
ELM : A Low-Latency and Scalable
Memory Encryption Scheme

Akiko Inoue1, Kazuhiko Minematsu1, Maya Oda2, Rei Ueno2, and Naofumi Homma2

1 NEC, Kawasaki, Japan
a_inoue@nec.com, k-minematsu@nec.com

2 Research Institute of Electrical Communication, Tohoku University,
odam@riec.tohoku.ac.jp, ueno@riec.tohoku.ac.jp, homma@riec.tohoku.ac.jp

Keywords: Memory encryption · Authentication Tree · Latency · Mode of Operations · SGX

Abstract. Memory encryption with an authentication tree has received significant attentions due to
the increasing threats of active attacks and the widespread use of non-volatile memories. It is also
gradually deployed to real-world systems, as shown by SGX available in Intel processors. The topic of
memory encryption has been recently extensively studied, most actively from the viewpoint of system
architecture. In this paper, we study the topic from the viewpoint of provable secure symmetric-key
designs, with a primal focus on latency which is an important criterion for memory. A progress in such a
direction can be observed in the memory encryption scheme inside SGX (SGX integrity tree or SIT). It
uses dedicated, low-latency symmetric-key components, i.e., a message authentication code (MAC) and
an authenticated encryption (AE) scheme based on AES-GCM. SIT has an excellent latency, however,
it has a scalability issue for its on-chip memory size. By carefully examining the required behavior
of MAC and AE schemes and their interactions in the tree operations, we develop a new memory
encryption scheme called ELM. It consists of fully-parallelizable, low-latency MAC and AE schemes and
utilizes an incremental property of the MAC. Our AE scheme is similar to OCB, however it improves
OCB in terms of decryption latency. To showcase the effectiveness, we consider instantiations of ELM
using the same cryptographic cores as SIT, and show that ELM has significantly lower latency than SIT
for large memories. We also conducted preliminary hardware implementations to show that the total
implementation size is comparable to SIT.

1 Introduction

Cryptographic protection of memory, or more generally storage data, is widely deployed in modern systems.
One typical method of protection is sector-wise encryption, such as XTS [Dwo10]. A sector-wise encryption
scheme encrypts each memory sector in an independent and deterministic manner, keeping the secret key in
a secure on-chip area. This prevents passive off-line attacks that try to extract the data from the storage
devices, such as the Cold Boot Attack [HSH+08]. However, it does not offer sufficient protection against
active on-line attacks, as there is no way to detect forgeries. Most notably, replay cannot be detected. If
we independently encrypt each sector using a nonce-based authenticated encryption (AE) and store all the
nonces in the secure on-chip area, it would provide a strong security guarantee against such an adversary.
However, this would also incur a linear increase of the on-chip area. This is usually impractical because the
on-chip area is much more expensive than the main (off-chip) memory.

A well-known classical solution to this problem is to use an authentication tree, also known as a Merkle
Hash Tree [Mer88]. By involving any unit memory data in the tree computation and storing the root hash value
in the on-chip area, the authenticity against active attackers can be guaranteed. Instead of a cryptographic
hash function, we can use a message authentication code (MAC) to build an authentication tree. The classical
Merkle tree and its (possibly MAC-based) improvements, such as PAT [HJ06] and Bonsai Tree [RCPS07],
provide an authenticity of the whole memory with a constant on-chip memory overhead, at the cost of a
logarithmic computation overhead for read and write operations. Confidentiality of the memory can be
achieved by an additional symmetric-key encryption mechanism, as was done by TEC-tree [ECL+07]. Due

to the increasing threat of active attacks, authentication trees, often with a confidentiality mechanism,
are gradually being deployed in real-world memory/storage systems. One prominent example is Intel’s
SGX [Gue16b,Gue16a], which adopts a variant of PAT with a dedicated AES-based MAC and AE schemes
similar to GMAC and GCM [Dwo07]. The widespread use of non-volatile memory also pushes the need for
such protections.

Latency of Memory Protection. Latency is a very important criterion for the aforementioned tree-based
memory protection schemes. The Merkle tree can reduce its latency by utilizing parallelizability, but this is
only done for verification of the current data. This is usually associated with the memory read operation.
When one wants to change the data and re-computes the corresponding authentication value, which is
associated with memory write operations, the Merkle tree needs to update all hash values on the path from
the leaf (data) to the root in a serial manner. PAT is the current state-of-the-art in this respect, as it is
parallelizable for both read and write operations by means of a clever use of nonce-based MAC functions.

Since the introduction of classical Merkle tree, many innovative designs have been proposed in the context
of tree-based memory protection [HJ06,YEP+06,RCPS07,ECL+07,TSB18, SNR+18] most actively from
the computer architecture perspective. The primary focus of these proposals is their data structure, such as
the parameters/structures of integrity trees [RCPS07,TSB18] and counter/nonce representations [YEP+06,
SNR+18] that are suitable to the considered architecture. In these proposals, cryptographic components are
often considered as black boxes and sometimes instantiated by picking a standard (e.g., GCM in [YEP+06]).
A notable exception is the aforementioned scheme used by SGX, which we call the SGX integrity tree (SIT).
It develops dedicated AE and MAC schemes based on AES-GCM, with particular attention to latency in
mind. It is quite efficient and enables a very low-latency read/write operation on the given tree structure that
covers up to 96 Mbyte of memory on an x86 platform. Moreover, as an important subsystem of SGX, it is
also quite widely deployed in practice.

Our Contributions. In light of the literature on memory protection schemes thus far, we feel there is a lack of
thorough study from the viewpoint of symmetric-key cryptographic design: that is, designing cryptographic
components (e.g., modes of block cipher operations) so that they fit well when used in the authentication
tree, rather than adopting existing efficient stand-alone modes and using them in a black-box manner. SIT
shows potential in this regard and is promising as an excellent low-latency system, but its on-chip data size is
linear to the unit data size. This poses a limitation on the amount of covered memory sizes and hence is
not scalable. In fact, VAULT [TSB18] and Morphable Counter [SNR+18] are two recent proposals that aim
at extending the protected memory size by SIT and improving the performance, mainly from the system
architecture viewpoint, using similar symmetric-key components as SIT3.

After taking a closer look at the interactions between the cryptographic components and the tree operations,
we propose a new memory protection scheme dubbed ELM4, which enables a significantly low latency for
a large memory. It achieves on-chip and off-chip memory overheads comparable to existing schemes. ELM
combines several techniques from the mode of operations. Specifically, we show the idea of incremental MAC
introduced by Bellare et al. [BGG94,BM97] works quite effectively when the number of branches of the tree
is high, which is common for the recent proposals that cover a large memory size, e.g., [TSB18,SNR+18].
By using an incremental MAC at the internal nodes, ELM significantly reduces the write latency without
harming the read latency. While our MAC scheme is a variant of the classical XOR-MAC [BGR95], it is
carefully designed to optimize the latency, number of primitive calls, parallelizability, and security.

As a key component of ELM, we develop a new low-latency variant of OCB [RBBK01,Rog04,KR11]
for AE. OCB is already quite good in terms of latency and parallelizability – better than GCM and other
popular schemes, as OCB does not need an additional authentication function. However, the decryption
latency of OCB is not sufficiently small due to its structure. By changing the structure, our AE mode has
a smaller latency than the original for decryption, while retaining the other main features. In particular,
3 Vault adopts an OCB-like, AES-based AE instead of GCM without provable security analysis. To our understanding,
it needs a very strong related-key security assumption on AES.

4 Elms are deciduous trees that grow quickly, and we also mean “Encryption for Large Memory” (ELM) by it.

2

when it is viewed as a mode of a tweakable block cipher (TBC) [LRW02], its latency is optimally small for
both encryption and decryption. We call it Flat-OCB for its “flat” structure. As well as the original OCB, we
proved that our AE is provable secure under the standard cryptographic assumption on AES, i.e., the strong
pseudorandomness. Each technique itself is not ultimately novel. However, we show how to combine them in
an optimal manner to reduce latency and computation (e.g., by shaving the redundant computations in the
update of incremental MACs), which is, to the best of our knowledge, the first time this has been done in the
field of tree-based memory encryption.

Our proposal is generic in principle, and the core idea can be instantiated by any block cipher or
TBC. To showcase the effectiveness of our proposal, we specify concrete schemes, named ELM1 and ELM2,
using the same components as SIT, namely AES-128 and a full 64-bit field multiplier5. We compare them
with (a generalized variant of) SIT for various memory sizes and tree parameters under a certain practical
implementation setting. Our results show that ELM1 and ELM2 have a smaller latency than SIT for most of
the cases we see6. In particular, when the memory size gets larger, the difference becomes significant. We also
conducted preliminary ASIC implementations, and show that the total implementation size is comparable to
that of SIT. In addition, we discuss the optimization of hardware implementations for our proposal depending
on the system constraints.

2 Preliminaries

2.1 Notation

For a natural number n ∈ N, {0, 1}n denotes the set of n-bit strings. For binary strings A and B, A ‖B
or AB denotes the concatenation of A and B. The bit length of A is denoted by |A|, and |A|n := d|A|/ne.
Dividing a string A into blocks of n bits is denoted by A[1] ‖ · · · ‖A[m] n←− A, where m = |A|n and |A[i]| = n,
|A[m]| ≤ n for 1 ≤ i ≤ m− 1. For t ∈ N and t ≤ |A|, msbt(A) (lsbt) denotes the first (last) t bits of A. A
sequence of i zeros is written as 0i. For sets E and E′, we write E ∪←− E′ as shorthand for E← E ∪ E′. When
the element K is uniformly and randomly chosen from the set K, it is denoted by K $←− K. For a function
F : K ×X → Y with the key space K, F (K, ·) may be written as FK(·).

Computation on Galois Field. Let GF(2n) be a finite field of size 2n, where the characteristic is 2 and
the extension degree is n ∈ N. We focus on the case where n = 128. Following [Rog04, IK03], we use the
lexicographically first polynomial for defining the field and thus F2128 := F2[x]/(x128 + x7 + x2 + x + 1)
and we obtain GF(2n) = 〈x〉. We regard an element of GF(2n) as a polynomial of x. For ∀a ∈ {0, 1}n, we
also regard it as a coefficient vector of an element in GF(2n). Thus, the primitive root x is interpreted
as 2 in the decimal representation. For a ∈ GF(2n), let 2a denote a multiplication by x and a, which is
also called doubling [Rog04]. Similarly, let 3a denote 2a⊕ a. In GF(2n), 2a := (a� 1) if msb1(a) = 0 and
2a := (a � 1) ⊕ (012010413) if msb1(a) = 1, where (a � 1) is the left-shift of one bit. For c ∈ N, we can
compute 2ca by doubling a for c times.

2.2 (Tweakable) Block Cipher

Let K andM be the set of keys and messages, respectively. Let T be the set of tweaks, where a tweak is a
public parameter. A tweakable block cipher (TBC) [LRW02] is a function Ẽ : K×T ×M→M s.t. Ẽ(K,T, ·)
is a permutation onM for ∀(K,T) ∈ K × T . It is also denoted by ẼTK , ẼT , or Ẽ, where K ∈ K and T ∈ T .
If T is singleton (and we thus omit it from the notation) it means a plain block cipher. Namely, a block
cipher E is defined as E : K ×M→M s.t. E(K, ·) is a permutation onM for ∀K ∈ K and is also denoted
by EK or E. A TBC can be built on a block cipher using various modes of operation [LRW02,Rog04].
5 We also use a 128-bit multiplier, but with a very small input size.
6 This holds true even when SIT adopts a part of our idea of using incremental MAC. See Section 6.3.

3

Security Notion. Let Perm(n) denote the set of all permutations on {0, 1}n. An n-bit tweakable permutation
of t-bit tweak is a function π : {0, 1}t × {0, 1}n → {0, 1}n s.t. for ∀T ∈ {0, 1}t, π(T, ·) ∈ Perm(n). The set
of all n-bit tweakable permutations with t-bit tweak is denoted by TPerm(t, n). Let P s.t. P $←− Perm(n) be
a uniform random permutation (URP) and P̃ s.t. P̃ $←− TPerm(t, n) be a tweakable URP (TURP). A block
cipher E or a TBC Ẽ is said to be secure if it is computationally hard to distinguish from the ideal primitive
with oracle access. More precisely, let A be an adversary who (possibly adaptively) queries an oracle O and
subsequently outputs a bit. We write Pr[AO → 1] to denote the probability that this bit is 1. We define the
advantage of A against TBC Ẽ as follows:

Advtprp
Ẽ

(A) := |Pr[AẼ → 1]− Pr[AP̃ → 1]|,

Advtsprp
Ẽ

(A±) := |Pr[(A±)Ẽ,Ẽ
−1
→ 1]− Pr[(A±)P̃,̃P

−1

→ 1]|,

where the first notion is for adversary with encryption oracle (i.e., chosen-plaintext queries), and the second
is for adversary with encryption and decryption oracles (i.e., chosen-ciphertext queries). When the advantage
is sufficiently small, Ẽ is said to be secure against the underlying adversary.

2.3 Message Authentication Code

Message authentication code (MAC) is a symmetric-key cryptosystem to ensure the integrity of a message.
Throughout the paper, we consider nonce-based MAC7. It takes a nonce (a value never repeats when used
for tag generation) together with a message. For the key space K, the nonce space N , the message space
M, and the tag space T , a nonce-based MAC scheme MAC consists of two functions; the tagging function
MAC.T : K ×N ×M→ T and the verification function MAC.V : K ×N ×M× T → {>,⊥}. A tag for the
message M ∈M and the nonce N ∈ N and the key K ∈ K is T = MAC.T (K,N,M). The tuple (N,M, T) is
considered to be authentic if MAC.T (K,N,M, T) = >, and otherwise it is rejected.

Security Notion. Let A be the adversary against MAC described above. The security of MAC is defined
as the probability that A creates a successful forgery by accessing the tagging oracle (MAC.TK) and the
verification oracle (MAC.VK). The security measure is Advmac

MAC(A) := Pr[K $← K : AMAC.TK ,MAC.VK forges],
which means the probability of a successful forgery. That is, A receives > from MAC.VK by querying
(N ′,M ′, T ′) while (N ′,M ′) has never been queried to MAC.TK . Here, A is assumed to be nonce-respecting,
that is, the nonces in the tagging queries are distinct. The nonces in the verification queries have no restriction,
and A can repeat nonce or reuse a nonce that was used by a tagging query.

2.4 Authenticated Encryption

Authenticated encryption (AE) [BN00] is used to ensure privacy and authenticity of input data simultaneously.
As well as MAC, we consider nonce-based AE in this paper. For the key space K, the nonce spaceN , the message
and ciphertext spaceM, and the tag space T , a nonce-based AE scheme AE consists of two functions; the
encryption function AE.E : K×N×M→M×T and the decryption function AE.D : K×N×M×T →M×⊥.
A ciphertext C ∈M and a tag T ∈ T for the key K ∈ K, the nonce N ∈ N , and the message M ∈M are
derived as (C, T) = AE.E(K,N,M). The tuple (N,C, T) is considered to be authentic if AE.D(K,N,C, T)
returns the message M ∈M and M 6= ⊥, and otherwise it is rejected.

It is possible to extend AE so that it also accepts associated data [Rog02], an information that is not
encrypted but authenticated, though we do not need it in this paper.

7 It is because a nonce-based MAC is generally easier to construct than a general (non-nonce-based) MAC to construct
an efficient MAC. The same applies to a nonce-based AE.

4

Security Notion. The security of AE is evaluated by two criteria, privacy and authenticity advantages.
The privacy advantage is the probability that the adversary successfully distinguishes the encryption function
of AE from the random oracle $(∗, ∗). For any query (N,M), if (C, T)← AE.E(K,N,M), $(N,M) returns
random bits of length |C| + |T |. Thus, Advpriv

AE (A) := |Pr[AAE.E → 1] − Pr[A$ → 1]|. The authenticity
advantage is the probability that the adversary creates a successful forgery by accessing encryption function
and decryption function. It is defined as Advauth

AE (A) := Pr[AAE.E,AE.D forges], which means the probability
that A receives M ′ 6= ⊥ from AE.D by querying (N ′, C ′, T ′) while (N ′,M ′) has never been queried to AE.E .

For both advantages, we assume the adversary is nonce-respecting in encryption queries. For authenticity
however, there is no restriction on nonce in the decryption queries, that is, A may repeat a nonce or reuse a
nonce that was used in an encryption query.

2.5 Authentication Tree for Memory Protection

We assume two regions in storage memory: on-chip and off-chip areas. On-chip area is assumed to be secure
in which the adversary cannot eavesdrop or tamper the stored data. Off-chip area can be attacked by the
adversary who may perform eavesdropping (getting information of plaintext from ciphertext), tampering
(modify the ciphertext without being detected), and replay (replacing the ciphertext with an old legitimate
one). As mentioned in the introduction, tampering can be detected by simply applying a MAC to each data
unit and storing the nonce and tag off-chip. If we use a nonce-based AE scheme instead, it also prevents
eavesdropping. However, these means are not sufficient to protect from replay attacks since the adversary can
perform a replay on the (nonce,ciphertext,tag) tuple. Moreover, since on-chip area is generally much more
expensive than off-chip area, it is desirable to thwart all of these attacks with a small amount on-chip area as
possible.

To address the problem, a number of memory protection tree schemes have been proposed [Mer88,RCPS07,
HJ06,UWM19,TSB18,SNR+18]. The classical Merkle hash tree [Mer88] associates each memory data chunk
stored off-chip to a leaf node of a tree. The hash values of all intermediate and leaf nodes are stored off-chip,
and only that of the root node is stored on-chip. The integrity of a leaf node (data) can be verified by
recursively computing the corresponding hash values from the leaf to the root.

A similar scheme can be considered by using MACs instead of hash functions by storing the secret key
on-chip, and among such schemes, we focus on PAT (Parallelizable Authentication Tree) proposed by Hall
and Jutla [HJ06] for its parallelizability of both verify and update operations. It assigns a nonce to each node
and stores the nonce associated with the root node in the on-chip area. Here, nonces need to be distinct from
each other, and have one-time property to prevent replay attacks. To construct parallel scheme, PAT employs
a MAC to compute a tag by taking the nonce assigned to own node and nonces in children nodes8.

In this paper, we hereafter use the term authentication tree to refer to the memory protection scheme
using the tree construction. Note that we suppose the authentication tree also encrypts data associated with
leaf nodes. We introduce a generic construction of authentication tree PAT2 (Fig. 1). It is mostly identical to
PAT, however it achieves confidentiality of memory by applying an AE scheme to the leaf nodes9 and it splits
any nonce of PAT associated to a node into two values, an address and a local counter. The former is the
memory address of the node, and the latter is a counter exclusively assigned to the node.

Let us briefly describe how PAT2 of Fig. 1 works. Each nonce Ni assigned to node i consists of the address
addri and the local counter ctri, which is initialized to 0 for all nodes. Memory data is split into 4 units, M3
to M6. After initialization, the tree keeps Ni, Ti for i = 1, . . . , 6, and Cj for j = 3, . . . , 6 at the off-chip area,
and N0 at the on-chip area. When verifying a data, say M3, we check if (1) AE.DK(N3, C3, T3) is authentic
(i.e., not returning ⊥) and (2) MAC.VK′(N1, ctr3 ‖ ctr4, T1) = > and (3) MAC.VK′(N0, ctr1 ‖ ctr2, T0) = >.
If all hold M3 is considered to be authentic and the corresponding local counters (ctr0, ctr1 and ctr3) are
incremented. When updating M3, we first perform the above verification procedure, update the counters, and
8 To be more precise, [HJ06] proposes to use a general deterministic MAC with input being prepended by a nonce,
which is a typical way to convert a deterministic MAC into a nonce-based one.

9 In fact, An ePrint version of PAT paper [HJ02] specifies a combination of MAC and AE schemes for confidentiality
of leaf data.

5

N0

T0

N1

T1

N2

T2

N3

AEK (C3, T3)

N4

(C4, T4)

M3 M4

N5

(C5, T5)

N6

(C6, T6)

M5 M6

On-chip

Off-chip

AEK

MACK ′ MACK ′

MACK ′

AEK AEK

Ni = (addri︸ ︷︷ ︸
implicit

‖ ctri︸ ︷︷ ︸
Off-chip

)

ctr1 ctr2‖

‖ ‖ctr3 ctr4 ctr5 ctr6

Fig. 1: An example of PAT2 with tree depth 2 and number of branches 2. A trapezoid in a MAC or
an AE box denotes the nonce input, and a box with ‖ denotes concatenation. For 0 ≤ i ≤ 2, Ti =
MACK′(Ni, ctr2i+1 ‖ ctr2i+2). For 3 ≤ j ≤ 6, (Cj , Tj) = AE.EK(Nj ,Mj). Only ctr0 is stored in the on-chip
area.

then renew (N3, C3, T3), N1, T1 and T0. Observe that the steps in the verification and update procedures are
independent and thus parallelizable. This is a crucial advantage of PAT/PAT2 over the classical hash tree
which only allows parallel verification. The nonce format guarantees distinctness across different nodes, and
allows to reduce the MAC input and off-chip overhead from the original PAT. Since an address is anyway
given from the outer legitimate system, it does not need to be explicitly stored. To the best of our knowledge,
this technique was first proposed by [RCPS07].

In fact, by specifying the parameters (e.g., the depth and the branch number of the tree and the format of
nonce) and the underlying MAC and AE schemes, the resulting scheme is mostly identical to SIT. Therefore,
PAT2 can be seen as an abstraction of SIT. We consider PAT2 as our baseline scheme for its simple structure
and efficiency, and present our scheme based on it (Section 4).

To the best of our knowledge, the provable security of PAT2 have not been shown in literature. As
described above, many memory encryption schemes have been proposed, but there are few papers which
shows provable security of proposed schemes. Whereas PAT paper defines the security notion of integrity
tree (i.e., tree-based memory protection scheme, but not encrypting memory) and proves the security of
PAT, PAT has slightly different tree construction from PAT2 and there is no description about privacy of
plaintext associated with leaf nodes. In Section 5, we define security notions (privacy and unforgeability) for
authentication trees and prove the security of PAT2 in each notion. The analysis is not surprising, but to our
knowledge we cannot find such a formal treatment (in particular for the combination of MAC and AE to
guarantee privacy and unforgeability) in literature.

Other Schemes. In addition to the above schemes, a number of authentication tree schemes that better
handle the various criteria (except for latency) have been proposed. TEC-tree [ECL+07] provides confidentiality
by encrypting data stored in all nodes. MAES [UWM19] is an authentication tree providing security against
differential power analysis attacks. VAULT [TSB18] and Morphable Counter [SNR+18] reduce the overhead of
off-chip memory and are suitable for protecting large memory (e.g., larger than the giga byte order); however
there is a tradeoff with the average latency because their counters are compressed.

6

Algorithm 1 PXOR-MAC.TK,K′(N,M)

1: M [1] ‖ · · · ‖M [m] n←−M
2: L← EK(0n), T ← 0τ
3: for 1 ≤ i ≤ m do
4: T ← T ⊕ msbτ (EK(M [i]⊕K′ · i))
5: end for
6: T ← T ⊕ msbτ (EK(N ⊕K′ ·m⊕ L))
7: return T

Algorithm 2 PXOR-MAC.VK,K′(N,M, T)
1: T ′ ← PXOR-MAC.TEK ,K′(N,M)
2: if T = T ′ then
3: return >
4: else
5: return ⊥
6: end if

Algorithm 3 PXOR-MAC.UK,K′(Nold, Mold, Told, Nnew, Mnew)
1: L← EK(0n), Tnew ← Told

2: Mold[1] ‖ · · · ‖Mold[m] n←−Mold, Mnew[1] ‖ · · · ‖Mnew[m] n←−Mnew
3: for 1 ≤ i ≤ m do
4: if Mold[i] 6= Mnew[i] then
5: Tnew ← Tnew ⊕ msbτ (EK(Mold[i]⊕K′ · i)⊕ EK(Mnew[i]⊕K′ · i))
6: end if
7: end for
8: if Nold 6= Nnew then
9: Tnew ← Tnew ⊕ msbτ (EK(Nold ⊕K′ ·m⊕ L)⊕ EK(Nnew ⊕K′ ·m⊕ L))
10: end if
11: return Tnew

3 Components of ELM

To achieve low latency operation, we designed dedicated MAC and AE schemes. Our MAC scheme, which we
call PXOR-MAC, is a simple combination of nonce-based XOR-MAC [BGR95] and PHASH, a message hashing
function of PMAC [BR02,Rog04]. For AE, we propose a new mode named Flat-OCB based on OCB. We show
more details in the following.

3.1 Incremental MAC

Specification. Algs. 1 and 2 show the tagging function and the verification function of PXOR-MAC. Here,
the block cipher E has n-bit block. The second key K ′ is n bits and independent of K. The length of the
nonce N and the tag T are n bits and τ bits, respectively. Note that we exclude the case of partial block (i.e.,
|M | mod n = 0 always holds.) for simplicity. As we assumed n = 128, this is reasonable for the typical use
case of authentication tree schemes. PXOR-MAC computes a tag as the sum of encrypted plaintext blocks
and the encrypted nonce, as depicted in Fig. 2. An input mask to EK is derived from a multiplication of K ′
and the block index over GF(2n), and L = EK(0n).

Properties. Since L can be computed in advance, the latency of tag computation is essentially a sum of
latencies of 128-bit multiplication (K ′ · i for the block index i) and one call of EK . The cost of 128-bit
multiplication can be large if i has large variations, however m is not too large in practice, even when
the total memory size is huge. Typically, m is upperbounded by the number of branches, for example, at
most 27 according to [SNR+18]. Therefore, using a Gray code, the hardware implementation is much more
efficient compared to implementing a full 128-bit multiplier (see Section 6). Consequently, the latency of mask
computation becomes negligible. In this setting, PXOR-MAC has optimal latency of one block cipher call for
tagging and verification functions thanks to the full parallelizability of block cipher calls.

In addition, PXOR-MAC is an incremental MAC [BGR95], which allows an efficient tag computation when
a message is changed at a small number of blocks. To be more concrete, when a block of a message is changed

7

M [1] M [2] M [m] N

Tmsbτ

EK

0n

L

K ′ · 1 K ′ · 2 K ′ ·m

EK EKEK EK

K ′ ·m
L

Fig. 2: PXOR-MAC.

together with a new nonce (since a nonce-based MAC renews its nonce for each tag generation), the new
tag can be obtained by encrypting the corresponding blocks (i.e., XOR of the message block and its mask
value) for both old and new ones, and taking an XOR of them and the old tag. We show the general update
function of PXOR-MAC in Alg. 3. It takes old nonce Nold, old plaintext Mold, old tag Told, new nonce Nnew,
and new plaintext Mnew. It outputs new tag Tnew such that Tnew = PXOR-MAC.TK,K′(Nnew,Mnew) holds.
For simplicity, Alg. 3 assumes that Mold and Mnew have the same number of blocks, m. In this case, when
the nonce and one-block plaintext are changed, PXOR-MAC.U needs only four block cipher calls except for
mask derivation regardless of m, while ordinary block cipher-based MACs have to invoke block cipher at
least m times by invoking their tagging functions.

Notes on Incremental Property. Our PXOR-MAC corresponds to the incremental MAC for replace
operation with basic security [BGG94]. We emphasize that the arguments of the update function defined
at [BGG94] is different from those of Alg. 3. In detail, the update function in [BGG94] takes the set of block
indices to replace, and the contents of new and old blocks in addition to the old tag Told. For notational
convenience we adopted our presentation of Alg. 3, however we used the standard form of [BGG94] in our
implementations for efficiency. In addition, the basic security means that Told = PXOR-MAC.TK,K′(Nold,Mold)
must hold for any (Nold,Mold, Told) in an input to the update function to guarantee the correctness. This
implies that the update function cannot be queried by the adversary. Bellare et al. [BGG94] also defined a
stronger, tamper-proof security, where the adversary can arbitrary query the update oracle. This is a crucially
different security notion, as the adversary may feed an unauthentic tuple (Nold,Mold, Told) to the update
oracle. Fortunately, an incremental MAC with basic security suffices for our purpose (see Section 4.3).

Security. The security bound of PXOR-MAC is shown below. We assume the underlying block cipher is an
n-bit URP P. It is an information-theoretic idealization. The computational counterpart, where the underlying
block cipher is instantiated by a practically secure block cipher such as AES, is derived from our bound. Since
this is fairly standard [BDJR97], we omitted it here.

Theorem 1. The MAC advantage of PXOR-MAC is

Advmac
PXOR-MACP

(A) ≤ 2qv
2τ + 4.5σ2

mac

2n ,

where A is the nonce-respecting adversary against PXOR-MAC, σmac is the total number of accesses to P
invoked by the queries such that σmac ≤ 2n−1, and qv is the number of queries to the verification oracle.

Proof. First, we observe that PXOR-MAC can be interpreted as a TBC-based MAC, PXOR-MAC-TBC, defined
in Algs. 4 and 5. If the TBC used in PXOR-MAC-TBC is specified as Ẽ0n,i,j

K,K′ (M) = EK(M⊕K ′ · i⊕j ·EK(0n)),
PXOR-MAC-TBC

Ẽ
is equivalent to PXOR-MACK,K′ . Thus, we have

Advmac
PXOR-MACP

(A) ≤ Advmac
PXOR-MAC-TBC̃

P
(A) + Advtprp

Ẽ
(B), (1)

8

where P is an n-bit URP, P̃ is an n-bit TURP having the same tweak space as Ẽ, and Ẽ is a TBC involving
P and an independent key K ′, defined as Ẽ

0n,i,j
(M) = P(M ⊕K ′ · i ⊕ j · P(0n)). Also, B is the adversary

against Ẽ querying the encryption oracle. In what follows, we evaluate each term of the right side of (1) in
turn. Recall that we assume |M | (mod n) = 0 for plaintext M .

Algorithm 4 PXOR-MAC-TBC.T
Ẽ

(N,M)

1: M [1] ‖ · · · ‖M [m] n←−M
2: T ← 0τ
3: for 1 ≤ i ≤ m do
4: T ← T ⊕ msbτ (Ẽ0n,i,0(M [i]))
5: end for
6: T ← T ⊕ msbτ (Ẽ0n,m,1(N))
7: return T

Algorithm 5 PXOR-MAC-TBC.V
Ẽ

(N,M, T)

1: M [1] ‖ · · · ‖M [m] n←−M
2: T ′ ← PXOR-MAC-TBC.T

Ẽ
(N,M)

3: if T = T ′ then
4: return >
5: else
6: return ⊥
7: end if

Analysis of the First Term. We start with the case qv = 1. Without loss of generality, we can assume that
the adversary performs a verification query after all qt tagging queries. Let Z = {(N1,M1, T1), . . . , (Nqt

,Mqt
, Tqt

)}
be the transcript obtained by tagging queries, and let (N ′,M ′, T ′) be the verification query. Let T ∗ be the
valid tag corresponding to (N ′,M ′). We also suppose |M ′|n := m′. Seeing Z as a random variable, we obtain
Advmac

PXOR-MAC-TBC̃
P
(A) =

∑
z Pr[T ′ = T ∗ | Z = z] Pr[Z = z]. In what follows, we evaluate Pr[T ′ = T ∗ | Z = z]

for the following cases.

1. Let ∀i ∈ {1, . . . , qt}, N ′ 6= Ni.
The TURP P̃

0n,m′,1
, which encrypts nonce N ′, can be invoked at most qt times in tagging queries.

However, P̃
0n,m′,1

(N ′) is a new random value for the adversary. Thus, supposing that qt ≤ 2n−1, we
obtain Pr[T ′ = T ∗ | Z = z] ≤ 2n−τ/(2n − qt) ≤ 2/2τ .

2. Let ∃α ∈ {1, . . . , qt}, N ′ = Nα and m′ 6= |Mα|n.
The TURP P̃

0n,m′,1
encrypting N ′ has a different tweak from that encrypting Nα in tagging queries.

Thus, we can treat this case in the same manner as the previous case, and Pr[T ′ = T ∗ | Z = z] ≤ 2/2τ
holds.

3. Let ∃α ∈ {1, . . . , qe}, N ′ = Nα and m′ = |Mα|n.

(a) When M ′[i] 6= Mα[i] for ∃!i ∈ {1, . . . ,m′} and M ′[j] = Mα[j] for ∀j ∈ {1, . . . ,m′} \ {i}, it necessar-
ily holds that P̃

0n,i,0
(M ′[i]) 6= P̃

0n,i,0
(Mα[i]) and P̃

0n,j,0
(M ′[j]) = P̃

0n,j,0
(Mα[j]). Thus, we obtain

Pr[T ′ = T ∗ | Z = z] = Pr[T ′ = Tα ⊕ msbτ (P̃
0n,i,0

(M ′[i])⊕ P̃
0n,i,0

(Mα[i])) | Z = z] ≤ 2/2τ .

(b) When M ′[i] 6= Mα[i] and M ′[j] 6= Mα[j] for i, j ∈ {1, . . . ,m′}, it holds that

T ∗ = Tα ⊕ msbτ (P̃
0n,i,0

(M ′[i])⊕ P̃
0n,i,0

(Mα[i]))⊕ msbτ (P̃
0n,j,0

(M ′[j])⊕ P̃
0n,j,0

(Mα[j]))⊕ δ,

where δ =
⊕m′

k 6=i,j msbτ (P̃
0n,k,0

(M ′[k])⊕P̃
0n,k,0

(Mα[k])). Thus, we obtain Pr[T ′ = T ∗ | Z = z] ≤ 2/2τ .

From the above cases, we obtain the following advantage when qd = 1:

Advmac
PXOR-MAC-TBC̃

P
(A) ≤

∑
z

max
z

Pr[T ′ = T ∗ | Z = z] Pr[Z = z] ≤ 2
2τ . (2)

Finally, we apply the standard conversion from single to multiple verification queries [BDJR97] and obtain
the bound Advmac

PXOR-MAC-TBC̃
P
(A) ≤ qd (2/2τ) for qd ≥ 1.

9

Analysis of the Second Term. We evaluate Advtprp
Ẽ

(B) in (1). We follow the framework proposed
in [MM09]. We define the offset function F as follows.

FK′((i, j),P(0n)) = K ′ · i⊕ j · P(0n),

where i ∈ {1, 2, . . .}, j ∈ {0, 1}. Then, Ẽ
0n,i,j

(M) = P(M ⊕ FK((i, j),P(0n))) holds for any (i, j,M). Here,
we introduce the following definition and the lemma for offset functions.

Definition 1 (A Simplified Version of Definition 4.1 [MM09]). Let V be a uniformly random value
over {0, 1}n. We say that a offset function F is (ε, γ, ρ)-uniform if F satisfies the following conditions.

max
l 6=l′,δ∈{0,1}n

Pr[F (l, V)⊕ F (l′, V) = δ] ≤ ε,

max
l,δ∈{0,1}n

Pr[F (l, V) = δ] ≤ γ,

max
l,δ∈{0,1}n

Pr[F (l, V)⊕ V = δ] ≤ ρ.

Lemma 1 (A Simplified Version of Theorem 4.1 in [MM09]). Suppose that Ẽ uses an (ε, γ, ρ)-uniform
offset function F . We obtain following evaluation.

Advtprp
Ẽ

(B) ≤ q2
(

2ε+ γ + ρ+ 1
2n+1

)
,

where q is the number of encryption queries such that q ≤ 2n−1.

We derive the security bound of Ẽ by evaluating (ε, γ, ρ) in Definition 1.

Bound of ε. For all δ ∈ {0, 1}n, we bound the probability Pr[X(δ)] := Pr[F ((i, j),P(0n))⊕F ((i′, j′),P(0n)) =
δ]. When j = j′, i 6= i′ must hold. Thus Pr[X(δ)] = Pr[K ′(i⊕ i′) = δ] ≤ 1/2n holds since K ′ is drawn from
{0, 1}n uniformly and i⊕ i′ 6= 0. When j 6= j′, Pr[X(δ)] = Pr[K ′(i⊕ i′)⊕ P(0n) = δ] ≤ 1/2n since K ′ and
P(0n) are uniformly random and independent from each other. Thus, ε = 1/2n holds.

Bound of γ. Suppose that j = 0 holds. For all δ ∈ {0, 1}n, we obtain Pr[F ((i, 0),P(0n)) = δ] = Pr[K ′ · i =
δ] ≤ 1/2n due to the uniformity of K ′. Suppose that j = 1 holds. we also obtain Pr[F ((i, 1),P(0n)) = δ] =
Pr[K ′ · i⊕ P(0n) = δ] ≤ 1/2n since K ′ is uniformly random and independent from P. Thus, γ = 1/2n holds.

Bound of ρ. For all δ ∈ {0, 1}n, we bound the probability Pr[Y (δ)] := Pr[F ((i, j),P(0n)) ⊕ P(0n) = δ].
When j = 0, Pr[Y (δ)] = Pr[K ′ · i⊕ P(0n) = δ] holds. From the same discussion of γ when j = 1, we obtain
Pr[Y (δ)] ≤ 1/2n. When j = 1, Pr[Y (δ)] = Pr[K ′ · i = δ] holds. From the same discussion of γ when j = 0, we
obtain Pr[Y (δ)] ≤ 1/2n. Thus, ρ = 1/2n holds.

From the above discussions, we obtain

Advtprp
Ẽ

(B) ≤ 4.5σ2
mac

2n , (3)

where σmac is the number of accesses to P and σmac ≤ 2n−1. Combining (1),(2), and (3), we conclude the proof.

3.2 Low-Latency Authenticated Encryption

An AE scheme can be built on a block cipher by a mode of operation. While it is possible to build an AE by
a generic composition of a MAC mode and an encryption mode (e.g., Counter mode) [BN00,Kra01,NRS14],
OCB is generally faster. It needs m plus a few block cipher calls to process m-block input (while a generic

10

Algorithm 6 Flat-ΘCB.E
Ẽ

(N,M)

1: M [1] ‖ · · · ‖M [m] n←−M
2: T ← msbτ (ẼN,0,0K (0n))
3: for 1 ≤ i ≤ m− 1 do
4: C[i]← ẼN,i,0K (M [i])
5: T ← T ⊕ msbτ (M [i])
6: end for
7: C[m]← ẼN,m−1,1

K (M [m])
8: T ← T ⊕ msbτ (M [m])
9: C ← C[1] ‖ · · · ‖C[m]
10: return C, T

Algorithm 7 Flat-ΘCB.D
Ẽ

(N,C, T)

1: C[1] ‖ · · · ‖C[m] n←− C
2: T ′ ← msbτ (ẼN,0,0K (0n))
3: for 1 ≤ i ≤ m− 1 do
4: M [i]← D̃N,i,0

K (C[i])
5: T ′ ← T ′ ⊕ msbτ (M [i])
6: end for
7: M [m]← D̃N,m−1,1

K (C[m])
8: T ′ ← T ′ ⊕ msbτ (M [m])
9: if T = T ′ then
10: return M ←M [1] ‖ · · · ‖M [m]
11: else
12: return ⊥
13: end if

Algorithm 8 MASK1(N)
1: return ∆← AES4K1,K2,K3,K4 (N)

Algorithm 9 MASK2(N)
1: N1 ← msbn/2(N), N2 ← lsbn/2(N)
2: return ∆← (N1 ·K1 ‖N2 ·K2)⊕ (N2 ·K3 ‖N1 ·K4)

composition needs at least 2m calls), and these m calls are parallelizable. Thanks to this property, OCB has
quite a small latency. However, there is a gap in the latency for encryption and decryption of OCB. Specifically,
the encryption of plaintext checksum must be done after the main decryption routine. It results in one block
cipher call that cannot be computed in parallel, and adds a significant latency compared to the encryption
(we detail later). We present a solution to this problem. Because our proposal is essentially an improvement
of a TBC-based interpretation of OCB (ΘCB [KR11]10), we first describe it, which we call Flat-ΘCB. Then
we show two block cipher-based instantiations of Flat-ΘCB, denoted by Flat-OCB-f and Flat-OCB-m.

As a related work, Qameleon [ABB+19] is an AE scheme proposed to the ongoing NIST standardization
project for lightweight cryptography [NIS19]. It is based on ΘCB using a low-latency TBC QARMA [Ava17]
and has the same issue as ΘCB in decryption latency.

Specification. We show Flat-ΘCB in Algs. 6, 7 and Fig. 3. It is an AE mode based on n-bit TBC, Ẽ. The
nonce N is also assumed to be n bits. As well as the case of MAC, we assume that the case of partial block is
excluded for simplicity. The structure of Flat-ΘCB is almost the same as that of ΘCB. The crucial difference
is the generation of the tag T . While ΘCB encrypts the checksum M [1] ⊕M [2] ⊕ . . . ⊕M [m] using Ẽ to
produce T , ours first encrypts N and take a sum with the checksum.

To build a block cipher-based AE, we instantiate Ẽ with an n-bit block cipher EK as follows.

ẼN,i,jK (M) = EK(M ⊕∆⊕ 2i · 3jEK(0n))⊕∆⊕ 2i · 3jEK(0n), (4)

where i ∈ {0, 1, 2, . . .}, j ∈ {0, 1}, and the part of mask ∆ is an n-bit value derived from N . We show two
derivations of ∆, MASK1 and MASK2, in Alg. 8 and Alg. 9, respectively. MASK1 explicitly requires n = 128
(or, more specifically the doubling and tripling yield a safe instantiation of XEX [Rog04]). MASK2 can use any
even n. MASK1 computes ∆ by using 4-round AES denoted by AES4 with four independent 128-bit secret
keys, as used by the existing MAC and TBC constructions based on AES [MT06,Min07] (this is to utilize
4-round AES’s differential property without harming provable security reduction to the entire AES: see below).
Thus, it is natural to assume that E in (4) is also AES when MASK1 is used. Here, we assume that 1-round
AES is the sequence of operations (AddRoundKey, Subbyte, ShiftRows, MixColumns), and four independent
10 More precisely it is denoted as ΘCB3 in [KR11].

11

Table 1: Comparison of AE modes. SIT-AE is a GCM-based AE defined by SIT. Enc Latency (Dec
latency) denotes the encryption (decryption) latency in terms of the number of primitive calls. Here, 1 BC
(TBC) denotes a call of a block cipher (TBC), and 1 multi. denotes a multiplication on GF(2n/2). The fourth
column denotes the components that need to be implemented in parallel to achieve the latency figures, to
process m-block input. The last column denotes the total size of secret key and the preprocessed values to
achieve corresponding latency. For simplicity, the encryption and decryption latency of (T)BC are assumed
to be identical, and (T)BC has n-bit block size and n-bit key. For Flat-OCB-f, we assume BC is AES.

Scheme Enc latency Dec latency Circuit size to achieve
the best latency

Total size of key and
preprocessed data

(bits)
ΘCB [KR11] 1 TBC call 2 TBC calls m+ 1 TBCs n

Flat-ΘCB
(This work) 1 TBC call 1 TBC calls m+ 1 TBCs n

OCB [KR11] 2 BC calls 3 BC calls m+ 1 BCs n

SIT-AE [Gue16b] 1 BC call +
1 multi.

max{1 BC call,
1 multi. }

m+ 1 BCs and
2m multipliers 2n+mn

Flat-OCB-f
(This work)

1BC call +
1 AES4 call

1BC call +
1 AES4 call

m+ 1 BCs and
one AES4 2n+ 512

Flat-OCB-m
(This work)

1BC call +
1 multi.

1BC call +
1 multi.

m+ 1 BCs and
4 multipliers 4n

128-bit secret keys are XORed in each AddRoundKey individually. MASK2 computes ∆ by splitting nonce into
two n/2-bit words and multiplying them (over GF(2n/2)) with four independent n/2-bit keys. Let TBC-f and
TBC-m denote the block cipher-based TBC defined in (4) with MASK1 (for the use of four-round AES) and
MASK2 (for the use of multiplication), respectively. We also write Flat-ΘCB instantiated with TBC-f and
TBC-m as Flat-OCB-f and Flat-OCB-m, respectively. By writing Flat-OCBK,K′ or Flat-OCB, we mean both of
Flat-OCB-f and Flat-OCB-m, where K ′ = (K1,K2,K3,K4).

Properties. As shown in Table 1, the latency of Flat-ΘCB to encrypt m-block input is just one TBC
invocation if m+ 1 TBC circuits are implemented in parallel. As a mode of TBC, this latency is essentially
the lowest achievable, hence optimal. Moreover, this holds for both encryption and decryption. In case of
ΘCB, the decryption latency of ΘCB costs two TBC calls because it generates a tag by encrypting checksum
of plaintext blocks. It can be mitigated if we change the decryption procedure so that we check the match of
checksum values instead of tags (by decrypting the tag), however, this is possible only for the case of n-bit
tag, which limits usability.

Comparing with ΘCB in other criteria, Flat-ΘCB has the same key size, the same number of TBC calls
for encryption and decryption, and has the same security bound up to the constant (see next paragraph for
the security). To get a rough idea on latency values, let us assume that a AES4 call and a multiplication on
GF(2n/2) have the same latency as one block cipher call. Then, Flat-OCB has the same encryption latency
as OCB, and achieves a lower decryption latency than OCB as shown in Table 1. Note that EK(0n) used in
TBC-f and TBC-m are pre-processed, thus it increases the memory by n bits (the last column of Table 1),
which will be stored at on-chip area when used in our memory encryption scheme. Although the key size
of Flat-OCB is larger than that of OCB, it has the same number of block cipher calls for encryption and
decryption. Regarding the security, the security bound of Flat-OCB-f decreases to O(256) while that of OCB
is O(264) when n = 128. On the other hand, Flat-OCB-m has the same security bound as that of OCB up to
the constant as well as the case of Flat-ΘCB and ΘCB. In comparison to SIT-AE, Flat-OCB have the same
encryption latency and lower decryption latency, however, SIT-AE needs a circuit of 2m multipliers in addition

12

ẼN,1,0
K

M [1]

C[1]

ẼN,2,0
K

M [2]

C[2]

ẼN,m−1,0
K

M [m− 1]

C[m− 1]

ẼN,m−1,1
K

M [m]

C[m] T

msbτ

ẼN,0,0
K0n

Fig. 3: Flat-ΘCB, where ẼN,i,jK is a TBC with tweak (N, i, j). If we instantiate it by Alg. 8 (Alg. 9), we
obtain Flat-OCB-f (Flat-OCB-m).

to m+ 1 block cipher cores, while Flat-ΘCB requires only 4 multiplication circuits11. Another disadvantage
of SIT-AE is its key size: it is linear to m (which will have a non-negligible impact on the overhead of the
on-chip area) while that of Flat-OCB is constant.

One limitation of Flat-ΘCB and Flat-OCB is that they explicitly need integral input blocks, i.e., the last
block must be of n bits. ΘCB and OCB can process arbitrary length of input. By introducing a padding with
a minor modification on the tweak values, Flat-ΘCB and Flat-OCB can also process arbitrary length of input.
However, the length of ciphertext will expand. Anyway, this limitation is not critical for our application,
where the input to AE is typically full blocks and the length is fixed.

Security. We show the security bounds of Flat-ΘCB, Flat-OCB-f and Flat-OCB-m in Theorem 2 below. As
well as the case of Section 3.1, we assume that the underlying block cipher is an n-bit URP P, and only
present an information-theoretic bound based on P.

In a nutshell, Flat-ΘCB has the same advantages as those of ΘCB (Advpriv
ΘCB̃

P
(A) = 0, Advauth

ΘCB̃
P
(A±) ≤

(2n−τqd)/(2n− 1)), hence there is no security penalty, up to the constant. The same applies to the advantages
of Flat-OCB-m when compared with those of OCB. When n = 128, Flat-OCB-f has roughly 56-bit security
while OCB has 64-bit security. This degradation comes from the use of the differential property of AES4 (see
the proof below for the details).

We stress that the provable security of Flat-OCB-f relies solely on the pseudorandomness of AES, and
AES4 does not introduce any computational assumption. This is because we used a proved AES4’s (expected)
differential property [KS07]; that is, it works as one large S-box with differential probability of 1/2113). The
technique has been introduced by Minematsu and Tsunoo [MT06] for MAC modes, and Minematsu [Min07]
for building an AES-based TBC.

Theorem 2. The advantages of Flat-ΘCB and Flat-OCBs are

Advpriv
Flat-ΘCB̃

P
(A) = 0, Advauth

Flat-ΘCB̃
P
(A±) ≤ 2qd

2τ ,

Advpriv
Flat-OCB-fP

(A) ≤
2σ2

priv

2113 +
2.5σ2

priv

2n , Advauth
Flat-OCB-fP

(A±) ≤ 2qd
2τ + 2σ2

auth

2113 + 2.5σ2
auth

2n ,

Advpriv
Flat-OCB-mP

(A) ≤
4.5σ2

priv

2n , Advauth
Flat-OCB-mP

(A±) ≤ 2qd
2τ + 4.5σ2

auth

2n ,

11 The number of multipliers for hardware implementation is determined depending on the system constraint/architec-
ture in practice. We discuss its details in Section 6.

13

where A (resp. A±) is the adversary performing the privacy (resp. authenticity) game, and σpriv, σauth,
and qd are the parameters for A and A±. The parameter σpriv (resp. σauth) is the number of the access to P
in the privacy (resp. authenticity) game such that σpriv, σauth ≤ 2n−1. The parameter qd is the number of
the queries to the decryption oracle in the authenticity game.

Proof. First, we evaluate the security bounds of Flat-ΘCB, then we derive the security bounds of (two versions
of) Flat-OCB by evaluating the security bounds of TBC-f and TBC-m. Suppose that all plaintexts M and
ciphertexts C in the following proof satisfies |M | (mod n) = 0 and |C| (mod n) = 0.

Proof of Flat-ΘCB. We first evaluate the privacy bound. Since the adversary is nonce-respecting, every
TURP calls in the privacy game takes different tweaks. Thus, we obtain Advpriv

Flat-ΘCB̃
P
(A) = 0.

We then evaluate the authenticity bound. We start with the case qd = 1. Suppose that the ad-
versary performs a decryption query after all encryption queries without loss of generality. Let Z =
{(N1,M1, C1, T1), . . . , (Nqe

,Mqe
, Cqe

, Tqe
)} be the transcript obtained by encryption queries. Let (N ′, C ′, T ′)

be the decryption query. Suppose that T ∗ and M∗ be the valid tag and plaintext corresponding to (N ′, C ′),
respectively. Seeing Z as a random variable, we obtain Advauth

Flat-ΘCB̃
P
(A±) =

∑
z Pr[T ′ = T ∗ | Z = z] Pr[Z = z].

In what follows, we evaluate Pr[T ′ = T ∗ | Z = z] for the following cases.

1. Let ∀i ∈ {1, . . . , qe}, N ′ 6= Ni.
The TURP which encrypts nonce takes a different tweak from all the tweaks invoked in the encryption
queries. Thus, we obtain Pr[T ′ = T ∗ | Z = z] ≤ 1/2τ .

2. Let ∃α ∈ {1, . . . , qe}, N ′ = Nα and |C ′|n 6= |Cα|n.
We define |C ′|n = m′. Since the inverse of TURP which decrypts C ′[m′] takes a different tweak from all
tweaks invoked in the encryption queries, we obtain Pr[T ′ = T ∗ | Z = z] ≤ 1/2τ .

3. Let ∃α ∈ {1, . . . , qe}, N ′ = Nα and |C ′|n = |Cα|n.
We define |C ′|n = |Cα|n = m′ again.
(a) When C ′[i] 6= Cα[i] for ∃!i ∈ {1, . . . ,m′} and C ′[j] = Cα[j] for ∀j ∈ {1, . . . ,m′} \ {i}, it necessarily

holds that M∗[i] 6= Mα[i] and M∗[j] = Mα[j]. Thus, we obtain Pr[T ′ = T ∗ | Z = z] = Pr[T ′ =
Tα ⊕ msbτ (Mα[i]⊕M∗[i]) | Z = z] ≤ 2/2τ .

(b) When C ′[i] 6= Cα[i] and C ′[j] 6= Cα[j] for i, j ∈ {1, . . . ,m′}, it holds that

T ∗ = Tα ⊕ msbτ (Mα[i]⊕M∗[i])⊕ msbτ (Mα[j]⊕M∗[j])⊕ δ,

where δ =
⊕m′

k 6=i,j msbτ (M∗[k]⊕Mα[k]). Thus, we obtain Pr[T ′ = T ∗ | Z = z] ≤ 2/2τ .

From the above cases, we obtain the following advantage for the case qd = 1:

Advauth
Flat-ΘCB̃

P
(A±) ≤

∑
z

max
z

Pr[T ′ = T ∗ | Z = z] Pr[Z = z] ≤ 2
2τ .

Finally, we apply the standard conversion from single to multiple decryption queries [BDJR97] and obtain
the bound qd (2/2τ) for qd ≥ 1. This concludes the proof for Flat-ΘCB.

Proof of Flat-OCB. Due to the definition of Flat-OCB, we obtain the following inequations.

Advpriv
Flat-OCBP

(A) ≤ Advpriv
Flat-ΘCB̃

P
(A) + Advtprp

TBCP
(B),

Advauth
Flat-OCBP

(A±) ≤ Advauth
Flat-ΘCB̃

P
(A±) + Advtsprp

TBCP
(B±),

where TBC is TBC-f when Flat-OCB indicates Flat-OCB-f, and TBC is TBC-m when Flat-OCB indicates
Flat-OCB-m. Also, B (resp. B±) is the adversary against TBC querying the encryption oracle (resp. the
encryption and decryption oracles). Since we have evaluated Advpriv

Flat-OCBP
(A) and Advauth

Flat-OCBP
(A) in the

14

previous paragraph, all that remains is to evaluate the security bounds of TBC. As well as the case of MAC,
we use the methodology proposed in [MM09]. We define the offset function F of TBC as follows.

FK′′((N, i, j),P(0n)) = MASKK′′(N)⊕ 2i · 3jP(0n),

where i ∈ {0, 1, 2, . . .}, j ∈ {0, 1}, and MASKK′′(N) is defined as Alg. 8 (resp. Alg. 9) when TBC = TBC-f (resp.
TBC = TBC-m). Thus, we can redefine TBC using above F as TBCN,i,jP (M) = P(M ⊕FK′′((N, i, j),P(0n)))⊕
FK′′((N, i, j),P(0n)). We again utilize the following lemma derived from Theorem 4.1 in [MM09].

Lemma 2 (A Simplified Version of Theorem 4.1 in [MM09]). Suppose that TBC uses an (ε, γ, ρ)-
uniform offset function F . We obtain following evaluation.

Advtsprp
TBC (B±) ≤ q2

(
2ε+ γ + ρ+ 1

2n+1

)
,

where q is the number of encryption/decryption queries such that q ≤ 2n−1.

Since Advtprp
TBC(B) ≤ Advtsprp

TBC (B±) always holds, we derive the security bounds of TBC-f and TBC-m by
evaluating the tuple (ε, γ, ρ) in Definition 1. We first evaluate the uniformity and XOR universality of MASK1
and MASK2. For MASK1, we obtain maxδ∈{0,1}n Pr[MASK1K′′(N) = δ] ≤ 1/2n sinceK1,K2,K3,K4 ∈ {0, 1}n
are uniformly random and independent from each other. Moreover, maxN 6=N ′,δ∈{0,1}n Pr[MASK1K′′(N) ⊕
MASKK′′(N ′) = δ] ≤ 1/2113 holds because it is proved that the expected differential probability of AES4 whose
first-round key is 0n is at most 1/2113 as shown by Keliher and Sui [KS07] (see also [MT06,Min07]). On the other
hand, maxδ∈{0,1}n Pr[MASK2K′′(N) = δ] ≤ 1/2n and maxN 6=N ′,δ∈{0,1}n Pr[MASK2K′′(N)⊕MASKK′′(N ′) =
δ] ≤ 1/2n hold due to the uniformity and independence of K1,K2,K3,K4 ∈ {0, 1}n/2. Thus, MASKK′′ is
γ′-uniform and ε′-almost XOR universal (AXU), where (γ′, ε′) = (1/2n, 1/2113) when MASK = MASK1, and
(γ′, ε′) = (1/2n, 1/2n) when MASK = MASK2.

Bound of ε. For all δ ∈ {0, 1}n, we bound the probability Pr[X(δ)] := Pr[F ((N, i, j),P(0n))⊕F ((N ′, i′, j′),P(0n)) =
δ]. When N = N ′, (i, j) 6= (i′, j′) must hold. Here, it necessarily holds that 2i · 3j 6= 2i′ · 3j′ due to the
definition of GF(2128) described in Section 2 [Rog04]. Thus, Pr[X(δ)] = Pr[(2i3j ⊕ 2i′3j′)P(0n) = δ] ≤ 1/2n
holds since P(0n) is uniformly random. When N 6= N ′, we immediately obtain Pr[X(δ)] ≤ ε′ since MASK is
ε′-AXU. Thus, ε = ε′ holds.

Bound of γ. Since P(0n) is uniformly random and independent from MASKK′′ , we obtain Pr[F ((N, i, j),P(0n)) =
δ] = Pr[MASKK′′(N)⊕ 2i · 3jP(0n) = δ] ≤ 1/2n.

Bound of ρ. For all δ ∈ {0, 1}n, we bound the probability Pr[Y (δ)] := Pr[F ((N, i, j),P(0n))⊕ P(0n) = δ].
When (i, j) = (0, 0), Pr[Y (δ)] = Pr[MASKK′′(N) = δ] ≤ γ′ holds due to the uniformity of MASK. When
(i, j) 6= (0, 0), Pr[Y (δ)] = Pr[MASKK′′(N)⊕ (2i3j ⊕ 1)P(0n) = δ] holds. From the similar discussion of γ, we
obtain Pr[Y (δ)] ≤ 1/2n. Thus, ρ = γ′ holds.

From above discussions, we obtain

Advtprp
TBC-fP

(B) ≤ Advtsprp
TBC-fP

(B±) ≤ 2σ2
ae

2113 + 2.5σ2
ae

2n ,

Advtprp
TBC-mP

(B) ≤ Advtsprp
TBC-mP

(B±) ≤ 4.5σ2
ae

2n ,

where σae is the number of accesses to P and σae ≤ 2n−1. Combining the above bounds of TBCP and the
bounds of Flat-ΘCB proved in the previous paragraph, we obtain the security bounds of Theorem 2.

15

uroot

ch1(uroot) chb(uroot)

leaf(1) leaf(b) leaf(bd − b + 1) leaf(bd)

Fig. 4: Tree structure for ELM.

4 ELM

In this section, we detail our authentication tree scheme, ELM. As described before, we employ the tree
construction PAT2. The inner MAC and AE schemes are instantiated by PXOR-MAC and Flat-OCB. Let
ELM1 and ELM2 be the instances of ELM employing Flat-OCB-f and Flat-OCB-m as the inner AE schemes,
respectively. We show how to combine PAT2, PXOR-MAC, and Flat-OCB in an optimal manner to reduce
latency and computation for updating tree.

4.1 Notations for Tree

We describe a tree structure for ELM in Fig. 4. The number of branches is denoted by b ≥ 2, and d denotes
the depth, where the depth of root and a leaf node are defined as 0 and d, respectively. We assume a balanced
tree, hence the number of leaf nodes is bd. The entire memory (plaintext) to protect is divided into chunks,
where each chunk has ` bits. We associate a chunk with each leaf node denoted by leaf(i) for 1 ≤ i ≤ bd. Thus,
the whole plaintext M to be protected by a authentication tree scheme consists of M = M [1] ‖ · · · ‖M [bd]
such that |M [i]| = ` for 1 ≤ i ≤ bd and M [i] is associated with leaf(i). The ciphertext chunk corresponding to
M [i] is denoted by C[i], which is stored in leaf(i). For the node u, the memory address, the counter, and the
tag are denoted by ADD(u), CTR(u), Tag(u), respectively. The lengths of the memory address, the counter,
and the tag are α, β, and τ , respectively. All the data stored in the on-chip and off-chip area is denoted by σ,
which includes C[i] for 1 ≤ i ≤ bd, and CTR(u) and Tag(u) for all nodes u. As we adopt PAT2, we exclude
the node addresses from σ and assume that they are given by the system when needed. Suppose the root
node is denoted by uroot, we store CTR(uroot) in the on-chip area. The leftover data of σ is stored off-chip.

We may also use σ to mean the tree construction itself. We also write a node u, leaf node, plaintext chunk,
ciphertext chunk of σ as uσ, leaf(i)σ, Mσ[i], and Cσ[i], respectively. If no confusion is possible, we omit their
superscript σ. For any non-leaf node uσ and i ∈ {1, . . . , b}, chi(uσ) denotes its i-th child node.

4.2 Specification of ELM

ELM consists of three algorithms: InitTree, Verify, and Update defined in Algs. 10, 11, and 12, which is
denoted by ELM = (InitTree,Verify,Update). Suppose that they take the tuple of keys for AE and MAC
KT = ((K1,K

′
1), (K2,K

′
2)) as input. The algorithm InitTree is the initialization of the tree. It takes a

plaintext M and a tuple of keys as input, and outputs a tree σ. Here, σ consists of the local counters being
initialized to zero, the tags for intermediate nodes, and the (ciphertext, tag) pairs for the leaf nodes. We
use the incremental property of MAC (line 11) to efficiently compute the tags for the intermediate nodes
since all message inputs to PXOR-MAC are identical (all zero). The algorithm Verify checks the validity of
a specified leaf node. It is associated with a memory read operation. Verify takes the index of a leaf node

16

Node u

CTR(u)

CTR(ch1(u))

Node ch1(u)

Tag(u)

Tag(ch1(u))

PXOR-MAC

CTR(chb(u)) Tag(chb(u))

‖ADD(u) =?

Node chb(u)

‖

Fig. 5: A part of a verification procedure at an internal node u.

idx (1 ≤ idx ≤ bd) and the tree σ as input. The algorithm returns > if all the verifications of PXOR-MAC
and the decryption of Flat-OCB in Alg. 11 are successful, and otherwise returns ⊥. The algorithm Update
checks the validity of a specified leaf node, and if the verification is successful, updates the leaf node by
re-encrypting the leaf node with a new plaintext. It also updates the tags and the counters of the nodes
on the corresponding path from the leaf to the root. It is associated with a memory write operation. Note
that it is essential for Update to check the validity of the data associated in node path in order to prevent a
replay attack12. Update takes the index of leaf node idx (1 ≤ idx ≤ bd), the update value (new plaintext)
B such that |B| = `, and the tree σ as input. It returns a renewed tree σ̃ if the verification is successful,
otherwise ⊥. For the verification and update of intermediate nodes in Update, we use PXOR-MAC.VU defined
in Alg. 13. It combines PXOR-MAC.V and PXOR-MAC.U and prunes some redundant block cipher calls that
would be imposed if we invoked PXOR-MAC.V and PXOR-MAC.U in a black-box way. In a similar manner
to PXOR-MAC.U in Section 3.1, the input tuple of PXOR-MAC.VU can also be described as the set of block
indices to replace and the contents of new blocks, in addition to (Nold,Mold, Told).

When we use Flat-OCB-m in lines 13–16 of Alg. 12, there are some redundant field multiplications for
deriving ∆ if msbn/2(ADD(uσd) ‖CTR(uσd)) = msbn/2(ADD(uσd) ‖CTR(uσ̃d)) or lsbn/2(ADD(uσd) ‖CTR(uσd)) =
lsbn/2(ADD(uσd) ‖CTR(uσ̃d)) holds. These can be saved by caching in the same manner to the case of
PXOR-MAC.VU .

4.3 Features

ELM is designed to achieve low latency by utilizing the incremental property of MAC and full parallelizability
of the cryptographic components and the tree structure. Especially, incremental property greatly contributes
to reduced latency of Update. Since Update includes the operation of Verify and plain update of nodes, we
can use the incremental MAC of basic security as described in Section 3.1. Moreover, rather than naively
applying an incremental MAC, we optimize Update by defining PXOR-MAC.VU so that we can save some
redundant computations generated by the invocations of both verification and update, which will contribute
to reducing latency. Suppose α = β = n/2 and some even b. One invocation of Verify needs (1 + 2/b)d block
cipher calls for intermediate and root nodes. One invocation of Update needs (3 + 2/b)d block cipher calls
for intermediate and root nodes, while Update with a non-incremental MAC needs at least twice as many
block cipher calls as Verify does. In addition, ELM is also scalable in terms of on-chip size. It is because the
sizes of key and preprocessed data are constant. Suppose that the key of block cipher is n bits, ELM1 and
ELM2 need 5n+ 512 bits and 7n bits for key and preprocessed data, respectively. Thus, the required on-chip
memory is small for any parameter of the tree. However, SIT (here we mean a generalized version, i.e., PAT2
with the MAC and AE schemes used by SIT) needs on-chip area of size linear to b and β.
12 One of the reasons why the adversary cannot mount a replay attack against PAT2 is CTR(·) has the one-time

property (see Section 5.1 for the details). If the verification in Update is bypassed, the adversary can roll back the
value of CTR(·) and mount a replay attack.

17

Up to this point, we have ignored the off-chip memory overhead caused by storing counters and tags.
However, it may be non-negligible if the target memory size gets larger. In such a case, we can combine ELM
and a well-known technique to reduce the memory needed for counters, called Split counter [YEP+06]. The
technique will incur an increased average latency and has been adopted by state-of-the-art schemes [TSB18,
SNR+18]. Fortunately, the incremental property of PXOR-MAC is still quite effective even if we adopt the
split counter. See Section 7.2 for more details.

Algorithm 10 InitTree: Initialization of the tree construction σ
Input KT = ((K1,K

′
1), (K2,K

′
2)), M = M [1] ‖ · · · ‖M [bd] s.t|M [i]| = ` for 1 ≤ i ≤ bd

Output σ

1: σ ← 0

(
bd−1
b−1

)
×(β+τ)+bd×(`+β+τ))

2: for all nodes u do
3: CTR(uσ)← 0β−11
4: end for
5: for 1 ≤ i ≤ bd do
6: (C[i],Tag(leaf(i)σ))← Flat-OCB.EK1,K′1 (ADD(leaf(i)σ) ‖CTR(leaf(i)σ),M [i])
7: end for
8: Nold ← ADD(uσroot) ‖CTR(uσroot), Mold ← CTR(ch1(uσroot)) ‖ · · · ‖CTR(chb(uσroot))
9: Tag(uσroot)← PXOR-MAC.TK2,K′2

(Nold,Mold)
10: for all intermediate nodes u do
11: Tag(uσ)← PXOR-MAC.UK2,K′2

(Nold,Mold,Tag(uσroot),ADD(uσ) ‖CTR(uσ),Mold)
12: end for
13: return σ

Algorithm 11 Verify : Checking the validity of leaf(idx). (1 ≤ idx ≤ bd)
Input KT = ((K1,K

′
1), (K2,K

′
2)), idx, σ

Output > or ⊥
1: (uσ0 , · · · , uσd)← path of nodes from root to specified leaf

(i.e., uσ0 is the root node uσroot, and uσd is equal to leaf(idx).)
2: for 0 ≤ i ≤ d− 1 do
3: if PXOR-MAC.VK2,K′2

(ADD(uσi) ‖CTR(uσi),CTR(ch1(uσi)) ‖ · · · ‖CTR(chb(uσi)),Tag(uσi)) = ⊥ then
4: return ⊥
5: end if
6: end for
7: if Flat-OCB.DK1,K′1 (ADD(uσd) ‖CTR(uσd), C[idx],Tag(uσd)) = ⊥ then
8: return ⊥
9: end if
10: return >

18

Algorithm 13 PXOR-MAC.VUK,K′(Nold, Mold, Told, Nnew, Mnew)
1: L← EK(0n), T ′ ← 0τ , Tnew ← Told, Σ ← 0τ , E← ε

2: Mold[1] ‖ · · · ‖Mold[m] n←−Mold, Mnew[1] ‖ · · · ‖Mnew[m] n←−Mnew
3: for 1 ≤ i ≤ m do
4: Σ′ ← msbτ (EK(Mold[i]⊕K′ · i))
5: T ′ ← T ′ ⊕Σ′
6: if Mold[i] 6= Mnew[i] then
7: E ∪←− {i}, Σ ← Σ ⊕Σ′
8: end if
9: end for
10: T ′ ← T ′ ⊕ msbτ (EK(Nold ⊕K′ ·m⊕ L))
11: if Nold 6= Nnew then
12: E ∪←− {m+ 1}, Σ ← Σ ⊕ msbτ (EK(Nold ⊕K′ ·m⊕ L))
13: end if
14: if T ′ 6= Told then
15: return ⊥
16: end if
17: Tnew ← Tnew ⊕Σ
18: for i ∈ E do
19: Tnew ← Tnew ⊕ msbτ (EK(Mnew[i]⊕K′ · i))
20: end for
21: if m+ 1 ∈ E then
22: Tnew ← Tnew ⊕ msbτ (EK(Nnew ⊕K′ ·m⊕ L))
23: end if
24: return Tnew

Algorithm 12 Update : Update the message of leaf(idx) to B. (1 ≤ idx ≤ bd)
Input KT = ((K1,K

′
1), (K2,K

′
2)), idx, B, σ

Output σ̃ or ⊥
1: σ̃ ← σ, (u0, · · · , ud)← path of nodes from root to specified leaf
2: for 0 ≤ i ≤ d do
3: CTR(uσ̃i)← CTR(uσ̃i) + 1
4: end for
5: for 0 ≤ i ≤ d− 1 do
6: Nold ← ADD(uσi) ‖CTR(uσi), Mold ← CTR(ch1(uσi)) ‖ · · · ‖CTR(chb(uσi))
7: Nnew ← ADD(uσi) ‖CTR(uσ̃i), Mnew ← CTR(ch1(uσ̃i)) ‖ · · · ‖CTR(chb(uσ̃i))
8: Tag(uσ̃i)← PXOR-MAC.VUK2,K′2

(Nold,Mold,Tag(uσi), Nnew,Mnew)
9: if Tag(uσ̃i) = ⊥ then
10: return ⊥
11: end if
12: end for
13: if Flat-OCB.DK1,K′1 (ADD(uσd) ‖CTR(uσd), Cσ[idx],Tag(uσd)) = ⊥ then
14: return ⊥
15: end if
16: (Cσ̃[idx],Tag(uσ̃d))← Flat-OCB.EK1,K′1 (ADD(uσd) ‖CTR(uσ̃d), B)
17: return σ̃

19

5 Security of PAT2

In this section, we show that the security of PAT2 can be reduced to the security of underlying MAC and
AE schemes. This immediately implies the provable security of ELM. First, we define security notions of an
authentication tree in Section 5.1. The privacy notion is defined analogously to that defined for nonce-based
AE (Section 2), and the unforgeability notion is mostly identical to that defined in [HJ06]. Then, we evaluate
the security of PAT2 in Section 5.2.

5.1 Security Notion of Authentication Tree

Suppose that Tree is an authentication tree scheme defined as a tuple of three functions: the initialization
function InitTree, the verification function Verify, and the update function Update, denoted by Tree =
(InitTree,Verify,Update). Recall that InitTree(M) = σ, Verify(idx, σ) = > or ⊥, and Update(idx,B, σ) = σ̃ or
⊥ (See Section 4 for details). Also recall that σ includes data stored in the on-chip memory (i.e., tamper-free
area), which we denote Sec(σ)13.

Security notions. We define two security notions of an authentication tree: privacy and unforgeability. For
the privacy of Tree, we define InitTree-$ and Update-$. They return their ciphertexts and tags to be stored in
the leaf nodes as random strings whose lengths are the same as those of InitTree and Update, respectively.
Regarding other variables, for example, the data associated with the intermediate nodes, they return the same
outputs as InitTree and Update. The privacy security of Tree is defined as the probability that an adversary
A successfully distinguishes (InitTree,Update) from (InitTree-$,Update-$). It is written as

Advptree
Tree (A) := |Pr[AInitTree,Update → 1]− Pr[AInitTree-$,Update-$ → 1]|,

where A plays the following game.

1. A queries M to the tree initialization oracle (InitTree or InitTree-$) and obtains σinit.
2. Amakes q adaptive queries to the update oracle (Update or Update-$). Let {(idx1, B1, σ1, σ̃1), . . . , (idxq, Bq, σq, σ̃q)}

be the transcript obtained by the update queries. Here, we assume that σ1 = σinit and σi = σ̃i−1 for
2 ≤ i ≤ q so that A can always obtain an updated tree, not ⊥.

3. A guesses which the oracle pair she has queried ((InitTree,Update) or (InitTree-$,Update-$)) and accord-
ingly outputs a bit.

For the unforgeability notion for Tree, our definition follows [HJ06]. It is defined as the advantage of
an adversary A′ querying InitTree and Update successfully distinguishes Verify from ⊥Tree(·, ·) which always
returns ⊥ for any inputs. The unforgeability advantage of A′ is defined as

Advuftree
Tree (A′) := |Pr[A′InitTree,Update,Verify → 1]− Pr[A′InitTree,Update,⊥Tree → 1]|,

where A′ plays the following game.

1. A′ queries M to InitTree and obtains σinit.
2. A′ makes q′ adaptive queries to Update. Let {(idx1, B1, σ1, σ̃1), . . . , (idxq′ , Bq′ , σq′ , σ̃q′)} be the transcript

obtained by update queries. As well as the privacy game, we assume that σ1 = σinit and σi = σ̃i−1 for
2 ≤ i ≤ q′ so that A′ can always obtain an updated tree, not ⊥.

3. A′ queries (idx′, σ′) to the verification oracle (Verify or ⊥Tree) and obtains > or ⊥. Let (u0, . . . , ud) be
the path of nodes from the root node to leaf(idx′). To exclude a trivial win, we assume that there exists
i ∈ {0, . . . , d} such that uσ′i stores different data from that stored in uσ̃q′

i . Moreover, Sec(σ′) = Sec(σ̃q′)
also must hold since the data in the on-chip area cannot be tampered.

13 In this paper, we do not assume confidentiality of Sec(σ), thus the adversary can look into it. It is a weaker
assumption than that assuming both confidentiality and tamper freeness.

20

4. A′ guesses which oracle pair she has queried ((InitTree,Update,Verify) or (InitTree, Update,⊥Tree)) and
accordingly outputs a bit.

Algorithm 14 InitTree
Input KT = (KA,KM), M = M [1] ‖ · · · ‖M [bd]
Output σ

1: σ ← 0

(
bd−1
b−1

)
×(β+τ)+bd×(`+β+τ))

2: for all node u do
3: CTR(uσ)← 0β−11
4: end for
5: for 1 ≤ i ≤ bd do
6: (C[i],Tag(leaf(i)σ))← AE.EKA (ADD(leaf(i)σ) ‖CTR(leaf(i)σ),M [i])
7: end for
8: for all non-leaf node u do
9: Tag(uσ)← MAC.TKM (ADD(uσ) ‖CTR(uσ),CTR(ch1(uσ)) ‖ · · · ‖CTR(chb(uσ)))
10: end for
11: return σ

Algorithm 15 Verify
Input KT = (KA,KM), idx, σ
Output > or ⊥
1: (uσ0 , · · · , uσd)← path of nodes from root to specified leaf

(i.e., uσ0 is the root node and uσd is equal to leaf(idx).)
2: for 0 ≤ i ≤ d− 1 do
3: if MAC.VKM (ADD(uσi) ‖CTR(uσi),CTR(ch1(uσi)) ‖ · · · ‖CTR(chb(uσi)),Tag(uσi)) = ⊥ then
4: return ⊥
5: end if
6: end for
7: if AE.DKA (ADD(uσd) ‖CTR(uσd), C[idx],Tag(uσd)) = ⊥ then
8: return ⊥
9: end if
10: return >

Algorithm 16 Update
Input KT = (KA,KM), idx, B, σ
Output σ̃ or ⊥
1: if Verify(idx, σ) = ⊥ then
2: return ⊥
3: end if
4: σ̃ ← σ, (u0, · · · , ud)← path of nodes from root to specified leaf
5: for 0 ≤ i ≤ d do
6: CTR(uσ̃i) = CTR(uσ̃i) + 1
7: end for
8: for 0 ≤ i ≤ d− 1 do
9: Tag(uσ̃i)← MAC.TKM (ADD(uσ̃i) ‖CTR(uσ̃i),CTR(ch1(uσ̃i)) ‖ · · · ‖CTR(chb(uσ̃i)))
10: end for
11: (C[idx],Tag(uσ̃d))← AE.EKA (ADD(uσ̃d) ‖CTR(uσ̃d), B)
12: return σ̃

21

Suppose that we also write as σinit = σ̃0. We stress that A′ can perform verification query such that uσ′i
stores same data as that stored in uσ̃j

i for 0 ≤ i ≤ d and 0 ≤ j ≤ q′ − 1, unless the data stored in uσ̃j

i is the
same as that stored in uσ̃q′

i as described in the third operation of the above game. This condition is essential
for the unforgeability notion to capture an adversary who performs a replay attack, which is the attack to
replace data with old legitimate one.

Rationale of security notions. The privacy notion is defined similarly to that defined for nonce-based
AE. Namely, we evaluate per-node indistinguishability between ciphertexts and tags associated with leaf
nodes and random strings against an adversary performing chosen-plaintext attack (IND-CPA) [BN00].

For the unforgeability notion, we follow that defined in [HJ06], thus just extend it from for the authentication
tree without encryption of leaf nodes to for that with. The notion captures the adversary performs CPA
(by initialization query and update queries) and tampering the data stored in the off-chip area once (by
verification query)14. This means that the unforgeability game can simulate, say, an adversary who tampers
the data stored in a certain node with new values, swaps the data associated with two nodes, and performs
replay attack (as described in the definition of the unforgeability game), in addition to the adversary captured
by the privacy notion. Especially, it is important to capture the adversary performing replay attack since
the security notion of a general MAC does not capture her. By proving the unforgeability advantage is
negligible, we can prove that the authentication tree scheme can detect tampering (including replay) by such
an adversary with sufficiently high probability.

5.2 Security Bounds of PAT2

Let MACKM
and AEKA

be a MAC scheme and an AE scheme, where KM and KA are uniformly random
and independent. We describe three functions of PAT2, (InitTree,Verify,Update), using MACKM

and AEKA
in

Algs. 14, 15, and 16, respectively. We note that, when (MAC,AE) is instantiated as (PXOR-MAC,Flat-OCB),
each function of PAT2 returns the same computation result as a corresponding function of ELM.

Privacy Bound.

Theorem 3. The privacy advantage of PAT2 is bounded as follows.

Advptree
PAT2 (A) ≤ Advpriv

AE (Aae),

where Aae is a privacy adversary against AE, using bd + q queries.

Proof. We assume that A is given the MAC key KM , denoted by A(KM). Since A(KM) can compute
data associated with the root node and intermediate nodes, we can assume that A(KM) obtains only data
associated with leaf nodes from the tree initialization oracle and the update oracle. Let Aae be the privacy
adversary against AE. The adversary Aae can properly simulate the privacy game of A(KM). In what
follows, we describe how Aae simulates two oracles that A(KM) queries. If A(KM) queries InitTree (resp.
InitTree-$), Aae can simulate it by querying AE.E (resp. $ defined in Section 2) in the same manner as Alg. 14.
Note that the tree initialization query of A(KM) invokes nonce-respecting encryption queries of Aae since
ADD(leaf(i)) ‖CTR(leaf(i)) 6= ADD(leaf(j)) ‖CTR(leaf(j)) necessarily holds for 1 ≤ i 6= j ≤ bd. Thus, the
privacy adversary Aae can simulate the initialization oracles for A(KM). Regarding the queries to the update
oracles, A(KM) invokes decryption queries of AE since the update queries invoke the verification function
of the authentication tree (line 1 in Alg. 16). However, the verification function always outputs > since
σ1 = σinit and σi = σ̃i−1 for 2 ≤ i ≤ q as defined in Section 5.1. Thus, Aae can always output > regardless of
inputs to simulate the subroutine verification function in update queries. The adversary Aae can simulate the
14 As well as the game defined in [HJ06], the game defined in this paper does not capture the adversary performing

multiple tampering attacks (i.e., multiple verification queries). To do so, we have to define a system operating
behavior when a verification process fails (e.g., restarting from initialization process or removing the data which is
possibly tampered without invoking initialization process). However, it is depends heavily on actual systems.

22

leftover pure update function (line 4 – 12 in Alg. 16) in the same manner as the simulation of the initialization
oracles: if A(KM) queries Update (resp. Update-$), Aae can simulate it by querying AE.E (resp. $) in the
same manner as Alg. 14. Also, the update query of A(KM) invokes nonce-respecting encryption query of Aae
due to the node-unique property of ADD(·) and the one-time property of CTR(·). Thus, the privacy adversary
Aae can simulate the update oracles for A(KM). Finally, we can confirm easily that the sequence of queries in
the privacy game of A(KM) invokes nonce-respecting encryption queries of Aae, hence the privacy adversary
against AE Aae can properly simulate A(KM) and we obtain following evaluations.

Advptree
Tree (A) = |Pr[AInitTree,Update → 1]− Pr[AInitTree-$,Update-$ → 1]|

≤ |Pr[A(KM)InitTree,Update → 1]− Pr[A(KM)InitTree-$,Update-$ → 1]|
= Advpriv

AE (Aae),

where Aae queries bd + q to encryption oracle because a initialization query of A(KM) invokes bd times
encryption queries of Aae and update queries of A(KM) invoke q times encryption queries of Aae.

Unforgeability Bound.

Theorem 4. The unforgeability advantage of PAT2 is bounded as follows.

Advuftree
Tree (A′) ≤ Advauth

AE (A±ae) + Advmac
MAC(Amac),

where A±ae is the authenticity adversary against AE and Amac is the adversary against MAC. The adversary
A±ae queries bd+q′ times to the encryption oracle and queries one time to the decryption oracle. The adversary
Amac queries (bd − 1)/(b− 1) + q′d times to the tagging oracle and queries d times to the MAC verification
oracle.

Proof. Let A′ma denote an adversary who queries MAC.T , AE.E , MAC.V, and AE.D. In what follows, we
show how A′ma simulates InitTree, Update, and Verify that A′ queries. For InitTree, A′ma can simulate it by
employing MAC.T and AE.E in the same manner as Alg. 14. Note that InitTree invokes nonce-respecting
queries to MAC.T and AE.E since ADD(u)||CTR(u) 6= ADD(u′)||CTR(u′) holds for all distinct nodes u and u′.
In addition, while simulating InitTree, we assume that A′ma has two lists to record her queries and responses
for MAC.T and AE.E , respectively. These lists will be used in the simulation for Verify, hence we will describe
the role of them later. Thus, the simulation for InitTree by A′ma is obtained by adding the following operations
to Alg. 14.

After line 1: ListAE ← ε, ListMAC ← ε

After line 6: ListAE
∪←− {(ADD(leaf(i)σ) ‖CTR(leaf(i)σ), C[i],Tag(leaf(i)σ))}

After line 9: ListMAC
∪←− {(ADD(uσ) ‖CTR(uσ),CTR(ch1(uσ)) ‖ · · · ‖CTR(chb(uσ)),Tag(uσ))}

For the above simulation of InitTree, A′ma queries (bd − 1)/(b− 1) times to MAC.T and queries bd times to
AE.E .

Next, we show how A′ma simulates Update. As well as the proof of privacy for PAT2, A′ma can simulate
Verify which is a subroutine of Update without querying any oracles since what A′ma has to do is only to
return >. Regarding other operations of Update except for the subroutine Verify, A′ma can simulate them by
employing MAC.T and AE.E in the same manner as Alg. 16. Also, Update invokes nonce-respecting queries
to MAC.T and AE.E due to the uniqueness of ADD(·) and the one-time property of CTR(·). As well as the
simulation for InitTree, A′ma records her queries and response of MAC.T and AE.E . Thus, the simulation for
Update by A′ma is obtained by adding the following operations to Alg. 16.

After line 9: ListMAC
∪←− {(ADD(uσ̃i) ‖CTR(uσ̃i)CTR(ch1(uσ̃i)) ‖ · · · ‖CTR(chb(uσ̃i)),Tag(uσ̃i))}

After line 11: ListAE
∪←− {(ADD(uσ̃d) ‖CTR(uσ̃d), C[idx],Tag(uσ̃d))}

23

To simulate q′ invocations of Update, A′ma queries q′d times to MAC.T and queries q′ times to AE.E . Note
that the sequence of queries to Update invokes nonce-respecting queries to MAC.T and AE.E .

We then show how A′ma simulates a query to Verify. In this simulation, ListMAC and ListAE are used
to prevent A′ma from performing replay queries to MAC.V and AE.D, respectively. A replay query means
that A′ma queries (N,M, T) (resp. (N,C, T)) to MAC.V (resp. AE.D) while (N,M) (resp. (N,M) such that
(C, T) = AE.E(N,M)) has been queried to MAC.T (resp. AE.E). Such queries may appear in the simulation
of unforgeability game since A′ can perform replay attack. Our final goal of this proof is to show how to
simulate the unforgeability game that A′ plays using the adversary against MAC AMAC and the authenticity
adversary against AE AAE, and then, AMAC and AAE are prohibited replay queries as defined in Section 2.
Therefore, we here have to show A′ma can simulate Verify without replay queries. From the above discussion,
we define the behavior of A′ma when A′ queries (idx′, σ′) to Verify as follows.

1. Get the path of nodes from the root to the specified leaf, denoted by (uσ′0 , · · · , uσ
′

d). Here, uσ′0 is the root
node and uσ′d is equal to leaf(idx′).

2. For 0 ≤ i ≤ d− 1, do:
3. Set (N,M, T) as (ADD(uσ′i) ‖CTR(uσ′i),CTR(ch1(uσ′i)) ‖ · · · ‖CTR(chb(uσ

′

i)),Tag(uσ′i))).
4. If (N,M, T) /∈ ListMAC,
5. then query to MAC.V with (N,M, T) and obtain > or ⊥.
6. If MAC.V returns ⊥, return ⊥.
7. Set (N,C, T) as (ADD(uσ′d) ‖CTR(uσ′d), C[idx],Tag(uσ′d)).
8. If (N,C, T) /∈ ListAE,
9. then query to AE.D with (N,C, T) and obtain M or ⊥.
10. If AE.D returns ⊥, return ⊥.
11. Return >.

Above definition indicates when A′ invokes replay queries to MAC.V and AE.D, A′ma can notice it by checking
ListMAC and ListAE, and can simulate the response of MAC.V and AE.D by just returning >. Therefore,
A′ma can simulate Verify that A′ queries by employing MAC.V and AE.D without performing replay queries to
them. For the simulation of Verify, A′ma queries at most d times to MAC.T and queries at most one time to
AE.E .

Finally, as well as the case of privacy game, the sequence of queries in unforgeability game of A′ invokes
nonce-respecting queries to MAC.T and AE.E due to the node-unique property of ADD(·) and the one-time
property of CTR(·). From the above discussions, we observe that A′ma querying MAC.T , AE.E , MAC.V and
AE.D can simulate the functions that A′ queries without performing nonce-repeating queries to MAC.T and
AE.E , and replay queries to MAC.V and AE.D. We write A′A

′
ma

MAC.T ,AE.E,MAC.V,AE.D
to describe that A′ queries

to A′ma pretending to be functions InitTree,Update,Verify, and obtain the following equation.

Pr[A′InitTree,Update,Verify → 1] = Pr[A′A
′
ma

MAC.T ,AE.E,MAC.V,AE.D

→ 1]. (5)

We define new adversary A′′ma querying MAC.T , AE.E , and ⊥Tree so that A′′ma can simulate functions InitTree,
Update, and ⊥Tree. Since A′′ma can simulate InitTree and Update by employing MAC.T and AE.E in the same
manner as the case that A′ queries to (InitTree, Update, Verify), and A′′ma only needs to mediate A′’s query to
⊥Tree, we obtain the following equation.

Pr[A′InitTree,Update,⊥Tree → 1] = Pr[A′A
′′
ma

MAC.T ,AE.E,⊥Tree
→ 1]. (6)

24

From (5) and (6), we observe

Advuftree
Tree (A′) = |Pr[A′A

′
ma

MAC.T ,AE.E,MAC.V,AE.D

→ 1]− Pr[A′A
′′
ma

MAC.T ,AE.E,⊥Tree
→ 1]|

≤ |Pr[A′A
′
ma

MAC.T ,AE.E,MAC.V,AE.D

→ 1]− Pr[A′A
′
ma

MAC.T ,AE.E,MAC.V,⊥AE
→ 1]|︸ ︷︷ ︸

Lemma 3

+ |Pr[A′A
′
ma

MAC.T ,AE.E,MAC.V,⊥AE
→ 1]− Pr[A′A

′
ma

MAC.T ,AE.E,⊥MAC,⊥AE
→ 1]|︸ ︷︷ ︸

Lemma 4

+ |Pr[A′A
′
ma

MAC.T ,AE.E,⊥MAC,⊥AE
→ 1]− Pr[A′A

′′
ma

MAC.T ,AE.E,⊥Tree
→ 1]|︸ ︷︷ ︸

Lemma 5

, (7)

where ⊥AE(·, ·, ·) is the function for decryption queries to AE, which always returns ⊥ for any inputs, and
⊥MAC(·, ·, ·) is the function for verification queries to MAC, which always returns ⊥ for any inputs. In the rest
of this section, we bound the above three distinguishing probabilities of A′ in (7) in Lemmas 3, 4, and 5.

Lemma 3.

|Pr[A′A
′
ma

MAC.T ,AE.E,MAC.V,AE.D

→ 1]− Pr[A′A
′
ma

MAC.T ,AE.E,MAC.V,⊥AE
→ 1]| ≤ Advauth

AE (A±ae),

where A±ae is an authenticity adversary against AE using bd + q′ encryption queries and 1 decryption query.

Proof. Suppose that A′ma eventually outputs a bit in her simulation of unforgeability game and A′ outputs
the same bit as A′ma. Then we obtain the following inequation.

|Pr[A′A
′
ma

MAC.T ,AE.E,MAC.V,AE.D

→ 1]− Pr[A′A
′
ma

MAC.T ,AE.E,MAC.V,⊥AE
→ 1]|

≤ |Pr[A′ma
MAC.T ,AE.E,MAC.V,AE.D → 1]− Pr[A′ma

MAC.T ,AE.E,MAC.V,⊥AE → 1]|.

The rest of the proof is almost the same as that of the privacy bound. We consider A′ma(KM) who owns the
MAC key KM , and obtain the following inequation.

|Pr[A′MAC.T ,AE.E,MAC.V,AE.D
ma → 1]− Pr[A′MAC.T ,AE.E,MAC.V,⊥AE

ma → 1]|
≤ |Pr[A′ma(KM)AE.E,AE.D → 1]− Pr[A′ma(KM)AE.E,⊥AE → 1]|. (8)

The right side of (8) can be seen as the probability that A′ma(KM) querying AE.E successfully distinguishes
AE.D from ⊥AE under the unforgeability game for authentication trees. Without loss of generality, we can
assume that this (distinguishing) probability is equal to the probability that A′ma(KM) querying AE.E and
AE.D obtains something other than ⊥ from AE.D under the unforgeability game for authentication trees.
Here, let A±ae be the authenticity adversary against AE. The adversary A±ae can simulate the oracles that
A′ma(KM) queries because the query sequence of A′ma(KM) respects the rule of authenticity game for AE
schemes (performing nonce-respecting queries to AE.E and not performing replay queries to AE.D). Thus, we
obtain

|Pr[A′ma(KM)AE.E,AE.D → 1]− Pr[A′ma(KM)AE.E,⊥AE → 1]|
= |Pr[A′ma(KM)AE.E,AE.D forges]|
= Advauth

AE (A±ae),

where A±ae queries bd + q′ times to AE.E and queries one time to AE.D.

Lemma 4.

|Pr[A′A
′
ma

MAC.T ,AE.E,MAC.V,⊥AE
→ 1]− Pr[A′A

′
ma

MAC.T ,AE.E,⊥MAC,⊥AE
→ 1]| ≤ Advmac

MAC(Amac),

where Amac is an adversary against MAC using (bd− 1)/(b− 1) + q′d tagging queries and d verification queries.

25

Proof. The proof is almost the same as that of Lemma 3. Firstly, we replace the distinguishing game of A′ to
that of A′ma.

|Pr[A′A
′
ma

MAC.T ,AE.E,MAC.V,⊥AE
→ 1]− Pr[A′A

′
ma

MAC.T ,AE.E,⊥MAC,⊥AE
→ 1]|

≤ |Pr[A′MAC.T ,AE.E,MAC.V,⊥AE
ma → 1]− Pr[A′MAC.T ,AE.E,⊥MAC,⊥AE

ma → 1]|.

We considerA′ma(KA) who owns AE’s keyKA. The probability thatA′ma successfully distinguishes (MAC.T ,AE.E ,MAC.V,⊥AE)
from (MAC.T ,AE.E ,⊥MAC,⊥AE) can be interpreted as the probability that A′ma(KA) querying MAC.T and
MAC.V obtains > from MAC.V. Let Amac be the adversary against MAC. She can simulate the oracles that
A′ma(KA) queries, because the query sequence of A′ma(KA) respects the rule of security game for MAC schemes
(performing nonce-respecting queries to MAC.T and not performing replay queries to MAC.V). Thus, we
obtain the following inequations.

|Pr[A′MAC.T ,AE.E,MAC.V,⊥AE
ma → 1]− Pr[A′MAC.T ,AE.E,⊥MAC,⊥AE

ma → 1]|
≤ |Pr[A′ma(KA)MAC.T ,MAC.V forges]|
= Advmac

MAC(Amac),

where Amac queries (bd − 1)/(b− 1) + q′d times to MAC.T and queries d times to MAC.V.

Lemma 5.

|Pr[A′A
′
ma

MAC.T ,AE.E,⊥MAC,⊥AE
→ 1]− Pr[A′A

′′
ma

MAC.T ,AE.E,⊥Tree
→ 1]| = 0.

Proof. Both A′ma and A′′ma have the same ways to simulate InitTree and Update. The adversary A′ma simulates
verification query of A′ using ⊥MAC, ⊥AE, ListMAC, and ListAE, while A′′ma only mediates it to ⊥Tree that
returns ⊥ for any inputs. Namely, the distinguishing probability we evaluate here can be seen as the probability
that A′ querying InitTree and Update obtains > from the tree verification oracle simulated by (⊥MAC,⊥AE)
with ListMAC and ListAE. This probability is equal to the probability that the data associated with nodes in
the path verified in the verification query of A′ consists only of the data in ListMAC and ListAE (see line 4
and 8 of the simulation of Verify in the proof of Theorem 4). In the following claim, we prove the probability
is equal to zero.

Claim. Recall that (idx′, σ′) is the tree verification query and (u0, · · · , ud) is the path of nodes from the root
to the specified leaf, then either (a) or (b) described below must hold.

(a) There exists i ∈ {0, . . . , d−1} such that (ADD(uσ′i) ‖CTR(uσ′i), CTR(ch1(uσ′i)) ‖ · · · ‖CTR(chb(uσ
′

i)),Tag(uσ′i)) /∈
ListMAC.

(b) (ADD(uσ′d) ‖CTR(uσ′d), Cσ′ [idx], Tag(uσ′d)) /∈ ListAE.

This claim states that A′ma querying MAC.T , AE.E , ⊥MAC and ⊥AE has to query to ⊥MAC or ⊥AE in her
simulation of the tree verification query15. Thus, she always obtains ⊥ from ⊥MAC or ⊥AE and she returns it
to A′.

All that remains is the proof of the claim. If (b) occurs, the claim is simply proved. We need to see
that if (b) does not occur, (a) must hold. First we discuss u0 (i.e., the root node). Let (Nu0 ,Mu0 , Tu0) =
(ADD(uσ′0) ‖CTR(uσ′0), CTR(ch1(uσ′0)) ‖ · · · ‖CTR(chb(uσ

′

0)),Tag(uσ′0)). If (Nu0 ,Mu0 , Tu0) /∈ ListMAC holds,
it means that (a) holds. Suppose that (Nu0 ,Mu0 , Tu0) ∈ ListMAC, and we obtain the following equation.

(Nu0 ,Mu0 , Tu0) = (ADD(uσ̃q′

0) ‖CTR(uσ̃q′

0),CTR(ch1(uσ̃q′

0)) ‖ · · · ‖CTR(chb(u
σ̃q′

0)),Tag(uσ̃q′

0)), (9)

15 The literature [HJ06] shows almost the same claim and its proof for proposed authentication tree without encryption
of leaf nodes, however the proof is a little bit complex. We recast it for the sake of ease to understand and the
authentication tree with encryption of leaf nodes.

26

which means that the data stored in uσ′0 is the same as that stored in uσ̃q′

0 . This holds because Nu0 cannot
be tampered by definition, and the element of ListMAC including Nu0 is uniquely determined as (9) since
nonces included in ListMAC are distinct. Note that we also obtain CTR(uσ′1) = CTR(uσ̃q′

1) from (9).
Next, we discuss u1. Let (Nu1 ,Mu1 , Tu1) = (ADD(uσ′1) ‖CTR(uσ′1), CTR(ch1(uσ′1)) ‖ · · · ‖CTR(chb(uσ

′

1)),Tag(uσ′1)).
As well as the case of u0, we can suppose that (Nu1 ,Mu1 , Tu1) ∈ ListMAC since (a) occurs when (Nu1 ,Mu1 , Tu1) /∈
ListMAC holds. In the same manner as the case of u0, we obtain

(Nu1 ,Mu1 , Tu1) = (ADD(uσ̃q′

1) ‖CTR(uσ̃q′

1),CTR(ch1(uσ̃q′

1)) ‖ · · · ‖CTR(chb(u
σ̃q′

1)),Tag(uσ̃q′

1)),

since ADD(uσ′1) cannot be tampered and CTR(uσ′1) = CTR(uσ̃q′

1) holds from (9).
Suppose that we repeat the same discussion as u0 and u1. For 2 ≤ i ≤ d− 1, we define (Nui

,Mui
, Tui

) =
(ADD(uσ′i) ‖CTR(uσ′i), CTR(ch1(uσ′i)) ‖ · · · ‖CTR(chb(uσ

′

i)),Tag(uσ′i)). When (Nui
,Mui

, Tui
) ∈ ListMAC for

0 ≤ i ≤ d− 1, we obtain the following equation.

(Nui
,Mui

, Tui
) = (ADD(uσ̃q′

i) ‖CTR(uσ̃q′

i),CTR(ch1(uσ̃q′

i)) ‖ · · · ‖CTR(chb(u
σ̃q′

i)),Tag(uσ̃q′

i)). (10)

Finally, we discuss ud (i.e., the leaf node). Let (Nud
, Cud

, Tud
) = (ADD(uσ′d) ‖CTR(uσ′d), Cσ′ [idx],

Tag(uσ′d)). Recall that we assumed that (b) did not occur, thus (Nud
, Cud

, Tud
) ∈ ListAE. Here, ADD(uσ′d) =

ADD(uσ̃
′
q

d) holds since ADD(·) cannot be tampered, and CTR(uσ′d) = CTR(uσ̃
′
q

d) holds due to (10) when
i = d− 1. Thus, we have

(Nud
, Cud

, Tud
) = (ADD(uσ̃q′

d) ‖CTR(uσ̃q′

d), C σ̃q′ [idx],Tag(uσ̃q′

d)), (11)

since nonces included in ListAE are distinct, hence the element of ListAE including Nud
is uniquely determined

as (11).
From (10) and (11), we proved that the data stored in uσ

′

i is the same as that stored in u
σ̃q′

i for
all i ∈ {0, . . . , d}, which is a forbidden query. Therefore, there must exist i ∈ {0, . . . , d − 1} such that
(Nui

,Mui
, Tui

) /∈ ListMAC. This concludes the claim.

From (7), Lemmas 3, 4, and 5, we obtain

Advuftree
Tree (A′) ≤ Advauth

AE (A±ae) + Advmac
MAC(Amac),

where A±ae is the authenticity adversary against AE and Amac is the adversary against MAC. The adversary
A±ae queries bd+q′ times to the encryption oracle and queries one time to the decryption oracle. The adversary
Amac queries (bd − 1)/(b− 1) + q′d times to the tagging oracle and queries d times to the verification oracle.

6 Implementation and Evaluation

In this section, we demonstrate the hardware implementation of the proposed scheme and evaluate it using
logic synthesis. We instantiate our scheme using AES as the block cipher, which indicates that n = 128. We
assume that the lengths of the memory address and the counter are both 64 bits (i.e., α = β = n/2). The tag
is given by 64 bits (i.e., τ = 64), which corresponds to the security level of SIT (i.e., the bit length of keys in
the inner-product MAC in [Gue16a]) for a fair comparison. In this paper, we focus on a high-throughput
and area-time efficient architecture based on an unrolled and pipelined AES datapath, similar to that of SIT
in [Gue16a], whose throughput is one block encryption per clock cycle. This high-throughput architecture suits
the context of memory encryption. Note that our architecture can utilize other block ciphers and architectures
(e.g., round-based and byte-serial ones) in accordance with the optimization goals. (The variations are
discussed in the next section.)

27

Gray

encoder

GF(2
128

)

multiplier
Unrolled

pipeline AES

K

���

idx

L

���

msb
�

K’

�

Ciphertext accumulator for verification

Ciphertext accumulator for update

Mask generator

���
���

����������	 �
��������u
�

i u
�

i

����2j+1��������		�
���� 2j+2�������u
�

 i u
�

 i

Fig. 6: Proposed MAC hardware architecture.

6.1 MAC Hardware Architecture

Figure 6 shows the proposed hardware architecture of PXOR-MAC. The primary inputs consist of a block
index, the number of branches len (=b), nonce (ADD(uσi) ‖CTR(uσi)), two n-bit keys, and an n-bit segmented
plaintext block (CTR(ch2j+1(uσi)) ‖CTR(ch2j+2(uσi))) (0 ≤ j ≤ b/2 − 2), and the primary output is given
as tag. One plaintext block is fed to the hardware every clock cycle one after another and an encoding is
completed with 11 clock cycles. In this architecture, the AES datapath is fully unrolled and pipelined. The
pipeline registers are inserted at the boundaries of each round in order to increase the throughput. This
enables the encryption of one plaintext block in one clock cycle with the frequency corresponding to the
critical path of one round datapath.

An up-to-date AES round datapath with a tower-field S-box presented in [UMM+20] is adopted for ELM
(and SIT [Gue16a] for a comparison in this paper) in the following hardware implementation. A mask value
for the input block to the AES core (K ′ · i in Alg. 13) is generated by the multiplication of a gray code
(converted from a block index) and a key K ′ over GF(2n). The conversion from a block index to a gray code
is given by a combinational circuit and the generation of a mask value is implemented using a (n× log b)-bit
GF multiplier. This multiplier generates mask values from all indices in a tree with b branches in one clock
cycle. The mask value for the nonce (Nold ⊕K ′ ·m⊕ L in Alg. 13) is computed as the sum of the last mask
value and L without any GF multiplication. The accumulation in the tag generator is implemented by a
feedback loop consisting of a bit-parallel-XOR (i.e., GF(2n/2) adder) and registers, which realizes the for
loop at lines 3–9 in Alg. 13.

During PXOR-MAC.V for Verify and PXOR-MAC.VU for Update, the tag is computed using the upper
ciphertext accumulator after the encryption result is truncated into τ bits at msbτ . The accumulator is given
by a feedback loop with a bit-parallel-XOR (i.e., GF (2n/2) adder). When updating the tag, the intermediate
value Σ as mentioned in Alg. 13 computed in the pre-verification process is stored into a register in the lower
ciphertext accumulator for the following update procedure to exploit the incremental property of PXOR-MAC.
The lower feedback loop after msbτ is used for the accumulation to compute Σ. The updated tag is then
calculated by XORing Σ and the old tag Told computed in pre-verification.

6.2 AE Hardware Architecture

Figure 7 shows the hardware architectures of the proposed AEs, where (a) and (b) show the architectures
using AES4 and GF(2n/2) multiplication (i.e., Flat-OCB-f and Flat-OCB-m), respectively. The proposed
architectures utilize one encryption core and one decryption core. Both cores are unrolled and pipelined
similarly to the above MAC hardware to ensure high throughput. The encryption and decryption cores are
separately implemented (without unifying them like [UMM+20,UMHA16]) in order to perform a decryption in

28

(a)

(b)

×2

×3

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

×2

×3

K

AES encryption

AES decryption

Ciphertext

L

K1

K3

K4

K2

R6R7R8R9R10 R1R2R3R4R5

×2

×3

×2

×3

Post-mask generator (for dec.)

Post-mask generator (for enc.)

Pre-mask generator (for enc.)

Pre-mask generator (for dec.)

Plaintext

msb�

msb�

Plaintext accumulator

Ciphertext accumulator

Ciphertext

Plaintext

� generator
���������������	������u

�

d u
�

 d

���

Plaintext

×2

×3

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

×2

×3

msb�

msb�

K

AES decryption

Ciphertext

L

R6R7R8R9R10 R1R2R3R4R5

×2

×3

×2

×3

Post-mask generator (for dec.)

Post-mask generator (for enc.)

Pre-mask generator (for dec.)

Plaintext accumulator

Ciphertext accumulator

� generator

K1

K3

K4

K2

GF(264)

multiplier
AES encryption

Pre-mask generator (for enc.)

Plaintext

Ciphertext

���������u
�

d

��	������u
�

 d

���

Fig. 7: Proposed AE hardware architecture for (a) Flat-OCB-f and (b) Flat-OCB-m.

29

the pre-verification process and an encryption in the update process simultaneously for Update. The pre-mask
and post-mask generators compute the mask values for the input and output of encryption/decryption,
respectively. The proposed architecture utilizes two pre-mask generators and two post-mask generators for
simultaneous encryption and decryption. The field doubling and tripling for mask value generation are
achieved by combinational circuit blocks denoted by ×2 and ×3, which consist of four and 132 two-way XOR
gates, respectively. Two pre-mask generators and two post-mask generators can be implemented with less area
than another utilization consisting of one pre-mask generator, one post-mask generator, and two 128-bit-wise
first-in first-out (FIFO) buffers16. Plaintext accumulators obtain truncated plaintext blocks for generating
the tag, which consists of a feedback loop with a bit-parallel-XOR (i.e., GF(2n/2) adder). Finally, ẼN,0,0K (0n)
is added before outputting the tag.

The mask value ∆ is generated from a nonce by the ∆ generator module. In Flat-OCB-f shown in Fig. 7(a)
(i.e., the proposed AE with MASK1 in Alg. 8), ∆ is generated by the four round datapaths of the above-
mentioned unrolled-pipelined AES using four distinct 128-bit keys K1, K2, K3 and K4 as round keys. In
Flat-OCB-m at Fig. 7(b) (i.e., the proposed AE with MASK2 in Alg. 9), ∆ (= (N1 ·K1 ‖ N2 ·K2)⊕ (N2 ·K3 ‖
N1 ·K4)) is computed using a ((n/2)× (n/2))-bit GF multiplier with four clock cycles, where four distinct
(n/2)-bit secret keys K1, K2, K3, and K4 are used. The generated ∆ is added to the mask values at the
pre/post-mask generators.

For Verify, the proposed architecture first computes ∆. The generated ∆ is added to doubled or tripled
L at the pre-mask generator (for dec.), and then the resulting mask value ∆ ⊕ 2L or ∆ ⊕ 3L is added to
the input ciphertext block before decryption. After performing the decryption, the mask value from the
post-mask generator (for dec.) is added to the decryption result to obtain the corresponding plaintext. At the
same time as the first block is being decrypted, ẼN,0,0K (0n) is computed using the encryption core and then
added to the above plaintext. The resulting value is truncated into τ bits and is stored in the register in the
plaintext accumulator for the verification. Then, the second and subsequent blocks are processed in parallel
in the pipelined datapath, and the processed blocks are accumulated in the plaintext accumulator. After
processing all blocks, the architecture outputs the verification tag.

For Update, the proposed architecture performs a pre-verification and an update processes simultaneously
thanks to the separately-implemented decryption and encryption cores. Let ∆old and ∆new be the parts of
the mask values generated from a nonce for the pre-verification and update processes, respectively. Initially,
∆old is first generated and then ∆new is generated using the ∆ generator module. In the case of AES4
in Fig. 7(a), the generations of ∆old and ∆new are executed in parallel owing to the pipelined datapath.
In contrast, in the case of the GF(2n/2) multiplier in Fig. 7(b), the multiplication results of N1 ·K1 and
N1 ·K4 are reused because the value of ADD(uσ) (i.e., half of the nonce) is fixed in the pre-verification and
update processes, which means that N1 ·K1 and N1 ·K4 are identical for the pre-verification and update
processes. Therefore, the number of clocks can be reduced to two from four for computation of ∆new. Then,
the architecture generates the tag verification in the same manner as Verify. In addition, after computing
ẼNold,0,0
K (0n), we simultaneously compute ẼNnew,0,0

K (0n), encrypt the plaintext blocks, and accumulate the
results at the plaintext accumulator module (for the update process). After processing all plaintext blocks,
the architecture outputs the updated tag.

6.3 Performance Evaluation

This subsection reports our performance evaluation of the proposed architectures and SIT, a major state-of-
the-art counterpart, on the basis of logic synthesis results. We assume that one MAC module (hardware) is
used at the top and each middle layer in a tree structure and one AE module is used at the lowest layer. In
other words, an authentication tree with a depth of d utilizes d MAC modules and one AE module, which
fully exploits the parallelism provided by the tree structure as the claim of PAT. Under this assumption, we

16 The mask value generated by the pre-mask generator should be retained for ten clock cycles for post-mask addition.
This indicates that we require a (128× 10)-bit register to implement one FIFO if we use AES as the block cipher,
which consumes a larger area and power than the four mask generators in our architecture.

30

Table 2: Circuit areas synthesized with 4GHz timing constraint [GE]
depth d SIT ELM1 ELM2

3 421,083.25 502,701.12 519,910.50
5 601,544.50 700,342.25 717,801.00
7 914,155.25 898,443.25 915,612.50

investigate the best-case performance given a constraint in area and power (i.e., the number of available
MAC modules), and clarify the area-latency trade-offs from the performance evaluation results.

For the evaluation, we use Synopsys Design Compiler I-2013.12-SP5 and Nangate 15nm Open Cell Library.
The performance of authentication trees with d = 3, 5, and 7 are evaluated as the major parameter values as
in [Gue16a]. Table 2 lists the area obtained from the logic synthesis. ELM1 and ELM2 represent the proposed
schemes where Flat-OCB-f and Flat-OCB-m are used as the AE, respectively. We set the timing-constraint
for the synthesis to the operating frequency of 4GHz, assuming that the authentication tree is deployed for
memory encryption in modern high-end CPUs operating at 3GHz or faster. We confirmed that no timing
violation was found in the synthesis result, and therefore the proposed architecture can be used even for
modern high-end CPUs without degrading the system clock frequency.

For comparison, Table 2 also lists the synthesis results of SIT implemented under the same conditions and
assumption as above. The SIT was implemented according to [Gue16a]. We utilized the unrolled-pipelined
AES encryption core with the same round datapath as our scheme. A 64× 64-bit GF multiplier to compute
the inner-product MAC was also implemented in the same manner as ours. Therefore, the critical path was
given by the one round datapath of AES, like ours. The SIT also utilized d+ 1 modules when the depth was
d, as the AE and MAC of SIT are given by the same module (i.e., an AES encryption core and a GF(264)
multiplier).

From Table 2, we can see that the area of the proposed architecture can be comparable with that of the
SIT as the depth was larger. The hardware architectures for Flat-OCB require both encryption and decryption
cores, which resulted in a larger area than the inverse-free AE used in the SIT. However, the proposed MAC
hardware is implemented using only one AES encryption core as the major component, whereas the SIT
requires a GF(264) multiplier in addition to one AES encryption core. Consequently, we can confirm that the
proposed authentication trees have an advantage over the SIT in terms of latency and memory regions for the
cases with large depths.

Table 3 shows the numbers of clock cycles (i.e., latency) and the size of protected memory region (namely,
the covered region) of ELM and SIT for various tree parameters. The corresponding comparison graphs for
major parameters are shown in Fig. 8. Incremental SIT (Incr. SIT for short) indicates the evaluation result
of SIT when Update is performed in an incremental manner. Note that such an incremental update has not
previously been mentioned in the literature [Gue16a]. We also evaluate the corresponding incremental SIT for
a fair comparison. Each clock cycle shown here is given by a larger one of either AE or MAC. For example,
if our authentication tree has eight branches b = 8 and handles 512-bit blocks ` = 512 [bit] at the leaf (or
lowest) node, ELM1 requires 18 and 24 clock cycles for MAC and AE, respectively; hence the clock cycle of
this authentication tree is given as 24 clock cycles in the table. The bold-face characters in each row highlight
the scheme that achieved the lowest latency (minimal clock cycles) under the parameter condition of the
row. The parameters used in Fig. 8 are underlined in the chunk size column in Table 3. The table shows the
results of all tree structures comprehensively, where some rows hatched in gray indicate better clock cycles
than those in white in terms of the latency required for the covered regions. For example, a tree with b = 8
and ` = 4,096 requires a larger latency and a smaller covered region than that with b = 16 and ` = 512, and
therefore there is no reason to use the former tree rather than the latter. Such meaningless parameters are
caused by the gap in latency between AE and MAC, as discussed in Section 6.1.3.

Table 3 and Fig. 8 show that the advantage of the proposed scheme (ELM1 and ELM2) is greater as the
covered region becomes larger. One major reason is that the proposed scheme utilizes a 128-bit block cipher
(i.e., AES), whereas the SIT processes a plaintext in a 64-bit-wise manner (i.e., inner-product MAC over

31

Table 3: Numbers of clocks to update and verify tag.
Update Verify Covered region [Byte]

b ` SIT Incr. SIT ELM1 ELM2 SIT ELM d = 3 d = 5 d = 7/ Incr. SIT

8

512 20 20 24 21 14 18 32K 2M 134M
1,024 32 32 28 25 18 22 65K 4M 268M
2,048 64 64 36 33 32 30 131K 8M 536M
4,096 128 128 52 49 64 46 262K 16M 1G
8,192 256 256 84 81 128 78 524K 33M 2G

16

512 32 20 24 22 16 20 262K 67M 17G
1,024 32 32 28 25 18 22 524K 134M 34G
2,048 64 64 36 33 32 30 1M 268M 68G
4,096 128 128 52 49 64 46 2M 536M 137G
8,192 256 256 84 81 128 78 4M 1G 274G

32

512 64 33 30 30 32 28 2M 2G 2T
1,024 64 33 30 30 32 28 4M 4G 4T
2,048 64 64 36 33 32 30 8M 8G 8T
4,096 128 128 52 49 64 46 16M 17G 17T
8,192 256 256 84 81 128 78 33M 34G 35T

64

512 128 65 46 46 64 44 16M 68G 281T
1,024 128 65 46 46 64 44 33M 137G 562T
2,048 128 65 46 46 64 44 67M 274G 1P
4,096 128 128 52 49 64 46 134M 549G 2P
8,192 256 256 84 81 128 78 268M 1T 4P

128

512 256 129 78 78 128 76 134M 2T 36P
1,024 256 129 78 78 128 76 268M 4T 72P
2,048 256 129 78 78 128 76 536M 8T 144P
4,096 256 129 78 78 128 76 1G 17T 288P
8,192 256 256 84 81 128 78 2G 35T 576P

GF(264)). More precisely, since the MAC module at each layer (and AE module) should process more bits
for a larger parameter, the 128-bit-wise computation of PXOR-MAC in the proposed scheme enables fewer
calls of the underlying pseudo-random function than the 64-bit-wise computation of the SIT, which results
in a lower latency of the proposed scheme. In addition, the number of clock cycles in the update process
of AE is reduced by using a distinct decryption core to perform the pre-verification and update processes
simultaneously. Note that the SIT uses an Encrypt-then-MAC for AE, which is given by the counter-mode
encryption followed by inner-product MAC. Since SIT does not utilize any decryption function and the MAC
computation becomes critical for the latency, the latency of SIT cannot be reduced in the same manner as
our scheme. In contrast, for small parameters, such as b = 8 (or b = 16) and ` = 512 (which is the original
parameter for SIT in [Gue16a]), the SIT has a lower latency for pre-verification and update processes thanks
to the lightness of GF(264) multiplication. These results suggest that ELM is superior to the SIT for most of
the parameters, especially when covering a larger region. As the memory region to be protected becomes
larger, the advantage of ELM increases significantly.

The on-chip and off-chip memory sizes for each architecture are listed in Table 4. We assume that both
counter and tag lengths are 56 bits for comparison with SIT. With respect to the on-chip storage, ELM1
requires four 128-bit round keys for ∆ gen., a 128-bit L, a 128-bit plaintext/ciphertext processing key K,
and a 56-bit CTR(uσroot). Similarly, ELM2 requires four 64-bit round keys for ∆ gen., a 128-bit L, a 128-bit
plaintext/ciphertext processing key K, and a 56-bit CTR(uσroot). Here, the amount of on-chip storage in ELM1
and ELM2 is constant regardless of parameters b and ` for the tree. In contrast, the SIT needs to store the

32

(16, 512) (32, 1024) (64, 2048) (128, 4096)
(Num. of branches, Chunk size)

0

50

100

150

200

250
N

um
be

r o
f c

lo
ck

s
SIT
Incr. SIT
ELM1
ELM2

(a) Update

(16, 512) (32, 1024) (64, 2048) (128, 4096)
(Num. of branches, Chunk size)

0

25

50

75

100

125

N
um

be
r o

f c
lo

ck
s

SIT / Incr. SIT
ELM1 / ELM2

(b) Verify

Fig. 8: Typical numbers of clock cycles to update and verify tag.

Table 4: Required memory sizes
SIT ELM1 ELM2

on-chip 320 + max{`, 64b} 1,208 952
off-chip 113 ×

∑d

i=0 b
i − 56 112 ×

∑d

i=0 b
i − 56 112 ×

∑d

i=0 b
i − 56

2× 128-bit keys and inner-product MAC for nonce processing and mask generation, depending on the size
of the tree parameters. As a result, the on-chip memory size gets larger when the tree parameters b and `
are larger because the key length of inner-product MAC increases in proportion to the length of the input
block(i.e., b). For example, the on-chip memory size is 768 bits when b = 8 and ` = 512, whereas it is 8,448
bits when b = 128 and ` = 8,192.

In addition, the off-chip memory size is determined by the size of the counters excluding the root and
tags. In the SIT, the counters at d = 1 are originally stored in the on-chip memory, but here we store it in
the off-chip memory for comparison. Our tree requires CTR and Tag for the middle/lowest layers, and Tag
for the root layer, all of which are given in 56 bit. Because SIT stores one unused bit in each layer, the size of
its memory unit is one bit larger than that of ours. For example, when d = 3 and b = 8, the off-chip memory
sizes of SIT and ours are 66,049 and 65,464 bits, respectively.

7 Discussion

7.1 Design Optimizations

Considering System Constraints. In this paper, we evaluated the performance of our authentication
trees without considering system constraints in order to demonstrate the scalability of the proposed scheme.
In practice, we need to design and optimize the total hardware configuration depending on various system/ar-
chitecture constraints including system clock frequency, memory size to be protected, available resource in the
on-chip size, memory bandwidth, cache memory structure, and so on. The sizes of the MAC and AE modules
should also be determined considering the above constraints, though here we used d MAC modules and one
AE module for the authentication tree implementation according to the parallelizability of the authentication
tree. (Note again that PAT was proposed as the first scheme that offers such a parallelizability.)

33

For example, as for the operation frequency, the result discussed in Section 6.3 suggests that our
architectures should not limit the operating frequency since the system clock frequency of modern high-end
CPUs is currently at most 3.8GHz unless overclocking occurs (e.g., Intel Core i7-10700K and AMD Ryzen
3900X)17. When the maximum frequency of the MAC and AE modules is far higher than the system clock,
and if it is allowed under the system constraints, the number of clock cycles for encryption and decryption can
be reduced without changing the system clock frequency by removing and rearranging the pipeline registers
in the unrolled AES datapath appropriately. In contrast, when the system clock frequency is higher than the
maximum frequency of MAC and AE modules, we should modify the datapath to enhance the frequency for
the deployment.

Mitigating Gap in Latency between AE and MAC. A gap in latency between AE and MAC leads to
a loss of efficiency for the authentication tree because the entire latency is determined by a larger latency of
either AE or MAC. (This gap is the reason most rows in Table 3 are denoted in gray. Only well-balanced
parameters are meaningful.) While we systematically evaluated the typical tree structures in Section 6.3,
where the parameters are given by the power of two, these parameters should be determined such that the
latencies of AE and MAC are well-balanced.

However, it would be difficult to align the latencies of AE and MAC exactly. In such a case, it is effective
to reduce the number of pipeline stages of AES in either AE or MAC with larger latency. In addition, selecting
the appropriate S-box implementation would be useful, as the above evaluation utilized a tower-field S-box
for achieving high area-time efficiency [UMM+20]. Since the AES encryption/decryption core was unrolled
and pipelined, the usage of a table-based S-box for two consecutive rounds makes it possible to remove the
pipeline register between them (i.e., reduce the number of clock cycles) without significantly degrading the
operation frequency. In other words, two rounds can be computed in one clock cycle if we use a table-based
S-box for the rounds. We confirmed through the logic synthesis with NanGate 15nm Open Cell Library that
such an implementation could operate at 4GHz.

Here, our architecture for Flat-OCB-f (i.e., proposed AE with AES4) uses an AES encryption core for the
generation of ∆ from nonce and the encryption of plaintext blocks. It is particularly effective to reduce the
latency of the four-round datapath used for AES4 using table-based S-box—because, in Flat-OCB-f, the four
round datapath is used for both nonce processing and plaintext encryption.

In summary, when designing the authentication tree and its hardware, we should first determine the
optimal (i.e., well-balanced) tree structure parameters for the required covered region. Then, we can mitigate
the remaining gap in latency between AE and MAC on the basis of the above hardware optimization approach.

7.2 Application of Split Counter

The split counter is a method to reduce the amount of counters stored in an off-chip for memory authentication
trees [YEP+06]. It uses two types of counters: major and minor ones. A major counter is shared by the
children nodes of the node of interest (or a parent node), and each child node is equipped with a minor
counter. In other words, in an authentication tree with split counter, children nodes having the same parent
node share the upper bits of the same major counter.

ELM can also be applied to the split counter. In the following, we evaluate the off-chip memory size for
the case where the split counter is used. We assume here that both tag and counter lengths without the split
counter are 64 bits and the major and minor counters are given as 56 and 8 bits, respectively. The off-chip
memory size of the entire tree is 128×

∑d
i=0 b

i − 64 and 72×
∑d
i=0 b

i − 64 + 56×
∑d−1
i=0 b

i + 56 without and
with the split counter, respectively. The value of 72 is the sum of the tag and minor counter lengths, and the
third and fourth terms of the expressions indicate the size of the major counter. As an example, when d = 3
and b = 8, the memory size is 74,816 bits without the split counter and 46,200 bits with the split counter,
which shows a large reduction in the amount of memory.

We should point out that overflows of the minor counters frequently occur, since each minor counter is
given with a small bit length. When such an overflow occurs, the corresponding major counter is incremented
17 It was mentioned that the SIT hardware implemented in [Gue16a] worked with 3.2GHz frequency.

34

Table 5: Number of clocks when minor counter in middle nodes overflows.
b SIT Incr. SIT ELM

8 32 26 29
16 96 57 61
32 320 167 141
64 1,152 579 397
128 4,352 2,177 1,293

and all the minor counters associated with it are reset to zero. In ELM, b counters are used as the input for
the plaintext part of tag generation by the MAC algorithm, that is, b× n/2 bits should be verified by MAC.
The usage of the split counter reduces the amount of counters stored in off-chips and the average latency of
MACs because the input to the MAC algorithm is reduced18.

More precisely, let ctr be the counter of the parent node and let ctr′1, ctr′2, . . . ctr′b be the counters of
children nodes without the split counter, where b is the number of branches in the tree structure. In ELM, a
tag T is generated as

T = PXOR-MAC.TK,K′
(

(ADD ‖ ctr), (ctr′1 ‖ ctr′2 ‖ · · · ‖ ctr′b)
)
,

where PXOR-MAC.TK,K′(N,M) calculates a tag from a nonce N and a plaintext M . Each counter is given
by n/2 bits and b× n/2 bits should be encrypted.

In contrast, we consider the tag generation when utilizing the split counter. Let Mctr and mctr be the
major and minor counters of a parent node, respectively. Let Mctr′ and mctr′1, mctr′2, . . . mctr′b be the major
counter and minor counters of children nodes, respectively. In this case, unless the overflow of minor counters
occurs, a tag is generated as

T = PXOR-MAC.TK,K′
(

(ADD ‖ Mctr ‖ mctr), (Mctr′ ‖ mctr′1 ‖ · · · ‖ mctr′b)
)
.

Here, let s and t be the bit lengths of major and minor counters, respectively (s+ t = n/2). When the split
counter is used, the input is given with s + bt bits. Since s + bt ≤ b(s + t)/2, the input bit length of the
MAC algorithm is reduced thanks to the split counter. In addition to the tag generation algorithm (i.e.,
PXOR-MAC.T), Verify (i.e., PXOR-MAC.V) and Update (i.e., PXOR-MAC.VU) algorithms are performed with
the split counter as well. The tags of leaf (or lowest) nodes can also be generated, verified, and updated in a
similar manner even when the split counter is applied.

On the other hand, as described above, when the major counter is incremented due to the overflow of a
minor counter, all minor counters associated with the major counter are reset to 0. Accordingly, we need to
update all the tags where the nonces are reset. While the tag update of a tree without the split counter should
update only d tags at each layer, the tag update with the split counter requires b times tag updates at the
layer where a major counter is incremented (i.e., the overflow of minor counter occurs), which is non-trivial
in the whole tree update process (i.e., Update).

Tables 5 and 6 show the numbers of clock cycles when an overflow occurs in MAC and AE, respectively.
We evaluate the cases of five different numbers of branches. Since the reset counter is always the same value,
the encryption result of reset counter in MAC can be pre-computed for both SIT and our trees. Hence, only
the major counter (i.e., Mctr’) and nonce (i.e., (add ‖ Mctr ‖ mctr)) should be computed if MAC offers the
incremental property. Thus, ELM maintains superiority to SIT under the condition where an overflow occurs.
18 Since only one major counter and b minor counters need to be verified, the number of clock cycles required per

MAC is smaller than that without the split counter. However, when a major counter is incremented, it is necessary
to recalculate all tags of the children nodes due to the reset of minor counters. In this case, the latency is greater
than that without the split counter because this node requires b tag updates.

35

Table 6: Number of clocks when minor counter in leaf nodes overflows.
b ` SIT ELM1 ELM2

8

512 136 59 49
1,024 260 91 81
2,048 512 155 147
4,096 1,024 283 273
8,192 2,048 539 529

16

512 136 59 49
1,024 516 163 145
2,048 1,024 291 275
4,096 2,048 547 529
8,192 4,096 1,059 1,041

32

512 520 179 145
1,024 1,028 307 273
2,048 2,048 563 531
4,096 4,096 1,075 1,041
8,192 8,192 2,099 2,065

64

512 1,032 339 273
1,024 2,052 595 529
2,048 4,096 1,107 1,043
4,096 8,192 2,131 2,065
8,192 16,384 4,179 4,113

128

512 2,056 659 529
1,024 4,100 1,171 1,041
2,048 8,192 2,195 2,067
4,096 16,384 4,234 4,113
8,192 32,768 8,339 8,209

We also found that the proposed AE is advantageous even with the split counter thanks to the simultaneous
execution of pre-verification and update. In particular, when the number of branches increases, the proposed
scheme becomes more advantageous in comparison with that without the split counter. The split counter is
basically applied to trees covering a large memory size, where the amount of counters can be critical, and
therefore we can confirm again the advantage of the proposed scheme.

8 Conclusion

We have presented ELM, a new memory encryption scheme with tree-based authentication. Unlike many
recent proposals from computer architecture perspective, we focus on the internal MAC and AE modes,
including their interactions, to reduce the entire latency of tree operations. ELM combines fully parallelizable
MAC and AE modes and utilizes the incremental property of the MAC mode. Our AE mode is similar to
OCB, however has a better decryption latency and it can be of independent interest as a stand-alone AE
mode. We provide provable security results for these components as well as the whole authentication tree.
Since Intel SGX’s scheme (SIT) is a representative work on the same direction, we instantiated ELM using the
same AES and compared ELM with SIT, and presented preliminary hardware implementations. The results
showed that ELM achieves significantly lower latency, while keeping the comparable implementation size of
SIT. Several future directions can be considered, as follows:

Other Instantiations. The use of AES is not a ultimate choice for latency. As we described, a low-latency
block cipher or a tweakable block cipher (e.g., PRINCE [BCG+12], QARMA [Ava17], and Midori [BBI+15])

36

will significantly improve our hardware results for both latency and size. It is even possible to consider using
multiple primitives of possibly different block sizes for optimized performance. It is also interesting to study
instantiations based on cryptographic permutations, e.g., [NIS15,DEMS16,BKL+17].

Side-Channel Attacks. Cryptographic hardware frequently needs to be resistant against side-channel
attacks for the application to memory encryption. It would be conducted in the future to design and evaluate
side-channel-resistant hardware architecture for ELM. Here, the proposed architectures can employ any
other block ciphers (satisfying the security criterion) and any type of architecture, instead of unrolled and
pipelined AES encryption and decryption cores used in this paper. This indicates that we can easily realize
a side-channel-resistant ELM hardware by replacing the AES cores with side-channel-resistant one because
typical attackers attempt to retrieve the secret key of the underlying block cipher to break the confidentiality
and authenticity.

For example, the masked round-based AES implementation in [SBHM20] achieves a far lower latency than
any other conventional implementations based on a functional decomposition and byte-serial architecture,
which would suit to the context of memory encryption. However, such masked implementations require a
considerably large area overhead and on-the-fly random number generation (except for [Sug19,WM18]),
which makes it impractical to unroll and pipeline the masked AES datapaths for high throughput. The
usage of a (first-order) masking-friendly lightweight (tweakable) block cipher such as PRESENT [BKL+07],
GIFT [BPP+17], and Skinny [BJK+16] would be a practical alternative to realize the side-channel resistance
with a less area overhead and no on-the-fly randomness.

Furthermore, it would be interesting to design leakage-resilient TBC/permutation-based AE (e.g., [DEM+17,
BGP+19]) and MAC that enable low-latency operation and are suitable to be used with ELM.

References

ABB+19. Roberto Avanzi, Subhadeep Banik, Andrey Bogdanov, Orr Dunkelman, Senyang Huang, and Francesco
Regazzoni. Qameleon v1.0. A Submission to the NIST Lightweight Cryptography Standardization Process,
2019.

Ava17. Roberto Avanzi. The QARMA block cipher family. IACR Trans. Symm. Cryptol., 2017(1):4–44, 2017.
BBI+15. Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari, Toru Ak-

ishita, and Francesco Regazzoni. Midori: A block cipher for low energy. In Tetsu Iwata and Jung Hee
Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 411–436. Springer, Heidelberg,
November / December 2015.

BCG+12. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knežević, Lars R. Knudsen,
Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen,
and Tolga Yalçin. PRINCE - A low-latency block cipher for pervasive computing applications - extended
abstract. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
208–225. Springer, Heidelberg, December 2012.

BDJR97. Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security treatment of symmetric
encryption. In 38th FOCS, pages 394–403. IEEE Computer Society Press, October 1997.

BGG94. Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The case of hashing and
signing. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 216–233. Springer, Heidelberg,
August 1994.

BGP+19. Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. TEDT: a
leakage-resistant AEAD mode. IACR TCHES, 2020(1):256–320, 2019. https://tches.iacr.org/index.
php/TCHES/article/view/8400.

BGR95. Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New methods for message authentication
using finite pseudorandom functions. In Don Coppersmith, editor, CRYPTO’95, volume 963 of LNCS,
pages 15–28. Springer, Heidelberg, August 1995.

BJK+16. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki,
Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block ciphers and its low-latency variant
MANTIS. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of
LNCS, pages 123–153. Springer, Heidelberg, August 2016.

37

https://tches.iacr.org/index.php/TCHES/article/view/8400
https://tches.iacr.org/index.php/TCHES/article/view/8400

BKL+07. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B.
Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In Pascal
Paillier and Ingrid Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 450–466. Springer,
Heidelberg, September 2007.

BKL+17. Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino, Florian Mendel, Kashif
Nawaz, Tobias Schneider, Peter Schwabe, François-Xavier Standaert, Yosuke Todo, and Benoît Viguier.
Gimli : A cross-platform permutation. In Wieland Fischer and Naofumi Homma, editors, CHES 2017,
volume 10529 of LNCS, pages 299–320. Springer, Heidelberg, September 2017.

BM97. Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced
cost. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 163–192. Springer, Heidelberg,
May 1997.

BN00. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume
1976 of LNCS, pages 531–545. Springer, Heidelberg, December 2000.

BPP+17. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo.
GIFT: A small present - towards reaching the limit of lightweight encryption. In Wieland Fischer and
Naofumi Homma, editors, CHES 2017, volume 10529 of LNCS, pages 321–345. Springer, Heidelberg,
September 2017.

BR02. John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable message authentication.
In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 384–397. Springer, Heidelberg,
April / May 2002.

DEM+17. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and Thomas Unterluggauer.
ISAP – towards side-channel secure authenticated encryption. IACR Trans. Symm. Cryptol., 2017(1):80–
105, 2017.

DEMS16. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2. Submission to
Round 3 of the CAESAR competition, 2016.

Dwo07. Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM)
and GMAC. NIST Special Publication 800-38D, November 2007. Available at http://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf.

Dwo10. Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for
Confidentiality on Storage Devices. Standard, National Institute of Standards and Technology., 2010.

ECL+07. Reouven Elbaz, David Champagne, Ruby B. Lee, Lionel Torres, Gilles Sassatelli, and Pierre Guillemin.
TEC-tree: A low-cost, parallelizable tree for efficient defense against memory replay attacks. In Pascal
Paillier and Ingrid Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 289–302. Springer,
Heidelberg, September 2007.

Gue16a. Shay Gueron. A memory encryption engine suitable for general purpose processors. Cryptology ePrint
Archive, Report 2016/204, 2016. http://eprint.iacr.org/2016/204.

Gue16b. Shay Gueron. Memory Encryption for General-Purpose Processors. IEEE Secur. Priv., 14(6):54–62, 2016.
HJ02. William Eric Hall and Charanjit S. Jutla. Parallelizable Authentication Trees. IACR Cryptol. ePrint

Arch., 2002:190, 2002.
HJ06. W. Eric Hall and Charanjit S. Jutla. Parallelizable authentication trees. In Bart Preneel and Stafford

Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 95–109. Springer, Heidelberg, August 2006.
HSH+08. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A. Calandrino,

Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest we remember: Cold boot attacks on
encryption keys. In Paul C. van Oorschot, editor, USENIX Security 2008, pages 45–60. USENIX Association,
July / August 2008.

IK03. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC. In Thomas Johansson, editor, FSE 2003,
volume 2887 of LNCS, pages 129–153. Springer, Heidelberg, February 2003.

KR11. Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption modes. In
Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages 306–327. Springer, Heidelberg, February
2011.

Kra01. Hugo Krawczyk. The order of encryption and authentication for protecting communications (or: How
secure is SSL?). In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 310–331. Springer,
Heidelberg, August 2001.

KS07. Liam Keliher and Jiayuan Sui. Exact maximum expected differential and linear probability for two-round
Advanced Encryption Standard. IET Information Security, 1(2):53–57, 2007.

38

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://eprint.iacr.org/2016/204

LRW02. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 31–46. Springer, Heidelberg, August 2002.

Mer88. Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl Pomerance,
editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer, Heidelberg, August 1988.

Min07. Kazuhiko Minematsu. Improved security analysis of XEX and LRW modes. In Eli Biham and Amr M.
Youssef, editors, SAC 2006, volume 4356 of LNCS, pages 96–113. Springer, Heidelberg, August 2007.

MM09. Kazuhiko Minematsu and Toshiyasu Matsushima. Generalization and extension of xex* mode. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., 92-A(2):517–524, 2009.

MT06. Kazuhiko Minematsu and Yukiyasu Tsunoo. Provably secure MACs from differentially-uniform permuta-
tions and AES-based implementations. In Matthew J. B. Robshaw, editor, FSE 2006, volume 4047 of
LNCS, pages 226–241. Springer, Heidelberg, March 2006.

NIS15. NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. FIPS PUB 2-2,
Federal Information Processing Standards Publication, 2015.

NIS19. NIST. Lightweight Cryptography Project. https://csrc.nist.gov/Projects/
Lightweight-Cryptography, 2019.

NRS14. Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering generic composition.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
257–274. Springer, Heidelberg, May 2014.

RBBK01. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher mode of operation
for efficient authenticated encryption. In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS
2001, pages 196–205. ACM Press, November 2001.

RCPS07. Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Using Address Independent Seed
Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Performance-Friendly. In MICRO,
pages 183–196. IEEE Computer Society, 2007.

Rog02. Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri, editor, ACM
CCS 2002, pages 98–107. ACM Press, November 2002.

Rog04. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and
PMAC. In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 16–31. Springer,
Heidelberg, December 2004.

SBHM20. Pascal Sasdrich, Begül Bilgin, Michael Hutter, and Mark E. Marson. Low-latency hardware masking with
application to AES. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):300–326, 2020.

SNR+18. Gururaj Saileshwar, Prashant J. Nair, Prakash Ramrakhyani, Wendy Elsasser, José A. Joao, and Moin-
uddin K. Qureshi. Morphable Counters: Enabling Compact Integrity Trees For Low-Overhead Secure
Memories. In MICRO, pages 416–427. IEEE Computer Society, 2018.

Sug19. Takeshi Sugawara. 3-share threshold implementation of AES s-box without fresh randomness. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):123–145, 2019.

TSB18. Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. VAULT: Reducing Paging Overheads in SGX
with Efficient Integrity Verification Structures. In ASPLOS, pages 665–678. ACM, 2018.

UMHA16. Rei Ueno, Sumio Morioka, Naofumi Homma, and Takafumi Aoki. A high throughput/gate AES hardware
architecture by compressing encryption and decryption datapaths - toward efficient cbc-mode imple-
mentation. In CHES, volume 9813 of Lecture Notes in Computer Science, pages 538–558. Springer,
2016.

UMM+20. Rei Ueno, Sumio Morioka, Noriyuki Miura, Kohei Matsuda, Makoto Nagata, Shivam Bhasin, Yves Mathieu,
Tarik Graba, Jean-Luc Danger, and Naofumi Homma. High throughput/gate AES hardware architectures
based on datapath compression. IEEE Trans. Computers, 69(4):534–548, 2020.

UWM19. Thomas Unterluggauer, Mario Werner, and Stefan Mangard. MEAS: memory encryption and authentication
secure against side-channel attacks. Journal of Cryptographic Engineering, 9(2):137–158, June 2019.

WM18. Felix Wegener and Amir Moradi. A first-order SCA resistant AES without fresh randomness. In COSADE,
volume 10815 of Lecture Notes in Computer Science, pages 245–262. Springer, 2018.

YEP+06. Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan Solihin. Improving Cost,
Performance, and Security of Memory Encryption and Authentication. In ISCA, pages 179–190. IEEE
Computer Society, 2006.

39

https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography

	 ELM : A Low-Latency and Scalable Memory Encryption Scheme
	Introduction
	Preliminaries
	Notation
	(Tweakable) Block Cipher
	Message Authentication Code
	Authenticated Encryption
	Authentication Tree for Memory Protection

	Components of ELM
	Incremental MAC
	Low-Latency Authenticated Encryption

	ELM
	Notations for Tree
	Specification of ELM
	Features

	Security of PAT2
	Security Notion of Authentication Tree
	Security Bounds of PAT2

	Implementation and Evaluation
	MAC Hardware Architecture
	AE Hardware Architecture
	Performance Evaluation

	Discussion
	Design Optimizations
	Application of Split Counter

	Conclusion

