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Abstract. The cube attack is one of the most important cryptanalyt-
ic techniques against Trivium. Many improvements have been proposed
and lots of key-recovery attacks based on cube attacks have been es-
tablished. However, among these key-recovery attacks, few attacks can
recover the 80-bit full key practically. In particular, the previous best
practical key-recovery attack was on 784-round Trivium proposed by
Fouque and Vannet at FSE 2013 with on-line complexity about 239. To
mount a practical key-recovery attack against Trivium on a PC, a suf-
ficient number of low-degree superpolies should be recovered, which is
around 40. This is a difficult task both for experimental cube attacks
and division property based cube attacks with randomly selected cubes
due to lack of efficiency. In this paper, we give a new algorithm to con-
struct candidate cubes targeting at linear superpolies in cube attacks.
It is shown by our experiments that the new algorithm is very effective.
In our experiments, the success probability is 100% for finding linear su-
perpolies using the constructed cubes. As a result, we mount a practical
key-recovery attack on 805-round Trivium, which increases the number
of attacked initialisation rounds by 21. We obtain over 1000 cubes with
linear superpolies for 805-round Trivium, where 42 linearly independent
ones could be selected. With these superpolies, for 805-round Trivium,
the 80-bit key could be recovered within on-line complexity 241.40, which
could be carried out on a single PC equipped with a GTX-1080 GPU in
several hours. Furthermore, the new algorithm is applied to 810-round
Trivium, a cube of size 43 is constructed and two subcubes of size 42
with linear superpolies for 810-round Trivium are found.

Keywords: Cube Attacks· Key-Recovery Attacks · Trivium · Heuristic
Algorithm · Moebius Transformation

1 Introduction

Trivium [2] is a bit oriented synchronous stream cipher designed by Cannière and
Preneel, which is one of the eSTREAM hardware-oriented finalists and an In-
ternational Standard under ISO/IEC 29192-3:2012. Due to the simple structure
and high level security, Trivium attracts many attention.

⋆ Supported by organization x.



Cube attacks, proposed by Dinur and Shamir in [4], are one of the most
powerful cryptanalytic techniques against Trivium. There are two main phases
in cube attacks. In the first phase, called the preprocessing phase, one needs to
find cubes whose superpolies are low-degree polynomials on key variables. In the
second phase, called the on-line phase, by querying the encryption oracle, one
could calculate the value of the superpoly under the real key for each chosen
cube and so obtain an equation on key variables. Then, by solving the obtained
system of equations, one could recover the values of a part of key bits or even
the whole key. Finally, by exhausting all the possible values of the remaining key
bits, one could recover the entire key. Since proposed, many improvements have
been proposed on cube attacks such as cube testers [1], dynamic cube attacks [5,
3, 18], conditional cube attacks [10, 13], division property based cube attacks [22,
23, 25, 29, 26, 8, 9] and correlation cube attacks [16]. Due to these improvements,
cube attacks have become more and more powerful.

However, note that few cube attacks against the round-reduced Trivium are
practical. In particular, some attacks could only recover one or two key bits
and some attacks have very marginal online complexities. For example, in [8, 7],
cubes of sizes 78 were used to recovery one key bit for 840-, 841- and 842-round
Trivium, respectively. In this case, it needs 278 requests to recover one key bit by
cube summation and 279 requests to exhaustively search the remaining 79 key
bits. Thus, the total complexity is 278+279 using only one 78-dimensional cube.
It can be seen that 278 + 279 is very close to the brute-force attack complexity.

Currently, for Trivium, the number of initialisation rounds that could be
reached by cube attacks with a practical complexity is 784. One main reason is
that finding cubes which could be used to mount key-recovery attacks is a tough
task in cube attacks.

So far, there have been few literature focusing on finding cubes which could
be used to mount key-recovery attacks. In [4] and [6], the authors provided
some ideas for finding cubes with linear superpolies. More specifically, in [4], the
authors proposed the random walk method. This method starts with a randomly
chosen set I of cube variables. Then, an IV variable is removed randomly from I
if the corresponding superpoly is constant and a randomly chosen IV variable is
added to I if the corresponding superpoly is nonlinear. This process is repeated
to find cubes with linear superpolies. If it fails, then the process can be restarted
with another I. With this method, for 767-round Trivium, 35 linear superpolies
were found and so the key could be recovered with about 245 requests. In [6],
the authors try to find cube with linear superpoly from another aspect. Their
main idea is constructing a candidate cube by jointing two subcubes satisfying
some specific properties. Then, the Moebius transformation is used to search all
the subcubes of the candidate cube to find linear superpolies. As a result, for
784-round Trivium, they found 42 linear superpolies such that the key could be
recovered in less than 239 requests. Furthermore, for 799-round Trivium, they
found 12 linear superpolies and 6 quadratic superpolies and so the key could be
recovered in about 262 requests.



If we extend to the scope of finding cubes whose superpolies could be used
to establish distinguishing attacks, then there are some more literature. In [20],
the authors first proposed the GreedyBitSet algorithm to find cubes which could
lead to distinguishers and nonrandomness detectors. As a result, they obtained
good distinguishers of several ciphers including Trivium, Grain-128, and Grain-
v1. Later, in [19], based on the work in [20], the authors studied the state biases
as well as key-stream biases. As a result, they obtained distinguishers for 829-
round Trivium and 850-round TriviA-SC. In [12], combining the GreedyBitSet
algorithm with the degree evaluation method proposed in [14], the authors im-
proved the work in [19]. As a result, they found good distinguishers on Trivium,
Kreyvium and ACORN. In particular, they provided a zero-sum distinguisher on
842-round Trivium and a significant non-randomness up to 850-round Trivium.
Besides, in [15], the author proposed a heuristic algorithm which formed cubes
by uniting small subcubes iteratively. With this method, they proposed a highly
biased distinguisher on 839-round Trivium.

1.1 Our Contributions

This paper devotes to mounting practical cube attacks against Trivium variants
with at least 805 initialisation rounds. To achieve this goal, it needs to find
enough cubes whose superpolies could be used to set up equations on key vari-
ables in the on-line phase. This is actually a tough challenge. To complete this
challenge, inspired by the GreedyBitSet algorithm and division property based
cube attacks, we develop a new framework of finding linear superpolies, where
a candidate cube is first constructed from a carefully selected small cube set
and then a large mount of subcubes of the candidate cube is tested simultane-
ously with a reasonable memory complexity. This enables us to find sufficiently
many cubes with linear superpolies and attack more rounds practically. In the
following, we formulate our contributions into three aspects.

A Heuristic Algorithm to Construct Candidate Cubes. In previous
works, the GreedyBitSet algorithm is usually applied to finding zero-sum dis-
tinguishers or non-randomness detectors. By combining the GreedyBitSet algo-
rithm with division property, we propose a new algorithm to construct cubes
which are potential to have linear superpolies. Our new algorithm begins with
a small set of cube variables and then extends it iteratively. More specifically,
there are mainly two stages in our algorithm. During the first stage, we select
an IV variable (called ‘steep IV variable’ in this paper) which could decrease the
degrees of the superpolies as fast as possible in each iteration. If we fail in the
first stage, then we step into the second stage, where we pick up IV variables
(called ‘gentle IV variables’ in this paper) which decrease the degrees of the
superpolies as slowly as possible. Benefited from this two-stage algorithm, we
could successfully construct cubes such that degrees of the superpolies are close
to 1. Note that, this algorithm is also applicable to other NFSR-based stream
ciphers.

The Preference Bit and an Algorithm to Predict It. Note that all
known linear superpolies of Trivium are very sparse, and the output bit func-



tion of Trivium is the XOR of six internal state bits. It is very possible that a
linear superpoly is contributed by a single internal state bit. Hence, to deter-
mine proper starting sets of the above new algorithm, we propose the concept
of the preference bit together with an iterative algorithm to the preference bit.
By targeting at the preference bit, it is more likely to find linear superpolies
in the output of Trivium. However, the ANFs of the internal state bits become
very complex as the number of initialisation rounds increases. When r is large,
it is hard to determine the preference bit of r-round Trivium by calculating the
ANFs of the internal state bits directly. To overcome this difficulty, based on
the structure analysis of Trivium, we propose an iterative algorithm to predict
the preference bit of r-round Trivium. The experimental results show that our
method could predict the preference bit with a success probability 75.3%. With
the knowledge of the preference bit, proper starting sets of the new algorithm
could be determined easily according to the update function of Trivium.

The Improved Moebius Transformation. In cube attacks, the Moe-
bius transformation is a powerful tool which could be used to test all the
subcubes of a large cube simultaneously. However, it requires a high memory
complexity. To reduce the memory complexity, we break the original Moebius
transformation into a two-stage version. Let f(x0, x1, . . . , xn−1) be a Boolean
function on x0, x1, . . . , xn−1. In the first stage, the Moebius transformations of
f(x0, x1, . . . , xn−q−1, 0, 0, . . . , 0), f(x0, x1, . . . , xn−q−1, 1, 0, . . . , 0) and f(x0, x1,
. . . , xn−q−1, 1, 1, . . . , 1) are calculated and only a part of each Moebius transfor-
mation is stored. In the second stage, based on these partly stored transforma-
tions, we could recover a part of the ANF of f with a method similar to the
Moebius transformation of ai q-variable Boolean function. With this technique,
the memory complexity could be decreased from 2n bits to about 2n−q bits.
When it comes to practical cube attacks, this method enables us to test a large
number of subcubes of a large cube set at once with a reasonable memory com-
plexity. For instance, we coulid simultaneously test 232.28 subcubes of a cube
set of size 43 with less than 9 GBs memory, while testing such a cube with the
original Moebius transformation requires 243 bits (1024 GBs) memory.

As an illustration, we apply our methods to 805-round Trivium and 810-round
Trivium. As a result, we obtain more than 1000 cubes with linear superpolies
for 805-round Trivium. Among these linear superpolies, there are 38 which are
linearly independent. Besides, some cubes of 805-round Trivium could be slid to
obtain linear superpolies for 806-round Trivium. Based on the linear superpolies
of 805- and 806-round Trivium, 42 key bits could be recovered for 805-round
Trivium with 241.25 requests. By adding a brute-force attack, the 80-bit key could
be recovered within 241.40 requests, which is practical and could be completed
by a PC with a GTX-1080 GPU in several hours. Furthermore, for 810-round
Trivium, by only testing one 43-dimensional cube, we find two 42-dimensional
cubes with linear superpolies. It worth noting that the attack on 805-round
Trivium improves the previous best practical cube attacks by 21 more rounds,
and it is the first practical attack for Trivium variants with more than 800



initialisation rounds. As a comparison, we summarise the cube attacks based
key-recovery attacks against the round-reduced Trivium in Table 1.

Table 1. A Summary of Key-Recovery Attacks on Trivium

Attack type # of rounds
Off-line phase

On-line phase Total time ref.
cube size # of key bits

Practical

672 12 63 217 218.56 [4]
709 22-23 79 < 2 229.14 [17]
767 28-31 35 245 245.00 [4]
784 30-33 42 238 239 [6]
805 33-38 42 238 241.40 Sect. 5.2

Not practical

799 32-37 18 262 262.00 [6]
802 34-37 8 272 272.00 [28]
805 28 7 273 273.00 [16]
806 16 64 264 264 Sect. 5.2
835 35 5 275 275.00 [16]
832 72 1 279 279.01 [26, 22, 23]
832 72 > 1 279 < 279.01 [30]
840 78 1 279 279.58 [8]
840 75 3 277 277.32 [9]
841 78 1 279 279.58 [8]
841 76 2 278 278.58 [9]
842 78 1 279 279.58 [7]
842 76 2 279 278.58 [9]

1.2 Organisations

The rest of this paper is organised as follows. In Section 2, we give some ba-
sic definitions and concepts. In Section 3, we show an algorithm to construct
cubes which are potential to have linear superpolies. In Section 4, we propose
an improved Moebius transformation which enables us to test a large mount of
subcubes of a large cube simultaneously with a reasonable memory complexity.
In Section 5, we apply our method to round-reduced Trivium and establish prac-
tical cube attacks on 805- and 810-round Trivium. Finally, Section 6 concludes
this paper.

2 Preliminaries

In this section, we introduce some related concepts and definition.

2.1 Boolean Functions and Algebraic Degree

A Boolean function on n variables is a mapping from Fn
2 to F2, where F2 is the

finite field of two elements and Fn
2 is an n-dimensional vector space over F2. A



Boolean function f can be represented by a polynomial on n variables over F2,

f(x0, x1, . . . , xn−1) =
⊕

c=(c0,c1,...,cn−1)∈Fn
2

ac

n−1∏
i=0

xci
i ,

which is called the algebraic normal form (ANF) of f , where ac ∈ F2. In this

paper, u = ac
∏n−1

i=0 xci
i (ac ̸= 0) is called a term of f . The algebraic degree of a

Boolean function is denoted by deg(f) and defined as

deg(f) = max{wt(c)|ac ̸= 0},

where wt(c) is the Hamming Weight of c, i.e., wt(c) =
∑n−1

i=0 ci.

2.2 Specification of Trivium

Trivium is a bit oriented synchronous stream cipher which was one of eSTREAM
hardware-oriented finalists. The main building block of Trivium is a 288-bit
nonlinear feedback shift register. For every clock cycle there are three bits of the
internal state updated by quadratic feedback functions and all the remaining
bits of the internal sate are updated by shifting. The internal state of Trivium
is initialized by loading an 80-bit secret key and an 80-bit IV into the registers,
and setting all the remaining bits to 0 except for the last three bits of the third
register. Then, after 1152 initialisation rounds, the key stream bits are generated
by XORing six internal state bits. Algorithm 1 describes the pseudo-code of
Trivium. For more details, please refer to [2].

Algorithm 1 Pseudo-code of Trivium

1: (s1, s2, . . . , s93)← (x1, x2, . . . , x80, 0, . . . , 0);
2: (s94, s95, . . . , s177)← (v1, v2, . . . , v80, 0, . . . , 0);
3: (s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1);
4: for i from 1 to N do
5: t1 ← s66 ⊕ s93 ⊕ s91s92 ⊕ s171;
6: t2 ← s162 ⊕ s177 ⊕ s175s176 ⊕ s264;
7: t3 ← s243 ⊕ s288 ⊕ s286s287 ⊕ s69;
8: if i > 1152 then
9: zi−1152 ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288;
10: end if
11: (s1, s2, . . . , s93)← (t3, s1, . . . , s92);
12: (s94, s95, . . . , s177)← (t1, s94, . . . , s176);
13: (s178, s179, . . . , s288)← (t2, s178, . . . , s287);
14: end for



2.3 Cube Attacks

The idea of cube attacks was first proposed by Dinur and Shamir in [4]. In a
cube attack against stream ciphers, an output bit z is described as a tweakable
Boolean function f in key variables k = (k0, k1, . . . , kn−1) and public IV variables
v = (v0, v1 . . . , vm−1), i.e.,

z = f(k,v).

Let I = {vi1 , vi2 , . . . , vid} be a subset of IV variables. Then f can be rewritten
as

f(k,v) = tI · pI(k,v)⊕ qI(k,v), (1)

where tI =
∏

v∈I v, pI does not contain any variable in I, and each term in qI is

not divisible by tI . It can be seen that the summation of the 2d functions derived
from f by assigning all the possible values to d variables in I equals to pI , that
is, ⊕

(vi1 ,vi2 ,...,vid
)∈Fd

2

f(k,v) = pI(k,v). (2)

The public variables in I are called cube variables, while the remaining IV vari-
ables are called non-cube variables. The set CI of all 2d possible assignments of
the cube variables is called a d-dimensional cube, and the polynomial pI is called
the superpoly of CI in f . In this paper, for the sake of convenience, we also call
pI the superpoly of I in f .

A cube attack consists of the preprocessing phase and the on-line phase.

- Off-line Phase. In the off-line phase, the attacker should to find cubes
whose superpolies in the output bit is low-degree polynomials.

- On-line Phase. In the on-line phase, for each cube obtained in the off-line
phase, the attacker enquires the encryption oracle to get the cube summation
under the real key. With the obtained cube summations corresponding to the
previously found cubes, a system of low-degree equations on key variables
could be set up. Then, by solving this system of equations, some key bits
could be recovered. Finally, by adding a brute-force attack (if there are some
key bits remaining unknown), the whole key could be recovered.

2.4 The Bit-Based Division Property

The conventional bit-based division property was introduced in [24]. The authors
of [24] also introduced the bit-based division property using three subsets. In this
paper, we focus on the conventional bit-based division property. The definition
of the conventional bit-based division property is as follows.

Definition 1 (Bit-Based Division Property). Let X be a multi-set whose
elements take a value of Fn

2 . Let K be a set whose elements take an n-dimensional
bit vector. When the multi-set X has the division property D1n

K , it fulfills the
following conditions:⊕

x∈X
xu =

{
unknown if there exists α in K s.t. u ≽ α,
0 otherwise.



where u ≽ α if and only if ui ≥ ki for all i and xu =
∏n−1

i=0 xui
i .

Due to the high memory complexity, the bit-based division property was
confined to be applied to small block ciphers such as SIMON32 and Simeck32
[24]. To avoid such a high memory complexity, in [27], the authors applied the
mixed integer linear programming (MILP) methods to the bit-based division
property. They first introduced the concept of division trails, which is defined as
follows.

Definition 2 (Division Trail [27]). Let us consider the propagation of the
division property {α} = K0 → K1 → K2 · · · → Kr. Moreover, for any vec-
tor α∗

i+1 ∈ Ki+1, there must exist a vector α∗
i ∈ Ki such that α∗

i can prop-
agate to k∗i+1 by the propagation rules of division property. Furthermore, for
(α0,α1, . . . ,αr) ∈ K0 × K1 × · · · × Kr if αi can propagate to αi+1 for i ∈
{0, 1, . . . , r − 1}, we call α0 → α1 → · · · → αr an r-round division trail.

In [27], the authors described the propagation rules for AND, COPY and
XOR with MILP models, see [27] for the detailed definition of AND, COPY
and XOR. Therefore, they could build an MILP model to cover all the possible
division trails generated during the propagation. Besides, in [22, 21], the authors
made some simplifications to those MILP models in [27]. In particular, in [22],
the division property based cube attacks were proposed for the first time and
were applied to attacks Trivium, Grain-128 and Acorn successfully.

Later, to describe the propagation of division property more precisely, the
authors of [25] proposed the flag technique. Together with some other techniques,
the authors of [25] improved the division property based cube attacks. In partic-
ular, for a given set of cube variables, the method proposed in [25] could return
the upper bound of the degree of the superpoly pI , see [25] for details. In this
paper, this method is used to find cubes with linear superpolies.

2.5 The Moebius Transformation

In [5], Dinur and Shamir suggested using the Moebius transformation to compute
all possible subcubes of a large cube at once. Later, in [6], the author showed
some ways to use the Moebius transformation in cube attacks on Trivium.

Let f be a polynomial in F2[x1, x2, . . . , xn], whose algebraic normal form is
given by

f(x0, x1, . . . , xn−1) =
⊕

c=(c0,c1,...,cn−1)∈Fn
2

g(c0, c1, . . . , cn−1)
n−1∏
i=0

xci
i ,

where the function g giving the coefficient of each term
∏n−1

i=0 xci
i is the Moebius

transformation of f . With the knowledge of the truth table of f , one could
calculate the ANF of f by using the Moebius transform, see Algorithm 2 for
details.

For Algorithm 2, it can be found that it needs to store the whole truth table
of f and so a large mount of memory is needed. Specifically, for an n-variable



Algorithm 2 The Moebius transformation algorithm

Require: Truth Table S of f with 2n entries
1: for i from 0 to n− 1 do
2: Let Sz ← 2i, Pos← 0
3: while Pos < 2n do
4: for j = 0 to Sz − 1 do
5: S[Pos+ Sz + j]← S[Pos+ j]⊕ S[Pos+ Sz + j]
6: end for
7: Let Pos← Pos+ 2 · Sz
8: end while
9: end for

polynomial f , it requires 2n bits of memory. Furthermore, the computational
complexity of Algorithm 2 is n · 2n basic operations, since the innermost loop
is executed n · 2n−1 times, which consists of a single assignment and a XOR
operation. It worth noting that Algorithm 2 be could be accelerated. For instants,
a 32-bit implementation is presented in [11] which performs roughly 32 times less
operations and so has a complexity of n · 2n−5 operations.

Now we consider the application of the Moebius transformation to cube at-
tacks. Assume that f(k0, k1, . . . , kn−1, v0, v1 . . . , vm−1) is the output bit of a
cipher on key variables k0, k1, . . . , kn−1 and IV variables v0, v1 . . . , vm−1. Let
I = {vi1 , vi2 , . . . , vid} be a set of cube variables. When all the other variables
are set to constants, the output bit function f is reduced to a polynomial f ′

on cube variables in I only. Given the truth table of f ′, by using the Moebius
transformation, the ANF of f ′ could be recovered. Note that, for a subset I ′ of I,
the coefficient of the term

∏
v∈I′ v is the value of pI′ when the variables in I \ I ′

are set to 0’s, where pI′ is the superpoly of I ′ in f . Based on this fact, with the
Moebius transformation, experimental test such as linearity tests and quadratic
tests could be done at once for all the subcubes of a large set of cube variables.
It can be seen that the Moebius transformation makes finding linear/quadratic
superpolies easier and so improves the efficiency of cube attacks.

3 Construct Potentially Good Cubes

Finding cubes which could be used to mount key-recovery attacks is a tough task
in cube attacks. Collecting enough such cubes to establish practical attacks is
even more difficult. In this section, combining the idea of GreedyBitSet algorithm
with division property, we first devote to constructing cubes which are potential
to have linear superpolies through extending a starting cube set iteratively. Then,
to obtain a proper starting cube set, we propose the concept of the preference
bit and present an algorithm to predict the preference bit based on a structural
analysis of Trivium. Combining these ideas, we could construct potentially good
cubes successfully.



3.1 A Heuristic Algorithm of Constructing Cubes

In cube attacks, linear superpolies are of significance since linear equations on
key variables could be set up based on linear superpolies. To construct cubes
which potentially have linear superpolies, we combine the division property with
heuristic algorithms to extend a small set of cube variables iteratively. Before
illustrating our idea, we shall first give the following definition.

Definition 3 (Steep IV Variable). Let I = {vi1 , vi2 , . . . , vil} be a set con-
taining l cube variables. Then, an IV variable b ∈ B is called a steep IV variable
of I if

ds(I ∪ {b}) = min{ds(I ∪ {v})|v ∈ B},

where B = {v0, v1, . . . , vm−1} \ I and ds(I) is the degree of the superpoly of I.

Let I be a starting set of cube variables. It can be seen that a steep IV variable
of I is exactly the one which makes the degree of the superpoly decrease as fast
as possible. To construct a cube with linear superpoly from I, a natural idea
is extending I iteratively, where a steep IV variable is added to the current
set I in each iteration. With this strategy, the degree of superpoly could be
decreased as fast as possible. However, decreasing the degree of the superpoly
too fast sometimes brings troubles to constructing cubes with linear superpolies.
Assume that I ′ is constructed from I after several iterations, where a steep IV
variables is added in each iteration. Let v be a steep IV variable of I ′. It is
possible that ds(I ′∪v) = 0, while ds(I ′) > 5. It indicates that adding a steep IV
variable could make the degree of the superpoly decrease to 0 suddenly. Hence,
it may fail to construct cubes with linear superpolies by only adding steep IV
variables. We perform experiments on Trivium and the results show that this
phenomenon happens frequently. We provide a concrete example happening in
the case of 805-round Trivium, see Example 1.

Example 1. For 805-round Trivium, we try to construct a potentially good cube
by extending

{v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50}.

After 16 iterations, we obtain the set

I ′ = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50,

v2, v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47}

by adding a steep IV variable in each iteration. The degree of pI′ is upper
bounded by 9. For I ′, v56 is a steep IV variable. However, after adding v56 to I ′,
the degree of pI′∪{v56} is 0. Namely, v56 decreases the degree of the superpoly
from 9 to 0 suddenly. It indicates that we fail to construct a cube with a linear
superpoly in the output of 805-round Trivium by only adding steep IV variables.



Recall that our aim is to construct cubes with linear superpolies rather than
those with zero-constant superpolies. From Example 1, it can be seen that always
adding a steep IV variable does make our aim break sometimes. To solve this
problem, we propose of the concept of gentle IV variables which decrease the
degree of the superpoly slowly. We formally describe the definition of the gentle
IV variable in Definition 4.

Definition 4 (Gentle IV Variable). Let I = {vi1 , vi2 , . . . , vil} be a set con-
taining l cube variables. Then, an IV variable b ∈ B is called a gentle IV variable
of I if

ds(I ∪ {b}) = max{ds(I ∪ {v})|v ∈ B and ds(I ∪ {v}) ≤ ds(I)},

where B = {v0, v1, . . . , vm−1} \ I and ds(I) is the degree of the superpoly of I.

It can be seen from Definition 4, a gentle IV variable of I is exactly the one
which could decrease the degree of the superpoly as slowly as possible. With
gentle IV variables, the above phenomenon could be avoided by adding gentle
IV variables instead of steep IV variables to I ′, where I ′ is obtained by adding
steep IV variables to I after several iterations.

Based on the above ideas, we propose a new heuristic algorithm to construct
cubes with linear superpolies, see Algorithm 3. In Algorithm 3, similar to the
GreedyBitSet algorithm which is a heuristic algorithm proposed in [20], we start
with a small starting set of cube variables. Then, there are two stages in Algo-
rithm 3. During the first stage, a steep IV variable is added to the current set I
of cube variables so that the degree of the superpoly could be decreased as fast
as possible. To determine the steep IV variable of I, we use the degree evaluation
method based on division property, which was proposed in [25], to calculate the
upper bound of ds(I ∪ v) for each IV variable which are not in I. As illustrated
above, if only steep IV variables are added, the degree of the superpoly may be
decreased to 0 suddenly and so constructing cubes with linear superpolies fails.
If so, Algorithm 3 would step into the second stage, where we hope to decrease
the degree of the superpoly slowly. During the second stage, we add the first
gentle IV variable into the current cube set in each iteration. To determine the
gentle IV variables, the same method in stage one is used. By gradually adding
gentle IV variables, which make the degree of the superpoly decrease slowly, it
is more hopeful to construct cube with linear superpolies.

Remark 1. In the second stage of Algorithm 3, for I, it may encounter the case
that ds(I ∪ {v}) > ds(I) or ds(I ∪ {v}) = 0 holds for each v ∈ B, i.e., the gentle
IV variable of I may do not exist. In this case, we select the cube variable b such
that ds(I ∪ {b}) = min{ds(I ∪ {v}) > ds(I)|v ∈ B} to update I.

Construct A Mother Cube. Note that the superpoly of the cube ob-
tained with Algorithm 3 may be not linear still, since the division property
based method only returns an upper bound of the degree of the superpoly. To
make it more possible to find linear superpolies, we attempt to construct a large



Algorithm 3 The algorithm of constructing cubes with linear superpolies

Input: a set of cube variables I = {vi1 , vi2 , . . . , vic} of size c and the target round r
1: B ← {v0, v1, . . . , vm−1} \ I;
2: ds ← 100;

/* The first stage */
3: while ds > 1 and |I| is less than a given bound do
4: for v ∈ B do
5: Estimate the upper bound of ds(I ∪ {v}) using the division property based

method;
6: end for
7: I ← I ∪ {v}, where v is the first steep IV variable of I;
8: B ← B \ v;
9: ds← DS(I ∪ {v}), where DS(I ∪ {v}) is the upper bound of ds(I ∪ {v})
10: end while
11: if ds(I) == 1 then
12: return I
13: end if

/* The second stage */
14: if ds(I) == 0 then
15: I ← I \ {v}, where v is the steep IV variable added in the last iteration of the

first stage.
16: I ← I ∪{v′}, where DS(I ∪{v′}) attains minimum except 0 in the last iteration

of the first stage.
17: B ← {v0, v1, . . . , vm−1} \ I;
18: while ds > 1 and |I| is less than a given bound do
19: for v ∈ B do
20: Estimate the upper bound of ds(I ∪{v}) using the division property based

method;
21: end for
22: I ← I ∪ {v}, where v is the first gentle IV variable
23: B ← B \ v;
24: ds← DS(I ∪ {v})
25: end while
26: end if

cube, called a mother cube in this paper, and then use the Moebius transfor-
mation to test its subcubes simultaneously. Such a mother cube is constructed
by jointing some cubes obtained in the last iteration. When selecting cubes, we
prefer to those cubes such that the degree of the corresponding superpolies are
close to 1. In another word, the mother cube is constructed as following

I ∪ {v ∈ {v0, v1, . . . , vm−1} \ I| the upper bound of ds(I ∪ v) is close to 1},

where I is the set of cube variables before the last iteration.

3.2 Determine Starting Cube Sets

In this subsection, to determine a starting cube set of Algorithm 3 properly, we
propose the concept of the preference bit together with an algorithm to predict



it based on the structural analysis of Trivium. Finally, considering the preference
bit, we show how to determine a starting cube set of Algorithm 3 properly.

The Preference Bit. Note that all the known linear superpolies of Trivium
are sparse, and most of them contain only a single key variable. Recall that the
output function of r-round Trivium is the linear combination of six internal state
bits, i.e,

zr =
6⊕

j=1

s
(r)
ij

,

where {i1, i2, i3, i4, i5, i6} = {66, 93, 162, 177, 243, 288}. It is very likely that the
linear superpoly is contributed by a single internal state bit of these six bits. For

each bit s
(r)
ij

(1 ≤ j ≤ 6), the probability of contributing a linear superpoly differs
from each other since their ANFs are different. Considering this difference, we
introduce the concept of the preference bit. Before introducing the preference
bit, we shall first formally describe the concept of a superpoly is contributed by

an internal state bit s
(r)
ij

, where j ∈ {1, 2, . . . , 6}.
Let I be a set of cube variables. Assuming that the superpoly of I in zr,

denoted by pI , is linear, where zr is the first output bit of r-round Trivium. Ac-
cording to the output function of Trivium, the superpoly pI could be decomposed
into

pI = pi1 ⊕ pi2 ⊕ pi3 ⊕ pi4 ⊕ pi5 ⊕ pi6 ,

where pij is the superpoly of I in s
(r)
ij

. If pI and pij are both linear, then, in this

paper, it is called that s
(r)
ij

contributes a linear superpoly. The following is an
illustrative example.

Example 2. For 769-round Trivium, the superpoly of

I = {v1, v3, v5, v7, v10, v12, v14, v16, v18, v20, v23, v26, v30, v39,

v41, v42, v43, v47, v50, v52, v53, v55, v58, v60, v61, v64, v69, v71, v78}

in the output bit z769 of 769-round Trivium is pI = k22. We test the superpolies

of I in s
(769)
66 , s

(769)
93 , s

(769)
162 , s

(769)
177 , s

(769)
243 , s

(769)
288 . The results show that only the

superpoly p66 = k22 is linear. Namely, s
(769)
66 contributes a linear superpoly.

Since the ANFs of these six internal bits are different, probabilities of them
to contribute a linear superpoly are different. Considering this difference, we pro-
pose the concept of the preference bit, which is formally described in Definition
5.

Definition 5. Among the six internal state bits in output function of r-round
Trivium, the internal state bit which is the most likely to contribute linear su-
perpolies is called the preference bit of r-round Trivium.



According to Definition 5, it can be seen that when targeting at the preference
bit, it is more likely to find linear superpolies than targeting at other internal
state bits in the output function. However, it seems that Definition 5 is somewhat
vague. In the following, we propose a lemma which could make Definition 5 more
clear and offer us an approach to predict the preference bit, see Lemma 1.

Lemma 1. Let I = {vi1 , vi2 , . . . , vid} be a set of cube variables. If the superpoly
of I in f(k,v) is linear, then there is a term in the form of

∏
v∈I v · kj in the

ANF of f .

Proof. Assume that the superpoly of I in f is L(k) =
∑n−1

i=0 ci · ki ⊕ c, where
ci, c ∈ {0, 1}. Then, the expression

∏
v∈I v · L(k) is a part of f(k,v), namely,

f(k,v) could be rewritten as

f(k,v) =
∏
v∈I

v · L(k)⊕ g(k,v).

It can be seen that there is a term in the form of
∏

v∈I v · kj in the ANF of f .

According to Lemma 1, the necessary condition of s
(r)
ij

contributing a linear

superpoly is that s
(r)
ij

has a term in the form of Tv · kj in its ANF, where Tv is
a product of some IV variables. In the remainder of this paper, a term in the
form of Tv · kj is called a VK-term for simplicity. Then, it is reasonable that the
bit with more VK-terms is more likely to contribute a linear superpoly. Namely,
among the six internal state bits in the output function, the bit with the most
VK-terms should be regarded as the preference bit. However, as the number of
initialisation rounds increases, the ANF of an internal state bit becomes very
complex. In this case, it is difficult to determine the preference bit by calculating
the exact number of VK-terms in the ANF of an internal state bit.

An Iterative Algorithm to Predict the Preference Bit. To overcome
the above difficulty, we propose an algorithm to estimate the number of VK-
terms in the ANF of an internal state bit. With this algorithm, we could predict
the preference bit of the output bit after any number of initialisation rounds.

Our main idea is estimating the number of VK-terms in the ANF of an

internal state bit iteratively. Let s(t) = (s
(t)
1 , s

(t)
2 , . . . , s

(t)
288) be the internal state

of Trivium after t rounds. Note that each internal state bit s
(t)
j (1 ≤ j ≤ 288) is

a polynomial on key variables and IV variables. Denote by NVK
(t)
j the number

of VK-terms in the ANF of s
(t)
j . Let NV

(t)
j be the number of the terms in the

form of Tv, which are called V-terms for simplicity, in s
(t)
j , where Tv is a product

of some IV variables. In the following, we take s
(t+1)
94 as an example to illustrate

how to estimate the number of VK-terms in the ANF of an internal state bit
iteratively. According to the update function of Trivium, s

(t+1)
94 is updated as

s
(t+1)
94 = s

(t)
91 · s(t)92 ⊕ s

(t)
93 ⊕ s

(t)
66 ⊕ s

(t)
171.

In s
(t)
91 · s(t)92 , there are three ways to generate a VK-term which are shown as

follows.



- s
(t)
91 provides a V-term(or constant 1) and s

(t)
92 provides a VK-term;

- s
(t)
91 provides a VK-term and s

(t)
92 provides a V-term(or constant 1);

- s
(t)
91 and s

(t)
92 both provide VK-terms, where the key variable in these two

VK-terms are the same.

Generally, the VK-terms formed in the third way are much fewer than those
formed in the first two ways. Besides, the VK-terms obtained by multiplying
constant 1 with VK-terms are also much fewer than those obtained by multi-

plying a V-term and a VK-term. Hence, the number of VK-terms in s
(t)
91 · s(t)92 ,

denoted by NVK(s
(t)
91 · s(t)92 ), could be estimated⋆ as

NVK(s
(t)
91 · s(t)92 ) = NV

(t)
91 ·NVK

(t)
92 +NV

(t)
92 ·NVK

(t)
91 .

Consequently, NVK
(t+1)
94 could be estimated as

NVK
(t+1)
94 = NV

(t)
91 ·NVK

(t)
92 +NV

(t)
92 ·NVK

(t)
91 +NVK

(t)
93 +NVK

(t)
66 +NVK

(t)
171.

Note that, to estimate NVK
(t+1)
94 , it needs to know NV

(t)
91 , NV

(t)
92 . Hence, it

is necessary to estimate NV
(t+1)
94 as well. According to the update function,

NVK
(t+1)
94 could be estimated as

NV
(t+1)
94 = NV

(t)
91 ·NV

(t)
92 +NV

(t)
93 +NV

(t)
66 +NV

(t)
171,

since the number of V-terms in s
(t)
91 · s(t)92 is dominated by those formed from

multiplying two V-terms together.

Moreover, NVK
(t+1)
1 , NV

(t+1)
1 , NV K

(t+1)
178 , NV

(t+1)
178 could be calculated in a

similar way. Thus, we could update NVK(t+1), NV (t+1) from NVK(t), NV (t),
where

NVK(t) = (NVK
(t)
1 , . . . , NV K

(t)
288) and NV (t) = (NV

(t)
1 , . . . , NV

(t)
288).

Now, the remaining problem is how to initialise NVK(0) and NV (0). To
obtain a more accurate result, we initialiseNVK(280) andNV (280) by calculating

the ANFs of s
(280)
1 , s

(280)
2 , . . . , s

(280)
288 . With the above method, we could figure out

NVK
(r)
j for 1 ≤ j ≤ 288 gradually. Finally, the bit j ∈ {66, 93, 162, 177, 243, 288}

such that

NVK
(r)
j = max{NVK

(r)
λ |λ ∈ {66, 93, 162, 177, 243, 288}}

is predicted as the preference bit. We formally describe our idea in Algorithm 4.

⋆ Here, we do not take the terms which are eliminated by the XOR operation into
consideration.



Algorithm 4 The algorithm of predicting the preference bit

1: Calculate the ANFs of s
(280)
i to initialise NVK(280) and NV (280);

2: for 280 ≤ t ≤ r − 1 do
3: NVKt1 ← NV

(t)
91 ·NVK

(t)
92 +NV

(t)
92 ·NVK

(t)
91 +NVK

(t)
93 +NVK

(t)
66 +NVK

(t)
171;

4: NVt1 ← NV
(t)
91 ·NV

(t)
92 +NV

(t)
93 +NV

(t)
66 +NV

(t)
171;

5: NVKt2 ← NV
(t)
175 ·NVK

(t)
176+NV

(t)
176 ·NVK

(t)
175+NVK

(t)
177+NVK

(t)
162+NVK

(t)
264;

6: NVt2 ← NV
(t)
175 ·NV

(t)
176 +NV

(t)
177 +NV

(t)
162 +NV

(t)
264;

7: NVKt3 ← NV
(t)
286 ·NVK

(t)
287+NV

(t)
287 ·NVK

(t)
286+NVK

(t)
288+NVK

(t)
243+NVK

(t)
69 ;

8: NVt3 ← NV
(t)
286 ·NV

(t)
287 +NV

(t)
288 +NV

(t)
243 +NV

(t)
69 ;

9: for 288 ≥ j ≥ 2 do
10: NVK

(t)
j ← NVK

(t)
j−1;

11: NV
(t)
j ← NV

(t)
j−1;

12: end for
13: NV

(t)
94 ← NVt1 ;

14: NVK
(t)
94 ← NVKt1 ;

15: NV
(t)
178 ← NVt2 ;

16: NVK
(t)
178 ← NVKt2 ;

17: NV
(t)
1 ← NVt3 ;

18: NVK
(t)
1 ← NVKt3 ;

19: end for
20: Choose the bit s

(t)
b such that

NVK
(t)
b = max{NVK

(t)
λ |λ ∈ {66, 93, 162, 171, 243, 288}}

as the preference bit, where b ∈ {66, 93, 162, 171, 243, 288};

Determine A Proper Starting Set. In this subsection, we shall show how
to determine a starting set of Algorithm 3 with the knowledge of the preference

bit. Let s
(r)
λ be the preference bit of r-round Trivium. First, according to the

update function of Trivium, s
(r)
λ could be written as

s
(r)
λ = s

(r−λ)

jλ1
· s(r−λ)

jλ2
⊕ s

(r−λ)

jλ3
⊕ s

(r−λ)

jλ4
⊕ s

(r−λ)

jλ5
.

Then, we choose a set I of cube variables and search all its subcubes to find

those cubes with linear superpolies in s
(r−λ)

jλ1
or s

(r−λ)

jλ2
with the Moebius trans-

formation. If such subcubes are found, then we randomly choose one of them to
be the starting set of Algorithm 3.

Assume that I ′ = {vl1 , vl2 , . . . , vlu} is a subcube with a linear superpoly in

s
(r−λ)

jλ1
. According to Lemma 1, we have that there is a VK-term in the ANF of

s
(r−λ)

jλ1
. Hence, it is hopeful that we could extend I ′ to If whose superpoly in

s
(r)
λ is linear. Since s

(r)
λ is the preference bit, it is hopeful that the superpoly of

If in the output bit is linear as well. The following is an illustrative example.



Example 3. In the case of 805-round Trivium,

I = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50}

is a carefully chosen starting cube set such that its superpoly in s
(739)
286 is k56.

Furthermore, we find that the superpoly of the cube set

I ′′ = {v1, v2, v4, v6, v8, v10, v11, v13, v15, v17, v19, v21, v23, v25, v26, v27, v29, v32,

v34, v36, v38, v39, v41, v42, v43, v45, v47, v48, v50, v52, v57, v59, v69, v71, v76, v79},

is also k56 in the output of 805-round Trivium. Note that I ′′ contains all the
cube variables in I. It indicates that it is rational to construct cubes with linear
superpolies in the output bit by extending a starting cube selected in the way
illustrated above.

4 An Improved Moebius Transformation

The Moebius transformation is a powerful tool which could be used to search all
the subcubes of a large cube at once. It improves the efficiency of cube attacks a
lot. Note that, for Trivium variants with more than 800 initialisation rounds, the
sizes of all known cubes with linear superpolies are larger than 30. Hence, to find
linear superpolies, for a large cube set I, it is not necessary to test its subcubes of
small sizes, and only subcubes of large sizes should be taken into consideration.
However, in the original the Moebius transformation, to test all the subcubes of
I, the memory complexity is O(2|I|) which expands exponentially as |I| increases.
In this subsection, we shall present an improved Moebius transformation which
could recover a part of ANF of f(x0, x1, . . . , xn−1) according to the truth table
of f(x0, x1, . . . , xn−1). With the improved Moebius transformation, we could
test a large number of subcubes of I simultaneously with a reasonable memory
complexity.

Let f(x0, x1, . . . , xn−1) be a Boolean function on x0, x1, . . . , xn−1. The ANF
of f is obtained by writing:

f =
⊕

(c0,...,cn−1)∈Fn
2

g(c0, c1, . . . , cn−1)
n−1∏
i=0

xci
i .

Recall that the function g is the Moebius transformation of f . It can be seen that
the Moebius transformation g is actually a Boolean function on n variables. Fur-
thermore, the Moebius transformations of f(x0, . . . , xn−1), f(x0, . . . , xn−2, 0),
and f(x0, . . . , xn−2, 1) are closely related, see Lemma 2.

Lemma 2 ([11]). Let f(x0, x1, . . . , xn−1) be a Boolean function on x0, . . . , xn−1.
Assuming g0(y0, y1, . . . , yn−2) and g1(y0, y1, . . . , yn−2) are the transformations of

f(x0, x1, . . . , xn−2, 0) and f(x0, x1, . . . , xn−2, 1)



respectively. Then, g0(y0, y1, . . . , yn−2) and g1(y0, y1, . . . , yn−2) are related to the
Moebius transformation g(y0, y1, . . . , yn−1) of f(x0, x1, . . . , xn−1) by the follow-
ing equation:

g(y0, y1, . . . , yn−2, 0) = g0(y0, y1, . . . , yn−2)

g(y0, y1, . . . , yn−2, 1) = g0(y0, y1, . . . , yn−2)⊕ g1(y0, y1, . . . , yn−2).

Lemma 2 indicates us that we could obtain the Moebius transformation of
f(x0, x1, . . . , xn−1) from the Moebius transformations of f(x0, x1, . . . , xn−2, 0)
and f(x0, x1, . . . , xn−2, 1). Furthermore, this fact could be generalised, see Corol-
lary 1.

Corollary 1. Let f(x0, x1, . . . , xn−1) be a Boolean function on x0, x1, . . . , xn−1.
Assume that g0, g1, . . . , g2q−1 are the Moebius transformations of

f(x0, x1, . . . , xn−q−1, 0, . . . , 0),

f(x0, x1, . . . , xn−q−1, 1, . . . , 0),

...

f(x0, x1, . . . , xn−q−1, 1, . . . , 1).

Then, the Moebius transformation g of f could be determined with the knowledge
of g0, g1, . . . , g2q−1.

Proof. According to Lemma 2, it is sufficient to calculate the Moebius trans-
formation of f with the Moebius transformations of f(x0, x1, . . . , xn−2, 0) and
f(x0, x1, . . . , xn−2, 1). Similarly, with the knowledge of the Moebius transforma-
tions of f(x0, x1, . . . , xn−3, 0, 0) and f(x0, x1, . . . , xn−3, 1, 0), the Moebius trans-
formation of f(x0, x1, . . . , xn−2, 0) could be deduced. Recursively, for xn−q, xn−q+1,
. . . , xn−1, the Moebius transformation g of f could be determined with the Moe-
bius transformations of

f(x0, x1, . . . , xn−q−1, 0, . . . , 0),

f(x0, x1, . . . , xn−q−1, 1, . . . , 0),

...

f(x0, x1, . . . , xn−q−1, 1, . . . , 1).

Note that it requires 2q × 2n−q = 2n bits memory to store g0, g1, . . . , g2q−1.
When n is large, a huge amount of bits memory are required. To reduce the mem-
ory complexity, one natural idea is to store only a part values of g0, g1, . . . , g2q−1.
In fact, by storing a part values of g0, g1, . . . , g2q−1, a part of the ANF of f could
still be recovered. We formally describe this fact in Proposition 1.

Proposition 1. Let f , g0, g1, . . . , g2q−1 be defined as Corollary 1. Assume that
c = (c0, c1, . . . , cn−q−1) is an arbitrary element in Fn−q

2 . With the knowledge of



g0(c), g1(c), . . . , g2q−1(c), we could obtain the coefficients of∏n−q−1
i=0 xci

i ,

xn−q ·
∏n−q−1

i=0 xci
i ,

...

xn−q · xn−q+1 · · ·xn−1 ·
∏n−q−1

i=0 xci
i .

in the ANF of f .

Proof. Assume that (bn−q, bn−q+1, . . . , bn−1) tabkes an arbitrary value of Fq
2.

Following the prove of Corollary 1, g(c0, . . . , cn−q−1, bn−q, . . . , bn−1) could be
determined by

h0(c0, . . . , cn−q−1, bn−q, . . . , bn−2) and h1(c0, . . . , cn−q−1, bn−q, . . . , bn−2),

where h0 and h1 are the Moebius transformations of f(x0, x1, . . . , xn−2, 0) and
f(x0, x1, . . . , xn−2, 1) respectively. Furthermore, the value of h0(c0, . . . , cn−q−1,
bn−q, . . . , bn−2) can be deduced from

h0,0(c0, . . . , cn−q−1, bn−q, . . . , bn−3)

and
h0,1(c0, . . . , cn−q−1, bn−q, . . . , bn−3),

where h0,0 and h0,1 are the Moebius transformations of f(x0, . . . , xn−3, 0, 0) and
f(x0, . . . , xn−3, 1, 0) respectively. Recursively, it is sufficient to calculate

g(c0, . . . , cn−q−1, bn−q, . . . , bn−1)

with the knowledge of g0(c), g1(c), . . . , g2q−1(c). Since (bn−q, bn−q+1, . . . , bn−1)
takes an arbitrary value in Fq

2, it indicates that g(c0, c1, . . . , cn−q−1, 0, 0, . . . , 0),
g(c0, c1, . . . , cn−q−1, 1, 0, . . . , 0), . . . , g(c0, c1, . . . , cn−q−1, 1, 1, . . . , 1) could be ob-
tained. Namely, we could recover the coefficients of

n−q−1∏
i=0

xci
i , xn−q ·

n−q−1∏
i=0

xci
i , . . . , xn−q · xn−q+1 · · ·xn−1 ·

n−q−1∏
i=0

xci
i

in the ANF of f .

Based on Proposition 1, we propose an improved Moebius transformation by
breaking the original Moebius transformation into two stages and only store a
part of the results during the first stage to reduce the memory complexity. We
formally describe the improved Moebius transformation in Algorithm 5. During
the first stage of Algorithm 5, for each 0 ≤ j ≤ 2q−1, the Moebius transformation
of gj is calculated one by one so that the memory could be used repeatedly.
Furthermore, for each gj , only the values gj under elements whose Hamming
Weights are not smaller than ω is stored, where ω is a given bound. Then, during



Algorithm 5 An Improved Moebius Transformation

Require: A Boolean function f , the parameter q, the bound ω
/* the first stage */

1: for (c0, c1, . . . , cq−1) from (0, 0, . . . , 0) to (1, 1, . . . , 1) do
2: S ← the truth table of f(x0, x1, . . . , xn−q−1, c0, c1, . . . , cq−1);
3: Call Algorithm 2 to do Moebius transformation on S;
4: t← 0, j ←

∑q−1
l=0 2lcl;

5: for i from 0 to 2n−q − 1 do
6: tmp← (b0, b1, . . . , bq−1), where i =

∑q−1
l=0 bl · 2bl ;

7: if wt(tmp) ≥ ω then
8: FS[j][t]← S[i];
9: t← t+ 1;
10: end if
11: end for
12: end for

/* the second stage */
13: for i from 1 to q do
14: Sz ← 2i, Pos← 1;
15: while Pos < 2q do
16: for b from 0 to Sz − 1 do
17: for a from 0 to t− 1 do
18: FS[Pos+ Sz + b][a]← FS[Pos+ Sz + b][a]⊕ FS[Pos+ b][a];
19: end for
20: end for
21: Pos← Pos+ 2× Sz;
22: end while
23: end for

the second stage, by using a way similar to calculate the Moebius transformation
of a q-variable polynomial, a part of the ANF of f could be recovered.

The Memory Complexity. The memory needed in Algorithm 5 consists
of the following two parts.

– The size of S is 2n−q and so it costs 2n−q bits memory.
– For each j, the size of FS[j] is t, then it requires 2q × t bits memory totally.

To sum up, it requires 2q × t+ 2n−q bits in Algorithm 5. If t ≪ 2n−q, then
2q × t + 2n−q ≪ 2n which indicates that the memory could be decreased to
about 2n−q bits from 2n bits.

5 Experimental Results

In this section, we first perform experiments to illustrate the effect of Algorithm
4. Then, utilising the starting sets determined with the method described in
subsection 3.2, we attempt to find linear superpolies for Trivium variants with
at least 805 initialisation rounds. As a result, we find over 1000 linear superpolies
for 805-round Trivium as well as several linear superpolies for 806-round Trivium



and 810-round Trivium. Based on the found linear superpolies, we establish a
practical attack on 805-round Trivium.

5.1 The Effect of Algorithm 4

To verify the effect of Algorithm 4, we perform experiments on the output of
r-round Trivium, where 400 ≤ r ≤ 699. First, for each Trivium variant with
r(400 ≤ r ≤ 699) rounds, we collect thousands of cubes with linear superpolies
in its first output bit. Then, for every such cube, we test whether its superpoly
in sij is linear to determine whether sij contributes a linear superpoly, where ij
runs over the set {66, 93, 162, 177, 243, 288}. For r-round Trivium, after testing
all the found cubes, we could obtain a tuple with six elements which records the

times of contributing a linear superpoly for s
(r)
66 , s

(r)
93 , s

(r)
162, s

(r)
177, s

(r)
243, s

(r)
288. Thus,

we could figure out the preference bit of r-round Trivium experimentally. For
instance, we collect 3030 linear superpolies for 440-round Trivium, after testing

all the six bits, we have that s
(440)
66 , s

(440)
93 , s

(440)
162 , s

(440)
177 , s

(440)
243 , and s288 contributes

883, 29, 205, 59, 1551 and 300 linear superpolies respectively. Hence, s
(440)
243 is

the preference bit of 440-round Trivium. Finally, we predict the preference bit
of r-round Trivium with Algorithm 4. The result shows that we predict the
preference bit correctly for 226 variants of Trivium out of the total 300 variants.
It indicates that we could predict the preference bit correctly with a probability
75.3% which is significantly higher than 16.67%, i.e. the success probability of
predicting the preference bit randomly.

5.2 A Practical Key-Recovery Attack on 805-Round Trivium

In this subsection, we target at 805-round Trivium. We first predict the pref-
erence bit of 805-round Trivium. Then, aiming at the preference bit, we deter-
mine some proper starting sets of Algorithm 3. For each proper starting set, we
construct a potentially good cube with Algorithm 3. Finally, to find linear su-
perpolies, we simultaneously test a large number of subcubes of the potentially
good cube with the improved Moebius transformation.

Determine Proper Starting Sets. To determine proper starting set, we
first need to predict the preference bit of 805-round Trivium. With Algorithm

4, we have that the predicted preference bit is s
(805)
66 . Since

s
(805)
66 = s

(739)
286 ·(739)286 ⊕s

(739)
243 ⊕ s

(739)
288 ⊕ s

(739)
69 ,

we choose cubes of sizes 22 and use the Moebius transformation to search all the
subcubes to find proper cubes whose superpolies in s

(739)
286 are linear. Finally, we

select some subcubes with linear superpolies to be the starting sets of Algorithm
3. In the following, we take

I1 = {v2, v4, v6, v8, v10, v11, v15, v17, v19, v21, v23

v25, v29, v30, v32, v34, v36, v39, v41, v43, v45, v50}



as an example to illustrate how to determine a proper starting set in details.

First, we search all its subcubes to find cubes with linear superpolies in s
(739)
286

and hundreds of such cubes are obtained. When choosing a starting set from
these cubes, we prefer to choose cubes with relatively large sizes. Among these
cubes, there are two cubes of size 17 and the others have smaller sizes. Among
these two cubes, we randomly choose

I2 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50}

as a proper starting set. With the similar procedure, we determine some other
starting sets of Algorithm 3.

Construct Candidate Cubes. There are two main stages of constructing
a potentially good cube in Algorithm 3. We take I2 as an example to make an
illustration. In the first stage, Algorithm 3 adds steep IV variables to decrease the
degree of the superpoly as quickly as possible. For I2, the first stage of Algorithm
3 terminates after 17 iterations, since the superpoly pI3 is zero-constant, where

I3 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43,

v50, v2, v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47, v56}.

Then, the second phase is started with

I4 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43,

v50, v2, v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47, v52},

since the upper bound of the degree of pI4 attains minimum expect 0 among all
the cubes obtained after 17 iterations. In this stage, our aim is to decrease the
degree of the superpoly slowly to obtain cube with linear superpolies instead of
zero-sum distinguishers. After three iterations, we obtain two cubes such that
the degree of their superpolies are upper bounded by 1. Besides, we also obtain
several cubes such that the degree of their superpolies are not larger than 3.
By jointing 4 cubes, we constructed a potentially good cube of size 40. Table 2
shows the chosen cubes and the upper bounds of the degrees of their superpolies,
where

I5 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43,

v50, v2, v69, v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47, v52}.

Finally, the potentially good cube I6 constructed from I2 is as follows,

I6 = {v4, v6, v10, v11, v15, v17, v19, v21, v25, v29, v32, v34, v36, v39, v41, v43, v50, v2, v69,

v79, v8, v27, v0, v1, v28, v71, v13, v45, v23, v26, v38, v76, v47, v52, v48, v42v53, v57, v59, v75}.

Linear Superpolies of 805-Round Trivium. After obtaining a poten-
tially good cube, we use the improved Moebius transformation to search its
subcubes which miss few cube variables. For instance, in the case of I6, we set



Table 2. The Chosen Cube Variables in the Last Iteration

chosen cube upper bound of the degree of superpolies

I5 ∪ {v57} 1
I5 ∪ {v59} 1
I5 ∪ {v75} 2
I5 ∪ {v53} 3

the parameter q = 7 and ω = 26 in the improved Moebius transformation, and
we find 201 subcubes with linear superpolies eventually. Among these 201 lin-
ear superpolies, there are 22 linear superpolies which are linearly independent.
Together with some other candidate cubes, we find more than 1000 cubes with
linear superpolies in the output of 805-round Trivium. Among these cubes, we
could pick up 37 cubes whose superpolies are linearly independent, see Table 3.



Table 3. Linear superpolies of 805-round Trivium

cube indies superpolies

0,1,2,4,6,8,11,13,15,17,19,21,23,26,27,28,29,32,34,
36,38,39,41,42,45,47,48,50,52,53,57,69,71,75,76,79

1 ⊕ k2 ⊕ k65

0,1,2,4,6,8,10,11,12,13,15,16,19,21,23,25,26,27,29,
31,34,36,38,39,40,43,45,47,49,62,64,70,74,77,79

1 ⊕ k3

0,1,2,4,6,8,10,11,13,15,17,19,21,23,26,27,29,31,
34,36,38,39,40,41,43,45,47,49,58,62,64,77,79

k4 ⊕ k19 ⊕ k34

0,1,2,4,6,8,10,13,15,17,19,21,23,25,26,27,28,29,32,34,
36,38,39,41,42,43,47,48,50,52,57,59,69,71,75,76,79

k14

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,34,
36,38,39,41,42,43,47,48,50,52,53,57,59,69,71,76,79

k15

0,1,2,4,6,8,10,13,15,17,19,21,23,25,26,27,28,29,32,
34,36,38,39,41,42,43,47,48,50,52,59,69,71,75,76,79

1 ⊕ k16

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,28,29,32,
34,36,38,39,41,42,43,45,47,48,50,53,57,69,71,75,76,79

1 ⊕ k17

0,1,2,4,6,8,10,11,12,13,15,16,19,21,23,25,27,28,
29,34,36,38,40,41,43,45,47,49,50,64,70,74,77,79

k18

0,1,2,4,6,8,10,11,12,13,15,16,19,23,25,27,28,31,34,
36,38,39,40,41,43,45,47,49,50,58,62,64,74,77,79

1 ⊕ k19 ⊕ k34 ⊕ k51

0,2,4,6,8,10,12,13,15,17,19,21,23,25,26,27,28,29,31,
34,38,39,40,41,43,45,47,49,50,58,62,64,70,74,77,79

k21

1,2,4,6,8,10,11,12,13,15,17,19,21,23,25,26,27,28,29,
31,34,36,38,39,40,41,43,47,49,50,58,62,70,74,77,79

1 ⊕ k29

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,34,
36,38,39,42,43,45,47,48,50,52,53,57,59,69,71,75,76,79

k31 ⊕ k46 ⊕ k56

0,1,2,4,6,8,10,13,15,17,19,21,23,25,26,28,29,32,34,
36,38,39,41,42,45,47,48,50,52,57,59,69,71,75,76,79

k17 ⊕ k32

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,34,
36,38,39,42,43,45,47,48,50,52,53,57,59,69,71,76,79

1 ⊕ k33

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,
34,36,39,41,42,43,45,47,48,50,52,57,59,69,71,76,79

k34

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,29,32,
34,36,38,39,41,42,43,45,47,50,52,53,57,69,71,75,79

k36

0,1,2,4,6,8,10,12,13,15,17,19,21,23,25,26,27,28,
29,31,34,36,39,40,41,43,47,49,50,62,64,70,77,79

k40

0,1,2,4,6,8,10,11,13,15,17,19,21,23,26,27,28,31,
34,36,38,40,41,43,45,47,49,50,58,62,64,70,77,79

k42

0,1,2,4,6,8,10,11,13,15,16,19,21,23,26,27,28,29,31,
34,36,38,39,41,43,45,47,49,50,58,62,64,74,77,79

k43

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,29,32,
34,36,38,42,45,47,48,50,53,57,59,69,71,75,76,79

k44

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,
32,34,36,38,41,42,43,45,47,50,53,59,69,71,76,79

1 ⊕ k45

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,32,
34,36,38,39,42,43,45,48,50,52,57,59,69,71,75,76,79

k46 ⊕ k56

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,29,32,34,
36,38,39,41,42,43,45,47,48,50,57,59,69,71,76,79

1 ⊕ k47

0,1,2,4,6,8,11,13,15,17,19,21,23,26,27,28,29,
34,36,38,41,43,45,47,49,50,62,64,70,74,77,79

k49

0,1,2,4,6,8,11,13,15,17,19,21,23,25,27,28,29,32,34,
36,38,39,41,42,43,45,47,52,53,57,69,71,75,76,79

k51

0,2,4,6,8,10,11,12,13,15,16,19,21,23,25,26,27,28,29,
31,34,36,38,39,41,43,47,49,58,62,64,70,74,77,79

k53

0,1,4,6,8,10,11,13,15,17,19,21,23,25,26,28,29,32,34,36,
38,39,41,42,43,45,47,48,50,52,53,57,59,69,71,75,76,79

k54

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,29,32,34,
36,38,39,42,43,45,47,48,50,53,57,59,69,71,75,79

k56

0,1,2,4,6,8,10,11,12,13,15,17,19,21,23,25,26,27,28,
29,31,34,36,38,39,40,41,45,47,49,58,62,64,70,79

k57 ⊕ k59

0,1,2,4,6,8,10,13,15,17,19,21,23,25,27,28,29,32,
34,36,38,39,42,43,45,47,48,53,57,59,69,71,75,79

k58

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,28,29,
32,34,36,38,39,41,42,43,45,47,50,53,57,59,69,76,79

1 ⊕ k47 ⊕ k59

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,32,
34,36,38,39,41,42,43,45,47,48,50,59,69,71,75,76,79

k60

0,1,2,4,6,8,10,11,13,15,17,19,21,23,25,27,28,29,32,
34,36,38,39,41,42,43,45,47,48,50,52,59,71,76,79

k61

0,2,4,6,8,10,11,12,13,15,16,19,21,23,25,26,27,28,31,
34,36,38,39,40,41,43,45,47,49,50,58,62,64,77,79

k62

0,1,2,4,6,8,10,11,13,15,16,19,21,23,25,27,28,29,31,
34,36,39,41,43,45,47,49,62,64,70,74,77,79

k63

0,1,4,6,8,10,11,12,13,15,17,19,21,23,25,26,27,28,29,
34,36,38,39,41,43,45,47,49,58,62,64,70,74,77,79

k64

0,2,4,6,8,10,11,13,15,17,19,21,23,25,26,27,28,29,32,
34,36,39,41,43,45,47,48,50,52,57,59,69,71,76,79

k65

0,1,2,4,6,8,11,12,13,15,17,19,21,23,25,27,28,29,31,
34,36,39,40,41,43,45,47,49,50,62,64,70,74,77,79

k68

Linear Superpolies of 806-Round Trivium. For the cubes found for
805-round Trivium, we slide some of them, i.e. decrease the index of each cube



variables by 1, to find cubes with linear superpolies for 806-round Trivium.
Finally, we find several cubes whose superpolies in the output bit of 806- round
Trivium, see Table 4.

Table 4. Cubes with linear superpolies in 806-round Trivium

cube indices superpoly

0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,27,28,30,
33,35,37,39,40,42,44,46,48,49,57,61,63,73,76,78

k14 ⊕ k44

0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,26,28,30,
33,35,37,39,40,42,44,46,48,49,57,61,63,73,76,78

k15

0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,26,28,30,
33,35,37,39,40,42,44,46,48,49,57,61,63,76,78

1 ⊕ k17

0,1,3,5,7,9,10,11,12,14,16,18,20,22,24,25,26,27,28,
30,33,35,37,38,39,40,42,46,48,49,57,61,69,73,76,78

1 ⊕ k28

0,1,3,5,7,9,10,11,12,14,15,16,18,20,22,24,25,26,27,
28,30,33,35,37,38,39,40,42,46,48,49,57,61,63,76,78

k32

0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,26,27,28,
33,35,37,39,40,42,44,46,48,49,57,61,63,73,76,78

k33

0,3,5,7,9,11,14,15,18,20,22,24,25,26,27,30,33,35,
37,39,40,42,44,46,48,49,57,61,63,69,73,76,78

k41

0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,26,27,28,
30,33,35,37,40,42,44,46,48,49,57,61,63,73,76,78

k42

1,3,5,7,9,10,11,12,14,16,18,20,22,24,25,26,27,28,
30,33,35,37,38,39,40,42,46,48,49,57,61,63,73,76,78

k44

0,1,3,5,7,9,10,12,14,16,18,20,22,24,26,27,28,30,
33,35,37,38,40,42,44,46,48,57,61,63,73,76,78

k46

0,1,3,5,7,9,10,11,12,14,16,18,20,22,24,26,27,28,
33,35,37,39,40,42,44,46,48,49,57,61,63,76,78

k52

0,1,3,5,9,10,11,12,14,16,18,20,22,24,26,27,28,30,33,
35,37,38,40,42,44,46,48,49,57,61,63,69,73,76,78

k55

0,1,3,5,7,9,10,11,12,14,16,18,20,22,24,26,27,28,
30,33,35,37,38,42,44,46,48,49,57,61,63,69,76,78

k58

0,1,3,5,7,9,10,11,12,14,15,18,20,22,24,25,26,27,28,
30,33,35,37,38,39,40,42,46,48,57,61,63,69,76,78

k59

0,1,3,5,7,9,11,12,14,15,16,18,20,22,24,25,27,28,30,
33,35,37,38,40,42,44,46,48,49,57,61,63,69,73,76,78

k63

0,3,5,7,9,10,11,12,14,15,18,20,22,24,25,26,27,28,33,
35,37,38,39,40,42,44,46,48,57,61,63,69,73,76,78

k65

A Practical Key-Recovery Attacks on 805-Round Trivium. Based on
the linear superpolies of 805- and 806-round Trivium, we could recover 42 key bits
for 805-round Trivium. The sizes of the chosen cubes are from 33 to 38, and 42
key bits could be recovered with 241.25 requests. By adding a brute-force attack,
the remaining 38 key bits could be recovered within 238 requests. Consequently,
to recover the whole key for 805-round Trivium, the on-line complexity is not
larger than 241.40 requests. Under a PC with a GTX-1080 GPU, we could recover
42 key bits in several hours. For remaining key bits, they could be recovered in
less than 238 requests which is much easier. Consequently, our attack on 805-
round Trivium is practical.

Key-Recovery Attacks on 806-Round Trivium. Based on the linear su-
perpolies of 806-round Trivium, we could recover 16 key bits with 238.64 requests.
By adding a brute-force attack, the remaining 64 key bits could be recovered in
264 requests. Hence, for 806-round Trivium, the 80-bit key could be recovered
with on-line complexity of 264 + 238.64.

5.3 Experimental Results on 810-Round Trivium

We do the similar experiments on 810-round Trivium. In this case, the preference

bit is s
(810)
66 as well. Due to the limited time, we only perform experiments on



the starting cube set

I7 = {v2, v6, v8, v10, v11, v15, v19, v21, v25, v29, v30, v32, v34, v36, v39, v41, v43, v45, v50}.

With Algorithm 3, we finally obtain a cube

I8 = {v2, v6, v8, v10, v11, v15, v19, v21, v25, v29, v30, v32, v34, v36,

v39, v41, v43, v45, v50, v0, v75, v12, v4, v14, v20, v22, v16, v27, v23,

v72, v52, v55, v60, v37, v79, v62, v64, v47, v54, v69, v51, v71, v18, v53}.

The size of I7 is 44. It is too large to perform sufficiently many times linearity
tests. Hence, we try remove some cube variables from I8 to obtain smaller cubes
with low-degree superpolies. Finally, we obtain a cube I9 of size 43, where

I9 = {v2, v6, v8, v10, v11, v15, v19, v21, v25, v29, v30, v32, v34, v36,

v39, v41, v43, v45, v50, v0, v75, v12, v4, v14, v20, v22, v16, v27, v23,

v72, v52, v55, v60, v37, v79, v62, v64, v47, v54, v69, v71, v18, v53}

and the degree of the superpoly of I9 is upper bounded by 2. By using a computer
with four NIVIDA V100 GPUs, we search a part of subcubes which only missing
few cube variables in I9. With the original Moebius transformation, to search
subcubes of a 43-dimensional cubes, it needs 243 bits memory. Benefited from
the improved Moebius transformation, we could perform linearity tests on 232.28

subcubes of I9 with several GBs memory which is much less than the memory
(1024 GB) required by the original Moebius transformation. Finally, we find 2
different cubes with linear superpolies, whichi are listed in Table 5.

Table 5. Linear Superpolies of 810-round Trivium

cube indies superpoly

0,2,4,6,8,10,11,12,14,15,16,18,19,20,21,22,23,25,27,29,30,32,
34, 36,37,39,41,43,45,47,50,53,54,55,60,62,64,69,71,72,75,79

k62

0,2,4,6,8,10,11,12,14,15,16,18,19,20,21,22,23,25,27,29,30,32,
34, 36,37,39,41,43,45,47,50,51,53,54,60,62,64,69,71,72,75,79

k62

Remark 2. We put our codes and all the found superpolies on the site
https://github.com/YT92/Practical-Cube-Attacks.



6 Conclusion

In this paper, we focus on practical full key-recovery attacks on Trivium. We de-
sign a new framework of finding linear superpolies in cube attacks by presenting
a new algorithm to construct cubes which potentially yield linear superpolies.
With this new framework, we find sufficiently many linear superpolies and es-
tablish a practical full key-recovery attack on 805-round Trivium. To show the
effectiveness of our algorithm for constructing cubes, we also tried 810-round
Trivium. As a result, by constructing one 43-dimensional cube, we find two sub-
cubes of size 42 with linear superpolies for 810-round Trivium. So far every cube
constructed by our algorithm could lead to some linear superpolies. Hence, to
practically attack 810-round Trivium, it is expected that only more time needs
to be taken because of the larger cube sizes. Combing our new algorithm for se-
lecting cubes with the bit-based division property using three subsets to recover
low-degree superpolies for large cubes will be one subject of our future work.
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