/decryptor B1 and one corrupted receiver B2.

Case in-CONS: Z1 internally runs A1 and answers its KeyGen-queries for functional keys corresponding to
a given function f by providing the input (assign, sid, f, 2) and obtaining the corresponding functional
key from obtaining the value of the secure channel from party C to B2 since B2 is corrupted. When
A1 outputs a ciphertext ct, Z1 does the following: it corrupts party A and instructs it (all via the
dummy adversary) to issue the write instruction (write, sid, ct) (destined for the real-world repository)
and expect handle h in return. Then issue n read instructions (read, sid, h, fi) to (honest) receiver
B1 to obtain n values yi, 1 ≤ i ≤ n. If {x′ ∈ M|∀i : f(x′) = yi} = {} then Z1 outputs 1 and
otherwise it outputs 0. It is clear that Z1 never outputs 1 when interacting with any simulator and
functionality FuncA,B,C,t

Rep,(F+,f0,Q), since FuncA,B,C,t
Rep,(F+,f0,Q) will never output inconsistent values. On the other

hand, Z1 outputs 1 whenever A1 detects an inconsistency. Hence, the distinguishing advantage equals
Pr[in-CONSFE(1λ,A1,Extract := unknown)].

Case set-CONS: Z2 internally runs A2 until it outputs (mpk1,mpk2, sk, f, x0, x1). Z2 then interacts with
honest party A and B1 as follows via the party C that it corrupts: it instructs the corrupted party to send
(via the channels) mpk1 and mpk2 to the respective parties A and B1 and sk to B1. Then it chooses a bit j at
random and provides the inputs (write, sid, xj) and (write, sid, x1−j) to party A to obtain the handles
h1 and h2. Finally, it provides the input (read, h1, f) to party B1. If it obtains an answer y1 (and the
input is hence not ignored) and y1 6= f(xj), then Z2 outputs 1 as its decision bit. Otherwise, it provides
the input (read, h2, f) to party B1. If it obtains an answer y2 (and the input is hence not ignored) and
y2 6= f(x1−j), then Z2 outputs 1 as its decision bit. Finally, if exactly one query returned an answer, then
Z1 outputs 1 as its decision bit. In any other case, Z2 outputs 0. By assumption, the probability that at
least one of the equation Dec(mpk2, f, sk,Enc(mpk1, xj)) 6= � holds is at least Pr[set-CONS(1λ,A2)] and
therefore, with probability at least Pr[set-CONS(1λ,A2)]

2 reading h1 will return a result when interacting with
the protocol (as otherwise, the key sk would be ignored). When interacting with the ideal functionality
and any simulator S ′, then by definition of FuncA,B,C,t

Rep,(F+,f0,Q), either both requests are ignored, or both
requests return the expected result f(xj) and f(x1−j) upon the first and second decryption, respectively.
Therefore, we conclude that the probability that Z2 outputs 1 when interacting with the ideal world is
zero and we obtain a distinguishing advantage of at least Pr[set-CONS(1λ,A2)]

2 for Z2.
Case st-in-CONS: Z3 internally runs A3 which outputs (mpk, ct0, ct1, {(sk1, f1), . . . , (skn, fn)}). Z3 then

corrupts parties A and C and instructs party C to send mpk to (honest) party B1. Z3 then instructs party
A to write each ciphertext ctj to the real-world repository to obtain handle hj . Then, it does the following
for each secret key ski, 1 ≤ i ≤ n:

62

1. It instructs party C to send ski to party B1, followed by a query (read, sid, h1, fi).
2. If the above requests got ignored, then it instructs party C to resend ski. In any case, it then issues

(read, sid, h2, fi).
3. When exactly one of the two queries gets ignored, then Z3 outputs decision bit 1 and halts. If both

returned a value, it records them as yctj
i and proceeds with the next functional key.

If no decision has been reached, then Z3 defines the sets Sj := {x′ ∈ M|∀i : fi(x′) = y
(ctj)
i } and

outputs decision bit 1 if and only if at least one of S0 or S1 is equal to the empty set. Otherwise, Z3
outputs 0. When Z3 interacts with the protocol, then the values yctj

i are computed exactly as in the game
st-in-CONS(1λ,A3,Extract := unknown) and the decision bit is 1 if and only if the winning condition of
the game is met (note that a query (w.r.t. fi) is ignored if and only if the ciphertext decrypted to � with
respect to ski in the above execution with Z3). On the other hand, if Z3 is interacting with the ideal
system, then it would never output 1, as FuncA,B,C,t

Rep,(F+,f0,Q) does either answer both queries per evaluation
for fi or none. Furthermore, the above sets Sj are non-empty as ensured by FuncA,B,C,t

Rep,(F+,f0,Q) (ensured by
instructions (?) and (??)). On the other hand, it outputs 1 when interacting with the real protocol if and
only if the conditions of the game are fulfilled by the output of A3, yielding a distinguishing advantage of
Pr[st-in-CONS(1λ,A3,Extract := unknown)].

This concludes the proof of the theorem. ut

63

	Introduction
	Preliminaries
	Consistency for Functional Encryption Schemes
	Relations (in)between Consistency and Confidentiality
	Consistency Analysis of Selected Functional Encryption Schemes
	Consistency Compilers
	UC Consistency for Functional Encryption
	Overview of the UC Framework
	Consistency for Different Types of Functional Encryption
	Details Of the UC Analysis

