
Fast Computing of Quadratic Forms of HFE
Polynomials over fields of characteristic two

Borja Gómez
kub0x@elhacker.net

November 3, 2020

Abstract

In this paper the author introduces methods that represent elements of a Finite
Field Fq as matrices that linearize certain operations like the product of elements in
Fq. Since the Central Polynomial Map F(X) coming from the HFE scheme involves
multiplication of elements in a Finite Field Fq, using a novel method based in Linear
Algebra the Quadratic Forms resulting from the polynomial map of the Public Key
can be computed in few steps and these are bounded by the matrix R that represents
the linear action of the polynomial remainder modulo f(t), which is the irreducible
polynomial that identifies Fq. When the irreducible polynomial f(t) is of the form
ta + tb + 1 modulo 2, the matrix R is computed deterministically in few steps and
all the Quadratic Forms are derived from this matrix. The research done tells
that the central Polynomial Map F(X) is computed extremely fast, for example, in
the CAS Mathematica, taking an HFE Polynomial, Quadratic Forms are computed
in ≈ 1.4 seconds for the case n = 128. This raises the more general lemma that
Quadratic Forms obtained from BigField schemes are entirely dependent on the
selected irreducible polynomial f(t) as the matrix R is conditioned by the structure
of this polynomial.

1 Matrix Representation of elements in algebraic struc-

tures

An important result of Representation Theory in Mathematics is that some finite algebraic
structures and their internal operations can be linearized in the sense that elements from
these structures can be represented as a Matrix. For example, Arthur Cayley showed that
every finite group G has an embedding into the Symmetric Group of n symbols, where n
is the order of G. This condition is stated as the map φ : G 7→ Sym(G) where Sym(G)
can be viewed as a Permutation Group of n × n orthogonal matrices as the action of
G into itself [1] is an automorphism. In the case of Group Rings K[G], every element
a ∈ K[G] has a matrix representation that entirely depends on the group structure [2].

Here. the product of elements a · b = Ma ·
−→
b is achieved by transforming a to its matrix

representation and b to its vector representation
−→
b , then computing the product a · b by

using Linear Algebra, this is, only using matrix multiplication.

1.1 Matrix representation of elements of a Finite Field

Following the line, it is natural to ask if the product of elements a, b in a Finite Field

can be represented as a matrix equation Ma ·
−→
b = −→c . The answer is affirmative, given

a, b ∈ Fq with q = pn and the irreducible polynomial f(t) modulo p of degree n. The
product c(t) ≡ a(t) · b(t) (mod f(t)) is computed by multiplying each monomial bit

i to
a(t) then reducing modulo f(t):

1

mailto:kub0x@elhacker.net

c(t) =
n−1∑
i=0

cit
i ≡

n−1∑
i=0

ait
i ·

n−1∑
i=0

bit
i (mod f(t))

c(t) =
n−1∑
i=0

cit
i ≡

n−1∑
i=0

a(t) · biti (mod f(t))

Define ϕ(a(t)) as the map that sends the polynomial a(t) to its coefficient vector
representation:

ϕ : Fqn 7→ F n
q ϕ(a(t)) 7→ (a0, . . . , an−1) = −→a

Here, notice that the product a(t)ti (mod f(t)) gives distinct coefficient vectors over
Fp when mapped to F n

p by ϕ. Put these vectors ordered in the matrix Ma so the ma-
trix product Ma · b = c is a linear combination of the columns of Ma, this is, −→c =∑n−1

i=0 biϕ(a(t)ti ≡f(t)) which gives us the desired product where the element−→c = (c0, . . . , cn−1)
is the coefficient vector of the polynomial c(t)

{ϕ(a(t)) ≡f(t), · · · , ϕ(a(t) · tn−1) ≡f(t)} ·

 b0
...

bn−1

 =

 c0
...

cn−1

It results that the equation corresponding to each column can be simplified since each

column holds a linear combination of the coefficients of a(t), so write each column of the
matrix Ma in the form Ai ·ϕ(a(t)) = Ai

−→a . A small remark is that the first column, that
corresponds to ϕ(a(t) ∗ t0) can be written as I · −→a = −→a , this is A1 = In.

{I · −→a , · · · , An · −→a } ·

 b0
...

bn−1

 =

 c0
...

cn−1

Then, given a, b ∈ Fq obtain the coefficient vector of c(t) as the result of the equation

Ma·
−→
b where c = (

∑n
i=1 biAi)·−→a At this point, we’ve reached the closed form of the matrix

representation Ma along with a deterministic way of computing the product c = ab ∈ Fq.
The equation of the product as further seen in subsubsection 3.1.2, is used to compute
the Quadratic Forms of products of two polynomials.

1.2 Properties of the Matrix Representation

The matrices coming from the matrix representation of elements in Fq commute, and they
form a subgroup of GL(n, q) of order pn − 1 under matrix multiplication. Some useful
properties are:

• The product of two matrices representing elements a, b ∈ Fq such that Ma ·Mb =
Mb ·Ma = Mc gives the matrix Mc where the first column is the coefficient vector
of the element c ∈ Fq.

• Every matrix Ma has an inverse Ma−1 which enables the computation of a−1 ∈ Fq.

• The matrix representation of a Linearised Polynomial acting on the element a ∈ Fq

is computable by using linear algebra, such that L(a(t)) gives ML(a(t))

2 Deterministic Computation of the R Matrix

Continuing with the research, computing the matrices Ai must be done in a reasonable
amount of time and avoiding symbolic expressions at any cost. Then we need an optimal
strategy to build an efficient solution to the problem of finding the matrix R that repre-
sents the action of reducing a polynomial from Fp[X] to Fq. It results that there exists
a deterministic way of computing such matrix R. Not all irreducible polynomials f(t)

2

raise a similar structure in the R matrix, here irreducible monic polynomials containing
3 terms are studied, this is, polynomials f(t) = ta + tb + 1.

To avoid naive approaches, we know that the highest degree polynomial resulting from
a(t)ti is a(t)tn−1. Then, conclude that the highest polynomial that reduces modulo f(t)
is a(t)tn−1 and it has degree 2(n− 1).

2.1 Structure of the matrix R

As the matrix R reduces a tuple of dimension 2n−1 into a n tuple, when Deg(a(t)) ≤ n−1
then R ·ϕ(a(t)) = R ·−→a = −→a is invariant. This means that R contains the n×n Identity
Matrix as the first half submatrix. We call the other submatrix R1, which is entirely
dependent on the selected irreducible polynomial f(t). Hence, R is represented as:

R = [In R1]

2.1.1 Irreducible Polynomials of the kind ta + tb + 1

As said before, the matrix R entirely depends on the selected irreducible polynomial mod-
ulo p. Here, an algorithm that computes the matrix R is presented, where the submatrix
R1 is computed in O((n−1)2) time. The algorithms needs an irreducible polynomial f(t)
modulo 2 of the type ta + tb + 1 to correctly work.

R1 is computed iteratively: the first column c1 from R1 corresponds to the coefficient
vector of the irreducible polynomial f(t) =

∑n
i=0 αit

i of degree n but without taking the
monic term αnt

n so c1 = (r1,1, . . . , r1,n) = (α0, . . . , αn−1). Let c1(t) = ϕ−1(c1) be the
polynomial representation of the column c1, now, the 2nd column c2 results from the
product ϕ(c1(t)t), which means that each position of c1 is shifted cyclically downwards
since the degree of c1(t) is being incremented by 1. When Deg(ci(t)t

i) = n, the shifting
process is done but applying the binary OR operation of the coefficient vector of f(t)
with the shifted vector.

Input: The coefficient vector of the irreducible polynomial f(t) and its degree n
Output: The matrix R that represents the linear action of the reduction modulo

f(t)
Function ComputeR(f, n) is

coeffs ← (α0, . . . , αn−1)
R1 ← Matrix(0,n,n-1)
R1 [Col,1] ← coeffs
for i = 1, i < n, i+ + do

col ← R[Col,i]
newcol = Array(0,n)
for j = 1, j < n, j + + do

if col[n] == 1 AND j == n− 1 then
newcol ← R1[Col,1] OR newcol

else
newcol[j+i] = col[j]

end

end
R1[Col,i+1]=newcol

end
return [In|R1]

end

2.2 Obtaining the matrices Ai

The equation a(t)ti (mod f(t)) is reduced in the Finite Field by the action R · ϕ(a(t)ti)
and the columns from R that are involved in the linear combinations are cj : j ∈ [i, n+ 1]

Ai = R[i,n+1]

3

Thus every matrix Ai is indeed a submatrix of R, but why?. This can be a tricky
question to answer but it’s easily explained looking at the following example:

R · ϕ(a(t)t0) = R ·

a0
...

an−1
0
...
0

= I · −→a =

 a0
...

an−1

Which leaves the coefficient tuple ϕ(a(t)) = −→a invariant, here Ai = In is the submatrix
from column 1 to n in R, which is the n× n Identity matrix.

Next, the polynomial a(t)t1 comes in in the right hand side or RHS :

R · ϕ(a(t)t1) = R ·

0
a0
...

an−1
0
...
0

= A2 · −→a =

 a0 +
∑
ai

...
an−1 +

∑
ai

Notice how the first coefficient from the RHS vector in this case is a 0. This zero
doesn’t select the first column, in fact, the colums that are selected are those ranging
from 2 to n+ 1, so A2 = R[2,n+1]. This is the mathematical pattern that proves the claim
shown in this paper.

This approach only needs an invocation of the polynomial remainder function and a
single call to the function that retrieves the linear transformation i.e: CoefficientArrays.
The speedup versus the naive procedure is enormous, yet allows the computation of
matrices Ai as submatrices of R which is a very fast procedure. Following with the next
section, it’s now explained how to compute the Quadratic Forms of an HFE Polynomial
by using these matrices Ai.

3 Fast computation of Quadratic Forms of an HFE

Polynomial

In this paper, special kind of HFE Polynomials are studied to generate the Quadratic
Forms resulting from the Public Key. Therefore define an HFE Polynomial F(X) [3] by:

F(X) =
n∑

i=1

n∑
i

αi,jX
qi+qj +

n∑
i=1

βiX
qi + γ αi,j, βi, γ ∈ Fq

which results in a polynomial in the univariate variable t having quadratic symbolic
coefficients over Fp as the input variable is the polynomial X =

∑n−1
i=0 xit

i.

3.1 HFE Polynomials that are the product of two Linearised
Polynomials

Moreover, some HFE Polynomials can be written as the product of two Linearised Poly-
nomials over Fq. A Linearised Polynomial over Fq maps an input polynomial in Fq

to another polynomial in Fq. A Linearised Permutation Polynomial maps every input
polynomial to a distinct one, thus being an Automorphism in Fq.

L(X) =
n−1∑
i=0

αiX
qi αi ∈ Fq

4

It is known that Linearised Polynomials define a linear transformation on the coeffi-
cient vector of the input polynomial. From now, consider ML as the matrix representation
of the Linearised Polynomial L. This is:

L(X) = Y →ML · −→x = −→y

Now define an HFE Polynomial F(X) as the multiplication of two Linearised Poly-
nomials :

F(X) = L1(X)L2(X)

The matrix representation seen in subsection 1.1 now changes a bit as both Linearised
Polynomials change the structure of Ma.

3.1.1 Obtaining the map F(X) using Matrix Representation

In terms of matrix representation, if we represent ML1(a(t)) we notice that the matrix
Ma = {I · −→a , · · · , An · −→a } is transformed to ML1(a(t)) = {I ·ML1 · −→a , · · · , An ·ML1 · −→a }.
Hence, the HFE Polynomial can be stated as a product of matrices and a column vector:

F(X) = L1(X)L2(X) = ML1(a(t)) ·ML2−→a

This is a linear combination of the columns of ML1(a(t)) with the values of −→a ′ = ML2
−→a .

As the columns of ML1(a(t)) come from matrix product by a column vector, a finite sum
of these yields the following expression:

ML1(a(t)) ·ML2−→a = ML1(a(t)) · −→a ′ =
n∑

i=1

a′i(AiML1
−→a) = (

n∑
i=1

a′iAiML1)
−→a = MF

−→a

Then matrix equation MF · −→a results in n quadratic polynomials in n variables and
represents the map ϕ(L1(a(t))L2(a(t))). We’ve seen how to compute the symbolic matrix
representation MF of an HFE Polynomial, but it’s of great interest to determine an
approach to compute its Quadratic Forms, which have purely integral values.

3.1.2 Obtaining the Quadratic Forms

In the previous representation, each polynomial fi(X) ∈ F(X) is the dot product of each
row of MF and the column vector −→a . Notice that the dot product can be encoded or
represented by a Quadratic Form since each row of MF has symbolic coefficients on the
variables (a0, . . . , an−1). This is, the dot product of the i-th row of MF and the column
vector −→a is fi =< Qi

−→a ,−→a T > which gives the Quadratic Form −→a TQi
−→a . Hence,

F(X) = (aTQ1a, . . . , a
TQna)

Qi =
n∑

j=1

(AjML1)
TGi,jML2 = MT

L1 · (
n∑

j=1

AT
j Gi,j) ·ML2

Linear Algebra allows us to express the sum of the i-th row of matrices Aj scaled by
the value a′j. To do that, notice how the transpose of any matrix AT

j puts the i-th row in
the i-th column and as the matrix Gi,j transforms the vector a′ into a zero vector where
the unique non-zero value is a′j is in the i-th position. Then to find Qi define Gi,j as a
Zero Matrix such that (Gi,j)i,j = 1. The product AT

j Gi,j outputs a Zero Matrix where
the j-th column is the i-th column of AT

j . Mathematically, this means that the central
matrix of the equation that involves Qi is a matrix where the j-th column comes from
the i-th column of AT

j . As the matrices Aj as seen in subsection 2.2 are submatrices
of the matrix R, conclude that the Quadratic Forms of an HFE Polynomial are entirely
dependent on the selected irreducible polynomial f(t).

5

3.1.3 Complete Algorithm

Note that, in subsubsection 2.1.1 the algorithm to compute the matrix R has been pro-
vided. The presented algorithm outputs the set of Quadratic Forms related to the Public
Key P (X) = T ◦F ◦S(X) where F(X) = L1(X)L2(X). First computes the matrices AT

j

and using these, computes each Quadratic Form associated to the equation fi(X) ∈ F(X).

The information needed is:

• The pair of Linearised Polynomials given as square matrices ML1 ,ML2 over F2

• The pair of invertible linear transformations (S, T)

• An irreducible polynomial f(t) modulo 2 of the type f(t) = ta + tb + 1

• The extension degree n

Input: The extension degree n, the R matrix, the matrix S and Linearised
Polynomials L1(X),L2(X)

Output: The set Qs containing the Quadratic Forms of F(X)
Function QuadForms(n,R, S,ML1 ,ML2) is

Qs← Array[0,n]
As← Array[0,n]
//Precompute two matrix products
H1 ← ST · ML1
H2 ←ML2 · S
for i = 1, i ≤ n, i+ + do

As[i] ← RT
[i,n+i]

end
for i = 1, i ≤ n, i+ + do

mat ← Matrix(0,n,n)
for j = 1, j ≤ n, j + + do

mat[Col, j] ← (As[j])[Col,i]
end
Qs[i] ← H1 ·mat ·H2

end
return Qs

end

Input: The extension degree n and the R matrix
Output: The set of Quadratic Forms of the Public Key P(X)
Function GenHFE(ML1 ,ML2 , f(t), n) is

R← ComputeR(n, f(t))
Qs← QuadForms(n,R, S,ML1 ,ML2)
P ← T ·Qs
return P

end

In the next section parametrizations are analyzed and some Public Key generation
examples using both random Linerised Polynomials and pairs (S, T) are given.

In a nuthsell Quadratic Forms are obtained without using symbolic matrices-expressions
once the matrix R is computed since any product of polynomials in Fq can be tracked
down to a set of Quadratic Forms by using pure Linear Algebra.

4 Examples of Public Key Instantiation

The entire generation process of the Quadratic Forms associated to an HFE Polynomial
of the type F(X) = L1(X)L2(X) is bounded by the computation of the matrix R1 which
comes from the matrix R = [In R1] associated to the linear action that the polynomial
remainder modulo f(t) produces in a polynomial of degree at least 2(n−1). The R matrix
is related to the selected irreducible polynomial f(t) modulo 2. It’s been commented in

6

subsubsection 2.1.1 how to compute such R matrix. Here some examples are given so
the reader can familiarize with the results. Now, given an irreducible Polynomials of the
form tn + tn−1 + 1 the matrix R1 has the form:

R1 =

11 1 1
01 1 1
00 1 1

...
00 0 1
11 1 1

So for example, take f(t) = t127 + t126 + 1. In Mathematica, the computation of

the Quadratic Forms of the map F ◦ S(X) = (L1 ◦ S(X)) × (L2 ◦ S(X)) takes roughly
≈ 0.48 seconds selecting two random Linearised Polynomials along with two random
linear invertible transformations S, T .

The public key P (X) = T ◦ F ◦ S(X) generation step takes ≈ 0.82 seconds, however,
the global time spent computing is ≈ 1.41 seconds and not ≈ 0.82 + 0.48 = 1.3 since the
linear transformations are also randomly selected.

For example the familiy of irreducible polynomials of the form t2
k−1 + t2

k−2 + 1
share the matrix R1 seen in this example. Anyways, the algorithms given in the previous
section work with any irreducible polynomial of the type ta + tb + 1 modulo 2.

Consider the irreducible polynomial f(t) = t7 + t6 + 1 modulo 2, then the matrix R
has the promised structure:

R = [I7 R1] =

1 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0 1 1 1 1 1
0 0 1 0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 1 1 1 1

Consider f(t) = t5 + t3 + 1 irreducible modulo 2, then we have:

R =

1 0 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 1
0 0 1 0 0 0 0 1 0
0 0 0 1 0 1 0 1 1
0 0 0 0 1 0 1 0 1

5 Further Applications

The author wants to remark that this research on computing Quadratic Forms of HFE
Polynomials can be further investigated towards irreducible polynomials containing more
than 3 terms in their expansion. Moreover, other characteristics than 2 can be stud-
ied. The research can be further extended to other schemes from the BigField family of
schemes.

Beyond the aforementioned applications, the author has made a positive research on
the inversion of HFE Polynomials with very high degree where root finding algorithms
are inefficient. It results that the theory behind this paper is applicable, and speeds
up considerably the public key generation process. Such investigation is being published
soon in the same repository.

7

6 Mathematica Code

The code listed here works for characteristic two so p = 2 and an irreducible polynomial
f(t) = ta + tb + 1 modulo 2 must be selected. After that, the reader can freely call the
GenHFE function to retrieve the Quadratic Forms of the Public Key.

In[1]:= GenRndMat[p_, n_] := (

mat = 0;

rnk = 0;

While[rnk < n,

mat = RandomInteger[{0, p - 1}, {n, n}];

rnk = MatrixRank[mat, Modulus -> p];

];

Return[mat];

)

In[2]:= ComputeR[p_, n_, irr_] := (

coeffs = CoefficientList[irr, t, n];

R1 = ConstantArray[0, {n, n - 1}];

R1[[All, 1]] = coeffs;

For[i = 1, i < n - 1, i++,

col = R1[[All, i]];

newcol = Array[0 &, n];

For[j = 1, j < n, j++,

If[col[[n]] == 1 && j == n - 1,

newcol = BitOr[R1[[All, 1]], newcol];

,

newcol[[j + 1]] = col[[j]];

];

];

R1[[All, i + 1]] = newcol;

];

Return[ArrayFlatten[{{IdentityMatrix[n], R1}}]];

)

In[3]:= QuadForms[p_, n_,R_,S_,L1_,L2_] := (

Qs = Array[0 &, n];

Rs = Array[0 &, n];

H1 = Mod[Transpose[S].Transpose[L1], p];

H2 = Mod[L2.S, p];

For[i = 1, i <= n, i++,

Rs[[i]] = Transpose[R[[All, i ;; n + i - 1]]];

];

For[i = 1, i <= n, i++,

mat = ConstantArray[0, {n, n}];

Table[

mat[[All, j]] = (Rs[[j]])[[All, i]],

{j, 1, n}];

Qs[[i]] = Mod[H1.mat.H2, p];

];

)

In[4]:= GenHFE[p_, n_, irr_] := (

L1 = GenRndMat[p, n];

L2 = GenRndMat[p, n];

S = GenRndMat[p, n];

T = GenRndMat[p, n];

R = ComputeR[p, n, irr];

Print[AbsoluteTiming[QuadForms[p, n,R,S,L1,L2]][[1]]];

Print[AbsoluteTiming[

P = Table[Mod[T[[i]].Qs, p], {i, 1, n}]][[1]]];

Return[P];

)

Now, if we generate a Public Key having a central HFE polynomial, the inversion
should work by invocating root finding over Fq. Let’s give a small example to prove that
the research done works.

8

6.1 Brief Validation Example

Let the irreducible polynomial modulo 2 be f(t) = t5 + t3 + 1. Given the Linearised
Polynomials L1(X) = (t4 + t2 + 1)X16 + (t3 + 1)X8 + (t3 + t2 + t)X2 and L2(X) =
(t+ 1)X8 + (t4 + t3 + 1)X4 + (t4 + t)X. The matrices associated to L1(X) and L2(X) are:

ML1 =

0 0 0 0 1
1 1 1 0 0
0 1 0 1 1
0 1 0 0 0
1 0 0 1 1

ML2 =

0 1 1 0 1
0 0 0 0 0
0 1 1 1 1
1 1 0 0 1
0 0 0 0 1

The pair of invertible matrices S, T is given as follows:

S =

0 1 1 0 0
1 0 1 1 0
1 0 0 1 0
1 0 1 0 0
1 1 0 1 1

T =

1 0 0 1 1
0 0 1 0 0
0 1 0 0 0
0 1 1 1 0
1 1 1 0 0

The R matrix is:

R =

1 0 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 1
0 0 1 0 0 0 0 1 0
0 0 0 1 0 1 0 1 1
0 0 0 0 1 0 1 0 1

And the HFE polynomial map can be computed by the product of both Linearised

Polynomials :

F (X) = (t4+t2+t)X24+X20+(t4+t3+t+1)X17+(t4+t3+t+1)X16+(t3+t2+t)X12+(t4+t)X10+(t3+t2+t+1)X9+(t4+t+1)X6+(t3+t)X3

• Modify the GenHFE function to select the aforementioned matrices ML1 ,ML2 , S, T
instead of generating random transformations.

• Generate P by calling GenHFE (2, 5,ML1 ,ML2 , S, T).

• Let the plaintext be x = (1, 1, 0, 1, 1) and the ciphertext c = P (x) = (1, 0, 0, 0, 1).

• Obtain c′ = T · (1, 0, 0, 0, 1) = (1, 0, 0, 0, 0).

• Solve F (X)− 1 = 0 over Fq to obtain roots (t3 + t2 + 1, t4 + t2, t4 + t3 + t2, t4 +
t3 + t2 + t+ 1).

• Recover x as S−1 · (1, 0, 0, 1, 0) = (1, 1, 0, 1, 1) where the candidate root is t3 + t2 +1.

9

References

[1] Patrick J. Morandi Group Actions https://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.623.7733&rep=rep1&type=pdf

[2] Ted Hurley Group rings and rings of matrices https://www.researchgate.net/

publication/228928727_Group_rings_and_rings_of_matrices

[3] Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms https://link.springer.com/

chapter/10.1007/3-540-68339-9_4

10

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.623.7733&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.623.7733&rep=rep1&type=pdf
https://www.researchgate.net/publication/228928727_Group_rings_and_rings_of_matrices
https://www.researchgate.net/publication/228928727_Group_rings_and_rings_of_matrices
https://link.springer.com/chapter/10.1007/3-540-68339-9_4
https://link.springer.com/chapter/10.1007/3-540-68339-9_4

	Matrix Representation of elements in algebraic structures
	Matrix representation of elements of a Finite Field
	Properties of the Matrix Representation

	Deterministic Computation of the R Matrix
	Structure of the matrix R
	Irreducible Polynomials of the kind ta+tb+1

	Obtaining the matrices Ai

	Fast computation of Quadratic Forms of an HFE Polynomial
	HFE Polynomials that are the product of two Linearised Polynomials
	Obtaining the map F(X) using Matrix Representation
	Obtaining the Quadratic Forms
	Complete Algorithm

	Examples of Public Key Instantiation
	Further Applications
	Mathematica Code
	Brief Validation Example

