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Abstract. We present a novel public key encryption scheme that enables
users to exchange many bits messages by means of at least two large
prime numbers in a Goldwasser-Micali manner. Our cryptosystem is in
fact a generalization of the Joye-Libert scheme (being itself an abstraction
of the first probabilistic encryption scheme). We prove the security of
the proposed cryptosystem in the standard model (based on the gap
2k-residuosity assumption) and report complexity related facts. We also
describe an application of our scheme to biometric authentication and
discuss the security of our suggested protocol. Last but not least, we
indicate several promising research directions.

1 Introduction

The authors of [11] introduced a public key encryption (PKE) scheme3 represent-
ing a rather natural extension of the Goldwasser-Micali (GM) [9,10] cryptosystem,
the first probabilistic encryption scheme. The Goldwasser-Micali cryptosystem
achieves ciphertext indistinguishability under the Quadratic Residuosity (qr)
assumption. Despite being simple and stylish, this scheme is quite uneconomical
in terms of bandwidth4. Various attempts of generalizing the Goldwasser-Micali
scheme were proposed in the literature in order to address the previously men-
tioned issue. The Joye-Libert (JL) scheme can be considered a follow-up of the
cryptosystems proposed in [13] and [7] and efficiently supports the encryption of
larger messages.

Inspired by the Joye-Libert scheme, we propose a new public key cryptosys-
tem, analyze its security and provide the reader with an implementation and
performance discussion. We construct our scheme based on 2k-th power residue
symbols. Our generalization of the Joye-Libert cryptosystem makes use of two
important parameters when it comes to the encryption and decryption functions:
3 reconsidered in [5]
4 k · log2 n bits are needed to encrypt a k-bit message, where n is an RSA modulus as
described in [9, 10]



the number of bits of a message and the number of distinct primes of a public
modulus n. Thus, our proposal not only supports the encryption of larger mes-
sages (as in the Joye-Libert variant), but also operates on a variable number of
large primes (instead of two in the Joye-Libert case). Both these parameters can
be chosen depending on the desired security application.

Our scheme can be viewed as a flexible solution characterized by the ability of
making adequate trade-offs between encryption speed and ciphertext expansion
in a given context.

In biometric authentication protocols, when a user identifies himself using
his biometric characteristics (captured by a sensor), the collected data will vary.
Thus, traditional cryptographic approaches (such as storing a hash value) are
not suitable in this case, since they are not error tolerant. As a result, biometric-
based protocols must be constructed in a special way and, moreover, the system
must protect the sensitivity and privacy of a user’s biometric characteristics.
Such a protocol is proposed in [6]. Its core is the Goldwasser-Micali encryption
scheme. Thus, a natural extension of the protocol in [6] can be obtained using
our generalization of the Joye-Libert scheme. Thus, we describe such a biometric
authentication protocol and discuss its security.

Structure of the paper. In Section 2 we introduce notations, definitions, security
assumptions and schemes used throughout the paper. Inspired by the Joye-Libert
PKE scheme and aiming at obtaining a relevant generalization, in Section 3
we propose a new scheme based on 2k residues, prove it secure in the standard
model and analyze its performance compared to other related cryptosystems. An
application of our scheme to biometric authentication and its security analysis
are presented in Section 4. We conclude in Section 5 and in Appendix A we
present some optimized decryption algorithms for our proposed scheme.

2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. We use the
notation x

$←− X when selecting a random element x from a sample space X.
We denote by x ← y the assignment of the value y to the variable x. The
probability that event E happens is denoted by Pr[E]. The Jacobi symbol of

an integer a modulo an integer n is represented by
(
a

n

)
. Jn and J̄n denote the

sets of integers modulo n with Jacobi symbol 1, respectively −1. Throughout
the paper, we let QRn be the set of quadratic residues modulo n. We consider
as Zp = {−(p− 1)/2, . . . ,−1, 0, 1, . . . , (p− 1)/2} the alternative representation
modulo an integer p. The set of integers {0, . . . , a−1} is further denoted by [0, a).
Multidimensional vectors v = (v0, . . . , vs−1) are represented as v = {vi}i∈[0,s).

2.1 2k-th power residue

In this paper, we consider the 2k-th power residue symbol as presented in [15].
The classical Legendre symbol is obtained when k = 1.



Definition 1. Let p be an odd prime such that 2k|p− 1. Then the symbol(
a

p

)
2k

= a
p−1
2k mod p

is called the 2k-th power residue symbol modulo p, where a
p−1
2k ∈ Zp.

Properties. The 2k-th power residue symbol satisfies the following properties

1. If a ≡ b mod p, then
(
a

p

)
2k

=
(
b

p

)
2k

2.
(
a2k

p

)
2k

= 1

3.
(
ab

p

)
2k

=
(
a

p

)
2k

(
b

p

)
2k

mod p

4.
(

1
p

)
2k

= 1 and
(
−1
p

)
2k

= (−1)(p−1)/2k

2.2 Computational Complexity
In our performance analysis we use the complexities of the mathematical opera-
tions listed in Table 1. These complexities are in accordance with the algorithms
presented in [8]. We do not use the explicit complexity of multiplication, but
instead we refer to it as M(·) for clarity.

Table 1. Computational complexity for µ-bit numbers and k-bit exponents

Operation Complexity

Multiplication M(µ) = O(µ log(µ) log(log(µ)))

Exponentiation O(kM(µ))

Jacobi symbol O(log(µ)M(µ))

2.3 Security Assumptions
Definition 2 (Quadratic Residuosity - qr, Squared Jacobi Symbol - sjs
and Gap 2k-Residuosity - gr). Choose two large prime numbers p, q ≥ 2λ and
compute n = pq. Let A be a probabilistic polynomial-time (PPT) algorithm that
returns 1 on input (x, n) or (x2, n) or (x, k, n) if x ∈ QRn or Jn or Jn \QRn.
We define the advantages

ADV qr
A (λ) =

∣∣∣Pr[A(x, n) = 1|x $←− QRn]− Pr[A(x, n) = 1|x $←− Jn \QRn]
∣∣∣ ,

ADV sjs
A (λ) =

∣∣∣Pr[A(x2, n) = 1|x $←− Jn]− Pr[A(x2, n) = 1|x $←− J̄n]
∣∣∣ ,

ADV gr
A,k(λ) =

∣∣∣Pr[A(x, k, n) = 1|x $←− Jn \QRn]− Pr[A(x2k , k, n) = 1|x $←− Z∗n]
∣∣∣ .



The Quadratic Residuosity assumption states that for any PPT algorithm A
the advantage ADV qr

A (λ) is negligible.
If p, q ≡ 1 mod 4, then the Squared Jacobi Symbol assumption states that for

any PPT algorithm A the advantage ADV sjs
A (λ) is negligible.

Let p, q ≡ 1 mod 2k. The Gap 2k-Residuosity assumption states that for any
PPT algorithm A the advantage ADV gr

A (λ) is negligible.

Remark 1. In [5], the authors investigate the relation between the assumptions
presented in Definition 2. They prove that for any PPT adversary A against the
gr assumption, we have two efficient PPT algorithms B1 and B2 such that

ADV gr
A,k(λ) ≤ 3

2

(
(k − 1

3) ·ADV qr
B1

(λ) + (k − 1) ·ADV sjs
B2

(λ)
)
.

2.4 Public Key Encryption

A public key encryption (PKE) scheme usually consists of three PPT algorithms:
Setup, Encrypt and Decrypt. The Setup algorithm takes as input a security
parameter and outputs the public key as well as the matching secret key. Encrypt
takes as input the public key and a message and outputs the corresponding
ciphertext. The Decrypt algorithm takes as input the secret key and a ciphertext
and outputs either a valid message or an invalidity symbol (if the decryption
failed).

Definition 3 (Indistinguishability under Chosen Plaintext Attacks -
ind-cpa). The security model against chosen plaintext attacks for a PKE scheme
is captured in the following game:

Setup(λ): The challenger C generates the public key, sends it to adversary A
and keeps the matching secret key to himself.

Query: Adversary A sends to C two equal length messages m0,m1. The chal-
lenger flips a coin b ∈ {0, 1} and encrypts mb. The resulting ciphertext c is
sent to the adversary.

Guess: In this phase, the adversary outputs a guess b′ ∈ {0, 1}. He wins the
game, if b′ = b.

The advantage of an adversary A attacking a PKE scheme is defined as

ADV ind-cpa
A (λ) = |Pr[b = b′]− 1/2|

where the probability is computed over the random bits used by C and A. A
PKE scheme is ind-cpa secure, if for any PPT adversary A the advantage
ADV ind-cpa

A (λ) is negligible.



The Joye-Libert PKE scheme The Joye-Libert scheme was introduced in [11]
and reconsidered in [5]. The scheme is proven secure in the standard model
under the gr assumption. We shortly describe the algorithms of the Joye-Libert
cryptosystem.

Setup(λ): Set an integer k ≥ 1. Randomly generate two distinct large prime
numbers p, q such that p, q ≥ 2λ and p, q ≡ 1 mod 2k. Output the public key
pk = (n, y, k), where n = pq and y ∈ Jn \QRn. The corresponding secret key
is sk = (p, q).

Encrypt(pk,m): To encrypt a message m ∈ [0, 2k), we choose x $←− Z∗n and
compute c ≡ ymx2k mod n. Output the ciphertext c.

Decrypt(sk, c): Compute z ≡
(
c

p

)
2k

and findm such that the relation
[(
y

p

)
2k

]m
≡

z mod p holds. Efficient methods to recover m can be found in [12].

2.5 A Security Model for Biometric Authentication

We further consider the security model for biometric authentication described
in [3] in accordance with the terminology established in [6]. We stress that the
authors of [6] preferred a rather informal way of presenting their security model
while the approach of [3] is formal.

Participants and Roles. The data flow between the different roles assumed in
the authentication protocol of [3] is depicted in Figure 1.

S AS

DB

M
Client-side

Server-side

Fig. 1. Data flow and roles

The server-side functionality consists of three components to ensure that
no single entity can associate a user’s identity with the biometric data being
collected during authentication. The roles assumed in the authentication protocol
are:

– The Sensor (S) represents the client-side component. As in [6], we assume
that the sensor is capable of capturing the user’s biometric data, extracting



it into a binary string5, and performing cryptographic operations such as
PKE. We also assume a liveness link between the sensor and the server-side
components, to provide confidence that the biometric data received on the
server-side is from a present living person.

– The Authentication Server (AS) is responsible for communicating with
the user who wants to authenticate and organizing the entire server-side
procedure. In a successful authentication the AS obviously learns the user’s
identity, meaning that it should learn nothing about the biometric data being
submitted.

– The Database (DB) securely stores the users’ profile and its job is to execute
the pre-decision part of classification. Since the DB is aware of privileged
biometric data, it should learn nothing about the user’s identity, or even be
able to correlate or trace authentication runs from a given (unknown) user.

– The Matcher (M) completes the authentication process by taking the output
produced by the DB server and computing the final decision step. This implies
that theM possesses privileged information that allows it to make a final
decision, and again that it should not be able to learn anything about the
user’s real identity, or even be able to correlate or trace authentication runs
from a given (unknown) user.

Definition 4. Let v = {vi}i∈[0,s) and w = {wi}i∈[0,s) be two s-dimensional
vectors. Then the taxicab distance is defined as T (v, w) =

∑s−1
i=0 |vi − wi|. The

taxicab norm is defined as T (v, 0).

The first step in having a useful authentication protocol is for it to be sound.
This requirement is formalized in Requirement 1. Requirements 2. and 3. are
concerned with the sensitive6 relation between a user’s identity and its biometric
characteristics. We want to guarantee that the only entity in the infrastructure
that knows information about this relation is the sensor.

Requirement 1. The matcher M can compute the taxicab distance T (bi, b′i),
where bi is the reference biometric template and b′i is the fresh biometric template
sent in the authentication request. Therefore,M can compare the distance to a
given threshold value d and the server AS can make the right decision.

Requirement 2. For any identity IDi0 , two biometric templates b′i0 , b
′
i1
, where

i0, i1 ≥ 1 and b′i0 is the biometric template related to IDi0 , it is infeasible for
any ofM, DB and AS to distinguish between (IDi0 , b

′
i0

) and (IDi0 , b
′
i1

).

Requirement 3. For any two users Ui0 and Ui1 , where i0, i1 ≥ 1, if Uiβ , where
β

$←− {0, 1} makes an authentication attempt, then the database DB can only
guess β with a negligible advantage. Suppose the database DB makes a guess β′,
the advantage is |Pr[b = b′]− 1/2|.
5 We further consider the binary string as a vector of fixed length blocks.
6 in terms of the system’s security



3 A New Public Key Encryption Scheme

Inspired by the Joye-Libert scheme and wishing to obtain a meaningful general-
ization, we propose a new public key cryptosystem in Section 3.1 and analyze its
security in Section 3.2. An implementation and performance analysis is provided
in Section 3.3.

3.1 Description

Setup(λ): Set an integer k ≥ 1. Randomly generate γ + 1 distinct large prime
numbers pi, i ∈ [0, γ + 1) such that pi ≥ 2λ and pi ≡ 1 mod 2k. Let n =
p0 · . . . · pγ . Select yi

$←− Z∗n, i ∈ [0, γ), such that the following conditions hold

1.
(
yi
pi

)
= −1

2.
(
yi
pγ

)
= −1

3.
(
yi
pj

)
2k

= 1, where j 6= i

We denote by y = {yi}i∈[0,γ) and p = {pi}i∈[0,γ). Output the public key
pk = (n, y, k). The secret key is sk = p.

Encrypt(pk,m): To encrypt message m ∈ [0, 2kγ), first we divide it into γ

blocks m = m0‖ . . . ‖mγ−1. Then, we choose x $←− Z∗n and compute c ≡
x2k ·

∏γ−1
i=0 y

mi
i mod n. The output is ciphertext c.

Decrypt(sk, c): For each i ∈ [0, γ), compute mi = Decpi(pi, yi, c).

Algorithm 1: Decpi(pi, yi, c)
Input: The secret prime pi, the value yi and the ciphertext c
Output: The message block mi

1 mi ← 0, B ← 1
2 foreach s ∈ [1, k + 1) do

3 z ←
(
c

pi

)
2s

4 t←
(
yi
pi

)
2s

5 t← tmi mod pi
6 if t 6= z then
7 mi ← mi +B
8 end
9 B ← 2B

10 end
11 return mi



Correctness. Let mi =
∑k−1
w=0 bw2w be the binary expansion of block mi. Note

that (
c

pi

)
2s

=
(
x2k ·

∏γ−1
v=0 y

mv
v

pi

)
2s

=
(
ymii
pi

)
2s

=
(
yi
pi

)∑s−1
w=0

bw2w

2s

since

1.
(
x2k

pi

)
2s

= 1, where 1 ≤ s ≤ k

2.
(
yj
pi

)
2k

= 1, where j 6= i

3.
∑k−1
w=0 bw2w =

(∑s−1
w=0 bw2w

)
+ 2s ·

(∑k−1
w=s bw2w−s

)
As a result, the message block mi can be recovered bit by bit using pi.

Remark 2. The case γ = k = 1 corresponds to the Goldwasser-Micali cryptosys-
tem [9] and the case γ = 1 corresponds to the Joye-Libert PKE scheme [11].

Remark 3. In the Setup phase, we have to compute a special type of yi. An
efficient way to perform this step is to randomly select yi,i

$←− Z∗pi , yi,γ
$←− Z∗pγ

and wj
$←− Zp∗

j
, compute yj ← w2k

j mod pj and finally use the Chinese remainder
theorem to compute an element yi ∈ Z∗n such that yi ≡ yi,` mod p`.

3.2 Security Analysis

Theorem 1. Assume that the qr and sjs assumptions hold. Then, the proposed
scheme is ind-cpa secure in the standard model. Formally, let A be an efficient
PPT adversary, then there exist two efficient PPT algorithms B1 and B2 such
that

ADV ind-cpa
A (λ) ≤ 3

2γ
(

(k − 1
3) ·ADV qr

B1
(λ) + (k − 1) ·ADV sjs

B2
(λ)
)
.

Proof. To prove the statement, we simply replace the distribution of the public
key y for the encryption query. Let ni = pipγ , i ∈ [0, γ). Instead of choosing
yi ∈ Jni \ QRni we choose yi from the multiplicative subgroup of 2k residues
modulo ni. Under the gr assumption, the adversary does not detect the difference
between the original scheme and the one with the modified yis. In this case, the
value c is not carrying any information about the message. Thus, the ind-cpa
security of our proposed cryptosystem follows.

3.3 Implementation and Performance Analysis

Complexity Analysis For simplicity, when computing the ciphertext expansion,
the encryption and the decryption complexities, we consider the length of the
prime numbers as being λ. Based on the complexities presented in Table 1, we
obtain the results listed in Table 2.



Table 2. Performance analysis for an η-bit message

Scheme Ciphertext size Encryption Complexity

GM [9] 2λ · η O(2M(2λ)η)

JL [11] 2λ · dη
k
e O(2(k + 1)M(2λ)dη

k
e)

This work (γ + 1) · λ · d η
γk
e O((γ + 1)(k + 1)M((γ + 1)λ)d η

γk
e)

Scheme Decryption Complexity

GM [9] O(log(λ)M(λ)η)

JL [11] O((2kλ+ k2

2 )M(λ)dη
k
e)

This work O(γ(2kλ+ k2

2 )M(λ)d η
γk
e)

Implementation Details We further provide the reader with benchmarks for
our proposed PKE scheme.

We ran each of the three sub-algorithms on a CPU Intel i7-4790 4.00 GHz
and used GCC to compile it (with the O3 flag activated for optimization). Note
that for all computations we used the GMP library [2]. To calculate the running
times we used the omp_get_wtime() function [1]. To obtain the average running
time we chose to encrypt 100 128-bit messages.

For generating the primes needed in the Setup phase we used the naive
implementation7. A more efficient method of generating primes is presented
in [5, 11].

We further list our results in Table 3 (running times in seconds). When
analyzing Table 3, note that in the case γ = 1 we obtain the Goldwasser-Micali
scheme (k = 1) and the Joye-Libert scheme (k = 2, 4, 8). We stress that we
considered λ = 15368.

For completeness, in Table 4 we also present the ciphertext size (in kilobytes
= 103 bytes) for the previously mentioned parameters.

4 An Application to Biometric Authentication

In [6], the authors propose a biometric authentication protocol based on the
Goldwasser-Micali scheme. A security flaw9 of the protocol was indicated and
fixed in [3]. A natural extension of Bringer et al.’s protocol can be obtained using
the scheme proposed in Section 3.1. Thus, we describe our protocol in Section 4.1

7 i.e. we randomly generated r $←− [2λ−k, 2λ−k+1) until the 2kr + 1 was prime.
8 According to NIST this choice of λ offers a security strength of 128 bits.
9 The running time is exponential in the number of users



Table 3. Average running times for a 128-bit message

Algorithm γ = 1
k = 1 k = 2 k = 4 k = 8 k = 16

Setup 0.680128 0.632187 0.647911 0.648035 0.606200
Encrypt 0.001062 0.000661 0.000457 0.000333 0.000232
Decrypt 0.091672 0.091081 0.093016 0.090269 0.081925

Algorithm γ = 2
k = 1 k = 2 k = 4 k = 8

Setup 1.115970 1.186430 1.592270 15.27510
Encrypt 0.001050 0.000778 0.000570 0.000477
Decrypt 0.098191 0.096581 0.093230 0.094690

Algorithm γ = 4 γ = 8
k = 1 k = 2 k = 4 k = 1 k = 2

Setup 3.215690 14.67540 762.1870 109.4590 12429.10
Encrypt 0.001287 0.001190 0.001052 0.001829 0.002174
Decrypt 0.098939 0.097237 0.099977 0.096664 0.092930

Table 4. Ciphertext size for a 128-bit message

k = 1 k = 2 k = 4 k = 8 k = 16
γ = 1 49.152 24.576 12.288 6.1440 3.0720
γ = 2 36.864 18.432 9.2160 4.6080 −
γ = 4 30.720 15.360 7.6800 − −
γ = 8 27.648 13.824 − − −

and analyze its security in Section 4.2. A performance analysis is provided in
Section 4.3.

4.1 Description

Enrollment Phase In the protocol we consider Ui’s biometric template bi as
being a γM -dimensional vector bi = {bi,j}j∈[0,M), where bi,j = {bi,j,`}`∈[0,γ) and
bi,j,` ∈ [0, 2k).

In the enrollment phase, Ui registers (bi, i) at the database DB and (IDi, i)
at the authentication server AS, where IDi is Ui’s pseudonym and i is the index
of record bi in DB. Let N denote the number of records in DB. Note that the
matcherM possesses a key pair (sk, pk) for the scheme presented in Section 3.1.

We further denote by E(pk, ·) and EJL(pk, y`, ·) the encryption algorithms
for the scheme presented in Section 3.1 with pk = (n, y, k) and the Joye-Libert
scheme10 with pk = (n, y`, k), where ` ∈ [0, γ).

10 Note that in this case we consider n to be a product of γ + 1 primes.



Verification Phase If a user Ui wishes to authenticate himself to AS, the next
procedure is followed:

1. S captures the user’s biometric data b′i and sends to AS the user’s identity
IDi together with E(pk, b′i) = {E(pk, b′i,j)}j∈[0,M). Note that a liveness link
is available between S and AS to ensure that data is coming from the sensor
are indeed fresh and not artificial.

2. AS retrieves the index i using IDi and then sends EJL(pk, y`, tj) to the
database, for ` ∈ [0, γ) and j ∈ [0, N), where tj = 1 if j = i, tj = 0 otherwise.

3. For every s ∈ [0,M), DB computes

E(pk, bi,s) =
N−1∏
j=0

γ−1∏
`=0
EJL(pk, y`, tj)bj,s,` mod n.

To prevent AS from performing an exhaustive search of the profile space,
DB re-randomizes the encryptions by calculating E(pk, bi,s) = x2k

s E(pk, bi,s),
where xs

$←− Z∗n. Then, DB sends E(pk, bi,s), for s ∈ [0,M) to the authentica-
tion server.

4. AS computes vs, s ∈ [0,M), where

vs = E(pk, b′i,s)/E(pk, bi,s) mod n = E(pk, b′i,s − bi,s), (1)

and b′i,s−bi,s = {b′i,s,`−bi,s,`}`∈[0,γ). Then, AS makes a random permutation
among vs, for s ∈ [0,M), and sends the permuted vector ws, for s ∈ [0,M),
toM. Note that Item 4 will return a valid result with high probability, thus
we do not explicitly require E(pk, bi,s) to be invertible.

5. M decrypts ws to check that the taxicab norm of the corresponding plaintext
vector

M−1∑
s=0

γ−1∑
`=0
|ws,`|

is equal to or less than d and sends the result AS.
6. AS accepts or rejects the authentication request accordingly.

Correctness (Requirement 1). We need to show that vs = E(pk, b′i,s − bi,s), for
s ∈ [0,M). First observe that

E(pk, bi,s) =
N−1∏
j=0

γ−1∏
`=0
EJL(pk, y`, tj)bj,s,`

≡
N−1∏
j=0

γ−1∏
`=0

(r2k
j,γy

tj
` )bj,s,`

≡ r2k
i

γ−1∏
`=0

y
bi,s,`
` mod n.



Thus,

E(pk, b′i,s)/E(pk, bi,s) ≡ E(pk, b′i,s − bi,s) mod n.

It is obvious that the taxicab distance between bi and b′i

M−1∑
s=0

γ−1∑
`=0
|b′i,s,` − bi,s,`|

is equal to the taxicab norm of the plaintext vector corresponding to {vs}s∈[0,M)
and {ws}s∈[0,M).

4.2 Security Analysis

The proofs of Theorems 2 and 3 are similar to the security proofs from [6] and,
thus, are omitted. The only changes we have to make in the proofs of Theorems 2
and 3 is replacing Goldwasser-Micali with our scheme and, respectively, the
Joye-Libert scheme.

Theorem 2 (Requirement 2). For any identity IDi0 and two biometric tem-
plates b′i0 , b

′
i1
, where i0, i1 ≥ 1 and b′i0 is the biometric template related to IDi0 ,

any M, DB and AS can distinguish between (IDi0 , b
′
i0

) and (IDi0 , b
′
i1

) with
negligible advantage.

Theorem 3 (Requirement 3). For any two users Ui0 and Ui1 , where i0, i1 ≥ 1,
if Uiβ , where β

$←− {0, 1} makes an authentication attempt, then the database DB
can only guess β with a negligible advantage.

4.3 Performance Analysis

It is easy to see that the sensor S and the matcherM perform onlyM encryptions
and, respectively, decryptions. Comparing our proposed protocol’s complexity
with Bringer et al.’s, reduces to comparing the scheme from Section 3.1 with
the Goldwasser-Micali cryptosystem.11 On the authentication server’s side, we
perform γN Joye-Libert encryptions (which can be precomputed) andM divisions.
Bringer et al.’s protocol, performs step 2 using the Goldwasser-Micali scheme
and, thus, in step 4 they can use multiplications instead of divisions 12. Since we
took into consideration the fix from [3] when proposing our protocol, we have to
perform M extra multiplications compared to the scheme in [6]. Since we have
to assemble our scheme’s ciphertexts from Joye-Libert’s ciphertexts we have a
blowout of γ multiplications on the database’s side. Thus, we perform γMN/2
multiplications on average .
11 See Section 3.3
12 In Z2 addition and subtraction are equivalent.



5 Conclusions and further development

Based on the Joye-Libert scheme we proposed a new PKE scheme, proved its
security in the standard model and analyzed its performance in a meaningful
context. We also described an application of our cryptosystem to biometric
authentication and presented its security analysis.

Future Work. An attractive research direction for the future is the construction
of lossy trapdoor functions (based on the inherited homomorphic properties of
our proposed cryptosystem). Another appealing future work idea is to propose a
threshold variant of our scheme and to discuss security and efficiency matters.
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A Optimized Decryption Algorithms

In [12], the authors provide the reader with different versions of the decryption
algorithm corresponding to the Joye-Libert cryptosystem. We present slightly
modified versions of [12, Algorithm 3 and 4] in Algorithms 2 and 3. The authors
also propose two other optimizations [12, Algorithm 5 and 6], but their complexity
is similar with Algorithm 3 and 4’s complexity. Note that these optimizations
contain a typo: in line 5, Algorithm 5 and line 6, Algorithm 6 we should have
Ak−j 6= C[k − j] mod p instead of A 6= C[k − j] mod p.

For these algorithms to work we need to enhance the Setup algorithm of our
proposed cryptosystem. More precisely, we generate the γ + 1 prime numbers
pi with the supplementary restriction pi 6≡ 1 mod 2k+1. For 0 ≤ i < γ, let p′i =
(pi−1)/2k. We precompute Di = y

−p′i
i for Algorithm 2 and Di[j] = D2j−1

i mod pi,
1 ≤ j ≤ k − 1, for Algorithm 3 and augment the private key with these values.
Remark that Algorithm 3 requires more memory than Algorithm 2.

Algorithm 2: Fast decryption algorithm Version 1
Input: The secret values (pi, p′i, Di), the value yi and the ciphertext c
Output: The message block mi

1 mi ← 0, B ← 1
2 C ← cp

′
i mod pi

3 foreach j ∈ [1, k − 1] do
4 z ← C2k−j mod pi
5 if z 6= 1 then
6 mi ← mi +B
7 C ← C ·Di mod pi
8 end
9 B ← 2B, D ← D2 mod pi

10 end
11 if C 6= 1 then
12 mi ← mi +B
13 end
14 return mi



Correctness. Let mi =
∑k−1
w=0 bw2w be the binary expansion of block mi. We

define αi[s] = 2k−sp′i. Note that

cαi[s] ≡ (x2k ·
γ∏
v=1

ymvv )αi[s]

≡ y
αi[s]

∑s−1
w=0

bw2w

i

≡ ybs−12k−1p′i
i yαi[s]

∑s−2
w=0

bw2w

≡ (−1)bs−1yαi[s]
∑s−2

w=0
bw2w mod pi

since

1. (x2k)αi[s] = x2k−s(pi−1) = 1

2.
(
yj
pi

)
2k

= 1, where j 6= i

3.
∑k−1
w=0 bw2w =

(∑s−1
w=0 bw2w

)
+ 2s ·

(∑k−1
w=s bw2w−s

)
4.
(
yi
pi

)
= −1

As a result, the message block mi can be recovered bit by bit using the values pi,
p′i and the vector Di.

Algorithm 3: Fast decryption algorithm Version 2
Input: The secret values (pi, p′i, Di[1], . . . Di[k − 1]), the value yi and the

ciphertext c
Output: The message block mi

1 mi ← 0, B ← 1
2 C ← cp

′
i mod pi

3 foreach j ∈ [1, k − 1] do
4 z ← C2k−j mod pi
5 if z 6= 1 then
6 mi ← mi +B
7 C ← C ·Di[j] mod pi
8 end
9 B ← 2B

10 end
11 if C 6= 1 then
12 mi ← mi +B
13 end
14 return mi



Implementation Details The complexities of Algorithms 2 and 3 are O(γ(λ+
k2

2 + 3k
2 )M(λ)d η

γk
e) and O(γ(λ+ k2

2 + k
2 )M(λ)d η

γk
e).

We further provide the reader with benchmarks for the optimized versions of
our PKE scheme.

Table 5. Average running times for Algorithm 2.

Algorithm γ = 1
k = 1 k = 2 k = 4 k = 8 k = 16

Setup 0.736027 0.691385 0.704239 0.673276 0.7184
Encrypt 0.001218 0.000787 0.000516 0.000383 0.000296
Decrypt 0.052399 0.026501 0.013326 0.006679 0.003577

Algorithm γ = 2
k = 1 k = 2 k = 4 k = 8

Setup 1.210450 1.334020 1.926020 15.35740
Encrypt 0.001137 0.000843 0.000638 0.000555
Decrypt 0.052409 0.026340 0.013168 0.007064

Algorithm γ = 4 γ = 8
k = 1 k = 2 k = 4 k = 1 k = 2

Setup 3.662620 15.26860 828.9620 107.6630 14429.00
Encrypt 0.001423 0.001318 0.001058 0.002007 0.00244632
Decrypt 0.054294 0.026909 0.012723 0.052906 0.026168

Table 6. Average running times for Algorithm 3.

Algorithm γ = 1
k = 1 k = 2 k = 4 k = 8 k = 16

Setup 0.702962 0.709076 0.684529 0.713416 0.711517
Encrypt 0.001117 0.000796 0.000499 0.000378 0.000287
Decrypt 0.048072 0.024782 0.012958 0.006617 0.003436

Algorithm γ = 2
k = 1 k = 2 k = 4 k = 8

Setup 1.086650 1.181620 1.877680 13.54860
Encrypt 0.001177 0.000798 0.000600 0.000518
Decrypt 0.049691 0.025127 0.012281 0.006574

Algorithm γ = 4 γ = 8
k = 1 k = 2 k = 4 k = 1 k = 2

Setup 3.354720 14.33620 847.9770 104.0870 12741.90
Encrypt 0.001323 0.001296 0.001087 0.001936 0.002280
Decrypt 0.050909 0.026515 0.012982 0.051005 0.024521
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