
SKINNY with Scalpel

Comparing Tools for Differential Analysis

Stéphanie Delaune1, Patrick Derbez1, Paul Huynh2, Marine Minier2, Victor
Mollimard1, and Charles Prud’homme3

1 Univ Rennes, CNRS, IRISA, Rennes, France
{stephanie.delaune,patrick.derbez,victor.mollimard}@irisa.fr

2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
{paul.hyunh,marine.minier}@loria.fr

3 IMT-Atlantique, TASC, LS2N, Nantes, France
charles.prudhomme@imt-atlantique.fr

Abstract. Evaluating resistance of ciphers against differential cryptanal-
ysis is essential to define the number of rounds of new designs and to
mount attacks derived from differential cryptanalysis.
In this paper, we compare existing automatic tools to find the best
differential characteristic on the SKINNY block cipher. As usually done in
the literature, we split this search in two stages denoted by Step 1 and
Step 2. In Step 1, each difference variable is abstracted with a Boolean
variable and we search for the value that minimizes the trail weight,
whereas Step 2 tries to instantiate each difference value while maximizing
the overall differential characteristic probability. We model Step 1 using
a MILP tool, a SAT tool, an ad-hoc method and a CP tool based on the
Choco-solver library and provide performance results. Step 2 is modeled
using the Choco-solver as it seems to outperform all previous methods
on this stage.
Notably, for SKINNY-128 in the SK model and for 13 rounds, we retrieve
the results of Abdelkhalek et al. within a few seconds (to compare with
16 days) and we provide, for the first time, the best differential related-
tweakey characteristic up to respectively 14 and 12 rounds for the TK1
and TK2 models.

Keywords: differential cryptanalysis · tools · SKINNY · performances comparison

1 Introduction

Differential cryptanalysis [BS91] evaluates the propagation of an input difference
δX = X ⊕X ′ between two plaintexts X and X ′ through the ciphering process.
Indeed, differential attacks exploit the fact that the probability of observing
a specific output difference given a specific input difference is not uniformly
distributed. Today, differential cryptanalysis is public knowledge, and block
ciphers such as AES have proven bounds against differential attacks. A classical
extension of differential cryptanalysis is the so called related-key differential

2 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

cryptanalysis [Bih93] that allows an attacker to inject differences not only between
the plaintexts X and X ′ but also between the keys K and K ′ (even if the secret
key K stays unknown from the attacker). This attack has been recently extended
to tweakable block ciphers [BJK+16]. Those particular ciphers allow in addition
to the key, a public value called a tweak. Thus, related-tweakey differential attacks
allow related-key differences but also related-tweak differences (i.e. differences
in a pair of tweaks (T, T ′)). In differential attacks, two notions are considered:
first, differentials where only the input and the output differences are known; and
differential characteristics where each difference after each round is completely
specified. A classical approach to evaluate the resistance against differential
attacks is to compute the probability of the best differential characteristic of the
cipher.

Finding optimal (related-tweakey) differential characteristics is a highly com-
binatorial problem that hardly scales. To limit this explosion, a common solution
consists in using a truncated representation [Knu95] for which cells are abstracted
by single bits that indicate whether sequences contain differences or not. Typically,
each cell (i.e. byte or nibble) is abstracted by a single bit (or, equivalently, a
Boolean value). In this case, the goal is no longer to find the exact input and
output differences, but to find the positions of these differences, i.e., the presence
or absence of a difference for every cell. When a difference is present at the input
of an S-box, we talk about an active S-box or an active byte/nibble. However,
some truncated representations may not be valid (i.e., there do not exist actual
byte values corresponding to these difference positions) because some constraints
at the byte level are relaxed when reasoning on difference positions.

Hence, the optimal (related-tweakey) differential characteristic problem is
usually solved in two steps [BN10,AST+17]. In the first one, every differential byte
is abstracted by a Boolean variable that indicates whether there is a difference or
not at this position, and we search for all truncated representations of low weight
as the less differences passing through S-boxes there are, the more the probability
is increased. Then, for each of these low weight truncated representations, the
second step aims at deciding whether it is valid (i.e., whether it is possible to
find actual cell values for every Boolean variable) and, if it is valid, at finding the
actual cell values that maximize the probability of obtaining the output difference
given the input difference.

Many techniques have been proposed to search for the Step 1 solutions using
automatic tools such as Boolean satisfiability (SAT) [SNC09,MP13,SWW17],
Mixed Integer Linear Programming (MILP) [SHW+14,ST17,BJK+16] and Satis-
fiability Modulo Theories (SMT) [KLT15]. Dedicated solutions have also been
proposed [Mat94]. Regarding the search of the best instantiation of a truncated
characteristic, most of the approaches were ad-hoc and dedicated to a precise ci-
pher [Laf18,SWW18,FJP13,BN10,GLMS18,ENP19]. But recently, in [AST+17],
authors introduce a MILP model of the non-linear part of a block cipher and
present some results on SKINNY-n where the time required to find differential
paths is about 15 days.

SKINNY with Scalpel 3

Our contribution. In this paper, we compare several methods that implement
Step 1 resolution on the SKINNY-n tweakable block cipher. Four attack models
could be considered on SKINNY-n according the size of the tweakey: the SK model
focuses on single-key attack, the TK1 model considers related-tweakey attack
when the tweakey has only one component, the TK2 model in the related-tweakey
settings considers 2 components and the TK3 model, 3 components.

We first implement the Step 1 using 4 different tools: a MILP model, a
SAT model, an Ad-Hoc method and a CP model for the 4 attack settings. We
also propose a CP model for Step 2 taking as input the solutions outputted by
Step 1. We analyze and compare all the proposed methods through intensive
computations dedicated to the SKINNY case. As a result we show that MILP is not
always the best choice for both problems. First, for Step 1, the Ad-Hoc method is
able to overpass the MILP model. Second, the CP model proposed for Step 2 is
incomparably much faster than the MILP model proposed in [AST+17]: reducing
the execution time from several days to few minutes. Thus, we provide, for the
first time, the best differential related-tweakey characteristics up to 14 rounds for
the TK1 model and up to 12 rounds for the TK1 model of SKINNY-128. This is
an important improvement compared to previous results. For instance, in [LGS17]
Liu et al. could only find the best differential characteristics up to 7 and 9 rounds
respectively. Finally we also show there is no differential characteristic with
probability higher than 2−128 against 15 rounds in the TK1 model and provide
the best TK2 related-tweakey differential characteristic we found against 16
rounds. All those results clearly show that SKINNY is much more resistant to
differential cryptanalysis than one would expect while counting the number of
active Sboxes.

All the codes for those models are available as supplementary material and
will be made public. Those codes could be easily employed by other users and
also adapted to other ciphers.

Organization of the paper. Section 2 gives a short description of SKINNY-n;
Section 3 and Section 4 present the different tools and models that have been
used for Step 1; Section 5 sums up our dedicated modeling for Step 2 based on
CP; Section 6 gives the computational times we obtain for the different tools
on a dedicated machine and analyzes the obtained results. Finally, Section 7
concludes this paper.

2 Cipher under study: SKINNY-n

In this section, we briefly review the tweakable block cipher SKINNY-n where n
denotes the block size and can be equal to 64 or 128 bits. All the details that
have been overlooked can be found in [BJK+16].

As its name indicates, it enciphers blocks of length 64 or 128 bits seen as a
4× 4 matrix of cells (nibbles for n = 64 or bytes for n = 128). We denote xi,j,k
the cell at row i and column j of the internal state at the beginning of round k
(i.e. 0 ≤ i, j ≤ 3 and 0 ≤ k ≤ r + 1 where r is the number of rounds depending

4 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

on the tweak length and on the key length). SKINNY-n follows the TWEAKEY
framework from [JNP14]. SKINNY-n has three main tweakey size versions: the
tweakey size can be equal to t = 64 or 128 bits, t = 128 or 256 bits and t = 192
or 384 bits and we denote z = t/n the tweakey size to block size ratio. Then, the
number of rounds is directly derived from the z value: between 32 rounds for the
64/64 version up to 56 for the 128/384 version.

The tweakey state is also viewed as a collection of z 4× 4 square arrays of
cells (nibbles for n = 64 or bytes for n = 128). We denote these arrays TK1
when z = 1, TK1 and TK2 when z = 2, and finally TK1, TK2 and TK3 when
z = 3. We also denote by TKki,j the nibble or the byte at position [i, j] in TKk.
Moreover, we define the associated adversarial model SK (resp. TK1, TK2 or
TK3) where the attacker cannot (resp. can) introduce differences in the tweakey
state.

One encryption round of SKINNY is composed of five operations applied
in the following order: SubCells (SC), AddConstants (AC), AddRoundTweakey
(ART), ShiftRows (SR) and MixColumns (MC) (see Fig. 1).

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. the SKINNY round function with its five transformations [Jea16].

SubCells. A 4-bit (n = 64) or an 8-bit (n = 128) S-box is applied to each cell
of the state. See [BJK+16] for the details of the S-boxes.

AddConstants. A 6-bit affine LFSR is used to generate round constants c0
and c1 that are XORed to the state at position [0, 0] and [1, 0] whereas the
constant c2 = 0x02 is XORed to the position [2, 0].

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted
and bitwise exclusive-ored to the cipher internal state, respecting the array
positioning. More formally, we have:
– xi,j = xi,j ⊕ TK1i,j when z = 1,
– xi,j = xi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,
– xi,j = xi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.

Then, the tweakey arrays are updated. First, a permutation PT is applied on
the cells positions of all tweakey arrays: if ` = 4 ∗ i + j where i is the row
index and j is the column index, then the cell ` is moved to position PT (`)
where PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Second, every cell of
the first and second rows of TK2 and TK3 are individually updated with an
LFSR on 4 bits (when n = 64) or on 8 bits (when n = 128) with a period
equal to 15.

SKINNY with Scalpel 5

ShiftRows. The rows of the cipher state cell array are rotated to the right. More
precisely, the second (resp. third and fourth) cell row is rotated by 1 position
(resp. 2 and 3 positions).

MixColumns. Each column of the cipher internal state array is multiplied by the
4× 4 binary matrix M :

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

3 Overview of solving techniques

In this section, we briefly introduce the different techniques we used for performing
the search of the best differential characteristic. Note that the Ad-Hoc method
inspired from [FJP13] is standalone and will be only described in the next Section.

3.1 Mixed Integer Linear Programming

Many symmetric cryptanalysis problems on different ciphers have been tackled
with MILP [SHW+14,BJK+16,ST17,MWGP12]. Note that MILP traditionally
considers variables from discrete domains and from continuous domains. Here
and as usually done in all the cryptanalytic contexts, we only consider integer
variables, and we rather should talk about ILP for Integer Linear Programming as
the term Mixed designates continuous variables. As MILP is the term classically
used in the cryptographic community, we decided to stick to this terminology.

The important point is that MILP models can only contain linear inequalities.
Therefore, it is necessary to transform non-linear operators into sets of linear
inequalities. Moreover, as done in [BJK+16], we decided to use the Gurobi
Mathematical Optimization solver [Opt18]. To be compatible with our code in
Python 3 and to benefit from the the search options on the pool of solutions, a
version greater than 9 is required.

3.2 Constraint Programming

Although less usual than MILP to tackle cryptanalytic problems, CP has already
been used in e.g. [GMS16,ENP19]. We recall some basic principles of CP and we
refer the reader to [RBW06] for more details.

CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is
defined by a triple (X,D,C) such that X = {x1, x2, . . . , xn} is a finite set of
variables, D is a function that maps every variable xi ∈ X to its domain D(xi)
and C = {c1, c2, . . . , cm} is a set of constraints. D(xi) is a finite ordered set of
integer values to which the variable xi can be assigned to, whereas cj defines
a relation between some variables vars(cj) ⊆ X. This relation restricts the set
of values that may be assigned simultaneously to vars(cj). Each constraint is

6 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

equipped with a filtering algorithm which removes from the domains of vars(cj),
the values that cannot satisfy cj .

In CP, constraints are classified in two categories. Extensional constraints,
also called table constraints, explicitly define the allowed (or forbidden) tuples
of the relation. Intentional constraints define the relation using mathematical
operators. For instance, in a CSP with X = {x1, x2, x3} such that D(x1) =
D(x2) = D(x3) = {0, 1}, a constraint ensuring that the sum of the variables in X
is different from 1 can be either expressed in extension (1) or in intention (2):

1. Table(〈x1, x2, x3〉 , 〈(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)〉)
2. x1 + x2 + x3 6= 1

Actually, any intentional constraint can be encoded with an extensional one
provided enough memory space, and conversely [DHL+16]. However, they may
offer different performances.

The purpose of a CSP is to find a solution, i.e. an assignment of all vari-
ables to a value from their respective domains such that all the constraints are
simultaneously satisfied. When looking for a solution, a two-phase mechanism
is operated: the search space exploration and the constraint propagation. The
exploration of the search space is processed using a depth-first search. At each
step, a decision is taken, i.e. a non-assigned variable is selected and its domain is
reduced to a singleton.This modification requires to check the satisfiability of all
the constraints. This is achieved thanks to constraint propagation which applies
each constraint filtering algorithm. Any application may trigger modifications in
turn; the propagation ends when either no modification occurs and all constraints
are satisfied or a failure is thrown, i.e., at least one constraint cannot be satis-
fied. In the former case, if all variables are assigned, a solution has been found.
Otherwise a new decision is taken and the search is pursued. In the latter case, a
backtrack to the first refutable decision is made and the search is resumed.

Turning a CSP into a Constrained Optimisation Problem (COP) is done by
adding an objective function. Such a function is defined over variables of X, the
purpose is then to find the solution that optimizes the objective function. Finding
the optimal solution is done by repeatedly applying the two-phase mechanism
above, and by adding a cut on the objective function that prevents from finding
a same cost solution in the future.

3.3 SAT

Transforming cryptanalytic problems into a propositional Boolean logic formula
is also a common technique [MP13,SWW17,KLT15,SNC09,SWW18]. To ease the
modeling step, a high-level modeling language called MiniZinc [NSB+07] has
been used: MiniZinc models are translated into a simple subset of MiniZinc called
FlatZinc, using a compiler provided by MiniZinc, and supported by most existing
CP solvers that have developed FlatZinc interfaces (currently, there are fifteen
CP solvers which have FlatZinc interfaces). Evaluations select Picat-SAT as the
best candidate SAT solver for Step 1. Picat-SAT translates CSPs into Boolean

SKINNY with Scalpel 7

satisfiability formulae, and then uses the SAT solver Lingeling [Bie14] to solve it.
Since Picat-SAT clearly outperforms all the other SAT solvers provided through
the MiniZinc interface, we decided to discard the other ones when comparing
with other techniques in Section 6.

4 Models for Step 1

As explained in the Introduction, in a first step called Step 1, we abstract
each possible difference at byte level by a binary variable which symbolizes the
presence/absence of a difference value at a given position of the cipher. The
main concern regarding this step is the combinatorial explosion induced by the
abstract XOR operation for which the sum of two non zero values can lead to
the presence or the absence of a difference.

Note also that all the models described below are tuned to enumerate the
solutions for a given number of active S-boxes and for a given number of rounds
in the four possible attack models. We call this step Step1-enum. This phase
comes after an initial step called Step1-opt where the minimal number of active
S-boxes for a given number of rounds have been already found. Note also that
all the models for SK discard symmetries up to column shift.

4.1 MILP Models

A MILP model has already been proposed in [BJK+16], but for comparison
purposes on time benchmarks, and to better fit our needs, we re-implement it.
Below, we only describe our modifications and refer to Appendix D in [BJK+16]
for the original model.

First, we add constraints in the SK model to obtain all solutions up to
column shifts in order to remove symmetries. Moreover, as the original model
only describes the way to find the minimal number of active S-boxes, we add a
constraint in each model to set a lower bound on the number of active S-boxes
and thus, be able to enumerate all the Step 1 solutions given a particular lower
bound for the number of active S-boxes. Then, in the original MILP model all xor
operations were modelized using dummy variables which is known to be inefficient.
Thus we replaced the corresponding inequalities, using that x⊕ y ⊕ z = 0 can be
described with the three inequalities:

{x+ y ≥ z}, {x+ z ≥ y}, {y + z ≥ x}.

Finally, regarding the resolutions of the MILP models, the parallelization is left
to the Gurobi solver.4

4 see: https://www.gurobi.com/documentation/9.0/refman/threads.html for more de-
tails.

8 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

Minimize

ObjStep1 =
n∑

r=1

4∑
i=1

4∑
j=1

δXr,i,j (1)

subject to

Table(〈δXr,0,j , δXr,1,(j+3)%4, δXr,2,(j+2)%4, δXr,3,(j+1)%4,

δXr+1,0,j , δXr+1,1,j , δXr+1,2,j , δXr+1,3,j〉
, 〈MxC〉), ∆Xr,i,j 6= 0, ∀r ∈ 1..n− 1, ∀j ∈ 1..4

(2)

where ∀r ∈ 1..n, ∀i ∈ 1..4, ∀j ∈ 1..4,
δXr,i,j ∈ 0..1

and 〈MxC〉 encodes both MixColumns and Shiftrows constraints.

Model 1: Formulation of SK Step 1, without symmetry breaking constraints.

4.2 MiniZinc (SAT) Models

Due to the high-level modeling allowed by MiniZinc, the model is exactly the
same as in the MILP model described in Subsection 4.1 except the way we model
the XOR operation. Indeed, we simply use the method described in [GL16] where
if a, b and c are Boolean variables, then the XOR operation verifies (considering
addition over integers): i1 + i2 + o 6= 1. Thus, this model does not require the
dummy variables d.

4.3 CP Models

A CP model for SK is depicted in Model 1. In comparison to other models
(Subsection 4.1 and Subsection 4.2), the objective function (1) remains identical.
Then, the model relies on Table constraints (2) with 〈MxC〉 as input parameter,
the list of feasible combinations. In an early stage, 〈MxC〉 is computed based
on a composition of MixColumns relation and ShifRows relation over two blocks
and eight variables. Only the 34 combinations satisfying both MixColumns and
ShifRows are retained among the 256 possible ones. Just like MILP and SAT,
symmetry breaking constraints are added to models in order to prevent the
calculation of solutions equivalent up to column shift.

TK1, TK2 and TK3 are modeled based on Model 1, i.e., without the
symmetry breaking constraints. We follow the same lines as the MILP model
proposed in Appendix D in [BJK+16] to model cancellation in TK2 and TK3.

In terms of solving configuration, a parallel portfolio is used to run resolutions
simultaneously. We separate the different models according to the 216 possible
values (0 or 1 for each possible cell) taken in a given middle round, which turns
the original COP into many CSPs. In practice, each independent sub-problem is
assigned to a new thread. Threads send each other messages containing the value
of ObjStep1, the best number of S-boxes found so far. Such an approach limits
the number of messages passed but offers valuable data to running threads, and
future ones. Indeed, bound sharing prevents from exploring sub-regions of the
search where there is no chance to find better solutions.

SKINNY with Scalpel 9

In addition, each model defines a search strategy based on a lexicographic
ordering. Once the middle round being instantiated, then, it goes one round by
one round to the forward and to the backward direction.

4.4 Ad-Hoc Models

To the best of our knowledge, the most efficient algorithm to search for truncated
representations is the one described in [FJP13] by Fouque et al.. The main idea
is that round i is independent of the paths of rounds 0, 1, . . . , i− 1 and at each
step we only have to save, for each truncated state, the minimal number of active
S-boxes to reach it. Hence, the complexity of this algorithm is exponential in
the state size but linear in the number of rounds. The algorithm is specified in
Algorithm 1. At the end of the algorithm we obtain an array C such that C[r][s]
contains the minimal number of active sboxes required to reach state s after r
rounds. Retrieving the truncated representations is then done quite easily using
C, starting from the last state to the first.

Algorithm 1: Search for the best truncated representation (SK).

foreach state s do
M [s]←− list of states s′ reachable from s through one round

end
foreach state s do

C [0] [s]←− number of active cells of s
end
for 1 ≤ r < R do

foreach state s do C [r] [s]←−∞
foreach state s do

foreach state s′ in M [s] do
c←− C [r − 1] [s] + number of active cells of s′

if c < C [r] [s′] then C [r] [s′]←− c
end

end

end
return C

The complexity of the algorithm in the single key model is very low, and we
experimentally counted around (R− 1)× 220 simple operations for R rounds. A
naive solution to search for truncated representations in the TK1, TK2 and TK3
models would be to apply the previous algorithm for each possible configuration
of the key. While for TK1 this would only increase the overall complexity by a
factor 216, the search would not be practical for both the TK2 and TK3 models.
Indeed, because of the possible cancellations occurring in the round keys, the

10 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

number of configurations is very high: 8∑
k=0

(
8

k

)(tk−1∑
i=0

(
b(R− 1)/2c

i

))k 8∑
k=0

(
8

k

)(tk−1∑
i=0

(
d(R− 1)/2e

i

))k .

For instance, for R = 30, there are more than 264 configurations in the TK2
model.

In the following we present the first practical algorithm which tackles down
the problem without relying on a black box solver as MILP, SAT or CP solvers.
The idea is quite similar to the one used in the single key model. Actually, to
compute the minimal number of active S-boxes at round r + 1 we only need to
know the minimal number of active S-boxes for each possible state at round r
together with the number of cancellations for each key cell. Indeed, we do not need
to know at which rounds the cancellations occurred but only how many times
they did. A simplified version of this algorithm is described in Algorithm 2. In
practice, we found it is better to proceed step by step. First we pick a key cell and
guess whether it is active or not. Then we apply the algorithm partially and guess
another key cell if and only if it seems possible to find a better representation.

Remarks. Note that while our ad-hoc tool gave the best running times, it may
requires a lot of memory to store the array C. For instance, for 30 rounds in
TK3 mode, our tool required up to 500GB of RAM to finish the search. It is
also important to note that it did not take fully advantage of the 128 cores of
our server, and most often used less than 40 cores.

5 Modeling Step 2 with CP

The aim of Step 2 is to try to instantiate the abstracted solutions provided
by Step 1 while maximizing the probability of the differential characteristic.
Thus, Step 2 takes as input a solution of Step 1 with the objective function
of maximizing the probability of the differential characteristic. However, some
solutions of Step 1 could not be instantiated in Step 2 as refining the abstraction
level of Step 2 will induce non-consistent solutions. In the literature, this Step has
been modeled using Ad-Hoc methods [BN10], MILP [AST+17], SAT [SWW18]
or CP [GLMS20]. As MILP [AST+17] and SAT [SWW18] seem to hardly scale
due to prohibitive computational times (linked with the size of the 8-bit S-boxes
that must be represented in the form of linear inequalities or of clauses), we focus
here on a dedicated CP method implemented using the Choco solver [PFL16].

Given a Boolean solution for Step 1, Step 2 aims at searching for the byte-
consistent solution with the highest (related-tweakey) differential characteristic
probability (or proving that there is no byte-consistent solution). In this section,
Model 2 describes the CP model we used for SKINNY-128 (SK). Actually, the
ones used to model the other variants, as well as SKINNY-64 are rather similar.

For each Boolean variable ∆Xr,i,j of Step 1, we define an integer variable
δXr,i,j . The domain of this integer variable depends on the value of the Boolean

SKINNY with Scalpel 11

Algorithm 2: Search for the best truncated representation (TK).

foreach state s, round key k do
M [k] [s]←− list of states s′ reachable from s and k through one round

end
foreach state s do

C [0] [s]←− {(number of active cells of s, 0)}
end
for 1 ≤ r < R do

foreach state s do C [r] [s]←− ∅
foreach state s, round key k do

foreach state s′ in M [k] [s] do
foreach (cost, cancelled) ∈ C [r − 1] [s] do

if cancelled compatible with k then
c←− cost + number of active cells of s′

C [r] [s′]←− C [r] [s′] ∪ {(c,update(cancelled, k))}
end

end

end

end
foreach state s do keepOptimals(C [r] [s])

end
return C

variable in the Step 1 solution: If ∆Xr,i,j = 0, then the domain is D(δXr,i,j) =
{0} (i.e., δXr,i,j is also assigned to 0); otherwise, the domain is D(δXr,i,j) =
[1, 255] (5).

For each byte that passes through an S-box, we define an integer variable
δSBr,i,j which corresponds to the difference after the S-box. Its domain is
D(δSBr,i,j) = {0} if ∆Xr,i,j is assigned to 0 in the Step 1 solution; Otherwise, it
is D(δSBr,i,j) = [1, 255] (5).

Finally, as we look for a byte-consistent solution with maximal probability,
we also add an integer variable Pr,i,j for each byte in an S-Box: this variable
corresponds to the absolute value of the base 2 logarithm of the probability of
the transition through the S-Box. Actually, a factor 10 has been applied to avoid
considering floats. Thus we define a Table constraint (6) composed of valid
triplets of the form (δXr,i,j , δSBr,i,j , Pr,i,j). Note that these triplets only contain
non-zero values and that Pr,i,j takes only 2 different values for the 4-bit S-box
(SKINNY-64) and 7 different values for the 8-bit S-box (SKINNY-128). There are
roughly 214 triplet elements in the Table constraint for the SKINNY-128 case. As
the S-box layer is the only non-linear layer, the other operations could be directly
implemented in a deterministic way at the cell level. The associated constraints
thus follow the SKINNY-128 linear operations. When possible, we replace XOR
constraints (encoded using Tableconstraints) by a simple equality constraint.
This corresponds to Table constraints (7), (8), (9) and (10) in Model 2.

12 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

Minimize

ObjStep2 =
n∑

r=1

4∑
i=1

4∑
j=1

Pr,i,j (3)

subject to

20× n ≤
n∑

r=1

4∑
i=1

4∑
j=1

Pr,i,j ≤ min(70× n,O∗
) (4)

∀r ∈ 1..n, ∀i ∈ 1..4, ∀j ∈ 1..4{
δXr,i,j = 0 ∧ δSBr,i,j = 0 ∧ Pr,i,j = 0 if ∆Xr,i,j = 0

δXr,i,j ≥ 1 ∧ δSBr,i,j ≥ 1 ∧ Pr,i,j ≥ 20 otherwise

(5)

∀r ∈ 1..n, ∀i ∈ 1..4, ∀j ∈ 1..4

Table(〈δXr,i,j , δSBr,i,j , Pr,i,j〉 , 〈SBox〉) if ∆Xr,i,j 6= 0
(6)

∀r ∈ 1..n− 1, ∀j ∈ 1..4 δSBr,0,j = δXr+1,1,j (7)

∀r ∈ 1..n− 1, ∀j ∈ 1..4
δSBr,2,(2+j)%4 = δXr+1,2,j if ∆SBr,1,(3+j)%4 = 0

δSBr,1,(3+j)%4 = δXr+1,2,j if ∆SBr,2,(2+j)%4 = 0

δSBr,1,(3+j)%4 = δSBr,2,(2+j)%4 if ∆Xr+1,2,j = 0

Table(
〈
δSBr,1,(3+j)%4, δSBr,2,(2+j)%4, δXr+1,2,j

〉
, 〈XOR〉) otherwise

(8)

∀r ∈ 1..n− 1, ∀j ∈ 1..4
δSBr,2,(2+j)%4 = δXr+1,3,j if ∆SBr,0,j = 0

δSBr,0,j = δXr+1,3,j if ∆SBr,2,(2+j)%4 = 0

δSBr,0,j = δSBr,2,(2+j)%4 if ∆Xr+1,3,j = 0

Table(
〈
δSBr,0,j , δSBr,2,(2+j)%4, δXr+1,3,j

〉
, 〈XOR〉) otherwise

(9)

∀r ∈ 1..n− 1, ∀j ∈ 1..4
δXr+1,0,j = δXr+1,3,j if ∆SBr,3,(1+j)%4 = 0

δSBr,3,(1+j)%4 = δXr+1,3,j if ∆Xr+1,0,j = 0

δSBr,3,(1+j)%4 = δXr+1,0,j if ∆Xr+1,3,j = 0

Table(
〈
δSBr,3,(1+j)%4, δXr+1,0,j , δXr+1,3,j

〉
, 〈XOR〉) otherwise

(10)

where ∀r ∈ 1..n, ∀i ∈ 1..4, ∀j ∈ 1..4,

δXr,i,j ∈ 0..255, δSBr,i,j ∈ 0..255, Pr,i,j ∈ {0, 20, .., 70},

and 〈XOR〉 encodes ⊕ relation and 〈SBox〉 the S-box constraint.

Model 2: Formulation of SK Step2.

SKINNY with Scalpel 13

The overall goal is finally to find a byte-consistent solution which maximizes
differential characteristic probability. Thus, we define an integer variable ObjStep2
to minimize the sum of all Pr,i,j variables (3). This value mainly depends on
the number of S-boxes outputted by Step1 ObjStep1 and can be bounded to
[[20 ·ObjStep1, 70 ·ObjStep1]] (4).

The differences for the models TK1, TK2 and TK3 are the modeling of the
XORs induced by the lanes of the tweakey through XOR table constraints. Each
XOR constraint depicted in Model 2 provides high quality filtering but requires
65536 tuples to be stored which results in prohibitive memory usage. This may
limit the number of threads that can be used for the resolution, which was the case
for TK2. To get around this issue, we encoded the XOR constraint in intention
(by defining filtering rules), providing a more memory efficient algorithm, at the
expense of filtering strength. This last choice was applied only for TK2 (SKINNY-
128 only). We also rely on Tableconstraints to model the LFSRs applied on
TK2 and TK3.

Concerning the search space strategy, for the TK2 and the TK3 attack
settings, the Step 1 only outputs the truncated value of the sum of the TKi.
Thus, the search space strategy first looks at the cancellation places of the sum
of the TKi and then instantiates the TKi values according to those positions.
For the TK1 setting, we just apply the default Choco-solver strategy.

Concerning the parallelization, we affect one solution outputted by Step 1 by
thread and we share between the threads the value of ObjStep2.

6 Results

Regarding Step 1, we run our different tools on the four attack scenarios (SK,
TK1, TK2, and TK3). Then, Step 2 is performed on the two versions of SKINNY
(SKINNY-64 and SKINNY-128) using our CP models written in Choco-solver.

We conduct all our experiments on our server composed of 2× AMD EPYC
7742 64-Core and 1TB of RAM. All the reported times are real system times
and then take advantage of tools that are properly designed for parallelism. We
first detail here the time results obtained for the different tools modeling Step 1
and then move to the Step 2 time results.

6.1 Step 1 strategies comparison

In this Subsection, we compare the time results obtained by all the Step 1 tools
using the function Step1-enum. Step1-enum comes after a first process called
Step1-opt that searches for a solution that optimises the value of the variable
ObjStep1 whereas Step1-enum enumerates all solutions when the variable ObjStep1
is assigned to a given value, here the optimal one v∗ where v∗ corresponds to
the minimal number of active S-boxes. This optimal value is of course the same
for the different models as the abstractions made in the different models are the
same.

14 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

Results for Step1-opt. Finding the minimal number of active S-boxes on a
given number of rounds is most often the only result which is interesting for
designers as it allows to derive a lower bound on the probability of the best
differential trail. However, showing the minimal number of active S-boxes is n
is similar to enumerate all characteristics with at most n − 1 active S-boxes
and find no solution. Thus, the running times required by each tool to find the
minimal number of active S-boxes are very close to the running times reported
on Table 2. In SK, TK1 and TK2 our ad-hoc tool gives the best running times
by far, while in TK3, our MILP model is also competitive. In particular, we are
able to complete the security analysis made in [BJK+16,ABI+18] and claim that
the minimal number of active S-boxes in TK1 for 28, 29 and 30 rounds are 105,
109 and 113 respectively (as shown in Table 1).

Rounds 28 29 30

TK1 105 109 113

Table 1. Lower bounds on the number of active S-boxes in SKINNY.

Results for Step1-enum. Table 2 reports the different real times we obtained
to enumerate all the solutions for the optimal value ObjStep1 = v∗ (i. e. with v∗

active S-boxes). Those computations are done on our server for the 4 different
Step 1 tools (MILP, MiniZinc/SAT, Ad-Hoc, Choco-solver), for the different
attack scenario (SK, TK1, TK2 and TK3) on SKINNY when varying the number
of rounds between 3 and 20. The first column specifies the number of solutions
we found for the ObjStep1 value. Those solutions correspond to solutions given
without the symmetries, thus are computed up to the columns shifts (for SK).
As one can see, these numbers are really low and hide a different reality when
ObjStep1 increases. Indeed, the optimal solution of Step 2 in terms of differential
characteristic probability, could be obtained for a value v of ObjStep1 which is
not optimal (v > v∗). For example, imagine that, when processing Step 2, one
obtains a differential characteristic with the best probability equal to 2−3·6 = 2−18

with ObjStep1 = 6 and whereas the optimal differential probability of the S-box
is 2−2. It means that one has to test all solutions outputted by Step 1 until
ObjStep1 = 18/2 = 9 to be sure that none has a better differential characteristic
probability. This is exactly what happened for the case of SKINNY-128 in the
TK1 model for 15 rounds as we will detail in the next Section. We only want
to stress here that computing the optimal bounds is often not enough and we
need to go further. However, increasing the value of ObjStep1 induces to increase
the possible number of Step 1 solutions as illustrated in the third column of
Table 4. As one can see, this number of solutions tends to grow exponentially
when we increase v. For example, for SKINNY-128 with 14 rounds in the TK1
model, for the optimal value v∗ = 45, Step 1 outputs only 3 solutions; whereas

SKINNY with Scalpel 15

we have 897 solutions for v = v∗ + 5 = 50; 137 019 solutions for v = v∗ + 10 = 55
and finally 7 241 601 solutions for v = 59. So, the time required for the Step 2
computations on 1 solution outputted by the Step 1 becomes the bottleneck of
the overall process.

Analysis of the results and of the tools. Table 2 reports the time required
to enumerate all the solutions with v∗ active S-boxes where v∗ is the optimal
value of ObjStep1 found by Step1−opt. This value and the corresponding number
of solutions is reported in the second column of Table 2.

SAT is clearly disadvantaged by the choice we made to use a high level
modeling language MiniZinc. Indeed, SAT could not perform clause learning as
the constraint SolveAll is not implemented from MiniZinc to SAT. Thus, once
a solution for Step 1 has been found, the program has to be rerun by adding a
constraint that discards this valid Step 1 solution. This is why MiniZinc performs
less efficiently than one could expect. The previous fact could be directly seen
on Table 2 as the time required to solve instances with many solutions is much
bigger than the one required to solve instances with only few Step 1 solutions.

Choco-solver does not seem to be a good candidate either as for all instances
greater than 16 rounds it requires more than 24 hours to solve the problem.
This is mainly linked with the nature of the variables themselves. Choco-solver
(and more generally CP) is efficient when domains are subset of integers. Here,
Choco-solver can not efficiently propagate lower bounds and upper bounds on
Boolean variables as MILP or SAT could do.

Actually, the Step 1 model could be completely linearized and of course, the
branch-and-cut method used by MILP eliminates uninteresting branches quite
quickly. SAT behaves better than CP because the problem is purely Boolean
and CP/Choco-solver does not benefit from the conflict-driven clause learning
(CDCL). Thus, CP, that performs very well on integer domains, is less well suited
when regarding Boolean or linear problems.

Moreover, regarding the way CP cuts the problem, this division produces
mainly trivial problems, the few remaining ones have a very large search space
(it is therefore them that should be cut). But once more, MILP and SAT perform
better.

Contrary to the two previous tools, MILP and the Ad-Hoc method seem to
perform well and, as shown in Table 2, could solve all the problems on all the
instances in reasonable times. As shown in the previous paragraph, the Ad-Hoc
method is able to outperform MILP. For MILP, and as previously said, this
is clearly linked with the nature of the problem to solve: Step 1 only models
Boolean variables for which values propagate very well in the MILP model. The
Ad-Hoc method is finally a dedicated one and manages to overpass even MILP.

Thus, in conclusion, we think that if one does not have the time to think of
a solution, MILP is a good candidate to quickly have direct Step 1 bounds. If
one has time, the Ad-Hoc method clearly outperform previous results. We also
think that SAT could perform well even if it is not proven here. The idea behind

16 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

S
te

p
1

-e
n

u
m

#
R

o
u

n
d

s
O
bj

S
te

p
1

(N
b

so
ls

)
M

IL
P

M
in

iZ
in

c/
S

A
T

A
d

-H
o
c

C
h

o
co

S
K

T
K
1

T
K
2

T
K
3

S
K

T
K
1
T
K
2
T
K
3

S
K

T
K
1

T
K
2

T
K
3

S
K

T
K
1
T
K
2
T
K
3

S
K

T
K
1

T
K
2

T
K
3

3
5

(4
)

1
(1

2
)

0
(1

)
0

(1
)

1
s

1
s

-
-

1
s

1
s

-
-

1
s

2
1
s

6
9
s

6
9
s

7
s

1
s

-
-

4
8

(3
)

2
(9

)
0

(1
)

0
(1

)
1
s

1
s

-
-

4
s

1
s

-
-

1
s

2
2
s

2
5
s

7
6
s

7
s

1
s

-
-

5
1
2

(2
)

3
(2

)
1

(1
2
)

0
(1

)
1
s

1
s

1
s

-
4
s

1
s

1
s

-
1
s

2
1
s

2
2
s

1
0
3
s

7
s

1
s

1
s

-

6
1
6

(1
)

6
(2

)
2

(1
0
)

0
(1

)
1
s

1
s

1
s

-
6
s

1
s

1
s

-
1
s

2
2
s

2
2
s

2
5
s

7
s

3
s

1
s

-
7

2
6

(4
)

1
0

(2
)

3
(2

)
1

(1
2
)

1
s

1
s

1
s

1
s

1
7
s

8
s

1
s

1
s

1
s

2
1
s

2
2
s

2
2
s

7
s

7
s

1
s

1
s

8
3
6

(1
7
)

1
3

(1
)

6
(2

)
2

(1
1
)

1
s

1
s

1
s

1
s

1
4
0
s

7
s

4
s

2
s

1
s

2
2
s

3
1
s

2
3
s

7
s

8
s

3
s

1
s

9
4
1

(2
)

1
6

(1
)

9
(1

)
3

(3
)

2
s

2
s

2
s

2
s

5
7
s

1
1
s

7
s

1
s

1
s

2
2
s

2
4
s

2
6
s

8
s

9
s

7
s

1
s

1
0

4
6

(2
)

2
3

(1
)

1
2

(2
)

6
(3

)
7
s

5
s

3
s

2
s

9
7
s

4
6
s

1
5
s

1
0
s

1
s

2
2
s

2
4
s

2
7
s

9
s

6
0
s

5
5
s

2
s

1
1

5
1

(2
)

3
2

(2
)

1
6

(1
)

1
0

(3
)

8
s

1
1
s

4
s

3
s

3
1
2
s

2
9
m

2
2
s

2
4
s

1
s

2
3
s

2
5
s

3
2
s

2
3
s

1
8
8
m

8
6
s

3
4
s

1
2

5
5

(2
)

3
8

(7
)

2
1

(1
)

1
3

(2
)

1
3
s

3
5
s

7
s

3
s

4
6
8
s
>

2
4
h

1
1
3
s

3
5
s

1
s

2
4
s

2
7
s

2
5
s

7
5
s

>
2
4
h

4
3
m

2
8
8
s

1
3

5
8

(6
)

4
1

(2
)

2
5

(2
)

1
6

(2
)

9
s

5
3
s

1
7
s

6
s

1
4
m

1
4
m

1
0
4
s

1
s

2
4
s

3
0
s

2
7
s

2
4
9
s

>
2
4
h

5
6
m

1
4

6
1

(2
)

4
5

(3
)

3
1

(1
)

1
9

(1
)

2
3
s

9
3
s

2
7
s

8
s

4
9
1
s

7
2
m

1
4
8
s

1
s

2
4
s

3
9
s

2
8
s

1
0
m

>
2
4
h

1
5

6
6

(2
)

4
9

(1
)

3
5

(1
)

2
4

(4
)

6
9
s

2
4
5
s

7
5
s

2
1
s

2
7
m

>
2
4
h

1
5
7
m

1
s

2
5
s

4
6
s

3
4
s

8
5
m

1
6

7
5

(8
)

5
4

(1
)

4
0

(2
)

2
7

(1
)

1
2
m

4
2
3
s

1
4
8
s

3
9
s

1
2
8
m

2
5
1
m

1
s

2
5
s

5
7
s

3
8
s
>

2
4
h

1
7

8
2

(4
)

5
9

(5
)

4
3

(1
)

3
1

(2
)

4
6
m

2
2
m

2
1
3
s

5
3
s

1
0
6
m

>
2
4
h

1
s

2
7
s

5
9
s

4
8
s

1
8

8
8

(4
)

6
2

(1
)

4
7

(1
)

3
5

(1
)

1
7
8
m

3
1
m

5
3
5
s

6
4
s

4
0
3
m

1
s

2
7
s

7
6
s

7
3
s

1
9

9
2

(4
)

6
6

(1
)

5
2

(1
)

4
3

(1
4
)

5
2
9
m

5
6
m

2
9
m

2
1
8
s

4
3
6
m

1
s

2
8
s

1
1
0
s

2
8
3
s

2
0

9
6

(2
)

7
0

(2
)

5
7

(2
)

4
5

(2
)

1
6
h

8
7
m

3
3
m

3
4
0
s

1
7
4
m

1
s

2
8
s

1
9
3
s

3
2
6
s

T
a
b
le

2
.

C
o
m

p
a
ri

so
n

o
f

th
e

ti
m

es
o
f

th
e

d
iff

er
en

t
S

te
p

1
to

o
ls

fo
r

so
lv

in
g
S
te
p

1
−
en
u
m

(S
K
I
N
N
Y
),

i.
e.

to
en

u
m

er
a
te

a
ll

so
lu

ti
o
n

s
fo

r
th

e
o
p
ti

m
a
l
O
n
j S

te
p
1

b
o
u
n
d

g
iv

en
in

th
e

fi
rs

t
co

lu
m

n
in

ea
ch

sc
en

a
ri

o
:
S
K

,
T
K
1

,
T
K
2

a
n
d
T
K
3

.
W

e
re

p
o
rt

th
e
r
e
a
l

ti
m

e
o
n

o
u
r

se
rv

er
.

SKINNY with Scalpel 17

is to directly use a SAT solver without any other interfaces to be closer to the
clauses.

6.2 Step 2 performance results

Up to our knowledge, we only found [AST+17] that gives time results concerning
finding the best SK differential characteristic probability on SKINNY-128 using a
MILP tool based on Gurobi. More precisely, the authors say: “In our experiments,
we used Gurobi Optimizer with Xeon Processor E5-2699 (18 cores) in 128 GB
RAM.” and, for 13 rounds, “in our environment, the test of 6 classes [Step 1
solutions with 58 active S-boxes without symmetries] finished in 16 days. Finally,
it is proven that the tight bound on the probability of differential characteristic
for 13 rounds is 2−123” in the SK model.

Concerning the use of SAT, [SWW18] implements a SAT model for differential
cryptanalysis based on Cryptominisat5 [SNC09] for Midori64 and LED64. This
model implies a sufficiently small number of clauses to model the non-zero values
of the DDT and to be applicable. However, no result concerning 8-bit S-boxes are
given. As SAT uses Boolean formulas, it seems that the same problem than for
MILP appears for modeling S-box: a huge number of Boolean formulas will be
necessary to correctly model this step even if dedicated tools as Logic Friday or
the Expresso algorithm [AST+17] are used. Thus, we discard the use of a SAT
model.

Results for SKINNY-64. We sum up in Table 3 all the results we obtain for
SKINNY-64 in the four different attack models (SK,TK1,TK2 and TK3). The
overall time, in this case, is not a bottleneck. We only give results concerning
number of rounds that are at the limit (just under and just upper) when regarding
the number of active S-boxes which is equal to 32 in the case of SKINNY-64 as
the state size is 64 bits and as the best differential probability of the S-box is
equal to 2−2. Thus, the best overall differential characteristic probability must
be under 2−64.

Note that sometimes, we need to browse several ObjStep1 bounds to find
the optimal differential characteristic probability when the number of rounds is
fixed. Indeed, we need to proactively adapt the probability bound we found. For
example, in the case of TK2 SKINNY-64 with 13 rounds, the optimal ObjStep1 is
equal to 25 and when providing the Step 2 process with this ObjStep1 bound, we
find a best differential characteristic probability equal to 2−55. Thus, we need to
run again Step1-enum with ObjStep1 = 26 and ObjStep1 = 27 to be sure that the
previous probability is really the best one. Then, before running again Step 2 on
those new results we adapt the best probability to the new bound equal to 2−55

instead of the old bound equal to 2−64.

We also provide in Appendix A the details of the best found differential
characteristics.

18 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

Nb Rounds ObjStep1 Nb sol. Step 1 Step 2 time Best Pr

SK 7 26 2 1s 2−52

SK 8 36 17 1s < 2−64

TK1 10 23 1 1s 2−46

TK1 11 32 2 1s = 2−64

TK2 13 25 → 27 10 1s 2−55

TK2 14 31 1 1s < 2−64

TK3 15 24 → 26 46 2s 2−54

TK3 16 27 → 31 87 4s = 2−64

TK3 17 31 2 1s < 2−64

Table 3. Overall results concerning SKINNY-64 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all solutions of Step1-enum when Objstep1
takes the values precise in the first column. Best Pr corresponds to the best found
probability of a differential characteristic.

Results for SKINNY-128. In the same way, we provide in Table 4 the best
differential characteristic probability with the total time required for this search
for the 4 different attack models. As one can see, we also verify all the possible
values for ObjStep1 for a given number of rounds, depending on the probability
value previously found. Thus, this time, the number of solutions outputted by
Step 1 could be huge when we move away from the optimal Step 1 value v∗.
However, as the time spent to solve one solution is reasonable, our model scales
reasonably well: the worst case requires 25 days of real time on our server on
8 threads and 31 GB of RAM5. Our TK2 model is based on XOR constraints
encoded in intention (and not using tables) and these experiences have been
launched using the 128 threads of our server. Table 4 shows the results obtained
with the best configurations for SK, TK and TK2.

Concerning TK2, for 18 rounds, we were not able to perform the compu-
tations due to the huge number of Step 1 solutions. For the same reasons, the
computations for 15, 16 and 17 rounds have not been performed. However, we
provide in Appendix B the best TK2 differential characteristic we found for 16
rounds. Note that we do not know if this differential characteristic is optimal in
terms of probability as we were not able to test all the solutions Step 1.

Lessons learnt. The overall gap is not to find the optimal value of ObjStep1 = v∗

for a given number of rounds and to enumerate the corresponding overall solutions
if the Step 1 model is sufficiently tight. The real gap is if the value obtained for
ObjStep2 (here equal to 2× v∗ as the best differential probability for the S-box is
equal to 2−2) is far from the optimal bound then we have to increase ObjStep1
up to the bound bObjStep2/2c. Further we are from v∗ in the Step 1 resolution,
more numerous are the Step 1 solutions (in fact this number grows exponentially

5 It seems that the use of the 128 threads was prohibited by the memory usage of XOR
tables (i.e. XOR in extension).

SKINNY with Scalpel 19

Nb Rounds Objstep1 Nb sol. Step 1 Step 2 time Best Pr

SK 9 41 → 43 52 16s 2−86

SK 10 46 → 48 48 11s 2−96

SK 11 51 → 52 15 4s 2−104

SK 12 55 → 56 11 6s 2−112

SK 13 58 → 61 18 2m27s 2−123

SK 14 61 → 63 6 21s ≤ 2−128

TK1 8 13 → 16 14 4s 2−33

TK1 9 16 → 20 6 3s 2−41

TK1 10 23 → 27 6 4s 2−55

TK1 11 32 → 36 531 37s 2−74

TK1 12 38 → 46 186 482 213m 2−93

TK1 13 41 → 53 2 385 482 2 days 2−106.2

TK1 14 45 → 59 11 518 612 20 days 2−120

TK1 15 49 → 63 7 542 053 25 days ≤ 2−128

TK2 9 9 → 10 7 3s 2−20

TK2 10 12 → 17 132 11s 2−34.4

TK2 11 16 → 25 4203 6m 2−51.4

TK2 12 21 → 35 1 922 762 512m 2−70.4

TK2 13 25 → 44 - not solved ≥ 2−89.7

TK2 14 31 → 54 - not solved ≥ 2−108.4

TK2 15 35 → 56 - not solved ≥ 2−113.2

TK2 16 40 → 63 - not solved ≥ 2−127.6

TK2 17 43 → 63 - not solved -
TK2 18 47 → 63 62 681 709 not solved -
TK2 19 52 → 63 772 163 280m ≤ 2−128

Table 4. Overall results concerning SKINNY-128 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all solutions of Step1-enum when Objstep1
takes the values precise in the first column. Best Pr corresponds to the best found
probability of a differential characteristic.

as could be seen in Table 4). Thus, the time for the Step 2 resolution becomes
the bottleneck.

We have seen that CP is outperformed by MILP, SAT and Ad-Hoc methods
when trying to model and solve the Step 1 problem. This is mainly linked with
the nature of the problem where only Boolean variables are considered and where
dedicated tools such as MILP or SAT perform very well in this case. Thus, no-one
could think that it could be helpful for modeling Step 2. However, one of the
main advantage of CP is the existing implementation of table constraints that
suite very well the problem of modeling S-boxes and their DDT. Note that, in
this case, especially when modeling 8-bit S-boxes, MILP and SAT imply a big
number of equations that not scale very well. Thus, CP could be a useful tool in
this case.

One of CP’s strengths, having table constraints, can also become a weakness
as their number and size increases. Our solution to code the XOR in intention is

20 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

only possible when weaker filtering is compensated by a more constrained model
containing the search space (like in TK2).

7 Conclusion

In this paper, we have compared several tools searching for (related-tweakey)
differential characteristics on the block cipher SKINNY. As usually done, we have
divided the search procedure into two steps: Step 1 which abstracts the difference
values into Boolean variables and finds the truncated characteristics with the
smallest number of active S-boxes; and Step 2 which inputs the results of Step 1 to
output the best possible probability instantiating the abstract solutions outputted
by Step 1. Of course, each solution of Step 1 could not always be instantiated in
Step 2.

This study shows that for Step 1, our ad-hoc tool which heavily uses the
structure of the problem, has consistently the best running times. However,
SAT is also quite good in SK and MILP runs well in both TK2 and TK3.
Furthermore, both the SAT and MILP models required much less work than
our ad-hoc tool. Regarding Step 2, our Choco-solver model is much faster than
any other approaches we tried. It allowed us to find, for the first time, the best
(related-tweakey) differential characteristics in the TK1 model up to 14 rounds
for SKINNY-128 and to show there is no differential trail on 15 rounds with a
probability better than 2−128. Regarding the TK2 model, we were able to find
the best differential trails up to 12 rounds. Note that in [LGS17] Liu et al. were
only able to reach 7 and 9 rounds in the TK1 and TK2 model respectively. Our
approach is thus an important improvement.

References

[ABI+18] Gianira N. Alfarano, Christof Beierle, Takanori Isobe, Stefan Kölbl, and
Gregor Leander. Shiftrows alternatives for aes-like ciphers and optimal
cell permutations for midori and skinny. IACR Trans. Symmetric Cryptol.,
2018(2):20–47, 2018.

[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.
Youssef. MILP modeling for (large) s-boxes to optimize probability of
differential characteristics. IACR Trans. Symmetric Cryptol., 2017(4):99–
129, 2017.

[Bie14] Armin Biere. Yet another local search solver and lingeling and friends
entering the sat competition 2014. Sat competition, 2014(2):65, 2014.

[Bih93] Eli Biham. New types of cryptanalytic attacks using related keys (extended
abstract). In Advances in Cryptology - EUROCRYPT ’93, volume 765 of
LNCS, pages 398–409. Springer, 1993.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Advances in Cryptology - CRYPTO 2016 Part II, volume 9815 of LNCS,
pages 123–153. Springer, 2016.

SKINNY with Scalpel 21

[BN10] Alex Biryukov and Ivica Nikolic. Automatic search for related-key dif-
ferential characteristics in byte-oriented block ciphers: Application to aes,
camellia, khazad and others. In Advances in Cryptology - EUROCRYPT
2010, volume 6110 of LNCS, pages 322–344. Springer, 2010.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of feal and n-hash. In
Advances in Cryptology - EUROCRYPT ’91, volume 547 of LNCS, pages
1–16. Springer, 1991.

[DHL+16] Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume
Perez, Laurent Perron, Jean-Charles Régin, and Pierre Schaus. Compact-
table: Efficiently filtering table constraints with reversible sparse bit-sets.
In Principles and Practice of Constraint Programming - CP 2016, volume
9892 of LNCS, pages 207–223. Springer, 2016.

[ENP19] Maria Eichlseder, Marcel Nageler, and Robert Primas. Analyzing the linear
keystream biases in AEGIS. IACR Trans. Symmetric Cryptol., 2019(4):348–
368, 2019.

[FJP13] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural evalua-
tion of AES and chosen-key distinguisher of 9-round AES-128. In Advances
in Cryptology - CRYPTO 2013 - Part I, volume 8042 of LNCS, pages
183–203. Springer, 2013.

[GL16] David Gérault and Pascal Lafourcade. Related-key cryptanalysis of Midori.
In Progress in Cryptology - INDOCRYPT 2016, volume 10095 of LNCS,
pages 287–304, 2016.

[GLMS18] David Gérault, Pascal Lafourcade, Marine Minier, and Christine Solnon.
Revisiting AES related-key differential attacks with constraint programming.
Inf. Process. Lett., 139:24–29, 2018.

[GLMS20] David Gerault, Pascal Lafourcade, Marine Minier, and Christine Solnon.
Computing AES related-key differential characteristics with constraint
programming. Artif. Intell., 278, 2020.

[GMS16] David Gérault, Marine Minier, and Christine Solnon. Constraint program-
ming models for chosen key differential cryptanalysis. In Principles and
Practice of Constraint Programming - CP 2016, volume 9892 of LNCS,
pages 584–601. Springer, 2016.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/,
2016.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for
block ciphers: The TWEAKEY framework. In Advances in Cryptology -
ASIACRYPT 2014 - Part II, volume 8874 of LNCS, pages 274–288. Springer,
2014.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the
SIMON block cipher family. In Advances in Cryptology - CRYPTO 2015 -
Part I, volume 9215 of LNCS, pages 161–185. Springer, 2015.

[Knu95] Lars R. Knudsen. Truncated and higher order differentials. In Fast Software
Encryption: Second International Workshop - FSE., volume 1008 of LNCS,
pages 196–211. Springer, 1995.

[Laf18] Frédéric Lafitte. Cryptosat: a tool for sat-based cryptanalysis. IET Infor-
mation Security, 12(6):463–474, 2018.

[LGS17] Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY
under related-tweakey settings (long paper). IACR Trans. Symmetric
Cryptol., 2017(3):37–72, 2017.

22 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

[Mat94] Mitsuru Matsui. On correlation between the order of s-boxes and the
strength of DES. In Advances in Cryptology - EUROCRYPT ’94, volume
950 of LNCS, pages 366–375. Springer, 1994.

[MP13] Nicky Mouha and Bart Preneel. A proof that the ARX cipher salsa20 is
secure against differential cryptanalysis. IACR Cryptology ePrint Archive,
2013:328, 2013.

[MWGP12] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Information
Security and Cryptology - 7th International Conference, Inscrypt, volume
7537 of LNCS, pages 57–76. Springer, 2012.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard CP
modelling language. In Principles and Practice of Constraint Programming
- CP 2007, volume 4741 of LNCS, pages 529–543. Springer, 2007.

[Opt18] Gurobi Optimization. Gurobi optimizer reference manual, 2018.
[PFL16] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco

Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING
S.A.S., 2016.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint
Programming (Foundations of Artificial Intelligence). Elsevier Science Inc.,
New York, NY, USA, 2006.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic
search: Application to simon, present, lblock, DES(L) and other bit-oriented
block ciphers. In Advances in Cryptology - ASIACRYPT 2014 Part I, volume
8873 of LNCS, pages 158–178. Springer, 2014.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers
to cryptographic problems. In Theory and Applications of Satisfiability
Testing - SAT 2009, 12th International Conference, SAT 2009, volume 5584
of LNCS, pages 244–257. Springer, 2009.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool from
design and cryptanalysis aspects - revealing structural properties of several
ciphers. In Advances in Cryptology - EUROCRYPT 2017, volume 10212 of
LNCS, pages 185–215, 2017.

[SWW17] Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based
division property for ARX ciphers and word-based division property. In
Advances in Cryptology - ASIACRYPT 2017 - Part I, pages 128–157, 2017.

[SWW18] Ling Sun, Wei Wang, and Meiqin Wang. More accurate differential proper-
ties of LED64 and midori64. IACR Trans. Symmetric Cryptol., 2018(3):93–
123, 2018.

A Best (related-tweakey) differential characteristics for
SKINNY-64

The best SK differential characteristics on 7 rounds of SKINNY-64 with probability
equal to 2−52 is given in Table 5. The best TK1 differential characteristics on
10 rounds of SKINNY-64 with probability equal to 2−46 is given in Table 6. The
Best TK2 differential characteristics on 13 rounds of SKINNY-64 with probability

SKINNY with Scalpel 23

equal to 2−55 is given in Table 7. Best TK3 differential characteristics on 15
rounds of SKINNY-64 with probability equal to 2−54 is given in Table 8.

Round δXi = Xi ⊕X ′i (before SB) δSBXi (after SB) Pr(States)

i = 1 0040 4444 4440 4400 0020 2222 2220 2200 2−2·10

2 0000 0020 0200 2002 0000 0010 0100 1001 2−2·4

3 0010 0000 0000 0001 0080 0000 0000 0008 2−2·2

4 0000 0080 0000 0080 0000 0040 0000 0040 2−2·2

5 0400 0000 0004 0000 0200 0000 0002 0000 2−2·2

6 0000 0200 0200 0000 0000 0100 0100 0000 2−2·2

7 0001 0000 0011 0001 0008 0000 0088 0008 2−2·4

Table 5. The Best SK differential characteristics on 7 rounds of SKINNY-64 with
probability equal to 2−52. The four words represent the four rows of the state and are
given in hexadecimal notation.

Round δXi = Xi ⊕X ′i (before SB) δSBXi (after SB) δTK1i Pr(States)

i = 1 0000 0002 0020 0200 0000 0001 0010 0100 1000 0000 0B80 0000 2−2·3

2 1000 1000 0000 0000 B000 8000 0000 0000 B000 8000 1000 0000 2−2·2

3 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 B000 8000 −
4 0010 0010 0000 0010 00B0 00A0 0000 00B0 00B0 0080 0010 0000 2−2·3

5 0B00 0000 0002 0000 0100 0000 0001 0000 0000 1000 00B0 0080 2−2·2

6 0000 0100 0000 0000 0000 0800 0000 0000 0000 B800 0000 1000 2−2·1

7 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0010 0000 B800 2−2·1

8 0001 0000 0000 0001 0008 0000 0000 0008 0008 00B0 0000 0010 2−2·2

9 0080 0000 000B 0000 0040 0000 0001 0000 0000 0100 0008 00B0 2−2·2

10 0140 0040 0110 0140 0820 0020 0880 0820 0000 0B08 0000 0100 2−2·7

Table 6. The Best TK1 differential characteristics on 10 rounds of SKINNY-64 with
probability equal to 2−46. The four words represent the four rows of the state and are
given in hexadecimal notation.

24 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

R
o
u
n
d
δX

i
=
X

i
⊕
X
′ i

(b
ef

o
re

S
B
)

δS
B
X

i
(a

ft
er

S
B
)

δT
K

1
i

δT
K

2
i

P
r(

S
ta

te
s)

i
=

1
0
0
0
0
8
2
0
0
0
0
8
0
0
0
0
0

0
0
0
0
4
1
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
8
0
5
0
2
0
0
0
0
0
0
0
0
0
0
0
C
0
6
0
C
0
0
0
0

2
−
2
·3

2
4
0
0
0
0
0
0
0
0
4
1
0
4
0
0
0

2
0
0
0
0
0
0
0
0
2
A
0
2
0
0
0
5
0
0
0
0
0
0
2
0
0
0
0
0
0
0
8
D
0
0
0
0
0
0
8
0
0
0
0
0
0
0
C

2
−
2
·4

3
0
0
0
0
A
0
0
0
0
0
0
2
0
0
0
2

0
0
0
0
6
0
0
0
0
0
0
6
0
0
0
3
0
8
0
0
0
0
0
0
5
0
0
0
0
0
0
2
0
8
0
0
0
0
0
0
D
0
0
0
0
0
0
8

2
−
2
·3

4
0
6
3
0
0
0
0
0
0
0
0
0
0
6
0
0

0
3
F
0
0
0
0
0
0
0
0
0
0
1
0
0
0
2
5
0
0
0
0
0
0
8
0
0
0
0
0
0
0
1
A
0
0
0
0
0
0
8
0
0
0
0
0
0

2
−
3
·3

5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
2
5
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
A
0
0
0
0
0

2
−
2

6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
5
0
0
0
8
0
0
0
0
0
0
0
2
0
0
0
5
0
0
0
1
0
0
0
0
0
0
0

−
7

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
2
0
0
0
5
0
0
0
0
0
2
0
0
0
0
0
2
0
0
0
5
0
0
0

−
8

0
0
A
0
0
0
A
0
0
0
0
0
0
0
A
0

0
0
6
0
0
0
5
0
0
0
0
0
0
0
5
0
0
0
2
0
0
0
5
0
0
0
8
0
0
0
0
0
0
0
4
0
0
0
B
0
0
0
2
0
0
0
0
0

2
−
2
·3

9
0
5
0
0
0
0
0
0
0
0
0
B
0
0
0
0

0
C
0
0
0
0
0
0
0
0
0
C
0
0
0
0
0
0
0
0
8
0
0
0
0
0
2
0
0
0
5
0
0
0
0
0
4
0
0
0
0
0
4
0
0
0
B
0

2
−
3
·2

1
0

0
0
0
0
0
C
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
5
0
0
0
0
0
0
8
0
0
0
0
0
0
0
9
7
0
0
0
0
0
0
4
0
0
0

2
−
2

1
1

0
0
0
0
0
0
0
0
0
B
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
2
5
0
0
0
0
0
0
0
0
9
0
0
0
0
0
9
7
0
0

2
−
2

1
2

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
A
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
5
0
0
2
0
0
0
0
0
0
0
8
0
0
0
0
F
0
0
3
0
0
0
0
0
0
0
9
0

2
−
2
·2

1
3

0
0
8
0
0
0
0
0
0
0
0
1
0
0
0
0

0
0
4
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
5
0
0
2
0
0
0
0
0
0
3
0
0
0
0
0
F
0
0
3
0

2
−
2
·2

T
a
b
le

7
.

T
h
e

B
es

t
T
K
2

d
iff

er
en

ti
a
l

ch
a
ra

ct
er

is
ti

cs
o
n

1
3

ro
u
n
d
s

o
f
S
K
I
N
N
Y
-
6
4

w
it

h
p
ro

b
a
b
il
it

y
eq

u
a
l

to
2
−
5
5
.

T
h
e

fo
u
r

w
o
rd

s
re

p
re

se
n
t

th
e

fo
u
r

ro
w

s
o
f

th
e

st
a
te

a
n
d

a
re

g
iv

en
in

h
ex

a
d
ec

im
a
l

n
o
ta

ti
o
n
.

SKINNY with Scalpel 25

R
o
u
n
d
δX

i
=
X

i
⊕
X
′ i

(b
ef

o
re

S
B
)

δS
B
X

i
(a

ft
er

S
B
)

δT
K

1
i

δT
K

2
i

δT
K

3
i

P
r(

S
ta

te
s)

i
=

1
0
0
0
0
0
0
0
1
4
0
0
0
0
0
0
4

0
0
0
0
0
0
0
8
2
0
0
0
0
0
0
2
0
0
0
0
0
8
0
D
0
0
0
0
0
8
0
0
0
0
0
0
0
4
0
8
0
0
0
0
0
5
0
0
0
0
0
0
0
E
0
D
0
0
0
0
0
C
0
0

2
−
2
·3

2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
8
0
0
0
0
0
0
0
0
0
8
0
D
0
0
0
B
0
0
0
0
0
0
0
0
0
4
0
8
0
0
0
E
0
0
0
0
0
0
0
0
0
E
0
D

2
−
2

3
0
1
0
D
0
0
0
D
0
0
0
0
0
0
0
D

0
A
0
E
0
0
0
2
0
0
0
0
0
0
0
2
0
D
0
8
0
0
0
0
0
0
0
8
0
0
0
0
0
1
0
9
0
0
0
0
0
0
0
B
0
0
0
0
0
6
0
F
0
0
0
0
0
0
0
E
0
0
0
0

2
−
2
·3

2
−
3

4
0
0
2
0
0
0
0
0
2
0
0
0
0
0
0
0

0
0
3
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
D
0
8
0
0
0
0
0
0
0
0
0
0
0
7
0
1
0
9
0
0
0
0
0
0
0
0
0
0
0
F
0
6
0
F
0
0
0
0

2
−
2
·2

5
0
0
0
0
0
0
3
0
0
0
3
0
0
0
0
0

0
0
0
0
0
0
C
0
0
0
C
0
0
0
0
0
D
0
0
0
0
0
0
8
0
0
0
0
0
0
0
8
2
0
0
0
0
0
0
3
0
0
0
0
0
0
0
7
3
0
0
0
0
0
0
7
0
0
0
0
0
0
0
F

2
−
3
·2

6
0
0
0
0
C
0
0
0
0
0
0
C
0
0
0
0

0
0
0
0
2
0
0
0
0
0
0
2
0
0
0
0
0
8
0
0
0
0
0
0
D
0
0
0
0
0
0
8
0
F
0
0
0
0
0
0
2
0
0
0
0
0
0
3
0
7
0
0
0
0
0
0
3
0
0
0
0
0
0
7

2
−
2
·2

7
0
2
0
0
0
0
0
0
0
0
0
0
0
2
0
0

0
5
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
8
D
0
0
0
0
0
0
8
0
0
0
0
0
0
0
6
4
0
0
0
0
0
0
F
0
0
0
0
0
0
0
B
9
0
0
0
0
0
0
7
0
0
0
0
0
0

2
−
2
·2

8
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

D
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
8
D
0
0
0
0
0
E
0
0
0
0
0
0
0
0
6
4
0
0
0
0
0
B
0
0
0
0
0
0
0
0
B
9
0
0
0
0
0

2
−
3

9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
D
0
0
0
8
0
0
0
0
0
0
0
D
0
0
0
9
0
0
0
E
0
0
0
0
0
0
0
5
0
0
0
4
0
0
0
B
0
0
0
0
0
0
0

−
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
8
0
0
0
D
0
0
0
0
0
C
0
0
0
0
0
D
0
0
0
9
0
0
0
0
0
5
0
0
0
0
0
5
0
0
0
4
0
0
0

−
1
1

0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0

0
0
8
0
0
0
9
0
0
0
0
0
0
0
A
0
0
0
8
0
0
0
D
0
0
0
8
0
0
0
0
0
0
0
A
0
0
0
3
0
0
0
C
0
0
0
0
0
0
0
A
0
0
0
2
0
0
0
5
0
0
0
0
0

2
−
2
·3

1
2

0
A
0
0
0
0
0
0
0
0
0
5
0
0
0
0

0
A
0
0
0
0
0
0
0
0
0
A
0
0
0
0
0
0
0
0
8
0
0
0
0
0
8
0
0
0
D
0
0
0
0
0
8
0
0
0
0
0
A
0
0
0
3
0
0
0
0
0
A
0
0
0
0
0
A
0
0
0
2
0

2
−
2
2
−
3

1
3

0
0
0
0
0
A
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
A
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
D
0
0
0
0
0
0
8
0
0
0
0
0
0
0
5
6
0
0
0
0
0
0
8
0
0
0
0
0
0
0
D
1
0
0
0
0
0
0
A
0
0
0

2
−
3

1
4

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
8
D
0
0
0
0
0
0
0
0
1
0
0
0
0
0
5
6
0
0
0
0
0
0
0
0
D
0
0
0
0
0
D
1
0
0

−
1
5

0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
D
0
0
8
0
0
0
0
0
0
0
8
0
0
0
0
D
0
0
B
0
0
0
0
0
0
0
1
0
0
0
0
8
0
0
6
0
0
0
0
0
0
0
D
0

2
−
2

T
a
b
le

8
.

T
h
e

B
es

t
T
K
3

d
iff

er
en

ti
a
l

ch
a
ra

ct
er

is
ti

cs
o
n

1
5

ro
u
n
d
s

o
f
S
K
I
N
N
Y
-
6
4

w
it

h
p
ro

b
a
b
il
it

y
eq

u
a
l

to
2
−
5
4
.

T
h
e

fo
u
r

w
o
rd

s
re

p
re

se
n
t

th
e

fo
u
r

ro
w

s
o
f

th
e

st
a
te

a
n
d

a
re

g
iv

en
in

h
ex

a
d
ec

im
a
l

n
o
ta

ti
o
n
.

26 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

B Best (related-tweakey) differential characteristics for
SKINNY-128

Concerning the best SK differential characteristics on 13 rounds of SKINNY-128,
We obtain the same best SK differential characteristics on 13 rounds of SKINNY-128
with probability equal to 2−123 given in Table 11 of Appendix D of [AST+17]. The
best TK1 differential characteristics on 14 rounds of SKINNY-128 with probabil-
ity equal to 2−120 is given in Table 9. The best TK2 differential characteristics
on 16 rounds of SKINNY-128 with probability equal to 2−127.6 we found is given
in Table 10.

SKINNY with Scalpel 27

R
o
u
n
d

δX
i

=
X

i
⊕
X
′ i

(b
ef

o
re

S
B
)

δS
B
X

i
(a

ft
er

S
B
)

δT
K

1
i

P
r(

S
ta

te
s)

i
=

1
0
2
0
0
0
0
0
2
0
0
0
0
0
2
0
0
0
0
0
2
0
0
0
0
0
0
0
2
0
0
4
0
0
8
0
0
0
0
0
8
0
0
0
0
0
8
0
0
0
0
0
8
0
0
0
0
0
0
0
8
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
2
·6

2
0
0
0
0
0
4
0
0
0
8
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
2
·4

3
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
4
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

2
−
2
·3

4
0
0
0
0
4
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
4
0
4
0
0
0
0
0
4
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
4
0
4
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
2
·5

5
0
4
0
0
0
4
0
0
0
0
0
0
0
4
0
0
0
0
0
5
0
0
0
0
0
4
0
4
0
4
0
0
0
5
0
0
0
5
0
0
0
0
0
0
0
1
0
0
0
0
0
5
0
0
0
0
0
5
0
5
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

2
−
3
·6

2
−
2

6
0
0
0
5
0
5
0
0
0
5
0
0
0
5
0
0
0
0
0
0
0
0
0
4
0
5
0
0
0
5
0
5
0
0
0
5
0
5
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
5
0
5
0
0
0
5
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
3
·6

2
−
2
·2

7
0
0
0
5
0
0
0
5
0
0
0
5
0
5
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
5
0
0
0
5
0
0
0
5
0
5
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

2
−
3
·6

8
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
5
0
0
0
0
0
5
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
5
0
0
0
0
0
5
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
3
·3

2
−
2

9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

2
−
3

1
0

0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
2

1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

−
1
2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

−
1
3

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

2
−
2

1
4

0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
8
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
−
2
·3

T
a
b
le

9
.

T
h

e
B

es
t
T
K
1

d
iff

er
en

ti
a
l

ch
a
ra

ct
er

is
ti

cs
o
n

1
4

ro
u

n
d

s
o
f
S
K
I
N
N
Y
-
1
2
8

w
it

h
p

ro
b

a
b

il
it

y
eq

u
a
l

to
2
−
1
2
0
.

T
h
e

fo
u

r
w

o
rd

s
re

p
re

se
n
t

th
e

fo
u
r

ro
w

s
o
f

th
e

st
a
te

a
n
d

a
re

g
iv

en
in

h
ex

a
d
ec

im
a
l

n
o
ta

ti
o
n
.

28 S. Delaune, P. Derbez, P. Huynh, M. Minier, V. Mollimard, C. Prud’homme

Round δXi = Xi ⊕X ′i (before SB) δTK1i Pr(States)
δSBXi (after SB) δTK2i

i = 1 00000000 00404010 40400000 40000000 00000000 00000000 00000000 00007700 2−2·6

00000000 00040440 04040000 04000000 00000000 00000000 00000000 00003900

2 00000400 00000000 40000000 00000404 00000000 00770000 00000000 00000000 2−2·32−3

00000500 00000000 04000000 00000101 00000000 00730000 00000000 00000000

3 00010000 00000500 00000000 00000100 00000000 00000000 00000000 00770000 2−2·22−3

00200000 00000500 00000000 00002000 00000000 00000000 00000000 00730000

4 00000000 00200000 00000005 00200000 00000077 00000000 00000000 00000000 2−2·22−3

00000000 00800000 00000005 00800000 000000E7 00000000 00000000 00000000

5 80050090 00000090 00058000 00050090 00000000 00000000 00000077 00000000 2−2·8

03010002 00000002 00010200 00010003 00000000 00000000 000000E7 00000000

6 00010303 03010002 00000001 01010003 00000000 00000077 00000000 00000000 2−2·62−3·4

00202020 20200009 00000020 20200020 00000000 000000CE 00000000 00000000

7 20000000 00202020 B0002000 00002020 00000000 00000000 00000000 00000077 2−2·62−2.42−3

80000000 00808080 80008000 00009380 00000000 00000000 00000000 000000CE

8 00930000 80000000 00000080 00008000 00770000 00000000 00000000 00000000 2−2·32−6

00EA0000 03000000 00000003 00000300 009D0000 00000000 00000000 00000000

9 00000000 00000000 00000000 00030000 00000000 00000000 00770000 00000000 2−5

00000000 00000000 00000000 00BC0000 00000000 00000000 009D0000 00000000

10 BC000000 00000000 00000000 00000000 77000000 00000000 00000000 00000000 2−6

4C000000 00000000 00000000 00000000 3B000000 00000000 00000000 00000000

11 00000000 00000000 00000000 00000000 00000000 00000000 77000000 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 3B000000 00000000

12 00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000

13 00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000 −
00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000

14 0000000 00000000 00000000 00000000 00000000 77000000 00000000 00000000 −
00000000 00000000 00000000 00000000 00000000 EF000000 00000000 00000000

15 00000000 00000000 00980000 00000000 00000000 00000000 00000000 77000000 2−5

00000000 00000000 00420000 00000000 00000000 00000000 00000000 EF000000

16 00000042 00000000 00000042 00000042 − 2−2.4·3

00000008 00000000 00000008 00000008

Table 10. The Best TK2 differential characteristics we found on 16 rounds of
SKINNY-128 with probability equal to 2−127.6. The four words represent the four rows
of the state and are given in hexadecimal notation.

