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Abstract—Secure electronic voting is a relatively trivial exercise
if a single authority can be completely trusted. In contrast, the
construction of efficient and usable schemes which provide strong
security without strong trust assumptions is still an open problem,
particularly in the remote setting. Coercion-resistance is one of,
if not the hardest property to add to a verifiable e-voting system.
Numerous secure e-voting systems have been designed to provide
coercion-resistance. One of these systems is VoteAgain (Usenix
Security 2020) whose security we revisit in this work.

We discovered several pitfalls that break the security proper-
ties of VoteAgain in threat scenarios for which it was claimed
secure. The most critical consequence of our findings is that
there exists a voting authority in VoteAgain which needs to be
trusted for all security properties. This means that VoteAgain
is as (in)secure as a trivial voting system with a single and
completely trusted voting authority. We argue that this problem
is intrinsic to VoteAgain’s design and could thus only be resolved,
if possible, by fundamental modifications.

We hope that our work will ensure that VoteAgain is not
employed for real elections in its current form. Further, we
highlight subtle security pitfalls to avoid on the path towards
more efficient, usable, and reasonably secure coercion-resistant
e-voting. To this end, we conclude the paper by describing the
open problems which need to be solved to make VoteAgain’s
approach secure.

I. INTRODUCTION

In Australia, Brazil, India, the US, and many other countries,
systems for electronic voting (e-voting) are often used for
political elections. It is crucial for such elections to protect
voters against being coerced to vote or not to vote for a
certain candidate, to abstain from voting, or to sell their
votes. A legal approach to mitigate the risk of coercion is
to ensure that “[any] coercion of voters should be prohibited
by penal laws and those laws should be strictly enforced”,
as required by the international standards of elections of the
UN Committee on Human Rights [25]. Since, realistically, the
risk of being penalized may not be sufficient to deter possible
coercers, the threat of coercion must also be counteracted
at a technical level. To this end, numerous e-voting systems
have been designed that aim to protect against coercion (see,
e.g., [1, 2, 6, 7, 11, 15, 21, 28, 31]), or to mitigate its risk (see,
e.g., [5, 13, 18, 26, 27]), by technical means. This property is
called coercion-resistance.

In a coercion-resistant e-voting system, each coerced voter
has the option to run some counter-strategy instead of obeying
the coercer. By running the counter-strategy, the coerced voter
can achieve her own goal (e.g., to vote for her favorite

candidate). At the same time, the coercer cannot distinguish
whether the coerced voter followed his instructions (e.g., voted
for the coercer’s favorite candidate) or ran the counter-strategy.
From a technical perspective, there exist three different ap-
proaches in the literature which implement this concept: fake
credentials, masking, and deniable vote updating. We will
briefly explain these different approaches next.

Fake credentials are used, for example, in [1, 6, 7, 11, 28],
and they work as follows. Each voter is provided with a unique
and secret credential ĉ. A voter uses ĉ to submit her vote
when she is not under coercion. Otherwise, if a voter is under
coercion, she can create a so-called fake credential c to submit
her coerced vote. Since the voter’s fake credential is invalid,
the respective vote will be secretely removed by the voting
authorities. At the same time, the fake credential c and the
real one ĉ are indistinguishable from a coercer’s perspective.

The masking technique is employed, for example, in [2, 31].
Its idea is the following one. Each voter is provided with a
unique and secret mask m̂. A voter uses m̂ to blind her actual
vote v̂ when she is not under coercion. Otherwise, if a voter
is being coerced to vote for a different choice v, then she
computes a fake mask m such that the resulting blinded vote
still remains a vote for her actual choice v̂.

In both the fake credential and masking approach, the
counter-strategies appear to be hardly usable by human voters
(see, e.g., [20, 24]) so that these two concepts may be rendered
completely ineffective for real practical elections. Achieving
coercion-resistance via deniable vote updating, as described
next, is more promising.

The idea of e-voting with deniable vote updating (e.g., [15,
21]) is to enable each voter to overwrite her previously
submitted ballot, that she may have cast under coercion, such
that no-one else, including a possible coercer, can see whether
or not the voter has subsequently updated her vote.

VoteAgain is an e-voting system that follows the concept of
coercion-resistance via deniable vote updating. It was recently
proposed by Lueks, Querejeta-Azurmendi, and Troncoso [23]
(Usenix Security 2020). VoteAgain aims to provide superior
usability to previous approaches by relieving voters to store
cryptographic state (e.g., secret signing keys). Lueks et al. im-
plemented a prototype of VoteAgain to evaluate its practicality:
their benchmarks demonstrate that VoteAgain is very efficient,
even for large-scale elections.

Importantly, Lueks et al. formally analyzed the security of



Ballot Privacy Verifiability Coercion-resistance
PA Untrusted Trusted Trusted
TS Untrusted Untrusted Trusted

PBB Untrusted Untrusted Untrusted?

Trustees k-out-of-n Untrusted Untrusted

Fig. 1. Trust assumptions under which VoteAgain was originally claimed to
provide the respective security properties. PA denotes the polling authority,
TS the tally server, and PBB the public bulletin board. (?We consider the
case that voters submit their ballots anonymously.)

Ballot Privacy Verifiability Coercion-resistance
PA Trusted Trusted Trusted
TS Untrusted Untrusted Trusted

PBB Trusted Trusted Trusted
Trustees k-out-of-n Untrusted k-out-of-n

Fig. 2. Trust assumptions which are actually necessary in VoteAgain to
provide the respective security properties. Differences to originally claimed
trust assumptions (Fig. 1) are bold.

VoteAgain in terms of coercion-resistance as well as ballot
privacy, which guarantees that the protocol does not leak more
information on each single voter’s choice than what can be
derived from the final election result, and verifiability, which
guarantees that it can be verified whether the election result
corresponds to the voters’ choices. In a nutshell, they stated
that VoteAgain provides

• ballot privacy if the trustees, the voting authorities under
whose joint public key voters encrypt their votes, are
trusted,

• verifiability if the polling authority, the party which
provides voters with anonymous voting tokens, is trusted,
and

• coercion-resistance if the tally server, the voting authority
which hides the voters’ re-voting pattern, and the polling
authority are trusted.

These trust assumptions are summarized in Fig. 1. They spec-
ify those threat scenarios for which VoteAgain was claimed
secure originally [23].

Our contributions. In this work, we revisit VoteAgain from
a security perspective. We will show that VoteAgain falls short
of the security it aimed to achieve:

1) We demonstrate that the polling authority needs to be
trusted for all security properties (see Fig. 2), not only
for verifiability and coercion-resistance, as claimed orig-
inally (see Fig. 1). We show that this issue immediately
relates to the core of VoteAgain.

2) We disprove the original claim [23] that the public bul-
letin board in VoteAgain does not need to be trusted for
any security property (see Fig. 1). We will demonstrate
that a malicious public bulletin board can break privacy,
verifiability, and coercion-resistance (see Fig. 2). While
trust on the public bulletin board can be mitigated
by means independent of the VoteAgain protocol, our
findings are yet another example that the importance of
the public bulletin board for secure e-voting must not be
underestimated.

3) We will show that the trustees, unlike claimed origi-
nally [23], and thus all voting authorities, need to be
trusted in VoteAgain for coercion-resistance (see Fig. 2).

The most critical of these observations is the first one, i.e.,
that the polling authority in VoteAgain needs to be trusted for
all security properties. If the overall security of a voting pro-
tocol reduces to a single voting authority being uncorrupted,
then one could as well replace all voting authorities by the
completely trusted one without affecting security. This means
that VoteAgain, in its original state, is insecure. But can this
problem be fixed or is it intrinsic to VoteAgain’s approach?

We will show that, as long as the polling authority needs to
be trusted for verifiability, it also needs to be trusted for pri-
vacy. We will see that the only possibility to remove this trust
from the polling authority would be to let voters store private
credentials not shared with the polling authority. However, as
mentioned above, VoteAgain was explicitly designed to avoid
this assumption in order to provide a superior level of usability.
This argument demonstrates that VoteAgain’s approach is not
suited to achieve all originally desired properties (i.e., high
efficiency, superior usability, reasonable security) simultane-
ously. Designing such a coercion-resistance e-voting system
thus remains an open problem. Our work helps to avoid subtle
security pitfalls on the path towards this goal.

Given that VoteAgain has been implemented and its (fal-
lacious) security claims published at a top venue, we believe
highlighting its substantial failings is important not only as an
academic exercise but to highlight that the scheme should not
be deployed in practice without substantial changes.
Outline of the paper. In Sec. II, we give an overview of the
VoteAgain protocol and the idea of the pitfalls we discovered.
In Sec. III, we describe VoteAgain with full technical details.
In Sec. IV, we present the pitfalls of VoteAgain and several
attacks to exploit them. In Sec. V, we summarize and discuss
our observations. We conclude in Sec. VI.

II. OVERVIEW

In this section, we describe the concept of VoteAgain and
the pitfalls of its approach. In Sec. II-A, we briefly recall
the security properties that VoteAgain aimed to achieve. In
Sec. II-B, we explain the idea of VoteAgain; the complete
protocol description can be found in Sec. III. In Sec. II-C,
we present the pitfalls of VoteAgain’s approach that we
discovered, with full technical details on our attacks in Sec. IV.

A. Security Properties

We recall the security notions of ballot privacy, verifiability,
and coercion-resistance.
Ballot privacy. For most elections, it is important that outside
or even inside observers (e.g., voting authorities) should not
be able to tell how individual voters voted. This property
is called (ballot) privacy [4]. It guarantees that the data
published during the election (including, for example, voters’
ballots, talliers’ proofs of integrity, etc.) does not leak more
information on the voters’ plain choices than what can be
derived from the final election result.



Verifiability. Numerous e-voting systems suffer from flaws
which open up the opportunity for inside or outside attackers
to change the election result without being detected (see,
e.g., [14, 29, 30]). Therefore, modern secure e-voting systems
strive for what is called (end-to-end) verifiability [8]. This
fundamental security property enables voters or external audi-
tors to verify whether the published election result is correct,
i.e., corresponds to the votes cast by the voters, even if, for
example, voting devices and servers have programming errors
or are outright malicious.
Coercion-resistance. A voting protocol is coercion-
resistant [22] if any coerced voter, instead of obeying the
coercer, can run some counter-strategy such that (i) by running
the counter-strategy, the coerced voter achieves her goal (e.g.,
successfully votes for her favorite candidate), and (ii) the
coercer is not able to distinguish whether the coerced voter fol-
lowed his instructions or tried to achieve her own goal. There
exist several concepts in the literature to construct coercion-
resistant e-voting systems. The approach taken in VoteAgain
is called deniable vote updating: if a voter is coerced to vote
for a certain candidate, then the voter’s counter-strategy is to
update her vote after the coercer has left. In this way, she can
overwrite her previously cast choice. At the same time, due to
some technical mechanisms in the background, it is guaranteed
that the coercer is not able to distinguish whether or not the
voter has subsequently updated her vote.

B. VoteAgain
We now recall the VoteAgain protocol. In this section, we

present VoteAgain in such a way that the idea of the pitfalls
below can be followed. Full technical details of VoteAgain are
provided in Sec. III.
Idea. As mentioned above, VoteAgain follows the concept
of coercion-resistance via deniable vote updating: each voter
can overwrite her previously submitted ballots, that she may
have cast under coercion, such that no-one else, including a
possible coercer, can see whether or not the voter has updated
her vote.

VoteAgain implements this idea as follows. In addition to
the standard voting authorities which are commonly used in
modern secure e-voting systems, namely a public bulletin
board (PBB) and a trustee (T), VoteAgain employs two further
parties, the polling authority (PA) and the tally server (TS).
The role of the PA is to guarantee that each voter can cast
ballots without revealing her identity to the public bulletin
board. At the same time, the PA ensures that it can be verified
whether incoming ballots were submitted by eligible voters
only. The role of the TS is to hide the voters’ re-voting/vote-
updating pattern. In combination, these two voting authorities
are supposed to securely guarantee deniable vote updating:
on the one hand, every observer can verify that only eligible
voters have cast the ballots on the bulletin board and that each
eligible voter did not overwrite any other voter’s ballot (under
the assumption the PA is honest), while, on the other hand,
it remains secret to any outsider whether or not a given voter
has updated her ballot.

In what follows, we describe VoteAgain’s approach more
precisely, with full technical details provided in Sec. III.

Participants. VoteAgain is run among the following partici-
pants:
• Voters V1, . . . ,Vn: Each voter Vi interacts with the

polling authority and the public bulletin board to cast
her ballots. It is assumed that each voter can authenticate
herself to the polling authority. The voters encrypt their
choices under the trustee’s public key.

• Polling Authority (PA): The PA provides each eligible
voter with an ephemeral/one-time voting token. The voter
can then use this token to sign her ballot without revealing
her identity to the public bulletin board.

• Public Bulletin Board (PBB): The PBB is an append-only
list which contains all public information, including the
voters’ cast ballots, as well as proofs and results published
by the election/tallying authorities during the tally phase.

• Tally Server (TS): The TS adds dummy ballots (encryp-
tions of 0 under the trustee’s public key), shuffles all
ballots, groups them by voter, and selects the last ballot
for each voter.

• Trustee (T):1 The trustee shuffles and decrypts the last
ballots per voter that were selected by TS.

Protocol phases. VoteAgain proceeds in three phases (the
invoked procedures are defined in Sec. III):

1) Pre-election phase: The election authorities set up their
public/private key material. The polling authority PA ini-
tializes the voters’ anonymous identifiers (Procedure 1).

2) Election phase: Voters authenticate to PA every time
they vote to obtain an ephemeral voting token (Pro-
cedure 2). They then use the token to cast a ballot
(Procedure 3). The public bulletin board PBB verifies
the correctness and eligibility of each incoming ballot
(Procedure 4). Note that voters can re-vote multiple
times.

3) Tally phase: The tally server TS adds dummy ballots
to hide the voters’ re-voting pattern, makes real and
dummy ballots publicly indistinguishable, selects the last
ballot for each real and dummy voter, and removes the
dummies again (Procedure 5). The trustee T shuffles
and decrypts the ballots previously returned by TS
(Procedure 6).

The verification program of VoteAgain follows immediately
from the protocol description: essentially, the proofs published
by the different parties on PBB are checked. We refer to [23]
(Procedures 7 and 8) for details.

C. Pitfalls

We show that VoteAgain [23] is not secure under the
trust assumptions for which it was claimed to be (Fig. 1).
We describe our findings in what follows, with full details
presented in Sec. IV. Our results are summarized in Fig. 2.

1The role of the trustee T is distributed in the original VoteAgain proto-
col [23]. For the sake of brevity, we assume that the trustee is a single entity.



Impact of corrupted PA. Recall that the polling authority PA
provides each eligible voter with one-time voting tokens. In
order to guarantee deniable vote updating (and thus coercion-
resistance), the links between the individual voters and their
ballots signed with the voting tokens remain hidden. Since a
malicious PA could tamper with the distribution of the voting
tokens undetectably, the PA needs to be trusted for verifiability.
This was already stated in the original VoteAgain paper but
its implication to ballot privacy was apparently overlooked
(Fig. 1). In secure e-voting, there is a strong relationship
between verifiability and ballot privacy: if ballots can be
dropped undetectably, then privacy of the remaining ballots is
undermined [9]. In Sec. IV, we show how this general threat
applies to VoteAgain specifically. As a result, the PA needs to
be trusted for ballot privacy as well (Fig. 2).

The consequence of this observation is disillusioning: there
exists a voting authority in VoteAgain (namely the PA) which
needs to be trusted for all security properties. This means
that VoteAgain is as (in)secure as a trivial voting protocol
with a single and completely trusted voting authority which is
responsible for the whole voting process.

Impact of corrupted trustee. The role of the tally server
TS is to hide the voters’ re-voting pattern by adding indis-
tinguishable dummy ballots which are later removed. Clearly,
the PA and the TS need to be trusted for coercion-resistance
because both of them know whether a voter re-voted. This
was already stated in the original VoteAgain paper (Fig. 1).
We discovered that, additionally, there exists a subtle yet
momentous relationship between coercion-resistance and a
possibly corrupted trustee. Assume that a coercer forces a voter
to submit a sequence of ballots in which each ballot encrypts
a vote for a randomly chosen candidate. By this, the coerced
voter’s sequence of plain votes is essentially unique and thus a
“fingerprint”. Now, if the trustee is corrupted, then the coerced
voter’s submitted ballots can be linked to the voter, even if
some dummy ballots are added to the voter’s ciphertexts.
In other words, the secrecy of the vote updating process is
undermined, even if the PA and the TS are trusted. As a result,
the trustee needs to be trusted for coercion-resistance as well
(Fig. 2). Therefore, all voting authorities need to be trusted
for coercion-resistance which is an assumption arguably too
strong as well.

Impact of corrupted PBB. We discovered that the impor-
tance of the public bulletin board PBB was underestimated
originally. Lueks et al. [23] stated that even if the PBB is
malicious, VoteAgain provides ballot privacy, verifiability, and
coercion resistance (Fig. 1). We discovered that, in fact, the
PBB needs to be trusted for all security properties (Fig. 2), as
explained next.

If the PBB is malicious, then it can show a “faked” view
on the bulletin board to a voter which includes this voter’s
submitted ballot. At the same time, the PBB does not append
the ballot to the “real” bulletin board which it shows to
the remaining parties [16]. In this way, the voter’s ballot is
effectively dropped even though the voter verified that her

ballot is on “the” bulletin board. This demonstrates that the
PBB needs to be trusted for verifiability. Using the same
argument as above (where we demonstrated that the PA needs
to be trusted for ballot privacy), it follows that the PBB needs
to be trusted for ballot privacy as well.

Furthermore, a malicious PBB can break coercion-resistance
as follows, even if voters submit their ballots anonymously.
The coercer forces a voter to submit a ballot for a certain
candidate and to reveal all secret information on the submitted
ballot. The PBB identifies and accepts this ballot but drops
all subsequently incoming ballots (similarly to the attack on
verifiability above). By this, the coerced voter can no longer
update her choice, even if the coercer is absent for the rest of
the submission phase.

The PBB is a critical bottleneck in all e-voting systems,
not only VoteAgain. There are several approaches to mitigate
trust on the PBB which could also be used in VoteAgain (see,
e.g., [10, 16, 17]). Nevertheless, our findings are yet another
example to demonstrate that the importance of the PBB for
secure e-voting must not be underestimated.

III. PROTOCOL DESCRIPTION

In this section, we precisely describe the VoteAgain pro-
tocol. The original VoteAgain protocol [23] employs specific
cryptographic primitives centered around ElGamal public-key
encryption [12]. We chose to abstract away from this concrete
instantiation because our attacks on VoteAgain (Section IV)
exploit the protocol design but no specific cryptographic de-
tails. We also think that our slightly more abstract presentation
simplifies comprehension of the complex protocol.
Cryptographic primitives. VoteAgain employs the following
cryptographic primitives:
• A homomorphic IND-CPA-secure public-key encryption

(PKE) scheme E = (EncKeyGen,Enc,Dec).
• A NIZKP of correct encryption (ProveEnc,VerifyEnc) for

the PKE scheme E and a voting relation R which specifies
valid choices.

• A NIZKP of correct decryption (ProveDec,VerifyDec) for
the PKE scheme E .

• A shuffle algorithm Shuffle [3] which takes as input a
vector of ciphertexts C (w.r.t. E), re-encrypts each entry
of C, permutes the vector uniformly at random, and
returns the resulting shuffled ciphertext vector C ′ together
with a proof πShuffle that C ′ is correct.

• An EUF-CMA-secure signature scheme
(SigKeyGen,Sign,Verify).

Procedure 1 (Setup). The election authorities generate their
public/private key pairs and send the public keys to the bulletin
board. The polling authority PA runs:

1) (pkPA, skPA)← SigKeyGen(1`)
2) send pkPA to PBB

The tally server TS runs:
1) (pkTS, skTS)← EncKeyGen(1`)
2) send pkTS to PBB

The trustee T runs:
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Fig. 3. Overview of Procedure 5 (Filter), adopted from [23]. Notation: nB denotes the number of ballots, nD the number of dummies added by TS,
nT = nB + nD denotes their sum, K the number of (real) voters plus the number of dummy voters, and χi the number of ballots for voter i (including
dummy voters).

1) (pkT, skT)← EncKeyGen(1`)
2) send pkT to PBB

For each voter Vi, the polling authority PA generates a
pair (vidi,mi) uniformly at random where vidi is the voter’s
(secret) identifier, and mi is (the initial state of) the voter’s
ballot counter. More precisely, PA runs the following program
for each Vi:

1) vidi
r←−MEnc

2

2) mi
r←− {2`−2, . . . , 2`−1 − 1} ⊂ MEnc

3) store (Vi, vidi,mi) internally

Procedure 2 (GetToken). Each time that a voter Vi wants
to submit a ballot, the voter needs to authenticate herself to
the polling authority PA. If authentication of Vi is successful,
then PA sends certain ephemeral/one-time credentials to Vi
which enable Vi to cast a single ballot without having to
reveal her identity. For this purpose, PA essentially encrypts
Vi’s identifier vidi as well as her ballot counter mi under the
public key pkTS of the tally server TS.

By this, on the one hand, it is not possible to coerce Vi
into revealing vidi or mi, while, on the other hand, it can be
verified that Vi’s ballot was submitted by an eligible voter and
that only Vi’s last ballot is counted (if PA is trusted).

More precisely, PA executes the following steps after voter
Vi authenticated herself correctly:

1) γ ← Enc(pkTS, vidi)
2) I ← Enc(pkTS,mi)
3) mi ← mi + 1
4) (pk, sk)← SigKeyGen(1`)
5) στ ← Sign(skPA, pk‖γ‖I)
6) send τ ← (pk, sk, γ, I, στ ) to Vi

2MEnc denotes the message space of the PKE scheme E (for public key
pkTS).

The voter can then check whether
Verify(pkPA, σ

τ , (pk‖γ‖I)) = > holds true. If this is
the case, then Vi can use τ to cast a vote, as described next.

Procedure 3 (Vote). Voter Vi takes as input τ =
(pk, sk, γ, I, στ ) from PA (see GetToken) as well as a candi-
date c ∈ C and executes the following steps to cast her ballot
β:

1) (v, aux)← Enc(pkT, c)
2) πEnc ← ProveEnc((pkT , v), (aux, c))
3) σ ← Sign(sk, v‖πEnc‖pk‖γ‖I‖στ )
4) β ← (v, πEnc, pk, γ, I, στ , σ)
5) send β to PBB

For each incoming ballot β, PBB checks whether
Valid(β) = > holds true (see below for algorithm Valid), and
if this is the case, then PBB appends β. Voter Vi can then
verify whether β was appended to PBB.

Procedure 4 (Valid). For each incoming ballot β, PBB
verifies whether β contains a valid choice, whether eligibility
was acknowledged by the polling authority PA, and whether
it does not contain a duplicate entry of a ballot β′ that was
already appended.

More precisely, Valid returns > if and only if the following
conditions are satisfied:

1) VerifyEnc(pkT, v, π
Enc) = >, and

2) Verify(pk, σ, v‖πEnc‖pk‖γ‖I‖στ ) = >, and
3) Verify(pkPA, σ

τ , (pkEnc‖γ‖I)) = >, and
4) (v, . . .) /∈ β′ and (. . . , pk, . . .) /∈ β′ for some appended

β′

Procedure 5 (Filter). The tally server TS reads the list of
ballots B ← (βi)

nB
i=1 from PBB and verifies for each β ∈ B

whether Valid(β) = > holds true. If this is not the case, then
TS aborts. Otherwise, TS continues as follows.



Adding dummies. For each ballot βi = (vi, . . . , γi, Ii, . . .) ∈
B, the tally server executes the following steps:

1) θR ← Enc(pkTS, 1; 0)
2) β′i ← (vi, γi, Ii, θR)

In other words, TS creates a “stripped” ballot β′i which
consists of the respective voter’s encrypted candidate vi, the
voter’s encrypted identifier γi, the encrypted ballot counter Ii,
as well as a deterministic ciphertext θR to “tag” real ballots.

Additionally, and this is one of the main ideas of VoteAgain,
the tally server TS generates a number of dummy ballots
which are used to hide the re-voting pattern of real voters.
To this end, the tally server TS creates nD further ballots
β′i = (vε, γi, Ii, θD), where
• vε ← Enc(pkT, 0; 0)
• θD ← Enc(pkTS, g; 0) for some g 6= 1

holds true.
This means that each dummy ballot contains a 0-vote (with

trivial randomness 0), as well as a deterministic ciphertext θD
to “tag” dummy ballots. The ciphertext γi either encrypts the
identifier of a real voter Vi in which case the encrypted ballot
counter Ii of the dummy ballot is smaller than the one of
the last ballot cast by Vi, or the ciphertexts γi encrypts the
identifier of a “fake” voter.3

The tally server TS sends the resulting list of ballots B′ ←
(β′i)

nB+nD
i=1 to PBB.

Shuffling. The tally server TS verifiably shuffles the ciphertext
vector B′:

1) (B′′, πσ)← Shuffle(B′)
2) send (B′′, πσ) to PBB.

Grouping. For each β′′ = (v′′i , γ
′′
i , I
′′
i , θ
′′
i ) ∈ B′′, the tally

server TS uses its secret key skTS to verifiably decrypt the
encrypted identifiers and ballot counters:

1) for all i ≤ nB + nD:
a) vidi ← Dec(skTS, γ

′′
i )

b) πDec
i,1 ← ProveDec((pkTS, γ

′′
i ), skTS)

c) mi ← Dec(skTS, I
′′
i )

d) πDec
i,2 ← ProveDec((pkTS, I

′′
i ), skTS)

e) πDec
i ← (πDec

i,1 , π
Dec
i,2 )

2) C ← (vidi,mi, π
Dec
i )nB+nD

i=1

3) send C to PBB
If there exist i 6= j such that (vidi,mi) = (vidj ,mj)

holds true, then TS aborts. Otherwise, TS groups all
(vidi, vi,mi, θ?) according to the identifiers vid. We denote
the resulting groups by (Gj)

K
j=1.

Selecting. For each group Gj , the tally server TS opts for
the ciphertext vj? assigned to the highest ballot counter m
in Gj . If the respective tag θ refers to a real voter, then TS
re-encrypts the ciphertext vj?, and otherwise, the TS replaces
the ciphertext by a 0-vote:

1) j?← index of maximal m in Gj

3We refer to [23] (Section 5.2) for a detailed description of how dummy
ballots are constructed precisely because the vulnerabilities of VoteAgain
presented in this paper are independent of the specific cover.

2) if Dec(skTS, θj?) = 0, then V j ← vj? · Enc(pkT, 0)
3) else V j ← Enc(pkT, 0)
4) πSel

j ← NIZKP of correctness of previous steps4

5) F ← (vidj , V j , π
Sel
j )j≤K

6) send F to PBB

Removing dummies. The tally server TS verifiably shuffles
the vector of selected encrypted votes SD ← (V j)j≤K :

1) (S ′D, π′σ)← Shuffle(SD)
2) send (S ′D, π′σ) to PBB

Next, TS creates the list of indices D of encrypted dummy
votes V

′
j in the shuffled ciphertext vector S ′D, and for each

j ∈ D, the tally server proves that V
′
j is an encryption of 0:

1) D ← indices of dummy votes in S ′D
2) R← (rj)j∈D such that V

′
j = Enc(pkT, 0; rj)

5

3) send (D, R) to PBB

Finally, the tally server TS publishes the list of votes to be
decrypted by the trustee T:

1) S ← (S ′D \ S ′D)
2) send S to PBB

Procedure 6 (Tally). In order to obtain the final election
result, the trustee T verifiably shuffles S and then uses its
secret key skT to verifiably decrypt the resulting shuffled
ciphertexts.6

IV. PITFALLS OF VOTEAGAIN

We elaborate on the pitfalls of VoteAgain’s approach that
we sketched in Sec. II-C.

A. Impact of corrupted PA

It was claimed in the original VoteAgain paper [23] that
VoteAgain provides ballot privacy if the trustee is honest,
while PA, TS, and PBB can be malicious (Fig. 1). We will now
show that a malicious PA can break privacy. The idea is that
the PA can impersonate any voter by simulating Procedure 2
and Procedure 3.

Attack: Let V1, . . . ,Vn be the voters. Assume that the PA
is malicious. After all voters V2, . . . ,Vn have submitted their
(last) ballots, the PA runs the voting process n − 1 times. In
each of these processes i ∈ {2, . . . , n}, the malicious PA runs
Procedure 2 for voter Vi and uses Vi’s token to run Procedure 3
to submit a ballot for (fixed) candidate c.

Impact: By design, it is not possible to verify whether Vi,
i ∈ {2, . . . , n}, has updated her vote. Therefore, the final
election result consists of V1’s vote plus n − 1 votes for
candidate c. The adversary can now immediately see how V1
voted which breaks ballot privacy.

4We refer to [23] for the precise relation to be proven by this NIZKP. The
details are not relevant for our purposes.

5Each rj is a simple combination of the randomness that TS used to create
V k and of the randomness that TS then used to re-encrypt V k to obtain V ′

j .
6We refer to [23] for details because this is a standard approach.



B. Impact of corrupted trustee
It was claimed in the original VoteAgain paper [23] that

VoteAgain provides coercion-resistance if the PA and TS are
honest, while the PBB (if voters submit anonymously) and
the trustees can be malicious (Fig. 1). We now describe how
an honest-but-curious trustee T can break coercion-resistance
of VoteAgain. The idea is that for each voter, trustee T can
decrypt the individual sequences of ciphertexts assigned to this
voter’s (anonymous) voter id vid.

Attack: The adversary chooses a sequence (cj)
l
j=1 over

the set of candidates C uniformly at random. The coercer
instructs a targeted voter V to submit a ballot βj (i.e., run
Procedure 2 and Procedure 3) for each element cj of this
sequence (preserving the order of the sequence) and then a
ballot β for the adversary’s favorite candidate c.

Impact: Since the trustee is corrupted, the adversary can
use skT to decrypt all vi,? for each vid in the grouped ballots
(Gj)

K
j=1 (at the end of phase “grouping” in Procedure 5). The

coercer (removes all dummy votes injected by TA and) verifies
whether there exists a group Gj which contains the chosen
sequence of candidates. If this is the case, the adversary knows
that the voter obeyed (with overwhelming probability in l).

C. Impact of corrupted PBB
We show that a malicious PBB can break verifiability, ballot

privacy, and coercion-resistance of VoteAgain.
Verifiability. It was claimed in the original VoteAgain pa-
per [23] that VoteAgain provides verifiability if the PA is
honest, while the TS, PBB, and the trustee can be malicious
(Fig. 1). We will now describe an attack of a malicious PBB
which breaks verifiability of VoteAgain. Note that the effect
of this attack can be increased by repeating it multiple times
for different voters.

Attack: Let V be an arbitrary voter. In Procedure 3, the PBB
shows a “faked” view on the bulletin board to voter V which
includes V’s ballot β. However, PBB does not append β to the
“real” bulletin board which it shows to the remaining parties.

Impact: At the end of Procedure 3, the voter verifies
successfully that β was appended to the “faked” bulletin board.
However, V’s choice is not included in the input to Procedure 5
and therefore not in the final election result. Because this
manipulation remains undetected, verifiability is broken.
Ballot Privacy. It was claimed in the original VoteAgain
paper [23] that VoteAgain provides ballot privacy if the trustee
is honest, while PA, TS, and PBB can be malicious (Fig. 1).
We will now show that a malicious PBB can break ballot
privacy.

Attack: Let V1, . . . ,Vn be the voters. For each voter Vi, i ∈
{2, . . . , n}, the PBB executes the verifiability attack described
above.7

Impact: The final result consists of V1’s chosen candidate
only and thus ballot privacy is broken.

7Alternatively, the PBB could choose a smaller subset of voters S ⊂
{2, . . . , n} whose ballots it excludes from the final result. In this way, the
remaining voters’ privacy would be reduced as well. We refer to [9] for more
details.

Coercion-Resistance. It was claimed in the original Vote-
Again paper [23] that VoteAgain provides coercion-resistance
if the PA and TS are honest, while the PBB (if voters submit
anonymously) and the trustee can be malicious (Fig. 1). We
will now show that a malicious PBB can break coercion-
resistance even if all voters submit their ballots anonymously.

Attack: The coercer chooses a candidate c ∈ C and instructs
an arbitrary voter V to submit a ballot for this candidate (i.e.,
run Procedure 2 and Procedure 3). Furthermore, the coercer
tells the voter to reveal the submitted ballot β, including all
secret information from Procedure 3. The malicious PBB iden-
tifies the incoming (no longer anonymous) ballot β, append it,
and drop all subsequently incoming ballots by any voter (see
PBB’s attack on verifiability).

Impact: The affected voter can no longer “overwrite” the
coercer’s choice c even if the coercer is absent for the rest of
submission phase.

V. DISCUSSION

Based on our insights from the previous sections, we first
elaborate on related coercion-resistant or coercion-mitigating
e-voting systems and their relation to VoteAgain, and then
extract the challenges to be addressed for solving VoteAgain’s
main pitfall.

A. Related work

Two different forms of coercion are typically considered
in the e-voting literature: vote-selling/vote-buying and forced
abstention. Depending on which form of coercion should be
addressed and how powerful an adversary can possibly be,
different e-voting systems have been proposed.

The most challenging goal is to design e-voting systems
which provides full coercion-resistance (i.e., protection against
vote-buying and forced abstention) and overall security against
inside adversaries (which can corrupt voting authorities).
There exist many different e-voting systems in the literature
which aim for this objective (e.g., [7]) but none of them
provides a reasonable level of security, usability, and efficiency
at once. VoteAgain [23] was constructed to overcome these
limitations but we have demonstrated that it falls short of
protecting against (reasonably strong) inside adversaries (see
Sec. IV).

Some e-voting systems aim to provide a weaker notion
of coercion-resistance which is called receipt-freeness. This
property guarantees that voters are not able to prove to a vote-
buyer how they voted. By protecting against this more specific
threat but not against forced abstention, it is possible to come
up with better solutions (see, e.g., [5, 21]). It is interesting
to note that VoteAgain [23] and KTV-Helios [21] follow a
similar approach; this was not mentioned in [23]. In both
systems, each voter’s ballots are hidden within a “swarm”
of indistinguishable dummy ballots which enables voters to
undetectably update their votes. Unlike in VoteAgain, the
voters’ identifiers in KTV-Helios are not anonymous but public
and dummy ballots are being added during the ballot sub-
mission phase not afterwards. Therefore, one of VoteAgain’s



advantages compared to KTV-Helios is that the timing of
the items on the bulletin board does not affect the level of
coercion-resistance. Furthermore, it is easier in VoteAgain than
in KTV-Helios for human voters [19] to (secretly) update their
votes, as explained next. If a voter was coerced to submit a
vote for c and wants to submit a vote for c′ by overwriting
c, then in VoteAgain the voter can simply submit a ballot for
c′, whereas in KTV-Helios the voter has to submit a ballot
for c′ · c−1. Then again, from a security perspective, receipt-
free e-voting systems like BeleniosRF [5] or KTV-Helios [21]
are secure against inside adversaries under reasonable trust
assumptions, unlike VoteAgain.

We note that while BeleniosRF [5] superficially shares the
weakness with VoteAgain that verifiability and privacy do
not hold against a corrupted register. However, in BeleniosRF
other parties need to corrupted to break these properties and
moreover the issue can be easily fixed at the cost of adding
an interactive voter registration phase. No such solution is
possible with VoteAgain, which inherently requires the register
to be trusted.

Altogether, we can conclude that there does not yet exist a
fully coercion-resistant (remote) e-voting system in the liter-
ature which can be used securely for real practical elections
with possible insider adversaries. In what follows, we elaborate
on the open questions that need to be addressed so that, if
possible, the first such solution could be constructed following
VoteAgain’s general approach.

B. Challenges

Because trust on the PBB can be mitigated by means
independent of the VoteAgain protocol (see, e.g., [10, 16, 17]),
we restrict our attention to the remaining pitfalls.

We have demonstrated that all voting authorities in Vote-
Again need to be trusted for coercion-resistance. This is a
strong assumption compared to other coercion-resistant e-
voting systems, e.g., Civitas [7]. This assumption could be
mitigated by (further) distributing the secret key under which
voters encrypt their candidates. However, this issue cannot be
resolved completely because each voter’s submitted cipher-
texts are publicly grouped and can therefore always be de-
anonymized, as explained in Sec. IV-B, by whoever holds
enough shares of the secret key.

To provide a non-trivial level of security, VoteAgain needs
to prevent the PA from submitting ballots on behalf of voters
without their consent. For this purpose, the ballots must be
authenticated in a way which is unforgeable by the PA (and
any other voter). The only viable option is to assume that each
voter possesses private credentials that she does not share with
the PA or any other voter. However, this assumption would no
longer be in line with VoteAgain’s original scenario where
voters are explicitly relieved to store cryptographic state for
higher usability (recall Sec. I). We therefore conclude that
VoteAgain’s approach is not suited to achieve all of its original
objectives simultaneously. We argue that the assumption that
voters are not required to store cryptographic state needs to
be dropped.

This results into the following question: How can VoteAgain
be modified such that ballots are unforgeable by the PA,
but also deniable by the target voter, without undermining
VoteAgain’s efficiency? Despite several attempts, we were
not able to solve this challenge which we therefore leave for
interesting future work.

VI. CONCLUSION

We demonstrated that, despite the published claims, Vote-
Again is not secure against (reasonably strong) internal ad-
versaries. Indeed, it is no more secure than a straightforward
system built around a single trusted party. While VoteAgain
has been implemented, it should not be used in a situation re-
quiring verifiability or privacy until these issues are addressed.

Moreover, there does not yet exist an e-voting system in the
literature which can be used for practically efficient, usable,
and reasonably secure e-voting with full coercion-resistance.
We hope that our work will help to avoid further subtle pitfalls
on the path towards this goal. To this end, we described the
open problems which need to be solved to make VoteAgain’
approach secure.
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[5] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer,
and David Galindo. BeleniosRF: A Non-interactive
Receipt-Free Electronic Voting Scheme. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-
28, 2016, pages 1614–1625, 2016.

[6] Jeremy Clark and Urs Hengartner. Selections: Internet
Voting with Over-the-Shoulder Coercion-Resistance. In
George Danezis, editor, Financial Cryptography and
Data Security - 15th International Conference, FC 2011,
Gros Islet, St. Lucia, February 28 - March 4, 2011,
Revised Selected Papers, volume 7035 of Lecture Notes
in Computer Science, pages 47–61. Springer, 2011.

[7] Michael R. Clarkson, Stephen Chong, and Andrew C.
Myers. Civitas: Toward a Secure Voting System. In 2008
IEEE Symposium on Security and Privacy (S&P 2008),
18-21 May 2008, Oakland, California, USA, pages 354–
368. IEEE Computer Society, 2008.
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