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Abstract

Minimal codes are characterized by the property that none of the codewords is covered
by some other linearly independent codeword. We first show that the use of a bent func-
tion g in the so-called direct sum of Boolean functions h(x, y) = f(x) + g(y), where f is
arbitrary, induces minimal codes. This approach gives an infinite class of minimal codes
of length 2n and dimension n+ 1 (assuming that h : Fn

2 → F2), whose weight distribution
is exactly specified for certain choices of f . To increase the dimension of these codes with
respect to their length, we introduce the concept of non-covering permutations (referring
to the property of minimality) used to construct a bent function g in s variables, which
allows us to employ a suitable subspace of derivatives of g and generate minimal codes
of dimension s + s/2 + 1 instead. Their exact weight distribution is also determined. In
the second part of this article, we first provide an efficient method (with easily satisfied
initial conditions) of generating minimal [2n, n + 1] linear codes that cross the so-called
Ashikhmin-Barg bound. This method is further extended for the purpose of generating
minimal codes of larger dimension n + s/2 + 2, through the use of suitable derivatives
along with the employment of non-covering permutations. To the best of our knowledge,
the latter method is the most general framework for designing binary minimal linear codes
that violate the Ashikhmin-Barg bound. More precisely, for a suitable choice of derivatives
of h(x, y) = f(x) + g(y), where g is a bent function and f satisfies certain minimality
requirements, for any fixed f , one can derive a huge class of non-equivalent wide binary
linear codes of the same length by varying the permutation φ when specifying the bent
function g(y1, y2) = φ(y2) · y1 in the Maiorana-McFarland class. The weight distribution is
given explicitly for any (suitable) f when φ is an almost bent permutation.
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1 Introduction

Error correcting codes have many applications in communication systems, data storage devices
and consumer electronics. A special class of linear codes, called minimal, is characterized by
the property that none of the (nonzero) codewords is covered by some other codeword. These
codes are widely used in certain applications such as secret sharing schemes [6, 12, 23] and
secure two-party computation in e.g., [8]. Ashikhmin and Barg [1] proved that a sufficient
condition for a linear code over Fq to be minimal is that wmin/wmax >

q−1
q , which in binary

case means that wmin/wmax >
1
2 . Nevertheless, this condition is not necessary and there are

several designs of binary minimal linear codes for which wmin/wmax 6 1
2 (intrinsically harder

to specify); attributed as wide in this article. In their pioneering work, Chang and Hyun
[7] constructed an infinite family of minimal binary linear codes satisfying wmin/wmax 6 1

2
and soon after that C. Ding et al. [11] provided three explicit classes of wide minimal linear
codes over binary alphabet. In the same article [11], a useful relationship between the Walsh
spectrum of the defining Boolean function and the weight distribution of the resulting code
was derived. Recently, the problem of designing minimal linear codes was also considered
using the notion of so-called cutting blocking sets [3] (generalized in [20]). It was shown in
[3] that cutting blocking sets precisely capture the property of minimality and one explicit
design example that employs homogenous functions was given. The main conclusion is that
an infinite sequence of wide minimal codes could be specified using this particular class of
functions (corresponding to a hypersurface of the affine space A(Fnq )), see [3, Theorem 5.5].
Finally, we also mention a method that employs characteristic functions [16] for the purpose
of designing wide minimal codes, which essentially generalizes the approach taken by Ding em
et al. [11]. We notice that a lot of work has been done towards the design of minimal linear
codes over non-binary alphabet and other related structures (e.g., over finite fields), see e.g.,
[2, 22, 13]. Nevertheless, since the topic of this article is the design of minimal binary linear
codes, we do not discuss these methods in more detail.

In this article, we address the problem of specifying binary minimal linear codes mainly
using the direct sum method for constructing Boolean functions (given in the form h(x, y) =
f(x) + g(y)) and a suitable (predetermined) subspace of derivatives of bent functions. In
brief, the use of the direct sum provides a simple method to specify minimal codes without
any initial conditions. More precisely, selecting an arbitrary Boolean function f on Fr2 and
a bent function g on Fs2 is sufficient to specify a minimal linear code of dimension r + s + 1
given as Ch = {(ah(x, y) + λ · x + β · y)x∈Fr2,y∈Fs2 : a ∈ F2, λ ∈ Fr2, β ∈ Fs2}, see Theorem 2.
The weight distribution of this family of minimal codes is specified exactly and for arbitrary
f (whose Walsh spectrum is given), see Tables 1 − 4. To accommodate a class of minimal
linear codes having a larger dimension than r + s + 1, we show in Section 4 that a suitable
subspace of derivatives of dimension s/2 of a bent function g can be added to the basis of Cg
so that the resulting code of length 2s whose dimension is s + 1 + s/2 (an increase by s/2
compared to Theorem 2). The minimality of this codes is strongly related to a novel concept
of non-covering permutations {φ}, used to define a bent function g(y1, y2) = φ(y2) · y1 in the
Maiorana-McFarland class, see Theorem 3. We notice that this increase of dimension is not
traded-off against stronger initial conditions which are once again absent (apart from selecting
non-covering permutations to define a bent function g which turn out to be easily specified).
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The weight distribution of this family of minimal codes (with increased dimension) is also given
explicitly, see Corollary 2 and Table 5.

In the second part of this article, we first provide one efficient method (with easily satisfied
initial conditions) of generating wide minimal codes, see Theorem 4. Then, we again consider
the use of derivatives (along with the direct sum of the underlying Boolean function) for the
purpose of defining another class of wide minimal codes. This approach essentially gives a very
general framework for designing wide minimal codes which employs a (suitable) subspace of
derivatives of h(x, y) = f(x) + g(y), where g is a bent function again and f satisfies certain
minimality requirements, see Theorem 5. This method generates wide minimal codes of length
2n and of larger dimension n+ s/2 + 2 compared to Theorem 4 (generating codes of dimension
n + 1). Employing a bent function g(y(1), y(2)) = φ(y(2)) · y(1) in the Maiorana-McFarland
class, one can derive a huge class (for a fixed suitable function f) of non-equivalent wide binary
linear codes through different selections of a non-covering permutation φ. Thus, for any fixed
(suitable) f , one can derive a huge class of non-equivalent wide binary linear codes of the same
length by varying the permutation φ when specifying a bent function g(y(1), y(2)) = φ(y(2))·y(1).
The weight distribution is given explicitly for any (suitable) f when φ is an almost bent (AB)
permutation.

This paper is organized as follows. In Section 2, we introduce some basic definitions and
results related to Boolean functions, linear codes and, specifically, to minimal linear codes. The
use of direct sum method for the purpose of constructing minimal linear codes is described
in Section 3. Its extension, based on the use of a suitable subspace of derivatives and the so-
called non-covering permutations, is presented in Section 4. In Section 5, two generic methods
for constructing infinite sequences of (non-equivalent) wide binary linear codes are given. One
general class of (wide) minimal codes is given in Section 6 (whose weight distribution is exactly
specified), when the non-covering permutation is AB. Some concluding remarks are given in
Section 7.

2 Preliminaries

Let F2 denote the finite field with two elements {0, 1}, and let Fn2 denote an n-dimensional
vector space over F2. A Boolean function f is a map from the vector space Fn2 to the binary
field F2, i.e., f : Fn2 → F2. The set of all Boolean functions in n variables is denoted by Bn.
Any Boolean function f ∈ Bn uniquely determines a sequence of output values (called truth
table) given as

[f(0, . . . , 0, 0), f(0, . . . , 0, 1), . . . , f(1, . . . , 1, 1)],

which in turn can be viewed as a binary vector of length 2n. We then treat a function f ∈ Bn
and its truth table as the same object whenever there is no ambiguity. The Hamming weight
of f , denoted by wt(f), is the number of ones in its truth table. The Hamming distance d(f, g)
between f and g is the Hamming weight of f + g (i.e., d(f, g) = wt(f + g)).

The Walsh transform of f ∈ Bn at a point λ ∈ Fn2 is defined as

Wf (λ) =
∑
x∈Fn2

(−1)f(x)+λ·x,
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where “ · ” denotes the standard inner (dot) product of two vectors, that is, λ · x = λ1x1 +
· · ·+λnxn. The nonlinearity of a Boolean function f ∈ Bn is the minimum Hamming distance
between f and the set of all n-variable affine functions (denoted by An), that is,

Nf = min
g∈An

d(f, g).

Furthermore, it is known that Nf is upper bounded by 2n−1 − 2n/2−1 in terms of Parseval’s
equation

∑
λ∈Fn2

(Wf (λ))2 = 22n [14]. A Boolean function f ∈ Bn can attain the upper bound

2n−1−2n/2−1 on its nonlinearity only when n is even, in this case, f is called bent. The Walsh
transform of f can be related to Nf using the equality

Nf = 2n−1 − 1

2
max
λ∈Fn2

|Wf (λ)|.

Thus a Boolean function f ∈ Bn is bent if and only if Wf (λ) = ±2
n
2 for any λ ∈ Fn2 .

The original Maiorana-McFarland class of bent functions [15], denoted byMM, is the set
of all bent functions on F2n

2 = {(x, y) | x, y ∈ Fn2} of the form:

f(x, y) = x · π(y) + g(y), (1)

where π is a permutation on Fn2 and g ∈ Bn is arbitrary.
The derivative of a Boolean function f ∈ Bn at direction γ ∈ Fn2 is defined as

Dγf(x) = f(x+ γ) + f(x). (2)

Throughout this paper, we denote (0, 0, . . . , 0) ∈ Fn2 by 0n and (1, 1, . . . , 1) ∈ Fn2 by 1n.
We reserve the double bar symbol to represent the cardinality of a set, i.e., ‖S‖ represents the
cardinality of the set S. For a vector υ = (υ1, υ2, . . . , υn) ∈ Fn2 , we define its support to be the
set supp(υ) = {i ∈ {1, 2, . . . , n} : vi = 1}. Clearly, wt(υ) = ||supp(υ)||. The same applies to
vectors of length 2n corresponding to truth tables of Boolean functions on Fn2 .

2.1 Linear codes via Boolean functions

An [m, k, d] linear code C ⊆ Fmp over the alphabet Fp is a k-dimensional linear subspace of Fmp ,
whose minimum distance (the minimum weight of its non-zero codewords) is d.

In general, for functions mapping from Fnp to Fp, where p is a prime number, there are two
standard methods to define linear codes that stem from such functions [10]. The first generic
method, which has been greatly explored in many works, specifies codes using a mapping
f : Fnp → Fp. Namely, the linear code Cf , as a linear subspace of Fp

n

p , is defined by

Cf = {(af(x) + λ · x)x∈Fnp : a ∈ Fp, λ ∈ Fnp}. (3)

The dimension of Cf is at most n+ 1 and its length is pn. If f(0n) = 0, we may also consider
the code obtained by puncturing the first coordinate in Cf . In this case, the length is pn − 1
while the dimension remains at most n+ 1.
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On the other hand, the second generic method specifies a code using a subset Sf =
{s1, s2, . . . , sm} ⊆ Fnp , usually called the defining set, so that

CSf = {(s1 · x, s2 · x, . . . , sm · x) : x ∈ Fnp}. (4)

Some good codes were derived [9, 10] using special classes of vectorial mappings from Fnp to
Fnp . In this article, we exclusively consider the binary case p = 2 although some notions are
given in a more general context.

The weight distribution of binary linear codes is directly related to the Walsh spectrum of
a given Boolean function f : Fn2 → F2 through the following fundamental result.

Theorem 1 [10] Let f be a function from Fn2 to F2. Consider the linear code Cf defined in
(3). If f is a nonlinear function (that is, for all b ∈ Fn2 it holds f(x) 6= b · x), then Cf has
dimension m+ 1. Its weight distribution is given by the following multiset:{{

2n−1 − 1

2
Wf (λ) : λ ∈ F2n

}}
∪
{{

2n−1
}}
∪ { 0 }. (5)

The code Cf associated to a non-affine Boolean function Fn2 to F2 (3) is constructed as the
smallest linear subspace of F2n

2 containing f and all linear functions. This construction can be
readily generalized to deal with vectorial Boolean functions F : Fn2 → Fn2 simply considering
the smallest linear subspace of F2n

2 containing all linear functions and every coordinate function
of F (hence every component of F ), i.e.,

CF = {(a(b · F (x)) + λ · x)x∈Fn2 : a ∈ F2, b ∈ (Fn2 )∗, λ ∈ Fn2}.

The dimension of CF is at most 2n and its length is 2n. If F (0n) = 0n, one may also consider
the code obtained by puncturing the first coordinate of CF , in this case, the length is 2n − 1
and CF can be used to characterize AB and APN functions [5].

2.2 Minimal Linear Codes

Consider an [m, k, d]-linear code C ⊆ Fmq . For any u,v ∈ C, we say that u covers v if and only
if supp(v) ⊆ supp(u). We denote this relation by v � u. A codeword u ∈ C is called minimal
if it only covers the elements in 〈u〉, i.e., for every v ∈ C if v � u then there exists a ∈ Fq such
that v = au. The linear code C is said to be minimal if every element c ∈ C is minimal. Let
Ai be the number of codewords with Hamming weight i in C. The code C is fully specified by
its weight enumerator, which is the polynomial 1 +A1z + · · ·+Amz

m.
Ashikhmin and Barg [1] gave a sufficient condition to obtain minimal linear codes over Fq,

namely, we have the following result.

Lemma 1 Let C be a linear code over Fq. Denote by wmin and wmax the minimum and
maximum nonzero Hamming weights in C, respectively. If it holds that wmin

wmax
> q−1

q , then C is
minimal.

In the binary case, we will call a linear code narrow if it satisfies the condition of Lemma
1, namely, wmin/wmax > 1/2. However, the above condition is not necessary and the codes
satisfying wmin/wmax 6 1/2 are called wide.

The key observations, related to minimality, are given in the following two lemmas.
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Lemma 2 [11] Let C ⊂ Fn2 be a binary linear code. The code C is minimal if and only if for
each pair of distinct nonzero codewords a and b in C,

wt(a + b) 6= wt(a)− wt(b).

Lemma 3 [11] Let f : Fn2 → F2 be a Boolean function. Then, the code Cf in (3) is minimal
if and only if for every pair of distinct λ1, λ2 ∈ Fn2 , it holds that

Wf (λ1) +Wf (λ2) 6= 2n, (6)

and
Wf (λ1)−Wf (λ2) 6= 2n. (7)

The following result is a quite straightforward consequence of the above lemmas and it provides
a simple characterization of wideness.

Lemma 4 [17] For a given non-affine Boolean function f ∈ Bn, consider the code Cf given by
(3). It holds that Cf is wide if and only if

2Wf (uM )−Wf (um) > 2n, (8)

where uM (resp. um) is such that Wf (uM ) (resp. Wf (um)) is maximum (resp. minimum).

Proposition 1 Let C ⊆ Fn2 be an arbitrary binary linear code and C0 ⊆ C be any subcode of C.
The following hold:

� (Narrowness is hereditary) If C is narrow, then so is C0.

� (Minimality is hereditary) If C is minimal, then so is C0, moreover, none of its subsets
with two or more elements satisfies the covering property.

For any subset S ⊂ {1, . . . ,m}, define the S-puncturing of an [m, k, d]-code C ⊆ Fmq as the
function pS : C → Fmq given by

pS(c)i =

{
ci if i 6∈ S;

0 otherwise,

where subindexes i indicate the coordinates of the corresponding vector.
The following lemma, whose proof is omitted, is a slight rephrasing of the definition of min-

imality and it emphasizes that minimality is a local property that depends on each coordinate.

Lemma 5 Let C be a binary linear code with parameters [m, k, d]. The code C is minimal if
and only if for every two non-zero codewords c, c′ ∈ C, there exists S ⊂ {1, . . . ,m} such that

pS(c) 6� pS(c′),

where pS denotes the S-puncturing of C.
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The key idea for the first construction method given in (3), is to adjoin non-affine functions
to the simplex code for the purpose of increasing the dimension of the resulting code. Adjoining
two linearly independent non-affine functions whose sum is non-affine gives a [2n, n+2, d]-code

Cf1 ⊕ Cf2 := {(a1f1(x) + a2f2(x) + λ · x)x∈Fn2 : ai ∈ F2, λ ∈ Fn2} = Cf1 ∪ Cf2 ∪ Cf1+f2 .

The minimality of the code Cf1 ⊕ Cf2 can be expressed in terms of the minimality of each
individual code and an additional non-covering property as stated in the following lemma.

Lemma 6 Let f1, f2 be two distinct non-affine Boolean functions such that f1 + f2 is non-
affine. Then, the code Cf1 ⊕ Cf2 is minimal if and only if Cf1, Cf2 , Cf1+f2 are minimal and the
following condition holds:
For every two vectors λ1, λ2 ∈ Fn2 and elements ε1, ε2, ε3 ∈ F2 such that ε1 + ε2 + ε3 = 1 (over
Z), we have

(−1)ε1Wf1(λ1) + (−1)ε2Wf2(λ2) + (−1)ε3Wf1+f2(λ1 + λ2) 6= 2n. (9)

Proof. Let C := Cf1 ⊕ Cf2 . Suppose that C is minimal. Since Cf1 , Cf2 , Cf1+f2 are subcodes
of C, they are minimal too. Let λ1, λ2 ∈ Fn2 be arbitrary. We show (9) only for the case
ε1 = 1, ε2 = ε3 = 0, since the other two cases are similar (symmetric). Consider two distinct
non-zero codewords c1 = (f1(x) +λ1 ·x)x∈Fn2 and c2 = (f2(x) +λ2 ·x)x∈Fn2 . Since C is minimal,
c2 6� c1. This implies that

wt(c1)− wt(c2) 6= wt(c1 + c2),

which is equivalent to

−Wf1(λ1) +Wf2(λ2) 6= 2n −Wf1+f2(λ1 + λ2).

In other words, −Wf1(λ1) + Wf2(λ2) + Wf1+f2(λ1 + λ2) 6= 2n. Conversely, suppose that Cf1 ,
Cf2 , Cf1+f2 are minimal and (9) holds. It suffices to prove that the codewords stemming from
different codes do not cover each other. There are several cases to consider but we only
treat the case of (non-linear) c1 ∈ Cf1 and c2 ∈ Cf2 , since the other cases are similar. Let
c1 = (f1(x) + λ1 · x)x∈Fn2 and c2 = (f2(x) + λ2 · x)x∈Fn2 . The statement c2 � c1 is equivalent to

2n−1 − 1

2
Wf1(λ1)− 2n−1 +

1

2
Wf2(λ2) = 2n−1 − 1

2
Wf1+f2(λ1 + λ2),

which, in turn, is equivalent to

−Wf1(λ1) +Wf2(λ2) +Wf1+f2(λ1 + λ2) = 2n.

Therefore c2 � c1 is incompatible with (9).
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3 Minimal codes from the direct sum of Boolean functions

In this section, we describe a simple method to generate minimal linear codes using the so-called
bent concatenation.

Theorem 2 Let n, r, s be three integers such that r+s = n. Let f ∈ Br be arbitrary and g ∈ Bs
be a non-affine function such that Cg is minimal. Consider the direct sum h(x, y) = f(x)+g(y).
Then, the code Ch, defined by (3), is a minimal binary linear code. Moreover, if we define

δ := max{Wf (vM )Wg(uM ),Wf (vm)Wg(um)},

then the parameters of Ch are [2n, n+ 1, 2n−1− 1
2δ], where uM (resp. um) is such that Wf (uM )

(resp. Wf (um)) is maximum (resp. minimum).

Proof. Consider the set {(0r, y) : y ∈ Fs2} ordered lexicographically. This set can be identified
with a subset of {1, . . . , 2n}, call it S. The image of the S-puncturing pS can be regarded as
Cg+f(0r). Since Cg is minimal, so is Cg+f(0r). This implies that pS(c) 6� pS(c′), for every pair
of distinct non-zero codewords c, c′ ∈ Ch. Lemma 5 implies that Ch is minimal. The second
part of the statement follows from the well-known fact [18, 4] that for every (λ1, λ2) ∈ Fr2×Fs2,
Wh(λ1, λ2) = Wf (λ1)Wg(λ2).

The Walsh spectrum of the direct sum of Boolean functions is well-understood [18, 4] and
it entirely depends on the Walsh spectra of each summand. In particular, when g ∈ Bs is bent,
the Walsh spectrum of the direct sum h(x, y) = f(x) + g(y) can be completely determined
using the Walsh spectrum of f . To make this statement more precise, consider the set (not
multi-set) W abs

f of distinct absolute values of nonzero elements in the Walsh spectrum Wf =
{{Wf (λ) : λ ∈ Fr2}} of an arbitrary Boolean function f ∈ Br, i.e.,

W abs
f = {|z| : z ∈Wf , z 6= 0} = {|Wf (λ)| : λ ∈ Fn2 ,Wf (λ) 6= 0}, (10)

where a 6= b for any a, b ∈W abs
f . For every element ρ in W abs

f , define m+
ρ as the multiplicity of

ρ in Wf and define m−ρ as the multiplicity of −ρ in Wf . Let also m0 denote the multiplicity of
0 in Wf . We also recall that for any bent function g ∈ Bs there is a unique dual bent function
g̃ ∈ Bs determined through (−1)g̃(λ) = 2−s/2Wg(λ), for any λ ∈ Fs2.

Corollary 1 Let n, r, s be three integers such that s > 2 is even and r + s = n. Let f ∈ Br be
arbitrary and g ∈ Bs be bent. Consider h(x, y) = f(x) + g(y). The code Ch, defined by (3), is
a minimal binary linear code with parameters [2n, n+ 1,Nh] and it has 2||W abs

f ||+ 1 different

non-zero weights, where W abs
f is given by (10). The weight distributions of Ch, depending on

the weight of the dual g̃, are displayed in Table 1 and Table 2.

Proof. Since g ∈ Bs is bent, the code Cg is minimal. Theorem 2 implies that Ch is minimal
with parameters [2n, n + 1, 2n−1 − 1

2δ], where δ = max{Wg(uM )Wf (vM ),Wg(um)Wf (vm)}.
Now,

max{Wg(uM )Wf (vM ),Wg(um)Wf (vm)} = 2s/2 max{Wf (vM ),−Wf (vm)} = 2s/2 max
w∈Fr2

|Wf (w)|.
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From here, we conclude that the minimum distance of Ch equals

Nh = 2n−1 − 2s/2−1 max
w∈Fr2

|Wf (w)|.

Now, for every λ = (λ1, λ2) ∈ Fn2 , the weight of the codeword corresponding to h(x, y) +
(λ1, λ2) · (x, y) equals

2n−1 − 1

2
Wf (λ1)Wg(λ2) = 2n−1 ± 2s/2−1Wf (λ1).

By definition, the dual g̃ of g has weight 2s−1 − 2s/2−1 when ||{w ∈ Fs2 : Wg(w) = −2s/2}|| =
2s−1 − 2s/2−1. For every ρ ∈W abs

f , the weight 2n−1 − 2s/2−1ρ of Ch is attained

(2s−1 + 2s/2−1)m+
ρ + (2s−1 − 2s/2−1)m−ρ times,

since it is attained by the pair of Walsh values (2s/2, ρ) or by the pair (−2s/2,−ρ). Similarly,
the weight 2n−1 + 2s/2−1ρ is attained

(2s−1 − 2s/2−1)m+
ρ + (2s−1 + 2s/2−1)m−ρ times.

A similar analysis can be done when the dual of g has weight 2s−1 + 2s/2−1. Finally, note that
for every ρ ∈ W abs

f , either m+
ρ 6= 0 or m−ρ 6= 0, this implies that both weights 2n−1 − 2s/2−1ρ

and 2n−1 + 2s/2−1ρ are always attained. Additionally, distinct values in W abs
f yield distinct

values of the corresponding weights, thus there are 2||W abs
f || + 1 non-zero weights including

the weight 2n−1.

Table 1: Weight distribution of Ch when f is an arbitrary Boolean function and g is a bent
function whose dual has weight 2s−1− 2s/2−1 and h(x, y) = f(x) + g(y), where ρ runs over the
set W abs

f .

Weight w Number of codewords Aw
2n−1 − 2s/2−1ρ (2s−1 + 2s/2−1)m+

ρ + (2s−1 − 2s/2−1)m−ρ
2n−1 + 2s/2−1ρ (2s−1 − 2s/2−1)m+

ρ + (2s−1 + 2s/2−1)m−ρ
2n−1 2n + 2sm0 − 1

0 1
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Table 2: Weight distribution of Ch when f is an arbitrary Boolean function and g is a bent
function whose dual has weight 2s−1 + 2s/2−1 and h(x, y) = f(x) + g(y), where ρ runs over the
set W abs

f .

Weight w Number of codewords Aw
2n−1 − 2s/2−1ρ (2s−1 − 2s/2−1)m+

ρ + (2s−1 + 2s/2−1)m−ρ
2n−1 + 2s/2−1ρ (2s−1 + 2s/2−1)m+

ρ + (2s−1 − 2s/2−1)m−ρ
2n−1 2n + 2sm0 − 1

0 1

Once we know the Walsh spectrum of f , the weight distribution of the code Ch is easily
obtained. For instance, if r is odd and f is a semi-bent Boolean function with f(0r) = 0, then
the weight distributions of Ch are displayed in Tables 3 and 4.

Table 3: Weight distribution of Ch when f is semi-bent, g is a bent function whose dual has
weight 2s−1 − 2s/2−1 and h(x, y) = f(x) + g(y).

Weight w Number of codewords Aw

2n−1 − 2s/2−12(r+1)/2 (2s−1 + 2s/2−1)(2r−2 + 2
r−3
2 ) + (2s−1 − 2s/2−1)(2r−2 − 2

r−3
2 )

2n−1 + 2s/2−12(r+1)/2 (2s−1 + 2s/2−1)(2r−2 − 2
r−3
2 ) + (2s−1 − 2s/2−1)(2r−2 + 2

r−3
2 )

2n−1 2n + 2n−1 − 1

0 1

Table 4: Weight distribution of Ch when f is semi-bent, g is a bent function whose dual has
weight 2s−1 + 2s/2−1 and h(x, y) = f(x) + g(y).

Weight w Number of codewords Aw

2n−1 − 2s/2−12(r+1)/2 (2s−1 − 2s/2−1)(2r−2 + 2
r−3
2 ) + (2s−1 + 2s/2−1)(2r−2 − 2

r−3
2 )

2n−1 + 2s/2−12(r+1)/2 (2s−1 − 2s/2−1)(2r−2 − 2
r−3
2 ) + (2s−1 + 2s/2−1)(2r−2 + 2

r−3
2 )

2n−1 2n + 2n−1 − 1

0 1

Example 1 For r = 3, s = 4 consider the functions f ∈ B3 and g ∈ B4 given by

f(x1, x2, x3) = x1x2 + x3 and g(y1, y2, y3, y4) = y1y3 + y2y4.

The function g is a bent function and f is a semi-bent function with Walsh spectrum given in
the table below.
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λ (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

Wf (λ) 0 4 0 4 0 4 0 −4

By computer simulations, we have verified that the linear code Ch is a minimal code with
minimum weight wmin = Nh = 56 and wmax = 72. It is a [128, 8, 56]-code. Moreover, its weight
enumerator is

1 + 36z56 + 191z64 + 28z72,

i.e., Ch is a three-weight code.

Example 2 For r = 4, s = 4 consider the functions f ∈ B4 and g ∈ B4 given by

f(x1, x2, x3, x4) = x1x2x3 + x4 and g(y1, y2, y3, y4) = y1y3 + y2y4 + 1.

The function g is a bent function and the Walsh spectrum of f is displayed in the table below.

λ v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16
Wf (λ) 0 12 0 4 0 4 0 −4 0 4 0 −4 0 −4 0 4

where we consider F4
2 = {v1, . . . , v16} ordered lexicographically. It can be verified that the linear

code Ch is a minimal [256, 9, 104]-code with wmin = Nh = 104 and wmax = 152. Moreover, its
weight enumerator is

1 + 6z104 + 54z120 + 383z128 + 58z136 + 10z152,

i.e., Ch is a five-weight code.

4 Minimal linear codes through suitable derivatives

In this section, we propose a different approach to obtaining (wide) minimal codes by employing
a suitable subspace of derivatives of a bent function g which is taken from the MM class of
bent functions. To achieve the minimality of the resulting codes, it will be required that
a permutation used to define a bent function g in the MM class satisfies certain covering
properties.

For our purposes, we will focus on the simplest bent functions in the MM class. Namely,

for s even and y = (y(1), y(2)) ∈ Fs/22 ×Fs/22 , consider g to be a bent function in theMM class
defined as

g(y(1), y(2)) = φ(y(2)) · y(1), (11)

where φ is a permutation on Fs/22 such that deg(a · φ) > 1 for every a ∈ (Fs/22 )∗.
The following lemmas identify useful non-covering properties of the codewords related to

suitable derivatives of g.

Lemma 7 Let g be a bent function on Fs2 (s even) in the MM class, as specified in (11).
Then we have

Dαg(y) +Dβg(y) = D(α+β)g(y), (12)

Dαg(y) 6= Dβg(y), (13)
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for any two different vectors α, β ∈ Fs/22 ×{0s/2}. Moreover, for every non-zero v = (v(1), v(2)) ∈
Fs/22 × Fs/22 , γ ∈ Fs/22 and ε ∈ F2,

wt(D(γ,0s/2)g(y) + v · y + ε) =

{
2s−1 − 2s/2−1(−1)εWγ·φ(v(2)) if γ 6= 0s/2, v

(1) = 0s/2

2s−1 otherwise.
(14)

Proof. Note that for every y = (y(1), y(2)) ∈ Fs/22 × Fs/22 and γ ∈ Fs/22 , we have

D(γ,0s/2)g(y) = φ(y(2)) · y(1) + φ(y(2)) · (y(1) + γ) = φ(y(2)) · γ.

Consider a pair of vectors α = (α(1), 0s/2), β = (β(1), 0s/2) ∈ Fs/22 × {0s/2}, then

Dαg(y) +Dβg(y) = φ(y(2)) · α+ φ(y(2)) · β = φ(y(2)) · (α+ β) = Dα+βg(y),

for every y ∈ Fs2. Thus, equation (12) holds. Since g is bent, D(α+β)g is a balanced function
and hence (13) follows.

To prove (14), suppose first that γ 6= 0s/2 and v(1) = 0s/2. In this case, the function

D(γ,0s/2)g(y) + v · y + ε becomes φ(y(2)) · γ + v(2) · y(2) + ε (viewed over Fs2), thus it has weight

2s/2(2s/2−1 − 1

2
(−1)εWγ·φ(v(2))).

Now, if either γ = 0s/2 or v(1) 6= 0s/2, then the function D(γ,0s/2)g(y) + v · y + ε is either affine

(non-constant) or equals φ(y(2)) · γ+ v(2) · y(2) + v(1) · y(1) + ε, in both cases, we get a balanced
function, i.e.,

wt(D(γ,0s/2)g(y) + v · y + ε) = 2s−1.

The following result specifies the non-covering property among the codewords that stem
from a bent function g.

Lemma 8 Let s be even and y = (y(1), y(2)) ∈ Fs/22 × Fs/22 . Let g(y(1), y(2)) = φ(y(2)) · y(1) be

a bent function in Bs. For α, β ∈ Fs/22 × {0s/2}, u, v ∈ Fs2 and ε1, ε2 ∈ F2, the following hold:

(i) If α 6= β or v · y + ε1 6= u · y + ε2 then

(g(y + α) + v · y + ε1)y∈Fs2
6� (g(y + β) + u · y + ε2)y∈Fs2

.

(ii) If β 6= 0s or u · y + ε2 6= 1 then

(g(y + α) + v · y + ε1)y∈Fs2
6� (g(y) + g(y + β) + u · y + ε2)y∈Fs2

.

Proof. The statements are proved separately.
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(i) Consider the codewords

c1 := (g(y + α) + v · y + ε1)y∈Fs2
and c2 := (g(y + β) + u · y + ε2)y∈Fs2

.

Since g is a bent function, we have wt(c2)− wt(c1) = ±2s/2 or 0. On the other hand,

c1 + c2 = (Dα+βg(y) + (v + u) · y + ε1 + ε2)y∈Fs2 .

Using Lemma 7, we have wt(c1+c2) 6= 2s/2. Hence, if c1 � c2 then c1 = c2. Equivalently,
α = β and v · y + ε1 = u · y + ε2.

(ii) Let now the codewords c1 and c2 be of the form:

c1 := (g(y + α) + v · y + ε1)y∈Fs2
and c2 := (g(y) + g(y + β) + u · y + ε2)y∈Fs2

.

Note that the function corresponding to c1 and c1 +c2 is the sum of a bent function and
an affine function. Specifically, using the definition of g, we have

g(y + α) + g(y) + g(y + β) = φ(y2) · (y(1) + α(1)) + φ(y2) · (β(1)),

and therefore
c1 + c2 = (g(y + α+ β) + (v + u) · y + ε1 + ε2)y∈Fs2 .

From this, we have that wt(c1) = 2s−1 ± 2s/2−1 and wt(c1 + c2) = 2s−1 ± 2s/2−1, thus

wt(c2 + c1) + wt(c1) = 2s + 2s/2 or 2s − 2s/2 or 2s.

If c1 � c2, then wt(c2) = wt(c2 + c1) +wt(c1), which implies that wt(c2) must be equal
to either 2s − 2s/2 or 2s (the weight of a vector cannot be larger than 2s). By Lemma 7,
wt(c2) 6= 2s − 2s/2. Hence, if c1 � c2 then c2 is the constant one vector, in other words,
β = 0s and u · y + ε2 = 1.

Let us now consider the canonical basis E = {e1, . . . , es/2} for Fs/22 (ei = (0, . . . , 0, 1, 0, . . . , 0)
with “1” at the ith position) and define the functions g0(y) = g(y) and gi(y) = g(y+(ei, 0s/2)).
The previous lemma suggests that the linear code⊕

i∈I
Cgi , (15)

where I = {0, . . . , s2}, is potentially a minimal code. Unfortunately, this is not true in general
since the covering property in Lemma 8 does not necessarily hold for the derivatives of g.
Notice that Lemma 8 does not address the covering property of two codewords that both stem
from the derivative of g.

To resolve this issue, we will consider a special subclass of permutations φ over Fm2 that
allows us to prove the minimality of the aforementioned code.

13



Definition 1 A permutation φ on Fm2 such that φ(0m) = 0m will be called a non-covering
permutation if for every (a1, b) 6= (a2, b) ∈ Fm2 × (Fm2 )∗ we have

Wb·φ(a1)±Wb·φ(a2) 6= 2m, (16)

and furthermore for every pair (a1, b1), (a2, b2) ∈ Fm2 × (Fm2 )∗ with b1 6= b2, the following is
satisfied

Wb1·φ(a1)−Wb2·φ(a2) +W(b1+b2)·φ(a1 + a2) 6= 2m. (17)

Definition 1 implies that deg(a · φ) > 2, for any a ∈ Fm2 ∗, thus a non-covering permutation
has no affine components. A particular class of non-covering permutations is given by the so-
called almost bent (AB) permutations. Recall that if m is odd, a vectorial Boolean function φ :

Fm2 → Fm2 is called an AB function if Wb·φ(a) ∈ {0,±2
m+1

2 } for every pair (a, b) ∈ Fm2 × (Fm2 )∗.
For odd m > 3, any AB permutation φ satisfies

Wb·φ(a1)±Wb·φ(a2) 6 2 · 2
m+1

2 < 2m,

for (a1, b) 6= (a2, b) ∈ Fm2 × (Fm2 )∗ and

Wb1·φ(a1)−Wb2·φ(a2) +W(b1+b2)·φ(a1 + a2) 6 3 · 2
m+1

2 < 2m,

for (a1, b1), (a2, b2) ∈ Fm2 × (Fm2 )∗ such that b1 6= b2. Therefore, an AB permutation φ is
non-covering for odd m > 3.

Similarly, another class of non-covering permutations is the multiplicative inverse φ(y) =
y−1 on F2m (with convention φ(0) = 0), as shown in the following lemma.

Lemma 9 Let m be any integer such that m > 5. The multiplicative inverse permutation
φ(y) = y2

m−2 is a covering permutation on Fm2 .

Proof. For this proof, we identify the space Fm2 with F2m . It is well-known [21] that the
Walsh values of any component φb := Tr(by2

m−2) of φ(y) (where ‘Tr(·)’ denotes the absolute
trace function), for b ∈ F∗2m , are given by the integers congruent to 0 mod 4 in the interval
[−2m/2+1, 2m/2+1]. This implies |Wφb | 6 2m/2+1, for any b ∈ F∗2m . For m > 5, we then have

Wφb(a1)±Wφb(a2) 6 2 · 2m/2+1 < 2m,

for (a1, b) 6= (a2, b) ∈ F2m × F∗2m . This shows that (16) is satisfied. For m > 5, we also have

Wφb1
(a1)−Wφb2

(a2) +Wφb1+b2
(a1 + a2) 6 3 · 2

m+1
2 < 2m,

for (a1, b1), (a2, b2) ∈ F2m × F∗2m with b1 6= b2. Hence (17) is satisfied for m > 5. The equation
(17) holds also for m = 5, which can be confirmed by computer simulations.

Remark 1 In general, if a mapping φ : Fm2 → Fm2 satisfies max(a,b)∈Fm2 ×(Fm2 )∗ |Wb·φ(a)| < 2m/3,
then φ is a non-covering permutation. Hence, non-covering permutations are easily obtained.
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Similarly as before, let s be even and y = (y(1), y(2)) ∈ Fs/22 × Fs/22 . We again consider g

in the MM class defined by (11) and assume that φ is a non-covering permutation on Fs/22 .
The following lemma shows that the covering property applies to codewords that stem from
suitable derivatives of g defined by (11).

Lemma 10 Let s be even and y = (y(1), y(2)) ∈ Fs/22 × Fs/22 . Let g(y(1), y(2)) = φ(y(2)) · y(1)

be a bent function in Bs, where φ is a non-covering permutation. For α, β ∈ Fs/22 × {0s/2},
u, v ∈ Fs2 and ε ∈ F2, consider the vectors

c1 := (g(y) + g(y + α) + v · y)y∈Fs2
and c2 := (g(y) + g(y + β) + u · y + ε)y∈Fs2

.

Suppose that c1 6= c2. Then, c1 6� c2, unless c1 is the zero vector or c2 is the constant one
vector.

Proof. Using the definition of g, we have that

g(y) + g(y + α) + g(y) + g(y + β) = φ(y(2)) · (α(1) + β(1)) = g(y) + g(y + α+ β),

hence
c1 + c2 = (g(y) + g(y + α+ β) + (v + u) · y + ε)y∈Fs2 .

Assume that c2 is not the constant one vector. If either c1 or c2 depend on y(1), then exactly
two vectors amongst c1, c2, c1 + c2 are balanced since the only terms that depend on y(1) are
affine. In this case c1 6� c2 unless c1 is the zero vector.

Suppose that none of c1, c2, c1 + c2 depend on y(1) and c1 � c2, i.e.,

wt(c2)− wt(c1) = wt(c1 + c2).

In this case,
2s/2w(c′2)− 2s/2w(c′1) = 2s/2wt(c′1 + c′2),

where c′i denotes the restriction of ci to the coordinate y(2). This gives

wt(c′2)− wt(c′1) = wt(c′1 + c′2). (18)

Let us represent with a superindex (i) the restriction of an element in Fs/22 × Fs/22 to the
coordinate y(i) where i ∈ {1, 2}, e.g., v(2) is the restriction of v to the coordinate y(2). Note
that

c′1 = (φ(y(2)) · α(1) + v(2) · y(2))
y(2)∈Fs/22

, c′2 = (φ(y(2)) · β(1) + u(2) · y(2) + ε)
y(2)∈Fs/22

.

If α(1) 6= 0s/2, β
(1) 6= 0s/2 and α(1) 6= β(1), then

wt(c′1) = 2s/2−1 − 1

2
Wα(1)·φ(v(2)), wt(c′2) = 2s/2−1 − 1

2
(−1)εWβ(1)·φ(u(2)),

and

wt(c′1 + c′2) = 2s/2−1 − 1

2
(−1)εW(α(1)+β(1))·φ(v(2) + u(2)).
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Using (18), we obtain

Wα(1)·φ(v(2))− (−1)εWβ(1)·φ(u(2)) + (−1)εW(α(1)+β(1))·φ(v(2) + u(2)) = 2s/2,

which contradicts (17) in the definition of a non-covering permutation.
Now, if α(1) 6= 0s/2, β

(1) 6= 0s/2 and α(1) = β(1), then

wt(c′1) = 2s/2−1 − 1

2
Wα(1)·φ(v(2)), wt(c′2) = 2s/2−1 − 1

2
(−1)εWα(1)·φ(u(2)),

and wt(c′1 + c′2) = 2s/2−1. Using (18), we obtain

Wα(1)·φ(v(2))− (−1)εWα(1)·φ(u(2)) = 2s/2,

which contradicts (16) in the definition of a non-covering permutation. A similar argument
rules out the possibility that α(1) 6= 0s/2, β

(1) = 0s/2. The only possibility is that α(1) = 0s/2.
Finally, using similar arguments and the fact that c2 is not the constant one vector in Fs2, we
get v(2) = 0s/2. Therefore c′1 = 0. Thus v = 0s and α = (0s/2, 0s/2), in other words, c1 is the
zero codeword.

Now, we can claim the minimality of the linear code in (15) using a bent function g defined
by (11) and its suitable derivatives in accordance to Lemma 10.

Theorem 3 Let s > 2 be an even integer. Let E = {e1, . . . , es/2} be the canonical basis of Fs/22 .

Let g(y(1), y(2)) = φ(y(2)) · y(1) be a bent function on Fs2 defined as in (11). Then, assigning
g0 = g and gi(y) = g(y + (ei, 0s/2)) for i = 1, . . . , s/2, the linear code

C =
⊕

i∈{0,..., s
2
}

Cgi , (19)

is a [2s, s+ s
2 + 1, 2s/2θ] code with θ > Nφ. Moreover, if φ is non-covering, then C is minimal.

Proof. Clearly, the length of C is 2s and its dimension is s+ s
2+1 since the set {g0, g1, . . . , gs/2}

is linearly independent. The minimum distance can be deduced using Lemma 7 and expressing
any codeword c ∈ C in the form

c = (µg(y)+g(y+ei1)+· · ·+g(y+eik)+v ·y)y∈Fs2 = ((µ+δ)g(y)+g(y+ei0 +· · ·+eik)+v ·y)y∈Fs2 ,

where k is a non-negative integer such that k 6 s/2, µ ∈ F2, v ∈ Fs2 and δ is equal to
k (mod 2). Let us now consider two distinct codewords c1, c2 ∈ C, whose parameters are
indexed accordingly, so that ki, µi, δi correspond to ci, for i = 1, 2. Suppose that c1 � c2.
Lemma 8 implies that c1 is the zero codeword when µ1 + δ1 = 0 or µ2 + δ2 = 0. If µ1 + δ1 =
µ2 + δ2 = 1, then Lemma 10 implies that c1 is the zero codeword since φ is non-covering.
Therefore, C is minimal.

Corollary 2 Let the notation of Theorem 3 hold. Suppose that s ≡ 2 mod 4 and s/2 > 3.

If φ is an AB permutation over Fs/22 with φ(0s/2) = 0s/2, then C, defined by (19), is a five-

valued minimal code with parameters [2s, s+ s
2 + 1, 2s−1 − 2

s+s/2−1
2 ], whose weight distribution

is displayed in Table 5.
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Proof. Theorem 3 implies that the code C has parameters [2n, s+ s/2 + 1, d], where

d > 2s/2Nφ = 2s/2(2s/2−1 − 2
s/2−1

2 ).

Minimality of C can also be inferred from Theorem 3, as AB functions are non-covering for

s/2 > 3. For any β ∈ (Fs/22 )∗, λ ∈ Fs/22 such that Wβ·φ(λ) = 2
s/2+1

2 , the codeword corresponding
to the function D(β,0s/2)g(y)+(λ, 0s/2) ·y has weight 2s/2(2s/2−1−2(s/2−1)/2). This implies that

d = 2s/2(2s/2−1−2(s/2−1)/2). Since φ is an AB permutation with φ(0s/2) = 0s/2, the number of

occurrences of 2
s/2+1

2 in the Walsh spectra of every component β ·φ is 2s/2−2 + 2(s/2−3)/2. This
means that there are (2s/2−1)(2s/2−2 +2(s/2−3)/2) codewords of minimum weight. In a similar
fashion, regarding the other weights, we can obtain the weight distribution of C displayed in
Table 5.

Table 5: Weight distribution of C in Corollary 2.

Weight w Number of codewords Aw

2s−1 − 2
s+s/2−1

2 (2s/2 − 1)(2s/2−2 + 2(s/2−3)/2)

2s−1 − 2s/2−1 2s/2(2s−1 + 2s/2−1)

2s−1 2s/2−1(2s/2 − 1) + (2s − 2s/2)(2s/2 − 1) + (2s − 1)

2s−1 + 2s/2−1 2s/2(2s−1 − 2s/2−1)

2s−1 + 2
s+s/2−1

2 (2s/2 − 1)(2s/2−2 − 2(s/2−3)/2)

0 1

Remark 2 Note that when φ is an AB permutation, the minimality of C follows also from the
fact that the ratio

wmin

wmax
=

2s−1 − 2
s+s/2−1

2

2s−1 + 2
s+s/2−1

2

is larger than 1/2 when s/2 > 3. Moreover, we mention that AB functions were used in [19]
to provide linear codes with good parameters (optimal codes in certain cases) but without the
requirement on minimality or wideness.

On the other hand, the use of a non-covering permutation φ which is not AB may give rise to
wide minimal codes, thus violating the Ashikhmin-Barg bound.

Corollary 3 Let the notation of Theorem 3 hold. Suppose that s/2 > 5 and let φ be the

inverse permutation φ(y) = y2
s/2−2 over Fs/22 . Then, C defined by (19) is an (s− 2)-weighted

minimal code with parameters [2s, s+ s
2 + 1, 2s/2θ], where θ = 2s/2(2s/2−1 − 2s/4) when s/2 is

even and θ equals the highest even integer bounded above by 2s/2−1 − 2s/4 when s/2 is odd.

Proof. It is well-known [21] thatNφ = minb∈F∗2s NTr(bφ(y)) is equal to θ = (2s/2−1−2s/4) when

s/2 is even, and θ equals the highest even integer bounded above by 2s/2−1 − 2s/4 when s/2 is
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odd. Theorem 3 implies that the code C has parameters [2n, s + s/2 + 1, d], where d > 2s/2θ.
Minimality of C follows from Theorem 3, as the inverse permutations are non-covering for
s/2 > 5. Since the Walsh spectrum of any component of φ is given by the integers congruent

to 0 mod 4 in the (real) range [−2s/4+1 + 1, 2s/4+1 + 1], selecting β ∈ (Fs/22 )∗, λ ∈ Fs/22 such
that 2s/2−1 − 1

2Wβ·φ(λ) = Nφ yields a codeword of weight 2s/2Nφ. This then implies that

d = 2s/2Nφ.

Example 3 Set s = 10. Let φ be the multiplicative inverse permutation on F5
2 given by

φ(y) = y2
5−2 = y30. We noted before that φ is a (non-AB) non-covering permutation, thus the

bent function g(y(1), y(2)) = φ(y(2)) · y(1) satisfies the hypotheses of Theorem 3, therefore

C =
⊕

i∈{0,...,5}

Cgi

is an eight-valued minimal code with parameters [1024, 16, 320]. Moreover, C is a wide code
whose nonzero weights belong to the set

{320, 384, 448, 496, 512, 528, 576, 640}

and its weight enumerator is given by

1 + 31z320 + 155z384 + 310z448 + 16896z496 + 31961z512 + 15872z528 + 155z576 + 155z640.

In this case wmin/wmax = 1
2 .

Even though this approach yields wide binary linear codes sometimes, in what follows, we
specify generic methods that ensure wideness of the resulting codes.

5 Explicit non-trivial constructions of wide minimal codes

In this section, we present two generic methods for constructing wide minimal binary linear
codes. The first method, connecting the results from the previous section, specifies functions
f ∈ Br such that both Cf and CDγ(f) are wide minimal codes. These codes can be potentially
used in a more general framework, given in Theorem 5 in Section 5.1, for constructing wide
minimal codes of larger dimension.

Recall that the symmetric difference of two sets A and B is defined as (A ∪ B) \ (A ∩ B),
equivalently, it can be defined as (A \B)∪ (B \A), where the union is disjoint. We will denote
the symmetric difference of A and B by A	B. Observe that ||A	B|| = ||A||+||B||−2||A∩B||.

Let r be a positive integer. Let ∆ be a subset of Fr2 and consider the characteristic function
f ∈ Br of ∆, i. e., the Boolean function defined as

f(x) =

{
1, x ∈ ∆,
0, x ∈ Fr2 \∆.

(20)

Lemma 11 [17] If ∆ ⊂ Fr2, f ∈ Br given by (20), satisfies the following conditions:
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1. r + 1 6 |∆| 6 2r−2;

2. ∆ includes at least one basis {a(1), . . . , a(r)} of Fr2 and at least one vector τ1a
(1) + · · ·+

τra
(r), where (τ1, . . . , τr) ∈ Fr2 and wt(τ1, . . . , τr) is even,

then the code Cf given by (3) is a wide binary linear code with parameters [2r, r + 1,∆].

Theorem 4 Let F = {a(1), . . . , a(r)} be a basis of Fr2 and define

E = { e ∈ Fr2 | e = τ · (a(1), . . . , a(r)), wt(τ) is even, τ ∈ Fr2 }.

Consider ∆ = F ∪ S, where S ⊆ E such that S 6= ∅ and ||S|| 6 2r−3 − r, and let f ∈ Br be
the indicator function of ∆ as in (20). Take τ ′ ∈ (Fr2)∗ and define γ = τ ′ · (a(1), . . . , a(r)). The
following is true:

(i) The code Cf given by (3) is a wide binary [2r, r + 1,∆] linear code.

(ii) If wt(τ ′) > 2 is even and S	 (γ+S) 6= ∅, then the code CDγf given by (3) is also a wide
binary [2r, r + 1] linear code.

(iii) If wt(τ ′) > 2 is odd and F ∩ (γ + S) = ∅, then the code CDγf given by (3) is also a wide
binary [2r, r + 1] linear code.

Proof. (i) The statement follows directly from Lemma 11.
(ii) Suppose that wt(τ ′) > 2 is even. We have that (γ +F)∩F = ∅ since wt(τ ′) > 2. Observe
that

supp(Dγf) = (γ + F) ∪ F ∪ (S 	 (γ + S)).

Since ||S|| 6 2r−3 − r, we have ||supp(Dγf)|| 6 2r−2. Now, the fact that wt(τ ′) is even and
S	(γ+S) 6= ∅ imply that supp(Dγf) contains at least one element of the form τ ·(a(1), . . . , a(r))
with wt(τ) even. By Lemma 11, we conclude that the code CDτ ′f is a wide binary linear code.
(iii) Suppose that wt(τ ′) > 2 is odd and F ∩ (γ + S) = ∅. Again, (γ + F) ∩ F = ∅ since
wt(τ ′) > 2. We also have (γ + S) ∩ S = ∅ since wt(τ ′) is odd. Observe that

supp(Dγf) = (γ + F) ∪ F ∪ (γ + S) ∪ S.

As before, since ||S|| 6 2r−3 − r, we have ||supp(Dγf)|| 6 2r−2. Note that (γ + F) ∩ E 6= ∅
thus supp(Dγf) contains at least one element of the form τ · (a(1), . . . , a(r)) with wt(τ) even.
By Lemma 11, we conclude that the code CDγf is a wide binary linear code. In all the cases,
the codes are of length 2r and dimension r + 1.

Remark 3 According to Theorem 4, for any non-empty subset S ⊆ E with ||S|| = 2r−3 − r
and τ ′ ∈ (Fr2)∗ with even weight larger than two such that γ = τ ′ · (a(1), . . . , a(r)) 6∈ S + S,
the code CDγf is a wide binary linear code with parameters [2r, r + 1, 2r−2]. Similarly, for any
non-empty subset S ⊆ E with ||S|| = 2r−3 − r and τ ′ ∈ (Fr2)∗ with odd weight larger than
two such that γ = τ ′ · (a(1), . . . , a(r)) 6∈ F + S the code CDγf is a wide binary linear code with
parameters [2r, r + 1, 2r−2].
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Example 4 Set r = 7. Consider the basis F ⊆ F7
2 with elements

a(1) = e3 + e5 + e6; a(2) = e2 + e5 + e6; a
(3) = e1 + e2 + e3 + e4 + e6; a(4) = e4 + e6,

a(5) = e1 + e4 + e6 + e7; a(6) = e1 + e6; a(7) = e1 + e5 + e6 + e7;

where ei represents the vectors in the canonical base. Define S ⊆ E with elements

s(1) = a(1) + a(3) + a(4) + a(6); s(2) = a(3) + a(4) + a(5) + a(7); s(3) = a(1) + a(4);

s(4) = a(1) + a(2) + a(4) + a(5) + a(6) + a(7); s(5) = a(2) + a(3) + a(5) + a(6);

s(6) = a(1) + a(2) + a(3) + a(7); s(7) = a(1) + a(2) + a(5) + a(6),

and take γ = a(2) + a(4) + a(6) + a(7). Note that τ ′ = (0, 1, 0, 1, 0, 1, 1), wt(τ ′) = 4 and
||S|| = 7 < 9 = 27−3 − 7. By computer simulations, ||S 	 (γ + S)|| = 10 and the code CDγf
is a wide linear code, where f is the indicator function of ∆ = F ∪ S. This is a [128, 8, 24]
code with wmax = 80, so that wmin/wmax = 1/3. This confirms the validity of (ii) in Theorem
4. Moreover, the code Cf ⊕ CDγf is also a wide minimal code with parameters [128, 9, 16] and
wmax = 80, so that wmin/wmax = 1/5.

Example 5 Set r = 7. Consider the basis F ⊆ F7
2 with elements

a(1) = e1 + e2 + e5 + e6; a(2) = e1 + e3 + e6; a(3) = e4 + e7; a(4) = e1 + e4;

a(5) = e4 + e5; a(6) = e3 + e5 + e7; a
(7) = e1 + e2 + e5;

where ei represents the vectors in the canonical base. Define S ⊆ E with elements

s(1) = a(1) + a(4) + a(5) + a(7); s(2) = a(1) + a(2) + a(5) + a(6); s(3) = a(1) + a(2) + a(4) + a(7);

s(4) = a(2) + a(3) + a(4) + a(5); s(5) = a(1) + a(2) + a(5) + a(7); s(6) = a(4) + a(7);

s(7) = a(1) + a(2) + a(3) + a(5) + a(6) + a(7); s(8) = 07; s(9) = a(4) + a(6),

and take γ = a(2) + a(5) + a(7). Note that τ ′ = (0, 1, 0, 0, 1, 0, 1), wt(τ ′) = 3, and ||S|| = 9 =
27−3 − 7. One can verify that CDγf is a wide [128, 8, 28] linear code, where f is the indicator
function of ∆ = F ∪ S. Furthermore, wmax = 74, so that wmin/wmax = 8/37. This is in
accordance with (iii) in Theorem 4. Moreover, the code Cf ⊕ CDγf is also a wide linear code
with parameters [128, 9, 16] and wmax = 80, so that wmin/wmax = 1/5.

Remark 4 According to Examples 4 and 5, the codes constructed using Theorem 4 may have
the property that Cf ⊕ CDγf is minimal. However, this is not always true. For instance, the
problem arises when wt(Dγf) = 2wt(f) in which case the codeword corresponding to Dγf
covers the codewords stemming from f and f(x+ γ) since they have the same weight.

5.1 Wide minimal linear codes through derivative subspaces

In what follows, we extend the construction that uses direct sum of f(x) + g(y) := h(x, y) for
the purpose of increasing the dimension of the resulting codes (at the cost of increasing the
length, too). To achieve the minimality of Ch, the function f ∈ Br will be selected so that it
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has at least one nonaffine derivative Dγf such that Cf ⊕CDγf is a minimal code. The increase
in dimension is a consequence of additionally employing (suitable) derivatives of h.

Let us define the following set

C(γ)h =
{

(uh(x, y) + h(x+ α, y + β) + v · (x, y))(x,y)∈Fr2×Fs2
:
β ∈ Fs/22 × {0 s

2
}, u ∈ F2,

α ∈ {0r, γ}, v ∈ Fn2

}
.

(21)

Lemma 12 Let f ∈ Br be a nonaffine function and γ ∈ Fr2 \ {0r} such that Dγf is nonaffine.
Let g(y(1), y(2)) = φ(y(2))·y(1) be a bent function in Bs defined by (11), where φ is a permutation

on Fs/22 without affine components. If h(x, y) = f(x) + g(y), then the set C(γ)h defined in (21)
is a linear binary code with parameters [2n, n+ s

2 + 2].

Proof. We first prove that C(γ)h is a linear subspace of F2n
2 . Take two different vectors in C(γ)h ,

say,

(u(1)h(x, y) + h(x+ α(1), y + β(1)) + v(1) · (x, y))(x,y)∈Fn2 ∈ C
(γ)
h

and
(u(2)h(x, y) + h(x+ α(2), y + β(2)) + v(2) · (x, y))(x,y)∈Fn2 ∈ C

(γ)
h .

Using the definition of g, we have

g(y + β(1)) + g(y + β(2)) = g(y) + g(y + β(1) + β(2)).

Moreover, given that α(1), α(2) ∈ {0r, γ}, we have

f(x+ α(1)) + f(x+ α(2)) = f(x) + f(x+ α(1) + α(2)). (22)

These two facts imply that for h(x, y) = f(x) + g(y) we have

h(x+α(1), y+β(1))+h(x+α(2), y+β(2)) = f(x)+g(y)+f(x+α(1) +α(2))+g(y+β(1) +β(2)),

thus

h(x+ α(1), y + β(1)) + h(x+ α(2), y + β(2)) = h(x, y) + h(x+ α(1) + α(2), y + β(1) + β(2)).

From the last equality, we get that the sum of the functions

u(1)h(x, y) + h(x+ α(1), y + β(1)) + v(1) · (x, y)

and
u(2)h(x, y) + h(x+ α(2), y + β(2)) + v(2) · (x, y)

is equal to

(u(1) + u(2) + 1)h(x, y) + h(x+ α(1) + α(2), y + β(1) + β(2)) + (v(1) + v(2)) · (x, y).

Hence, the sum of the corresponding vectors belongs to C(γ)h , thus C(γ)h is a linear subspace of
F2n
2 .
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The function h(x, y) is non-affine since it is the direct sum of non-affine functions. In

general, for arbitrary α ∈ {0r, γ} and β ∈ Fs/22 × {0 s
2
},

h(x, y) + h(x+ α, y + β) is linear if and only if α = 0r and β = 0s. (23)

To prove this, note that h(x, y) + h(x+ α, y + β) = f(x) + f(x+ α) + g(y) + g(y + β), hence
it is linear if and only if both f(x) + f(x + α) and g(y) + g(y + β) are linear. Since Dγf is
non-affine by hypothesis and Dβg = φ(y(2)) · β is a non-affine Boolean function as φ does not
have affine components, the only possible way that these two functions are linear, arises when
α = 0r and β = 0s.

Considering again the sum of two elements in C(γ)h and applying (23) to α = α(1) + α(2), β =
β(1) + β(2), we conclude that

(u(1) + u(2) + 1)h(x, y) + h(x+ α(1) + α(2), y + β(1) + β(2)) + (v(1) + v(2)) · (x, y)

is the zero function if and only if u(1) + u(2) = 0, α(1) + α(2) = 0r, β
(1) + β(2) = 0s and

v(1) + v(2) = 0n. Thus, we have 2n+
s
2
+2 different elements, i.e., dim(C(γ)h ) = n+ s

2 + 2.

Theorem 5 Let n, r, s be three integers such that s(> 2) is even and r + s = n. Let f be a
non-affine r-variable function and γ ∈ Fr2 \ {0r} with Dγf non-affine such that

Cf ⊕ CDγf := {(af(x) + b(f(x) + f(x+ γ)) + v · x)x∈Fn2 : a, b ∈ F2, v ∈ Fn2}

is a minimal code. Let g(y(1), y(2)) = φ(y(2)) · y(1), with (y(1), y(2)) ∈ Fs/22 × Fs/22 , be a bent

function where φ is a non-covering permutation on Fs/22 as in Definition 1. Then, the code

C(γ)h defined as in (21), with h(x, y) = f(x) + g(y), is a minimal linear code with parameters

[2n, n+ s
2 + 2]. Further, if CDγ(f) is wide, then C(γ)h is also wide.

Proof. From Lemma 12, we know C(γ)h is a linear binary code with parameters [2n, n+ s
2 +2].

By definition of φ, we know that φ(0s/2) = 0s/2. This implies that for every β ∈ Fs/22 ×{0s/2},
we have g(β) = 0. We will use this fact throughout the proof without further mentioning

it. For functions h : Fn2 → F2, corresponding to codewords in C(γ)h , let Ah : Fr2 → F2 and
Bh : Fs2 → F2 denote the restrictions of h to the x and y coordinates, respectively. That is, for
a function

h(x, y) = uh(x, y) + h(x+ α, y + β) + v · (x, y),

Ah(x) = uf(x) + f(x+ α) + v · (x, 0) and Bh(y) = ug(y) + g(y + β) + v · (0, y). Consider two

non-zero distinct codewords in C(γ)h , say,

c1 := (h1(x, y))(x,y)∈Fn2 = (u1h(x, y) + h(x+ α(1), y + β(1)) + v(1) · (x, y))(x,y)∈Fn2

and

c2 := (h2(x, y))(x,y)∈Fn2 = (u2h(x, y) + h(x+ α(2), y + β(2)) + v(2) · (x, y))(x,y)∈Fn2 .
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If Ah1 and Ah2 are non-zero and distinct, then puncturing the x coordinates gives two non-
zero distinct codewords in Cf ⊕ CDγf , which is minimal by hypothesis. Thus, neither c1 � c2
nor c2 � c1. Similarly, if Bh1 and Bh2 are non-zero and distinct, then puncturing of the y
coordinates yields non-zero distinct vectors of the form

(u1g(x) + g(y + β(1)) + v(1) · (0r, y) + u1f(0r) + f(α(1)))y∈Fs2

and
(u2g(x) + g(y + β(2)) + v(2) · (0r, y) + u2f(0r) + f(α(2)))y∈Fs2 .

The fact that φ(y) is a non-covering permutation implies that these (nonzero) vectors do not
cover each other by Lemmas 8 and 10. Thus, neither c1 � c2 nor c2 � c1, in this case.

Using the assumption that c1, c2 are distinct non-zero codewords and the above paragraph,
we only need to consider the following cases:

� Ah1 = Ah2 (non-zero), Bhi = 0 and Bh(i mod 2)+1
6= 0 for exactly one i ∈ {1, 2}, or

� Bh1 = Bh2 (non-zero), Ahi = 0 and Ah(i mod 2)+1
6= 0 for exactly one i ∈ {1, 2}.

Let us prove the first item only since the other case can be proved mutatis mutandis. Suppose
then that Ah1 = Ah2 with Ah1 6= 0, Bhi = 0 and Bh(i mod 2)+1

6= 0 for exactly one i ∈ {1, 2}.
Without loss of generality, assume that i = 1. Take x0, x

′
0 ∈ Fr2 and y0 ∈ Fs2 with Ah1(x0) = 1,

Ah1(x′0) = 0 and Bh2(y0) = 1, which exist as Ah1 , Bh2 are non-constant. Now, the (x0, y0)
coordinate of c1 equals

Ah1(x0) +Bh1(y0) = Ah1(x0) = 1

whereas the (x0, y0) coordinate of c2 equals

Ah1(x0) +Bh2(y0) = 0,

this gives c1 6� c2. The (x′0, y0) coordinate of c1 equals

Ah1(x′0) +Bh1(y0) = Ah1(x′0) = 0

whereas the (x′0, y0) coordinate of c2 equals

Ah1(x′0) +Bh2(y0) = 1.

This means that c2 6� c1. We have proved that distinct non-zero codewords in C(γ)h do not

cover each other, i.e., C(γ)h is minimal.

To show the wideness of C(γ)h , assuming that CDγ(f) is wide, we note that a codeword
corresponding to the function

h(x, y) = uh(x, y) + h(x+ α, y + β) + v · (x, y),

where additionally Bh(y) is the zero function, has weight 2swt(Ah(x)). Moreover, there is a

natural correspondence between the codewords of CDγf and the codewords of C(γ)h with u 6= 0
and Bh(y) zero. Since CDγf is wide, we have

wminC(γ)h

wmaxC(γ)h

6
2swminCDγ(f)
2swmaxCDγ(f)

6
1

2
.
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6 Applications of Theorem 5 - explicit wide minimal codes

In this section, we study the existence of functions that serve as building blocks for the con-
struction in Theorem 5, namely, we analyse the existence of suitable Boolean functions f and
their corresponding derivatives as well as the specification of non-covering permutations.

Remark 5 The initial conditions of Theorem 5 may seem hard to satisfy, however, the results
given in Theorem 4 essentially provide classes of Boolean functions suitable for this purpose.
Example 4 and 5 illustrate the existence of f and γ ∈ (Fr2)∗ satisfying the conditions of Theorem
4. More importantly, these functions can be used as initial functions in Theorem 5 since
Cf ⊕ CDγf is a minimal code and CDγf is wide.

The importance of Theorem 5 lies in the fact that once we have suitable functions f
and Dγf , we can define a bent function g in the MM class using arbitrary non-covering
permutation φ. Therefore, a huge class of wide binary linear codes can be derived from single
f . These codes are not necessarily equivalent since one can, for instance, employ permutations
φ of different algebraic degree (or Walsh spectrum). The following example illustrates the
possibility of getting non-equivalent codes using different permutations φ.

For a fixed positive integer r, let us identify the vectors in Fr2 with the integers 0, . . . , 2r−1,
via their binary representation (lexicographically ordered), e.g., for r = 6, (0, 0, 0, 0, 0, 1) ∈ F6

2

is identified with 1.

Fact 1 The function f in B6, whose support is given by

∆ = {4, 7, 8, 18, 21, 22, 24, 28, 35, 36, 42, 51, 54, 60},

together with its derivative Dγf at direction γ = (1, 0, 1, 1, 0, 1) have the property that Cf ⊕
CDγf is minimal and CDγf is wide.

Theorem 6 Let f ∈ B6 and its derivative Dγf be as in Fact 1. Consider any bent function
g ∈ B10 of the form (11) whose underlying permutation φ is non-covering. Then, the associated

code C(γ)h , defined by (21), is a wide minimal linear code with parameters [216, 23].

Proof. The result follows immediately from Theorem 5.

Example 6 In Theorem 6, if we consider the cubic AB permutation φ : F5
2 → F5

2 given by

φ(y) = y7 as the underlying permutation for g, then C(γ)h is a wide minimal code with minimum

distance wmin = 24576 = 3 · 213 and wmax = 49152 = 3 · 214. Thus, C(γ)h has parameters
[216, 23, 3 · 213] and ratio wmin/wmax = 1/2. On the other hand, if we consider the inverse

permutation φ : F5
2 → F5

2 given by φ(y) = y30, used to define g, then C(γ)h is a wide minimal
linear code with parameters [216, 23, 5·212], wmax = 49152 = 3·214 and ratio wmin/wmax = 5/12.

Since AB permutations (m odd) and the inverse permutations are non-covering permuta-
tions for m > 5, we see that non-covering permutations exist for every integer m with m > 5.
Moreover, one can observe that there are no non-covering permutations when m 6 4.
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Remark 6 Using simple Walsh spectrum arguments and known bounds on the nonlinearity of
φ, one can show that there are no non-covering permutations φ over Fm2 for m 6 4. However,
there are 32! permutations over F5

2 and many of these permutations are non-covering. Em-
ploying a fixed function f ∈ Br and a fixed derivative Dγf such that Cf ⊕CDγf is minimal and
CDγf is wide (e.g., the functions in Example 4, Example 5, Fact 1, or, Fact 2 below), each of

these permutations specifies a wide minimal [2r+10, 17 + r] linear code C(γ)h .

If the non-covering permutation φ has a simple Walsh spectrum (e.g., AB permutations),

then the weight distribution of C(γ)h can be obtained once we know the Walsh spectra of the
underlying functions f and Dγf . To precisely describe it, we will use the notation introduced
for describing the weight distributions of the direct-sum approach presented in Section 3,
namely, the notation introduced in (10) and the paragraph following it.

Since we will be dealing with two Walsh spectra, corresponding to f and Dγf , we will
reserve the symbols Wf , W abs

f , m+
ρ , m−ρ and m0, to refer to the values associated to f and the

symbols WDγf , W abs
Dγf

, n+ρ′ , n
−
ρ′ and n0, to refer to the values attached to Dγf .

Theorem 7 Use the same notation as in Theorem 5. Suppose that s/2 is an odd integer and

φ : Fs/22 → Fs/22 is an AB permutation. If WDγf (uM ) > 2(2r−s/2+1)/2, then the minimum

distance of C(γ)h is equal to 2swγmin, where wγmin is the minimum weight in CDγf . In particular,

if Cf ⊕CDγf is minimal and CDγf is wide, then the code C(γ)h is also a wide minimal linear code
with parameters [2n, n+ s/2 + 2, 2swγmin].

Proof. We will only consider codewords in C(γ)h whose underlying Boolean function is not
linear. Note that every such codeword (uh(x, y)+h(x+α, y+β)+v ·(x, y))(x,y)∈Fn2 corresponds
to any of the following four types:

u = 1, β = 0s, α 6= 0s; u = 1, β 6= 0s, α = 0s; u = 1, β 6= 0s, α 6= 0r; u = 0.

The weight of each of these types of codewords can be easily computed using known properties
of the direct sum. The weights of these codewords belong, respectively, to the sets

{2n−1±2s−1w : w ∈WDγf}, {2n−1±2
s+s/2−1

2
+r}, {2n−1±2

s+s/2−1
2 ρ′ : ρ′ ∈W abs

Dγf}, {2
n−1±2

s
2
−1ρ : ρ ∈W abs

f }.

Now, within these sets, consider the elements smaller than 2n−1, that is, 2n−1 − 2
s+s/2−1

2
+r

together with

2n−1 − 2s−1w, 2n−1 − 2
s+s/2−1

2 ρ′, 2n−1 − 2s/2−1ρ,

for each positive element w ∈ WDγf , ρ ∈ W abs
f and ρ′ ∈ W abs

Dγf
. Since ρ, ρ′ are both smaller

than 2r, we have that for every ρ ∈W abs
f and ρ′ ∈W abs

Dγf

2s/2−1ρ < 2s/2−1+r < 2(s+s/2−1)/2+r and 2(s+s/2−1)/2ρ′ < 2(s+s/2−1)/2+r.

Now, 2(s+s/2−1)/2+r 6 2s−1WDγf (uM ) by hypothesis. This readily implies that the minimum

weight of C(γ)h is 2n−1 − 2s−1WDγf (uM ) = 2swγmin. The last part of the statement follows
directly from Theorem 5.
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Remark 7 The weight distribution of the code C(γ)h in Theorem 7 can be specified knowing
that the possible values of weights are distinct from each other (otherwise, frequencies of the
repeated entries in the left column in Table 6 must be summed). That is, if for every w ∈
WDγf , ρ

′ ∈ W abs
Dγf

, ρ ∈ W abs
f we have 2(s/2−1)/2w 6= ρ′, ρ′ 6= 2(2r−s/2+1)/2, 2(s/2+1)/2ρ′ 6= ρ and

ρ 6= 2s/2w, then the weight distribution of the code C(γ)h can be fully determined and is given in
Table 6.

Table 6: Weight distribution of C(γ)h in Theorem 7 for s/2 odd and an AB permutation φ :

Fs/22 → Fs/22 , where ρ runs over W abs
f and ρ′ runs over W abs

Dγf
.

Weight w Number of codewords

2n−1 − 2s−1ρ′ n+ρ′

2n−1 − 2
s+s/2−1

2
+r (2s/2 − 1)(2s/2−2 + 2(s/2−3)/2)

2n−1 − 2
s+s/2−1

2 ρ′ (2s/2 − 1)((2s/2−2 + 2(s/2−3)/2)n+ρ′ + (2s/2−2 − 2(s/2−3)/2)n−ρ′)

2n−1 − 2s/2−1ρ 2s/2+1((2s−1 + 2s/2−1)m+
ρ + (2s−1 − 2s/2−1)m−ρ )

2n−1 2n + 2n−1 + 2s/2+1m0 + (2s/2 − 1)2s/2−1 + (2s/2−1 + 1)n0 − 1

2n−1 + 2s/2−1ρ 2s/2+1((2s−1 − 2s/2−1)m+
ρ + (2s−1 + 2s/2−1)m−ρ )

2n−1 + 2
s+s/2−1

2 ρ′ (2s/2 − 1)((2s/2−2 − 2(s/2−3)/2)n+ρ′ + (2s/2−2 + 2(s/2−3)/2)n−ρ′)

2n−1 + 2
s+s/2−1

2
+r (2s/2 − 1)(2s/2−2 − 2(s/2−3)/2)

2n−1 + 2s−1ρ′ n−ρ′

0 1

Note that the number of non-zero weights given in Table 6 (the left column) depends on

the cardinalities of W abs
f and W abs

Dγf
. In particular, the code C(γ)h in Theorem 7 has at most

4||W abs
Dγf
||+ 2||W abs

f ||+ 3 non-zero weights.

Fact 2 The function f ∈ B6 whose support is given by

∆ = {3, 5, 7, 11, 12, 24, 27, 31, 34, 37, 51, 52}

and its derivative Dγf at direction γ = (0, 1, 1, 0, 1, 0), will induce both the minimality and
wideness of the associated codes CDγf and Cf ⊕ CDγf . Moreover, the Walsh spectra of f and
Dγf satisfy

Wf (b) ∈ {−16,−12,−8,−4, 0, 4, 8, 12, 40},WDγf (b) ∈ {−24,−8, 0, 8, 24},

for every b ∈ F6
2.

Theorem 8 Let f ∈ B6 and Dγf be as in Fact 2. Consider any bent function g ∈ B10 as in

(11) whose underlying permutation is non-covering. The code C(γ)h is a wide minimal linear

code with parameters [216, 23]. Moreover, if φ is an AB permutation on F5
2, then C(γ)h has

parameters [216, 23, 210 · 20] and its weight distribution is displayed in Table 7.
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Proof. The result follows immediately from Theorem 5, Theorem 7 and Table 6.

Table 7: Weight distribution of C(γ)h in Theorem 8 for any AB permutation φ : F5
2 → F5

2.

Weight w Number of codewords Aw
215 − 210 + 25 · 26 216 · 3
215 − 210 + 25 · 28 216 · 10

215 − 210 + 25 · 30 216 · 13

215 − 210 + 25 · 34 216 · 13

215 − 210 + 25 · 36 216 · 5
215 − 210 + 25 · 38 216 · 3
215 − 210 + 25 · 12 26(29 + 24)

215 − 210 + 25 · 40 26(29 + 24)

215 + 210 − 25 · 12 26(29 − 24)

215 + 210 − 25 · 40 26(29 − 24)

215 + 28 · 20− 213 (25 − 1)((23 + 2) + (23 − 2) · 3)

215 + 28 · 28− 213 (25 − 1)((23 + 2) · 21 + (23 − 2) · 7)

215 + 28 · 36− 213 (25 − 1)((23 + 2) · 7 + (23 − 2) · 21)

215 + 28 · 44− 213 (25 − 1)((23 + 2) · 3 + (23 − 2))

210 · 20 1

210 · 28 21

210 · 36 7

210 · 44 3

215 − 213 (25 − 1)(23 + 2)

215 + 213 (25 − 1)(23 − 2)

215 5160943

0 1

Note that for the function f in Fact 2, the cardinalities of W abs
Dγf

and W abs
f are 2 and 5,

respectively. Thus, there are at most 4||W abs
Dγf
|| + 2||W abs

f || + 3 = 21 distinct weights in C(γ)h

when φ is an AB on F5
2. In this case, all of these weights are distinct (see Remark 7) so there

are exactly 21 non-zero weights, which is in accordance with Table 7.

7 Conclusion

In this article, we have presented several generic methods of constructing (wide) minimal bi-
nary linear codes. Most notably, the design of minimal binary linear codes involves some weak
initial conditions and therefore our approaches are quite general. Two generic methods for
constructing wide binary linear codes are also given and their initial conditions are easily sat-
isfied. Moreover, given a single Boolean function f which induces the minimality of both Cf
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and of Cf ⊕ CDγf , one can generate a huge family of non-equivalent codes by using different
(non-covering) permutations on a suitable variable space. In this case, since the choice of a
bent function in theMM used in the direct sum is arbitrary (up to the non-covering property
of permutation φ) such families of non-equivalent wide binary linear codes of length 2n can be
easily designed. It is an interesting research problem to consider shortenings of these codes for
the purpose of deriving optimal codes.
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