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Abstract

We study two-source non-malleable extractors, which extract randomness from weak sources
even when an adversary is allowed to learn the output of the extractor on correlated inputs.
First, we study consequences of improving the best known constructions of such objects. We
show that even small improvements to these constructions lead to explicit low-error two-source
extractors for very low linear min-entropy, a longstanding open problem in pseudorandomness.
Moreover, we show the resulting extractor can be made non-malleable for samplable sources in
the computational CRS model introduced by Garg, Kalai, and Khurana (Eurocrypt 2020) under
standard hardness assumptions, against an unbounded distinguisher. Remarkably, previous
constructions of similar extractors require much stronger assumptions.

To complement the above, we study unconditional explicit constructions of computational
two-source non-malleable extractors for samplable sources in the CRS model with significantly
better parameters than their information-theoretic counterparts by exploiting stronger hard-
ness assumptions. Under a quasipolynomial hardness assumption, we achieve security against
bounded distinguishers, while assuming the existence of nearly optimal collision-resistant hash
functions allows us to achieve security against unbounded distinguishers.

Finally, we introduce the setting of privacy amplification resilient against memory-tampering
active adversaries. Here, we aim to design privacy amplification protocols that are resilient
against an active adversary that can additionally choose one honest party at will and arbitrarily
corrupt its memory (i.e., its shared secret and randomness tape) before the execution of the
protocol. We show how to design such protocols using two-source non-malleable extractors.

1 Introduction

Two-source extractors. The problem of constructing explicit low-error two-source extractors
for low min-entropy sources was an important focus of research in pseudorandomness over more
than 30 years, with fundamental connections to combinatorics and many applications in computer
science. The first non-trivial explicit construction was given by Chor and Goldreich [CG88], who
showed that the inner product function is a low-error two-source extractor for n-bit sources with
min-entropy (1/2+γ)n, where γ > 0 is an arbitrarily small constant. A standard application of the
probabilistic method shows that (inefficient) low-error two-source extractors exist for polylogarith-
mic min-entropy. While several attempts were made to improve the construction of [CG88] to allow
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for sources with smaller min-entropy, the major breakthrough results were obtained after almost
two decades. Raz [Raz05] gave an explicit low-error two-source extractor where one of the sources
must have min-entropy (1/2 + γ)n for an arbitrarily small constant γ > 0, while the other source
is allowed to have logarithmic min-entropy. In an incomparable result, Bourgain [Bou05] gave an
explicit low-error two-source extractor for sources with min-entropy (1/2 − γ)n, where γ > 0 is a
small constant. Recently, an improved analysis by Lewko [Lew19] showed that Bourgain’s extrac-
tor can handle sources with min-entropy 4n/9. In another groundbreaking work, Chattopadhyay
and Zuckerman [CZ19] succeeded in constructing explicit 1-bit two-source extractors for polylog-
arithmic min-entropy with polynomially small error (this was quickly improved to larger output
length [Li16] and near-logarithmic min-entropy [BDT17, Coh17, Li17], with the state-of-the-art
currently found in [Li19]).

Seeded non-malleable extractors. The key ingredient in these recent constructions [CZ19,
Li16, BDT17, Coh17, Li17, Li19] of two-source extractors are the so called seeded non-malleable
extractors. In a breakthrough result, Dodis and Wichs [DW09] introduced the notion of seeded
non-malleable extractors as a natural tool towards achieving privacy amplification against active
adversaries [MW97] with optimal number of rounds and small entropy loss. Roughly speaking, the
output of a seeded non-malleable extractor with a uniformly random seed and a source X with
some min-entropy should look uniformly random to an adversary who can tamper the seed and
obtain the output of the non-malleable extractor on a tampered seed. There has been a long line of
work constructing explicit seeded non-malleable extractors (and hence such privacy amplification
protocols) with significantly improved parameters (see [ACLV19, Li19] and references therein).

Non-malleable two-source extractors. A natural strengthening of both seeded non-malleable
extractors, and two-source extractors are two-source non-malleable extractors (also known as seed-
less non-malleable extractors). Two-source non-malleable extractors were introduced by Cher-
aghchi and Guruswami [CG17] in the single-tampering setting and by Chattopadhyay, Goyal,
and Li [CGL16] in the multi-tampering setting. Roughly speaking, a function nmExt : {0, 1}n ×
{0, 1}n → {0, 1}m is said to be a non-malleable extractor if the output of the extractor remains
close to uniform (in statistical distance), even conditioned on the output of the extractor on several
inputs correlated with the original sources. In other words, we require that

nmExt(X,Y ), nmExt(f1(X), g1(Y )), . . . , nmExt(fr(X), gr(Y ))

≈ε Um, nmExt(f1(X), g1(Y )), . . . , nmExt(fr(X), gr(Y )),

where X and Y are independent sources with enough min-entropy, fi, gi : {0, 1}n → {0, 1}n for
i = 1, . . . , r are arbitrary tampering functions such that (fi, gi) has no fixed points, Um is uni-
form over {0, 1}m and independent of the rest, and ≈ε means the two distributions are ε-close in
statistical distance (for small ε). The original motivation for studying efficient two-source non-
malleable extractors stems from the fact that they directly yield efficient split-state non-malleable
codes [DPW18] (provided the extractor also supports efficient preimage sampling).

The first constructions of non-malleable codes [DKO13, ADL14] relied heavily on the (limited)
non-malleability of the inner-product two-source extractor. Subsequent improved constructions
of non-malleable codes in the split-state model relied on both the inner-product two-source ex-
tractor [ADKO15, AO20], and on more sophisticated constructions of two source non-malleable
extractors [CGL16, Li17, Li19]. This problem has been extensively studied in the literature, and
for a more exhaustive list of works on non-malleable codes in the split-state model, see [AO20]
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and the references therein. Non-malleable codes and two-source non-malleable extractors have sub-
sequently found other applications such as non-malleable secret sharing [GK18a, GK18b, BS19,
ADN+19], randomness extraction from adversarial sources [CGGL20], and network extraction pro-
tocols [GSZ20].

1.1 Open questions

One of the main applications of two-source extractors is in cryptography, where it is crucial that
the extractor has negligible error. The results of [CZ19, BDT17, Coh17, Li17, Li19] described
earlier are unfortunately not appropriate for these applications, because the error of these ex-
tractors is non-negligible. Several works have studied related problems, such as constructing low-
error two-source condensers with small entropy gap for low min-entropy sources [Rao08, BCDT19],
showing reductions from explicit two-source extractors to other pseudorandom objects with as yet
unattained parameters [ZB11, BACD+18], and constructing low-error two-source extractors for low
min-entropy in the computational setting under different hardness assumptions [KLR09, GKK20].
Other works have focused on computational deterministic extractors [TV00] and seeded extrac-
tors [DGKM12]. The question of constructing low-error two-source extractors for low min-entropy
still remains open. Thus, it is desirable to develop new promising approaches to this problem. A
line of works has focused on reducing this open problem to improving the parameters of known
constructions of other pseudorandom objects. Zewi and Ben-Sasson [ZB11] showed that certain im-
provements to affine extractors would lead to low-error two-source extractors for low min-entropy
assuming the Polynomial Freiman-Ruzsa conjecture. Ben-Aroya et al. [BACD+18], adapting tech-
niques from [Li12, CZ19], showed that seeded non-malleable extractors with improved seed length
would also settle this question. In light of these connections, one might ask the following natural
question

Question 1. Do slight improvements to state-of-the-art explicit two-source non-malleable extractors
lead to explicit low-error two-source extractors for low min-entropy?

The state-of-the-art construction of a two-source non-malleable extractor by Li [Li19] requires
min-entropy (1−poly(1/r))n to handle r tamperings. In particular, if r is constant, then the existing
explicit non-malleable extractors require min-entropy (1− γ)n for a small constant γ > 0. On the
other hand, the probabilistic method shows that there exist two-source non-malleable extractors
for min-entropy δn, with δ > 0 an arbitrarily small constant, handling nΩ(1) tamperings with
error 2−Ω(n) and output length Ω(n) [CGGL20]. This state of affairs naturally raises the following
question.

Question 2. Is there an explicit construction of a low-error two-source non-malleable extractor for
min-entropy δn with δ much smaller than 1?

Finally, all prior applications of non-malleable two-source extractors outside randomness extrac-
tion are via efficient constructions of non-malleable codes in the split-state model, and hence require
efficient preimage sampling. Notwithstanding, non-malleable two-source extractors seem interest-
ing in their own right, and it would be desirable to have an application of two-source non-malleable
extractors that doesn’t require efficient preimage sampling.

Question 3. Is there a natural application of non-malleable two-source extractors that does not
require efficient preimage sampling?

In this work, we make progress on all the questions above.
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1.2 Our contributions

Implications of improved two-source non-malleable extractors. We begin by answering
Question 1 in the positive, and show an even stronger result in the computational setting: We prove
that a small improvement to the parameters of [CGL16, Li17, Li19] leads to explicit low-error two-
source extractors for min-entropy δn with a small constant δ > 0. Put differently, the constructions
of [CGL16, Li17, Li19] are almost the best we can hope for without solving a longstanding open
problem in pseudorandomness along the way.

Then, we show that the reduction above can be strengthened in the computational setting. More
precisely, we consider the Common Reference String (CRS) model introduced by Garg, Kalai, and
Khurana [GKK20]. At a high-level, in this model a CRS is sampled once and for all, and we consider
three adversaries with full access to the CRS: The first adversary (the sampler) samples independent
randomness sources with enough min-entropy, the second adversary (the tamperer) is allowed to
tamper with the source samples, and the third adversary (the distinguisher) attempts to distinguish
the output of the extractor from a uniform distribution given also access to the extractor’s outputs
on tampered versions. Assuming the existence of collision-resistant hash functions, we prove that
the low-error two-source extractor from our reduction above can be made non-malleable if the
sampler and tamperer are computationally bounded, while the distinguisher may be unbounded.
In contrast, existing computational extractors require much stronger hardness assumptions.

Constructions of two-source non-malleable extractors in the CRS model. We study
Question 2 further in the CRS model. While our previous result requires yet unattained statis-
tical non-malleable extractors, we present two explicit constructions of two-source non-malleable
extractors in the CRS model with significantly improved parameters.

Assuming quasi-polynomial hardness of the DDH assumption,1 we construct a low-error two-
source non-malleable extractor in the CRS model for much lower min-entropy and handling many
more tamperings than its best statistical counterparts [CGL16, Li17, Li19], against a computa-
tionally bounded distinguisher. This construction achieves essentially the same parameters as the
extractor from [GKK20], which only handles one-sided tampering, under the same hardness as-
sumption. While the previous construction requires a bounded distinguisher, we also give a simple
low-error two-source non-malleable extractor in the CRS model for very low min-entropy against
a computationally unbounded distinguisher, assuming the existence of nearly optimal collision-
resistant hash functions.

Novel application of non-malleable extractors: Privacy amplification resilient against
memory-tampering active adversaries. To complement our previous results on two-source
non-malleable extractors and taking into account Question 3, we introduce a natural extension of
the well-known problem of privacy amplification against active adversaries originally considered
by Maurer and Wolf [MW97], where the active adversary also has memory-tampering capabilities.
Remarkably, we show that two-source non-malleable extractors (even without efficient preimage
sampling) can be used to design privacy amplification protocols in this stronger adversarial setting.

More precisely, we extend the classical problem of Maurer and Wolf [MW97] to a setting where
the active adversary, Eve, is also allowed to fully corrupt the internal memory of one of the honest
parties, Alice and Bob, before the execution of the protocol. Informally, in an initial phase we
assume that Alice and Bob share a secret W with sufficient min-entropy, and that they have access
to local independent randomness tapes A and B, respectively, which may also be weak sources.

1By quasi-polynomial hardness of the DDH assumption we mean no algorithm running in time nlogn solves the
Decisional Diffie-Hellman problem with non-negligible (in n) advantage.
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We say (W,A) (resp. (W,B)) is Alice’s memory (resp. Bob’s). Before the execution of the privacy
amplification protocol between Alice and Bob, we allow Eve to specify a tampering function F and
one of Alice and Bob to be corrupted (e.g., by infecting either Alice’s or Bob’s storage device with

a virus). If, say, Alice is chosen, then Alice’s memory (W,A) is replaced by (W̃ , Ã) = F (W,A).
Eve does not learn the output of F , and Alice and Bob do not know whether (or which) memory
was corrupted. Crucially, note that the secret W and the randomness tape are tampered together,
which means that the corrupted secret and tape may be arbitrarily correlated. Finally, Alice and
Bob run some interactive protocol where Eve is allowed to tamper all messages between the honest
parties. The goal of the privacy amplification protocol is twofold:

1. Eve is passive: If Eve does not tamper neither of Alice’s or Bob’s memories nor does she
tamper any of the messages between them, then Alice and Bob must agree on a shared key
that is (statistically or computationally) indistinguishable from the uniform distribution to
Eve.

2. Eve is active: In this case, with high probability either one of Alice or Bob detects tampering,
or they agree on a shared key that is indistinguishable from the uniform distribution to Eve.

In the information-theoretic setting, we show that information-theoretic low-error two-source
non-malleable extractors with sufficiently low min-entropy requirement yield 4-round privacy am-
plification protocols resilient against memory-tampering active adversaries with good parameters,
completing our study of Question 2. As mentioned before, it is known that such (inefficient) ex-
tractors exist even with much better parameters than required [CGGL20], but, as we show in this
paper, obtaining such explicit extractors is an extremely challenging problem. To complement this
result, we show that, assuming the subexponential hardness of the DDH assumption, explicit com-
putational two-source non-malleable extractors in the CRS model can be used to give such explicit
computational 4-round privacy amplification protocols in the CRS model.

We put our results in context of previous work in Section 1.3, and provide a more technical
overview in Section 1.4.

1.3 Comparison to previous work

Computational extractors. Early work by Trevisan and Vadhan [TV00] can be interpreted
as giving explicit extractors for a single source with logarithmic min-entropy in the CRS model
(a similar remark was already made in [DRV12]). Under strong hardness assumptions, they also
construct explicit deterministic extractors for high min-entropy sources samplable by bounded-size
circuits. However, they prove the strong negative result that, for both settings above, the running
time of the extractor must be larger than the time needed to sample the source. In particular, if
one wishes to extract randomness from all efficiently samplable sources in the CRS model, then
the extractor in question cannot be efficient. Dodis, Ristenpart, and Vadhan [DRV12] implicitly
show that this negative result can be avoided if one instead focuses on single-source condensers
in the CRS model, assuming the existence of nearly optimal collision-resistant hash functions.
Computational seeded extractors were also studied by Dachman-Soled, Gennaro, Krawczyk, and
Malkin [DGKM12], who considered the standard approach of composing an information-theoretic
extractor with a pseudorandom generator.

In a different setting, Kalai, Li, and Rao [KLR09] studied two-source extractors for information-
theoretic sources (without a CRS) against a computationally bounded distinguisher. They succeed
in constructing such extractors for linear min-entropy sources, under the assumption that nearly
optimal exponentially secure one-way permutations exist. To avoid the reliance on such strong
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assumptions, Garg, Kalai, and Khurana [GKK20] initiate the study of two-source extractors in the
CRS model. They focus solely on the setting with efficiently samplable sources and computationally
bounded distinguishers, and assume the subexponential hardness of the DDH assumption2 (a weaker
assumption relative to that required by [KLR09]). Under these conditions, they construct a special
type of two-source extractor that lies between seeded and two-source non-malleable extractors,
in the sense that neither source is required to be uniform, but only the second source is allowed
to be tampered. They give such explicit extractors in the CRS model with balanced sources
for min-entropy matching that of the best explicit statistical two-source extractors. Then, they
exploit this extractor and results of [BACD+18] to construct an extractor of the same type for
unbalanced sources with lower min-entropy. We remark that the assumption in [GKK20] can be
weakened to quasi-polynomial hardness of the DDH assumption if one is aiming to match the min-
entropy requirements of the best explicit statistical two-source extractors, as is done in the first part
of [GKK20]. To go below such min-entropy requirements, a subexponential hardness assumption
appears to be necessary.

Our computational two-source non-malleable extractors are constructed in the CRS model
of [GKK20]. Consequently, our results are incomparable to those of [TV00, KLR09, DGKM12].
As mentioned before, [GKK20] construct two-source extractors that handle one-sided tampering
In contrast, we focus on constructing two-source non-malleable extractors, which handle two-sided
tampering. Moreover, there are other key differences with respect to [GKK20]. Our first result
shows how to construct two-source non-malleable extractors in the CRS model for low min-entropy
(against an unbounded distinguisher) from collision-resistant hash functions and statistical two-
source non-malleable extractors for very high min-entropy. In comparison, previous results on
low-error computational (even malleable) extractors for low min-entropy in the CRS model require
at least subexponential hardness assumptions. For our second construction, we make use of a quasi-
polynomial hardness assumption, and similarly to [GKK20] consider a computationally bounded
distinguisher. We are able to essentially match the parameters of the one-sided tampering extractor
obtained in [GKK20] under the same hardness assumption. Our last construction of a two-source
non-malleable extractor in the CRS model against an unbounded distinguisher is extremely simple,
but requires the same strong hardness assumption as [DRV12] (nearly optimal collision-resistant
hash functions). A comparison of our constructions with previous work can be found in Table 1.

Privacy amplification. The setting of privacy amplification is fundamental in cryptography, and
it has deep connections to randomness extractors. Strong seeded extractors yield non-interactive
privacy amplification protocols against a passive eavesdropper [BBR88, BBCM95], while strong
seeded non-malleable extractors were introduced by Dodis and Wichs [DW09] to obtain 2-round
(which is optimal) privacy amplification protocols against active adversaries, a setting originally
introduced in [MW97]. This has led to a deep line of work constructing explicit seeded non-
malleable extractors (and hence such privacy amplification protocols) with significantly improved
parameters (see [Li19] and references therein). In a different direction, the setting of fuzzy privacy
amplification has also received significant attention. Here, the secrets of Alice and Bob are not
necessarily equal, but may only be close in some metric. Fuzzy extractors [DORS08] yield non-
interactive fuzzy privacy amplification protocols, effectively showing that information reconciliation
and regular privacy amplification can be accomplished together in a single round. When the
adversary is active, robust fuzzy extractors can be used to obtain such fuzzy privacy amplification

2By subexponential hardness of the DDH assumption we mean that there exists a constant c ∈ (0, 1) such that
no algorithm running in time at most 2n

c

solves the Decisional Diffie-Hellman problem with non-negligible (in n)
advantage.
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protocols [BDK+05, CDF+08, DKK+12]. Similar problems have been studied in the computational
setting [DHP+18, EHOR20].

Privacy amplification with tamperable memory is harder than regular privacy amplification
against a passive or active adversary, and is incomparable to fuzzy privacy amplification. In our
setting, there is no guarantee that the secrets held by Alice and Bob are close according to some
distance after tampering, and, unlike other privacy amplification settings, the tampered secret may
even be correlated with the party’s randomness. On the other hand, in fuzzy privacy amplification
one requires that privacy be achieved even when Alice’s and Bob’s secrets are different (but close
enough), provided the adversary remains passive during the protocol. In our setting, we must
allow the parties to abort if either Alice’s or Bob’s memory is tampered, as the task is impossible
otherwise.

Other works on cryptography with tamperable memory. Besides the concept of non-
malleability, the extension of cryptographic problems to settings with tamperable memory has also
been considered in various ways, e.g., [GLM+04, IPSW06, KKS11]. Most relevant to our privacy
amplification problem, Austrin, Chung, Mahmoody, Pass, and Seth [ACM+14] study key agreement
protocols, which are intimately connected to privacy amplification, in a setting where the adversary
is allowed to tamper the randomness of both parties via an online p-tampering attack before the
protocol starts. This setting and the associated result are incomparable to ours. Indeed, there are
two key differences: On the one hand, we consider arbitrary tampering attacks that jointly target
the randomness and shared secret of a party, which are much stronger than the online p-tampering
attacks considered in [ACM+14]. On the other hand, we must restrict tampering to one of the
parties, as otherwise privacy amplification is impossible.

1.4 Technical Overview

1.4.1 Slightly better non-malleable extractors imply great two-source extractors

To show that small improvements to the best known two-source non-malleable extractors low-
error lead to explicit low-error two-source extractors for low min-entropy sources, we consider an
explicit two-source non-malleable extractor nmExt for high min-entropy sources handling enough
tamperings, and two independent n-bit sources X and Y with min-entropy δn, for some small
constant δ > 0. In other words, X and Y have min-entropy rate δ.

If we had access to a uniform seed, we could apply seeded condensers to transform X and Y
into shorter sources X ′ and Y ′ which are (statistically close to) sources with high min-entropy rate.
Then, computing nmExt(X ′, Y ′) would lead to nearly uniform randomness without even exploiting
the non-maleability of nmExt. Although deterministic condensers do not exist, there does exist a
deterministic object with related properties, called a somewhere-condenser. Such an object SCond
receives as input a source X with min-entropy rate δ, and outputs X ′ = SCond(X) composed of
` blocks (X ′1, X

′
2, . . . , X

′
`), with the property that for some random variable I it holds that X ′I is

statistically close to a source with min-entropy rate 1− γ. Importantly, we can write the blocks X ′i
for i 6= I as randomized tamperings of the good block X ′I . Analogously, computing Y ′ = SCond(Y )
leads to ` blocks (Y ′1 , Y

′
2 , . . . , Y

′
` ) and a random index J such that Y ′J is close to a source with high

min-entropy rate, and Y ′j for j 6= J can be written as randomized tamperings of Y ′J . Combined
with the non-malleability properties of nmExt, these observations naturally lead to the candidate
two-source extractor Ext given by

Ext(X,Y ) =
⊕
i,j∈[`]

nmExt(X ′i‖pi, Y ′j ‖pj), (1)
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where pi and pj are suffixes added to ensure that the tamperings induced by the somewhere-
condenser do not have fixed points. In order to prove that Ext indeed extracts from the low
min-entropy sources X and Y , it is enough to show that nmExt(X ′I‖pI , Y ′J‖pJ) is close to uniform
given the side information nmExt(X ′i‖pi, Y ′j ‖pj) for (i, j) 6= (I, J). This is equivalent to requiring

that nmExt resists `2 − 1 tamperings. Explicit constructions of somewhere-condensers with good
parameters are known [BKS+10, Raz05, Zuc06, Li11]. In particular, we can take the number of
blocks ` to be a constant depending only on δ and γ, and the error to be exponentially small
in the length of the output blocks. Therefore, our argument goes through provided we have an
explicit two-source non-malleable extractor for min-entropy rate 1− γ handling `2 − 1 tamperings.
Moreover, the resulting extractor Ext has low error if nmExt does so.

Overall, our reduction above trades the number of tamperings handled with lowering the original
min-entropy requirement of the underlying two-source non-malleable extractor. We leave formal
details of our general result for Section 3, and present here one important case.

Theorem 1 (Informal). For every constant γ > 0 there exists a constant Cδ such that if there
exists an explicit low-error two-source non-malleable extractor nmExt for min-entropy rate 1 − γ
handling Cδ tamperings, then there exists an explicit low-error two-source extractor for min-entropy
rate δ. In particular, if nmExt handles r = ω(1) tamperings, then for every constant δ > 0 there
exists an explicit low-error two-source extractor for min-entropy rate δ.

Interestingly, by [Li17] (see Proposition 5) we have explicit constructions of low-error non-
malleable extractors for constant min-entropy rate 1− γ (with γ a small constant) and a constant
number of tamperings, and r = ω(1) tamperings for any min-entropy rate 1 − o(1). If this result
is improved to handle any superconstant number of tamperings with some constant min-entropy
rate, then Corollary 2 implies that we have explicit low error two-source extractors for any linear
min-entropy rate. Even improving the number of tamperings handled to a large enough constant
for some constant min-entropy rate would already yield significantly improved explicit low-error
two-source extractors. We remark also that small improvements on the two-source non-malleable
extractor from [CGL16] are enough to make our argument go through as well. We discuss this
in detail in Section 3. Finally, note that the two-source non-malleable extractors we require for
our reduction are far from optimal. Indeed, it is known that, for any constant δ > 0, with high
probability a random function is a two-source non-malleable extractor for n-bit sources with min-
entropy δn handling r = nΩ(1) tamperings with error 2−Ω(n) [CGGL20].

1.4.2 Slightly better non-malleable extractors imply great computational non-malleable
extractors under standard assumptions

Given our reduction above, it is natural to wonder whether Ext defined in (1) can be made non-
malleable. Unfortunately, it is not clear how to achieve that in the information-theoretic setting.
Indeed, one can tamper X into X 6= X such that SCond(X) = SCond(X), and this suffices to
break the (information-theoretic) non-malleability of Ext. We move this problem to the CRS
model [GKK20], and ask instead whether Ext can be made non-malleable in this computational
model.

The CRS model. In this model, we assume that a CRS (denoted CRS) is first efficiently sam-
pled and set once and for all. Our goal is to extract either computationally or statistically perfect
randomness from independent weak sources X and Y which are sampled from CRS by a computa-
tionally bounded sampler. As side information, we disclose the output of the extractor on tampered
versions of X and Y . More precisely, for arbitrary computationally bounded functions g1 and g2,
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we reveal the output of the extractor on X = g1(X,CRS) and Y = g2(Y,CRS). We say a function
cnmExt is a two-source non-malleable extractor in the CRS model if it holds that

cnmExt(X,Y,CRS), cnmExt(X,Y ,CRS),CRS ≈ U, cnmExt(X,Y ,CRS),CRS,

where U is uniformly distributed and independent of the remaining random variables, and ≈ de-
notes either computational or statistical indistinguishability. Although we do not discuss it in the
following paragraphs, we allow more than one tampering of X and Y , and also allow the sampler to
leak additional auxiliary information about X to help the distinguisher. Note that the CRS is quite
different from an independent uniform seed, since both the sources and the tampering functions
are allowed to depend adversarially on the CRS. Formal definitions can be found in Section 2.4.

Finally, we remark that the well-known upper bound of 2n tamperings for statistical two-source
non-malleable extractors also holds in the CRS model.3 This is unlike one-sided tampering, in
which case an unbounded (polynomial) number of tamperings is allowed in the computational
setting.

Modifying the extractor. Intuitively, the only way to break non-malleability of Ext is to pro-
ceed as above by finding valid tamperings of X and Y that lead to collisions at the input to the
underlying two-source non-malleable extractor nmExt. In the CRS model, we overcome this prob-
lem by sampling a collision-resistant hash function H from any family of collision-resistant hash
functions secure against polynomial-time adversaries with not too long output (namely, output
length o(n), where n is the length of X), and including the hashes H(X) and H(Y ) as input to
nmExt. In other words, we use the intuition above to show that for CRS = H, the modified function

cnmExt(X,Y,H) =
⊕
i,j∈[`]

nmExt(X ′i‖pi‖H(X), Y ′j ‖pj‖H(Y )) (2)

is a low-error two-source non-malleable extractor in the CRS model for low min-entropy, provided
the underlying nmExt can handle `2 − 1 tamperings. Remarkably, we obtain an exact analogue of
Theorem 1 in the CRS model from standard assumptions and with added non-malleability. More
details can be found in Section 4.

1.4.3 Non-malleable extractors in the CRS model

Since our previous result is conditional on small improvements on the information-theoretic two-
source non-malleable extractors from [CGL16, Li19], we turn to obtaining unconditional explicit
constructions of two-source non-malleable extractors in the CRS model. Table 1 compares our
constructions with previous results on computational two-source extractors.

Two-source non-malleable extractors in the CRS model from quasi-polynomial hard-
ness. Building on techniques developed in [BHK11, GKK20], we construct an explicit two-source
non-malleable extractor against a computationally bounded distinguisher assuming the quasipoly-
nomial hardness of DDH with essentially the same parameters as the corresponding extractor
from [GKK20], which only handles one-sided tampering.

The basis for our extractor is a family F of lossy functions, first introduced and constructed
by Peikert and Waters [PW11]. Roughly speaking, F is a family of functions f : {0, 1}n → {0, 1}n

3Since there exist pairs (a, b) and (a′, b) such that nmExt(a, b) 6= nmExt(a′, b), we can learn one bit of X by applying
efficient tampering functions g1 such that g1(x) = a if xi = 0 and g1(x) = a′ otherwise, and g2 such that g2(y) = b
for all y. We can then perform analogous tamperings for Y in place of X.

9



containing both injective and lossy functions, i.e., functions with small image size. The security
of F ensures that for f ∈ F injective with probability 1/2 and lossy with probability 1/2 no
computationally bounded adversary can guess whether f is injective or lossy with non-negligible
advantage. Moreover, we also require families of collision-resistant hash functions H1 and H2 with
output lengths not too large.

We show that a simple modification of the extractor from [GKK20] for one-sided tampering
is enough to obtain a two-source non-malleable extractor cnmExt in the CRS model for error and
min-entropy requirements matching those of the best statistical malleable two-source extractors
under the quasi-polynomial hardness of the DDH assumption. This construction is quite flexible,
and we shall see that upgrading the hardness assumption to the subexponential hardness of the
DDH assumption also allows us to assume that one of the sources can be sampled in subexponential
time.

For simplicity, we illustrate only the case where H1 = H2. To set the CRS, first we sample hash
functions h ← H with output length `. Then, we sample b ← {0, 1}2`, and sample fij from F for
i ∈ [2`] and j ∈ {0, 1} such that fibi is injective and fi1−bi is lossy for every i. Given such CRS, we
define our candidate two-source non-malleable extractor in the CRS model as

cnmExt(X,Y,CRS) = Ext(fh(X)‖h(Y )(X), Y ),

where Ext is a statistical strong two-source extractor, and

fa(x) = f1a1(f2a2(· · · (f2`a2`
(x)) · · · )).

Let X and Y denote tamperings of X and Y , respectively. First, due to the security properties
of the family of lossy functions F under the quasi-polynomial hardness of the DDH assumption,
we show that we can assume that h(X)‖h(Y ) = b and h(X)‖h(Y ) 6= h(X)‖h(Y ) hold simulta-
neously. Under these conditions, it follows that fh(X)‖h(Y ) is an injective function and fh(X)‖h(Y )

has small image size. Our final goal is to show that cnmExt(X,Y,CRS) is computationally close to
uniform given cnmExt(X,Y ,CRS). Since fh(X)‖h(Y ) has small image size and h has small output
length, it follows that X and Y are still independent do not lose much min-entropy when we re-
veal fh(X)‖h(Y )(X), cnmExt(X,Y ,CRS), and all the hashes. This allows us to invoke the statistical
properties of Ext to obtain the desired result.

As an example, instantiating Ext with the best known statistical two-source extractors [Bou05,
Raz05, Lew19, CZ19] yields the following informal result. Formal statements and more details can
be found in Section 5.

Theorem 2 (Informal). Assuming the quasi-polynomial hardness of the DDH assumption, there
exist explicit two-source non-malleable extractors in the CRS model with essentially the same pa-
rameters as the best explicit information-theoretic two-source (malleable) extractors.

Simple two-source non-malleable extractors in the CRS model from nearly optimal
collision-resistant hash functions, against an unbounded distinguisher. Since our previ-
ous result holds only for a computationally bounded distinguisher, we ask whether we can devise
an explicit two-source non-malleable extractor in the CRS model secure against computationally
unbounded distinguishers, potentially by strengthening the underlying hardness assumption. We
show that this is possible with a simple construction, provided we assume the existence of nearly
optimal collision-resistant hash functions (in the sense that a birthday attack is essentially the best
possible). In practice, this is not a far-fetched assumption: For most widely deployed hash functions
such as SHA-256, SHA-512, and SHA-3 we currently cannot do better than a birthday attack.
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Our construction is given by cnmExt(X,Y,H) = nmExt(H(X), H(Y )), where H is sampled
from a family of nearly optimal collision-resistant hash functions H, and CRS = H. Intuitively,
the security of this construction follows not only from the collision-resistance of H, but also from
the fact that both H(X) and H(Y ) are statistically close to high min-entropy sources [DRV12].
Formal statements and more details can be found in Section 6.

Theorem 3 (Informal). If there exist nearly optimal collision-resistant hash functions h : {0, 1}n →
{0, 1}` for some ` = Ω(polylog(n)), then there exists an explicit low-error two-source non-malleable
extractor for n-bit sources with min-entropy ` in the CRS model.

1.4.4 Privacy amplification resilient against memory-tampering active adversaries

We introduce the setting of privacy amplification resilient against memory-tampering active adver-
saries (a high-level description of the problem can already be found in Section 1.2), and show that
low-error two-source non-malleable extractors with good min-entropy requirements can be used to
design privacy amplification protocols in this setting, both in the information-theoretic and com-
putational settings. To be more precise, we consider the 4-round protocol illustrated in Figure 1
instantiated with an appropriate strong two-source non-malleable extractor nmExt.

Alice Bob
Memory: (W,A) Memory: (W,B)

A −−−−−−−−−−−−−−→ A′

B′ ←−−−−−−−−−−−−−− B
RA = nmExt(W,A‖B′) RB = nmExt(W,A′‖B)

[RA]α −−−−−−−−−−−−−−→ [RA]′α
[RB]′α·2α ←−−−−−−−−−−−−−− [RB]α:2α

If [RA]α·2α = [RB]′α:2α If [RB]α = [RA]′α
then SA = [RA]2α: then SB = [RB]2α:

Otherwise SA = ⊥ Otherwise SB = ⊥

Figure 1: Privacy amplification protocol against memory-tampering active adversaries. In the
above, for an n-bit string x we define [x]i = (x1, x2, . . . , xi), [x]i:j = (xi+1, . . . , xj), and [x]j: =
(xj+1, . . . , xn).

We provide an informal argument for why the protocol from Figure 1 works in the information-
theoretic setting when the randomness tapes A and B of Alice and Bob, respectively, are sufficiently
shorter than the shared secret W . If Eve is passive and simply eavesdrops on the communication
between Alice and Bob, then the fact that nmExt is a strong extractor implies that Alice and Bob
output strings SA 6= ⊥ and SB 6= ⊥, respectively, such that SA = SB and which are close to uniform
with respect to Eve’s view. Assume now that Eve is active and corrupts Alice. This means that
Alice’s memory, (W,A), is replaced by an arbitrary function (W̃ , Ã) = F (W,A). We show that,
with high probability over the fixings A = a and Ã = ã, with high probability either one of Alice
or Bob aborts (i.e., outputs ⊥), or we have SA = SB 6= ⊥ and SA, SB are close to uniform from

Eve’s view. Observe that, after fixing A = a and Ã = ã, we have that W̃ is now a tampering
of W only. Moreover, assuming that A is appropriately shorter than W , with high probability it
holds that W still has enough min-entropy after conditioning on A = a and Ã = ã. For the sake of
exposition, suppose that W̃ 6= W always. We claim that, in this case, Bob detects tampering and
aborts. Indeed, note that RA = nmExt(W̃ , a‖B′) can be written as RA = nmExt(g1(W ), g2(ã‖B))
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for tampering functions g1 and g2, where g1 has no fixed points. Therefore, by the properties of
nmExt, we conclude that, even after revealing (a, ã, B,RA), we have that RB = nmExt(W, ã‖B) is
close to uniform. As a result, in the third round of the protocol, Eve can only guess a (long enough)
prefix of RB with very small probability. Therefore, Bob aborts with high probability, as desired.
As an example, we can obtain the following informal result.

Theorem 4 (Informal). If nmExt is a low-error two-source non-malleable extractor for sources
with min-entropy 0.05n, then there exists a 4-round privacy amplification protocol resilient against
memory-tampering active adversaries when H∞(W ) ≥ 0.3n and H∞(A),H∞(B) ≥ 0.05n whenever
|A|, |B| ≤ 0.1n.

Since (inefficient) two-source non-malleable extractors are known to exist with much better pa-
rameters than those required above [CGGL20], we readily conclude that 4-round privacy amplifica-
tion protocols resilient against memory-tampering active adversaries exist with very good param-
eters. However, we do not know any explicit constructions of two-source non-malleable extractors
with sufficiently good min-entropy requirements, and we have given evidence in Section 1.4.1 that
obtaining such extractors appears to be extremely challenging. This novel application provides an
additional motivation for obtaining improved two-source non-malleable extractors.

Nevertheless, we show that, extending the notion of privacy amplification resilient against
memory-tampering active adversaries to the CRS model, we can exploit our explicit construc-
tions of two-source non-malleable extractors in the CRS model to obtain explicit 4-round privacy
amplification protocols resilient against memory-tampering active adversaries in the CRS model
with very good parameters. We remark that this task is not trivial in the CRS model, because the
shared secret W and randomness tapes A and B are arbitrarily correlated with the CRS, and Eve
also has full knowledge of the CRS at all times. Moreover, care is needed in this computational set-
ting because we need to ensure that sources remain samplable by appropriately sized circuits even
after some conditionings. We overcome this by using a strong two-source non-malleable extractor
that allows the left source to be sampled in subexponential time.

Theorem 5 (Informal). Assuming the sub-exponential hardness of the DDH assumption, there
exists an explicit 4-round privacy amplification protocol resilient against memory-tampering active
adversaries in the CRS model for W ∈ {0, 1}n such that H∞(W ) ≥ 0.52n and A,B with sublinear
min-entropy.

Formal statements and more details can be found in Section 7.

1.5 Organization

In Section 2, we introduce notation and preliminary concepts and results. Section 3 discusses
the information-theoretic reduction from low-error two-source extractors for low min-entropy to
low-error two-source non-malleable extractors for high min-entropy. In Section 4, we discuss the
related reduction in the CRS model from standard assumptions. Section 5 focuses on non-malleable
extractors in the CRS model obtained from the quasi-polynomial hardness of the DDH assumption.
Simple non-malleable extractors in the CRS model obtained from nearly optimal collision-resistant
hash functions are analyzed in Section 6. Finally, we discuss our novel privacy amplification setting
and protocols using two-source non-malleable extractors in Section 7.
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2 Preliminaries

2.1 Notation

Random variables are usually denoted by uppercase letters such as X, Y , and Z. Sets are usually de-
noted by uppercase calligraphic letters such as S and T . Given two strings x and y, we denote their
concatenation by x‖y. Additionally, given an n-symbol string x, we define [x]i = (x1, x2 . . . , xi),
[x]i:j = (xi+1, xi+2, . . . , xj), and [x]i: = (xi+1, xi+2, . . . , xn). The base-2 logarithm is denoted by
log. We say an algorithm is size-t if it can be computed by a (possibly randomized) circuit of size
at most t. Moreover, we use poly(n) to denote an arbitrary polynomial in n.

2.2 Statistical distance and min-entropy

In this section, we introduce the basic concepts of statistical distance and min-entropy, along with
useful lemmas.

Definition 1 (Statistical distance). Given two distributions X and Y over a set X , the statistical
distance between X and Y , denoted by ∆(X;Y ), is defined as

∆(X;Y ) = max
S⊆X
|Pr[X ∈ S]− Pr[Y ∈ S]| = 1

2

∑
x∈X
|Pr[X = x]− Pr[Y = x]|.

We may write ∆(X;Y |Z) as shorthand for ∆(X,Z;Y,Z), and say that X and Y are ε-close,
also written X ≈ε Y , if ∆(X;Y ) ≤ ε. For a random variable X ∈ {0, 1}, we informally call
∆(X;U1) = |Pr[X = 1]− 1/2| the bias of X.

Definition 2 (Min-entropy). Given a distribution X over X , the min-entropy of X, denoted by
H∞(X), is defined as

H∞(X) = − log

(
max
x∈X

Pr[X = x]

)
.

Definition 3 (Average min-entropy). Given distributions X and Z, the average min-entropy of X
given Z, denoted by H̃∞(X|Z), is defined as

H̃∞(X|Z) = − log

(
Ez←Z

[
max
x∈X

Pr[X = x|Z = z]

])
.

Lemma 1 ([DORS08]). Given arbitrary distributions X and Z such that |supp(Z)| ≤ 2λ, we have

H̃∞(X|Z) ≥ H∞(X,Z)− λ ≥ H∞(X)− λ.

Lemma 2 ([MW97]). For arbitrary distributions X and Z, it holds that

Pr
z←Z

[H∞(X|Z = z) ≥ H̃∞(X|Z)− s] ≥ 1− 2−s.

Lemma 3. Suppose X and Z are random variables such that H̃∞(X|Z) ≥ k and E is an event
with Pr[E] ≥ p. Then, it holds that

H̃∞(X|E,Z) := H̃∞((X|E)|Z) ≥ k − log(1/p).
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Proof. We have

Ez←Z

[
max
x

Pr[X = x|E,Z = z]
]

=
∑
z

Pr[Z = z|E] ·max
x

Pr[X = x,E|Z = z]

Pr[E|Z = z]

≤
∑
z

Pr[Z = z|E] ·max
x

Pr[X = x|Z = z]

Pr[E|Z = z]

=
∑
z

Pr[Z = z]

Pr[E]
·max

x
Pr[X = x|Z = z]

≤ 1

p
· Ez←Z

[
max
x

Pr[X = x|Z = z]
]

≤ 2−k

p
,

where the second inequality follows from Pr[E] ≥ p and the last inequality follows from the fact
that H̃∞(X|Z) ≥ k.

2.3 Extractors and condensers

We present some important objects from pseudorandomness.

Definition 4 ((n, k)-source). A distribution X ∈ {0, 1}n is said to be an (n, k)-source if H∞(X) ≥
k. Moreover, X is said to be flat if it is uniformly distributed over a set of size at least 2k.

Definition 5 ((k1, k2, ε)-extractor). A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is said to be a
(strong, average-case) (k1, k2, ε)-extractor if for independent random variables (X,W ) and Y such
that H̃∞(X|W ) ≥ k1 and Y is an (n, k2)-source we have

Ext(X,Y ), Y,W ≈ε Um, Y,W.

If k1 = k2 = k, we say Ext is a (strong, average-case) (k, ε)-extractor.

It is easy to see that every non-average-case (k, ε)-extractor Ext is also an average-case (k +
log(1/γ), ε+ γ)-extractor for any γ > 0. We will need the following explicit two-source extractors.

Proposition 1 ([Bou05, Lew19]). There exists an explicit strong average-case (k, ε)-extractor Ext :
{0, 1}n × {0, 1}n → {0, 1} with k = 0.45n and ε = 2−Ω(n).

Proposition 2 ([Raz05]). For any constant γ > 0 there exists an explicit strong average-case
(k1, k2, ε)-extractor Ext : {0, 1}n × {0, 1}n → {0, 1}m with k1 = (1/2 + γ)n, k2 = O(log n), ε =
2−Ω(n), and m = Ω(n).

Proposition 3 ([CZ19]). There exists an explicit strong average-case (k, ε)-extractor Ext : {0, 1}n×
{0, 1}n → {0, 1} with k = polylog(n) and ε = n−Ω(1).

Definition 6 ((k1, k2, ε, r)-non-malleable extractor). A function nmExt : {0, 1}n × {0, 1}n →
{0, 1}m is said to be a (strong, average-case) (k1, k2, ε, r)-non-malleable extractor if for every pair
of independent distributions (X,W ) and Y such that H̃∞(X|W ) ≥ k1 and Y is an (n, k2)-source,
and every family of tampering functions g1i, g2i : {0, 1}n → {0, 1}n where one of g1i and g2i has no
fixed points for all i = 1, . . . , r, we have

∆(nmExt(X,Y );Um|Y,W, nmExt(g11(X), g21(Y )), . . . , nmExt(g1r(X), g2r(Y ))) ≤ ε.

If k1 = k2 = k, we say nmExt is a (strong, average-case) (k, ε, r)-non-malleable extractor.
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Proposition 4 ([CGL16], [GSZ20, Appendix A]). There exists an explicit strong average-case
(k, ε, r)-non-malleable extractor nmExt : {0, 1}n × {0, 1}n → {0, 1}m where k = n − nΩ(1), ε =

2−n
Ω(1)

, r = nΩ(1), and m = nΩ(1).

Proposition 5 ([Li17], [GSZ20, Appendix A]). For every constant r there exists a small enough
constant γ > 0 such that there exists an explicit strong average-case (k, ε, r)-non-malleable extractor
nmExt : {0, 1}n × {0, 1}n → {0, 1}m where k = (1− γ)n, ε = 2−Ω(n/ logn), and m = Ω(n/ log n).

Moreover, if k = (1 − o(1))n, then there is r = ω(1) such that there exists an explicit strong

(k, ε, r)-non-malleable extractor with ε = 2−n
Ω(1)

and m = nΩ(1).

Although Li [Li17] presents its non-malleable extractor for the case r = 1 only, it is straightfor-
ward to check that it can be extended to more than one tampering as above.

The following lemma states that non-malleable extractors are also resilient against tampering
functions with independent shared randomness.

Lemma 4. Let nmExt : {0, 1}n × {0, 1}n → {0, 1}m be a (k, ε, r)-non-malleable extractor, and let
R be an arbitrary distribution over some set R. Then, for any tuple of functions (g1i, g2i)i∈[r] of
the form g1i, g2i : {0, 1}n ×R → {0, 1}n such that for every fixing R = rand and i = 1, . . . , r either
g1i(·, rand) or g2i(·, rand) has no fixed points, it holds that

∆(nmExt(X,Y );Um|nmExt(g11(X,R), g21(Y,R)), . . . , nmExt(g1r(X,R), g2r(Y,R)), R) ≤ ε

whenever X and Y are independent (n, k)-sources also independent of R.
Moreover, if nmExt is strong, (g1i, g2i)i∈[r] are as above and F : {0, 1}n × R → {0, 1}∗ is an

arbitrary function, we have

∆(nmExt(X,Y );Um|F (Y,R), nmExt(g11(X,R), g21(Y,R)), . . . , nmExt(g1r(X,R), g2r(Y,R)), R) ≤ ε

Proof. The claim follows from the fact that the desired inequality holds for every fixing R = rand
by the definition of non-malleable extractor (in the case of strong non-malleable extractors, also
because F (Y, rand) is a function of Y only).

Definition 7 (Somewhere-k sources). A distribution Y = (Y1, . . . , Y`) ∈ {0, 1}m·` is said to be
an elementary somewhere-k source if there is i ∈ [`] such that H∞(Yi) ≥ k. Then, a distribution
Y ∈ {0, 1}m·` is said to be a somewhere-k source if Y is a convex combination of elementary
somewhere-k sources.

Definition 8 (Somewhere-condenser). A function SCond : {0, 1}n → {0, 1}m·` is said to be a
(δ → δ′, ε)-somewhere condenser if for every (n, δn)-source X there exists a somewhere-(δ′m)
source Y ∈ {0, 1}m·` such

SCond(X) ≈ε Y.

We will need the following two somewhere condensers due to Zuckerman and Li [Zuc06, Li11].
The first one transforms an input source with potentially low min-entropy rate into a somewhere-
k source with constant min-entropy rate. The second somewhere condenser transforms an input
source with constant min-entropy rate into a somewhere-k source with potentially large min-entropy
rate. We note that other somewhere-condensers have also been constructed in [BKS+10, Raz05].

We begin by stating a somewhere-condenser that condenses sources to min-entropy rate 3/4,
due to Zuckerman [Zuc06].

Lemma 5. For δ and n such that δn = ω(1) there is an explicit (δ → 3/4, ε)-somewhere condenser
SCond : {0, 1}n → {0, 1}m·` with ` = poly(1/δ), m = n/poly(1/δ), and ε = 2−Ω(m).
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Improving upon the analysis of [Zuc06], Li [Li11] obtained the following somewhere-condenser
that condenses sources to potentially very high min-entropy rate. A version of this somewhere-
condenser also appears in [BDT16]4.

Lemma 6. For every T = T (n) < n there exists a (3/4 → 1 − 1/T, ε)-somewhere-condenser

SCond : {0, 1}n → {0, 1}m·` with ` = T 5/2, m = n/T
5 log(3/2)

2 , and ε = 2−n/T
c

for some c > 1,
provided n is large enough.

Combining Lemmas 5 and 6 immediately leads to the following corollary.

Corollary 1. For every constant δ > 0 and every T = T (n) < n there exists a (δ → 1 − 1/T, ε)-

somewhere-condenser SCond : {0, 1}n → {0, 1}m·` with ` = Oδ(T
5/2), m = Ωδ(n/T

5 log(3/2)
2 ), and

ε = 2−Ωδ(n/T
c) for some absolute constant c > 1, provided n is large enough.

2.4 Computational extractors in the CRS model

In this section, we present the relevant definitions of computational pseudorandom objects in the
CRS model. As usual, all parameters are functions of a single security parameter λ. For the sake
of clarity, we do not write this dependence explicitly in the rest of the paper.

Definition 9 (Samplable sources in the CRS model). A tuple

(X,Y,AUX) ∈ {0, 1}n × {0, 1}n × {0, 1}a

is said to be a tuple of (t1, t2, k1, k2)-samplable sources in the CRS model if there exists CRS ∈
{0, 1}c such that the following hold:

• There exist a size-t1 circuit G1 and a size-t2 circuit G2 such that X ← G1(CRS) and (Y,AUX)←
G2(CRS).

• X and (Y,AUX) are conditionally independent given CRS.

• H∞(X|CRS = crs) ≥ k1 and H∞(Y |CRS = crs) ≥ k2 for every fixing CRS = crs.

When AUX is the empty string, we say (X,Y ) are (t1, t2, k1, k2)-samplable sources without auxiliary
information.

For simplicity, when t1 = t2 = t we say that (X,Y,AUX) are (t, k1, k2)-samplable, when k1 =
k2 = k we say that (X,Y,AUX) are (t1, t2, k)-samplable, and when both hold we say that (X,Y,AUX)
are (t, k)-samplable.

Definition 10 (Non-malleable extractor in the CRS model). A function cnmExt : {0, 1}n×{0, 1}n×
{0, 1}c → {0, 1}m is said to be a (t1, t2, t

′
1, t
′
2, t
′′, k1, k2, ε, r)-non-malleable extractor in the CRS

model if there is CRS ∈ {0, 1}c such that the following holds:
For every tuple (X,Y,AUX) of (t1, t2, k1, k2)-samplable sources from CRS, every tuple of deter-

ministic size-t′1 circuits g11, . . . , g1r : {0, 1}n × {0, 1}c → {0, 1}n and size-t′2 g21, . . . , g2r : {0, 1}n ×
{0, 1}a×{0, 1}c → {0, 1}n such that for every i ∈ [r] and every fixing CRS = crs either g1i(·, crs) has
no fixed points or g2i(·, aux, crs) has no fixed points for every fixing AUX = aux, and every size-t′′

adversary A we have

4The work [BDT16] has been retracted. However, the somewhere-condenser presented there is a restatement of
the one of Li [Li11], and is correct.
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|Pr[A(cnmExt(X,Y,CRS), L1, . . . , Lr,AUX,CRS) = 1]

− Pr[A(Um, L1, . . . , Lr,AUX,CRS) = 1]| ≤ ε,

where Li = cnmExt(g1i(X,CRS), g2i(Y,AUX,CRS),CRS). We set t′′ =∞ to denote that A is allowed
to be computationally unbounded.

We say cnmExt is a (t1, t2, t
′
1, t
′
2, t
′′, k, ε, r)-non-malleable extractor without auxiliary informa-

tion if the above holds for all (t1, t2, k1, k2)-samplable sources (X,Y ) without auxiliary information.
For simplicity, when t1 = t2 = t, t′1 = t′2 = t′, and k1 = k2 = k, we say that cnmExt is a

(t, t′, t′′, k, ε, r)-non-malleable extractor in the CRS model.

Observe that every non-malleable extractor resilient to auxiliary information is, in particular,
strong.

2.5 Other relevant computational objects

In this section, we present other computational objects that will prove useful throughout the paper.

Definition 11 ((t, δ)-collision-resistant hash function family). A family of functions H is said to
be (t, δ)-collision-resistant if for every size-t adversary A it holds that

Pr[X1 6= X2, H(X1) = H(X2)] ≤ δ,

where H ← H and (X1, X2)← A(H).

Definition 12 (Seed-dependent condenser). A function Cond : {0, 1}n × {0, 1}d → {0, 1}m is said
to be a (k →ε k

′, t)-seed-dependent condenser if for every X ← G(S), where S ← {0, 1}d, G is a
size-t circuit, and H̃∞(X|S) ≥ k, it holds that

Cond(X,S), S ≈ε Z, S,

where H̃∞(Z|S) ≥ k′.

Dodis, Ristenpart, and Vadhan [DRV12] showed that collision-resistant hash functions with
strong security are good seed-dependent condensers.

Lemma 7 ([DRV12]). Suppose H is a family of (t, 2β−1−m)-collision-resistant hash functions h :
{0, 1}n → {0, 1}m for some β > 0. Then, the function Cond(X,H) = H(X) where H ← H is an
(m− β + 1→ε m− β − log(1/ε), t)-seed-dependent condenser.

We will also require the following notion of a family of lossy functions, first introduced and
constructed by Peikert and Waters [PW11].

Definition 13 ((t, n, ω)-lossy function family). A function family F = {F}λ∈N is a (t, n, ω)-lossy
function family if the following conditions hold:

• There are two PPT seed generation algorithms Ginj and Gloss such that for any size-poly(t)
adversary A it holds that

|Prs←Ginj(1λ)[A(s) = 1]− Prs←Glos(1λ)[A(s) = 1]| = negl(t);

• For every λ ∈ N and every f ∈ Fλ, f : {0, 1}n → {0, 1}n.

• For every λ ∈ N and every s ∈ Ginj, fs ∈ Fλ is injective.
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• For every λ ∈ N and every s ∈ Glos, fs ∈ Fλ is lossy, i.e., its image size is at most 2n−ω.

• There exists a PPT algorithm Eval such that Eval(s, x) = fs(x) for very λ ∈ N, every s in the
support of Ginj(1λ) ∪ Glos(1λ), and every x ∈ {0, 1}n.

Lemma 8 ([PW11, BHK11]). For any constant γ ∈ (0, 1) and for every Ω(λ) ≤ n ≤ poly(λ) there
exists a (t, n, ω)-lossy function family with t = λlog λ and ω = n−nγ, assuming the quasi-polynomial
hardness of the DDH assumption.

3 From slightly better non-malleable extractors to great two-source
extractors

In this section, we show that slight improvements on the state-of-the-art explicit constructions
of two-source non-malleable extractors [CGL16, Li17] are enough to obtain low error two-source
extractors for low linear min-entropy. More precisely, we have the following result.

Theorem 6. For every constant δ > 0 there exists a constant Cδ > 0 such that the following holds:
If for m large enough and some γ = γ(m) ≥ 1/m there exists an explicit (m(1−γ)−3 logm, ε,Cδ ·

(1/γ)5)-non-malleable extractor nmExt : {0, 1}m × {0, 1}m → {0, 1}, then there exists an explicit
(δn, ε′)-extractor Ext : {0, 1}n × {0, 1}n → {0, 1} with ε′ = ε + 2−Ω(γcn) and n = Θ(m · (1/γ)c),
where c is an absolute constant.

Proof. Let nmExt : {0, 1}m × {0, 1}m → {0, 1} be the non-malleable extractor with the parameters
as in the theorem statement, and let SCond : {0, 1}n → {0, 1}m′·` be the (δ → 1− γ, ε)-somewhere
condenser from Corollary 1, and m = m′ + dlog `e.

Consider the function F : {0, 1}n × {0, 1}n → {0, 1} defined as

F (X,Y ) =
⊕
i,j∈[`]

nmExt(SCond(X)i‖pi,SCond(Y )j‖pj),

where pi denotes the dlog `e-bit binary representation of i ∈ [`]. We prove that F is an extractor
with the desired parameters.

By the properties of SCond, there exist V,W ∈ {0, 1}m′` independent somewhere-k′ sources with
k′ = (1 − γ)m′ such that SCond(X) ≈ε1 V and SCond(Y ) ≈ε1 W for ε1 = 2−Ω(γcn). Therefore, it
suffices to show that ⊕

i,j∈[`]

nmExt(Vi‖pi,Wj‖pj) ≈ε U1, (3)

and the desired result follows by combining the previous observations with the triangle inequality.
By the properties of V and W , there exist independent random variables I, J ∈ [`] such that

H∞(Vi|I = i),H∞(Wj |J = j) ≥ (1− γ)m′.

Consider arbitrary fixings I = i and J = j. We show that (3) holds for all fixings, and hence it
holds in general as well. Under such a fixing, it is enough to show that

∆(nmExt(Vi‖pi,Wj‖pj);U1|(nmExt(Vi′‖pi′ ,Wj′‖pj′)(i′,j′)6=(i,j)) ≤ ε. (4)

We will now use the properties of nmExt to prove (4). Note that we can jointly simulate all pairs
(Vi′‖pi′ ,Wj′‖pj′) for (i′, j′) 6= (i, j) as randomized split-memory-tamperings of (Vi‖pi,Wj‖pj). In
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other words, there exist randomized functions g1i′ , g2j′ : {0, 1}m × R → {0, 1}m, all sharing the
same independent randomness R ∈ R, such that

(Vi‖pi,Wj‖pj), (g1i′(Vi‖pi, R), g2j′(Wj‖pj , R))(i′,j′)6=(i,j)

∼ (Vi‖pi,Wj‖pj), (Vi′‖pi′ ,Wj′‖pj′)(i′,j′)6=(i,j).

Indeed, on input (vi‖pi, wj‖pj), this can be done by sampling V ′ = (V |I = i, Vi = vi) and W ′ =
(W |J = j,Wj = wj) using the extra independent randomness R, and setting g1i′(vi‖pi, R) = V ′i′‖pi′
and g2j′(wj‖pj , R) = W ′j′‖pj′ for all (i′, j′) 6= (i, j). Moreover, since pa 6= pb for a 6= b, all tampering
functions g1i′ and g2j′ above have no fixed points for every fixing of the randomness. Finally, since
` = Oδ((1/γ)5/2) and γ ≥ 1/m, it follows that

H∞(Vi‖pi),H∞(Wj‖pj) ≥ (1− γ)m′ ≥ (1− γ)m− 3 logm

and that nmExt handles at least `2 ≤ Cδ(1/γ)5 tamperings for a suitable constant Cδ > 0 depending
only on δ. Taking into account these observations and noting that Vi‖pi and Wj‖pj are independent,
we can invoke Lemma 4 to conclude (4) holds, which completes the proof.

We now present two remarkable corollaries of Theorem 6, one of which was already informally
presented in Section 1.4.

Corollary 2. Suppose that for some r = r(m) = ω(1), ε = ε(m), and some constant c > 0 there
is an explicit (m(1 − γ), ε, r)-non-malleable extractor for large enough m. Then, for any constant
δ > 0 and large enough n there exists an explicit (δn, ε′)-extractor with ε′ = ε(Ω(n)) + 2−Ω(n).

Corollary 3. There exists an absolute constant α > 0 such that if for some constant β < α there
exists an explicit (m −m1−β, ε,m6β)-non-malleable extractor nmExt : {0, 1}m × {0, 1}m → {0, 1},
then for any constant δ > 0 and large enough n there exists an explicit (δn, ε′)-extractor with

ε′ = ε(nΩ(1)) + 2−n
Ω(1)

.

According to Corollary 3, improving the min-entropy requirement of the CGL extractor in
Proposition 4 to m−mc0 for a sufficiently small constant c0 > 0 would immediately yield explicit
low error two-source extractors for any linear min-entropy rate.

4 From slightly better non-malleable extractors to great compu-
tational non-malleable extractors under standard assumptions

In this section, we show how the construction used to prove Theorem 6 can also be used to obtain
computational non-malleable extractors for low min-entropy efficiently samplable sources, efficient
tampering, and a computationally unbounded distinguisher from slight improvements on the state-
of-the-art constructions of non-malleable extractors for high min-entropy sources. This can be
achieved under the weak hardness assumption that families of collision-resistant hash functions
with decent parameters exist.

Theorem 7. For every constant δ > 0 there exists a constant Cδ > 0 such that the following holds:
If for m large enough and some γ = γ(m) ≥ 1/m there exists an explicit (m(1− γ)− 3 logm−

mh, ε = negl(m), Cδ ·(1/γ)5)-non-malleable extractor nmExt : {0, 1}m×{0, 1}m → {0, 1}, then there
exists an explicit (poly(n),poly(n),∞, k = δn, ε = negl(m), r = 1)-non-malleable extractor cnmExt :
{0, 1}n × {0, 1}n → {0, 1} in the CRS model without auxiliary information with n = Θ(m · (1/γ)c),
where c is an absolute constant, provided that there exists a family H of (poly(n), negl(n))-collision-
resistant hash functions h : {0, 1}n → {0, 1}mh with mh = o(n).
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Proof. Towards proving the desired statement, we modify the construction used to prove Theorem 6
by including the hashes of the sources in the input to nmExt. More precisely, we set CRS = H for
H ← H, and consider the function cnmExt : {0, 1}n × {0, 1}n ×H → {0, 1} defined as

cnmExt(X,Y,H) =
⊕
i,j∈[`]

nmExt(SCond(X)i‖pi‖H(X), SCond(Y )j‖pj‖H(Y )),

where nmExt is as in the theorem statement, SCond : {0, 1}n → {0, 1}m′·` is the (δ/2→ 1− γ, ε1)-
somewhere condenser from Corollary 1, pi denotes the dlog `e-bit binary representation of i, and
m = m′ + dlog `e+mh.

Fix (t, δn)-samplable sources X and Y and size-poly(t) deterministic tampering functions g1, g2 :
{0, 1}n×H → {0, 1}n such that for each h ∈ H, one of g1(·, h) and g2(·, h) has no fixed points. Our
goal is to show that

cnmExt(X,Y,H), cnmExt(X ′, Y ′, H), H ≈ε U1, cnmExt(X ′, Y ′, H), H, (5)

where X ′ = g1(X,H) and Y ′ = g2(Y,H), and ε = negl(n). We begin by claiming that the collision-
resistance of H ensures that

Pr
H

[X 6= X ′, H(X) = H(X ′)] = negl(n),

Pr
H

[Y 6= Y ′, H(Y ) = H(Y ′)] = negl(n).

Indeed, if this does not hold, then we can break the collision-resistance of H by considering the
size-poly(t) adversary that on input H ← H first samples (X,Y ), and then outputs either (X,X ′)
or (Y, Y ′) with probability 1/2. Since one of g1(·, h) and g2(·, h) has no fixed points for each
fixing H = h, this adversary succeeds with non-negligible probability. With this in mind, with
probability 1 − negl(n) over the fixing H = h, we have Pr[X 6= X ′, h(X) = h(X ′)] = negl(n) and
Pr[Y 6= Y ′, h(Y ) = h(Y ′)] = negl(n). Throughout the remainder of the proof we can fix such
h ∈ H and assume that g1(·, h) has no fixed points without loss of generality. Moreover, we will
also condition X on the events h(X) 6= h(X ′) and h(X) = z1 and Y on the event h(Y ) = z2 from
now on. Since h(X) 6= h(X ′) holds with probability 1− negl(n), by Lemmas 1 and 2 we have

H∞(X|h(X) 6= h(X ′), h(X) = z1) ≥ δn− 1−mh − negl(n) ≥ δn/2

with probability 1 − negl(n) over the choice of z1. Likewise, we have H∞(Y |h(Y ) = z2) ≥ δn/2
with probability 1− negl(n) over the choice of z2. From here onwards, fix such z1 and z2.

Given the fixings in the previous paragraph, by the properties of SCond there exist independent
somewhere-k′ sources V,W ∈ {0, 1}m′` with k′ = (1 − γ)m′ and independent random variables
I, J ∈ [`] such that SCond(X) ≈ε1 V and SCond(Y ) ≈ε1 W , and

H∞(Vi|I = i) ≥ (1− γ)m′ ≥ (1− γ)m− 3 logm−mh, (6)

H∞(Wj |J = j) ≥ (1− γ)m′ ≥ (1− γ)m− 3 logm−mh. (7)

for all valid fixings I = i and J = j. We now wish to proceed by replacing SCond(X) and
SCond(Y ) by V and W , respectively, in our analysis. Observe that we can write A(SCond(X)) =
(SCond(X ′)i‖i‖h(X ′))i∈[`] for a randomized functionA that on input v samples x from (X|SCond(X) =
v) and sets A(v) = (SCond(g1(x, h))i‖i‖h(g1(x, h)))i∈[`] (if the sampling of x fails, simply output a
fixed bitstring whose suffix differs from z1). By our conditioning, we may assume that A(v) 6= v‖i‖z1
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for all i ∈ [`]. Analogously, we can also write B(SCond(Y )) = (SCond(Y ′)j‖j‖h(Y ′))j∈[`] for a ran-
domized function B. Therefore, it now suffices to show that⊕

i,j∈[`]

nmExt(SCond(X)i‖i‖z1, SCond(Y )j‖j‖z2),

⊕
i,j∈[`]

nmExt(A(SCond(X))i, B(SCond(Y ))j)

≈ε′ U1,
⊕
i,j∈[`]

nmExt(A(SCond(X))i, B(SCond(Y )j). (8)

Using the fact that SCond(X),SCond(Y ) ≈2ε1 V,W , the condition in (8) follows if we show that⊕
i,j∈[`]

nmExt(Vi‖i‖z1,Wj‖j‖z2),
⊕
i,j∈[`]

nmExt(A(V )i, B(W )j)

≈ε U1,
⊕
i,j∈[`]

nmExt(A(V )i, B(W )j). (9)

Consider arbitrary fixings I = i? and J = j?. We show that then we have

∆(nmExt(Vi?‖i‖z1,Wj?‖j‖z2);U1

|(nmExt(Vi‖i‖z1,Wj‖j‖z2))(i,j)6=(i?,j?), (nmExt(A(V )i, B(W )j))i,j∈[`]) ≤ ε, (10)

which implies (9) and concludes the proof. Analogously to the proof of Theorem 6, we can write
g1

1i(Vi?‖i‖z1, R) = Vi‖i‖z1 and g1
2j(Wj?‖j‖z2, R) = Wj‖j‖z2 for randomized tampering functions

g1
1i, g

1
2j : {0, 1}m × R → {0, 1}m for i 6= i? and j 6= j?. Observe that the g1

1i’s and g1
2j ’s have no

fixed points, since pi 6= pi? and pj 6= pj? . Moreover, we can also write g2
1i(Vi?‖i‖z1, R) = A(V )i and

g2
2j(Wj?‖j‖z2, R) = B(W )j for randomized tampering functions g2

1i, g
2
2j : {0, 1}m×R → {0, 1}m for

i 6= i?. By our previous conditioning, we know that g2
1i has no fixed points, i.e., g2

1i(Vi?‖i‖z1, r) 6=
Vi?‖i‖z1 for all r. Finally, since there are at most 2`2 ≤ Cδ(1/γ)5 tamperings for a suitably
large constant Cδ depending only on δ, and since Vi?‖pi?‖z1 and Wj?‖pj?‖z2 are independent and
H∞(Vi?‖pi?‖z2),H∞(Wj?‖pj?‖z2) ≥ (1−γ)m−3 logm−mh by (6) and (7), we can invoke Lemma 4
to conclude (10) holds, which completes the proof.

Similarly to the previous section, we present two corollaries that are especially meaningful given
the current state-of-the-art constructions of two-source non-malleable extractors [CGL16, Li17], one
of which was already informally presented in Section 1.4.

Corollary 4. Suppose that for some r = r(m) = ω(1), ε = negl(m), and some constant c > 0 there
is an explicit (m(1 − γ), ε, r)-non-malleable extractor for large enough m. Then, for any constant
δ > 0 and large enough n there exists an explicit (poly(n),poly(n),∞, k = δn, ε = negl(n), r = 1)-
non-malleable extractor in the CRS model without auxiliary information, provided that there exists
a family H of (poly(n), negl(n))-collision resistant hash functions h : {0, 1}n → {0, 1}mh with
mh = o(n).

Corollary 5. There exists an absolute constant α > 0 such that if for some constant β < α there
exists an explicit (m−m1−β, ε = negl(m),m6β)-non-malleable extractor nmExt : {0, 1}m×{0, 1}m →
{0, 1}, then for any constant δ > 0 and large enough n there exists an explicit (poly(n), poly(n),∞, k =
δn, ε = negl(n), r = 1)-non-malleable extractor in the CRS model without auxiliary informa-
tion, provided that there exists a family H of (poly(n), negl(n))-collision resistant hash functions
h : {0, 1}n → {0, 1}mh with mh ≤ nρ for a small enough constant ρ > 0.
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5 Computational non-malleable extractors from quasi-polynomial
hardness assumptions

In this section, we construct computational two-source non-malleable extractors in the CRS model
assuming the quasi-polynomial hardness of the DDH assumption. We begin by constructing such a
non-malleable extractor for relatively high min-entropy that handles many tamperings. Then, we
use this construction as a stepping stone to obtain a non-malleable extractor in the CRS model for
low min-entropy.

Theorem 8. Suppose the following objects exist:

• A family H1 of (poly(t11), negl(t11))-collision-resistant hash functions h : {0, 1}n → {0, 1}`1;

• A family H2 of (poly(t12), negl(t12))-collision-resistant hash functions h : {0, 1}n → {0, 1}`2;

• A family of (poly(t2), n, ω)-lossy functions F , where t2 ≥ 2`1+`2, with 2`1 = t
ω(1)
11 , 2`2 = t

ω(1)
12 ,

and ω = n− nγ for some constant γ ∈ (0, 1).

• A strong (k1, k2, ε)-extractor Ext : {0, 1}n × {0, 1}n → {0, 1}m, where Ω(t1) ≤ n ≤ poly(t1)
for t1 = min(t11, t12).

Then, there exists an explicit (poly(t11),poly(t12), poly(t1), poly(t2), k′1 = k1 +r(2`1 +2nγ), k′2 =
k2 +r(2`2 +m+log2 n), ε+negl(n), r)-non-malleable extractor cnmExt : {0, 1}n×{0, 1}n → {0, 1}m
in the CRS model.

We instantiate Theorem 8 with the best known explicit statistical two-source extractors in
Section 5.2.

5.1 Proof of Theorem 8

Our candidate construction is as follows: First, to define CRS, begin by sampling b← {0, 1}`, where
` = `1 + `2, and then sample functions fij from F for i ∈ [`] and j ∈ {0, 1} such that fibi is injective
and fi1−bi is lossy for each i. Finally, sample h1 ← H1 and h2 ← H2, and set

CRS = (h1, h2, (fij)i∈[`],j∈{0,1}) ∈ {0, 1}c.

Our function cnmExt : {0, 1}n × {0, 1}n × {0, 1}c → {0, 1} is defined as

cnmExt(x, y,CRS) = Ext(fh1(x)‖h2(y)(x), y),

where for a ∈ {0, 1}` we denote fa(x) = f1a1(f2a2(· · · (f`a`(x)) · · · )).
For the sake of exposition, we present the proof for the case r = 1 only. The extension to r > 1

tamperings is straightforward. In order to show Theorem 8, we must argue that, for arbitrary
(poly(t11), poly(t12), k′1, k

′
2)-samplable sources (X,Y,AUX), valid size-poly(t1) tampering functions

g1 : {0, 1}n×{0, 1}c → {0, 1}n and g2 : {0, 1}n×{0, 1}a×{0, 1}c → {0, 1}n, and every size-poly(t2)
distinguisher A it holds that

|Pr[A(cnmExt(X,Y,CRS), cnmExt(X,Y ,CRS),AUX,CRS) = 1]

− Pr[A(U1, cnmExt(X,Y ,CRS),AUX,CRS) = 1]| ≤ ε+ negl(t1), (11)

where X = g1(X,CRS) and Y = g2(Y,AUX,CRS). As a first step, we prove that it suffices to
consider cases where h(X)‖h(Y ) 6= h(X)‖h(Y ) and h(X)‖h(Y ) = b, where b denotes the indices of
the injective functions (fibi)i∈[`].
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Lemma 9. Let E denote the event that h1(X)‖h2(Y ) 6= h1(X)‖h2(Y ) and h1(X)‖h2(Y ) = b hold
simultaneously. Then, if

|Pr[A(cnmExt(X,Y,CRS), cnmExt(X,Y ,CRS),AUX,CRS) = 1|E]

− Pr[A(U1, cnmExt(X,Y ,CRS),AUX,CRS) = 1|E]| ≤ ε+ negl(t1), (12)

it follows that (11) holds.

Proof. We proceed similarly to the proof of the analogous claim in [GKK20]. Suppose that (12)
holds for every tuple of (poly(t11), poly(t12), k′1, k

′
2)-samplable sources (X,Y,AUX), tampering func-

tions g1 and g2, and size-poly(t2) adversary A, but

|Pr[A(cnmExt(X,Y,CRS), cnmExt(X,Y ,CRS),AUX,CRS) = 1]

− Pr[A(U1, cnmExt(X,Y ,CRS),AUX,CRS) = 1]| > ε+ 1/p(t1), (13)

where X = g1(X,CRS) and Y = g2(Y,AUX,CRS), for some pair of (poly(t11),poly(t12), k′1, k
′
2)-

samplable sources (X,Y,AUX), some tampering functions g1 and g2, some size-poly(t2) adversary
A, and some polynomial p. We show that this breaks the t2-security of the family of lossy functions
F . By the t2-security of F , we know that for every size-poly(t2) adversary B we have

2−` − negl(t2) ≤ Pr[B(CRS) = b] ≤ 2−` + negl(t2). (14)

Consider the size-poly(t2) adversary B that on input CRS samples (X,Y,AUX), and first checks
whether h1(X)‖h2(Y ) 6= h1(X)‖h2(Y ). If that is the case, then B outputs b′ = h1(X)‖h2(Y ) as a
guess for b, else it outputs b′ ← {0, 1}`. Since Pr[h1(X)‖h2(Y ) = h1(X)‖h2(Y )] = negl(t1) by the
collision-resistance of H and the fact that X 6= X or Y 6= Y by hypothesis, using (14) we have that

(1− negl(t1))2−` − negl(t2) ≤ Pr[h(X)‖h(Y ) = b, h(X)‖h(Y ) 6= h(X)‖h(Y )]

≤ (1 + negl(t1))2−` + negl(t2). (15)

We now proceed to construct a size-poly(t2) adversary B′ such that

Pr[B′(CRS) = b] ≥ 1.5 · 2−`.

This contradicts (14), which concludes the proof. On input CRS and for N = p(t11 + t12)3, B′
proceeds as follows:

1. Sample (X,Y,AUX) from CRS. If h1(X)‖h2(Y ) = h1(X)‖h2(Y ), then re-sample. Otherwise,
set z = h1(X)‖h2(Y ). Note that this takes time poly(t11 + t12).

2. For i ∈ [N ]: Sample (Xi, Yi,AUXi) from CRS conditioned on h1(Xi)‖h2(Yi) = z and h1(Xi)‖h2(Yi) 6=
h(Xi)‖h(Yi). By (15) and the fact that 2` = poly(t2), this takes time poly(t2). Set

δi = |A(cnmExt(Xi, Yi,CRS), cnmExt(Xi, Yi,CRS),AUXi,CRS)

−A(Um, cnmExt(Xi, Yi,CRS),AUXi,CRS)|,

where Xi = g1(Xi,CRS) and Yi = g2(Yi,AUXi,CRS). Note that A has size poly(t2).

3. Compute δ = 1
N

∑N
i=1 δi. If δ < ε+ 1

4p(t11+t12) , then output b′ = z. Else, output b′ ← {0, 1}2`.
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We now show that Pr[b′ = b] ≥ 1.5 · 2−`. It holds that E[δ|z = b] ≤ ε + negl(t1) < ε + 1
8p(t1) . On

the other hand, by (13) and (15) we have E[δ|z 6= b] ≥ ε+ 1
2p(t1) . By the Chernoff bound and the

choice of N = p(t11 + t12)3, we then have

Pr[b′ = b|z = b] = Pr

[
δ < ε+

1

4p(t1)

∣∣∣∣z = b

]
≥ 1− exp(−Ω(p(t1))) = 1− negl(t1),

and

Pr

[
δ ≥ ε+

1

4p(t1)

∣∣∣∣z 6= b

]
≥ 1− exp(−Ω(p(t1))) = 1− negl(t1).

The latter inequality then implies that Pr[b′ = b|z 6= b] ≥ (1 − negl(t1))2−`. Combining these
observations with (15) yields

Pr[b′ = b] ≥ (2− negl(t1))2−` ≥ 1.5 · 2−`,

which contradicts (14), as desired.

Based on Lemma 9, we can now work under the assumption that the event E holds and
show (12). According to the definition of cnmExt, in order to prove that (12) holds it is now
enough to show that for every size-poly(t2) distinguisher A′ we have

|Pr[A′(Ext(fb(X), Y ),SideInfo,AUX,CRS) = 1|E]

− Pr[A′(Um, SideInfo,AUX,CRS) = 1|E]| ≤ ε+ negl(t1), (16)

where
SideInfo = (h1(X), h1(X), h2(Y ), h2(Y ), fh1(X)‖h2(Y )(X), cnmExt(X,Y ,CRS)).

With this in mind, consider an arbitrary fixing of the side information CRS = crs, h1(X)‖h2(Y ) =
b = b1‖b2, h1(X)‖h2(Y ) = b′ = b′1‖b′2 with b′ 6= b, fb′(X) = z′, and cnmExt(X,Y , crs) = y′. Observe
that, under such a fixing, the event E holds and X and Y are independent. This is because, after fix-
ing CRS, h1(X)‖h2(Y ), and fb′(X), we have that cnmExt(X,Y ) = Ext(fb′(X), Y ) is a deterministic
function of Y . Therefore, it is now enough to show that

|Pr[A′(Ext(fb(X), Y ), b, b′, z′, y′,AUX, crs) = 1] − Pr[A′(Um, b, b′, z′, y′,AUX, crs) = 1]| ≤ ε (17)

for arbitrary A′ with probability 1− negl(t1) over the choice of fixings above.
Note that, by Lemmas 1 and 2, with probability at least 1− negl(t1) over the fixings we have

H∞(fb(X)|CRS = crs, h1(X) = b1, h1(X) = b′1, fb′(X) = z′) ≥ k′1 − 2`1 − nγ − log2 n

≥ k1,

since fb is injective, |h1(X)| = |h1(X)| = `1, n = Ω(t1), and fb′(X) takes on at most 2n
γ

values
because b′ 6= b (and so at least one index in fb′ corresponds to a lossy function). Moreover, we also
have

H∞(Y |CRS = crs, h2(Y ) = b2, h2(Y ) = b′2,Ext(z
′, Y ) = y′) ≥ k′2 − 2`2 −m− log2 n

≥ k2,

since |h(Y )| = |h(Y )| = `2, |Ext(z′, Y )| = m, and n = Ω(t1). The desired inequality in (17) now
follows immediately by noting that Ext is a strong (k1, k2, ε)-extractor and that, after fixing CRS,
AUX is a (possibly randomized) function of Y only.
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5.2 Instantiations of Theorem 8

In this section, we instantiate Theorem 8 with the explicit statistical two-source extractors presented
in Section 2. Throughout this section, we set the following parameters

Ω(λ) ≤ n ≤ poly(λ), t1 = λ, t2 = λlog λ,

where λ is the security parameter. Then, the quasi-polynomial hardness of the DDH assumption
allows us to assume the existence of the following objects:

• A familyH of (poly(t1), negl(t1))-collision-resistant hash functions h : {0, 1}n → {0, 1}`, where
` = log λ · log log λ. Then, we set H1 = H2 = H and t11 = t12 = t1 in Theorem 8.

• A family of (t2, n, ω)-lossy functions F , where t2 ≥ 22` = t
ω(1)
1 and ω = n − nγ for some

constant γ ∈ (0, 1).

Using Bourgain’s extractor (Proposition 1), we immediately obtain the following corollary.

Corollary 6. Assuming quasi-polynomial hardness of the DDH assumption and for any n, t1, and
t2 satisfying

Ω(λ) ≤ n ≤ poly(λ), t1 = λ, t2 = λlog λ,

there exists an explicit (poly(t1),poly(t1),poly(t2), k′ = 0.46n, ε = negl(t1), r = Ω(n1−γ))-non-
malleable extractor cnmExt : {0, 1}n × {0, 1}n → {0, 1} in the CRS model.

Using Raz’s extractor (Proposition 2), we obtain the following corollary.

Corollary 7. Assuming quasi-polynomial hardness of the DDH assumption and for any n, t1, and
t2 satisfying

Ω(λ) ≤ n ≤ poly(λ), t1 = λ, t2 = λlog λ,

for all constants δ, r > 0 there exists an explicit (poly(t1),poly(t1),poly(t2), k′1 = (1/2 + δ)n, k′2 =
log3 n, ε = negl(t1), r)-non-malleable extractor cnmExt : {0, 1}n × {0, 1}n → {0, 1} in the CRS
model.

Finally, using the Chattopadhyay-Zuckerman extractor (Proposition 3), we obtain the following
corollary.

Corollary 8. Assuming quasi-polynomial hardness of the DDH assumption and for any n, t1, and
t2 satisfying

Ω(λ) ≤ n ≤ poly(λ), t1 = λ, t2 = λlog λ,

for every constant 1 > c > γ there exists an explicit (poly(t1), poly(t1), poly(t2), k′ = O(nc), ε =
t1
−Ω(1), r = Ω(nc−γ))-non-malleable extractor cnmExt : {0, 1}n×{0, 1}n → {0, 1} in the CRS model.

6 A simple non-malleable extractor in the CRS model from nearly
optimal collision-resistant hash functions

In this section, we present a simple construction of a non-malleable extractor in the CRS model
against computationally bounded samplers and tamperings and against a computationally un-
bounded distinguisher that can be instantiated from families of nearly optimal collision-resistant
hash functions and high min-entropy information-theoretic non-malleable extractors. To be precise,
we have the following result.
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Theorem 9. Suppose H is a family of (3t, 2β−1−m = negl(n))-collision-resistant hash functions
h : {0, 1}n → {0, 1}m, and suppose nmExt : {0, 1}m × {0, 1}m → {0, 1} is an explicit strong (m −
β − 2 log2 n, ε = negl(n), r = 1)-non-malleable extractor. Then, there exists an explicit (t, t,∞, k =
m − β + 1, ε = negl(n), r = 1)-non-malleable extractor cnmExt : {0, 1}n × {0, 1}n → {0, 1} in the
CRS model.

Moreover, if nmExt is not strong, then cnmExt is a (t, t,∞,m− β + 1, ε = negl(n), r = 1)-non-
malleable extractor in the CRS model without auxiliary information.

Remark 1. Note that, in Theorem 9, the underlying nmExt for m-bit sources and the resulting
cnmExt for n-bit sources have similar min-entropy requirements. When n� m, this means that we
start with an extractor nmExt for m-bit sources with high min-entropy rate, and construct a new
extractor cnmExt for n-bit sources with very low min-entropy rate.

Theorem 9. We set CRS = H for H ← H and consider the function

cnmExt(x, y,H) = nmExt(H(x), H(y)).

For the sake of clarity, we present the proof for the case r = 1 only. The generalization to r > 1
tamperings is straightforward. Fix (k = m−β+1, t)-samplable sources (X,Y,AUX) and size-poly(t)
deterministic tampering functions g1, g2 : {0, 1}n ×H → {0, 1}n. Our goal is to show that

∆(nmExt(H(X), H(Y ));U1|H, nmExt(H(g1(X,H)), H(g2(Y,AUX, H)))) = negl(n). (18)

Consider an arbitrary fixing H = h. Making use of the collision-resistance properties of H, with
probability 1− negl(n) over the fixing H = h it either holds that

Pr[h(X) = h(g1(X,h))] = negl(n) (19)

or
Pr[h(Y ) = h(g2(Y,AUX, h))] = negl(n),

since either g1(·, h) has no fixed points for any aux or g2(·, aux, h) has no fixed points. We now
assume that g1(·, h) has no fixed points, in which case (19) holds. The proof for the case where
g2(·, aux, h) has no fixed points for any aux is analogous. Additionally, by Lemma 7 coupled with
Lemma 2, with probability 1− negl(n) over the fixing H = h we also have

h(X), h(Y ) ≈negl(n) V,W, (20)

where V,W ∈ {0, 1}m are independent random variables satisfying

H∞(V ),H∞(W ) ≥ m− β − log2 n.

After such a fixing, it now suffices to show that

∆(nmExt(h(X), h(Y ));U1|nmExt(h(X ′), h(Y ′)),AUX) = negl(n), (21)

where X ′ = g1(X,h) 6= X and Y ′ = g2(Y,AUX, h). We can see h(X ′) and (h(Y ′),AUX) as random-
ized functions of h(X) and h(Y ), respectively. In other words, there exist randomized functions A,
B, and C with shared randomness such that

nmExt(h(X), h(Y )), nmExt(h(X ′), h(Y ′)),AUX

∼ nmExt(h(X), h(Y )), nmExt(A(h(X)), B(h(Y ))), C(h(Y )),
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where Pr[A(h(X)) = h(X)] = negl(n). Therefore, using (20), in order to prove (21) it is enough to
show that

∆(nmExt(V,W );U1|nmExt(A(V ), B(W )), C(W )) = negl(n). (22)

By (20) and the properties of A, it also holds that Pr[A(V ) = V ] = negl(n). Therefore, we
can condition on the event A(V ) 6= V and invoke Lemma 4 with nmExt, V , and W (which stay
independent and have enough min-entropy after this conditioning) to conclude that (22) holds. The
last statement of Theorem 9 follows by an analogous proof with a non-strong nmExt.

Using the non-malleable extractor from Proposition 5 in the statement of Theorem 9, we im-
mediately obtain the following corollary.

Corollary 9. Suppose H is a family of (3t, 2β−1−m)-collision-resistant hash functions h : {0, 1}n →
{0, 1}m for β = c · m, where c > 0 is a small enough constant. Then, there exists an explicit
(t, t,∞, k = m−β+1, ε = negl(n), r = 1)-non-malleable extractor cnmExt : {0, 1}n×{0, 1}n → {0, 1}
in the CRS model.

Note that the hash output length m in Corollary 9 controls the min-entropy requirement of
cnmExt. In particular, if m = polylog(n), then we obtain a low-error two-source non-malleable
extractor for polylog(n) min-entropy.

The birthday bound tells us that the best possible security for a hash function with m-bit
outputs we can hope for is (t, t2/2m)-collision-resistant. In practice, there are several candidates for
which brute-force is the best possible attack. Among them are the widely deployed hash functions
SHA-256, SHA-512, SHA-3, and discrete logarithm (over elliptic curves) based constructions. Using
any of these hash functions in Theorem 9 allows us to obtain a practical low-error two-source non-
malleable extractor for sources with polylogarithmic min-entropy.

7 Privacy amplification resilient against memory-tampering ac-
tive adversaries

In the following sections, we formalize the notion of privacy amplification resilient against memory-
tampering active adversaries, and show that two-source non-malleable extractors are natural tools
for designing such privacy amplification protocols in both the information-theoretic and computa-
tional settings.

7.1 The information-theoretic setting

We begin by formally defining with we mean by a privacy amplification protocol against memory-
tampering active adversaries.

Definition 14 (Protocol against memory-tampering active adversaries). An (r, `1, k1, `2, k2,m)-
protocol against memory-tampering active adversaries is a protocol between Alice and Bob, with a
man-in-the-middle Eve, that proceeds in r rounds. Initially, we assume that Alice and Bob have
access to random variables (W,A) and (W,B), respectively, where W is an (`1, k1)-source (the
secret), and A, B are (`2, k2)-sources (the randomness tapes) independent of each other and of W .
The protocol proceeds as follows:

In the first stage, Eve submits an arbitrary function F : {0, 1}`1×{0, 1}`2 → {0, 1}`1×{0, 1}`2 and
chooses one of Alice and Bob to be corrupted, so that either (W,A) is replaced by F (W,A) (if
Alice is chosen), or (W,B) is replaced by F (W,B) (if Bob is chosen).
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In the second stage, Alice and Bob exchange messages (C1, C2, . . . , Cr) over a non-authenticated
channel, with Alice sending the odd-numbered messages and Bob the even-numbered messages,
and Eve is allowed to replace each message Ci by C ′i based on (C1, C

′
1, . . . , Ci−1, C

′
i−1, Ci) and

independent random coins, so that the recipient of the i-th message observes C ′i. Messages Ci
sent by Alice are deterministic functions of (W,A) and (C ′2, C

′
4, . . . , C

′
i−1), and messages Ci

sent by Bob are deterministic functions of (W,B) and (C ′1, C
′
3, . . . , C

′
i−1).

In the third stage, Alice outputs SA ∈ {0, 1}m ∪ {⊥} as a deterministic function of (W,A) and
(C ′2, C

′
4, . . . ), and Bob outputs SB ∈ {0, 1}m ∪ {⊥} as a deterministic function of (W,B) and

(C ′2, C
′
4, . . . ).

Definition 15 (Privacy amplification protocol against memory-tampering active adversaries). An
(r, `1, k1, `2, k2,m, ε, δ)-privacy amplification protocol against memory-tampering active adversaries
is an (r, `1, k1, `2, k2,m)-protocol against memory-tampering active adversaries with the following
additional properties:

• If Eve is passive: In this case, F is the identity function and Eve only wiretaps. Then,
SA = SB 6= ⊥ with SA satisfying

SA, C ≈ε Um, C, (23)

where C = (C1, C
′
1, C2, C

′
2, . . . , Cr, C

′
r) denotes Eve’s view.

• If Eve is active: Then, with probability at least 1 − δ either SA = ⊥ or SB = ⊥ (i.e., one
of Alice and Bob detects tampering), or SA = SB 6= ⊥ with SA satisfying (23).

We are now ready to state our main result in the information-theoretic setting, which states that
every strong two-source non-malleable extractor with appropriate parameters yields a 4-round pri-
vacy amplification protocol resilient against memory-tampering active adversaries via the protocol
illustrated in Figure 1.

Theorem 10. Let nmExt : {0, 1}`1×{0, 1}2`2 → {0, 1}m+2α be a strong (k1−`2−2γ−1, k2−γ−1, ε)-
two-source non-malleable extractor. Then, there exists an (r = 4, `1, k1, `2, k2,m, ε, δ = ε + 2−α +
2 ·2−γ)-privacy amplification protocol against memory-tampering active adversaries. Moreover, the
protocol is explicit if nmExt is explicit.

Proof. We consider the 4-round protocol from Figure 1. Without loss of generality, we may assume
that Eve is deterministic. We proceed by cases:

1. Eve is passive: Then, we have RA = RB (and hence SA = SB 6= ⊥), and the desired result
follows by noting that

RA = nmExt(W,A‖B), A‖B ≈ε Um+2α, A‖B,

since W is independent of A‖B, H∞(W ) ≥ k1, H∞(A‖B) ≥ 2k2, and nmExt is a strong
extractor. This implies that SA, C ≈ε Um, C, where C = (A,B, [RA]2α) denotes Eve’s view.

2. Eve is active and Alice is corrupted: Denote (W̃ , Ã) = F (W,A), and consider arbitrary

fixings A = a and Ã = ã. Note that W̃ is now a deterministic tampering of W , and that, by
Lemmas 1 and 2 and the fact that |Ã| = `2, it holds that

H∞(W |A = a, Ã = ã) ≥ H̃∞(W |A, Ã)− γ

≥ H̃∞(W |A)− `2 − γ
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= k1 − `2 − γ (24)

with probability at least 1−2−γ over the fixings. We assume that the fixings above satisfy (24),
and simply add a 2−γ term to δ via a union bound. We now have

RA = nmExt(W̃ , ã‖B′)

and
RB = nmExt(W, ã′‖B),

where ã′ is a deterministic function of ã (hence it is fixed), and B′ is a deterministic function
of B since A and Ã are fixed. As a result, W and ã′‖B are independent, and we can write

W̃ = f(W ) and ã‖B′ = g(ã′‖B) for deterministic tampering functions f and g. Let L = {w :
f(w) = w} and R = {b : g(ã′‖b) = ã′‖b}. We now argue differently depending on whether
W ∈ L and B ∈ R hold or not. We begin by noting that if either Pr[W ∈ L ∧B ∈ R] < 2−γ

or Pr[W 6∈ L∨B 6∈ R] < 2−γ , then we can add a 2−γ term to δ via a union bound and assume
that the opposite event holds. We are thus reduced to the two cases below:

(a) If Pr[W ∈ L ∧B ∈ R] = Pr[W ∈ L] · Pr[B ∈ R] ≥ 2−γ , by Lemma 3 it holds that

H∞(W |A = a, Ã = ã,W ∈ L) ≥ k1 − `2 − 2γ (25)

and
H∞(B|A = a, Ã = ã, B ∈ R) ≥ k2 − γ. (26)

Therefore, since under this conditioning we still have that W and ã′‖B are independent
and they both have enough min-entropy by (25) and (26), it is the case that RA = RB
and

RA = nmExt(W, ã‖B), ã‖B ≈ε Um+2α, ã‖B.

If [RA]′α = [RA]α and [RB]′α:2α = [RB]α:2α, then SA = SB 6= ⊥ and SA, C ≈ε Um, C,
where C = (ã, oa′, B,B′, [RA]2α, [RA]′2α) denotes Eve’s view. Otherwise, we have either
SA = ⊥ or SB = ⊥ with probability 1.

(b) On the other hand, if Pr[W 6∈ L ∨B 6∈ R] ≥ 2−γ , by Lemma 3 it either holds that

H∞(W |A = a, Ã = ã,W 6∈ L) ≥ k1 − `2 − 2γ − 1 (27)

or
H∞(B|A = a, Ã = ã, B 6∈ R) ≥ k2 − γ − 1. (28)

Assume that (27) holds and condition on W 6∈ L. The proof when (28) holds and
we condition on B 6∈ R is analogous. Then, we have that f has no fixed points over
the support of W under this conditioning, and so, by the fact that nmExt is a strong
(k1−`2−2γ−1, k2−γ−1, ε)-non-malleable extractor, W and ã′‖B are independent, (27)
and that H∞(ã′‖B) ≥ k2, it holds that

∆(RB = nmExt(W, ã′‖B);Um+2α|RA = nmExt(f(W ), g(ã′‖B)), ã′‖B) ≤ ε.

This implies that the probability that [RA]′α = [RB]α, and hence SB 6= ⊥, is at most
ε+ 2−α, which we add to δ via a union bound.

3. Eve is active and Bob is corrupted: The reasoning follows analogously to the previous
case, but we set (W̃ , B̃) = F (W,B) and fix B and B̃ instead.
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We present a corollary of Theorem 10 to showcase that strong two-source non-malleable extrac-
tors with good parameters yield privacy amplification protocols against memory-tampering active
adversaries with likewise good parameters.

Corollary 10. Suppose that for some constant δ > 0 there exists a strong (k = δn, ε, r = 1)-non-
malleable extractor nmExt : {0, 1}n → {0, 1}n → {0, 1}m′ with m′ = Ω(n). Then, there exists an
(r = 4, `1 = n, k1 = 3δn, `2 = 1.5δn, k2 = 1.1δn,m = Ω(n), ε, δ = ε+ 2−Ω(n))-privacy amplification
protocol against memory-tampering active adversaries. Moreover, the protocol is explicit if nmExt
is explicit.

We currently do not know explicit constructions of two-source non-malleable extractors with
parameters matching those required for Corollary 10, although it is known that there exist such
(inefficient) extractors with significantly better parameters [CGGL20]. Thus, we leave this con-
nection between two-source non-malleable extractors and privacy amplification with a very strong
adversary as an interesting motivation for further study of such extractors with lower min-entropy
requirement in the information-theoretic setting. In the next section, we show that we can con-
struct explicit privacy amplification protocols against memory-tampering active adversaries in the
computational setting from computational strong two-source non-malleable extractors.

7.2 An efficient privacy amplification protocol in the CRS model

In this section, we focus on designing efficient privacy amplification protocols resilient against
memory-tampering active adversaries in the CRS model. Informally, we consider an analogous
setting to Section 7.1, but assuming that there is a public common reference string CRS, the
sources W , A, and B are efficiently samplable given the CRS, and that the memory-tampering
active adversary Eve is computationally bounded. A formal definition follows below.

Definition 16 (Protocol against memory-tampering active adversaries in the CRS model). An
(r, λ, `1, k1, `2, k2,m)-protocol against memory-tampering active adversaries in the CRS model is a
protocol between Alice and Bob, with a man-in-the-middle Eve, that proceeds in r rounds. Initially,
we assume that Alice and Bob have access to random variables (W,A) and (W,B), respectively,
where W ∈ {0, 1}`1, A,B ∈ {0, 1}`2 are independent, and W is (poly(λ), k1)-samplable from CRS,
and A and B are both (poly(λ), k2)-samplable from CRS. The protocol proceeds as follows:

In the first stage, Eve submits a size-poly(λ) circuit F : {0, 1}`1 × {0, 1}`2 × {0, 1}c → {0, 1}`1 ×
{0, 1}`2 and chooses one of Alice and Bob to be corrupted, so that either (W,A) is replaced by
F (W,A,CRS) (if Alice is chosen), or (W,B) is replaced by F (W,B,CRS) (if Bob is chosen).

In the second stage, Alice and Bob exchange messages (C1, C2, . . . , Cr) over a non-authenticated
channel, with Alice sending the odd-numbered messages and Bob the even-numbered messages,
and Eve is allowed to replace each message Ci by C ′i ← A(C1, C

′
1, . . . , Ci−1, C

′
i−1, Ci,CRS),

where A is a size-poly(λ) circuit, so that the recipient of the i-th message observes C ′i. Mes-
sages Ci sent by Alice are deterministic functions of (W,A), CRS, and (C ′2, C

′
4, . . . , C

′
i−1), and

messages Ci sent by Bob are deterministic functions of (W,B), CRS, and (C ′1, C
′
3, . . . , C

′
i−1).

In the third stage, Alice outputs SA ∈ {0, 1}m ∪ {⊥} as a deterministic function of (W,A), CRS,
and (C ′2, C

′
4, . . . ), and Bob outputs SB ∈ {0, 1}m∪{⊥} as a deterministic function of (W,B),

CRS, and (C ′2, C
′
4, . . . ).
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Definition 17 (Privacy amplification protocol against memory-tampering active adversaries in the
CRS model). An (r, λ, `1, k1, `2, k2,m)-privacy amplification protocol against memory-tampering
active adversaries in the CRS model is an (r, λ, `1, k1, `2, k2,m)-protocol against memory-tampering
active adversaries in the CRS model with the following additional properties:

• Eve is passive: In this case, F is the identity function and Eve only wiretaps. Then,
SA = SB 6= ⊥ with SA satisfying

SA, C,CRS ≈cλ Um, C,CRS, (29)

where C = (C1, C
′
1, C2, C

′
2, . . . , Cr, C

′
r) denotes Eve’s view, Um is independent of C and

CRS, and ≈cλ denotes computational indistinguishability for all distinguishers running in time
poly(λ).

• Eve is active: Then, with probability at least 1 − negl(λ) either SA = ⊥ or SB = ⊥ (i.e.,
one of Alice and Bob detects tampering), or SA = SB 6= ⊥ with SA satisfying (29).

We construct an efficient privacy amplification protocol against memory-tampering active ad-
versaries in the CRS model under a subexponential hardness assumption by combining the protocol
illustrated in Figure 1 with a careful instantiation of the two-source non-malleable extractor in the
CRS model from Section 5. Combining Theorem 8 with Raz’s extractor (Proposition 2), we have
the following explicit two-source non-malleable extractor in the CRS model, which allows the left
source to be sampled in subexponential time.

Corollary 11. Assuming the subexponential hardness of the DDH assumption, there exist con-
stants 0 < γ, η, c < 1 such that for any 0 < ν < η < 1 and n large enough there exists an
explicit (poly(2n

ν
), poly(n),poly(n), poly(2n

η
), k1 = 0.51n, k2 = m+log3 n, ε = negl(n), r = 1)-non-

malleable extractor in the CRS model cnmExt : {0, 1}n×{0, 1}`×{0, 1}c → {0, 1}m for any m ≤ cn
and ` ≤ n.

Proof. We set the parameters
t11 = 2n

ν
, t12 = n, t2 = 2n

η
,

where 0 < ν < η < 1. Therefore, we also have t1 = min(t11, t12) = n. The subexponential hardness
of the DDH assumption ensures that there exist constants 0 < η, γ < 1 such that for all 0 < ν < η
the following primitives exist:

• A family H1 of (poly(t11), negl(t11))-collision-resistant hash functions h : {0, 1}n → {0, 1}`1 ,
where `1 = λν · log λ;

• A family H2 of (poly(t12), negl(t12))-collision-resistant hash functions h : {0, 1}n → {0, 1}`2 ,
where `1 = log λ · log log λ;

• A family of (t2, n, ω)-lossy functions F with ω = n−nγ . Note that t2 ≥ 2`1+`2 and 2`1 = t
ω(1)
11 ,

2`2 = t
ω(1)
12 by the choice of parameters above.

• The explicit strong (k1 = 0.501n, k2 = O(log n), ε = 2−Ω(n))-extractor Ext : {0, 1}n ×
{0, 1}n → {0, 1}m for any m ≤ cn from Proposition 2, for some constant c > 0.

Invoking Theorem 8 with the primitives above, we conclude that there exists an explicit (poly(2n
ν
),

poly(n), poly(n), poly(2n
η), k′1, k

′
2, negl(n), r = 1)-non-malleable extractor cnmExt′ : {0, 1}n×{0, 1}n×

{0, 1}c → {0, 1}m, where k′1 = k1 + 2`1 + 2nγ ≤ 0.51n and k′2 = k2 + 2`2 +m+ log2 n ≤ m+ log3 n,
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provided n is large enough. The desired statement now follows by considering, for ` ≤ n, the
extractor cnmExt : {0, 1}n × {0, 1}` × {0, 1}c → {0, 1}m defined as

cnmExt(X,Y,CRS) = cnmExt′(X,Y ‖0n−`,CRS),

and observing that Y ‖0n−` is samplable by a size-poly(n) circuit if Y is too.

We can use the extractor from Corollary 11 to design an explicit 4-round privacy amplification
protocol resilient against efficient memory-tampering active adversaries in the CRS model.

Theorem 11. Assuming the subexponential hardness of the DDH assumption, for a small enough
constant ν > 0 and every log2 λ ≤ m ≤ λν , m+ 2 log2 λ+ 2 log3 λ+ 1 ≤ k2 ≤ `2 ≤ λν there exists
an explicit (r = 4, λ, `1 = λ, k1 = 0.52λ, `2, k2,m, ε = negl(λ), δ = negl(λ))-privacy amplification
protocol against memory-tampering active adversaries in the CRS model.

Remark 2. In fact, we may even assume that the distinguisher for the privacy amplification of
Theorem 11 is allowed to run in time 2λ

ν
.

Proof of Theorem 11. We consider the 4-round protocol from Figure 1 with the explicit two-source
non-malleable extractor in the CRS model cnmExt : {0, 1}λ×{0, 1}2`2 ×{0, 1}c → {0, 1}m+2α from
Corollary 11 with α = log2 λ. The proof is similar to the proof of Theorem 10, but we present it for
completeness. Without loss of generality, we may assume that Eve is deterministic. We proceed
by cases:

1. Eve is passive: Then, we have RA = RB (and hence SA = SB 6= ⊥), and the desired result
follows by noting that

RA = cnmExt(W,A‖B,CRS), A‖B,CRS ≈cλ Um+2α, A‖B,CRS,

since, for every fixing CRS = crs W is independent of A‖B, W is (poly(λ), k1)-samplable
from CRS, and (A‖B,AUX = A‖B) is (poly(λ), 2k2)-samplable from CRS. This implies that
SA, C ≈cλ Um, C, where C = (A,B, [RA]2α) denotes Eve’s view.

2. Eve is active and Alice is corrupted: Denote (W̃ , Ã) = F (W,A), and consider arbitrary

fixings A = a and Ã = ã. Note that W̃ is now obtained from W by a deterministic size-
poly(λ) circuit, (W |A = a, Ã = ã) is samplable from CRS to within statistical error negl(λ) by
a circuit of size poly(λ, 2`2) = poly(2λ

ν
) with probability at least 1− negl(λ) over the fixings,

and that, by Lemmas 1 and 2 and the fact that |Ã| = `2, it holds that

H∞(W |A = a, Ã = ã) ≥ H̃∞(W |A, Ã)− log2 λ

≥ H̃∞(W |A)− `2 − log2 λ

≥ 0.51λ (30)

with probability at least 1 − negl(λ) over the fixings. We assume that the fixings above
satisfy (30) and the property that (W |A = a, Ã = ã) is samplable to within statistical error
negl(n) by a circuit of size poly(2λ

ν
), and simply add a negl(λ) term to the final error δ via

a union bound. We now have

RA = cnmExt(W̃ , ã‖B′,CRS)

and
RB = cnmExt(W, ã′‖B,CRS),
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where ã′ is a deterministic function of ã (hence it is fixed), and B′ is a deterministic function
of B since A and Ã are fixed. As a result, W and ã′‖B are independent, and we can write

W̃ = f(W ) and ã‖B′ = g(ã′‖B) for size-poly(λ) deterministic circuits f and g. Let L = {w :
f(w) = w} and R = {b : g(ã′‖b) = ã′‖b}. We now argue differently depending on whether
W ∈ L and B ∈ R hold or not. We begin by noting that if either Pr[W ∈ L∧B ∈ R] = negl(λ)
or Pr[W 6∈ L∨B 6∈ R] = negl(λ), then we can add a negl(λ) term to δ via a union bound and
assume that the opposite event holds. We are thus reduced to the two cases below:

(a) If Pr[W ∈ L ∧B ∈ R] = Pr[W ∈ L] · Pr[B ∈ R] ≥ 1
poly(λ) , by Lemma 3 it holds that

H∞(W |A = a, Ã = ã,W ∈ L,CRS = crs) ≥ k1 − `2 − log2 λ ≥ 0.51λ (31)

and
H∞(B|A = a, Ã = ã, B ∈ R,CRS = crs) ≥ k2 − log2 λ ≥ m+ log3 λ. (32)

Moreover, by the hypothesis above we have that (W |A = a, Ã = ã,W ∈ L) is samplable
to within statistical error negl(λ) by a size-poly(2λ

ν
) circuit from crs, and that (B|A =

a, Ã = ã, B ∈ R) is samplable to within statistical error negl(λ) by a size-poly(λ) circuit
from crs. Therefore, since under this conditioning we still have that W and ã′‖B are
independent and they both have enough min-entropy by (31) and (32), it is the case
that RA = RB and

RA = cnmExt(W, ã‖B, crs), ã‖B ≈cλ Um+2α, ã‖B.

If [RA]′α = [RA]α and [RB]′α:2α = [RB]α:2α, then SA = SB 6= ⊥ and SA, C,CRS ≈cλ
Um, C,CRS, where C = (ã, ã′, B,B′, [RA]2α, [RA]′2α) denotes Eve’s view. Otherwise, we
have either SA = ⊥ or SB = ⊥ with probability 1.

(b) On the other hand, if Pr[W 6∈ L ∨ B 6∈ R] ≥ 1
poly(λ) , it either holds that Pr[W 6∈ L] ≥

1
poly(λ) or Pr[B 6∈ R] ≥ 1

poly(λ) . Therefore, by Lemma 3 it either holds that

H∞(W |A = a, Ã = ã,W 6∈ L,CRS = crs) ≥ k1 − 2`2 − log2 λ− 1 ≥ 0.51λ (33)

or

H∞(B|A = a, Ã = ã, B 6∈ R,CRS = crs) ≥ k2 − log2 λ− 1 ≥ m+ log3 λ. (34)

Assume that Pr[W 6∈ L] ≥ 1
poly(λ) and condition on W 6∈ L. The proof when Pr[B 6∈

R] ≥ 1
poly(λ) and we condition on B 6∈ R is analogous. Then, we have that f has no fixed

points over the support of W under this conditioning and that, by the hypothesis above,
(W |A = a, Ã = ã,W 6∈ L) is samplable by a size-poly(2λ

ν
) circuit from crs. Moreover,

(B|A = a, Ã = ã) is still samplable by a size-poly(λ) circuit from crs and B still has
min-entropy at least m+ log3 λ after these fixings. Therefore, we conclude that

RB = cnmExt(W, ã′‖B, crs), RA = cnmExt(f(W ), g(ã′‖B), crs), ã′‖B
≈cε Um+2α, RA = cnmExt(f(W ), g(ã′‖B), crs), ã′‖B

By the choice of α = log2 λ, this implies that the probability that [RA]′α = [RB]α, and
hence SB 6= ⊥, is at most negl(λ), which we add to δ via a union bound.

3. Eve is active and Bob is corrupted: The reasoning follows analogously to the previous
case, but we set (W̃ , B̃) = F (W,B) and fix B and B̃ instead.
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