
VCKSCF: Efficient Verifiable Conjunctive Keyword
Search Based on Cuckoo Filter for Cloud Storage

Chan Fan∗, Xiaolei Dong∗, Zhenfu Cao∗†,Jiachen Shen∗
∗Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

†Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen and
Shanghai Institute of Intelligent Science and Technology, Tongji University, China

Email: chan.fan@outlook.com,{dongxiaolei,zfcao,jcshen}@sei.ecnu.edu.cn

Abstract—Searchable Symmetric Encryption(SSE) remains to
be one of the hot topics in the field of cloud storage technol-
ogy. However, malicious servers may return incorrect search
results intentionally, which will bring significant security risks
to users. Therefore, verifiable searchable encryption emerged. In
the meantime, single-keyword query limits the applications of
searchable encryption. Accordingly, more expressive searchable
encryption schemes are desirable. In this paper, we propose a ver-
ifiable conjunctive keyword search scheme based on Cuckoo filter
(VCKSCF), which significantly reduces verification and storage
overhead. Security analysis indicates that the proposed scheme
achieves security in the face of indistinguishability under chosen
keyword attack and the unforgeability of proofs and search
tokens. Meanwhile, the experimental evaluation demonstrates
that it achieves preferable performance in real-world settings.

Index Terms—Conjunctive keyword, Searchable Symmetric
Encryption, Cuckoo filter, Verifiable.

I. INTRODUCTION

The age of information explosion, cloud technology im-
proves the storage for industrial and individual data because of
the powerful storage and computational capacity. More novel
applications are provided, especially in the area of personal
health, internet of things and smart grid [1]–[3]. Meanwhile,
cloud servers are permitted to access users’ private data.
To protect the privacy of uploaded data, one conventional
method is encrypting the user’s data before uploading them.
How to search on ciphertext while maintaining data privacy
has become a subsequent question. Searchable Symmetric
Encryption(SSE) is proposed by researchers [4], which enables
the user to perform keyword queries on encrypted data.
Subsequently, SSE attracts many researchers worldwide [5].
According to the number of data owner and user, it can be
divided into four types such that one-to-one model, one-to-
many model, many-to-one model, and many-to-many model.
Different models were extensively studied therewith [4], [6]–
[8]. However, the above schemes only support single-keyword
search. Intuitively, expanded expressiveness is more adapt
to actual situation and a number of researches have been
exploited in multi-keyword query [9]–[11]. A simple thought
of multi-keyword query is to perform single-keyword query for
each keyword and then calculate the intersection of multiple
query results [12]. Nevertheless, this method yields expensive
cost and more information may be leaked to the server. Cash

et al. [13] first presented Boolean query based on the least
frequent keyword, which is the first sub-linear scheme to sup-
port conjunctive keyword query. Later, Sun et al. [14] provided
an extensive scheme which works in one-to-many model, in
which only authorized users have the right to execute queries.
Based on conjunctive search, several schemes optimized in
performance and functionality have been proposed [15]–[17].
Nonetheless, most existing schemes only work with an honest
but curious server. However, in the real-world scenario, the
server might be malicious and return incorrect search results.
It is desirable to execute searchable encryption in a complex
network environment while remaining security.

To address this issue, various techniques be leveraged to
realize verifiability, such as Merkle tree, accumulator, vec-
tor commitment, signature [12], [18]–[23]. A new primitive
named vector commitment was proposed by Catalano et al.
[21]. In their public verifiable scheme, any third party can
execute verification to check the integrity of the search results
when needed it. But this scheme only works in one-to-one
model. Sun et al. [18] realized the verifiability basing on an
accumulator. However, it does not work if the results returned
by the server are empty. Recently, an extension scheme that
solved the drawback of [18] was presented by Wang et al. [19],
and their core strategy of achieving verification is based on
bilinear pairing. But it incurs abundant computational overhead
on the user-side to verify the results. For existing verifiable
schemes, the expense of verification becomes the primary
performance bottleneck. Therefore, it is urgent and challenging
to achieve verifiability efficiently. In this work, we aim to study
how to conduct a verifiable conjunctive keyword searchable
encryption with optimized efficiency.

A. Our Contribution

In this work, we propose an one-to-many searchable en-
cryption scheme called VCKSCF. Our contributions can be
summarized as following:
• We construct an efficient and verifiable conjunctive key-

word search scheme by means of Cuckoo filter (VCKSCF).
The innovative strategy yields less overhead of computation
and storage.
• The proposed scheme can protect the privacy of the least

frequent keyword by adopting a specific matrix as the storage

structure on the server-side, in which the location of each the
least frequent keyword is determined by its left and right parts.
•We give formal security analysis to justify that our scheme

achieves IND-CKA security, the search token and proof of
specific keyword queries are unforgeable. The experiment in
a real database indicates that our scheme works with low
communication costs and optimized efficiency.

B. Related Work

Song et al. [4] first presented the cryptographic primitive
of symmetric searchable encryption, which is an one-to-
one searchable encryption model. This scheme encrypts each
word in the plaintext separately, while the server performs
matching search in all ciphertext. So this scheme has potential
security problems with high computational expense. Goh [24]
established an index for each file to match on when searching.
The complexity of searching was greatly reduced, which was
only related to the number of files. Curtmola et al. [7] proposed
the first one-to-many model, which is based on broadcast
encryption technology, which allows multiple users to search
on ciphertext with a shared key.

Cash et al. [13] proposed the first searchable scheme that
supports sub-linear of Boolean queries. The search complexity
of this scheme only associated with the number of files
containing the least frequent keyword. Subsequently, Jarecki
et al. [25] extended the scheme to one-to-many model. Sun et
al. [14] constructed a non-interactive one-to-many searchable
encryption scheme supporting Boolean queries. This scheme
reduces the communication overhead between the user and the
server dramatically by non-interactive feature.

For the sake of resisting the malicious server and veri-
fying the query results, Kurosawa et al. [22] proposed the
first symmetric searchable scheme with a verifiable function.
Subsequently, diverse verification methods are commonly used
in searchable encryption [26], [27]. Liu et al. [28] proposed
a verifiable solution for the aggregation key, which supports
one-to-many model. Zheng et al. [29] constructed a verifiable
scheme based on Bloom filter with the advantages of small
computation overhead and low storage space.

However, there are few verifiable schemes allow a spe-
cific user to execute multi-keyword search [30], [31]. The
scheme of Wan et al. [32] supports fine-grained access control.
Monir et al. [12] construct a verifiable scheme with conjunc-
tive keyword search relies on polynomial-accumulators and
Merkle trees. But the results of multi-keyword search of their
scheme are just composed of the intersection of each keyword
search results. The search time overhead grows rapidly with
the increase of the database size thereby. Sun et al. [18]
constructed an accumulator-based conjunctive search scheme
with verifiability. Follow that, Wang et al. [19] overcame the
shortcomings of Sun et al. and implemented verifiability by
leveraging bilinear pairings. This scheme only yields constant
communication overhead between the user and the server.
Nevertheless, it is regretful that bilinear pairings incur heavy
calculation overhead for verifying. Miao et al. [23] verified
the correctness of search results by means of certificateless

TABLE I
NOTATIONS.

Notations Meaning
λ Security parameter of this system
indi The indentifier of i− th file
Wi All keywords of i− th file
W The keywords authorized users allowed to search
W ′ The keywords authorized users want to search
DB The whole database (idi,Wi)

T
i=1

V EDB The verifiable encrypted database
DKS The system decryption keys set
Rw1 Single keyword search results about keyword w1

R Final results satisfied the search requirement
proof The information returned by server for validation
ew All file identifies contain keyword w
g ⇐ G The operation of selecting a random element g from G
matrix A matrix to store encrypted binary strings
wl An integer mapped by the left half of the keyword w
wr An integer mapped by the right half of the keyword w
num The sequence number of a query

signature. In order to decrease the number of verification, the
sample check method exploited in the schemes of Wang et al.
and Miao et al. increases the false-positive rate. It is deserving
to explore methods to reduce the expense with preferable ac-
curacy simultaneously when executing verification operation.

C. Organization

We present the preliminaries about our scheme in section
2. Then we will show the system and security model followed
by the explicit construction of our scheme in section 3. Next,
the security analysis will be displayed in section 4. After
comparing our scheme with others in various aspects, the
performance evaluation will be shown in section 5. Finally,
the conclusion is provided in section 6.

II. PRELIMINARIES

In this section, we first provide a table showing the meaning
of the common notations used in our work (see Table I).
A brief introduction of Cuckoo filter, which is utilized to
construct our verifiable scheme, is given in subsection A. The
complexity assumptions are presented afterwards.

A. Cuckoo Filter

As the extension of Bloom filter [33], Bin et al. [34]
introduced a new structure, Cuckoo filter, based on Cuckoo
Hash [35] to provide approximate membership check. Cuckoo
filter is composed of several buckets and each bucket includes
a number of cells. Similar to Bloom filter, each binary string of
Cuckoo filter represents a set. Each cell in a bucket of Cuckoo
filter stores a short f-bit fingerprint of a relevant element
by hashing. Consequently, Cuckoo filter attains less space
overhead with better search accuracy than space-optimized
Bloom filters. Cuckoo filter mainly consists of four algorithms:
• CF.Setup(m, b): Construct an m-bucket binary string S

with two hash functions h1(x) and h2(x) as H , the algorithm
of fingerprint as f(x), the load factor of the Cuckoo filter as
α. For each bucket, there are b cells which be initialized as 0.
• CF.Insert(H,X): Given a set X to be added. For each

element x in X , compute fingerprint f(x) and two bucket-
locations h1(x) and h2(x). If exists one bucket is available,
place f(x) in a free cell of this bucket. Otherwise, a fingerprint
in one of the two buckets is displaced, then the removed
item finds a new cell according to its two bucket-locations to.
The replacement operation continues recursively until all the
elements are inserted successfully or the load reaches upper
bound of the Cuckoo filter.
• CF.Delete(S, x): To delete a specified element x in a set

S, the algorithm finds out which bucket the element in and
remove the copy of the fingerprint f(x).
• CF.Lookup(S, x): To test whether element x is in a set S,

compute its fingerprint f(x) and two bucket-locations h1(x)
and h1(x) ⊕ h(f(x)). If any fingerprints stored in these two
buckets match f(x), a positive result 1 returned, otherwise 0.

Cuckoo filter achieves superior search efficiency with small
storage size. Accordingly, it is suitable for schemes containing
sets with membership check. Xue et al. [36] leveraged Cuckoo
filter to achieve fuzzy keyword search efficiently with im-
proved search accuracy. Unlike these schemes, Cuckoo filters
are used for keyword search in the database when searching
on the server. In our scheme, it is interesting that this tool
is utilized to generate membership proof for a part of work
in the verification process, which combined with an effective
conjunctive keyword search strategy. Accordingly, our scheme
realizes optimized search and verification efficiently with
gradely accuracy.

Choosing proper parameters for Cuckoo filter affects the
efficiency significantly. If the cuckoo hash table has a load
factor of α, the target false position rate is ε, the amortized
space cost (i.e. the string size divide the number of items ni
in Cuckoo filter) is C. In each bucket, the probability that the
collision of fingerprint happened is 1/2f after making 2b such
comparisons, 1− (1−1/2f)2b ≈ 2b/2f is the upper bound of
the total rate of a false fingerprint collision. Because we strive
2b/2f ≤ ε, thus f ≥ Ω(log2(2b/ε)) = Ω(log2(1/ε+log2(2b))
bits, C = (f ·ni)/(α·ni) = f/α ≤ Ω(log2(1/ε+log2(2b))/α,
where α increases with b. For the same amount of space,
smaller C can decrease the false position rate because more
fingerprints can be stored, so selecting suitable parameters for
Cuckoo filter can achieve optimized space efficiency. A more
particular analysis refers to scheme [34].

B. Complexity Assumptions

1) Strong RSA (SRA) Assumptions [37]: Let p, q be two
large prime numbers and n = p · q. Let z ∈ Z∗n be chosen at
random. If for a given tuple (n, z), no probabilistic polynomial
time algorithm can figure out two elements (x, y) such that
xy = z (mod n) with non-negligible advantage, where x ∈
Z∗n and y > 1, we say that the SRA assumption holds.

2) Decisional Diffie-Hellman (DDH) Assumptions: Let G
be a cycle group of prime order p, g be a random generator
of G. If no polynomial time algorithm can distinguish be-
tween the tuples (g, ga, gb, gab) and (g, ga, gb, gz) with non-
negligible advantage, where a, b, z ∈ Zp are chosen at random,
we say that the DDH assumption holds.

III. OUR SCHEME

In this section, we firstly present the system and security
model. Then, we will present the proposed verifiable conjunc-
tive searchable encryption scheme in detail.

A. System Model

As is illustrated in Fig. 1, the system of our scheme includes
three parties. We assume that the data owner is honest who
has to upload data to the cloud server on account of limited
local storage. But the cloud server is malicious and may
return incorrect query results for selfishness. The server can
implement the query operation initiated by the user. Specially,
the user has the right to verify the results and hence determines
the correctness and integrity of the results sent by the server.
Meanwhile, some users who are not entirely honest and may
want to query for unauthorized keywords.

Fig. 1. The system model of our scheme.

The protocol of our scheme mainly consists of six algo-
rithms Π = (VEDBSetup,ClientKGen, TokenGen, Search,
Verify, Retrieve), which are described as follows.

1) To outsource data to the cloud server, the data owner runs
the VEDBSetup algorithm to initialize the system. The
owner encrypts data, indexes information and generates
relevant verifiable information to form the V EDB. Next,
V EDB will be sent to the server along with the system’s
master and public key.

2) Upon a authorized user needs to query keywords, the
ClientKGen algorithm is executed by the data owner to
generate the private key belonging to the user.

3) Once the user receives the private key mentioned in the
previous step, the user immediately runs the TokenGen
algorithm, generates a search token for the specific key-
words sent to the server.

4) After receiving the query request, the Search algorithm
is enabled by the server right now to find the encrypted
file containing the specific keywords on V EDB. Finally,
query results with proof will be sent to the user together.

5) If the user receives the results and proof , the Verify
algorithm will be implemented to determine whether the
server performed the query operation correctly.

6) Once the user confirms that the server is honest, the user
carries out the Retrieve algorithm to decrypt the results.
At this point, a query is finished.

B. Security Model

The security goal of our scheme is to ensure that ciphertext
does not reveal any information about the keyword. Therefore,
we define the semantic security we want to achieve. Next,
we give a formal definition of security through the following
interactive game between an adversary A and a challenger B:
• Initialization: First, A sends the selected DB to B, and

then B constructs the system and runs the initialization
algorithm, generates the system public key and private key.
A owns the system public key.
• Query phase 1: B applies for a query list Q and

initializes the list to be empty. A can execute the following
queries in polynomial time: a private key query request for the
keywords w of his choice. For each private key challenge, B
constructs the decryption key correctly according to the system
requirements and search token using the private key. B records
this query in the list Q if the search token is legitimate.
• Challenge: After the end of the query phase 1, A declares

two challenge keywords w0, w1, which are not in the query
list and be sent to B. B randomly picks a keyword wb, where
b ∈ {0, 1}. Finally, B sends V EDB yielded through executing
V EDBSetup algorithm to A.
• Query phase 2: Just like query phase 1, A can continue

to query over and over again. But the limit for A is that it
cannot submit queries those are already in the query list Q.
• Guess: A makes a judgment and gives b

′
. If b

′
= b, the

attack of A is successful.
We use success to indicate that the final guess stage of the

adversary A is correct, the success probability of A can be
expressed as AdvA = |Pr[success]− 1/2|.

Definition 1. The system is said to be Indistinguishability
under Chosen Keyword Attack (IND-CKA) if the advantage
of the adversary in the above secure interactive game is
negligible at any polynomial time.

C. Our Construction

In our scheme, each keyword will be mapped to a unique
prime just like Sun et al.’s scheme [14]. At the same time,
each keyword are divided two parts, left part and right part,
both of which will be mapped to an integer. We omit three
kinds of mapping steps described above for simplicity.
• VEDBSetup(λ,DB,DKS): The data owner takes λ,

DB, DKS as input. Then it outputs the system master
key MK, public key PK and V EDB. The record about
indexes of keyword-document and a matrix with r size store
the information about the least frequent keyword included in
V EDB for ensuing search and verify operations. The details
are displayed in Algorithm 1.
• ClientKGen(PK,MK,W): In a multi-user setting, the

data owner allows an authorized user to search W =
{w1, w2, ..., wN}, and then the data owner will generate the

Algorithm 1 VEDBSetup Algorithm:
Input: λ,DB,DKS
Output: V EDB,MK,PK

1: the data owner selects two big primes p, q; selects
KI ,KX ,KZ as the random key of PRF Fp; selects KS

as the random key of PRF F and computes n = p · q.
2: the data owner randomly selects g ⇐ G; g1, g2, g3 ⇐ Z∗n

and secret key sk = s, computes (gs, gs
1

, ..., gs
t

) as pk,
t means the upper bound of the cardinality.

3: the master key MK = {KI ,KX ,KZ ,KS , p, q, s}, the
public key PK = {n, g, pk}.

4: CF.Setup(m, b)
5: Stag, TSet,XSet← ∅; matrix← ∅
6: for each keyword w in DB do
7: ew ← ∅; reg ← 1; Ke ← F (KS , w)

8: stagw ← F (KS , g
1/w
1 (mod n))

9: Stag ← Stag ∪ {stagw}
10: CFStagw ← CF.Insert(H, {stagw, w})
11: matrix[wl][wr]← Enc(Ke, CFStagw)
12: matrix[wr][wl]← matrix[wl][wr]
13: for ind ∈ DB(w) do
14: xind← Fp(KI , ind)

15: xtagw ← gFp(KX ,g
1/w
3 (mod n))·xind

16: XSet← XSet ∪ {xtagw}
17: z ← Fp(KZ , g

1/w
2 (mod n)||reg); y ← xind · z−1

18: e← Enc(Ke, ind); ew ← ew ∪ {e}
19: l← F (stagw, c); TSet[l]← (e, y)
20: reg ← reg + 1
21: end for
22: end for
23: CFXSet ← CF.Insert(H,XSet)
24: ECFXSet ← Enc(Ke, CFXSet)
25: Set V EDB ← {Stag,matrix,XSet, TSet, ECFXSet}
26: return {V EDB,MK,PK}

private key SK for the authorized user. The details are
displayed in Algorithm 2.
• TokenGen(W ′, SK): When an authorized user needs to

query, search token st about keywords W ′ = {w1, w2...wd}
(d ≤ N) will be generated by using SK and transfer to
the server. To simplify the description, we assume that w1

is the least frequent keyword in a query sequence. Notably, to
preserve the privacy of the least frequent keyword, we should
confuse the storage position in matrix of the least frequent
keyword in this query. The user records the right half or the
left half of the least frequent keyword randomly as inf for the
ensuring verification. The steps are displayed in Algorithm 3.
• Search(st, V EDB,PK): Once the server receives the

user’s st, it will search in the V EDB by using st. First, the
server will do a single keyword search according to the w1

and return the results Rw1 with V inf and proof1 for the
correctness verification of Rw1. Second, the server will use
other messages in st to look for the files containing all other
keywords (i.e w2...wd) in Rw1, which means the server will

Algorithm 2 ClientKGen Algorithm:
Input: MK,PK,W
Output: SK

1: for i ∈ {1, 2, 3} do
2: SK

(i)
W = (g

1/
∏N

j=1 wj

i (mod n))
3: end for
4: SKW = (SK

(1)
W , SK

(2)
W , SK

(3)
W)

5: Set SK ← {KI ,KX ,KZ ,KS , SKW }
6: return SK

Algorithm 3 TokenGen Algorithm:
Input: W ′, SK
Output: st

1: st, xtoken← ∅; inf ← 0

2: stag ← F (KS , SK
(1)

∏
w∈W/w1

w

W (mod n))

= F (KS , g
1/w1

1 (mod n))
3: for c = 1, 2, ... until the server stop do
4: for i = 2, 3, ..., d do
5: u = Fp(KZ , (SK

(2)
W)

∏
w∈W/w1

w (mod n)||c)
6: v = FP (KX , (SK

(3)
W)

∏
w∈W\wi

w (mod n))
7: xtoken[c][i]← gu·v

= gFp(KZ ,g
1/w1 (mod n)||c
2)·Fp(KX ,g

1/wi (mod n)
3)

= gz·Fp(KX ,g
1/wi (mod n)
3)

8: xtoken[c]← xtoken[c] ∪ {xtoken[c][i]}
9: end for

10: end for
11: i⇐ {0, 1}
12: if i = 0 then
13: inf = w1l ; query[num] = w1r

14: else
15: inf = w1r ; query[num] = w1l

16: end if
17: Set st← {inf, stag, xtoken[1], xtoken[2], ...}
18: return st

determine whether all the files contain all keywords. Similarly,
eventual results R with proof2 and V together transferred to
the client. The steps are displayed in Algorithm 4.
• Verify(Rw1, R, proof,W

′
): There are three cases for a

search: Rw1 is empty, Rw1 is not empty but R is empty,
neither Rw1 nor R is empty. In the first case, the user only
needs to verify the correctness and integrity of Rw1. The
latter two cases are similar and require additional operation
to check the correctness and completeness of Rw1\R. The
only difference is that R in the second case is empty. Using the
proof transferred by the server, and then the user can calculate
the corresponding information about specific keywords and
execute verification. Namely, the client is able to determine
whether the server is malicious or not and output Accept or
Reject. The steps are displayed in Algorithm 5.

The Retrieve algorithm is just like the previous scheme
[14], [19], so we omit this algorithm for simplicity.

In the process of V EDBSetup, there are two essential sets
Stag and XSet. For each keyword, the system calculates a

value stagw associated with the keyword w. Values related
to all keywords are stored in the set Stag. Consequently, if
a keyword exists in DB, the computed value of it must be
found in the set Stag. For each keyword-document pair, a
value xtag calculated by the document index and the keyword.
Values relevant with all keyword-document pairs in DB are
stored in the set XSet. Namely, if a document contains a
specific keyword, xtag about it must included in the set XSet.
In our scheme, the above two sets are represented by two
binary strings of Cuckoo filters, which will be uploaded to the
server after encrypted. These two collections are the key to
the server’s search operation.

Algorithm 4 Search Algorithm:
Input: st, V EDB,PK
Output: Rw1

, R, proof
1: Rw1 , R← ∅; proof ← NULL; V inf, V ← ∅

•Part 1 :
2: for c = 1, 2, ... do
3: l← F (stagw1

, c)
4: (e, y)← TSet[l]
5: Rw1

← Rw1
∪ {e}

6: end for
7: for i ∈ {1, ..., r} do
8: V inf ← V inf ∪ {matrix[inf][i]} ∪ {matrix[i][inf]}
9: end for

10: proof1 ← CFstagw

11: •Part 2 :
12: for c = 1, 2, ..., |Rw1 | do
13: count← 1
14: for i = 2, 3, ..., d do
15: v[c][i]← xtoken[c][i]y

16: if v[c][i] ∈ XSet then
17: count← count+ 1
18: end if
19: end for
20: if count = d then
21: R← R ∪ {ec}
22: for i = 2, 3, ..., d do
23: V ← V ∪ {v[c][i]}
24: end for
25: end if
26: end for
27: proof2 ← ECFXSet

28: Set proof ← {proof1, V inf, proof2, V }
29: return {Rw1 , R, proof}

There is a matrix-based structure to store the least frequent
keyword and its relevant indexes. More precisely, matrix
is utilized to store a number of Cuckoo filter binary strings
corresponding to each keyword w and stagw. The abscissa and
ordinate of the storage location are identified according to the
left and right halves of the keyword respectively. The server
only gets half of the keyword string inf randomly instead of
the whole keyword when the user executes a query. The key
benefit of this structure is making the server unable to know

which is the least frequent keywords the user searches for in
a query. As part of poof , the user confirms the correctness
of Rw1 by means of matrix. Namely, the server passes the
verification only when the results are indeed a single-keyword
search results about w1. It is notable that the verifiable scheme
in [19] only guarantees the integrity of the single-keyword
search results. If there exists a malicious server retains the
previous single-keyword search proof and sends it to the user
without a new query, and it can also pass the verification.

Algorithm 5 Verify Algorithm:

Input: Rw1
, R, proof,W

′

Output: Accept or Reject
1: flag1 = 0, f lag2 = 0, f lag3 = 0, Vxstag ← ∅
2: if ∃v1 ∈ V inf ∧ CF.Lookup(proof1, v1) = 1 then
3: flag1 = 1
4: end if

•Case 1 :
5: if Rw1

= ∅ then
6: if flag1 = 0 then
7: return Accept
8: else return Reject
9: end if

10: else
•Case 2 or Case 3 :

11: CFXSet ← Dec(Ke, proof2)
12: if ∃v2 ∈ V ∧ CF.Lookup(CFXSet, v2) = 0 then
13: flag2 = 1
14: end if
15: for ∀ei ∈ Rw1

\R do
16: xtagi ← ∅
17: xind← Fp(KI , ei)
18: for j = 2, 3, ..., d do
19: xtag[i][j]← gFp(KX ,g

1/wj (mod n)

3)·xind

20: Vxtag ← Vxtag ∪ xtag[i][j]
21: end for
22: end for
23: if ∃v3 ∈ Vxstag∧CF.Lookup(CFXSet, v3) = 1 then
24: flag3 = 1
25: end if
26: if flag1 = 1 ∧ flag2 = 0 ∧ flag3 = 0 then
27: return Accept
28: else return Reject
29: end if
30: end if

IV. SECURITY ANALYSIS

In this section, there are three security theorems of our
scheme and we will give the proofs respectively.

Theorem 1. If the DDH problem is difficult on group G and F
and Fp are two secure PRFs with (Enc, Dec) is a CPA secure
symmetric encryption scheme, then our proposed encryption
scheme is IND-CKA secure against adversary’s attacks.

Proof. If there is an adversary A is able to break our scheme
with advantage ε, then there is an algorithm B, which is able to
solve the DDH problem with advantage ε. B can be constructed
by exploiting A as follows:
• Initialization: First, A sends the selected DB to B. B

constructs the system, and runs the initialization algorithm to
generate the system public and key private key. A owns the
system public key.

Give B a random DDH challenge T = (g, ga, gb, Z),
where g is a random generator in G, Z = gab or Z is a
random element in G. Select two large prime numbers p, q and
calculate n = p · q at the same time, and B sets PK = (n, g).
• Query phase 1: A performs polynomial private key query

requests, the query W ′ is sent to B each time.
B randomly selects g1, g2, g3 and sets the private key as

SKW . For i ∈ 1, 2, 3,
SK

(i)
W = (g

1/
∏n

j=1 wj

i (mod n))

SKW = (SK
(1)
W , SK

(2)
W , SK

(3)
W)

• Challenge: A declares two challenge keywords w0, w1,
which are not in the query list and sends them to B. The
challenger randomly picks a keyword wb, where b ∈ {0, 1}.
Run the V EDBSetup algorithm and get the xtagw in the
V EDB. For ind ∈ DB(w),

xind← Fp(KI , ind)

xtagw ← gFp(KX ,g
1/w
3 (mod n))·xind

XSet← XSet ∪ {xtagw}
• Query phase 2: As query phase 1, A can continue to

query over and over again. But the limit is that they cannot
submit queries that are already in the query list for query.
• Guess: When the output is 1, B guesses that the input

quad T is a DH quad; in case the output is 0, B guesses that
T is a random quad.

Let ga = gz·Fp(KX ,g
1/wi (mod n)
3), b = z−1 · xind.

If xtagw = gFp(KX ,g
1/wi (mod n)
3)·xind.

Then gab = gz·Fp(KX ,g
1/wi (mod n)
3)·z−1·xind =

gFp(KX ,g
1/wi (mod n)
3)·xind = xtagw.

Throughout the simulation process, the keywords selected
by A are mapped to distinct prime by hash function, F and Fp
are PRFs, so the query is answered with a random value each
time. The distribution of xtag is the same as the distribution in
a real environment. Therefore, it is difficult for A to distinguish
whether the challenge process is in a real environment.
• Probability analysis: Let M denotes the event ”T is a

random quad”, N denotes the event ”T is a DH quad”.
It is known that Z is evenly distributed in G and independent

of g, ga, gb, so xtag in V EDB is independent of encrypted
information. Therefore, A does not have any information about
b, which means the probability of A guesses b correctly is 1/2.
Since B outputs 1 if and only if A succeeds, so Pr[B(T) =
1|M] = 1/2.

Because when event N occurs, Z = (ga)b = gab (a, b
is randomly selected). The distribution of public key and
ciphertext is equal to the (Enc,Dec) encryption scheme in
actual execution, so B outputs 1 if and only if A succeeds.
Pr[B(T) = 1|M] = 1/2;

Pr[B(T) = 1|N] = Pr[Success];
Pr[B(T) = 1] = 1/2Pr[Success] + 1/2 · 1/2;
Pr[B(T) = 0] = 1/2(1− Pr[Success]) + 1/2 · 1/2;
|Pr[B(T) = 1]− Pr[B(T) = 0]| = |Pr[Success]− 1/2|.
In summary, if A breaks our scheme by advantage of ε, the

probability that A is able to calculate gab = xtagw is 1/2 + ε,
B breaks the DDH problem with the same advantage.

Theorem 2. Our solution is verifiable and the proofs of
specific keyword queries are unforgeable, which means that
our proposed scheme is secure against malicious servers.

Proof. The correctness of verification is straight forward. We
will focus on the unforgeability of the proofs.

In the V EDBSetup algorithm, stagw of each keyword
is hashed and stored in matrix. The abscissa and ordinate
of the keyword and the relevant indexes stored in matrix
are determined by the left and right parts of the keyword
respectively. When the server needs to return stagw of the
least frequent keyword w, the user randomly selects the left
half or the right half of the keyword w as inf and sends it to
the server. A set V inf returned by the server for verification,
which includes all the results in the row or column where
the keyword w is located. The server unable to know which
key the stagw is associated with through matrix. Namely,
it attains nothing about the least frequent keyword from the
search token.

If the server retains the proof for each query, the proba-
bility that the server guesses the least frequent frequency key
correctly is Pr = 1/N , where N means the keyword number
of all database. Accordingly, we say that the probability that
a server forges proof of the least frequent keyword search
results and passes the verification in the single-keyword search
process is 1/N . If the server does not retain the previous proof,
but forges the proof during the current query temporarily. The
server is able to pass the verification of the single keyword
search results if and only if CFstagw of the least frequent
keyword w can be calculated correctly. CFstagw is generated
by hash of stagw and w in a Cuckoo filter. In our scheme, a
Cuckoo filter has m buckets where each bucket has 4 cells, and
each cells can store f bits fingerprint. Namely, the probability
of the server is able to pass the verification after the least
frequent search with forged proof is 1/24mf . The advantage
of a malicious server is negligible.

At the same time, the results of R is based on Rw1.
To find documents containing all keywords besides the least
frequent keyword in Rw1, it is necessary to judge whether each
document containing the least frequent keyword is satisfied
individually. If w1 is judged to be wrong, which means Rw1

failed to pass the verification, the results R will certainly not
pass. Even if the malicious server passed the verification of
the single keyword search luckily, according to our verification
strategy, it must forge multiple Cuckoo filters to pass the
subsequent verification. Obviously, the server has a much
smaller advantage of forging success in the later stage. In
summary, the server cannot forge proof information of the
keyword query results.

Theorem 3. If the SRA assumption holds, for an adaptive
adversary, the search token in our scheme is unforgeable,
which means that our scheme is secure for unauthorized users.

Proof. Our proof of this theorem remains is similar to that of
[14] and [19]. If there is a user A who generates a valid search
token for non-authorized keyword w′ with non-negligible
advantage, there will be an algorithm B constructed by A that
solves the SRA problem with non-negligible advantages.

Given a random SRA challenge (n, zj), where n is the
multiplication of two large prime numbers, z ∈ Z∗n, B can
return (w′, z

1/w′

j) as a solution for SRA question successfully.
If A can get a valid search token for w′, which means it earns
the correct value g

1/w′

i (mod n) for i = {1, 2, 3}. In this
system, gcd(

∏n
i=1 wi, w

′) = 1, there are two integers x, y
make x · (

∏n
i=1 wi) + y · w′ = 1 by extending Euclid. So,

it’s easy to calculate z
1/w′

j = (g
1/w′

j)x · zyj , which equals

z
1/w′

j = (z
∏n

i=1 wi/w
′

j)x · zyj . Then, B returns (w′, z
1/w′

j) as
a solution for SRA question successfully.

V. PERFORMANCE EVALUATION

A. Functionality and Performance Comparisons

We evaluate the functionality and performance of our
scheme by comparing it with Sun et al.’s scheme [14] and
Wang et al.’s scheme [19](refer to Table II). All of these
schemes focus on conjunctive keyword search encryption.
Only our scheme and scheme [19] achieve verifiability for
results returned by the server. Our scheme can be viewed as
the optimized version of [19].

In comparison, we only consider primary operations with
significant overhead, ignore operations with low complexity.
We denote |DB| the size of the database, |W | the number of
all keywords, d the number of keywords allowed in a query,
|Rw1| the maximum number of documents of the least frequent
keyword in a query, and |R| the number of documents of the
last conjunctive keyword result. While k means the number
of elements randomly selected in the sample check method
of scheme [19]. E stands for an exponentiation operation, P
represents a pairing operation and C stands for a generation,
an insertion or a search operation of a Cuckoo filter.

B. Experimental evaluation

We run experiments on a real-world document collection
to demonstrate the practical feasibility of our scheme, then
compare our scheme with Scheme [19]. The experiments are
executed on a Windows machine with Intel(R) Pentium(R)
CPU G2030 running at 3.00GHz, 4.00GB RAM and 64-bit
operating system. We choose Python and use pycharm as the
compiler. In our scheme, we leverage AES to encrypt the
indices, the hmac library in Python to implement the standard
Hmac algorithm for PRFs with MD5, RabinMiller library for
detecting primes. For Scheme [19], we leverage pyOpenSSl
and pypbc libraries to realize pairing-based cryptography.

For appropriate parameters, a Cuckoo filter can achieve the
best or close-to-best space efficiency for specific false-positive

TABLE II
FUNCTIONALITY AND PERFORMANCE ANALYSIS.

Schemes Scheme [14] Scheme [19] Our Scheme
Verification No Yes Yes
Setup (|DB|+ 2|W |)E (|DB|+ 2|W |)E + (|W |+ 2)E (|DB|+ 2|W |)E + (|DB|+ |W |)C
TokenGen |Rw1|(d− 1) + (d+ 1)E |Rw1|(d− 1) + (d+ 1)E |Rw1|(d− 1) + (d+ 1)E
Search |Rw1|(d− 1)E |Rw1|(d− 1)E + 2 · E |Rw1|(d− 1)E + (1 + |DB|)C
Verify(Server) - (|DB| − |R| − 1)E + k(|DB| − 2)E (|DB| − |R| − 1)C + |Rw1|(|DB| − 2)E
Verify(User) - 2E + 4P + k(2E + 2P) 2C + |Rw1|(2E + C)

rates. Refer to the parameter analysis summary for space
optimizations in [34], we choose the Cuckoo filter with b=4,
that is each bucket has up to four fingerprints. When evaluating
the efficiency of each step, we select conjunctive keywords
randomly for different numbers of keyword-document pairs
and run each process 5 times to take the average.
Setup efficiency. Fig. 2 indicates the evaluation of the setup
protocol in the experiment. As we can see, the time of both
schemes increases as the number of keyword-document pairs
and our scheme achieves more optimized performance. Both
two systems must encrypt all the keyword-document pairs in
DB and upload the V EDB to the server. For verification,
the scheme [19] has to calculate accumulate values of ew,
XSet and Stag when the system is initialized. Meanwhile,
our scheme does not execute these operations but needs less
cost to generate Cuckoo filters.
Search efficiency. Fig. 3 shows the performance of the search
protocol in the experiment. The difference between the two
schemes is the way to calculate the proof in the single-
keyword search phase and the further search phase. Scheme
[19] needs to obtain proof1 and proof2 through an exponen-
tiation operation respectively in the two stages of a query,
while the proof of our scheme is obtained by generating
Cuckoo filter string. Therefore, our scheme is faster for the
same number of keyword-document pairs.
Verification efficiency. Fig. 4 demonstrates the sum of the
time cost in the verify phase about the server and the user of
two schemes. In this process, the running time of both schemes
are tiny and close to 0 when Rw1 = ∅, so the case Rw1 6=
∅ is the primary situation considered in our experiment. We
leverage Cuckoo filter to achieve membership check instead of
bilinear-pairing accumulator in an active verify strategy. Just
as the trend in Fig. 4, our scheme enjoys superior performance
than scheme [19] on the verify phase. The difference in their
efficiency has become more and more evident as the number
of keyword-document pairs increases.

VI. CONCLUSION

In this paper, VCKSCF, an efficient verifiable conjunctive
keyword search scheme based on Cuckoo filter, has been
proposed. It allows users to verify search results returned by
the (probably malicious) server and the innovative strategy
of verification is based on Cuckoo filter. To ensure the
security of the scheme, a matrix-based storage structure
on the server is used to keep the server unaware of users’
sensitive query information. A thorough implementation of

Fig. 2. The performance comparison about the time cost of Setup algorithm.

Fig. 3. The performance comparison about the time cost of Search algorithm.

Fig. 4. The performance comparison about the time cost of Verify algorithm
in server and user sides.

our scheme was given, it shows that the proposed scheme
achieves optimized efficiency. Additionally, a formal security
proof shows that our scheme achieves IND-CKA security
and unforgeability of proofs and search tokens simultaneously.

ACKNOWLEDGMENT

This work was supported in part by the National Natu-
ral Science Foundation of China (Grant No.61632012 and
61672239), in part by the Peng Cheng Laboratory Project of
Guangdong Province (Grant No. PCL2018KP004), and in part
by ”the Fundamental Research Funds for the Central Univer-
sities”. Xiaolei Dong and Jiachen Shen are the corresponding
authors.

REFERENCES

[1] F. Deng, Y. Wang, L. Peng, H. Xiong, J. Geng, and
Z. Qin, “Ciphertext-policy attribute-based signcryption with verifiable
outsourced designcryption for sharing personal health records,”
IEEE Access, vol. 6, pp. 39 473–39 486, 2018. [Online]. Available:
https://doi.org/10.1109/ACCESS.2018.2843778

[2] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and privacy
for cloud-based iot: Challenges,” IEEE COMMUN MAG, vol. 55, no. 1,
pp. 26–33, 2017.

[3] X. Dong, J. Zhou, and Z. Cao, “Efficient privacy-preserving temporal
and spacial data aggregation for smart grid communications,” CON-
CURR COMP-PRACT E, vol. 28, no. 4, pp. 1145–1160, 2016.

[4] D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in 2000 IEEE Symposium on Security and
Privacy, Berkeley, California, USA, May 14-17, 2000, 2000, pp. 44–55.
[Online]. Available: https://doi.org/10.1109/SECPRI.2000.848445

[5] X. Dong, J. Zhou, and Z. Cao, “Research progress in searchable
encryption,” Computer research and development, vol. 54, no. 10, pp.
7–20, 2017.

[6] B. Dan, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” Eurocrypt, vol. 3027, no. 16, pp. 506–
522, 2004.

[7] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[8] P. Wang, H. Wang, and J. Pieprzyk, “Threshold privacy preserving
keyword searches,” in SOFSEM, 2008, pp. 646–658.

[9] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search
over encrypted data,” in ACNS, 2004, pp. 31–45.

[10] D. Park, K. Kim, and P. Lee, “Public key encryption with conjunctive
field keyword search,” in WISA, 2004, pp. 73–86.

[11] B. Dan and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in TCC, 2007, pp. 533–554.

[12] M. Azraoui, K. Elkhiyaoui, M. Önen, and R. Molva, “Publicly verifiable
conjunctive keyword search in outsourced databases,” in CNS. IEEE,
2015, pp. 619–627.

[13] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, and M. Steiner, “Highly-
scalable searchable symmetric encryption with support for boolean
queries.” CRYPTO, pp. 353–373, 2013.

[14] S. Sun, J. K. Liu, A. Sakzad, R. Steinfeld, and T. H. Yuen, “An
efficient non-interactive multi-client searchable encryption with support
for boolean queries.” in ESORICS, 2016, pp. 154–172.

[15] Y. Yang and M. Ma, “Conjunctive keyword search with designated tester
and timing enabled proxy re-encryption function for e-health clouds,”
IEEE T INF FOREN SEC, pp. 746–759, 2015.

[16] Y. Wang, J. Wang, S. F. Sun, J. K. Liu, and X. Chen, “Towards multi-user
searchable encryption supporting boolean query and fast decryption,” in
International Conference on Provable Security, 2017, pp. 24–38.

[17] Z. Cong, J. Macindoe, S. Yang, R. Steinfeld, and J. K. Liu, “Trusted
boolean search on cloud using searchable symmetric encryption,” in
2016 IEEE Trustcom/BigDataSE/I SPA, 2016, pp. 113–120.

[18] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, “Catch you if you lie to
me: Efficient verifiable conjunctive keyword search over large dynamic
encrypted cloud data,” in INFOCOM, 2015, pp. 2110–2118.

[19] J. Wang, X. Chen, S. F. Sun, J. K. Liu, H. A. Man, and Z. H.
Zhan, “Towards efficient verifiable conjunctive keyword search for large
encrypted database,” pp. 83–100, 2018.

[20] M. Miao, J. Wang, S. Wen, and J. Ma, “Publicly verifiable database
scheme with efficient keyword search,” INFORM SCIENCES, vol. 475,
pp. 18–28, 2019.

[21] D. Catalano and D. Fiore, “Vector commitments and
their applications,” in Public-Key Cryptography - PKC
2013, vol. 7778, 2013, p. 54. [Online]. Available:
https://www.iacr.org/archive/pkc2013/77780054/77780054.pdf

[22] K. Kurosawa and Y. Ohtaki, “Uc-secure searchable symmetric encryp-
tion,” in Financial Cryptography, 2012, pp. 285–298.

[23] Y. Miao, J. Weng, X. Liu, R. C. Kim-Kwang, Z. Liu, and H. Li,
“Enabling verifiable multiple keywords search over encrypted cloud
data,” INFORM SCIENCES, pp. 21–37, 2018.

[24] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, Report
2003/216, 2003, https://eprint.iacr.org/2003/216.

[25] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Outsourced
symmetric private information retrieval,” in ACM Conference on Com-
puter and Communications Security, 2013, pp. 875–888.

[26] X. Chen, L. Jin, W. Jian, J. Ma, and W. Lou, “Verifiable computation
over large database with incremental updates,” in ESORICS, 2014, pp.
148–162.

[27] X. Chen, L. Jin, X. Huang, J. Ma, and W. Lou, “New publicly verifiable
databases with efficient updates,” IEEE T DEPEND SECURE, vol. 12,
no. 5, pp. 546–556, 2015.

[28] Z. Liu, L. Tong, L. Ping, C. Jia, and L. Jin, “Verifiable searchable
encryption with aggregate keys for data sharing system,” FUTURE
GENER COMP SY, vol. 78, pp. 778–788, 2017.

[29] Q. Zheng, S. Xu, and G. Ateniese, “Vabks: Verifiable attribute-based
keyword search over outsourced encrypted data,” in INFOCOM, 2015,
pp. 522–530.

[30] Y. Fan and Z. Liu, “Verifiable attribute-based multi-keyword search over
encrypted cloud data in multi-owner setting,” in DSC, 2017, pp. 441–
449.

[31] S. Wang, S. Jia, and Y. Zhang, “Verifiable and multi-keyword
searchable attribute-based encryption scheme for cloud storage,”
IEEE Access, vol. 7, pp. 50 136–50 147, 2019. [Online]. Available:
https://doi.org/10.1109/ACCESS.2019.2910828

[32] J. Sun, L. Ren, S. Wang, and X. Yao, “Multi-keyword searchable and
data verifiable attribute-based encryption scheme for cloud storage,”
IEEE Access, vol. 7, pp. 66 655–66 667, 2019. [Online]. Available:
https://doi.org/10.1109/ACCESS.2019.2917772

[33] Bloom and B. H., “Space/time trade-offs in hash coding with allowable
errors,” COMMUN ACM, vol. 13, no. 7, pp. 422–426, 1970.

[34] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies, CoNEXT, 2014, pp. 75–88.

[35] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J ALGORITHMS, vol. 51,
no. 2, pp. 122–144, 2004.

[36] Q. Xue and M. C. Chuah, “Cuckoo-filter based privacy-aware search
over encrypted cloud data,” in MSN, 2015, pp. 60–68.

[37] R. Cramer and V. Shoup, “Signature schemes based on the strong rsa
assumption,” ACM T INFORM SYST SE, vol. 3, no. 3, pp. 161–185,
2000.

