
A New Generalisation of the Goldwasser-Micali
Cryptosystem Based on the Gap 2k-Residuosity

Assumption

Diana Maimuţ1 and George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania
{diana.maimut,tgeorge}@dcti.ro

2 Simion Stoilow Institute of Mathematics of the Romanian Academy
21 Calea Grivitei, Bucharest, Romania

Abstract. We present a novel public key encryption scheme that en-
ables users to exchange many bits messages by means of at least two
large prime numbers in a Goldwasser-Micali manner. Our cryptosystem
is in fact a generalization of the Joye-Libert scheme (being itself an ab-
straction of the first probabilistic encryption scheme). We prove the secu-
rity of the proposed cryptosystem in the standard model (based on the
gap 2k-residuosity assumption) and report complexity related facts. We
also describe an application of our scheme to biometric authentication
and discuss the security of our suggested protocol. Last but not least, we
indicate several promising research directions.
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1 Introduction

The authors of [13] introduced a public key encryption (PKE) scheme3 repre-
senting a rather natural extension of the Goldwasser-Micali (GM) [11, 12] cryp-
tosystem, the first probabilistic encryption scheme. The Goldwasser-Micali cryp-
tosystem achieves ciphertext indistinguishability under the Quadratic Residu-
osity (qr) assumption. Despite being simple and stylish, this scheme is quite
uneconomical in terms of bandwidth4. Various attempts of generalizing the
Goldwasser-Micali scheme were proposed in the literature in order to address
the previously mentioned issue. The Joye-Libert (JL) scheme can be considered
a follow-up of the cryptosystems proposed in [16] and [9] and efficiently supports
the encryption of larger messages.

Inspired by the Joye-Libert scheme, we propose a new public key cryptosys-
tem, analyze its security and provide the reader with an implementation and
3 reconsidered in [7]
4 k · log2 n bits are needed to encrypt a k-bit message, where n is an RSA modulus as

described in [11,12]
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performance discussion. We construct our scheme based on 2k-th power residue
symbols. Our generalization of the Joye-Libert cryptosystem makes use of two
important parameters when it comes to the encryption and decryption functions:
the number of bits of a message and the number of distinct primes of a public
modulus n. Thus, our proposal not only supports the encryption of larger mes-
sages (as in the Joye-Libert variant), but also operates on a variable number of
large primes (instead of two in the Joye-Libert case). Both these parameters can
be chosen depending on the desired security application.

Our scheme can be viewed as a flexible solution characterized by the ability of
making adequate trade-offs between encryption speed and ciphertext expansion
in a given context.

In biometric authentication protocols, when a user identifies himself using
his biometric characteristics (captured by a sensor), the collected data will vary.
Thus, traditional cryptographic approaches (such as storing a hash value) are
not suitable in this case, since they are not error tolerant. As a result, biometric-
based protocols must be constructed in a special way and, moreover, the system
must protect the sensitivity and privacy of a user’s biometric characteristics.
Such a protocol is proposed in [8]. Its core is the Goldwasser-Micali encryption
scheme. Thus, a natural extension of the protocol in [8] can be obtained using
our generalization of the Joye-Libert scheme. Thus, we describe such a biometric
authentication protocol and discuss its security.

Structure of the paper. In Section 2 we introduce notations, definitions, security
assumptions and schemes used throughout the paper. Inspired by the Joye-Libert
PKE scheme and aiming at obtaining a relevant generalization, in Section 3 we
propose a new scheme based on 2k residues, prove it secure in the standard
model and analyze its performance compared to other related cryptosystems. An
application of our scheme to biometric authentication and its security analysis
are presented in Section 4. We conclude in Section 5 and in Appendices A and B
we present some optimizations for our proposed scheme.

2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. We use the
notation x

$←− X when selecting a random element x from a sample space X.
We denote by x ← y the assignment of the value y to the variable x. The
probability that event E happens is denoted by Pr[E]. The Jacobi symbol of

an integer a modulo an integer n is represented by
(

a

n

)
. Jn and J̄n denote the

sets of integers modulo n with Jacobi symbol 1, respectively −1. Throughout
the paper, we let QRn be the set of quadratic residues modulo n. We consider
as Zp = {−(p − 1)/2, . . . ,−1, 0, 1, . . . , (p − 1)/2} the alternative representation
modulo an integer p. The set of integers {0, . . . , a−1} is further denoted by [0, a).
Multidimensional vectors v = (v0, . . . , vs−1) are represented as v = {vi}i∈[0,s).



2.1 2k-th power residue

There are several ways to generalize the Legendre symbol to higher powers. We
further consider the 2k-th power residue symbol as presented in [18]. The classical
Legendre symbol is obtained when k = 1.

Definition 1. Let p be an odd prime such that 2k|p− 1. Then the symbol(
a

p

)
2k

= a
p−1
2k mod p

is called the 2k-th power residue symbol modulo p, where a
p−1
2k ∈ Zp.

Properties. The 2k-th power residue symbol satisfies the following properties

1. If a ≡ b mod p, then
(

a

p

)
2k

=
(

b

p

)
2k

2.
(

a2k

p

)
2k

= 1

3.
(

ab

p

)
2k

=
(

a

p

)
2k

(
b

p

)
2k

mod p

4.
(

1
p

)
2k

= 1 and
(
−1
p

)
2k

= (−1)(p−1)/2k

2.2 Computational Complexity

In our performance analysis we use the complexities of the mathematical opera-
tions listed in Table 1. These complexities are in accordance with the algorithms
presented in [10]. We do not use the explicit complexity of multiplication, but
instead we refer to it as M(·) for clarity.

Table 1. Computational complexity for µ-bit numbers and k-bit exponents

Operation Complexity

Multiplication M(µ) = O(µ log(µ) log(log(µ)))

Exponentiation O(kM(µ))

Jacobi symbol O(log(µ)M(µ))

2.3 Security Assumptions

Definition 2 (Quadratic Residuosity - qr, Squared Jacobi Symbol - sjs
and Gap 2k-Residuosity - gr). Choose two large prime numbers p, q ≥ 2λ

and compute n = pq. Let A be a probabilistic polynomial-time (PPT) algorithm



that returns 1 on input (x, n) or (x2, n) or (x, k, n) if x ∈ QRn or Jn or Jn\QRn.
We define the advantages

ADV qr
A (λ) =

∣∣∣P r[A(x, n) = 1|x $←− QRn]− P r[A(x, n) = 1|x $←− Jn \QRn]
∣∣∣ ,

ADV sjs
A (λ) =

∣∣∣P r[A(x2, n) = 1|x $←− Jn]− P r[A(x2, n) = 1|x $←− J̄n]
∣∣∣ ,

ADV gr
A,k(λ) =

∣∣∣P r[A(x, k, n) = 1|x $←− Jn \QRn]− P r[A(x2k

, k, n) = 1|x $←− Z∗
n]

∣∣∣ .

The Quadratic Residuosity assumption states that for any PPT algorithm A
the advantage ADV qr

A (λ) is negligible.
If p, q ≡ 1 mod 4, then the Squared Jacobi Symbol assumption states that for

any PPT algorithm A the advantage ADV sjs
A (λ) is negligible.

Let p, q ≡ 1 mod 2k. The Gap 2k-Residuosity assumption states that for any
PPT algorithm A the advantage ADV gr

A (λ) is negligible.

Remark 1. In [7], the authors investigate the relation between the assumptions
presented in Definition 2. They prove that for any PPT adversary A against the
gr assumption, we have two efficient PPT algorithms B1 and B2 such that

ADV gr
A,k(λ) ≤ 3

2

(
(k − 1

3
) ·ADV qr

B1
(λ) + (k − 1) ·ADV sjs

B2
(λ)

)
.

2.4 Public Key Encryption

A public key encryption (PKE) scheme usually consists of three PPT algorithms:
Setup, Encrypt and Decrypt. The Setup algorithm takes as input a security pa-
rameter and outputs the public key as well as the matching secret key. Encrypt
takes as input the public key and a message and outputs the corresponding ci-
phertext. The Decrypt algorithm takes as input the secret key and a ciphertext
and outputs either a valid message or an invalidity symbol (if the decryption
failed).

Definition 3 (Indistinguishability under Chosen Plaintext Attacks -
ind-cpa). The security model against chosen plaintext attacks for a PKE scheme
is captured in the following game:

Setup(λ): The challenger C generates the public key, sends it to adversary A
and keeps the matching secret key to himself.

Query: Adversary A sends to C two equal length messages m0, m1. The chal-
lenger flips a coin b ∈ {0, 1} and encrypts mb. The resulting ciphertext c is
sent to the adversary.

Guess: In this phase, the adversary outputs a guess b′ ∈ {0, 1}. He wins the
game, if b′ = b.

The advantage of an adversary A attacking a PKE scheme is defined as

ADV ind-cpa
A (λ) = |Pr[b = b′]− 1/2|



where the probability is computed over the random bits used by C and A. A
PKE scheme is ind-cpa secure, if for any PPT adversary A the advantage
ADV ind-cpa

A (λ) is negligible.

The Joye-Libert PKE scheme The Joye-Libert scheme was introduced in [13]
and reconsidered in [7]. The scheme is proven secure in the standard model
under the gr assumption. We shortly describe the algorithms of the Joye-Libert
cryptosystem.

Setup(λ): Set an integer k ≥ 1. Randomly generate two distinct large prime
numbers p, q such that p, q ≥ 2λ and p, q ≡ 1 mod 2k. Output the public key
pk = (n, y, k), where n = pq and y ∈ Jn \ QRn. The corresponding secret
key is sk = (p, q).

Encrypt(pk, m): To encrypt a message m ∈ [0, 2k), we choose x
$←− Z∗

n and
compute c ≡ ymx2k mod n. Output the ciphertext c.

Decrypt(sk, c): Compute z ≡
(

c

p

)
2k

and find m such that the relation
[(

y

p

)
2k

]m

≡

z mod p holds. Efficient methods to recover m can be found in [14].

2.5 A Security Model for Biometric Authentication

We further consider the security model for biometric authentication described
in [5] in accordance with the terminology established in [8]. We stress that the
authors of [8] preferred a rather informal way of presenting their security model
while the approach of [5] is formal.

Participants and Roles. The data flow between the different roles assumed in
the authentication protocol of [5] is depicted in Figure 1.

S AS

DB

M
Client-side

Server-side

Fig. 1. Data flow and roles

The server-side functionality consists of three components to ensure that no
single entity can associate a user’s identity with the biometric data being col-
lected during authentication. The roles assumed in the authentication protocol
are:



– The Sensor (S) represents the client-side component. As in [8], we assume
that the sensor is capable of capturing the user’s biometric data, extracting
it into a binary string5, and performing cryptographic operations such as
PKE. We also assume a liveness link between the sensor and the server-side
components, to provide confidence that the biometric data received on the
server-side is from a present living person.

– The Authentication Server (AS) is responsible for communicating with the
user who wants to authenticate and organizing the entire server-side pro-
cedure. In a successful authentication the AS obviously learns the user’s
identity, meaning that it should learn nothing about the biometric data
being submitted.

– The Database (DB) securely stores the users’ profile and its job is to execute
the pre-decision part of classification. Since the DB is aware of privileged
biometric data, it should learn nothing about the user’s identity, or even be
able to correlate or trace authentication runs from a given (unknown) user.

– The Matcher (M) completes the authentication process by taking the out-
put produced by the DB server and computing the final decision step. This
implies that theM possesses privileged information that allows it to make a
final decision, and again that it should not be able to learn anything about
the user’s real identity, or even be able to correlate or trace authentication
runs from a given (unknown) user.

Definition 4. Let v = {vi}i∈[0,s) and w = {wi}i∈[0,s) be two s-dimensional
vectors. Then the taxicab distance is defined as T (v, w) =

∑s−1
i=0 |vi − wi|. The

taxicab norm is defined as T (v, 0).
The first step in having a useful authentication protocol is for it to be sound.

This requirement is formalized in Requirement 1. Requirements 2. and 3. are
concerned with the sensitive6 relation between a user’s identity and its biometric
characteristics. We want to guarantee that the only entity in the infrastructure
that knows information about this relation is the sensor.

Requirement 1. The matcher M can compute the taxicab distance T (bi, b′
i),

where bi is the reference biometric template and b′
i is the fresh biometric template

sent in the authentication request. Therefore,M can compare the distance to a
given threshold value d and the server AS can make the right decision.

Requirement 2. For any identity IDi0 , two biometric templates b′
i0

, b′
i1

, where
i0, i1 ≥ 1 and b′

i0
is the biometric template related to IDi0 , it is infeasible for

any of M, DB and AS to distinguish between (IDi0 , b′
i0

) and (IDi0 , b′
i1

).

Requirement 3. For any two users Ui0 and Ui1 , where i0, i1 ≥ 1, if Uiβ
, where

β
$←− {0, 1} makes an authentication attempt, then the database DB can only

guess β with a negligible advantage. Suppose the database DB makes a guess
β′, the advantage is |Pr[b = b′]− 1/2|.
5 We further consider the binary string as a vector of fixed length blocks.
6 in terms of the system’s security



3 A New Public Key Encryption Scheme

Inspired by the Joye-Libert scheme and wishing to obtain a meaningful general-
ization, we propose a new public key cryptosystem in Section 3.1 and analyze its
security in Section 3.2. An implementation and performance analysis is provided
in Section 3.3.

3.1 Description

Setup(λ): Set an integer k ≥ 1. Randomly generate γ + 1 distinct large prime
numbers pi, i ∈ [0, γ + 1) such that pi ≥ 2λ and pi ≡ 1 mod 2k. Let n =
p0 · . . . · pγ . Select yi

$←− Z∗
n, i ∈ [0, γ), such that the following conditions hold

1.
(

yi

pi

)
= −1

2.
(

yi

pγ

)
= −1

3.
(

yi

pj

)
2k

= 1, where j ̸= i

We denote by y = {yi}i∈[0,γ) and p = {pi}i∈[0,γ). Output the public key
pk = (n, y, k). The secret key is sk = p.

Encrypt(pk, m): To encrypt message m ∈ [0, 2kγ), first we divide it into γ

blocks m = m0∥ . . . ∥mγ−1. Then, we choose x
$←− Z∗

n and compute c ≡
x2k ·

∏γ−1
i=0 ymi

i mod n. The output is ciphertext c.
Decrypt(sk, c): For each i ∈ [0, γ), compute mi = Decpi

(pi, yi, c).

Algorithm 1: Decpi
(pi, yi, c)

Input: The secret prime pi, the value yi and the ciphertext c
Output: The message block mi

1 mi ← 0, B ← 1
2 foreach s ∈ [1, k + 1) do

3 z ←
(

c

pi

)
2s

4 t←
(

yi

pi

)
2s

5 t← tmi mod pi

6 if t ̸= z then
7 mi ← mi + B
8 end
9 B ← 2B

10 end
11 return mi



Correctness. Let mi =
∑k−1

w=0 bw2w be the binary expansion of block mi. Note
that (

c

pi

)
2s

=
(

x2k ·
∏γ−1

v=0 ymv
v

pi

)
2s

=
(

ymi
i

pi

)
2s

=
(

yi

pi

)∑s−1
w=0

bw2w

2s

since

1.
(

x2k

pi

)
2s

= 1, where 1 ≤ s ≤ k

2.
(

yj

pi

)
2k

= 1, where j ̸= i

3.
∑k−1

w=0 bw2w =
(∑s−1

w=0 bw2w
)

+ 2s ·
(∑k−1

w=s bw2w−s
)

As a result, the message block mi can be recovered bit by bit using pi.

Remark 2. The case γ = k = 1 corresponds to the Goldwasser-Micali cryptosys-
tem [11] and the case γ = 1 corresponds to the Joye-Libert PKE scheme [13].

Remark 3. In the Setup phase, we have to compute a special type of yi. An
efficient way to perform this step is to randomly select yi,i

$←− Z∗
pi
\QRpi

, yi,γ
$←−

Z∗
pγ
\ QRpγ

and wi,j
$←− Zp∗

j
, compute yi,j ← w2k

i,j mod pj and finally use the
Chinese Remainder Theorem to compute an element yi ∈ Z∗

n such that yi ≡
yi,ℓ mod pℓ for all ℓ.

3.2 Security Analysis

Theorem 1. Assume that the qr and sjs assumptions hold. Then, the proposed
scheme is ind-cpa secure in the standard model. Formally, let A be an efficient
PPT adversary, then there exist two efficient PPT algorithms B1 and B2 such
that

ADV ind-cpa
A (λ) ≤ 3

2
γ

(
(k − 1

3
) ·ADV qr

B1
(λ) + (k − 1) ·ADV sjs

B2
(λ)

)
.

Proof. To prove the statement, we simply replace the distribution of the public
key y for the encryption query. Let ni = pipγ , i ∈ [0, γ). Instead of choosing
yi ∈ Jni

\ QRni
we choose yi from the multiplicative subgroup of 2k residues

modulo ni. Under the gr assumption, the adversary does not detect the dif-
ference between the original scheme and the one with the modified yis. In this
case, the value c is not carrying any information about the message. Thus, the
ind-cpa security of our proposed cryptosystem follows.

Remark 4. Note that in Theorem 1 is sufficient to consider the gr assumption
modulo ni instead of modulo n. To prove this, lets consider an efficient PPT
distinguisher B for the gr assumption modulo n. Then we construct an efficient
distinguisher C for the gr assumption modulo ni.



Thus, on input (yi, k, ni), C first randomly selects γ−1 primes {pj}j∈[0,γ)\{i}
such that pj ≡ 1 mod 2k and computes n = ni ·

∏
j∈[0,γ)\{i} pj . Then, using

the Chinese theorem, C computes a value ȳi such that ȳi ≡ yi mod ni and
ȳi ≡ 1 mod n/ni. Finally, C sends (ȳi, k, n) to B and he outputs B answer. It is
easy to see that C and B have the same success probability.

3.3 Implementation and Performance Analysis

Complexity Analysis For simplicity, when computing the ciphertext expan-
sion, the encryption and the decryption complexities, we consider the length of
the prime numbers as being λ. Based on the complexities presented in Table 1,
we obtain the results listed in Table 2.

Table 2. Performance analysis for an η-bit message

Scheme Ciphertext size Encryption Complexity

GM [11] 2λ · η O(2M(2λ)η)

JL [13] 2λ · ⌈η
k
⌉ O(2(k + 1)M(2λ)⌈η

k
⌉)

This work (γ + 1) · λ · ⌈ η

γk
⌉ O((γ + 1)(k + 1)M((γ + 1)λ)⌈ η

γk
⌉)

Scheme Decryption Complexity

GM [11] O(log(λ)M(λ)η)

JL [13] O((2kλ + k2

2 )M(λ)⌈η
k
⌉)

This work O(γ(2kλ + k2

2 )M(λ)⌈ η

γk
⌉)

Implementation Details We further provide the reader with benchmarks for
our proposed PKE scheme.

We ran each of the three sub-algorithms on a CPU Intel i7-4790 4.00 GHz
and used GCC to compile it (with the O3 flag activated for optimization). Note
that for all computations we used the GMP library [4]. To calculate the running
times we used the omp_get_wtime() function [2]. To obtain the average running
time we chose to encrypt 100 128-bit messages.

For generating the primes needed in the Setup phase we used the naive imple-
mentation7. A more efficient method of generating primes is presented in [7,13].
Also, for generating the yi elements we used the optimization suggested in Re-
mark 3.
7 i.e. we randomly generated r

$←− [2λ−k, 2λ−k+1) until the 2kr + 1 was prime.



We further list our results in Table 3 (running times in seconds). When
analyzing Table 3, note that in the case γ = 1 we obtain the Goldwasser-Micali
scheme (k = 1) and the Joye-Libert scheme (k = 2, 4, 8). We stress that we
considered λ = 15368.

For completeness, in Table 4 we also present the ciphertext size (in kilobytes
= 103 bytes) for the previously mentioned parameters.

Table 3. Average running times for a 128-bit message

Algorithm γ = 1
k = 1 k = 2 k = 4 k = 8 k = 16

Setup 0.436019 0.422800 0.486668 0.441457 0.494408
Encrypt 0.000865 0.000554 0.000384 0.000296 0.000232
Decrypt 0.083693 0.082805 0.082887 0.083137 0.083065

Algorithm γ = 2
k = 1 k = 2 k = 4 k = 8

Setup 0.686439 0.671612 0.663171 0.678145
Encrypt 0.000825 0.000629 0.000494 0.000411
Decrypt 0.082958 0.083001 0.082939 0.082869

Algorithm γ = 4 γ = 8
k = 1 k = 2 k = 4 k = 1 k = 2

Setup 1.075200 1.081240 1.115740 2.114340 1.958870
Encrypt 0.001024 0.000984 0.000864 0.001539 0.001903
Decrypt 0.082751 0.082759 0.082409 0.082564 0.082192

Table 4. Ciphertext size for a 128-bit message

k = 1 k = 2 k = 4 k = 8 k = 16
γ = 1 49.152 24.576 12.288 6.1440 3.0720
γ = 2 36.864 18.432 9.2160 4.6080 −
γ = 4 30.720 15.360 7.6800 − −
γ = 8 27.648 13.824 − − −

4 An Application to Biometric Authentication

In [8], the authors propose a biometric authentication protocol based on the
Goldwasser-Micali scheme. A security flaw9 of the protocol was indicated and
8 According to NIST this choice of λ offers a security strength of 128 bits.
9 The running time is exponential in the number of users



fixed in [5]. A natural extension of Bringer et al.’s protocol can be obtained using
the scheme proposed in Section 3.1. Thus, we describe our protocol in Section 4.1
and analyze its security in Section 4.2. A performance analysis is provided in
Section 4.3.

4.1 Description

Enrollment Phase In the protocol we consider Ui’s biometric template bi as
being a γM -dimensional vector bi = {bi,j}j∈[0,M), where bi,j = {bi,j,ℓ}ℓ∈[0,γ) and
bi,j,ℓ ∈ [0, 2k).

In the enrollment phase, Ui registers (bi, i) at the database DB and (IDi, i)
at the authentication server AS, where IDi is Ui’s pseudonym and i is the index
of record bi in DB. Let N denote the number of records in DB. Note that the
matcherM possesses a key pair (sk, pk) for the scheme presented in Section 3.1.

We further denote by E(pk, ·) and EJL(pk, yℓ, ·) the encryption algorithms
for the scheme presented in Section 3.1 with pk = (n, y, k) and the Joye-Libert
scheme10 with pk = (n, yℓ, k), where ℓ ∈ [0, γ).

Verification Phase If a user Ui wishes to authenticate himself to AS, the next
procedure is followed:

1. S captures the user’s biometric data b′
i and sends to AS the user’s identity

IDi together with E(pk, b′
i) = {E(pk, b′

i,j)}j∈[0,M). Note that a liveness link
is available between S and AS to ensure that data is coming from the sensor
are indeed fresh and not artificial.

2. AS retrieves the index i using IDi and then sends EJL(pk, yℓ, tj) to the
database, for ℓ ∈ [0, γ) and j ∈ [0, N), where tj = 1 if j = i, tj = 0
otherwise.

3. For every s ∈ [0, M), DB computes

E(pk, bi,s) =
N−1∏
j=0

γ−1∏
ℓ=0

EJL(pk, yℓ, tj)bj,s,ℓ mod n.

To prevent AS from performing an exhaustive search of the profile space,
DB re-randomizes the encryptions by calculating E(pk, bi,s) = x2k

s E(pk, bi,s),
where xs

$←− Z∗
n. Then, DB sends E(pk, bi,s), for s ∈ [0, M) to the authenti-

cation server.
4. AS computes vs, s ∈ [0, M), where

vs = E(pk, b′
i,s)/E(pk, bi,s) mod n = E(pk, b′

i,s − bi,s), (1)

and b′
i,s−bi,s = {b′

i,s,ℓ−bi,s,ℓ}ℓ∈[0,γ). Then, AS makes a random permutation
among vs, for s ∈ [0, M), and sends the permuted vector ws, for s ∈ [0, M),
toM. Note that Item 4 will return a valid result with high probability, thus
we do not explicitly require E(pk, bi,s) to be invertible.

10 Note that in this case we consider n to be a product of γ + 1 primes.



5. M decrypts ws to check that the taxicab norm of the corresponding plaintext
vector

M−1∑
s=0

γ−1∑
ℓ=0

|ws,ℓ|

is equal to or less than d and sends the result AS.
6. AS accepts or rejects the authentication request accordingly.

Correctness (Requirement 1). We need to show that vs = E(pk, b′
i,s − bi,s), for

s ∈ [0, M). First observe that

E(pk, bi,s) =
N−1∏
j=0

γ−1∏
ℓ=0

EJL(pk, yℓ, tj)bj,s,ℓ

≡
N−1∏
j=0

γ−1∏
ℓ=0

(r2k

j,γy
tj

ℓ )bj,s,ℓ

≡ r2k

i

γ−1∏
ℓ=0

y
bi,s,ℓ

ℓ mod n.

Thus,

E(pk, b′
i,s)/E(pk, bi,s) ≡ E(pk, b′

i,s − bi,s) mod n.

It is obvious that the taxicab distance between bi and b′
i

M−1∑
s=0

γ−1∑
ℓ=0

|b′
i,s,ℓ − bi,s,ℓ|

is equal to the taxicab norm of the plaintext vector corresponding to {vs}s∈[0,M)
and {ws}s∈[0,M).

4.2 Security Analysis

The proofs of Theorems 2 and 3 are similar to the security proofs from [8] and,
thus, are omitted. The only changes we have to make in the proofs of Theorems 2
and 3 is replacing Goldwasser-Micali with our scheme and, respectively, the Joye-
Libert scheme.

Theorem 2 (Requirement 2). For any identity IDi0 and two biometric tem-
plates b′

i0
, b′

i1
, where i0, i1 ≥ 1 and b′

i0
is the biometric template related to IDi0 ,

any M, DB and AS can distinguish between (IDi0 , b′
i0

) and (IDi0 , b′
i1

) with
negligible advantage.

Theorem 3 (Requirement 3). For any two users Ui0 and Ui1 , where i0, i1 ≥ 1,
if Uiβ

, where β
$←− {0, 1} makes an authentication attempt, then the database DB

can only guess β with a negligible advantage.



4.3 Performance Analysis

It is easy to see that the sensor S and the matcher M perform only M encryp-
tions and, respectively, decryptions. Comparing our proposed protocol’s com-
plexity with Bringer et al.’s, reduces to comparing the scheme from Section 3.1
with the Goldwasser-Micali cryptosystem.11 On the authentication server’s side,
we perform γN Joye-Libert encryptions (which can be precomputed) and M
divisions. Bringer et al.’s protocol, performs step 2 using the Goldwasser-Micali
scheme and, thus, in step 4 they can use multiplications instead of divisions 12.
Since we took into consideration the fix from [5] when proposing our protocol,
we have to perform M extra multiplications compared to the scheme in [8]. Since
we have to assemble our scheme’s ciphertexts from Joye-Libert’s ciphertexts we
have a blowout of γ multiplications on the database’s side. Thus, we perform
γMN/2 multiplications on average .

5 Conclusions and further development

Based on the Joye-Libert scheme we proposed a new PKE scheme, proved its
security in the standard model and analyzed its performance in a meaningful
context. We also described an application of our cryptosystem to biometric au-
thentication and presented its security analysis.

Future Work. An attractive research direction for the future is the construction
of lossy trapdoor functions (based on the inherited homomorphic properties of
our proposed cryptosystem). Another appealing future work idea is to propose
a threshold variant of our scheme and to discuss security and efficiency matters.
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A Optimized Decryption Algorithms

In [14], the authors provide the reader with different versions of the decryption
algorithm corresponding to the Joye-Libert cryptosystem. We present slightly
modified versions of [14, Algorithm 3 and 4] in Algorithms 2 and 3. The authors
also propose two other optimizations [14, Algorithm 5 and 6], but their complex-
ity is similar with Algorithm 3 and 4’s complexity. Note that these optimizations
contain a typo: in line 5, Algorithm 5 and line 6, Algorithm 6 we should have
Ak−j ̸= C[k − j] mod p instead of A ̸= C[k − j] mod p.

For these algorithms to work we need to enhance the Setup algorithm of our
proposed cryptosystem. More precisely, we generate the γ + 1 prime numbers
pi with the supplementary restriction pi ̸≡ 1 mod 2k+1. For 0 ≤ i < γ, let p′

i =
(pi−1)/2k. We precompute Di = y

−p′
i

i for Algorithm 2 and Di[j] = D2j−1

i mod pi,
1 ≤ j ≤ k − 1, for Algorithm 3 and augment the private key with these values.
Remark that Algorithm 3 requires more memory than Algorithm 2.

Algorithm 2: Fast decryption algorithm Version 1
Input: The secret values (pi, p′

i, Di), the value yi and the ciphertext c
Output: The message block mi

1 mi ← 0, B ← 1, D ← Di

2 C ← cp′
i mod pi

3 foreach j ∈ [1, k − 1] do
4 z ← C2k−j

mod pi

5 if z ̸= 1 then
6 mi ← mi + B
7 C ← C ·D mod pi

8 end
9 B ← 2B, D ← D2 mod pi

10 end
11 if C ̸= 1 then
12 mi ← mi + B
13 end
14 return mi



Correctness. Let mi =
∑k−1

w=0 bw2w be the binary expansion of block mi. We
define αi[s] = 2k−sp′

i. Note that

cαi[s] ≡ (x2k

·
γ∏

v=1
ymv

v )αi[s]

≡ y
αi[s]

∑s−1
w=0

bw2w

i

≡ y
bs−12k−1p′

i
i yαi[s]

∑s−2
w=0

bw2w

≡ (−1)bs−1yαi[s]
∑s−2

w=0
bw2w

mod pi

since

1. (x2k )αi[s] = x2k−s(pi−1) = 1

2.
(

yj

pi

)
2k

= 1, where j ̸= i

3.
∑k−1

w=0 bw2w =
(∑s−1

w=0 bw2w
)

+ 2s ·
(∑k−1

w=s bw2w−s
)

4.
(

yi

pi

)
= −1

As a result, the message block mi can be recovered bit by bit using the values
pi, p′

i and the vector Di.

Algorithm 3: Fast decryption algorithm Version 2
Input: The secret values (pi, p′

i, Di[1], . . . Di[k − 1]), the value yi and the
ciphertext c

Output: The message block mi

1 mi ← 0, B ← 1
2 C ← cp′

i mod pi

3 foreach j ∈ [1, k − 1] do
4 z ← C2k−j

mod pi

5 if z ̸= 1 then
6 mi ← mi + B
7 C ← C ·Di[j] mod pi

8 end
9 B ← 2B

10 end
11 if C ̸= 1 then
12 mi ← mi + B
13 end
14 return mi



Implementation Details The complexities of Algorithms 2 and 3 are O(γ(λ+
k2

2 + 3k
2 )M(λ)⌈ η

γk
⌉) and O(γ(λ + k2

2 + k
2 )M(λ)⌈ η

γk
⌉).

We further provide the reader with benchmarks for the optimized versions of
our PKE scheme in Table 5. Note that the first lines of each algorithm correspond
to Algorithm 2, while the second lines to Algorithm 3.

Table 5. Average running times for Algorithm 2 and Algorithm 3.

Algorithm γ = 1
k = 1 k = 2 k = 4 k = 8 k = 16

Setup 0.421535 0.460203 0.524014 0.416147 0.389477
0.500607 0.442866 0.408549 0.504754 0.430149

Encrypt 0.000860 0.000556 0.000385 0.000293 0.000230
0.000860 0.000556 0.000386 0.000296 0.000233

Decrypt 0.041817 0.020751 0.010459 0.005328 0.002827
0.041475 0.020807 0.010527 0.005327 0.002837

Algorithm γ = 2
k = 1 k = 2 k = 4 k = 8

Setup 0.646626 0.664557 0.681469 0.661424
0.729936 0.658662 0.644742 0.620408

Encrypt 0.000822 0.000622 0.000491 0.000408
0.000829 0.000629 0.000495 0.000411

Decrypt 0.041144 0.020526 0.010366 0.005296
0.041691 0.020773 0.010457 0.005323

Algorithm γ = 4 γ = 8
k = 1 k = 2 k = 4 k = 1 k = 2

Setup 1.154610 1.181810 1.195290 2.030470 1.970220
1.162640 1.087500 1.075590 2.043390 1.987810

Encrypt 0.001008 0.000973 0.000850 0.001505 0.001887
0.001029 0.000983 0.000857 0.001526 0.001895

Decrypt 0.040643 0.020456 0.010300 0.040460 0.020449
0.041555 0.020712 0.010320 0.040925 0.020446



B Optimized Cryptosystem

In order to prove that our proposed PKE is secure, in Section 3.2 we pair the
prime numbers and then we use the gr security assumption for each couple. A
different approach is to generalise the gr security assumption to γ + 1 primes
and then link the security of our proposal to this new assumption.

Hence, let γ > 0 be an integer. Choose γ+1 large prime numbers p0, . . . , pγ ≥
2λ and compute n = p0 · . . . · pγ . We define

GJn =
{

y | ∃i, j such that
(

y

pi

)
=

(
y

pj

)
= −1 and

(
y

pk

)
= 1 for k ̸= i, j

}
.

Definition 5 (General Gap 2k-Residuosity - ggr). Let γ > 0 be an integer.
Choose γ + 1 large prime numbers p0, . . . , pγ ≥ 2λ and compute n = p0 · . . . · pγ .
Let A be a PPT algorithm that returns 1 on input (x, k, n) if x ∈ GJn \ QRn.
We define the advantages

ADV ggr
A,k(λ) =

∣∣∣P r[A(x, k, n) = 1|x $←− GJn \QRn]− P r[A(x2k

, k, n) = 1|x $←− Z∗
n]

∣∣∣ .

Let pi ≡ 1 mod 2k for i ∈ [0, γ + 1). The General Gap 2k-Residuosity as-
sumption states that for any PPT algorithm A the advantage ADV ggr

A (λ) is
negligible.

The only known method for solving the gr problem is to factor n and com-
pute the Jacobi symbols of x modulo p and q. Hence, if factoring n is hard, then
our construction is secure. The most efficient factoring methods have a complex-
ity that depends on the size of n and not on the size of its factors [10]. However,
one of the algorithms, the Elliptic Curve Method (ECM), depends on the size of
the factors [15]. Hence, it suffices for n to be long enough, thus becoming resis-
tant to ECM for squeezing up more bandwidth from our proposed construction.
Also, we can use the ggr assumption instead of the gr one as long as the factors
of n are large enough to render ECM useless.

We further state the security margin for our proposal without providing its
proof. Note that the security proof is similar to Theorem 1.

Theorem 4. Assume that the ggr assumption holds. Then, the proposed scheme
is ind-cpa secure in the standard model. Formally, let A be an efficient PPT
adversary, then there exist an efficient PPT algorithm Bsuch that

ADV ind-cpa
A (λ) ≤ γ ·ADV ggr

B (λ).

According to [1, 3], the largest prime factor found by means of the ECM is
around 273 bits. Therefore, if the prime factors are larger that 300 bits and n
is larger that 3072 bits [6] we should be safe from ECM and the other factoring
methods. We implemented Algorithms 1 to 3 using the same implementation
details from Section 3.3, except for the prime size λ. In the case γ = 2 we used



λ = 1024 = 3072/3, for γ = 4 we used λ = 615 ≃ 3072/5 and for γ = 8 we used
λ = 342 ≃ 3072/9.

We further present the new benchmarks for the small primes versions of our
PKE scheme in Table 6. Note that the first lines of each algorithm correspond to
Algorithm 1, while the second and third lines to Algorithm 2 and Algorithm 3.
For completeness, in Table 7 we also present the ciphertext size for the new
version. Compared with the initial version of our PKE, using smaller primes we
managed to increase speed while lowering the ciphertext size.

Table 6. Average running times for a 128-bit message

Algorithm γ = 2
k = 1 k = 2 k = 4 k = 8

Setup
0.152326 0.153991 0.153331 0.149304
0.162608 0.172347 0.167030 0.146812
0.165431 0.171966 0.160559 0.152988

Encrypt
0.000438 0.000319 0.000240 0.000193
0.000439 0.000321 0.000242 0.000194
0.000524 0.000324 0.000354 0.000197

Decrypt
0.026061 0.026232 0.026182 0.025654
0.013071 0.006638 0.003368 0.001760
0.013333 0.006915 0.003295 0.001692

Algorithm γ = 4 γ = 8
k = 1 k = 2 k = 4 k = 1 k = 2

Setup
0.041722 0.043647 0.044954 0.013240 0.013554
0.044750 0.042339 0.046687 0.013762 0.014107
0.043244 0.045612 0.044554 0.014151 0.013642

Encrypt
0.000243 0.000212 0.000177 0.000148 0.000160
0.000244 0.000211 0.000178 0.000241 0.000159
0.000248 0.000214 0.000180 0.000151 0.000161

Decrypt
0.006228 0.006206 0.006208 0.001425 0.001420
0.003137 0.001579 0.000807 0.000715 0.000370
0.003190 0.001601 0.000829 0.000727 0.000372

Table 7. Ciphertext size for a 128-bit message

k = 1 k = 2 k = 4 k = 8 k = 16
γ = 2 24.576 12.288 6.1440 3.0720 −
γ = 4 12.300 6.1500 3.0750 − −
γ = 8 6.1560 3.0780 − − −
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