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Abstract

This work initiates a formal study of signcryption in the quantum setting. We start with formulating
suitable security definitions for confidentiality and authenticity of signcryption both in insider and out-
sider models against quantum adversaries. We investigate the quantum security of generic constructions
of signcryption schemes based on three paradigms, viz., encrypt-then-sign (EtS), sign-then-encrypt (StE)
and commit-then-encrypt-and-sign (CtE&S). In the insider model, we show that the quantum variants
of the classical results hold in the quantum setting with an exception in the StE paradigm. However,
in outsider model we need to consider an intermediate setting in which the adversary is given quantum
access to unsigncryption oracle but classical access to signcryption oracle. In two-user outsider model,
as in the classical setting, we show that post-quantum CPA security of the base encryption scheme is
amplified in the EtS paradigm if the base signature scheme satisfies a stronger definition. We prove an
analogous result in the StE paradigm. Interestingly, in the multi-user setting, our results strengthen
the known classical results. Furthermore, our results for the EtS and StE paradigms in the two-user
outsider model also extend to the setting of authenticated encryption. In this course, we point out
a flaw in the proof of quantum security of authenticated encryption in the EtS paradigm given in a
recent paper. We briefly discuss the difficulties in analyzing the full quantum security of signcryption in
outsider model. Finally, we briefly discuss concrete instantiations in various paradigms utilising some
available candidates of quantum secure encryption and signature schemes.
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1 Introduction

The possible advent of quantum computers in the foreseeable future poses a threat to the security of many
classical cryptosystems. Recently, the National Institute of Standards and Technology (NIST) announced
the Post-Quantum Crypto project [NIS17] to evaluate and standardize the quantum-resistant public-key
cryptographic algorithms. This was followed by 82 submissions in the first round, of which 26 were short-
listed for the third round of evaluation. After the third round of evaluation [NIS20], 7 (resp. 8) candidates
have been shortlisted as finalists (resp. alternatives). The security of the post-quantum cryptographic
schemes relies on computational problems which are believed to be intractable even on quantum comput-
ers. To formally establish post-quantum security of cryptographic constructions, one generally models all
parties and the communication between them to be classical while the adversary is considered to have
access to a quantum computer. This setting allows the adversary to perform quantum computations lo-
cally and communicate classical information with the parties involved in the protocol. It is well known
that quantum immune assumptions alone do not always imply post-quantum security due to fundamental
notions such as the no-cloning, which is unique to quantum setting. There have been many works along
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this line [BDF+11, ARU14, ES15, Unr15, SXY18, HHK17, FTTY18] which analyze the security of various
post-quantum cryptographic constructions.

Security of classical cryptographic constructions has also been studied in a stronger setting where, in
addition to local quantum computations, the adversary is provided access to cryptographic oracle which
can be queried quantumly on superposition of inputs [BZ13, GHS16, SJS16]. For example, in case of
signature (resp. encryption), the adversary can issue quantum chosen message queries to the signature
(resp. encryption/decryption) oracle. We refer to security notions covering such settings as quantum
security throughout this paper.

In this work, we extend the above line of study to the generic constructions of signcryption. Signcryption
is a public key cryptographic primitive which provides both privacy and authenticity of data. There exists a
vast literature on signcryption in the classical setting. It was originally proposed by Zheng [Zhe97], followed
by later works [ADR02, BSZ07, MMS09], which focused on formalizing the security of signcryption and
analyzing the security of various constructions. The symmetric variant of signcryption, a.k.a., authenticated
encryption has been extensively studied in the classical setting, e.g., [BN08].

As already mentioned, signcryption encompasses confidentiality as well as authenticity of data. We
quickly recall some of the relevant classical notions for signature and encryption schemes that we will
frequently refer to, in the rest of our discussion. The quantum variants of these notions have been dis-
cussed in Section 3. For signatures, we use the standard definition of weak/strong existential unforgeability
under chosen message attack ((w/s)UF-CMA) and for encryption we use the standard definitions of indis-
tinguishability under chosen plaintext attack (IND-CPA) and indistinguishability under chosen ciphertext
attack (IND-CCA). We also take recourse to the notion of indistinguishability under generalized chosen
ciphertext attack (IND-gCCA)1 security. Commitment scheme has also been used as a building block in the
one of the generic constructions of signcryption. For commitment schemes, we refer to the standard notions
of Hiding,Binding and rConcealment2.

In the classical setting, An, Dodis and Rabin [ADR02] proposed generic constructions of signcryption
schemes based on three paradigms, viz., encrypt-then-sign (EtS), sign-then-encrypt (StE) and commit-
then-encrypt-and-sign (CtE&S). Security in each paradigm was proven in two-user insider and outsider
models. In insider model the adversary is allowed to corrupt all parties except the receiver (resp. sender)
in case of confidentiality (resp. unforgeability) whereas in outsider model the adversary is allowed to
corrupt all parties except the sender and receiver. The EtS paradigm preserves sUF-CMA and IND-gCCA
security of the primitive signature scheme and encryption scheme respectively in the insider model. The
StE paradigm preserves wUF-CMA and IND-CCA security of the primitive signature scheme and encryption
scheme respectively in insider model. On the other hand, CtE&S paradigm can preserve only weak security
in insider model, viz., the wUF-CMA security and IND-gCCA security of the primitive signature scheme and
encryption scheme respectively. In the two-user outsider model, it was shown that the weak security of the
encryption (resp. signature) scheme in the EtS (resp. StE) paradigm gets amplified to strong if the base
signature (resp. encryption) satisfies a stronger definition. However, it was argued in [DZ10] that the same
result doesn’t hold in the multi-user outsider model.

Some Notations. Here, we assume that the reader is familiar with the basic concepts of quantum
computation discussed in Section 2. We represent quantum states using the braket notation. In the
discussion which follows, we deal with quantum adversaries that can query cryptographic oracles (such

1IND-gCCA notion is a generalization of IND-CCA security notion where the adversary is forbidden from making certain
decryption queries which are related to the challenge ciphertext. For more details refer to [ADR02].

2Informally, rConcealment ensures that given a commitment pair (com,decom) corresponding to a message m, it is difficult
to produce com′ ≠ com such that the pair (com′,decom) opens to a valid message [NP16].
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as signcryption, unsigncryption, etc.) on quantum superposition of classical input values. A quantum
superposition query comprises of different component registers. For example, a signcryption query of
the form ∑

m,up

ψm,up ∣m,up⟩ consists of a message register and a signcryption text register. The action of

cryptographic oracles (such as signcryption, unsigncryption, etc.) on quantum states is represented as a
unitary transformation. For example, signcryption of ∑

m,up

ψm,up ∣m,up⟩ is represented as:

∑
m,up

ψm,up ∣m,up⟩z→ ∑
m,up

ψm,up ∣m,up ⊕ u⟩ .

The challenge of simulating quantum queries. Before proceeding to discuss about results, we first
discuss a unique feature of the quantum queries that needs to be tackled in our proofs. We elaborate on
this problem in the context of the proof of authenticity of EtS paradigm in the two user insider security
model. Given an adversary A against the sUF-CMA security of signcryption scheme SC one has to construct
a simulator B that breaks the sUF-CMA security of the underlying signature scheme PKS. Classically, to
simulate a signcryption query m, the simulator first encrypts m using the public key to obtain the ciphertext
c. Then, the simulator requests its challenger for a signature oracle query on c. The challenger replies with
the signature σ and the simulator returns u ∶= (c, σ) to the adversary.

However, in the quantum setting, an adversary can prepare an arbitrary superposition of classical
messages, which it can then send as a signcryption query. For example, let mquant = ∑

m,up

ψm,up ∣m,up⟩ be

a signcryption query which consists of two components called respectively the message register M and
signcryption text register U. In the security game, the adversary initializes the signcryption text register
U = (C,S) arbitrarily with values (cp, σp) on its own and the task of the simulator is to return to A the
state ∑

m,up

ψm,up ∣m, cp ⊕ c, σp ⊕ σ⟩. As long as the content of cp is not known to the simulator, xoring the

output of encryption with cp will result in an unknown string. Hence, the simulator cannot simply send the
prepared ciphertext register to its own challenger to obtain the signature as it would yield a signature on
cp⊕ c instead of c. Furthermore, the destructiveness of quantum measurement disallows the simulator from
performing any kind of measurement on the signcryption text register. Also, quantum no-cloning prevents
the simulator from copying adversary’s query. One solution for the above problem is to store the encryption
output in an ancilla register (an auxiliary register with constant input), initially set to ∣0ℓc⟩, where ℓc is
the length of ciphertext register. The encryption operator is applied on the message register and ancilla
register as described below.

∑
m,up

ψm,up ∣m, cp, σp,0
ℓc⟩z→ ∑

m,up

ψm,up ∣m, cp ⊕ c, σp,0
ℓc ⊕ c⟩ (1)

Then, the simulator can send a signature query on the last two registers, the result of which will be
∑
m,up

ψm,up ∣m, cp ⊕ c, σp ⊕ σ, c⟩. The last register can be called as simulator’s state and the adversary is given

everything except the simulator’s state. But in the above process the simulator’s state gets entangled with
adversary’s state. Further, it was recently shown in [Zha18] that the adversary can detect this type of
behavior and may refuse to continue, rendering the simulation to fail.

Similar problem arises in the proof of confidentiality of EtS paradigm in the two user insider security
model. Classically, to simulate an unsigncryption query u = (c, σ), the simulator first checks if σ is valid
signature on c. If this is the case, simulator requests for a decryption oracle query on c to its challenger. The
challenger replies with the decryption m if it is a valid query else it replies with � and the simulator returns
the same to the adversary. In the quantum case, to answer a query uquant = ∑

u,mp

ψu,mp ∣u,mp⟩, conditioned
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on the validity of the signature on the ciphertext the simulator returns the underlying message or �. If the
simulator follows a similar process, it ends up with the state

∑
u,mp

ψu,mp ∣c, σ,mp ⊕ f (u,m),m⟩ (2)

where

f (u,m) =
⎧⎪⎪
⎨
⎪⎪⎩

m if V(c, σ) = 1
� otherwise.

The adversary is returned everything except the last register. Again, in this case the simulation may fail
as the simulator’s state gets entangled with the adversary’s state.

Entangle-then-Unentangle. The problem is to construct a quantum circuit for a function f , say sign-
cryption oracle, which takes as input (x, y) and outputs (x, y ⊕ f(x)). However, as shown above, in the
process of constructing such a circuit some garbage bits (a.k.a ancilla bits) gets entangled with the registers
x, y. In other words, for an input (x, y), we obtain as output (x, y ⊕ f(x), g(x)), where g(x) represents
the garbage bits. By using ideas derived from the uncomputation technique [NC00], one can construct a
quantum circuit for f that uncomputes the garbage bits g(x) and provides the desired output (x, y⊕f(x)).
However, for uncomputing the garbage bits, the simulator must have access to the reverse of the circuit
used to compute the garbage bits. In our case, the simulator B performs uncomputation either by running
the respective algorithm twice locally on the same input (using the same randomness) or by making the
same queries twice provided that the oracle is deterministic. Since, in this whole process of simulation
the ancilla register first gets entangled with the input registers and then gets unentangled, we call it as
Entangle-then-Unentangle (EtU ) in the rest of this paper.

We use the EtU technique to simulate signcryption and unsigncryption queries. To handle a sign-
cryption query in the EtS paradigm, the simulator can choose a classical randomness while applying the
encryption operator. To unentangle the ancilla register with the adversary’s state, the simulator can apply
the encryption operator on the output state of Equation 1 using the same randomness

∑
m,up

ψm,up ∣m,up ⊕ u, c⟩z→ ∑
m,up

ψm,up ∣m,up ⊕ u, c⊕ c⟩ .

The final state that the simulator obtains is ∑
m,up

ψm,up ∣m,up ⊕ u⟩⊗ ∣0ℓc⟩.

Similarly, to unentangle the ancilla register with the adversary’s state in unsigncryption queries in EtS
paradigm, the simulator can request a decryption oracle query on the state appearing in Equation 2. The
challenger, in response, applies the following unitary operation

∑
u,mp

ψu,mp ∣u,mp ⊕ f (u,m),m⟩z→ ∑
u,mp

ψu,mp ∣u,mp ⊕ f (u,m),m ⊕m⟩ .

The final state that the simulator receives is ∑
u,mp

ψu,mp ∣u,mp ⊕ f (u,m)⟩ ⊗ ∣0ℓm⟩, where ℓm is the length of

message register.

Note that, by this approach the ancilla register gets unentangled with adversary’s state and hence, the
adversary’s view is properly simulated.
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Our Contributions. In this paper, we initiate the formal study of security of signcryption in the quantum
setting. We first propose appropriate quantum security definitions for signcryption, which are natural
adaptation of the existing classical definitions to the quantum setting. We investigate the quantum security
of generic constructions of signcryption schemes based on three paradigms, viz., EtS, StE and CtE&S.
In the multi-user insider model, our results are along the expected lines with one exception in the StE
paradigm. In the outsider model, however, the quantum no-cloning stands as a main barrier in proving full
quantum security. Nonetheless, we consider an intermediate setting where the signcryption oracle remains
classical and the unsigncryption oracle can be quantumly accessed. Intuitively, this models a setting where
the sender always runs the protocol on a classical device whereas the receiver may run the protocol on a
quantum device. To model confidentiality, we introduce the notion of uqCCA security which means that
the adversary is only provided quantum access to the unsigncryption oracle and access to signcryption
oracle remains classical. Similarly, for authenticity we introduce the notion of uqCMA security. We analyze
outsider security in the above setting. Interestingly, our results in the multi-user outsider model strengthen
the existing classical results. To prove our results, we make use of a technique, based on uncomputation,
which we call Entangle-then-Unentangle (EtU ), that facilitates simulating quantum queries in security
reductions.

In more detail, our contributions (also see Table 1) are as follows:

Encrypt-then-Sign: The EtS paradigm preserves sUF-qCMA and IND-qgCCA3 security of the primitive
signature scheme and encryption scheme respectively in the multi-user insider security model. In the
two-user outsider model, we show that post-quantum IND-CPA security of the underlying encryption
scheme can be amplified to IND-uqCCA (resp. IND-uqgCCA) security, if the signature scheme is post
quantum sUF-CMA (resp. wUF-CMA). While this is in line with the classical setting, our result in
the multi-user outsider model is somewhat surprising. In particular, we establish that IND-qgCCA
security of the underlying encryption scheme can be amplified to IND-uqCCA security if the signature
scheme is post quantum sUF-CMA secure. As a consequence, we obtain a similar result in the classical
setting which, to the best of our knowledge, was not known prior to this work.

Sign-then-Encrypt: The StE paradigm preserves IND-qCCA security of the primitive encryption scheme
and wUF-qCMA of the signature scheme in the multi-user insider security model. In the two-user
outsider model, we show that post-quantum UF-NMA security of the underlying signature scheme can
be amplified to sUF-uqCMA (resp. wUF-uqCMA) security, if the encryption scheme is IND-qCCA (resp.
IND-qgCCA), exactly as in the classical setting. As in the case of confidentiality of EtS paradigm in
the multi-user outsider model, we show that wUF-qCMA security of the underlying signature scheme
can be amplified to sUF-uqCMA security if the encryption scheme is IND-qCCA secure. Again, this
result naturally holds in the classical setting but was not known prior to this work.

Commit-Encrypt-and-Sign: The CtE&S paradigm preserves wUF-qCMA and IND-qgCCA security of
the primitive signature scheme and encryption scheme respectively in the multi-user insider security
model assuming that the commitment scheme satisfies some standard security properties. In the
outsider model, we show that the IND-qCCA and post quantum sUF-CMA security of the underlying
encryption and signature are preserved under reasonable assumptions on the commitment scheme.
This result too holds in the classical setting but was not known prior to this work.

Our results for the EtS and StE paradigms in the two-user outsider model also extend to the symmetric
setting. In this course, we point out a flaw in the quantum security proof of authenticated encryption in the

3sUF-qCMA is the quantum analogue of classical sUF-CMA security notion where the adversary can query the signature
oracle quantumly on a superposition of messages. Similarly, IND-qCCA and IND-qgCCA are quantum analogues of IND-CCA
and IND-gCCA notions of security. For formal definitions, refer to Section 3.
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EtS paradigm given in a recent paper [SJS16]. Thus, the full quantum security of signcryption in outsider
model and authenticated encryption remains an open problem.

Finally, we briefly recall some candidates for post-quantum and quantum secure signature and encryption
schemes which can be used to instantiate the generic constructions of post-quantum and quantum secure
signcryption schemes.

Prim
Paradigms

EtS StE CtE&S
Confidentiality Authenticity Confidentiality Authenticity Confidentiality Authenticity

E IND-qgCCA - IND-(qg/q)CCA - IND-qgCCA -
S - (w/s)UF-qCMA - wUF-qCMA - wUF-qCMA

C - - - - qHiding ∧ qrCon qBinding

SCi dM-IND-iqgCCA dM-(w/s)UF-iqCMA dM-IND-i(qg/q)CCA dM-wUF-iqCMA dM-IND-iqgCCA dM-wUF-iqCMA

Thm Thm 5.1 Thm 5.2 Thm 5.3 Thm 5.4 Thm 5.5 Thm 5.6
E pqIND-CPA IND-(qg/q)CCA
S pq(w/s)UF-CMA Same as Same as pqUF-NMA Same as Same as
C - Insider Insider - Multi-User Multi-User

SC2 IND-o(uqg/uq)CCA Model Model (w/s)UF-ouqCMA Outsider Outsider
Thm Thm 6.1 Thm 6.2 Setting Setting

E IND-qgCCA IND-qCCA IND-qCCA IND-qCCA
S pqsUF-CMA Same as Same as pqwUF-CMA pqsUF-CMA pqsUF-CMA

C - Insider Insider - qHiding qfBinder

SCo fM-IND-ouqCCA Model Model fM-sUF-ouqCMA fM-IND-ouqCCA fM-sUF-ouqCMA

Thm Thm 6.3 Thm 6.4 Thm 6.5 Thm 6.6

The abbreviations Thm, E, S and C stand for Theorem, Encryption, Signature and Commitment respectively. The symbols SCi, SCo and
SC2 denote Signcryptions in multi-user insider, multi-user outsider and two-user outsider models respectively. The logical flow “(t1/t2)Y
implies (p1/p2)V ” means t1Y (resp. t2Y ) implies p1V (resp. p2V ). Refer to Section 3 for other notations.

Table 1: A summary of our results.

Some Related Works. Recently, there have been works which study the security of joint signature and
encryption in the quantum setting. In [GM18], the authors construct a concrete post-quantum signcryption
scheme based on the lattice assumption. In [SJS16], the authors extended the study of authenticated
encryption of [BN08] from classical to quantum setting. In a different line than ours, [AGM18] gives
definitions for confidentiality and authentication of quantum data followed by constructions realizing them.

Organization. In Section 3, we propose definitions for commitment and signcryption in the quantum
setting. Section 4 contains the construction of signcryption schemes based on different paradigms. In
Sections 5 and 6, we prove the quantum security of generic constructions of signcryption scheme in the
insider and outsider models respectively. In Section 7, we discuss concrete instantiation for the generic
constructions. We have deferred the details of some proofs to Appendix A and B.

2 Preliminaries

2.1 Notations

For m ∈ N, [m] denotes the set {1, . . . ,m}. We use λ ∈ N to denote the security parameter. A function
ǫ = ǫ(λ) is said to be negligible if, for all polynomials p(n), ǫ(n) < 1/p(n) for large enough n. For two
strings x and y, x∣∣y represents the concatenation of the two strings. For a string str = str1∣∣ . . . ∣∣strn ∈{0,1}t1 × ⋅ ⋅ ⋅ × {0,1}tn , we use [str]i to represent the ith component stri.
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2.2 Quantum Computation

In this section, we recall a few basic concepts of quantum computation from [NC00]. A quantum system H
is a complex euclidean space (a.k.a., Hilbert space). The state of a quantum system is completely described
by its state vector ∣ψ⟩ which is a unit vector (⟨ψ∣ψ⟩ = 1) in the system’s state space. Given quantum
systems H1 and H2, the joint quantum system is given by the tensor product H1⊗H2. Given ∣ψ1⟩ ∈H1 and∣ψ2⟩ ∈H2, the joint state (product state) is given by ∣ψ1⟩⊗ ∣ψ2⟩ ∈H1⊗H2. The joint state ∣ψ1⟩⊗ ∣ψ2⟩ is also
denoted as ∣ψ1⟩ ∣ψ2⟩ or ∣ψ1, ψ2⟩ in many places. In general, the joint state ∣ψ⟩ ∈H1⊗H2 cannot be expressed
as a product state. If ∣ψ⟩ is not a product state, we say that the systems H1 and H2 are entangled. If ∣ψ⟩
is a product state, we say the systems are unentangled.

The evolution of a closed quantum system is completely described by a unitary transformation. In
particular, if ∣ψ⟩ is a quantum state and U be any unitary transformation, then the resulting state after
transformations is ∣ψ′⟩ = U ∣ψ⟩.

For a n qubit system, the dimension of the Hilbert space H is 2n. The set {∣i⟩ ∶ 0 < i ≤ 2n} forms an
orthonormal basis of H, where ∣i⟩ is a column vector with only the ith bit set to 1 and all other bits set
to 0. The set {∣i⟩} is also called as computational basis. If an element ∣ψ⟩ ∈ H is a linear combination of
several ∣i⟩, then ∣ψ⟩ is said to be in superposition of computational basis states. Given a quantum state∣ψ⟩, measurement in the computational basis yields a value i with probability ∣⟨i∣ψ⟩∣2. After measurement,
conditioned on the measurement outcome being i, ∣ψ⟩ collapses to the state ∣i⟩.

A register is a memory element and is associated with a finite non-empty set of classical states.

By appending a state ∣ψ1⟩ ∈ H1 to a state ∣ψ2⟩ ∈ H2, we mean the joint state ∣ψ1⟩ ∣ψ2⟩ ∈ H1 ⊗H2. In
the security proofs, we append the state ∣0m⟩ to various states, where m ∈ N may denote the length of
ciphertext/signcryption text/signature and is understood from the context.

3 Syntax and Security Definitions

We adopt the definitions given in [BZ13] for security of encryption and signature in the quantum setting.
The quantum variant of IND-gCCA security notion [ADR02] was not formalized in [BZ13]. However, it
follows as a natural extension of the definition of IND-qCCA security. In addition, we formulate new
security definitions for commitment and signcryption in the quantum setting. The definitions we propose
follow naturally from their classical counterparts [BSZ07, ADR02, MMS09, NP16].

3.1 Public Key Encryption

Public Key Encryption Scheme. A public key encryption (PKE) scheme consists of three PPT algo-
rithms: GE ,E and D.

• GE : It takes as input a security parameter λ and outputs a public key and private key pair (pk, sk).
• E : It takes as input a message m ∈M, where M is the message space, and the public key pk and

outputs a ciphertext c.

• D: It takes as input a ciphertext c and the secret key sk and outputs a message m ∈M or �.

Correctness: For all (pk, sk) ←Ð GE(1λ) and for all messages m ∈M, it is required that D(E(m,pk), sk) =
m.
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Security of PKE in the Quantum Setting.

Definition 1. A public key encryption scheme PKE = (GE ,E ,D) is said to be post-quantum indistinguish-
able under chosen ciphertext attack (pqIND-CCA) if for all quantum PPT adversaries A ∶= (A1,A2), the
advantage

Adv
pqIND-CCA
A,PKE (λ) ∶= ∣Pr [b = b′] − 1

2
∣

in Exp
pqIND-CCA
A,PKE (λ) defined in Figure 1 is a negligible function in security parameter λ, where A is provided

classical access to decryption oracle OD (described below) with a natural restriction NRn that c∗ can never
queried to OD.

• Decryption oracle (OD): Given a classical ciphertext c, oracle returns D(c, sk).

Exp
pqIND-CCA
A,PKE

(λ):

• (pk, sk) ←Ð GE(1
λ)

• (m0,m1, st) ←Ð A
OD
1
(1λ,pk) with ∣m0∣ = ∣m1∣

• b
U
←Ð {0,1}

• c∗ ←Ð E(mb,pk)

• b′ ←Ð A
OD
2
(1λ,pk, c∗, st)

Figure 1: Experiment for confidentiality (pqIND-CCA security)

Definition 2. A public key encryption scheme PKE = (GE ,E ,D) is said to be post-quantum indistinguish-
able under chosen plaintext attack (pqIND-CPA) if it satisfies the same definition as pqIND-CCA with the
exception that the adversary is forbidden to ask decryption oracle queries.

Remark: By post-quantum security, we mean the adversary can perform local quantum computation.
Hence, if any hash function is modeled as random oracle it is required that the adversary must be given
quantum access to the random oracle as illustrated in [BDF+11]. This model is also called as the Quantum
Random Oracle Model (QROM). This is also applicable in other contexts, viz., signature, commitment and
signcryption.

Definition 3 ([BZ13]). A public key encryption scheme PKE = (GE ,E ,D) is said to be indistinguishable
under a quantum chosen ciphertext attack (IND-qCCA) if it satisfies the same definition as pqIND-CCA with
the exception that the adversary is provided superposition access to decryption oracle Oq

D
(described below).

• Quantum Decryption oracle (Oq
D
): For each superposition query, the oracle decrypts all ciphertexts in

the superposition, except those that were returned in response to a challenge query:

∑
c,mp

ψc,mp ∣c,mp⟩ z→ ∑
c,mp

ψc,mp ∣c,mp ⊕ f (c)⟩ (3)

where

f (c) =
⎧⎪⎪⎨⎪⎪⎩
� if c = c∗

D(c, sk) otherwise.
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Now, we consider the IND-qgCCA notion of security which is the quantum analogue of IND-gCCA
security [ADR02]. It is defined in a way similar to IND-qCCA except that the adversary is forbidden from
making certain type of decryption queries. Let R be an equivalence relation over the ciphertexts which
can depend on the public key pk. R is said to be decryption respecting if R(c1, c2) = True implies that
D(c1, sk) = D(c2, sk). A is not allowed to query on c if R(c, c∗) = True. A superposition query can be
handled by modifying the description of f in Equation 3 in the following way:

f (c) = ⎧⎪⎪⎨⎪⎪⎩
� if R(c, c∗) = True
D(c, sk) otherwise.

Definition 4. A public key encryption scheme PKE = (GE ,E ,D) is said to be IND-qgCCA secure, if there
exists some efficient decryption-respecting relation R w.r.t. which it is qCCA secure.

3.2 Public Key Signature

Public Key Signature Scheme. A public key signature (PKS) scheme consists of three PPT algorithms:
GS ,S and V.

• GS : It takes as input a security parameter λ and outputs a public key and private key pair (pk, sk).
• S: It takes as input a message m ∈M, where M is the message space, and the secret key sk and

outputs a signature σ.

• V: It takes as input a message-signature pair (m, σ) and the public key pk. It outputs a value 1 if(m, σ) is a valid message-signature pair else it outputs 0.

Correctness: For all (pk, sk) ←Ð GS(1λ) and for all messages m ∈M, it is required that

V(m,S(m, sk),pk) = 1.
Security of PKS in the Quantum Setting.

Definition 5. A signature scheme PKS = (GS ,S,V) is post-quantum strongly existentially unforgeable under
a chosen message attack (pqsUF-CMA) if, for any quantum PPT algorithm A, the advantage

Adv
pqsUF-CMA
A,PKS (λ) ∶= Pr [V(m∗, σ∗,pk) = 1 ∣ (pk, sk) ←Ð GS(1λ);

(m∗, σ∗) ←Ð AOSg(1λ,pk)]
is a negligible function in λ, where A is provided access to sign oracle OSg (described below) with a natural
restriction that if σ is a signature obtained from signature oracle on the message m, then (m, σ) ≠ (m∗, σ∗).

• Signature oracle (OSg): Given a message m, oracle returns σ ←Ð S(m, sk).
Definition 6. A signature scheme PKS = (GS ,S,V) is post-quantum weakly existentially unforgeable un-
der a chosen message attack (pqwUF-CMA) if it satisfies the same definition as pqsUF-CMA, except the
requirement that the forged message m∗ was not queried to the signature oracle.

Definition 7. A signature scheme PKS = (GS ,S,V) is post-quantum existentially unforgeable under no
message message attack (pqUF-NMA) if the probability that any quantum PPT algorithm A, provided no
access to the signature oracle, produces a valid message-signature pair is negligible in λ.
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Definition 8 ([BZ13]). A signature scheme PKS = (GS ,S,V) is strongly existentially unforgeable under
quantum chosen message attack (sUF-qCMA) if, for any quantum PPT algorithm A and any polynomial q,
the advantage

Adv
sUF-qCMA
A,PKS (λ) ∶= Pr

⎡⎢⎢⎢⎢⎣
V(mi, σi,pk) = 1∀i ∈ [q + 1] ∣ (pk, sk) ←Ð GS(1λ);

{(mi, σi) ∶ i ∈ [q + 1]} ←Ð AOq
Sg(1λ,pk)

⎤⎥⎥⎥⎥⎦
is a negligible function in λ, where A is provided superposition access to signature oracle Oq

Sg
(described

below), q is the number of signature oracle queries and the q + 1 forgeries, viz., {(mi, σi) ∶ i ∈ [q + 1]} are
pairwise distinct.

• Quantum Signature oracle (Oq
Sg

): For each query, the oracle chooses randomness r, and responds by
signing each message in the query using r as randomness:

∑
m,σp

ψm,σp ∣m, σp⟩ z→ ∑
m,σp

ψm,σp ∣m, σp ⊕ S(m, sk; r)⟩ .
Definition 9 ([BZ13]). A signature scheme PKS = (GS ,S,V) is weakly existentially unforgeable under a
quantum chosen message attack (wUF-qCMA) if it satisfies the same definition as sUF-qCMA, except the
requirement that the q + 1 message-signature pairs should have distinct messages.

3.3 Commitment

Commitment Scheme. A non-interactive commitment (C) scheme consists of three PPT algorithms:
CSetup,Commit and Open.

• CSetup: It takes as input a security parameter λ and outputs a public commitment key CK.

• Commit: It takes as input a message m ∈M, where M is the message space, and the public com-
mitment key CK and returns a pair (com,decom), where com and decom are the commitment and
decommitment of m respectively.

• Open: It takes as input a pair (com,decom) and the commitment key CK and outputs m ∈M or �.

Correctness: For all CK ←Ð CSetup(1λ) and for all messages m ∈M, it is required that

Open(Commit(m,CK),CK)4 = m.
Security of Commitment in the Quantum Setting. A stronger property for commitment in the
quantum setting was defined in [Unr16]. But for our purpose, the following definitions suffice.

Definition 10. A commitment scheme C = (CSetup,Commit,Open) is said to have qHiding property, if for
any quantum PPT algorithm A ∶= (A1,A2) the advantage

Adv
qHiding
A,C (λ) ∶= ∣Pr [b = b′] − 1

2
∣

in Exp
qHiding
A,C (λ) defined in Figure 2 is a negligible function in security parameter λ.

4Hereafter, for simplicity, we will skip writing CK in the input argument of Open and Commit.
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Exp
qHiding
A,C

(λ):

• CK ←Ð CSetup(1λ)

• (m0,m1, st)←ÐA1(1λ,CK)

• b
U
←Ð {0,1}

• (com∗,decom∗)←Ð Commit(mb)

• b′ ←Ð A2(1
λ,CK, com∗, st)

Figure 2: Experiment for qHiding

Definition 11. A commitment scheme C = (CSetup,Commit,Open) is said to have qBinding property, if
for any quantum PPT algorithm A the advantage

Adv
qBinding
A,C (λ) ∶= Pr [(m ≠ m′) ∧ (m,m′ ≠ �)]

in Exp
qBinding
A,C (λ) defined in Figure 3 is a negligible function in security parameter λ.

Definition 12. A commitment scheme C = (CSetup,Commit,Open) is said to have qfBinder property, if for
any quantum PPT algorithm A ∶= (A1,A2) the advantage

Adv
qfBinder
A,C (λ) ∶= Pr [Open(com,decom′) ≠ �]

in Exp
qfBinder
A,C (λ) defined in Figure 3 is a negligible function in security parameter λ.

Exp
qBinding

A,C
(λ):

• CK ←Ð CSetup(1λ)

• (com,decom,decom′)←ÐA(1λ,CK)

• m←Ð Open(com,decom)

• m′ ←Ð Open(com,decom′)

Exp
qfBinder

A,C
(λ):

• CK ←Ð CSetup(1λ)

• (m, st)←ÐA1(1
λ,CK)

• (com,decom)←Ð Commit(m)

• decom′ ←Ð A2(1
λ,CK, com, st)

Figure 3: Experiment for qBinding and qfBinder

Definition 13. A commitment scheme C = (CSetup,Commit,Open) is said to have qrConcealment property,
if for any quantum PPT algorithm A ∶= (A1,A2) the advantage

Adv
qrConcealment
A,C (λ) ∶= Pr [Open(com′,decom) ≠ � ∧ com ≠ com′]

in Exp
qrConcealment
A,C (λ) defined in Figure 4 is a negligible function in security parameter λ.
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Exp
qrConcealment
A,C

(λ):

• CK ←Ð CSetup(1λ)

• (m, st)←Ð A1(1λ,CK)

• (com,decom)←Ð Commit(m)

• com′ ←ÐA2(1
λ,CK, com,decom, st)

Figure 4: Experiment for qrConcealment

3.4 Signcryption

Signcryption Scheme. A signcryption (SC) scheme consists of five PPT algorithms: Setup, KeyGenS,
KeyGenR, SC and US.

• Setup: It takes as input a security parameter λ and outputs public parameters PP .

• KeyGenS: It takes as input PP and outputs a public key and private key pair (pkS, skS) for the sender.

• KeyGenR: It takes as input PP and outputs a public key and private key pair (pkR, skR) for the
receiver.

• SC: It takes as input a message m ∈M, where M is the message space, sender’s private key skS and
receiver’s public key pkR and outputs a signcryption text u.

• US: It takes as input a signcryption text u, receiver’s private key skR and sender’s public key pkS and
outputs a message m ∈M or �.

Correctness: For all PP ←Ð Setup(1λ), all (pkS, skS) ←Ð KeyGenS(PP), all (pkR, skR) ←Ð KeyGenR(PP)
and for all m ∈M, it is required that US(SC(m, skS,pkR), skR,pkS) = m.
Security of SC in the Quantum Setting.

Insider Model. In the insider model the adversary is allowed to corrupt all parties except the receiver
(resp. sender) in case of confidentiality (resp. unforgeability).

Definition 14. A signcryption scheme SC is said to be pqIND-CCA secure in dynamic multi-user insider
model (dM-pqIND-iCCA) if for all quantum PPT algorithms A ∶= (A1,A2), the advantage

Adv
dM-pqIND-iCCA
A,SC (λ) ∶= ∣Pr [b = b′] − 1

2
∣

in ExpdM-IND-iCCA
A,SC (λ) defined in Figure 5 is a negligible function in security parameter λ, where A is provided

classical access to unsigncryption oracle OU (described below) with natural restrictions that (u∗,pkS∗) was
never queried to OU and (pkS∗ , skS∗) is a valid pair.

• Unsigncryption oracle (OU ): Given (u∗,pkS), oracle returns US(u∗, skR∗ ,pkS).
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Exp
dM-pqIND-iCCA
A,SC

(λ):

• PP ←Ð Setup(1λ)

• (pkR∗ , skR∗)←Ð KeyGenR(PP)

• (m0,m1,pkS∗ , skS∗ , st)←ÐA
OU
1
(PP,pkR∗) with ∣m0∣ = ∣m1∣

• b
U
←Ð {0,1}

• u∗ ←Ð SC(mb, skS∗ ,pkR∗)

• b′ ←ÐA
OU
2
(PP,pkR∗ ,pkS∗ , skS∗ ,u

∗, st)

Figure 5: Experiment for confidentiality (dynamic multi-user insider model)

Definition 15. A signcryption scheme SC is said to be IND-qCCA secure in dynamic multi-user insider
model (dM-IND-iqCCA) if it satisfies the same definition as dM-pqIND-iCCA with the exception that the
adversary is provided superposition access to unsigncryption oracle Oq

U (described below).

• Quantum Unsigncryption oracle (Oq
U
): For each such query, the challenger unsigncrypts all signcryption

texts in the superposition, except those that were returned in response to a challenge query:

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩ (4)

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if (u,pkS) = (u∗,pkS∗)
US(u, skR∗ ,pkS) otherwise.

The notion of dM-IND-iqgCCA can be defined in a similar way as in IND-qgCCA (Definition 4). We
define an equivalence relation R over the pairs (u,pkS). R is said to be unsigncryption-respecting if
R((u1,pkS1), (u2,pkS2)) = True Ô⇒ (US(u1, skR∗ ,pkS1) = US(u2, skR∗ ,pkS2))∧ (pkS1 = pkS2). The unsign-
cryption oracle query is restricted using relation R instead of equality relation. A superposition query can
be handled by modifying the description of f in Equation 4 in the following way:

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if R((u,pkS), (u∗,pkS∗)) = True
US(u, skR∗ ,pkS) otherwise.

Definition 16. A signcryption scheme SC is said to be IND-qgCCA secure in dynamic multi-user insider
model (dM-IND-iqgCCA), if there exists some efficient unsigncryption-respecting relation R w.r.t. which it
is qCCA secure.

Definition 17. A signcryption scheme SC is pqsUF-CMA secure in dynamic multi-user insider model (dM-
pqsUF-iCMA) if, for any quantum PPT algorithm A, the advantage

Adv
dM-pqsUF-iCMA
A,SC (λ) ∶= Pr [m∗ ≠ �]

in Exp
dM-pqsUF-iCMA
A,SC (λ) defined in Figure 6 is a negligible function in λ, where A is provided classical access

to signcryption oracle OS (described below) with natural restrictions that if u is a signcryption obtained from
signcryption oracle on (m,pkR), then (u,m,pkR) ≠ (u∗,m∗,pkR∗) and (pkR∗ , skR∗) is a valid pair.
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Exp
dM-pqsUF-iCMA
A,SC

(λ):

• PP ←Ð Setup(1λ)

• (pkS∗ , skS∗)←Ð KeyGenS(PP)

• (u∗,pkR∗ , skR∗)←ÐA
OS (PP,pkS∗ )

• m∗ ←Ð US(u∗, skR∗ ,pkS∗ )

Figure 6: Experiment for unforgeability (dynamic multi-user insider model)

• Signcryption oracle (OS): Given (m,pkR), oracle returns SC(m, skS∗ , pkR).
Definition 18. A signcryption scheme SC is pqwUF-CMA secure in dynamic multi-user insider model(dM-pqwUF-iCMA) if it satisfies the same definition as dM-pqsUF-iCMA, except the requirement that the
the message (m∗,pkR∗) corresponding to the forgery was not queried to the signcryption oracle.

Definition 19. A signcryption scheme SC is sUF-qCMA secure in dynamic multi-user insider model (dM-
sUF-iqCMA) if for any quantum PPT algorithm A, the advantage

Adv
dM-sUF-iqCMA
A,SC (λ) ∶= Pr [mi ≠ �∀i ∈ [q + 1]]

in Exp
dM-sUF-iqCMA
A,SC (λ) defined in Figure 7 is a negligible function in λ, where A is provided superposition

access to signcryption oracle Oq
S

(described below), q is the number of signcryption oracle queries with the
requirement that q + 1 forgeries are pairwise distinct and (pkRi, skRi) are valid key pairs for each i ∈ [q + 1].

• Quantum Signcryption oracle (Oq
S): For each query, the oracle chooses randomness r, and responds by

signcrypting each message in the query using r as randomness:

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ SC(m, skS∗ ,pkR; r)⟩ .

Exp
dM-sUF-iqCMA

A,SC
(λ):

• PP ←Ð Setup(1λ)

• (pkS∗ , skS∗)←Ð KeyGenS(PP)

• {(ui,pkRi, skRi) ∶ i ∈ [q + 1]}←Ð A
OS (PP ,pkS∗)

• mi ←Ð US(ui, skRi,pkS∗),∀i ∈ [q + 1]

Figure 7: Experiment for unforgeability (dynamic multi-user insider model)

Definition 20. A signcryption scheme SC is wUF-qCMA secure in dynamic multi-user insider model (dM-
wUF-iqCMA) if it satisfies the same definition as dM-sUF-iqCMA, except the requirement that the tuples{(US(ui, skRi,pkS∗),pkRi) ∶ i ∈ [q + 1]} are valid and pairwise distinct.
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Outsider Model. In the outsider model the adversary is allowed to corrupt all other parties except the
sender and receiver for both confidentiality and unforgeability. In other words, adversary can only learn
the public keys of sender and receiver and can learn secret keys of all other parties.

Definition 21. A signcryption scheme SC is said to be IND-qCCA secure in multi-user outsider model(fM-IND-oqCCA) if for all quantum PPT algorithms A ∶= (A1,A2), the advantage

Adv
fM-IND-oqCCA
A,SC (λ) ∶= ∣Pr [b = b′] − 1

2
∣

in Exp
fM-IND-oqCCA
A,SC (λ) defined in Figure 8 is a negligible function in security parameter λ, where A is

provided superposition access to signcryption oracle Oq
S and unsigncryption oracle Oq

U (described below)
with natural restrictions that (u∗,pkS∗) was never queried to Oq

U .

• Quantum Unsigncryption oracle (Oq
U
): For each such query, the challenger unsigncrypts all signcryption

texts in the superposition, except those that were returned in response to a challenge query:

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩ (5)

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if (u,pkS) = (u∗,pkS∗)
US(u, skR∗ ,pkS) otherwise.

• Quantum Signcryption oracle (Oq
S
): For each query, the oracle chooses randomness r, and responds by

signcrypting each message in the query using r as randomness:

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ SC(m, skS∗ ,pkR; r)⟩ .

Exp
fM-IND-oqCCA
A,SC

(λ):

• PP ←Ð Setup(1λ)

• (pkR∗ , skR∗)←Ð KeyGenR(PP)

• (pkS∗ , skS∗)←Ð KeyGenS(PP)

• (m0,m1, st)←Ð A
Oq

U
,Oq

S
1

(PP,pkR∗ ,pkS∗ ) with ∣m0∣ = ∣m1∣

• b
U
←Ð {0,1}

• u∗ ←Ð SC(mb, skS∗ ,pkR∗)

• b′ ←ÐA
Oq

U
,Oq

S
2

(PP ,pkR∗ ,pkS∗ ,u
∗, st)

Figure 8: Experiment for confidentiality (multi-user outsider model)

The notion of fM-IND-oqgCCA can be defined in a similar way as in IND-qgCCA (Definition 4). We
define an equivalence relation R over the pairs (u,pkS). R is said to be unsigncryption-respecting if
R((u1,pkS1), (u2,pkS2)) = True implies that (US(u1, skR∗ ,pkS1) = US(u2, skR∗ ,pkS2)) ∧ (pkS1 = pkS2). The
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unsigncrypt oracle query is restricted using relation R instead of equality relation. A superposition query
can be handled by modifying the description of f in Equation 5 in the following way:

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if R((u,pkS), (u∗,pkS∗)) = True
US(u, skR∗ ,pkS) otherwise.

Definition 22. A signcryption scheme SC is IND-qgCCA secure in multi-user outsider model (fM-IND-
oqgCCA), if there exists an efficient unsigncryption-respecting relation R w.r.t. which it is qCCA secure.

Definition 23. A signcryption scheme SC is sUF-qCMA secure in multi-user outsider model (fM-sUF-
oqCMA) if for any quantum PPT algorithm A, the advantage

Adv
fM-sUF-oqCMA
A,SC (λ) ∶= Pr [mi ≠ �∀i ∈ [q + 1]]

in Exp
fM-sUF-oqCMA
A,SC (λ) defined in Figure 9 is a negligible function in λ, where A is provided superposi-

tion access to signcryption oracle Oq
S

and unsigncryption oracle Oq
U

(described below), q is the number of
signcryption oracle queries with the requirement that q + 1 forgeries are pairwise distinct.

• Quantum Signcryption oracle (Oq
S
): For each query, the oracle chooses randomness r, and responds by

signcrypting each message in the query using r as randomness:

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ SC(m, skS∗ ,pkR; r)⟩ .

• Quantum Unsigncryption oracle (Oq
U ): For each query, the oracle responds by applying the following

transformation:

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ US(u, skR∗ ,pkS)⟩ .

Exp
fM-sUF-oqCMA

A,SC
(λ):

• PP ←Ð Setup(1λ)

• (pkS∗ , skS∗)←Ð KeyGenS(PP)

• (pkR∗ , skR∗)←Ð KeyGenR(PP)

• {ui ∶ i ∈ [q + 1]} ←ÐA
Oq

U
,Oq

S (PP,pkS∗ ,pkR∗ )

• mi ←Ð US(ui, skR∗ ,pkS∗ ),∀i ∈ [q + 1]

Figure 9: Experiment for unforgeability (multi-user outsider model)

Definition 24. A signcryption scheme SC is wUF-qCMA secure in multi-user outsider model (fM-wUF-
oqCMA) if it satisfies the same definition as fM-sUF-oqCMA, except the requirement that the q + 1 sign-
cryption texts should unsigncrypt to distinct messages.
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We also consider a weaker variant of the definitions for quantum security in the outsider model where
quantum access is provided only to the unsigncryption oracle and the challenge queries and signcryption
oracle queries are classical. Intuitively, such definitions capture the situation where the sender party runs
the protocol on a classical device and the receiver party may run the protocol on a quantum device. We
call these definitions as fM-IND-ouqCCA, fM-IND-ouqgCCA in the confidentiality case and fM-sUF-ouqCMA,
fM-wUF-ouqCMA in the authenticity case. Similarly, for the two-user model we call these definitions as
IND-ouqCCA, IND-ouqgCCA in the confidentiality case and sUF-ouqCMA, wUF-ouqCMA in the authenticity
case. Note that in the authenticity case, the adversary is only required to produce a single forgery instead
of q + 1 forgeries.

4 Constructions

Here, we describe various paradigms of constructing signcryption schemes that are based on generic com-
position of encryption, signature and commitment schemes. In particular, we discuss the encrypt-then-sign(EtS) and sign-then-encrypt (StE) paradigms [ADR02] which are based on sequential generic composition
of encryption and signature. We also discuss the commit-then-encrypt-and-sign (CtE&S) [ADR02] which
is a parallel composition of encryption and signature.

Encrypt-then-sign. The encrypt-then-sign (EtS) paradigm is based on the sequential generic composi-
tion of encryption and signature. Let PKE ∶= (GE ,E ,D) and PKS ∶= (GS ,S,V) be the primitive encryption
scheme and signature scheme respectively. The receiver and sender’s public key and private key are obtained
by running (pkR, skR) ←Ð GE(1λ), (pkS, skS) ←Ð GS(1λ) respectively. To signcrypt a message m, sender
runs c ←Ð E(m∣∣pkS,pkR), then it executes σ ←Ð S(c∣∣pkR, skS) and returns u ∶= (c, σ). To unsigncrypt a
signcryption text u, receiver runs flag ←Ð V(c∣∣pkR, σ,pkS). If flag = True, it runs m∣∣pkS′ ←Ð D(c, skR) and
returns m if pkS′ = pkS. In all other cases, it returns �.

Sign-then-encrypt. The sign-then-encrypt (StE) paradigm is based on the sequential generic composi-
tion of signature and encryption. Let PKE ∶= (GE ,E ,D) and PKS ∶= (GS ,S,V) be the primitive encryption
scheme and signature scheme respectively. The receiver and sender’s public key and private key are obtained
by running (pkR, skR) ←Ð GE(1λ), (pkS, skS) ←Ð GS(1λ) respectively. To signcrypt a message m, sender
runs σ ←Ð S(m∣∣pkR, skS), then it executes c ←Ð E(m∣∣σ∣∣pkS,pkR) and returns u ∶= c. To unsigncrypt a
signcryption text u, receiver runs m∣∣σ∣∣pkS′ ←Ð D(u, skR). If pkS′ = pkS, it runs flag ←Ð V(m∣∣pkR, σ,pkS).
If flag = True, it returns m. In all other cases it returns �.

Commit-then-encrypt-and-sign. The commit-then-encrypt-and-sign (CtE&S) paradigm is based on
the parallel composition of encryption and signature. Let PKE ∶= (GE ,E ,D), PKS ∶= (GS ,S,V) and C ∶=(CSetup,Commit,Open) be the primitive encryption scheme, signature scheme and commitment schemes
respectively. The public parameters of signcryption scheme are set as PP ∶= CK, where CK ←Ð CSetup(1λ).
The receiver and sender’s public key and private key are obtained by running (pkR, skR) ←Ð GE(1λ),(pkS, skS) ←Ð GS(1λ) respectively. To signcrypt a message m, sender runs (com,decom) ←Ð Commit(m),
then it executes in parallel σ ←Ð S(com∣∣pkR, skS) and c ∶= E(decom∣∣pkS,pkR). It returns the signcryp-
tion u ∶= (com, σ, c). To unsigncrypt a signcryption text u, receiver runs flag ←Ð V(com∣∣pkR, σ,pkS) and
decom∣∣pkS′ ←Ð D(c, skR) in parallel. If flag = True and pkS′ = pkS, it returns Open(com,decom) else it
returns �.
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5 Insider Model

In this section, we analyze the quantum security of signcryption constructions based on EtS, StE and
CtE&S paradigms in the multi-user insider model where the adversary is allowed to corrupt one of the two
participants. The two-user model, being a special case of multi-user model, need not be treated separately
as the same results hold. The security proofs, though closely follow their classical counterparts, involve
several subtle issues while simulating quantum queries. In particular, the power of adversary to arbitrarily
initialize the output register coupled with the property of no-cloning, unique to quantum computing, makes
the proofs non-trivial.

We use the following technical tool in the subsequent proofs. Let AQ be a quantum algorithm performing
quantum queries to an oracle O, and let qr(∣φt⟩) be the magnitude squared of r in the superposition of tth

query ∣φt⟩. We call this the query probability of r in tth query. If we sum over all t, we get the total query
probability of r.

Lemma 5.1 ([BBBV97] Theorem 3.3). Let AQ be a quantum algorithm running in time T with oracle
access to O. Let ǫ > 0 and let S ⊆ [1, T ] × {0,1}n be a set of time-string pairs such that ∑(t,r)∈S qr(∣φt⟩) ≤ ǫ.
If we modify O into an oracle O′ which answers each query r at time t by providing the same string R
(which has been independently sampled at random), then the Euclidean distance between the final states of
AQ when invoking O and O′ is at most

√
Tǫ.

5.1 Encrypt-then-Sign

Classically, it has been shown that IND-CCA security for signcryption in the EtS paradigm cannot be
achieved against insider adversaries [ADR02]. However, EtS paradigm preserves the IND-gCCA security
and sUF-CMA security of the base encryption and signature schemes in the insider model. Here, we analyze
the quantum analogues of these results. We start with the quantum security of confidentiality in the EtS
paradigm based construction in the multi-user insider model. The proof strategy is an amalgamation of its
classical counterpart [ADR02] and our techniques.

Theorem 5.1. If the primitive encryption scheme PKE is IND-qgCCA secure, then the signcryption scheme
SC in the EtS paradigm is IND-qgCCA secure in dynamic multi user insider-security model (dM-IND-
iqgCCA (c.f., Definition 16)).
Proof. Let R be the equivalence relation w.r.t. which PKE is IND-qgCCA secure. Let pkR∗ represent the
identity of receiver in the challenge. We define the equivalence relation R′ for the induced encryption for
SC to be

R′((u1,pkS1), (u2,pkS2)) = True
⇕

R(c1, c2) = True ∧ (V(c1∣∣pkR∗ , σ1,pkS1) = 1 ∧ V(c2∣∣pkR∗ , σ2,pkS2) = 1) ∧ (pkS1 = pkS2).
It can be checked that R′ is an unsigncryption-respecting relation over the signcryption texts.

Let A be a quantum PPT adversary which has advantage ǫ in breaking dM-IND-iqgCCA security of SC.
We construct a quantum PPT algorithm B which breaks the IND-qgCCA security of PKE with advantage
at least ǫ. Let CH be the challenger for the encryption scheme PKE. CH runs (pkR∗ , skR∗) ←Ð GE(1λ) and
sends pkR∗ to B. B forwards pkR∗ to A and simulates A’s queries as described below.
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Challenge query: A generates sender’s key pair (pkS∗ , skS∗) and submits two equal length messages m0 and
m1 along with (pkS∗ , skS∗) to B. B submits the message pair (m0∣∣pkS∗ ,m1∣∣pkS∗) to the challenger CH. CH

samples b
U←Ð {0,1}, runs c∗ ←Ð E(mb∣∣pkS∗ ,pkR∗) and sends c∗ to B. B then runs σ∗ ←Ð S(c∗∣∣pkR∗ , skS∗),

sets u∗ ∶= (c∗, σ∗) and returns it to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

Note that, the query uquant consists of three registers U = (C,S),PKS and M. These resisters represent
respectively the actual unsigncryption query, the sender public key and the message. The latter is where
the message is recorded by the simulator B after unsigncryption. B appends an ℓm qubit ancilla register,
containing the state ∣0ℓm⟩, to the query and obtains the state ∑

u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm⟩. B then

sends a decryption query consisting of the 1st register C and the ancilla register to CH. CH applies the
decryption operator on the received quantum state which results in the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm⟩ z→ ∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm ⊕ g(c)⟩
where

g(c) = ⎧⎪⎪⎨⎪⎪⎩
� if R(c, c∗) = True
D(c, skR∗) otherwise.

CH sends the resulting state to B. B then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp, g(c)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp ⊕ f (∆), g(c)⟩

where

f (∆) = ⎧⎪⎪⎨⎪⎪⎩
[g(c)]1 if (V(c∣∣pkR∗ , σ,pkS) = 1 ∧ pkS = [g(c)]2)
� otherwise,

for ∆ = (u, g(c),pkS).
Note that in this process the ancilla register may get entangled with the other registers. To perfectly

simulate A’s view, B uses the EtU technique to unentangle the ancilla register: B again sends a decryption
query consisting of 1st register C and the ancilla register to CH. CH applies the decryption operator on the
received quantum state which results in the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp ⊕ f (∆), g(c)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp ⊕ f (∆), g(c) ⊕ g(c)⟩

Finally, B obtains the state ∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp ⊕ f (∆)⟩ ⊗ ∣0ℓm⟩. It discards the last register

and sends the state ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩ to A.

Guess: A sends a guess b′ to B. B returns the same bit b′ to CH.
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Analysis: We show that B simulates A’s unsigncryption queries properly. It suffices to show that each of
the basis element ∣c, σ,pkS,mp⟩ is handled properly. The definition of R′ states that a query ∣c, σ,pkS,mp⟩
is legitimate if one of the following conditions is false:

1. R(c, c∗) = True
2. V(c∣∣pkR∗ , σ,pkS) = True
3. pkS = pkS∗

If condition 1 is false then B answers by making decryption query to CH. If condition 1 is true and
condition 2 or 3 is false then by the nature of construction (u,pkS) is an invalid query. Hence, B should
return � for any query u which satisfies R(c, c∗) = True. This is exactly how unsigncryption queries are
handled in the simulation of A. Hence, B simulates A’s queries perfectly and breaks the IND-qgCCA security
of PKE with advantage at least ǫ.

In Theorem 5.2, we state the quantum security of unforgeability of signcryption in EtS paradigm. To
prove Theorem 5.2, we adopt the techniques similar to that used in the proof of Theorem 5.1.

Theorem 5.2. If the primitive signature scheme PKS is sUF-qCMA (resp. wUF-qCMA) secure, then the
signcryption scheme SC in the EtS paradigm is sUF-qCMA (resp. wUF-qCMA) secure in dynamic multi
user insider-security model (dM-sUF-iqCMA (resp. dM-wUF-iqCMA) (c.f., Definitions 19, 20)).
Proof. Let A be a quantum PPT adversary that can break dM-sUF-iqCMA (resp. dM-wUF-iqCMA) security
of the signcryption scheme SC with probability ǫ. Let q be the number of signcryption oracle queries allowed
to A. We construct a quantum PPT algorithm B which makes q signature oracle queries and breaks the
sUF-qCMA (resp. wUF-qCMA) security of PKS with advantage at least ǫ. Let CH be the challenger for the
signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð GS(1λ) and sends pkS∗ to B. B forwards pkS∗ to A and
simulates A’s queries as described below.

Signcryption queries: Let mquant = ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ be any signcryption query made by A. Note

that, the query mquant consists of three registers M,PKR and U = (C,S). These resisters represent respec-
tively the message query, receiver public key and the actual signcryption text. The latter is where the
signcryption text is recorded after signcryption. B appends an ℓc qubit ancilla register, containing the state∣0ℓc⟩, to the query and obtains the state ∑

m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp,0ℓc⟩. B chooses a randomness renc

and applies the encryption operator which results in the following unitary transformation

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp,0ℓc⟩ z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp,0ℓc ⊕ E(m∣∣pkS∗ ,pkR; renc)⟩ .

B sends a signature query on 2nd,4th and 5th registers (PKR,S and the ancilla register) to CH. Here
the ancilla register and PKR constitute the message register for the signature algorithm and S stores the
signature. CH applies the signature operator on the received quantum state which results in the following
unitary transformation (here c = E(m∣∣pkS∗ ,pkR; renc))

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp, c⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp ⊕ S(c∣∣pkR, skS∗), c⟩ .
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CH sends the resulting state to B. B then applies the following transformation on the obtained state (here
σ = S(c∣∣pkR, skS∗))

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp, σp ⊕ σ, c⟩z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR, cp ⊕ c, σp ⊕ σ, c⟩ .
The resulting state can be equivalently written as

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ SC(m, skS∗ ,pkR), c⟩ .

Note that B can unentangle the last register by applying encryption operator on 1st and 4th register using the
same randomness renc to obtain the state ∑

m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ u⟩⊗ ∣0ℓc⟩, where u = SC(m, skS∗ ,pkR).
It discards the last register and sends ∑

m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ u⟩ to A.

Forgery: A outputs q+1 forgeries {(ui,pkRi, skRi) ∶ i ∈ [q+1]}. B forwards (c1∣∣pkR1, σ1), . . . , (cq+1∣∣pkRq+1, σq+1)
as forgeries to CH.

Analysis: It is clear that B breaks sUF-qCMA (resp. wUF-qCMA) security of PKS with probability at least
ǫ.

5.2 Sign-then-Encrypt

Classically, it has been shown that sUF-CMA security for signcryption in the StE paradigm cannot be
achieved against insider adversaries [ADR02]. However, StE paradigm preserves the IND-CCA security and
wUF-CMA security of the base encryption and signature schemes in the insider model. Here, we analyze the
quantum analogues of these results. We first analyze quantum security of confidentiality of signcryption in
StE paradigm. To prove Theorem 5.3, we adopt the techniques similar to that used in the proof of Theorem
5.1.

Theorem 5.3. If the primitive encryption scheme PKE is IND-qCCA (resp. IND-qgCCA) secure, then the
signcryption scheme SC in the StE paradigm is IND-qCCA (resp. IND-qgCCA) secure in the dynamic multi
user insider-security model (dM-IND-iqCCA (resp. dM-IND-iqgCCA) (c.f., Definitions 15, 16)).
Proof. Here, we only detail the security reduction in the dM-IND-iqgCCA security model of SC because the
proof in the dM-IND-iqCCA security model follows as a special case of dM-IND-iqgCCA security. Let R be
the equivalence relation w.r.t. which PKE is IND-qgCCA secure. We define the equivalence relation R′ for
the induced encryption for SC to be

R′((u1,pkS1), (u2,pkS2)) = True⇔R(c1, c2) = True ∧ (pkS1 = pkS2).
It can be checked that R′ is an unsigncryption-respecting relation over the signcryption texts.

Let A be a quantum PPT adversary which has advantage ǫ in breaking dM-IND-iqgCCA security of SC.
We construct a quantum PPT algorithm B which breaks the IND-qgCCA security of PKE with advantage
at least ǫ. Let CH be the challenger for the encryption scheme PKE. CH runs (pkR∗ , skR∗) ←Ð GE(1λ) and
sends pkR∗ to B. B forwards pkR∗ to A and simulates A’s queries as described below.
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Challenge query: A generates sender’s key pair (pkS∗ , skS∗) and submits two equal length messages m0 and
m1 along with (pkS∗ , skS∗) to B. B runs σ0 ←Ð S(m0∣∣pkR∗ , skS∗), σ1 ←Ð S(m1∣∣pkR∗ , skS∗) and submits

(m0∣∣σ0∣∣pkS∗ ,m1∣∣σ1∣∣pkS∗) to CH. CH picks b
U←Ð {0,1}, runs c∗ ←Ð E(mb∣∣σb∣∣pkS∗ ,pkR∗) and sends c∗ to

B. B sets u∗ ∶= c∗ and returns it to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

Note that, the query uquant consists of three registers U = (C),PKS and M. These resisters represent
respectively the actual unsigncryption query, the sender public key and the message. The latter is where
the message is recorded after unsigncryption. B appends an ℓm qubit ancilla register, containing the state∣0ℓm⟩, to the query and obtains the state ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm⟩. B then sends a decryption query

consisting of 1st and 4th register (U and ancilla register) to CH. CH applies the decryption operator on the
received quantum state which results in the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm⟩ z→ ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm ⊕ g(u)⟩
where

g(u) =
⎧⎪⎪⎨⎪⎪⎩
� if R(u, c∗) = True
D(u, skR∗) otherwise.

CH sends the resulting state to B. B then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp, g(u)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆), g(u)⟩

where

f (∆) = ⎧⎪⎪⎨⎪⎪⎩
[g(u)]1 if V([g(u)]1 ∣∣pkR∗ , [g(u)]2,pkS) = 1 ∧ pkS = [g(u)]3
� otherwise,

and ∆ = (g(u),pkS).
Note that the ancilla register is entangled with the first three registers. To perfectly simulate A’s

view, simulator can use the EtU technique to unentangle the ancilla register: B again sends a de-
cryption query consisting of 1st and 4th register to CH to unentangle the ancilla register. Finally,
B obtains the state ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩ ⊗ ∣0ℓm⟩. It discards the last register and sends

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩ to A.

Guess: A sends a guess b′ to B. B returns the same bit b′ to CH.

Analysis: It is easy to see that B simulates A’s queries perfectly and it breaks the IND-qgCCA security of
PKE with advantage at least ǫ.

Next, we argue quantum security of unforgeability of signcryption in StE paradigm (Theorem 5.4).
Recall that in the dM-wUF-iqCMA security model, the adversary is provided superposition access to the
signcryption oracle. A quantum signcryption query consists of three registers, viz., message register (M),
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receiver public key register (PKR) and signcryption text register (U) where the latter will record the sign-
cryption of the message contained in register M. We first discuss an issue that arises in the security analysis.
If the adversary is allowed to initialize U with arbitrary state during simulation, then the simulator cannot
unentangle the ancilla register once it is entangled because of the following reasons. As discussed in Section
1, the EtU technique is applicable in cases where all the secret information, viz., secret keys and randomness
are known to the simulator or the output of oracle on a given input is deterministic. The first case is not
applicable as the simulator does not possess the secret information. Since the signature algorithm may not
be deterministic, the second case is not applicable as well. Even if the signature algorithm is deterministic,
to answer one signcryption oracle query the simulator will have to make 2 signature oracle queries. For
simulating q signcryption oracle queries the simulator shall make 2q signature oracle queries, thus rendering
the simulation useless.

To bypass above problems, we restrict the adversary to initialize U in the state ∣0ℓu⟩. Assuming that
the adversary may not be honest, the above condition can be enforced by requiring the adversary to
send a classical description of the quantum query [GHS16]. Further, we use a Type-2 unitary operator 5

for encryption to avoid querying twice to the signature oracle in answering one signcryption query. The
requirement we imposed is achieved in the following way. The adversary outputs a state ∣0ℓm+ℓu⟩ and a
unitary operator U = Um⊗Iu such that the joint action of Um and Iu on the state ∣0ℓm+ℓu⟩ gives mquant⊗∣0ℓu⟩,
where mquant = ∑

m,pkR

ψm,pkR ∣m,pkR⟩. Security analysis in case of arbitrary manipulation of the signcryption

text register seems to be difficult and is an interesting problem to pursue.

Theorem 5.4. If the primitive signature scheme PKS is wUF-qCMA secure, then the signcryption scheme
SC in the StE paradigm is wUF-qCMA secure in dynamic multi user insider-security model (dM-wUF-
iqCMA (c.f., Definition 20)).
Proof. Let A be a quantum PPT adversary that can break dM-wUF-iqCMA security of the signcryption
scheme SC with probability ǫ. Let q be the number of signcryption oracle queries allowed to A. We
construct a quantum PPT algorithm B which makes q signature oracle queries and breaks the wUF-qCMA

security of PKS with advantage at least ǫ. Let CH be the challenger for the signature scheme PKS. CH runs(pkS∗ , skS∗) ←Ð GS(1λ) and sends pkS∗ to B. B forwards pkS∗ to A and simulates A’s queries as described
below.

Signcryption queries: A outputs a classical description of a quantum message mquant ⊗ ∣0ℓu⟩ by sending a
(classical) bitstring describing a quantum circuit U which takes no input but starts from a fixed initial state∣0ℓm+ℓu⟩ and outputs mquant ⊗ ∣0ℓu⟩. The second register will store the signcryption text.

Let mquant ⊗ ∣0ℓu⟩ = ∑
m,pkR

ψm,pkR ∣m,pkR,0ℓm ,0ℓs ,0ℓps ,0ℓpr ,0ℓrenc ⟩, where ℓu = ℓm + ℓs + ℓps + ℓpr + ℓrenc, and

ℓm, ℓs, ℓps, ℓpr and ℓrenc denote the lengths of plaintext, signature, pkS∗ , pkR and randomness of encryption
algorithm respectively. B sends a signature query consisting of 1st,2nd and 4th register (M,PKR and the first
sub-component of ancilla register representing the value 0ℓs) to CH. Here M and PKR together constitute the
message register for the signature challenger CH and the ancilla register stores the signature corresponding
to PKS. CH applies the signature operator on the received quantum state resulting in the following unitary

5For bijective functions like encryption, one can consider transformations of the form:

∣x, y⟩ z→ ∣φx,y⟩ ,

where the length of the ancilla register (stores the additional qubits apart from the input) is ∣y∣ = ∣E(x)∣ − ∣x∣ and φx,0 = E(x)
for every x, i.e., initializing the ancilla register in the ∣0⟩ state produces correct evaluation of E .
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Figure 10: Quantum circuit implementing unitary USC, where the simulator makes signature queries to
its external oracle (shown by dashed line) which is handled by the challenger of the underlying signature
scheme and then it encrypts the message-signature.

transformation

∑
m,pkR

ψm,pkR ∣m,pkR,0ℓm ,0ℓs ,0ℓps ,0ℓpr ,0ℓrenc ⟩ z→ ∑
m,pkR

ψm,pkR ∣m,pkR,0ℓm ,0ℓs ⊕ S(m∣∣pkR, skS∗),0ℓps ,0ℓpr ,0ℓrenc ⟩ .
CH sends the resulting state to B. B applies the following transformation (here σ = S(m∣∣pkR, skS∗))

∑
m,pkR

ψm,pkR ∣m,pkR,0ℓm , σ,0ℓps ,0ℓpr ,0ℓrenc ⟩z→ ∑
m,pkR

ψm,pkR ∣m,pkR,0ℓm ⊕m, σ,0ℓps ,0ℓpr ⊕ pkR,0
ℓrenc ⟩ .

B adds the states ∣pkS∗⟩ and ∣renc⟩ to the resultant state and applies the Type-2 unitary operator for
encryption [GHS16] on the 3rd,4th,5th, 6th and 7th registers of the obtained state.

∑
m,pkR

ψm,pkR ∣m,pkR,m, σ,pkS∗ ,pkR, renc⟩z→ ∑
m,pkR

ψm,pkR ∣m,pkR,E(m∣∣σ∣∣pkS∗ ,pkR; renc)⟩ .

The resulting state can be equivalently written as ∑
m,pkR

ψm,pkR ∣m,pkR,u⟩, where u = SC(m, skS∗ ,pkR). B
forwards the obtained state to A. For better understanding, a quantum circuit for USC is shown in Figure
10.

Forgeries: A outputs q + 1 forgeries {(ui,pkRi, skRi) ∶ i ∈ [q + 1]}.
B forwards the set {([(D(ui, skRi)]1∣∣pkRi, [D(ui, skRi)]2) ∶ i ∈ [q + 1]} as forgeries to CH.

Analysis: It is clear that B breaks wUF-qCMA security of PKS with probability at least ǫ.

5.3 Commit-then-Encrypt-and-Sign

Classically, it has been shown that IND-CCA and sUF-CMA security for signcryption in the CtE&S paradigm
cannot be achieved against insider adversaries [ADR02]. However, CtE&S paradigm preserves the IND-gCCA
security and wUF-CMA security of the base encryption and signature schemes in the insider model provided
that the commitment scheme satisfies the notions of hiding, binding and rconcealment. Here, we analyze the
quantum analogues of these results.
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In Theorem 5.5, we argue the quantum security of confidentiality of CtE&S paradigm through a hybrid
argument as given in [NP16]. The proofs mainly follow techniques that are already elaborated in the context
of previous proofs. We only give a proof sketch here and the lemmas involved in the same are deferred to
Appendices A.1, A.2 and A.3.

Theorem 5.5. If the primitive encryption scheme PKE is IND-qgCCA secure and the commitment scheme
C satisfies qHiding and qrConcealment properties, then the signcryption scheme SC in the CtE&S paradigm
is IND-qgCCA secure in the dynamic multi user insider-security model (dM-IND-iqgCCA (c.f., Definition
16)).
Proof Sketch. Let R be the equivalence relation w.r.t. which PKE is IND-qgCCA secure. Let pkR∗

represent the identity of receiver in the challenge. We define the equivalence relation R′ for the induced
encryption for SC to be R′((u1,pkS1), (u2,pkS2)) = True if and only if R(c1, c2) = True, (com1 = com2),(V(com1∣∣pkR∗ , σ1,pkS1) = 1 ∧ V(com2∣∣pkR∗ , σ2,pkS2) = 1) and (pkS1 = pkS2). It can be checked that R′ is
an unsigncryption-respecting relation over the signcryption texts. Let (u∗ = (com∗, σ∗, c∗),pkS∗) denote a
challenge signcryption text. Let (u = (com, σ, c),pkS) be any signcryption text. We define an event

E ∶= [(com∗ ≠ com) ∧ R(c∗, c) = True ∧ US(u, skR∗ ,pkS) ≠ �].
For any signcryption text (u,pkS), we say that E[u,pkS] = True if (u,pkS) satisfies the event E. We prove
security through a sequence of three games.

GameReal : The original dM-IND-iqgCCA game of signcryption.

Game0 : Same as GameReal except for the answers of unsigncryption queries after the challenge query.
In particular, if a query (u,pkS) satisfies the event E, then the challenger returns � to the adversary.

Game1 : Same as Game0 except for the construction of the challenge signcryption text, viz., c∗ =
E(decomr ∣∣pkS∗ ,pkR∗), where decomr is randomly sampled from the decommitment space.

The proof follows from the following lemmas.

Lemma 5.2. GameReal and Game0 are indistinguishable under the qrConcealment property of the com-
mitment scheme C.

Lemma 5.3. Game0 and Game1 are indistinguishable under the IND-qgCCA property of the primitive
encryption scheme PKE.

Lemma 5.4. For any quantum PPT adversary A, there is a quantum PPT algorithm B such that

AdvGame1
A,SC (1λ) ≤ AdvqHiding

B,C (1λ).
In Theorem 5.6, we state the quantum security of unforgeability of CtE&S paradigm. The qBinding

property of C says that given a signcryption text the adversary cannot change the ciphertext component to
produce a signcryption corresponding to a different message. Hence, wUF-qCMA security is preserved. The
proofs mainly follow techniques that are already elaborated in the context of previous lemmas. We only
give a proof sketch here and for completeness the proofs of the lemmas involved in the same are provided
in A.4 and A.5.

Theorem 5.6. If the primitive signature scheme PKS is wUF-qCMA secure and the commitment scheme C

satisfies qBinding property, then the signcryption scheme SC in the CtE&S paradigm is wUF-qCMA secure
in the dynamic multi user insider-security model (dM-wUF-iqCMA (c.f., Definition 20)).
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Proof Sketch. Let A be a quantum PPT adversary that can break dM-wUF-iqCMA security of the
signcryption scheme SC with probability at least ǫ. Let q be the number of signcryption oracle queries
allowed to A and {(ui = (comi, σi, ci),pkRi) ∶ i ∈ [q + 1]} be the q + 1 forgeries produced by A. Let Forge

denote the event that the tuples (com1,pkR1), . . . , (comq+1,pkRq+1) are pairwise distinct. Note that,

ǫ ≤ Pr[A succeeds] = Pr[A succeeds ∧ Forge] + Pr[A succeeds ∧ Forge]
Ô⇒ Pr[A succeeds ∧ Forge] ≥ ǫ

2
or Pr[A succeeds ∧ Forge] ≥ ǫ

2
.

The proof follows from the following lemmas which contradicts the above statement.

Lemma 5.5. If PKS is wUF-qCMA secure, then Pr[A succeeds ∧ Forge] < ǫ
2
.

Lemma 5.6. If C has qBinding property, then Pr[A succeeds ∧ Forge] < ǫ
2
.

6 Outsider Model

In this section, we analyze the quantum security of constructions based on EtS, StE and CtE&S paradigms
in the outsider model. In contrast to the insider model, the classical results in the outsider model are
stronger. For example, IND-CPA security of the encryption scheme is amplified to IND-CCA security in
the EtS paradigm if the signature scheme is sUF-CMA secure. Similar results hold in other two paradigms
as well. The proof of these results assumes that the simulator can record adversary’s signcryption queries
in order to answer unsigncryption queries consistently. In fact such an assumption trivially holds in the
classical setting.

The above results, however, do not naturally extend to the quantum setting, the main roadblock being
the quantum no-cloning. In particular, the simulator cannot record adversary’s prior signcryption queries
and hence it becomes difficult to simulate unsigncryption queries which are responses of previous sign-
cryption queries. In addition, there are technical issues in the existing definitions for unforgeability in the
quantum setting [AMRS18, GYZ17], which create further hindrance in arguing full quantum security in the
outsider model and in the symmetric setting of authenticated encryption as well. We also note that, the
quantum security proof of authenticated encryption in the EtS paradigm given in a recent paper [SJS16]
has a logical gap. In particular, the simulation procedure records quantum queries which clearly violates
no-cloning and the analysis that follows only holds in the classical setting.

These issues lead us to consider an intermediate setting, in which we analyze the quantum variant of
classical results in the outsider model. The intermediate setting provides the adversary quantum access to
unsigncryption oracle while signcryption oracle access remains classical. As mentioned earlier, the definition
models the scenario where sender works on a classical machine while receiver may have access to a quantum
machine. We leave full quantum security of generic authenticated encryption and signcryption constructions
in the outsider model as an interesting open problem.

6.1 Two-User Setting

As a special case in the outsider model, the weak privacy (resp. unforgeability) of the encryption (resp.
signature) scheme can be amplified to strong privacy (resp. unforgeability) under the strong security of
signature (resp. encryption) in the two-user setting. Hence, we discuss them separately in Theorems 6.1
(for confidentiality) and 6.2 (for authenticity). We also note that, our results extend to the setting of
authenticated encryption as well. To prove security in two-user setting, it is not necessary to append the
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sender and receiver identities while encrypting and signing in the constructions discussed in Section 4 and
hence, we exclude them.

Theorem 6.1. If the primitive encryption scheme PKE is pqIND-CPA secure and the signature scheme
PKS is pqsUF-CMA (resp. pqwUF-CMA) secure, then the signcryption scheme SC in the EtS paradigm
is IND-uqCCA (resp. IND-uqgCCA) secure in the two user outsider-security model (IND-ouqCCA (resp.
IND-ouqgCCA) (c.f., Section 3.4)).
Proof. Here, we only prove the IND-uqgCCA security of SC in the outsider model. The proof of IND-
uqCCA follows similarly. Let pkS∗ be the sender public key corresponding to the challenge. We define the
equivalence relation R′ for the induced encryption for SC to be R′(u1,u2) = True if and only if c1 = c2 and(V(c1, σ1,pkS∗) = 1∧V(c2, σ2,pkS∗) = 1). It can be checked that R′ is an unsigncryption-respecting relation
over the signcryption texts.

Let A be a quantum PPT adversary that can break IND-uqgCCA security of the signcryption scheme
SC with probability at least ǫ. Let Forge denote the following event: ∃ an unsigncryption query made by A
during its run, measuring query input of which yields with non-negligible probability, say µ, a tuple (c, σ)
such that V(c, σ,pkS∗) = 1 and c was not a result of any previous signcryption oracle or challenge query. In
other words, if Forge happens then A breaks the pqwUF-CMA security of the underlying signature scheme
PKS. Note that,

ǫ ≤ Pr[A succeeds] − 1

2
= Pr[A succeeds ∧ Forge] + Pr[A succeeds ∧ Forge] − 1

2

≤ Pr[Forge] + (Pr[A succeeds ∧ Forge] − 1

2
)

Ô⇒ Pr[Forge] ≥ ǫ
2

or Pr[A succeeds ∧ Forge] − 1

2
≥
ǫ

2
.

Case 1: Pr[Forge] ≥ ǫ
2
. Let qu be the total number of unsigncryption queries allowed to the adversary A.

We construct a quantum PPT algorithm B1 which breaks the pqwUF-CMA security of PKS with probability
at least ǫ⋅µ/(2⋅qu). Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð GS(1λ)
and sends pkS∗ to B1. B1 then runs (pkR∗ , skR∗) ←Ð GE(1λ) and gives pkR∗ , pkS∗ to A. B1 also samples
i←Ð [qu] and simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B1. B1 samples b
U←Ð {0,1}, runs

c∗ ←Ð E(mb,pkR∗) and makes a signature oracle query on c∗. CH runs σ∗ ←Ð S(c∗, skS∗) and sends σ∗ to
B1. B1 sets u∗ = (c∗, σ⋆) and sends the same to A.

Signcryption queries: Let m be any signcryption query made by A. B1 runs c←Ð E(m,pkR∗) and makes
a signature oracle query on c. CH runs σ ←Ð S(c, skS∗) and sends σ to B1. B1 sets u = (c, σ) and sends u

to A.

Unsigncryption queries: Let uquant = ∑
u,mp

ψu,mp ∣u,mp⟩ be any unsigncryption query made by A. If it is

the ith unsigncryption query, B1 halts the execution of A, measures the input register for the query, and
outputs (c, σ). Otherwise, B1 applies the following unitary transformation

∑
u,mp

ψu,mp ∣u,mp⟩ z→ ∑
u,mp

ψu,mp ∣u,mp ⊕ f (u)⟩
where

f (u) =
⎧⎪⎪⎨⎪⎪⎩
� if R′(u∗,u) = True
US(u, skR∗ ,pkS∗) otherwise.

27



The resulting state is sent back to A.

Guess: A sends a guess b′ to B1. (B1 does nothing with b′).

Analysis: B1 outputs forgery as described in the above procedure. From the definition of Forge, B1
breaks the pqwUF-CMA security of PKS with probability at least ǫ ⋅ µ/(2 ⋅ qu).

Case 2: Pr[A succeeds∧Forge]− 1

2
≥ ǫ

2
. We construct a quantum PPT algorithm B2 which breaks the

pqIND-CPA security of PKE with advantage negligibly close to ǫ
2
. Let CH be the challenger for the encryption

scheme PKE. CH runs (pkR∗ , skR∗) ←Ð GE(1λ) and sends pkR∗ to B2. B2 then runs (pkS∗ , skS∗) ←Ð GS(1λ)
and gives pkR∗ and pkS∗ to A. B2 simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B2. B2 submits the message pair

(m0,m1) to CH. CH samples b
U←Ð {0,1}, runs c∗ ←Ð E(mb,pkR∗) and sends c∗ to B2. B2 then runs

σ∗ ←Ð S(c∗, skS∗), sets u∗ ∶= (c∗, σ∗), adds (⊥,u∗) to list L (which is initially empty) and returns it to A.

Signcryption queries: Let m be a signcryption query made by A. B2 runs u ←Ð SC(m, skS∗ ,pkR∗), adds(m,u) to a list L and sends u to A.

Unsigncryption queries: Let uquant = ∑
u,mp

ψu,mp ∣u,mp⟩ be any unsigncryption query made by A. B2 applies

the following unitary transformation

∑
u,mp

ψu,mp ∣u,mp⟩ z→ ∑
u,mp

ψu,mp ∣u,mp ⊕ f (u)⟩
where

f (u) = ⎧⎪⎪⎨⎪⎪⎩
m′ if (m′,u′) ∈ L s.t. R′(u,u′) = True
� otherwise.

The resulting state is sent back to A.

Guess: A sends a guess b′ to B2. B2 forwards the same bit b′ to CH.

Analysis: We show that B simulates A’s unsigncryption queries properly. The definition of Forge says
that for all unsigncryption queries made by A, the probability that measuring query input yields a tuple(c, σ) such that V(c, σ,pkS∗) = 1 and c was not a result of any previous signcryption oracle or challenge
query in negligible. Since the total query magnitude of valid signcryption texts is negligible, it is known
that the advantage of A is only changed by negligible amount by using Lemma 5.1.

Remark: As mentioned earlier, the quantum security proof of authenticated encryption in the EtS
paradigm given in a recent paper [SJS16] has a logical gap. In particular, the simulation procedure records
quantum queries which clearly violates no-cloning and the analysis that follows only holds in the classical
setting. We note that, our proof can be adapted to prove the confidentiality of the authenticated encryption
construction based on the EtS paradigm. However, our proof doesn’t achieve full quantum security and
the general problem still remains open.

Theorem 6.2. If the primitive encryption scheme PKE is IND-qCCA secure (resp. IND-qgCCA) secure
and the signature scheme PKS is pqUF-NMA secure, then the signcryption scheme SC in the StE paradigm
is sUF-uqCMA (resp. wUF-uqCMA) secure in the two user outsider-security model (sUF-ouqCMA (resp.
wUF-ouqCMA) (c.f., Section 3.4)).
Proof. Here, we only prove the wUF-uqCMA security of SC in the outsider model. The proof of sUF-ouqCMA

follows similarly. Let R be the equivalence relation w.r.t. which PKE is IND-qgCCA secure.
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We use the standard hybrid argument. Let Game0 denote the original wUF-ouqCMA game of sign-
cryption for adversary where all its queries are answered honestly. Let qs be the number of signcryption
queries made by the adversary. Let m1, . . . ,mqs be the messages and u1, . . . ,uqs be corresponding signcryp-
tion texts. Next, we define the hybrid games Gamej, 1 ≤ j ≤ qs. Each Gamej is identical to Game0

except for the following: for the 1st j signcryption queries, Gamej returns a random encryption of 0ℓm , i.e.,
uj ←Ð E(0ℓm ;pkR∗). Further, for a basis element u of any unsigncryption query, if u is equivalent to the
result of any previous signcryption query m, then Gamej returns m. We denote Succj(A) to be the success
probability of an adversary A in Gamej. Note that Gameqs

answers all signcryption queries incorrectly.
We make the following two claims:

– Claim 1. For any 1 ≤ j ≤ qs, Gamej−1 and Gamej are indistinguishable under the IND-
qgCCA security of the primitive encryption scheme PKE, i.e., for any quantum PPT adversary A,∣Succj−1(A) − Succj(A)∣ ≤ negl(λ).

– Claim 2. For any quantum PPT adversary A, there is a quantum PPT algorithm B such that
Succqs(A) ≤ AdvpqUF−NMA

B,PKS (1λ). Since PKS is pqUF-NMA secure, Succqs(A) ≤ negl(λ).
Combining Claims 1 and 2, we get that Succ0 ≤ (qs + 1) ⋅ negl(λ) and hence the proof.

Proof of Claim 1. Let A be a quantum PPT adversary which can distinguish Gamej−1 and Gamej

with probability ǫ. We construct a quantum PPT algorithm B1 which breaks the IND-qgCCA security of
PKE with advantage at least ǫ/2. Let CH be the challenger for the encryption scheme PKE. CH runs(pkR∗ , skR∗) ←Ð GE(1λ) and sends pkR∗ to B1. B1 runs (pkS∗ , skS∗) ←Ð GS(1λ) and sends pkR∗ , pkS∗ to A.
B1 simulates A’s queries as described below.

Signcryption queries: Let m be any signcryption query made by A. For the first j −1 queries, B1 answers
with a random encryption of 0ℓm . At the jth query mj, B1 runs σ ←Ð S(mj , skS∗), prepares a challenge

query (m0,m1) ←Ð (mj ∣∣σ,0ℓm) and sends the same to CH. CH samples b
U←Ð {0,1}, runs c∗ ←Ð E(mb,pkR∗)

and sends c∗ to B1. B1 sets u = c∗ and sends u to A. After the jth query, all the signcryption queries are
answered properly. For all signcryption queries m, B1 also adds (m,u) to a list L (which is initially empty).

Unsigncryption queries: Let uquant = ∑
u,mp

ψu,mp ∣u,mp⟩ be any unsigncryption query made by A. B1

appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,mp

ψu,mp
∣u,mp,0

ℓm⟩. B1 then sends a decryption query consisting of 1st and 3rd register to CH. CH

applies the following unitary transformation

∑
u,mp

ψu,mp
∣u,mp,0

ℓm⟩ z→ ∑
u,mp

ψu,mp
∣u,mp,0

ℓm ⊕ g(u)⟩
where

g(u) = ⎧⎪⎪⎨⎪⎪⎩
� if R(u, c∗) = True
D(u, skR∗) otherwise.

CH sends the resulting state to B1. B1 then applies the following transformation on the obtained state

∑
u,mp

ψu,mp ∣u,mp, g(u)⟩z→ ∑
u,mp

ψu,mp ∣u,mp ⊕ f (∆), g(u)⟩
where

f (∆) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m′ if (m′,u′) ∈ L s.t. R(u,u′) = True
[g(u)]1 if V([g(u)]1, [g(u)]2,pkS∗) = 1
� otherwise,
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and ∆ = (u, g(u)).
Note that the ancilla register is entangled with other registers. To perfectly simulate A’s view, simulator

can use the EtU technique to unentangle the ancilla register: B1 sends a decryption query consisting of 1st

and 3rd register to CH. Finally, B1 obtains the state ∑
u,mp

ψu,mp ∣u,mp ⊕ f (∆)⟩ ⊗ ∣0ℓm⟩. It discards the last

register and sends ∑
u,mp

ψu,mp ∣u,mp ⊕ f (∆)⟩ to A. The resulting state is sent back to A.

Forgery and Analysis: A outputs a forgery u. It checks if u is a valid signcryption text by making a
decryption oracle query and then verifying the validity of the signature. It also checks if u is indeed a fresh
forgery, i.e., ∀(m′,u′) ∈ L, it holds that US(u, skR∗ ,pkS∗) ≠ m′. If all the above conditions are true then B1
sends b′ = 0, i.e., it guesses that uj is the encryption of mj ∣∣σ. From the simulation procedure, it is clear
that if uj is indeed the encryption of mj ∣∣σ, then A was run in Gamej−1 else it was run in Gamej. From
our assumption on the success probability of A, we get that the B1 succeeds with advantage at least ǫ/2 in
breaking IND-qgCCA security of PKE.

Proof of Claim 2. Let A be a quantum PPT adversary which succeeds in Gameqs
with probability ǫ.

We construct a quantum PPT algorithm B2 which breaks the pqUF-NMA security of PKS with advantage
at least ǫ. Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð GS(1λ) and
sends pkS∗ to B2. B2 runs (pkR∗ , skR∗) ←Ð GE(1λ), forwards pkS∗ , pkR∗ to A and simulates A’s queries as
described below.

Signcryption queries: Let m be any signcryption query made by A. B2 answers with a random encryption
of 0ℓm .

Unsigncryption queries: Let uquant = ∑
u,mp

ψu,mp ∣u,mp⟩ be any unsigncryption query made by A. B2 applies

the following unitary transformation

∑
u,mp

ψu,mp ∣u,mp⟩ z→ ∑
u,mp

ψu,mp ∣u,mp ⊕ f (u)⟩
where

f (u) = ⎧⎪⎪⎨⎪⎪⎩
m′ if (m′,u′) ∈ L s.t. R(u,u′) = True
US(u, skR∗ ,pkS∗) otherwise.

The resulting state is sent back to A.

Forgery: A outputs a forgery u. B2 runs (m, σ) ←Ð D(u, skR∗) and sends (m, σ) as forgery to CH.

Analysis: It is easy to see that B2 simulates A’s queries perfectly and it breaks the pqUF-NMA security
of PKS with advantage at least ǫ.

6.2 Multi-User Setting

It was acknowledged in [DZ10], that the IND-CPA (resp. UF-NMA) security of the base encryption (resp.
signature) scheme in the EtS (resp. StE) paradigm does not amplify to IND-CCA (resp. sUF-CMA) security
in the multi-user setting. The issue is that in the case of EtS paradigm, if the primitive encryption scheme
is malleable, then the adversary may be able to modify the ciphertext to replace the sender’s identity and
signature with that of its own. Hence [DZ10] notes that, it is important to assume that the underlying
encryption scheme is non-malleable (or IND-CCA secure) to achieve CCA-secure signcryption. A similar
issue arises in the context of StE paradigm because UF-NMA security of the base signature scheme does
not imply non-malleable signatures.
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Some of the results we prove in the multi-user outsider model are stronger than their known classical
variants. In particular, Theorems 6.3, 6.4, 6.5 and 6.6 are stronger than the corresponding results in
the classical setting. We note that these results hold in the classical setting as well and thus strengthen
previously known results [ADR02, DZ10].

6.2.1 Encrypt-then-Sign

In Theorem 6.3, we show that non-malleability is not a necessary condition to achieve IND-qCCA security
in EtS paradigm. Essentially, IND-qgCCA security of the primitive encryption scheme ensures that the
adversary cannot modify the ciphertext to replace sender’s identity with its own and pqsUF-CMA security
of the signature scheme implies that the adversary cannot produce a valid signcryption text corresponding
to the identity of the sender in the challenge signcryption text. The proof closely follows the proof strategy
of Theorem 6.1 and can be found in Appendix B.1.

Theorem 6.3. If the primitive encryption scheme PKE is IND-qgCCA secure and the signature scheme
PKS is pqsUF-CMA secure, then the signcryption scheme SC in the EtS paradigm is IND-uqCCA secure in
the multi user outsider-security model (fM-IND-ouqCCA (c.f., Section 3.4)).
6.2.2 Sign-then-Encrypt

Our next result concerns with unforgeability in the StE paradigm. In a nutshell, Theorem 6.4 follows from
the following argument: IND-qCCA security of the underlying encryption scheme implies that a signcryption
text under the receiver’s key used in the challenge is indistinguishable from a random signcryption text
and wUF-qCMA property implies that the adversary cannot forge a valid signcryption text corresponding
to the receiver and sender identities involved in the challenge. The proof closely follows the proof strategy
of Theorem 6.2 and can be found in Appendix B.2.

Theorem 6.4. If the primitive encryption scheme PKE is IND-qCCA secure and the signature scheme PKS

is pqwUF-CMA secure, then the signcryption scheme SC in the StE paradigm is sUF-uqCMA secure in the
multi user outsider-security model (fM-sUF-ouqCMA (c.f., Section 3.4)).
6.2.3 Commit-then-Encrypt-and-Sign

We next discuss our results in the CtE&S paradigm. Recall that, in the insider security model IND-CCA
(resp. sUF-CMA) security of the base encryption (resp. signature) scheme is not preserved. Here, we show
that both these notions are preserved in the outsider security model assuming that the commitment scheme
satisfies some standard security properties. Theorem 6.5 states the quantum security of confidentiality of
CtE&S paradigm. We only give a proof sketch here and the lemmas involved in the same are deferred to
Appendices B.3, B.4, B.5 and B.6.

Theorem 6.5. Suppose the primitive encryption scheme PKE is IND-qCCA secure, the signature scheme
PKS is pqsUF-CMA secure and the commitment scheme C satisfies qrConcealment and qHiding properties.
Further, assume that the size of the domain of all possible com is superpolynomial in the security parameter.
Then the signcryption scheme SC in the CtE&S paradigm is IND-uqCCA secure in the multi user outsider-
security model (fM-IND-ouqCCA (c.f., Section 3.4)).
Proof Sketch. We prove security through a sequence of games. Let pkR∗ and pkS∗ denote the receiver
and sender identities involved in the challenge respectively. Let qs be the number of signcryption oracle
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queries made by A on pkR∗ and {ui = (comi, σi, ci) ∶ i ∈ [qs]} be the answers to the signcryption queries. Let(u∗ = (com∗, σ∗, c∗),pkS∗) denote a challenge signcryption text and L = {(comi, σi)∣i ∈ [qs]}∪{(com∗, σ∗)}.
For a signcryption text (u = (com, σ, c),pkS), we define the following the events:

1. erConceal ∶= [c = c∗ ∧ (com, σ) ∈ L ∧Open(com,D(c, skR∗)) ≠ � ∧ pkS = pkS∗].
2. Forge ∶= [V(com∣∣pkR∗ , σ,pkS∗) = 1 ∧ (com, σ) ∉ L ∧ pkS = pkS∗].

We say that erConceal[u,pkS] = True (resp. Forge[u,pkS] = True) if (u,pkS) satisfies the event erConceal

(resp. Forge).

GameReal : The original fM-IND-ouqCCA game of signcryption.

Game
R̃eal

: Same as GameReal except for the answers of unsigncryption queries after the challenge query.
In particular, if a query (u,pkS) satisfies the event erConceal, then the challenger returns � to the adversary.

Game0 : Same as Game
R̃eal

except for the answers of unsigncryption queries after the challenge query.
If a query (u,pkS) satisfies the event Forge, then the challenger returns � to the adversary.

Game1 : Same as Game0 except for the construction of challenge signcryption text, viz., c∗ =
E(decomr ∣∣pkS∗ ,pkR∗), where decomr is randomly sampled from the decommitment space.

Lemma 6.1. GameReal and Game
R̃eal

are indistinguishable under the qrConcealment property of the
commitment scheme C.

Lemma 6.2. Game
R̃eal

and Game0 are indistinguishable under the pqsUF-CMA property of the primitive
signature scheme PKS.

Lemma 6.3. Game0 and Game1 are indistinguishable under the IND-qCCA property of the primitive
encryption scheme PKE.

Lemma 6.4. For any quantum PPT adversary A, there is a quantum PPT algorithm B such that
AdvGame1

A,SC (1λ) ≤ AdvqHiding
B,C (1λ).

Theorem 6.6 concerns the quantum security of unforgeability in the CtE&S paradigm. The proof can
be argued by partitioning the space of valid forgeries into two disjoint subsets. The first part consists of
signcryption forgeries which result in a forgery for the base signature scheme (Lemma 6.5). To analyze
the forgeries from the second partition one can define a sequence of indistinguishable games. Theorem 6.6
states that quantum security of unforgeability of CtE&S paradigm. We only give a proof sketch here and
the lemmas involved in the same are deferred to Appendices B.7, B.8, B.9 and B.10.

Theorem 6.6. If the primitive signature scheme PKS is pqsUF-CMA secure, the encryption scheme PKE is
IND-qCCA secure and the commitment scheme C satisfies qfBinder property, then the signcryption scheme
SC in the CtE&S paradigm is sUF-uqCMA secure in the multi user outsider-security model (fM-sUF-
ouqCMA (c.f., Section 3.4)).
Proof Sketch. Let A be a quantum PPT adversary that can break fM-sUF-ouqCMA security of the
signcryption scheme SC with probability ǫ. Let qs be the number of signcryption oracle queries made by A on
the challenge identity pkR∗ and {ui = (comi, σi, ci) ∶ i ∈ [qs]} be the answers to the signcryption queries. Let
ũ = (c̃om, σ̃, c̃) be a forgery produced by A. Let Forge denote the event that ∀i ∈ [qs], (comi, σi) ≠ (c̃om, σ̃).
Note that,

ǫ ≤ Pr[A succeeds] = Pr[A succeeds ∧ Forge] + Pr[A succeeds ∧ Forge]
Ô⇒ Pr[A succeeds ∧ Forge] ≥ ǫ

2
or Pr[A succeeds ∧ Forge] ≥ ǫ

2
.
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Case 1: Pr[A succeeds ∧ Forge] ≥ ǫ
2
.

The following lemma shows that Case 1 will not happen.

Lemma 6.5. If PKS is pqsUF-CMA secure, then Pr[A succeeds ∧ Forge] < ǫ
2
.

Case 2: Pr[A succeeds∧Forge] ≥ ǫ
2
. Let pkR∗ and pkS∗ be the receiver and sender identities involved in the

challenge respectively. We use the standard hybrid argument. Let qs be the number of signcryption oracle
queries made by the adversary on pkR∗ . Let m1, . . . ,mqs be the messages and u1, . . . ,uqs be corresponding
signcryption texts.

GameReal : The original fM-sUF-ouqCMA game of signcryption.

Let (u = (com, σ, c),pkS) be a signcryption text appeared as a basic element in say, ith unsigncryption
query. Let is denote the number signcryption queries till the ith unsigncryption query. Let the response of
the jth signcryption query be uj = (comj, σj , cj) for j ∈ [is]. For such signcryption text (u,pkS), let srConceal
denote the event that there exist an j ∈ [is] such that c = cj , com ≠ comj and Open(com,D(c, skR∗)) ≠ �.
We say that srConceal[u,pkS] = True if u satisfies the event srConceal.

Game0 : Same as GameReal except for the answers of unsigncryption queries. If (u,pkS) satisfies the
event srConceal, then the challenger returns � to the adversary.

Next, we define the hybrid games Gamej, 1 ≤ j ≤ qs. Each Gamej is identical to Game0 except for
the following changes:

• For the first j signcryption queries on pkR∗ , Gamej runs (com,decom) ←Ð Commit(m), σ ←Ð
S(com∣∣pkR∗ , skS∗) and c ←Ð E(decomr ∣∣pkS∗ ;pkR∗), where decomr is sampled uniformly from the
decommitment space. It returns u = (com, σ, c) and adds (m,u) to a list L.

• For a basis element (com, σ, c,pkS∗) of any unsigncryption query, if the tuple (m,u) ∈ L, then Gamej

returns m. Otherwise, it returns US(u, skR∗ ,pkS∗).
We denote Succj(A) to be the success probability of an adversary A in Gamej. Note that

Gameqs
answers all signcryption queries on pkR∗ incorrectly. It follows from the following lemmas that

Pr[A succeeds ∧ Forge] is negligible and hence ǫ is negligible.

Lemma 6.6. GameReal and Game0 are indistinguishable under the qrConcealment property of the com-
mitment scheme C.

Lemma 6.7. For any 1 ≤ j ≤ qs, Gamej−1 and Gamej are indistinguishable under the IND-qCCA property
of the primitive encryption scheme PKE, i.e., for any quantum PPT adversary A, ∣Succj−1(A) − Succj(A)∣ ≤
negl(λ).
Lemma 6.8. For any quantum PPT adversary A, there is a quantum PPT algorithm B3 such that
Succqs(A) ≤ AdvqfBinderB3,PKS

(1λ). Since, C has qfBinder property, Succqs(A) ≤ negl(λ).

7 Instantiations

In previous sections, we have proved the security of signcryption schemes based on generic composition
of PKE, PKS and commitment in various paradigms. If we consider the commitment scheme discussed in
Section 6, it satisfies all the desired properties in QROM. Next, we recall some candidate encryption and
signature schemes which can be used to instantiate signcryption schemes in various paradigms.
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Candidates for post-quantum PKE. An isogeny based encryption scheme proposed in [JF11] is claimed
to be secure in the standard model under the assumption that the hash function family is entropy smoothing.
While we are not aware of any family of hash functions which is entropy smoothing in the quantum setting,
using results from [BDF+11], the above encryption scheme can be proved pqIND-CPA secure in the quantum
random oracle model. Many lattice based pqIND-CPA secure encryption schemes are also available in the
literature, e.g., [CHK+16, CKLS16]. The same schemes in [CHK+16, CKLS16] were shown to be pqIND-CCA
secure in the QROM using a quantum variant [TU16] of the Fujisaki-Okamoto transformation [FO13]. We
note that the available quantum variants [TU16, HHK17, SXY18] of Fujisaki-Okamoto for getting pqIND-
CCA secure KEM/PKE in the QROM are not only applicable to lattice based schemes, but also applicable
to other schemes. After the third round of evaluation [NIS20] at NIST’s post-quantum competition, 9
KEM/PKE candidates have been shortlisted, four of them are considered as finalists and the remaining are
alternatives. Some of the PKE-candidates are SABER, NTRU (lattice-based) and HQC (code-based).

Candidates for post-quantum PKS. Six signature candidates have been shortlisted after the 3rd round
of evaluation [NIS20] at NIST’s post-quantum competition. Three of them are considered as finalists and
the remaining are alternatives. There are two lattice-based candidates - CRYSTALS-DILITHIUM and FAL-
CON, two multivariate-based candidates - Rainbow and GeMSS, one hash-based candidate - SPHINCS+,
and the remaining one is miscellaneous candidate. Among these candidates, only FALCON and SPHINCS+
have the post-quantum security (in QROM). Besides the NIST post-quantum candidates, there are many
lattice based pqwUF-CMA signatures available in the literature, for example, [CHKP10]. For isogeny based
signature, one can consider the signature from [YAJ+17] which was proven pqsUF-CMA secure in the QROM
using the conversion of [Unr15]. Moreover, by using the transformation from [ES15], we can get a pqsUF-
CMA secure signature scheme in the QROM from a pqwUF-CMA secure signature scheme.

Candidates for quantum secure PKE. If Construction 4.11 from [BZ13] is applied to the basic IBE
scheme of [ABB10], we get an IND-qCCA secure encryption scheme. We point out that all the pqIND-CPA
secure PKE schemes trivially come under the class of quantum secure PKE as the encryption algorithm is
public.

Candidates for quantum secure PKS. If Construction 3.10 from [BZ13] is instantiated with the signa-
ture schemes from [ABB10, CHKP10], we get wUF-qCMA secure signature schemes. If Construction 3.12
from [BZ13] is applied on [GPV08], it gives a wUF-qCMA signature scheme in the QROM. We remark that
a sUF-qCMA secure signature schemes can be obtained by first applying the transformation [ES15] to the
signature schemes in [ABB10, CHKP10, GPV08] followed by Construction 3.10 of [BZ13]. Since [ES15]
gives signatures in the QROM, the above conversion provides sUF-qCMA security in the QROM.
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A Proofs in Insider Model

A.1 Proof of Lemma 5.2

Proof. Let qu be the total number of unsigncryption queries made by the adversary A. Let δi be the sum of
amplitudes squared of those basic elements (u,pkS,mp) involved in the ith unsigncryption query for which
the event E is satisfied. Let δ = ∑i∈[qu] δi be the sum of the probabilities. We claim that δ is negligible.
Indeed, we can construct an adversary B which breaks the qrConcealment property of C with advantage
δ/q2u. B simulates A’s queries in the following way:

Let CH be the challenger for the commitment scheme C. CH first runs the setup algorithm of the
commitment scheme and gives the public commitment key CK to B. B runs (pkR∗ , skR∗) ←Ð GE(1λ) and

sends pkR∗ , CK to the adversary A. B also samples i
U←Ð [qu] and simulates A’s queries as described below.

Challenge query: A generates sender’s key pair (pkS∗ , skS∗) and submits two equal length messages

m0 and m1 along with (pkS∗ , skS∗) to B. B then samples b
U←Ð {0,1} and sends mb to CH. CH runs(com∗,decom∗) ←Ð Commit(mb) and gives (com∗,decom∗) to B. B executes c∗ ←Ð E(decom∗∣∣pkS∗ ,pkR∗),

σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗) and returns u∗ ∶= (com∗, σ∗, c∗) to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. If it is the ith unsigncryption query, B halts the execution of A, measures the input register for the
query, and outputs the register containing the string com. Otherwise, B applies the following unitary
transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if R′((u∗,pkS∗), (u,pkS)) = True ∨ E[u,pkS] = True
US(u, skR∗ ,pkS) otherwise.

The resulting state is sent back to A.

Guess: A sends a guess b′ to B. (B does nothing with b′).

Analysis: The probability that com (B’s output) satisfies Open(com,decom∗) ≠ � is at least δ/q2u (Since,
E Ô⇒ Open(com,decom∗) ≠ �). The qrConcealment property of C shows that δ is negligible. Since the
total query magnitude of signcryption texts satisfying E is negligible, it is known that the advantage of A
is only changed by negligible amount by using Lemma 5.1.

A.2 Proof of Lemma 5.3

Proof. Let A be a quantum PPT adversary which can distinguish Game0 and Game1 with probability ǫ.
We construct a quantum PPT algorithm B which breaks the IND-qgCCA security of PKE with probability
ǫ/2. Let CH be the challenger for the primitive encryption scheme PKE which runs (pkR∗ , skR∗) ←Ð GE(1λ)
and sends pkR∗ to B. B runs the setup algorithm of the commitment scheme and forwards the public
commitment key CK and pkR∗ to A. B simulates A’s queries as described below.

Challenge query: A generates sender’s key pair (pkS∗ , skS∗) and submits two equal length messages m0 and

m1 along with (pkS∗ , skS∗) to B. B samples b
U←Ð {0,1} and runs (com∗,decom∗) ←Ð Commit(mb). Then it
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samples decomr uniformly at random from the decommitment space, sets (decom0∣∣pkS∗ ,decom1∣∣pkS∗) ←Ð
(decom∗ ∣∣pkS∗ ,decomr ∣∣pkS∗) and sends the same to CH. CH samples β

U←Ð {0,1} and runs c∗ ←Ð
E(decomβ ∣∣pkS∗ ,pkR∗) and sends it to B. The simulator runs σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗), sets u∗ ∶=(com∗, σ∗, c∗) and returns it to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. B appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩. B then sends a decryption query consisting of 3rd and 6th register

to CH. CH applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩ z→ ∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm ⊕ g(c)⟩
where

g(c) =
⎧⎪⎪⎨⎪⎪⎩
� if R(c, c∗) = True
D(c, skR∗) otherwise.

CH sends the resulting state to B. B then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp, g(c)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS,mp ⊕ f (∆), g(c)⟩

where

f (∆) = ⎧⎪⎪⎨⎪⎪⎩
Open(com, [g(c)]1) if V(com∣∣pkR∗ , σ,pkS) = 1 ∧ pkS = [g(c)]2
� otherwise,

and ∆ = (u,pkS, g(c)).
Note that the ancilla register is entangled with other registers. To perfectly simulate A’s view, simulator

can use the EtU technique to unentangle the ancilla register: B sends a decryption query consisting of 3rd

and 6th register to CH. Finally, B obtains the following state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS,mp ⊕ f (∆)⟩⊗ ∣0ℓm⟩ .

It discards the last register and sends ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩ to A.

Guess: A sends a guess b′ to B. If b = b′, B replies β′ = 0 else returns β′ = 1.

Analysis: The only difference between Game0 and Game1 is the construction of the challenge sign-
cryption text. We will first show that all the unsigncryption queries are handled properly. It suffices to
show that each of the basis element ∣u,pkS,mp⟩ is handled properly. The definition of R′ states that a query∣u,pkS,mp⟩ is legitimate if one of the following conditions is false:

1. R(c, c∗) = True
2. com = com∗

3. V(com∣∣pkR∗ , σ,pkS) = True
4. pkS = pkS∗
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If condition 1 is false then B answers by making decryption query to CH. If condition 3 or 4 is false
then by the nature of construction, (u,pkS) is an invalid query and B returns � in this case. The only case
to discuss is when condition 2 is false and conditions 1, 3 and 4 are true. Note that in the simulation A
is given � for this case. We divide this case into two sub cases: (a1) E and (a2) [com∗ ≠ com ∧R(c∗, c) =
True ∧ US(u, skR∗ ,pkS) = �]. By definition of Game0 and Game1, the adversary is returned � if E

occurs. So, the only sub case left is [com∗ ≠ com ∧ R(c∗, c) = True ∧ US(u, skR∗ ,pkS) = �]. Since, in
this case US(u, skR∗ ,pkS) = �, A will get � as reply. From the challenge phase, it is straightforward that
the challenge signcryption text is properly distributed. Therefore, all the answers to the oracle queries
are perfectly simulated. The advantage of B in breaking IND-qgCCA security of the primitive encryption
scheme PKE is given by

Adv
IND−qgCCA
B,PKE (1λ) = ∣Pr[β = β′] − 1

2
∣

= ∣Pr[β = 0, β′ = 0] +Pr[β = 1, β′ = 1] − 1

2
∣

= ∣1
2
Pr[β′ = 0∣β = 0] + 1

2
Pr[β′ = 1∣β = 1] − 1

2
∣

= ∣1
2
Pr[β′ = 0∣β = 0] − 1

2
Pr[β′ = 0∣β = 1]∣

= ∣1
2
Pr[b = b′∣β = 0] − 1

2
Pr[b = b′∣β = 1]∣

=
1

2
∣AdvGame0

A,SC (1λ) − AdvGame1
A,SC (1λ)∣.

A.3 Proof of Lemma 5.4

Proof. Let A be a quantum PPT adversary which has advantage ǫ in Game1. We construct a quantum
PPT algorithm B which breaks the qHiding property of C with advantage at least ǫ. Let CH be the challenger
for the commitment scheme C. CH first runs the setup algorithm of the commitment scheme and gives the
public commitment key CK to B. B runs (pkR∗ , skR∗) ←Ð GE(1λ) and sends pkR∗ , CK to A. B simulates
A’s queries as described below.

Challenge query: A generates sender’s key pair (pkS∗ , skS∗) and submits two equal length messages m0

and m1 along with (pkS∗ , skS∗) to B. B submits the same message pair (m0,m1) to the challenger CH. CH

then samples b
U←Ð {0,1} and runs (com∗,decom∗) ←Ð Commit(mb) and sends com∗ to B. B then runs

σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗) and c∗ ←Ð E(decomr ∣∣pkS∗ ,pkR∗), where decomr is randomly sampled from the
decommitment space. B sets u∗ ∶= (com∗, σ∗, c∗) and sends the same to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

B applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if R′((u∗,pkS∗), (u,pkS)) = True ∨ E[u,pkS] = True
US(u, skR∗ ,pkS) otherwise.
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The resulting state is sent back to A.

Guess: A sends a guess b′ to B. B returns the same bit b′ to CH.

Analysis: It is easy to see that B simulates A’s queries perfectly and it breaks the qHiding property of
C with advantage at least ǫ.

A.4 Proof of Lemma 5.5

Proof. We construct a quantum PPT algorithm B1 which breaks the wUF-qCMA security of PKS with
probability at least ǫ

2
. Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð

GS(1λ) and sends pkS∗ to B1. B1 then runs the setup algorithm of the commitment scheme and gives the
public commitment key CK and pkS∗ to A.

Signcryption queries: Let mquant = ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ be any signcryption query made by A.

B1 appends a ℓcm qubit ancilla register, containing the state ∣0ℓcm⟩, to the query and obtains the state

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up,0ℓcm⟩. B1 chooses a randomness rcom and applies the following unitary transfor-

mation

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up,0ℓcm⟩ z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up,0ℓcm ⊕Commit(m; rcom)⟩ .
The resulting state can be equivalently viewed as ∑

m,pkR,up

ψm,pkR,up ∣m,pkR, comp, σp, cp, com,decom⟩.
B1 sends a signature query consisting of 2nd, 4th and 6th register to CH. CH applies the following

unitary transformation
∑

m,pkR,up

ψm,pkR,up ∣m,pkR, comp, σp, cp, com,decom⟩
↧

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, comp, σp ⊕ S(com∣∣pkR, skS∗), cp, com,decom⟩ .
CH sends the resulting state to B1. B1 then applies the following transformation on the obtained state

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, comp, σp ⊕ S(com∣∣pkR, skS∗), cp, com,decom⟩
↧

∑
m,pkR,up

ψm,pkR,up ∣m,pkR, comp ⊕ com, σp ⊕ S(com∣∣pkR, skS∗), cp ⊕ E(decom∣∣pkS∗ ,pkR), com,decom⟩ .
The resulting state can be equivalently written as ∑

m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ u, com,decom⟩, where u =

SC(m, skS∗ ,pkR). Note that B1 can unentangle the last two registers by applying commitment operator
using the randomness rcom to obtain the state ∑

m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ u⟩⊗ ∣0ℓcm⟩. It discards the last

register and sends ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ u⟩ to A.

Forgery: A outputs q + 1 forgeries {(ui = (comi, σi, ci),pkRi, skRi) ∶ i ∈ [q + 1]}. B1 then forwards(com1∣∣pkR1, σ1), . . . , (comq+1∣∣pkRq+1, σq+1) as forgeries to CH.

Analysis: It is clear that B1 breaks wUF-qCMA security of PKS with probability at least ǫ
2
.

40



A.5 Proof of Lemma 5.6

Proof. We construct a quantum PPT algorithm B2 which breaks the qBinding property of C with advantage
at least ǫ

2
. Let CH be the challenger for the commitment scheme C. CH first runs the setup algorithm of the

commitment scheme and gives the public commitment key CK to B2. Then, B2 runs (pkS∗ , skS∗) ←Ð GS(1λ)
and returns commitment key CK and pkS∗ to the adversary A. B2 simulates A’s queries as described below.
Signcryption queries: Let mquant = ∑

m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ be any signcryption query made by A. B2

applies the following unitary transformation

∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up⟩ z→ ∑
m,pkR,up

ψm,pkR,up ∣m,pkR,up ⊕ SC(m, skS∗ ,pkR)⟩ .
The resulting state is sent back to A.

Forgery: A outputs q + 1 forgeries {(ui = (comi, σi, ci),pkRi, skRi) ∶ i ∈ [q + 1]}. B2 identifies the
tuple with comi = comj and forwards (comi,decomi,decomj) to CH, where decomi = [D(ci, skRi)]1 and
decomj = [D(cj , skRj)]1. Note that dM-wUF-iqCMA security of SC ensures that Open(comi,decomi) ≠
Open(comi,decomj).

Analysis: It is clear that B2 breaks qBinding property of C with probability at least ǫ
2
.

B Proofs in Multi-User Outsider Model

B.1 Proof of Theorem 6.3

Proof. Let R be the equivalence relation w.r.t. which PKE is IND-qgCCA secure.

Let A be a quantum PPT adversary that can break fM-IND-ouqCCA security of the signcryption scheme
SC with probability at least ǫ. Let pkR∗ and pkS∗ denote the receiver and sender identities involved in the
challenge respectively. Let Forge denote the following event: ∃ an unsigncryption query made by A during
its run, measuring query input of which yields with non-negligible probability, say µ, a tuple (c, σ,pkS∗)
such that V(c∣∣pkR∗ , σ,pkS∗) = 1 and (c, σ) was not a result of challenge query or any previous signcryption
oracle query on pkR∗ . In other words, if Forge happens then A breaks the pqsUF-CMA security of the
underlying signature scheme PKS. Note that,

ǫ ≤ Pr[A succeeds] − 1

2
= Pr[A succeeds ∧ Forge] + Pr[A succeeds ∧ Forge] − 1

2

≤ Pr[Forge] + (Pr[A succeeds ∧ Forge] − 1

2
)

Ô⇒ Pr[Forge] ≥ ǫ
2

or Pr[A succeeds ∧ Forge] − 1

2
≥
ǫ

2
.

Case 1: Pr[Forge] ≥ ǫ
2
. Let qu be the total number of unsigncryption queries allowed to the adversary A.

We construct a quantum PPT algorithm B1 which breaks the pqsUF-CMA security of PKS with probability
at least ǫ⋅µ/(2⋅qu). Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð GS(1λ)
and sends pkS∗ to B1. B1 then runs (pkR∗ , skR∗) ←Ð GE(1λ) and gives pkR∗ , pkS∗ to A. B1 also samples

i
U←Ð [qu] and simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B1. B1 samples b
U←Ð {0,1}, runs

c∗ ←Ð E(mb∣∣pkS∗ ,pkR∗) and makes a signature oracle query on c∗∣∣pkR∗ . CH runs σ∗ ←Ð S(c∗∣∣pkR∗ , skS∗)
and sends σ∗ to B1. B1 sets u∗ = (c∗, σ⋆) and sends the same to A.
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Signcryption queries: Let m be any signcryption query made by A corresponding to receiver identity pkR.
B1 runs c ←Ð E(m∣∣pkS∗ ,pkR) and makes a signature oracle query on c∣∣pkR. CH runs σ ←Ð S(c∣∣pkR, skS∗)
and sends σ to B1. B1 sets u = (c, σ) and sends u to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

If it is the ith unsigncryption query, B1 halts the execution of A, measures the input register for the query,
and outputs (c∣∣pkR∗ , σ). Otherwise, B1 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if (u,pkS) = (u∗,pkS∗)
US(u, skR∗ ,pkS) otherwise.

The resulting state is sent back to A.

Guess: A sends a guess b′ to B1. (B1 does nothing with b′).

Analysis: B1 outputs forgery as described in the above procedure. From the definition of Forge, B1
breaks the pqsUF-CMA security of PKS with probability at least ǫ ⋅ µ/(2 ⋅ qu).

Case 2: Pr[A succeeds∧Forge]− 1

2
≥ ǫ

2
. We construct a quantum PPT algorithm B2 which breaks the IND-

qgCCA security of PKE with advantage negligibly close to ǫ
2
. Let CH be the challenger for the encryption

scheme PKE. CH runs (pkR∗ , skR∗) ←Ð GE(1λ) and sends pkR∗ to B2. B2 then runs (pkS∗ , skS∗) ←Ð GS(1λ)
and gives pkR∗ and pkS∗ to A. B2 simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B2. B2 submits the message pair

(m0∣∣pkS∗ ,m1∣∣pkS∗) to CH. CH samples b
U←Ð {0,1}, runs c∗ ←Ð E(mb∣∣pkS∗ ,pkR∗) and sends c∗ to B2. B2

then runs σ∗ ←Ð S(c∗∣∣pkR∗ , skS∗), sets u∗ ∶= (c∗, σ∗) and returns it to A.

Signcryption queries: Let m be any signcryption query made by A corresponding to receiver identity
pkR. B2 runs u←Ð SC(m, skS∗ ,pkR), adds (m,u) to a list L (which is initially empty) and sends u to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. B2 appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm⟩. B then sends a decryption query consisting of 1st and 5th register to CH.

CH applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm⟩ z→ ∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp,0

ℓm ⊕ g(c)⟩
where

g(c) =
⎧⎪⎪⎨⎪⎪⎩
� if R(c, c∗) = True
D(c, skR∗) otherwise.

CH sends the resulting state to B2. B2 then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp, g(c)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp ⊕ f (∆), g(c)⟩

where

f (∆) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m if (u,pkS) ≠ (u∗,pkS∗) ∧R(c, c∗) = True ∧ (m,u) ∈ L
[g(c)]1 if V(c∣∣pkR∗ , σ,pkS) = 1 ∧ pkS = [g(c)]2
� otherwise,
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and ∆ = (u, g(c),pkS).
Note that the ancilla register is entangled with the 1st four registers. To perfectly simulate A’s

view, simulator can use the EtU technique to unentangle the ancilla register: B2 again sends a de-
cryption query consisting of 1st and 5th register to CH to unentangle the ancilla register. Finally, B2
obtains the state ∑

u,pkS,mp

ψu,pkS,mp
∣c, σ,pkS,mp ⊕ f (∆)⟩ ⊗ ∣0ℓm⟩. It discards the last register and sends

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩ to A.

Guess: A sends a guess b′ to B2. B2 returns the same bit b′ to CH.

Analysis: We show that B2 simulates A’s unsigncryption queries properly. The definition of Forge says
that for all unsigncryption queries made by A, the probability that measuring query input yields a tuple(c, σ,pkS∗) such that pkS = pkS∗ , V(c∣∣pkR∗ , σ,pkS∗) = 1 and (c, σ) was not a result of challenge query or
any previous signcryption oracle query on pkR∗ is negligible. For a valid basis element (u,pkS), B2 answers
incorrectly (returns �) if u was not a result of any previous signcryption query and R(c, c∗) = True. But
R(c, c∗) = True implies that for u to be valid, it is necessary that pkS = pkS∗ . Since the total query magnitude
of such signcryption texts is negligible, it is known that the advantage of A is only changed by negligible
amount by using Lemma 5.1.

B.2 Proof of Theorem 6.4

Proof. Let pkR∗ and pkS∗ be the receiver and sender identities involved in the challenge respectively. We
use the standard hybrid argument. Let Game0 denote the original fM-sUF-ouqCMA game of signcryption
for adversary where all its queries are answered honestly. Let qs be the number of signcryption oracle
queries made by the adversary on pkR∗ . Let m1, . . . ,mqs be the messages and u1, . . . ,uqs be corresponding
signcryption texts. Next, we define the hybrid games Gamej, 1 ≤ j ≤ qs. Each Gamej is identical to
Game0 except for the following: for the 1st j signcryption queries on pkR∗ , Gamej returns a random
encryption of 0ℓm , i.e., uj ←Ð E(0ℓm ;pkR∗). Further, for a basis element (u,pkS∗) of any unsigncryption
query, if u is the result of any previous signcryption query (m,pkR∗), then Gamej returns m. We denote
Succj(A) to be the success probability of an adversary A in Gamej. Note that Gameqs

answers all
signcryption queries on pkR∗ incorrectly.

We make two claims:

1. For any 1 ≤ j ≤ qs, Gamej−1 and Gamej are indistinguishable under the IND-qCCA property of the
primitive encryption scheme PKE, i.e., for any quantum PPT adversary A,

∣Succj−1(A) − Succj(A)∣ ≤ negl(λ).
2. For any quantum PPT adversary A, there is a quantum PPT algorithm B such that Succqs(A) ≤

Adv
pqwUF−CMA
B,PKS (1λ). Since PKS is pqwUF-CMA secure, Succqs(A) ≤ negl(λ).

Combining claims 1 and 2, we get that Succ0 ≤ (qs + 1) ⋅ negl(λ) and hence the proof.

Proof of Claim 1. Let A be a quantum PPT adversary which can distinguish Gamej−1 and Gamej

with probability ǫ. We construct a quantum PPT algorithm B1 which breaks the IND-qCCA security of
PKE with advantage at least ǫ/2. Let CH be the challenger for the encryption scheme PKE. CH runs(pkR∗ , skR∗) ←Ð GE(1λ) and sends pkR∗ to B1. B1 runs (pkS∗ , skS∗) ←Ð GS(1λ) and sends pkR∗ , pkS∗ to A.
B1 simulates A’s queries as described below.
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Signcryption queries: Let (m,pkR) be any signcryption query made by A. If pkR ≠ pkR∗ , B1 runs
u ←Ð SC(m, skS∗ ,pkR) and sends u to A. For the first j − 1 queries on pkR∗ , B1 answers with a random
encryption of 0ℓm . At the jth query (mj ,pkR∗), B1 runs σ ←Ð S(mj ∣∣pkR∗ , skS∗), prepares a challenge query

(m0,m1) ←Ð (mj ∣∣σ∣∣pkS∗ ,0ℓm) and sends the same to CH. CH samples b
U←Ð {0,1}, runs c∗ ←Ð E(mb,pkR∗)

and sends c∗ to B1. B1 sets u = c∗ and sends u to A. After the jth query on pkR∗ , all the signcryption
queries are answered properly. For all signcryption queries (m,pkR∗), B1 also adds (m,u) to a list L (which
is initially empty).

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. B1 appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm⟩. B1 then sends a decryption query consisting of 1st and 4th register to CH.

CH applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm⟩ z→ ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp,0

ℓm ⊕ g(u)⟩
where

g(u) =
⎧⎪⎪⎨⎪⎪⎩
� if u = c∗

D(u, skR∗) otherwise.

CH sends the resulting state to B1. B1 then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp, g(u)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆), g(u)⟩

where

f (∆) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m′ if pkS = pkS∗ ∧ (m′,u′) ∈ L s.t. u = u′

[g(u)]1 if V([g(u)]1 ∣∣pkR∗ , [g(u)]2,pkS) = 1 ∧ pkS = [g(u)]3
� otherwise,

and ∆ = (u,pkS, g(u)).
Note that the ancilla register is entangled with other registers. To perfectly simulate A’s view, simulator

can use the EtU technique to unentangle the ancilla register: B1 sends a decryption query consisting of 1st

and 4th register to CH. Finally, B1 obtains the state ∑
u,mp

ψu,mp ∣u,mp ⊕ f (∆)⟩ ⊗ ∣0ℓm⟩. It discards the last

register and sends ∑
u,mp

ψu,mp ∣u,mp ⊕ f (∆)⟩ to A.

Forgery and Analysis: A outputs a forgery u. B1 checks if ∀(m′,u′) ∈ L, u ≠ u′. Then it checks if u is a
valid signcryption text by making a decryption oracle query and then verifying the validity of the signature.
If the above conditions are true then B1 sends b′ = 0, i.e., it guesses that uj is the encryption of mj ∣∣σ∣∣pkS∗ .
From the simulation procedure, it is clear that if uj is indeed the encryption of mj ∣∣σ∣∣pkS∗ , then A was run
in Gamej−1 else it was run in Gamej. From our assumption on the success probability of A, we get that
the B1 succeeds with advantage at least ǫ/2 in breaking IND-qCCA security of PKE.

Proof of Claim 2. Let A be a quantum PPT adversary which succeeds in Gameqs
with probability ǫ.

We construct a quantum PPT algorithm B2 which breaks the pqwUF-CMA security of PKS with advantage
at least ǫ. Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð GS(1λ) and
sends pkS∗ to B2. B2 runs (pkR∗ , skR∗) ←Ð GE(1λ), forwards pkS∗ , pkR∗ to A and simulates A’s queries as
described below.
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Signcryption queries: Let (m,pkR) be any signcryption query made by A. If pkR ≠ pkR∗ , B2 sends
a signature query on m∣∣pkR to CH. CH then runs σ ←Ð S(m∣∣pkR, skS∗) and sends σ to B2. B2 runs
u ←Ð E(m∣∣σ∣∣pkS∗ ,pkR) and sends u to A. Otherwise, B2 answers with a random encryption of 0ℓm on
pkR∗ . For all signcryption queries (m,pkR∗), B2 also adds (m,u) to a list L (which is initially empty).

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

B2 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩

where

f (∆) =
⎧⎪⎪⎨⎪⎪⎩
m′ if pkS = pkS∗ ∧ (m′,u′) ∈ L s.t. u = u′

US(u, skR∗ ,pkS) otherwise,

and ∆ = (u,pkS).
The resulting state is sent back to A.

Forgery: A outputs a forgery u. B2 runs (m∣∣σ∣∣pkS∗) ←Ð D(u, skR∗) and sends (m∣∣pkR∗ , σ) as forgery to
CH.

Analysis: It is easy to see that B2 simulates A’s queries perfectly and it breaks the pqwUF-CMA security
of PKS with advantage at least ǫ.

B.3 Proof of Lemma 6.1

Proof. Let qu be the total number of unsigncryption queries made by the adversary A. Let δi be the
sum of amplitudes squared of those basic elements (u,pkS,mp) involved in the ith unsigncryption query for
which the event erConceal is satisfied. Let δ = ∑i∈[qu] δi be the sum of the probabilities. We claim that δ
is negligible. Indeed, we can construct an adversary B1 which breaks the qrConcealment property of the
underlying commitment scheme with advantage (1− t) ⋅ δ/q2u, for some negligible t defined later. Let CH be
the challenger for the commitment scheme C. CH first runs the setup algorithm of the commitment scheme
and gives the public commitment key CK to B1. B1 runs (pkR∗ , skR∗) ←Ð GE(1λ), (pkS∗ , skS∗) ←Ð GS(1λ)
and sends pkR∗ , pkS∗ and CK to A. B1 creates a list L which is initially empty. It also picks i

U←Ð [qu] and
simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B1. B1 samples b
U←Ð {0,1} and

sends mb to the challenger CH. CH then runs (com∗,decom∗) ←Ð Commit(mb) and sends (com∗,decom∗)
to B1. B1 then runs σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗) and c∗ ←Ð E(decom∗ ∣∣pkS∗ ,pkR∗). It adds (com∗, σ∗) to L
and sends the challenge signcryption text u∗ ∶= (com∗, σ∗, c∗) to A.

Signcryption queries: Let m be any signcryption query made by A corresponding to receiver identity
pkR. B1 runs u←Ð SC(m, skS∗ ,pkR) and sends u to A. If pkR = pkR∗ , B1 adds (com, σ) to L.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

If it is the ith unsigncryption query, B1 halts the execution of A, measures the input register for the query,
and submits the corresponding com to CH. Otherwise, B1 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩
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where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if (u,pkS) = (u∗,pkS∗) ∨ erConceal[u,pkS] = True
US(u, skR∗ ,pkS) otherwise.

The resulting state is sent back to A.

Guess: A sends a guess b′ to B1. (B1 does nothing with b′).

Analysis: With probability δ/q2u, the measurement outcome (u,pkS) satisfies the event erConceal, i.e.,
c = c∗, (com, σ) ∈ L, Open(com,D(c, skR∗)) ≠ � and pkS = pkS∗ . If (com, σ) = (com∗, σ∗), then (u,pkS) =(u∗,pkS∗) and � is returned to A. W.l.o.g, assume that (com, σ) ∈ L ∖ {(com∗, σ∗)}. Since, (com, σ) and(com∗, σ∗) are two distinct entries in the list L, they are generated using fresh random coins, in particular
fresh random coins involved in the commitment part. So, Pr[com = com∗] ≤ t - a negligible quantity,
where t = 4/∣DCom∣ and DCom is the domain of all possible com. Therefore, Pr[com ≠ com∗] > (1 − t)
and (com, com∗,decom∗) is a witness for breaking qrConcealment property if (u,pkS). The advantage of
breaking qrConcealment property is at least (1− t) ⋅δ/q2u, a contradiction. So, δ is negligible. Since the total
query magnitude of signcryption texts satisfying erConceal is negligible, it is known that the advantage of
A is only changed by negligible amount by using Lemma 5.1.

B.4 Proof of Lemma 6.2

Proof. Let qu be the total number of unsigncryption queries made by the adversary A. Let δi be the sum of
amplitudes squared of those basic elements (u,pkS,mp) involved in the ith unsigncryption query for which
the event Forge is satisfied. Let δ = ∑i∈[qu] δi be the sum of the probabilities. We claim that δ is negligible.
Indeed, we can construct an adversary B2 which breaks the pqsUF-CMA security of PKS with advantage
δ/q2u. B2 simulates A’s queries in the following way:

Let CH be the challenger for the signature scheme PKS. CH first runs (pkS∗ , skS∗) ←Ð GS(1λ) and gives
pkS∗to B2. B2 runs the setup of the commitment scheme, (pkR∗ , skR∗) ←Ð GE(1λ) and forwards the public

commitment key CK, pkS∗ and pkR∗ to A. B2 also samples i
U←Ð [qu], creates a list L (initially empty) and

simulates A’s queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B2. B2 samples b
U←Ð {0,1},

runs (com∗,decom∗) ←Ð Commit(mb) and sends a signature query on com∗∣∣pkR∗ to CH. CH runs σ∗ ←Ð
S(com∗∣∣pkR∗ , skS∗) and returns σ∗ to B2. B2 executes c∗ ←Ð E(decom∗∣∣pkS∗ ,pkR∗), adds (com∗, σ∗) to L
and returns u∗ ∶= (com∗, σ∗, c∗) to A.

Signcryption queries: Let m be any signcryption query made by A corresponding to receiver identity
pkR. B2 runs (com,decom) ←Ð Commit(m) and sends a signature query on com∣∣pkR to CH. CH runs σ ←Ð
S(com∣∣pkR, skS∗) and returns σ to B2. B2 executes c ←Ð E(decom∣∣pkS∗ ,pkR) and returns u ∶= (com, σ, c)
to A. If pkR = pkR∗ , B2 adds (com, σ) to L.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

If it is the ith unsigncryption query, B2 halts the execution of A, measures the input register for the query,
and outputs a forgery (com∣∣pkR∗ , σ). Otherwise, B2 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if (u,pkS) = (u∗,pkS∗) ∨ erConceal[u,pkS] = True ∨ Forge[u,pkS] = True
US(u, skR∗ ,pkS) otherwise.
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The resulting state is sent back to A.

Guess: A sends a guess b′ to B2. (B2 does nothing with b′).

Analysis: The event Forge implies that probability that (com∣∣pkR∗ , σ) satisfies V(com∣∣pkR∗ , σ,pkS∗) = 1
is at least δ/q2u. The pqsUF-CMA property of PKS shows that δ is negligible. Since the total query magnitude
of signcryption texts satisfying Forge is negligible, it is known that the advantage of A is only changed by
negligible amount by using Lemma 5.1.

B.5 Proof of Lemma 6.3

Proof. Let A be a quantum PPT adversary which can distinguish Game0 and Game1 with probability ǫ.
We construct a quantum PPT algorithm B3 which breaks the IND-qCCA security of PKE with probability
ǫ/2. Let CH be the challenger for the primitive encryption scheme PKE which runs (pkR∗ , skR∗) ←Ð GE(1λ)
and sends pkR∗ to B3. B3 runs the setup algorithm of the commitment scheme, (pkS∗ , skS∗) ←Ð GS(1λ),
and forwards the public commitment key CK, pkS∗ and pkR∗ to A. B3 creates a list L and simulates A’s
queries as described below.

Challenge query: A submits two equal length messages m0 and m1 to B3. B3 then samples b
U←Ð {0,1}

and runs (com∗,decom∗) ←Ð Commit(mb). Then it samples decomr randomly from the decommitment
space, sets (decom0∣∣pkS∗ ,decom1∣∣pkS∗) ←Ð (decom∗∣∣pkS∗ ,decomr ∣∣pkS∗) and sends the same to CH. CH

samples β
U←Ð {0,1}, runs c∗ ←Ð E(decomβ ∣∣pkS∗ ,pkR∗) and sends it to B3. The simulator runs σ∗ ←Ð

S(com∗∣∣pkR∗ , skS∗), sets u∗ ∶= (com∗, σ∗, c∗), adds (com∗, σ∗) to L and returns it to A.

Signcryption queries: Let m be any signcryption query made by A corresponding to receiver identity
pkR. B3 runs u←Ð SC(m, skS∗ ,pkR) and sends u to A. If pkR = pkR∗ , B3 adds (com, σ) to L.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. B3 appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩. B3 then sends a decryption query consisting of 3rd and 6th register

to CH. CH applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩ z→ ∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm ⊕ g(c)⟩
where

g(c) = ⎧⎪⎪⎨⎪⎪⎩
� if c = c∗

D(c, skR∗) otherwise.

CH sends the resulting state to B3. B3 then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp, g(c)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS,mp ⊕ f (∆), g(c)⟩

where

f (∆) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

� if (u,pkS) = (u∗,pkS∗) ∨ erConceal[u,pkS] = True ∨ Forge[u,pkS] = True
Open(com, [g(c)]1) if c ≠ c∗ ∧ V(com∣∣pkR∗ , σ,pkS) = 1 ∧ pkS = [g(c)]2
� otherwise,

and ∆ = (u,pkS, g(c)).
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Note that the ancilla register is entangled with other registers. To perfectly simulate A’s view, simulator
can use the EtU technique to unentangle the ancilla register: B3 sends a decryption query consisting of 3rd

and 6th register to CH. Finally, B3 obtains the state ∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp ⊕ f (∆)⟩⊗ ∣0ℓm⟩. It

discards the last register and sends ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩ to A.

Guess: A sends a guess b′ to B3. If b = b′, B3 replies β′ = 0 else returns β′ = 1.

Analysis: The only difference between Game0 and Game1 is the construction of the challenge sign-
cryption text. We will first show that all the unsigncryption queries are handled properly. It suffices to
show that each of the basis element ∣u,pkS,mp⟩ is handled properly. By definition, a query ∣u,pkS,mp⟩ is
legitimate if (u,pkS) ≠ (u∗,pkS∗). We consider the following cases:

1. Forge[u,pkS] = True
2. Forge[u,pkS] = False ∧ c ≠ c∗
3. Forge[u,pkS] = False ∧ c = c∗
In case 1, by definition of Game0 and Game1, the adversary is returned � if Forge happens. In case 2,

B3 answers correctly by making a decryption query to CH. Only case 3 is left to analyze. In simulation, A is
given � for this case. We divide this case into two sub cases: (a1) V(com∣∣pkR∗ , σ,pkS∗) = 0∨pkS ≠ pkS∗ , (a2)(com, σ) ∈ L ∧ V(com∣∣pkR∗ , σ,pkS∗) = 1 ∧ pkS = pkS∗ . It is easy to see that the sub case (a1) correspond to
invalid signcryption texts. If Open(com,D(c, skR∗)) = �, then A will get � as a reply. W.l.o.g, assume that
Open(com,D(c, skR∗)) ≠ �. Now, case (a2) implies that (u,pkS) will satisfy the event erConceal. So, A will
get � as response according to the definition of Game

R̃eal
. From the challenge phase, it is straightforward

that the challenge signcryption text is properly distributed. Therefore, all the answers to the oracle queries
are perfectly simulated. The advantage of B3 in breaking IND-qCCA security of the primitive encryption
scheme PKE is given by

Adv
IND−qCCA
B,PKE (1λ) = ∣Pr[β = β′] − 1

2
∣

= ∣Pr[β = 0, β′ = 0] +Pr[β = 1, β′ = 1] − 1

2
∣

= ∣1
2
Pr[β′ = 0∣β = 0] + 1

2
Pr[β′ = 1∣β = 1] − 1

2
∣

= ∣1
2
Pr[β′ = 0∣β = 0] − 1

2
Pr[β′ = 0∣β = 1]∣

= ∣1
2
Pr[b = b′∣β = 0] − 1

2
Pr[b = b′∣β = 1]∣

=
1

2
∣AdvGame0

A,SC (1λ) −AdvGame1
A,SC (1λ)∣.

B.6 Proof of Lemma 6.4

Proof. Let A be a quantum PPT adversary which has advantage ǫ in Game1. We construct a quantum
PPT algorithm B4 which breaks the qHiding property of C with advantage at least ǫ. Let CH be the
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challenger for the commitment scheme C. CH first runs the setup algorithm of the commitment scheme and
gives the public commitment key CK to B4. B4 runs (pkR∗ , skR∗) ←Ð GE(1λ), (pkS∗ , skS∗) ←Ð GS(1λ) and
sends pkR∗ , pkS∗ and CK to A. B4 creates a list L (initially empty) and simulates A’s queries as described
below.

Challenge query: A submits two equal length messages m0 and m1 to B4. B4 submits the same message

pair (m0,m1) to the challenger CH. CH samples b
U←Ð {0,1}, runs (com∗,decom∗) ←Ð Commit(mb) and

sends com∗ to B4. B4 then runs σ∗ ←Ð S(com∗∣∣pkR∗ , skS∗) and c∗ ←Ð E(decomr ∣∣pkS∗ ,pkR∗), where decomr

is randomly sampled from the decommitment space. B4 adds (com∗, σ∗) to L and sends the challenge
signcryption text u∗ ∶= (com∗, σ∗, c∗) to A.

Signcryption queries: Let m be any signcryption query made by A corresponding to receiver identity
pkR. B4 runs u←Ð SC(m, skS∗ ,pkR) and sends u to A. If pkR = pkR∗ , B4 adds (com, σ) to L.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

B4 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if (u∗,pkS∗) = (u,pkS) ∨ erConceal[u,pkS] = True ∨ Forge[(u,pkS)] = True
US(u, skR∗ ,pkS) otherwise.

The resulting state is sent back to A.

Guess: A sends a guess b′ to B4. B4 returns the same bit b′ to CH.

Analysis: It is easy to see that B4 simulates A’s queries perfectly and it breaks the qHiding property of
C with advantage at least ǫ.

B.7 Proof of Lemma 6.5

Proof. We construct a quantum PPT algorithm B1 which breaks the pqsUF-CMA security of PKS with
probability at least ǫ

2
. Let CH be the challenger for the signature scheme PKS. CH runs (pkS∗ , skS∗) ←Ð

GS(1λ) and sends pkS∗ to B1. B1 then runs (pkR∗ , skR∗) ←Ð GE(1λ), the setup algorithm of the commitment
scheme and gives the public commitment key CK, pkR∗ and pkS∗ to A.

Signcryption queries: Let (m,pkR) be any signcryption query made by A. B1 runs (com,decom) ←Ð
Commit(m) and sends a signature oracle query on com∣∣pkR to CH. CH runs σ ←Ð S(com∣∣pkR, skS∗) and
sends σ to B1. B1 then runs c←Ð E(decom∣∣pkS∗ ,pkR), sets u ∶= (com, σ, c) and sends u to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

B1 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ US(u, skR∗ ,pkS)⟩

The resulting state is sent back to A.

Forgery: A outputs a forgery ũ = (c̃om, σ̃, c̃). B1 forwards (c̃om∣∣pkR∗ , σ̃) as forgery to CH.

Analysis: It is clear that B1 breaks pqsUF-CMA security of PKS with probability at least ǫ
2
.
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B.8 Proof of Lemma 6.6

Proof. Let qs and qu be the total number of signcryption and unsigncryption queries made by the adversary
A respectively. Let δi be the sum of amplitudes squared of those basic elements (u,pkS,mp) involved in
the ith unsigncryption query for which the event srConceal is satisfied. Let δ = ∑i∈[qu] δi be the sum of the
probabilities. We claim that δ is negligible. Indeed, we can construct an adversary B2 which breaks the
qrConcealment property of the underlying commitment scheme with advantage (δ ⋅ is)/(q2s ⋅ q2u), where is is
as defined in the proof sketch of Theorem 6.6. Let CH be the challenger for the commitment scheme C. CH
first runs the setup algorithm of the commitment scheme and gives the public commitment key CK to B2.
B2 runs (pkR∗ , skR∗) ←Ð GE(1λ), (pkS∗ , skS∗) ←Ð GS(1λ) and sends pkR∗ , pkS∗ and CK to A. B2 creates a

list L which is initially empty. It also picks i
U←Ð [qu] and j∗

U←Ð [qs] and simulates A’s queries as described
below.

Signcryption queries: Let mj be the jth signcryption query made by A corresponding to receiver identity
pkR. Then the jth query is handled un the following way:

1. (j = j∗): B2 forwards mj to CH. CH runs (comj ,decomj) ←Ð Commit(mj) and sends (comj,decomj)
to B2. B2 then runs σj ←Ð S(comj ∣∣pkR, skS∗) and cj ←Ð E(decomj ∣∣pkS∗ ,pkR) and returns uj =(comj , σj , cj) to A.

2. (j ≠ j∗): B2 runs uj ←Ð SC(mj , skS∗ ,pkR) and sends uj to A.

If pkR = pkR∗ , B2 adds (comj , σj) to L.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

If it is the ith unsigncryption query with j∗ ≤ is, B2 halts the execution of A, measures the input register
for the query, and submits the corresponding com to CH. If j∗ > is, then B2 aborts. Otherwise, B2 applies
the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (u,pkS)⟩

where

f (u,pkS) =
⎧⎪⎪⎨⎪⎪⎩
� if srConceal[u,pkS] = True
US(u, skR∗ ,pkS) otherwise.

The resulting state is sent back to A.

Forgery: A outputs a forgery ũ. (B2 does nothing with ũ).

Analysis: With probability δ/(qs ⋅ q2u), the measurement outcome u satisfies the following: c = cj ,
com ≠ comj and Open(com,D(c, skR∗)) ≠ �. Therefore, (com, comj ,decomj) is a witness for breaking
qrConcealment property if (u,pkS). The advantage of breaking qrConcealment property is (δ ⋅ is)/(q2s ⋅ q2u), a
contradiction. So, δ is negligible. Since the total query magnitude of signcryption texts satisfying srConceal

is negligible, it is known that the advantage of A is only changed by negligible amount by using Lemma
5.1.

B.9 Proof of Lemma 6.7

Proof. Let A be a quantum PPT adversary which can distinguish Gamej−1 and Gamej with probability
ǫ′. We construct a quantum PPT algorithm B3 which breaks the IND-qCCA security of PKE with advantage
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at least ǫ′/2. Let CH be the challenger for the encryption scheme PKE. CH runs (pkR∗ , skR∗) ←Ð GE(1λ)
and sends pkR∗ to B3. B3 runs (pkS∗ , skS∗) ←Ð GS(1λ), the setup algorithm of the commitment scheme
and forwards the public commitment key CK, pkS∗ and pkR∗ to A. B3 creates a list L (initially empty)
simulates A’s queries as described below.

Signcryption queries: Let (m,pkR) be any signcryption query made by A. If pkR ≠ pkR∗ , B3 runs
u ←Ð SC(m, skS∗ ,pkR) and sends u to A. Otherwise, B3 does the following:

• (First j − 1 queries). B3 runs (com,decom) ←Ð Commit(m), σ ←Ð S(com∣∣pkR∗ , skS∗) and c ←Ð
E(decomr∣∣pkS∗ ;pkR∗), where decomr is sampled uniformly from the decommitment space. B3 sets
u = (com, σ, c), adds (m,u) to L and sends u to A.

• (jth query). B3 first runs (comj,decomj) ←Ð Commit(mj). Then it samples decomr randomly from the
decommitment space, sets (decom0∣∣pkS∗ ,decom1∣∣pkS∗) ←Ð (decomj ∣∣pkS∗ ,decomr ∣∣pkS∗) and sends

the same to CH. CH samples b
U←Ð {0,1}, runs c∗ ←Ð E(decomb∣∣pkS∗ ,pkR∗) and sends it to B3. B3

runs σj ←Ð S(comj ∣∣pkR∗ , skS∗), sets u∗ ∶= (comj , σj , c
∗) and returns it to A. B3 also adds (mj ,u

∗) to
L.

• (Last (qs − j) queries). All the signcryption queries are answered properly.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by

A. B3 appends an ℓm qubit ancilla register, containing the state ∣0ℓm⟩, to the query and obtains the state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩. B3 then sends a decryption query consisting of 3rd and 6th register

to CH. CH applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm⟩ z→ ∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp,0

ℓm ⊕ g(c)⟩
where

g(c) =
⎧⎪⎪⎨⎪⎪⎩
� if c = c∗

D(c, skR∗) otherwise.

CH sends the resulting state to B3. B3 then applies the following transformation on the obtained state

∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp, g(c)⟩z→ ∑

u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS,mp ⊕ f (∆), g(c)⟩

where

f (∆) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m′ if ∃(m′,u′) ∈ L s.t. (com, c,pkS) = (com′, c′,pkS∗) ∧ V(com′∣∣pkR∗ , σ′,pkS) = 1
� if srConceal[u,pkS] = True
Open(com, [g(c)]1) if V(com∣∣pkR∗ , σ,pkS) = 1 ∧ pkS = [g(c)]2
� otherwise,

and ∆ = (u,pkS, g(c)).
Note that the ancilla register is entangled with other registers. To perfectly simulate A’s view, simulator

can use the EtU technique to unentangle the ancilla register: B3 sends a decryption query consisting of 3rd

and 6th register to CH. Finally, B3 obtains the state ∑
u,pkS,mp

ψu,pkS,mp
∣com, σ, c,pkS ,mp ⊕ f (∆)⟩⊗ ∣0ℓm⟩. It

discards the last register and sends ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩ to A.
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Forgery: A outputs a forgery ũ. B3 checks if ũ is a valid signcryption text by making a decryption oracle
query and then verifying the validity of the signature. Suppose, it is a valid signcryption text and m̃ is the
underlying plaintext. B3 then checks if ∀(m̃, ũ) /∈ L. If the above conditions are true then B3 sends b′ = 0,
i.e., it guesses that c∗ is the encryption of decomj ∣∣pkS∗ , else sends b′ = 1.

Analysis: First note that the sole purpose of introducing the event srConceal is to handle unsigncryption
queries on (u,pkS) whose ciphertext part is c∗, because B3 will get � against c∗ from the decryption oracle.
This case will come under the 2nd condition of the evaluation of f(∆). Essentially, we give a justification
of f(∆) = � when srConceal[u,pkS] = True. Now, srConceal[u,pkS] = True implies that ∃j ∈ [is] such that
c = cj , com ≠ comj and Open(com,D(c, skR∗)) ≠ �, where uj = (comj , σj , cj) is the reply of jth signcryption
query (including challenge). If uj is a proper signcryption text, then A will get � as a response according
to the definition of GameReal. Otherwise, cj will be the ciphertext of a randomly chosen decommitment
decomr, and therefore A gets Open(comj ,decomr) = � as a response.

From the simulation procedure, it is clear that B3 simulates unsigncryption queries correctly. Also, if
c∗ is indeed the encryption of decomj ∣∣pkS∗ , then A was run in Gamej−1 else it was run in Gamej. From
our assumption on the success probability of A, we get that the B3 succeeds with advantage at least ǫ′/2
in breaking IND-qCCA security of PKE.

B.10 Proof of Lemma 6.8

Proof. Let A be a quantum PPT adversary which can succeed in Gameqs
with probability ǫ′. We construct

a quantum PPT algorithm B4 which breaks the qfBinder property of C with advantage at least ǫ′

2
. Let CH be

the challenger for the commitment scheme C. CH first runs the setup algorithm of the commitment scheme
and gives the public commitment key CK to B4. Then, B4 runs (pkS∗ , skS∗) ←Ð GS(1λ), (pkR∗ , skR∗) ←Ð
GE(1λ) and returns commitment key CK, pkR∗ and pkS∗ to the adversary A. B4 also creates a list L (initially

empty), samples i
U←Ð [qs] and simulates A’s queries as described below.

Signcryption queries: Let (m,pkR) be any signcryption query made by A. If pkR ≠ pkR∗ , B4 runs
u ←Ð SC(m, skS∗ ,pkR) and sends u to A. If it is the ith signcryption query on pkR∗ , B4 forwards m to CH.
CH then runs (com,decom) ←Ð Commit(m) and sends com to B4. B4 runs σ ←Ð S(com∣∣pkR∗ , skS∗) and
c ←Ð E(decomr ∣∣pkS∗ ,pkR∗), where decomr is uniformly sampled from the decommitment space. B4 then
sets u = (com, σ, c), adds (m,u) to L and sends u to A. Otherwise, B4 runs (com,decom) ←Ð Commit(m),
σ ←Ð S(com∣∣pkR, skS∗) and c ←Ð E(decomr ∣∣pkS∗ ,pkR∗), where decomr is uniformly sampled from the
decommitment space. B4 then sets u = (com, σ, c), adds (m,u) to L and sends u to A.

Unsigncryption queries: Let uquant = ∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ be any unsigncryption query made by A.

B4 applies the following unitary transformation

∑
u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp⟩ z→ ∑

u,pkS,mp

ψu,pkS,mp
∣u,pkS,mp ⊕ f (∆)⟩

where

f (∆) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m′ if ∃(m′,u′) ∈ L s.t. (com, c,pkS) = (com′, c′,pkS∗) ∧ V(com′∣∣pkR∗ , σ′,pkS) = 1
� if srConceal[u,pkS] = True
US(u, skR∗ ,pkS) otherwise,

and ∆ = (u,pkS).
The resulting state is sent back to A.
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Forgery: A outputs a forgery ũ. B4 forwards decom to CH.

Analysis: It is clear that B4 breaks qfBinder property of C with probability at least ǫ′/(2 ⋅ qs).
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