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Abstract

A zero-knowledge proof is a cryptographic primitive that is a versatile building block for both cryp-
tographic protocols alongside a wide range of applications from cryptocurrencies to privacy-preserving
auditing. Unfortunately, when the proof statements become very large, existing zero-knowledge proof sys-
tems easily reach their limits: either the computational overhead, the memory footprint, or the required
bandwidth exceed levels that would be tolerable in practice.

We present an interactive zero-knowledge proof system for arithmetic circuits, called Mac′n′Cheese,
with a focus on supporting large circuits while using low computational resources. Our work follows the
commit-and-prove paradigm instantiated using information-theoretic MACs based on vector oblivious
linear evaluation to achieve high efficiency. We additionally show how to optimize disjunctions, with a
general OR transformation for proving the disjunction of m statements that has communication complex-
ity proportional to the longest statement (plus an additive term logarithmic in m). These disjunctions
can further be nested, allowing efficient proofs about complex statements with many levels of disjunc-
tions. We also show how to make Mac′n′Cheese non-interactive (after a preprocessing phase) using the
Fiat-Shamir transform, and with only a small degradation in soundness.

We have implemented the non-interactive variant of the online phase of Mac′n′Cheese and can achieve
2.5 µs per multiplication gate while requiring a minimal amount of memory: for proving the knowledge
of two 512-by-512 matrices that equal some fixed public matrix we require less than 36 MB of memory
for both the prover and verifier. We achieve this through a streaming approach which is compatible with
our disjunctions over sub-circuits.

1 Introduction

Zero knowledge (ZK) proofs are interactive protocols which allow a prover P to convince a verifier V that a
certain statement x is true in such a way that V learns nothing beyond the validity of the statement. ZK
proofs have a wide range of applications in cryptography, from signatures [BG90] to compiling other protocols
from passive to active security [GMW87]. More recently, ZK proofs have seen widespread applications outside
of classical cryptography, for example in the cryptocurrency space [BCG+14]. These constructions mostly
focus on succinctness and non-interactivity ; namely, the construction of “succinct” proofs that have a small
verification runtime and that do not require interaction between P and V for validation.

However, for sufficiently large statements—on the order of billions of instructions—most existing proof
systems fail due to either memory constraints or high prover running times. Systems such as SNARKs [BCG+13]
or recent IOP-based constructions such as Ligero [AHIV17] or STARKs [BBHR19] suffer from exactly this
drawback: they have an inherent asymptotic prover overhead, paying at least a multiplicative factor log(|x|)
in computation when the statement has length |x|, and they need to keep the entire statement x in memory.

1.1 Our Approach: Mac′n′Cheese

In this work we introduce a novel ZK proof system called Mac′n′Cheese that is optimized for statements at
scale. We use the commit-and-prove paradigm [CD97], where we “commit to” values using an information-
theoretic message authentication code (MAC). For each committed value, P holds the MAC’ed value and
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the tag, and V holds the MAC key. Such commitments can be generated very efficiently using vector obliv-
ious linear evaluation (VOLE) [BCGI18] and they are linearly homomorphic. This homomorphism makes
instantiating the commit-and-prove paradigm possible via known circuit randomization techniques [Bea92].

Naively, this commit-and-prove approach leads to a proof with bandwidth costs that scale linearly with
the circuit size. To decrease this, in Mac′n′Cheese we support evaluating disjunctions in the spirit of “stacked
garbling” [HK20].1 Namely, we let the prover only communicate information that is required to evaluate the
correct branch among the m disjunctions. Both parties still perform the computations necessary to evaluate
each branch, but the verifier uses the messages for the correct branch for all m instances simultaneously. At a
high level, our technique can be seen as a generalized OR composition of protocols, where the resulting proof
only requires sending information corresponding to the ‘true’ protocol. We provide and analyze two different
flavors of this idea which work over large fields, which we use in Mac′n′Cheese, as well as F2. Additionally,
and unlike the stacked garbling approach [HK20], our disjunctions can be recursively nested, allowing proofs
about more complex statements than just top-level disjunctions. We also generalize our approach to the
threshold setting for showing that r out of m branches are correct, with communication that depends on r
branches only.

We implemented the non-interactive variant of the online phase of Mac′n′Cheese in Rust. Currently,
we do not have an implementation of VOLE, and thus all of our timings focus on memory usage and
communication cost, with the assumption that VOLE will add a small amount of communication—1.3 bits
per VOLE [WYKW20, Table 4]—and increase in runtime—130 ns per VOLE [WYKW20, Table 4].

Our benchmarks demonstrate that (the online phase of) Mac′n′Cheese requires approximately 2.5 µs per
multiplication alongside using a minimal amount of memory. For example, when proving the existence of two
512-by-512 matrices that when multiplied together equals some public matrix, Mac′n′Cheese uses ≤ 36 MB
of memory for both the prover and verifier. In addition, our benchmarks demonstrate the power of nested
disjunctions: when proving a disjunction over sixteen 256-by-256 matrix multiplications, we can reduce the
total communication from 6.1 GB to 385 MB, a 16× improvement.

1.2 Our Techniques

We present the Mac′n′Cheese approach in three steps: first, we describe the zero-knowledge protocol in a
setting with idealized homomorphic commitments to single field elements. Next, we present an abstraction
for such protocols which we call Interactive Protocols with Linear Oracle Verification—IPs with LOVe for
short—and show how to construct such protocols for arithmetic circuit satisfiability, while also supporting
nested disjunctions of general statements. Finally, we show how to use vector oblivious linear evaluation
(VOLE) to efficiently instantiate IPs with LOVe. This gives rise to multiple specific optimizations that
reduce the amount of interaction or simplify streaming.

Circuit satisfiability via idealized homomorphic commitments. Assume that the statement x,
together with a witness w, is provided to P while V only obtains x. We consider x as a circuit C over a large
finite field F, such that C(w) = 0 iff (x,w) ∈ R and assume that w is a vector over F.

Implementing the test that C(w) = 0 can be done using standard techniques with idealized homomorphic
commitments [CD98], but we nevertheless sketch these now. First, P commits to (1) w, (2) triples of the
form a, b, c such that c = a · b, and (3) the outputs of all the gates of C(w). P and V then engage in an
interactive protocol to test that:

1. The commitments to gate outputs are consistent with C and w; and

2. The output of the output gate of C is zero.

Note that all of these checks reduce to testing that certain committed values are zero:

• This is clear for testing the output of the output gate.

1Our approach was inspired by stacked garbling, although the technique bears more resemblance to the earlier ‘free if’
technique for private function evaluation [Kol18].
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• For each addition gate (or multiplications with public constants from F) one can simply apply the
respective linear operation to the commitments to the inputs of the gate, subtract the commitment of
the output and test if the result is a commitment to zero.

• For each multiplication gate, we use Beaver’s circuit randomization approach [Bea92, CD98, KOS16]
to reduce multiplication to zero-testing a commitment to a linear combination of commitments to the
gate inputs, outputs, and the random triples (a, b, c), alongside an additional random element sent by
V. (In fact, this random element can be generated by the output of a random oracle on the protocol
transcript using the Fiat-Shamir transform. We provide more details on this in § 4.1.)

When instantiating homomorphic commitments with vector oblivious linear evaluation (as we describe
later), this basic protocol has an amortized communication complexity of 3 field elements per multiplication
gate. This improves upon the arithmetic protocol of Weng et al. [WYKW20], which uses 4 field elements,
although they also present a variant with 2 field elements per multiplication which has a higher computational
cost due to polynomial operations.

Formalizing security using IPs with LOVe. While the aforementioned protocol is conceptually straight-
forward, proving security is not immediate, particularly if we want to additionally encompass optimizations
such as our approach to disjunctive proofs. In § 3 we therefore introduce IPs with LOVe, which provide a
different abstraction for ZK proofs tailored to our setting. In this abstraction, P begins by providing some
proof string π to an oracle O. The parties then exchange messages for a fixed number of rounds, at which
point V sends multiple queries of the form (zi, yi) to O. These queries are determined by V based on the
messages that it received in the previous rounds. O truthfully tells V if 〈π, zi〉 = yi or not for each of these
queries. Eventually, V outputs a bit to represent whether it accepts or not.

IPs with LOVe can be seen as a generalized form of linear interactive oracle proofs (IOPs) [BBC+19],
where on top of oracle queries, we allow the prover and verifier to exchange a number of messages. Linear
IOPs were motivated [BBC+19] as modelling natural proof systems based on homomorphic commitments, as
well as methods for proving statements on secret-shared data. IPs with LOVe are also a natural fit for these
types of proofs, while allowing us to go further by supporting optimizations for proofs with disjunctions.

Disjunctive proofs for IPs with LOVe. Our main technical contribution, described in §3.2, can be seen
as a general form of OR composition for IPs with LOVe. The communication complexity in the resulting
OR proof is proportional to the maximum of that in the original proofs.

We limit ourselves to IPs with LOVe that are public coin, i.e., where V only sends messages that are
random bits and where the queries to O can be determined deterministically based on the previous transcript.
This is indeed the case for our commit-and-prove protocol. We then go on to show that if one has m such
public coin IPs with LOVe Π1, · · · ,Πm whose messages from P to V can be made “compatible”, then one
can construct a (public coin) IP with LOVe Π whose message complexity essentially only depends on the
protocol Πi which sends the most messages, plus an additional check that requires O(m) communication but
is independent of all m IPs of LOVe themselves. V accepts in Π if and only if at least one of the instances
Πi was accepting.

In order to run Π, P and V initially execute Π1, . . . ,Πm in parallel. The key insight is that we only send
those messages from P to V that belong to the one protocol Πi∗ where P has a witness wi∗ for xi∗ , padding
with dummy messages such that the communication looks as if it could belong to any of the m branches.
V uses the one message that it obtains per round for all Π1, . . . ,Πm in parallel, not knowing to which of
the m protocols it belongs. Finally, instead of performing the queries to O at the end of each Πi, Π runs
a standard (small) OR-proof à la Cramer et al. [CDS94] to show that the queries in at least one of the m
branches are all valid. The trick here is that we can show that this OR-proof can itself be expressed as
sending certain messages between P and V followed by queries to O from V, making Π a public coin IP with
LOVe as desired.
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Thresholds and recursion. The OR-proof of Cramer et al. [CDS94] can be generalized for any threshold
r out of m, showing that indeed at least r instances of Π1, . . . ,Πm were correct. We generalize our protocol
Π to this setting, with communication r times that of the original Π, instead of m.

While both of these techniques only work for large fields F, we also show a recursive proof that (1) also
works over F2 and (2) has an additive message overhead, for m protocols and large fields, of O(log2(m))
instead of the O(m) of Π. By using recursion, we are able to capture proofs about complex programs with
arbitrary nested levels of disjunctions, with communication proportional to the longest path through the
entire program. Both the threshold scheme and the recursive proof are described in more detail in § A.

From IPs with LOVe to IPs with VOLE—efficiently. Towards efficiently instantiating IPs with
LOVe, in § 4 we describe a simple high-level syntax for expressing a large class of IPs with LOVe using an
abstract homomorphic commitment notation. We refer to these as commit-and-prove (C&P) IPs with LOVe.
This avoids the low-level details in the definition, simplifying the process of specifying and analyzing proto-
cols. To illustrate this, we describe in § 4.2 and § 4.3 our protocols for circuit satisfiability and disjunctions
in this framework.

Finally, we show that any C&P IP with LOVe can be combined with a VOLE protocol to obtain a ZK
proof. This is described in § 4.4. We instantiate the oracle O that contains the string π using information-
theoretic MACs of the form

MAC(α,β)(x) := xα+ β,

where all values are in some field F. We call α the “MAC key” and β the “MAC offset”, and sometimes
use the notation K to denote the tuple (α, β), held by the verifier, and τ to denote the MAC tag, held by
the prover. These commitments are linearly homomorphic for keys that share the α component, so we can
realize each oracle query as a zero-test on such commitments.

A batch of n MACs on random values is exactly equivalent to a VOLE of length n, since the MAC relation
can be viewed as evaluating a linear function on the input x. This can be generated with high efficiency using
recent (random) VOLE protocols based on arithmetic variants of the LPN assumption [BCGI18, BCG+19a,
WYKW20], with communication almost independent of n. VOLE on random inputs gives us a committed
proof string of random elements; the prover can then take any of these random values and adjust them with
a masked value to commit to an input of his choice.

Streaming and removing interaction. We wish to obtain a zero-knowledge proof that both has a small
memory footprint, allowing streaming, and also minimizes interaction, so that ideally the proof is completely
non-interactive after a one-time preprocessing phase (for generated the random VOLEs). We can achieve
a small memory in our protocols by verifying each linear oracle query as it arises during the computation,
rather than batching them together at the end. However, this introduces a high degree of interaction, since
now the parties have to interact for every multiplication gate in the circuit.

The natural approach to avoiding interaction is to apply the Fiat-Shamir transform by obtaining the
verifier’s random challenges from a random oracle. However, the low-memory protocol to which we want to
apply this has a very large round complexity, possibly even linear in the circuit size. Typically, the Fiat-
Shamir transform is only applied to constant-round protocols; while there are general results for many-round
protocols, in the worst case the soundness can degrade exponentially with the number of rounds [BCS16].

Despite this, in § 5 we show that for our circuit satisfiability protocol over a large field, Fiat-Shamir can
be applied without any serious loss in soundness, beyond the usual scaling by the number of random oracle
queries made by a cheating prover. We do this by giving two different Fiat-Shamir transforms that apply to
C&P protocols, and analyzing the concrete soundness when applied to our protocols of interest.

1.3 Related Work

As far as we are aware, there are only two ZK proof systems that can successfully scale to large statements:
the zero-knowledge garbled circuit (ZKGC) protocol of Jawurek, Kershbaum, and Orlandi [JKO13] and
its associated optimizations [FNO15, ZRE15, HK20], and the concurrently developed Wolverine protocol of
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Weng et al. [WYKW20]. Both of these approaches have provers that run linear in the proof statement
alongside the ability to “stream”—namely, the prover and verifier are not required to store the entire proof
statement in memory.

The ZKGC approach currently has a communication cost of 128 bits per AND gate. In addition, Heath
and Kolesnikov [HK20] recently showed how to “stack” garbled circuits such that the communication cost
of m disjunctions each containing ti AND gates is reduced from

∑
ti to max{ti}, further improving the

performance of the ZKGC approach for certain proof statements. Our disjunction optimization is inspired
by this approach [HK20], but is based on very different tools and additionally supports nesting disjunctions.

Concurrent to our work, Weng et al. [WYKW20] introduced Wolverine, a ZK protocol based on authen-
ticated multiplication triples generated using vector oblivious linear evaluation, similar to Mac′n′Cheese.
Wolverine supports both boolean and arithmetic circuits, while currently Mac′n′Cheese focuses on arith-
metic circuits only. While Wolverine shows a better runtime per multiplication (1.6 µs versus 2.5 µs in
Mac′n′Cheese), this discrepancy may be due to the multi-threaded nature of Wolverine’s implementation,
whereas Mac′n′Cheese is currently single-threaded. In addition, Wolverine does not support nesting disjunc-
tions, one of the main contributions of Mac′n′Cheese.

2 Preliminaries

For relation R = {(x,w) : x ∈ L,w ∈ W (x)} for sets L and W (x), let L(R) denote the language L of
the relation. For any vector r we denote by r|t the restriction to the first t elements. Let [P ↔ V] denote
the distribution of exchanged messages between P and V and let [P ↔ V]t denote the distribution of the
transcript of the messages exchanged in the first t rounds. Denote by ViewV[P ↔ V] the view of V when
interacting with P.

3 Interactive Proofs with Linear Oracle Verification

In this section we introduce our proof methodology: interactive proofs with linear oracle verification (IPs with
LOVe) over some field F. This formalization is a generalization of linear interactive oracle proofs [BBC+19],
where in each round, the verifier chooses some linear function, and learns the evaluation of this on a proof
string chosen by the prover. In comparison, we let the prover P first fix the proof string π. Then, both P
and the verifier V exchange messages for a certain number of rounds. Finally, V issues a number of affine
queries to π upon which it makes a decision on whether to accept or not. These queries can depend on the
messages that were exchanged between both P and V throughout the protocol.

We let P fix π at the beginning of the protocol and allow V to access it via oracle queries only at the end
of the protocol. That means that for π ∈ F` we let V choose q queries (z1, y1), . . . , (zq, yq) ∈ F` × F which
it sends to an oracle that stores π. This oracle checks that for each of the q queries the relation 〈π, zi〉 = yi
holds. The query results are then (truthfully) reported to V by the oracle.

Note that in case |F| is superpolynomial in the security parameter, it is possible to always simply set
q = 1 by randomly combining all queries into one. Since we want our definition to also capture instantiations
over small fields including F2, we nevertheless allow for multiple queries.

Definition 1 (Interactive Protocol with Linear Oracle Verification). Let F be a field and `, t, q ∈ N. Then a
t-round q-query interactive protocol with linear oracle verification Π = (P,V) with oracle length `, message
lengths rP1 , r

V
1 , . . . , r

P
t , r

V
t ∈ N and message complexity

∑t
h=1(rPh + rVh) over F consists of the algorithm P and

PPT algorithm V that interact as follows:

1. Initially, P obtains its respective input while V obtains the statement x. P then submits a string π ∈ F`
to the oracle, after which both parties receive a random, unique proof identifier idπ ∈ {0, 1}∗.2 P then
outputs a state sP0 while V outputs a state sV0 . We set an auxiliary variable a0 = ⊥.

2We only use the random identifiers in our non-interactive Fiat-Shamir transformation in § 5, where we require that idπ
should be unpredictable to P until it has chosen π.
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2. For round h ∈ [t], P and V do the following:

(a) First, V on input sVh−1 and ah−1 outputs message eh ∈ FrVh and state sVh.

(b) Then, P on input sPh−1 and eh outputs message ah ∈ FrPh and state sPh.

3. Finally, V on input at and state sVt makes q linear oracle queries to π and outputs a bit.

We say that the protocol accepts if V outputs 1 at the end of the protocol.

Definition 2 (Honest-Verifier Zero-Knowledge Interactive Proof with Linear Oracle Verification). A t-
round q-query interactive protocol with linear oracle verification Π = (P,V) over F is an honest-verifier
zero-knowledge interactive proof with linear oracle verification (HVZK IP with LOVe) for a relation R with
soundness error ε if it satisfies the following three properties:

Completeness: For all (x,w) ∈ R the interaction between P(x,w) and V(x) is accepting.

Soundness: For all x 6∈ L(R) and for all (unbounded) algorithms P∗, any interaction of P∗ with V(x) is
accepting with probability at most ε.

Honest-Verifier Zero-Knowledge: There exists a PPT algorithm S such that for any (x,w) ∈ R the
output of S(x) is perfectly indistinguishable from ViewV [P(x,w)↔ V(x)] for any honest V.

We use the notation IP-LOVeR,Ft,q,`,α,ε to denote a t-round, q-query HVZK IP with LOVe for relation R
over field F with oracle length `, message complexity α, and soundness error ε.

In this work, all the protocols we construct will additionally be proofs of knowledge and public coin, as
in the following definitions.

Definition 3 (ZK Interactive Proof of Knowledge with LOVe). An IP-LOVeR,Ft,q,`,α,ε protocol Π is a proof of
knowledge if for any accepting proof π for a statement x there exists a PPT extractor E that, on input π,
outputs a witness w such that (x,w) ∈ R.

Definition 4 (Public Coin IP with LOVe). An IP-LOVeR,Ft,q,`,α,ε protocol Π is public coin if

1. V chooses each eh ∈ FrVh for x ∈ L(R) uniformly at random (and in particular, independent of sVh−1
and ah−1).

2. There exists a deterministic polytime algorithm Q, which, on input x and {eh, ah}h∈[t], computes the
q oracle queries (z1, y1), . . . , (zq, yq) of V.

3. V accepts iff all queries generated by Q are accepting.

3.1 Stackable Public Coin IPs with LOVe

We now show that when both P and V agree on m relations R1, . . . ,Rm and instances x1, . . . , xm that
can each be proven using (public coin HVZK) IPs with LOVe, then we can construct a communication-
efficient protocol showing that at least one of the statements was true. Following the terminology of stacked
garbling [HK20], we sometimes refer to this as a stacked proof.

More formally, the goal of P is to show that (x1, . . . , xm) ∈ L(ROR) where

(x1, . . . , xm) ∈ L(ROR) ⇐⇒ x1 ∈ L(R1) ∨ · · · ∨ xm ∈ L(Rm).

Throughout this section, we will write x̂ as a short-hand for x1, . . . , xm when the statements are clear from
the context. Given IPs with LOVe for each instance xi that each have message complexity αi and query
complexity qi then it is possible to use a standard OR-proof such as that shown by Cramer et al. [CDS94]
to construct an IP with LOVe with message complexity ≈

∑
i∈[m] αi and query complexity ≈

∑
i∈[m] qi. We
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show how to instead obtain a message complexity
∑
i∈[m] qi + 2m+ max{αi} and query complexity m. We

also give a variant where the message complexity scales with O(logm), instead of 2m.
Towards this, we introduce the notion of equisimulatable IPs with LOVe. The idea is that we can

compress the messages for the different proof branches sent by P in such a way that for the true branch, the
correct message can be recovered by V. The distribution of the values for non-taken branches which V will
obtain is indistinguishable from a real protocol execution.

For example, assume that in Π1 P would in each round send 1 field element that appears uniformly
random to V, while in Π2 it sends 2 such elements with the same property. To achieve equisimulatability,
if P takes the first branch it can always append a uniformly random element to the message it sends to V,
whereas in the second case it just sends the actual message.

Definition 5 (Equisimulatable IPs with LOVe). Let Π1, . . . ,Πm be protocols such that each Πi is an IP
with LOVe over the field F for the relation Ri with round complexity ti. We say that Π1, . . . ,Πm are
equisimulatable if there exist two algorithms CP and dec such that:

1. dec(x̂, i, h, CP(x̂, i, h, ah)) = ah if ah ← Πi(s
P
h−1, eh) where Πi’s inputs are from an honest execution

of Πi; and

2. [CP(x̂, i, h, ah) | ah ← Πi(s
P
h−1, eh)] = [CP(x̂, j, h, ah) | ah ← Πj(s

P
h−1, eh)] where both the inputs of Πi

and Πj come from honest executions.

We say that CP has message complexity α if the total number of F-elements generated by CP for all h ∈
[maxi∈[m] ti] is at most α.

If P in each IP with LOVe in each round only sends one element to V that always appears to be uniformly
random from F, then the message complexity α = maxi∈[m] ti. This is the setting that we will mostly consider
in this work.

3.2 Stacking with LOVe

Using the concept of equisimulatability of protocols we now show how to lower the message complexity when
proving ROR. The idea is inspired by the stacked garbling approach [HK20]. We assume that m IPs with
LOVe Πi exist for the individual Ri and construct an interactive protocol ΠOR which works as follows: P,
having only wi∗ for one of the statements xi∗ , will generate the oracle string π by running Πi∗ ’s first step to
create πi∗ , which it then pads with extra random data. Then, P and V will simultaneously run all Π1, . . . ,Πm,
with the following modification: P’s message ch to V in round h will be determined from ah,i using CP, while
V extracts the message ah,i for each of the instances from ch using dec. Due to equisimulatability, V can
now execute all instances in parallel but cannot know which of these is the true one. Conversely, since all
Πi are public coin, V sends a randomness string that is long enough for any of the m instances in round h.
The message complexity is now determined by CP and not the individual proofs.

Instead of performing the queries for each Πi, which would reveal the index i∗ of the true statement,
we perform a small OR-proof that shows that the queries for at least one Πi are all accepting. In order to
perform this OR-proof, we use the additional random values in π. The complete protocol ΠOR can be found
in Figure 1.

Theorem 1. Let |F| � 2λ and Π1, . . . ,Πm be protocols such that each Πi is a ti-round qi-query equisim-
ulatable Public Coin IP with LOVe over F for relation Ri with oracle length `i and soundness error εi.
Furthermore, assume that CP has overall message complexity α. Then the protocol ΠOR in Figure 1 is a
Public Coin IP with LOVe for the relation ROR with

1. round complexity 3 + maxi∈[m] ti;

2. oracle length m+ maxi∈[m] `i;

3. query complexity m;
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Protocol ΠOR

Let Π1, . . . ,Πm be protocols such that each Πi is ti-round qi-query equisimulatable public coin IP with LOVe
over F for relation Ri with oracle length `i.

Both P and V have inputs x1, . . . , xm where xi ∈ L(Ri). P additionally has input wi∗ for (at least) one
i∗ ∈ [m] such that (xi∗ , wi∗) ∈ Ri∗ . We define q :=

∑
i∈[m] qi, ` := maxi∈[m] `i, and t := maxi∈[m] ti. Let

zk,i = zk,i| 0 · · · 0︸ ︷︷ ︸
`−`i times

.

1. P initially simulates Πi∗ on input (xi∗ , wi∗) to obtain the string πi∗ . It then sets

π′ = πi∗ | 0 · · · 0︸ ︷︷ ︸
`−`i∗ times

and π = π′|r1 · · · rm

where all ri are chosen uniformly at random.

2. Define sP0 := (xi∗ , wi∗). For h ∈ [t], P and V do the following:

(a) Let rVh,i be the length of the challenge that V would send for protocol Πi in round h. V sets

rh = maxi∈[m] r
V
h,i, samples eh ← Frh uniformly at random and then sends it to P.

(b) P sets (ah, s
P
h) ← Πi∗(s

P
h−1, eh) where P only uses the first rPh,i∗ elements of eh as required by Πi∗ .

It then computes ch ← CP(x̂, h, i∗, ah) and sends ch to V.

3. For V samples m strings ρi ← Fqi each uniformly at random from F and sends these to P.

4. For i ∈ [m], P samples fi ← F \ {i∗} uniformly at random, computes {(zk,i, yk,i)}k∈[qi] ←
Q(xi, {eh, dec(x̂, h, i, ch)}h∈[ti]) and sets gk,i := 〈π′, zk,i〉. It then computes gi = 〈ρi, [g1,i · · · gqi,i]〉,
yi = 〈ρi, [y1,i · · · yqi,i]〉 and di := (gi − yi)/fi + ri. P additionally sets di∗ := ri∗ . Finally, P sends
{di}i∈[m] to V.

5. V samples f ← F uniformly at random and sends it to P.

6. P sets fi∗ := f −
∑
i∈[m]\{i∗} fi and sends f1, . . . , fm to V. V checks that f =?

∑
i∈[m] fi, aborting if not.

7. Define βi ∈ Fq to be the vector that is fi on the ith position and 0 everywhere else. For i ∈ [m], V first
generates {(zk,i, yk,i)}k∈[qi] like P in Step 4 and sets zi = 〈ρi, [z1,i · · · zqi,i]〉, yi = 〈ρi, [y1,i · · · yqi,i]〉. Then
for each i ∈ [m] it sends the query (zi|βi, yi + fidi) to the oracle. V accepts if all queries are true.

Figure 1: The protocol ΠOR for an OR-statement.

4. message complexity 2m+
∑
i∈[m] qi + α; and

5. soundness error
∑
i∈[m] εi + (m+ 1)/|F|.

Proof. We now show that both Definition 2 and Definition 4 are fulfilled.

Completeness. Assume that, as stated in the protocol, (xi∗ , wi∗) ∈ Ri∗ . This means that the protocol will
indeed run for t rounds without abort, as P runs Πi∗ and a simulated continuation in Step 2 which are both
well-defined and because V runs a t-round protocol that is agnostic of the messages received from P until
this point. For the queries, we observe that if π, fi, di, zi, yiβi, ρi are chosen as in the protocol, then for i 6= i∗

we have

〈π, zi|βi〉 = 〈π′, zi〉+ 〈r1 · · · rm, βi〉 = 〈π′,
∑

k∈[qi]
ρi[k]zk,i〉+ firi

=
∑

k∈[qi]
ρi[k]〈π′, zk,i〉+ firi =

∑
k∈[qi]

ρi[k]gk,i + firi

= gi + firi = yk,i + fidk,i

8



where the last step follows from the definition of di. For the i∗th instance we have

〈π, zi∗ |βi∗〉 = 〈πi∗ , zi∗〉+ fi∗ri∗ = 〈πi∗ ,
∑

k∈[qi∗ ]
ρi∗ [k]zk,i∗〉+ fi∗ri∗

=
∑

k∈[qi∗ ]
ρi∗ [k]〈πi∗ , zk,i∗〉+ fi∗ri∗ =

∑
k∈[qi∗ ]

ρi∗ [k]yk,i∗ + fi∗ri∗

= yi∗ + fi∗ri∗ = yi∗ + fi∗di∗ .

The round, oracle, query and message complexity can be obtained from the definition of the protocol.

Soundness. For the sake of notation we separate the messages sent in ΠOR into two phases. The messages sent
in Step 2 are considered as Phase 1 while those exchanged in Step 3 or thereafter are considered Phase 2.

Consider a setting where we would perform the regular IP-LOVeR,Ft,q,`,α,ε-queries for each of the m state-
ments after Phase 1. This would mean that we ran ΠOR without the OR-proof in the end. If we look at all
messages sent during Phase 1 then if none of the m statements is true, we have that for each i ∈ [m] at least
one verification query must fail, except with probability

∑
i∈[m] εi. This can be seen as follows: in the worst

case, an ε1-fraction of all Phase 1 challenges by V will lead to all oracle queries related to the IP-LOVeR,Ft,q,`,α,ε

for x1 being true, as Π1 has soundness error ε1. The same can be said about all other m − 1 proofs, and
in the worst case the transcripts on which they successfully finish are distinct. Hence if all statements are
false, we know that when entering Phase 2 with probability at least 1−

∑
i∈[m] εi at least one oracle query

per i ∈ [m] must be false, or, alternatively written, ∀i ∈ [m]∃k ∈ [qi] : 〈π|`i , zk,i〉 6= yk,i.
In this case there then are two situations, in which the protocol would terminate with an accepting

verifier:

1. Either for some i we have that
∑
k∈[qi] ρi[k]〈π|`i , zk,i〉 =

∑
k∈[qi] ρi[k]yk,i, or

2. For at most one choice of f V will accept.

In the first case, we easily see that the statement is equivalent to some ρi being in the kernel of the map
defined by the non-zero vector [〈π|`i , z1,i〉 − y1,i, . . . , 〈π|`i , zqi,i〉 − yqi,i], which happens with probability at
most 1/|F| for each i and m/|F| over all m instances.

In the second case, assume that there exist two accepting transcripts of messages that keep all messages
of Phase 1 and 2 fixed, except for f (and therefore also some fi), and where ∀i ∈ [m] : 〈π, zi〉 = yi + ∆i for

some non-zero ∆i by assumption. The two accepting transcripts have f, f̂ as messages by V. We furthermore
know that there must exist also different fi, f̂i sent by P as the transcripts are accepting.

It must hold that 〈π, zi|βi〉 = yi + fidi and 〈π, zi|β̂i〉 = yi + f̂idi. βi is by definition 0 everywhere

except at one point, where it is fi (and similarly β̂i). So we can write the aforementioned equalities as

yi + ∆i + xifi = yi + fidi and yi + ∆i + xif̂i = yi + f̂idi where xi is the value at the index of π that both
βi, β̂i select. Therefore ∆i = fi(di − xi) = f̂i(di − xi). Since fi 6= f̂i this can only be fulfilled if di = xi,
implying ∆i = 0 which contradicts the assumption.

A cheating P would, by the argument above, have to hit the
∑
εi-fraction on Phase 1-challenges that

make the queries accept, or has to end up in the kernel of one of the ρi, or otherwise can only answer one
choice of f . By a union bound, the cheating probability is at most

∑
i∈[m] εi + (m+ 1)/|F|.

Honest-Verifier Zero-Knowledge. We now construct a simulator S for the protocol ΠOR that will, on input
x1, . . . , xm, output a transcript τ that is perfectly indistinguishable from a real transcript generated by
interacting with an honest V.

Pick a protocol instance Πj at random, run its HVZK simulator Si and generate all ch using CP as well
as πj . This will be perfectly indistinguishable from any transcript of Πi with i 6= j by the HVZK property
of Πj and the definition of Equisimulatability. Choose uniformly random ρi as in the real protocol.

Now fix random values f1, . . . , fm and choose all di uniformly at random. Run Si of Πi for each i ∈ [m]
to generate the respective queries (zk,i, yk,i) that V would perform in Πi and recompute the values gi, yi
as in ΠOR. Set π to begin with πi, padded to the right length ` with 0s, and add values ri that fulfill
di = (gi − yi)/fi + ri as in ΠOR. Then output di, fi, f =

∑
i∈[m] fi.
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By definition, f is uniformly random and all query responses are accepting. All fi are uniformly random,
conditioned on summing up to f as in the protocol. All di are uniformly random, as in ΠOR where they are
computed from the uniformly random ri. The distribution of ρi is identical to that of ΠOR.

Public Coin. All challenges sent by V are chosen as required in Definition 4: during the t rounds, they are
chosen as random strings of sufficient length. The challenge f is chosen uniformly at random as well, and so
are all the ρi. For each of the queries (zi|βi, yi + fidi) the values zi and yi are chosen deterministically by
using Q and applying a deterministic transformation. βi are determined by f1, . . . , fm that are sent by P.

Generalizing to threshold proofs. The OR-proof used implicitly in ΠOR is a version of the technique
from Cramer et al. [CDS94]. The authors describe how to additionally construct proofs of partial knowledge
for any threshold, i.e., how to show that r out of the m statements are true. Their technique, together with
a modification of ΠOR, can be used to construct a proof in our setting where we implicitly only communicate
the transcript of r statements, and not all t of them. ΠOR can then be seen as a special case where r = 1.
More details are found in § A.1.

3.3 Recursive Stacking

ΠOR from § 3.2 has the disadvantage that it cannot run over a field of small size, since all the values fi that
are chosen by P in advance must be invertible. While this is not a problem when |F| is exponential in the
security parameter, it can leak information about which branch is actually true if, e.g., |F| = 2. In that case,
P has to choose fi = 1. But if V sends a challenge that forces fi∗ to be zero (which happens with probability
1/2) then we know that branch i∗ is the true branch in the OR proof.

We will now show an alternative construction which does not suffer from this problem. It has the
additional advantage of introducing an overhead that is only logarithmic in m for large enough choices of
|F|. The intuition behind this alternative protocol is the following observation:

1. Any IP-LOVeR,Ft,q,`,α,ε Π accepts iff all queries are accepting. This means that for all its q queries
(z1, y1), . . . , (zq, yq) it must hold that 〈π, zi〉 = yi i.e. 〈π, zi〉 − yi = µi = 0.

2. Similar to ΠOR we let V choose q random field elements ρ1, . . . , ρq in F. Then a statement is therefore
true except with probability 1/|F| if 0 = µ =

∑
i∈[q] ρiµi. Observe that we equivalently have that

µ = 〈π, z〉 − y for z =
∑
i∈[q] ρizi and y =

∑
i∈[q] ρiyi.

3. If we simulate the parallel evaluation of multiple instances as in ΠOR then it is only for the “true”
branch i∗ that all its µk,i∗ are 0. Equivalently, we have that only for the true branch the value µi∗ ,
which is a random linear combination, will always be 0. Standard amplification also ensures this for
small fields F.

4. If we now compute the product µ1 · · ·µm correctly and it is 0, then at least one µj was 0 to begin with.

Clearly this approach works if we perform m− 1 multiplications between the m implicit variables µi and
it will also work over F2 using amplification techniques. A drawback, on the other hand, is that it does not
give rise to a k-out-of-m proof.

To see why the overhead can be logarithmic in m, we use the fact that after combining two protocols
Π1,Π2 in such a way the outcome is again stackable: if we consider all multiplications as a tree, then we
only have to provide those values necessary to prove a correct multiplication that are on the path from µi∗

to the root. The actual proof for this proceeds in the following steps:

1. First we show that if Π1, Π2 fulfill similar conditions as in ΠOR then we can combine them using the
multiplication-based approach.

2. Next, we show that starting with 2m proofs Π1, . . . ,Π2m with similar conditions as in ΠOR, if we
construct proofs Π′i from Π2i−1,Π2i using the multiplication method, then Π′1, . . . ,Π

′
m again fulfill the

same conditions i.e. are stackable. Also, this can be done with an overhead that is only as big as one
Πi plus one multiplication (or more, depending on F).
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3. Finally, by recursing the previous step, we obtain the log-overhead OR-proof.

The full construction together with a proof can be found in § A.2.

4 Building Zero Knowledge Proofs from IP with LOVe and VOLE

In this section, we first define (§ 4.1) a high-level syntax for specifying a subclass of IPs with LOVe, which
models commit-and-prove (C&P) protocols based on homomorphic commitments. We then describe a simple
protocol for arithmetic circuit satisfiability (§ 4.2) over a large finite field, with communication cost of 3
field elements per multiplication gate. To illustrate the disjunctions construction from §3.2, we then give an
example of how to obtain a disjunctive proof of several C&P statements. Finally, we show that by combining
any C&P IP with LOVe with vector oblivious linear evaluation (VOLE) we get a zero knowledge proof system
(§ 4.4).

4.1 Defining C&P Protocols

A C&P IP with LOVe runs between a prover P and a verifier V, and works over a finite field F which may
depend on the security parameter. We use the notation x to mean that some value x ∈ F known by P
has been committed to. Note that at this point, we do not consider any concrete commitment scheme or
properties of commitments; rather, x is just a public, abstract identifier for the commitment.

In the protocol, we model the linear verification oracle by a special instruction AssertZero, which looks
at the value in a commitment and checks whether this is zero. Since the parties may also perform linear
operations on commitments, this allows modeling any linear query.

A C&P protocol is specified as follows:

Input phase: P chooses its input w1, . . . , wn ∈ F. Both parties are given the commitment identifiers
w1, . . . , wn, and a random identifier idπ ∈ {0, 1}λ.

Protocol phase: The parties run a sequence of instructions of the following types:

• Random(): Outputs r for random r ← F.

• Send[P→V](x): Sends value x ∈ F from P to V.

• Send[V→P](x): Sends value x ∈ F from V to P.

• +(x, y): Given commitments x and y, outputs z for z = x+ y.

• +(x, y): Given commitment x and value y ∈ F, outputs z for z = x+ y.

• ·(x, c): Given commitment x and scalar c, outputs z for z = x · c.
• AssertZero(x): Asserts to V that x is a commitment to x = 0, aborting if not.

Output phase: If none of the AssertZero instructions failed, the verifier outputs 1. Otherwise, it outputs 0.

We can see that any C&P protocol Π for proving some property P about the inputs defines an IP with
LOVe, where P is a statement for the NP relation R, with (x,w) ∈ R if and only if P(w) = 1. This
translation of the C&P syntax is as follows:

1. For every Random instruction in Π, P picks a random ri ← F.

2. On input (w1, . . . , wn), P inputs to the oracle the proof string π = (r1, . . . , rt, w1, . . . , wn), where t is
the number of Random instructions required in Π.

3. Both parties then learn the random identifier idπ.

4. In order, the parties run every Send instruction in Π.
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5. For each AssertZero(x) instruction, V makes a linear oracle query as follows:

• Since x was obtained only from addition and multiply-by-constant gates applied to commitments
to the values in π, V can compute z ∈ F` and y ∈ F such that x = 〈π, z〉+ y.

• Query (z, y) to the oracle.

6. If all oracle queries return zero, V outputs 1.

Notice that when analyzing soundness of a C&P IP with LOVe, it is convenient to observe that each
linear oracle query succeeds if and only if the input to its corresponding AssertZero instruction was zero.

Remark 1. When considering the soundness of a C&P IP with LOVe, we need to allow the malicious prover
to pick (ahead of time) the randomness ri used in each Random instruction. This is never a problem in our
constructions, since we only rely on this randomness to mask the prover’s inputs. This stronger requirement
is also useful when we later instantiate the protocol with VOLE, where it may be possible for a malicious
prover to bias the random VOLE outputs.

Below, we show that any (public-coin) C&P protocol where the sender’s messages are all uniformly dis-
tributed is guaranteed to be zero-knowledge, and also satisfies equisimulatability, allowing it to be efficiently
compiled into proofs of disjunctive statements.

Theorem 2. Let Π be a C&P IP with LOVe for proving a property P over the field F. Then, if the set of
values input to Send in an honest execution is (perfectly) indistinguishable from random, it holds that

1. Π is honest-verifier zero-knowledge; and

2. m copies of Π (potentially for proving different properties P) are equisimulatable (Definition 5).

Proof. We first prove honest-verifier zero-knowledge by constructing a simulator S as required. S on input
the statement x simulates the interaction in Π by sending random field elements to V, for every message sent
by P. Finally, for each oracle query (z, y) made by V, S outputs zero. It is easy to see that S is perfectly
indistinguishable from ViewV [P(x,w) ↔ V(x)] for an honest V given the assumption that the values input
to Send are indistinguishable from random: because V is honest it only queries the oracle on inputs that
equal zero, and hence S always outputting zero on its oracle queries is perfectly indistinguishable from a real
execution.

We next argue that for m protocols Π1, . . . ,Πm, where each Πi is proving some property Pi, the collection
(Π1, . . . ,Πm) is equisimulatable. We first need to give an algorithm CP, which on input an index i, round
number h and prover message ah from an execution of Πi, outputs the ‘combined prover’ message a′; our
algorithm simply extends ah to the maximum length of the prover’s round-h message in any {Πj}j , by
padding with random field elements.

Since the prover’s messages are all uniformly random, it is clear that for any two indices i, i′, the output
of CP on a message ah from Πi is identically distributed to its output given ah from Πi′ , which implies the
second property of Definition 5.

Next, we need to specify a decoding algorithm dec for the verifier, which allows it to extract the correct
message ah from the CP output, given the index i. Since the length of ah in Πi is fixed, dec simply truncates
its input to the correct length, which clearly gives the correct result.

4.2 C&P IP with LOVe for Arithmetic Circuit Satisfiability

In this section we show a C&P IP with LOVe for arithmetic circuit satisfiability over a large field that satisfies
(1) completeness, (2) soundness, and (3) that all inputs to Send are indistinguishable from random. Thus, by
Theorem 2 we conclude that our protocol is also zero knowledge and supports disjunctions. Let C : Fn → F
be a circuit known to both parties consisting of Add and Mult gates. The prover P has input ~w ∈ Fn and
wants to prove that C(~w) = 0 to V.
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We begin by defining two auxiliary instructions we use: (1) Fix, which allows P to fix a random commit-
ment to a value of its choosing, and (2) Reveal, which opens a commitment to V and checks this was done
properly using AssertZero.

• Fix(x): On input x from P, output a commitment x. This is implemented as:

1. Run Random()→ r.

2. Run Send[P→V](x− r)→ y.

3. Run +(r, y)→ x.

• Reveal(x)→ x: On input commitment x, output x to V. This is implemented as:

1. Send[P→V](x).

2. AssertZero(x− x).

Our protocol works as follows. The prover first provides ~w as its input, so the parties initially get
commitments w1, . . . , wn. The parties then execute the following steps to evaluate the circuit C, where we
denote by C∗ the set of multiplication gates in C.

1. For each gate in C, in topological order, proceed as follows:

Add(x, y) : Output +(x, y).

Mult(x, y) : Run Random()→ a, Fix(xy)→ z, and Fix(ay)→ c. Output z, and store the commitments
a and c.

2. Run Send[V→P](e), where e ∈R F.

3. For i ∈ [|C∗|]:

• Let xi and yi denote the inputs and zi, ai and ci denote the outputs and stored values in the i-th
call to Mult.

• Run Reveal(εi), where εi = exi − ai.
• Run AssertZero(ezi − ci − εiyi).

4. Run AssertZero(zout), where zout is the commitment to the output of the circuit.

Theorem 3. Let R be a relation that can be represented by an arithmetic circuit C over field F such that
R(~x, ~w) = 1 ⇔ C(~w) = 0. Then the above protocol is a C&P IP with LOVe with respect to field F and
relation R such that (1) completeness holds, (2) soundness holds with soundness error 1/|F|, and (3) all
inputs to Send are perfectly indistinguishable from random.

Proof. Completeness is immediate. For soundness, consider a malicious prover P∗, who at the beginning of
the protocol chooses all of the randomness used in Random instructions. In the remainder of the protocol,
P∗ is only able to cheat in the Mult operation (since Reveal guarantees that εi is sent correctly). Consider a
multiplication gate where P∗, i.e., instead of sending δ = xy − r in the Fix operation (for the random value
r), it sent δ = xy + ∆ − r, for some ∆ 6= 0. Similarly, let δ′ = ay + ∆′ − r′ be the value sent during the
second Fix operation for that gate. We then have z = xy + ∆ and c = ay + ∆′.

The check for this gate passes only if ez − c− εy = 0, which gives

e(xy + ∆)− (ay + ∆′)− (ex− a)y = 0

which only holds if e∆ = ∆′. This occurs with probability 1/|F|, over the random choice of e. Since an
incorrect statement must have at least one multiplication gate where the prover cheated, we obtain an overall
soundness error of 1/|F|.

Finally, we prove that all inputs to Send are perfectly indistinguishable from random. Clearly the Send
call in Step 2 satisfies this requirement. Likewise, the Send calls in Fix and Step 3 satisfy this requirement
as well since we are masking by a uniformly random value which is not re-used.
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4.3 Disjunctions with C&P IPs with LOVe

Since our basic construction is an equisimulatable IP with LOVe, we can directly apply the stacking trans-
formation to prove that at least one of several circuits C1, . . . , Cm is satisfied. Using the recursive technique
from §3.3, we can even take this further and perform complex proofs about programs containing an arbitrary
number of nested disjunctions. In this section, to see how a stacked IP with LOVe looks at a more concrete
level, we give a brief overview of how a disjunctive proof looks in the C&P syntax.

Suppose that we have m C&P protocols Π1, . . . ,Πm, for proving properties P1, . . . ,Pm about their inputs,
and all these protocols have uniform transcripts. For simplicity, let’s assume that each Πi only contains a
single AssertZero statement, which verifies correctness of the entire proof.3

In the disjunctive proof from §3.2, the prover runs the protocol Πi∗ corresponding to the true statement
Pi∗ , receiving random challenges from the verifier. To hide which branch is being executed, the prover pads
its messages to the maximum length of the message for that round in any Πi, while the verifier’s challenges
are padded similarly. After running this, the prover is left with a commitment zi∗ corresponding to the true
branch, which should be zero; however, the prover can also compute values zi, for i 6= i∗, by following the
computations across all the other branches using the verifier’s challenges. Of course, these zi values will
most likely be non-zero. Meanwhile, the verifier can compute all of the commitments z1, . . . , zm, it just does
not know which is the correct one.

To complete the proof, the parties run a standard OR proof [CDS94] where the prover shows that at least
one of the zi commitments contains zero. Note that the size of this OR proof is independent of the size of
any of the protocols Πi. For completeness, we present this proof in Figure 2 using the C&P syntax. The idea
is that the prover generates m− 1 random challenges, for indices i 6= i∗, and crafts the messages di so that
the verifier’s check will always pass for these, even when di 6= 0. The verifier’s random choice of e ensures
that there is at least one index where P did not know the challenge, which must contain a commitment to
zero.

OR Proof Construction of [CDS94]

Let x1, . . . , xm be the input commitments, where the prover knows an index j such that xj = 0.

1. Run Random() to get random commitments r1, . . . , rm.

2. P samples ei ∈R F, for all i 6= j.

3. P defines di = ri − xi/ei, for i 6= j, and dj = rj , and sends d1, . . . , dm to V.

4. Let zi = ri − di, for i ∈ [m].
(Note that zj = 0, while zi = xi/ei for all i 6= j)

5. Run Send[V→P](e← F).

6. P computes ej = e−
∑
i 6=j ei.

7. Run Send[P→V](ei), for i = 1, . . . ,m− 1.

8. Run AssertZero(xi − eizi), for i = 1, . . . ,m.

Figure 2: OR proof for showing that one out of m commitments contains zero.

4.4 Zero Knowledge from IP with LOVe and VOLE

As the final step, we show that we can convert any C&P IP with LOVe into a zero-knowledge proof, using
vector oblivious linear evaluation (VOLE). We use a relaxed form of random VOLE functionality, in Figure 3,
which picks random samples (ri, τi), (α, βi) such that τi = riαi+βi, but allows corrupt parties to choose their
own randomness. This models existing random VOLE protocols based on the LPN assumption [BCGI18,

3Over a large field, AssertZero’s can anyway be compressed down to just one, by checking a random linear combination
chosen by the verifier.
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BCG+19b], which can generate a large, length n VOLE with communication that is almost independent
of n.

Commitments with MACs. We replace the abstract commitment notation x with one realized using
information-theoretic MACs from VOLE. We write x to denote that the prover holds x, τx ∈ F, while the
verifier holds βx and the fixed MAC key α ∈ F. To open a commitment to x, the prover sends x, τx and the
verifier checks that τx = xα+ βx. It is easy to see that cheating in an opening requires guessing the random
MAC key α, so happens with probability 1/|F|.

As before, we overload the + and · operators to denote addition and multiplication-by-constant, respec-
tively, which can be done with just local computation due to linearity of the commitments.

The transformation. Given the linearly homomorphic commitment scheme based on VOLE, obtaining a
ZK proof is relatively straightforward. First, the prover commits to its inputs, by sending each input masked
with a random VOLE commitment, and then the parties run a coin-tossing functionality, Fcoin (Figure 4),
to sample the random identifier given to the two parties. The parties then run the C&P protocol as usual,
with the difference that each AssertZero is performed by having the prover send the tag τx, and the verifier
check that τx = βx (and hence, x = 0).

Functionality FnVOLE

The functionality interacts with a sender S, receiver R, and adversary A.

On input α ∈ F from R, the functionality does the following:

• Sample ri, βi ← F, for i = 1, . . . , n, and set τi = riα+ βi.

– If S is corrupted: receive ri, τi from A and recompute βi = τi − riα.

– If R is corrupted: receive βi from A and recompute τi = riα+ βi.

• Output (r1, τ1, . . . , rn, τn) to S and (β1, . . . , βn) to R.

Figure 3: Ideal functionality for vector oblivious linear evaluation over F.

Functionality Fcoin

On input λ, the functionality samples r ← {0, 1}λ and sends r to both parties.

Figure 4: Ideal functionality for coin tossing.

Theorem 4. Suppose ΠLOVe
CP is a C&P IP with LOVe for property P, satisfying completeness, soudness error

ε and honest-verifier zero-knowledge. Then, ΠVOLE
ZK is a zero-knowledge proof for the NP relation defined by

P, with soundness error ε+ 1/|F|. Furthermore, if ΠLOVe
CP is a proof of knowledge, then so is ΠVOLE

ZK .

Proof. Completeness follows immediately from the completeness of ΠLOVe
CP , and the linear properties of the

VOLE-based commitments. Regarding soundness, consider a cheating prover P∗ who manages to prove an
incorrect statement in ΠVOLE

ZK with probability ε∗. We can turn P∗ into an adversary for the soundness of
ΠLOVe

CP . The only difference in the two executions, is that in ΠLOVe
CP there is no possibility to cheat during an

AssertZero, whereas in ΠVOLE
ZK , P∗ may force an incorrect assertion with probability 1/|F|. We therefore have,

|Pr[V outputs 1 in ΠVOLE
ZK ]− Pr[V outputs 1 in ΠLOVe

CP ]| ≤ 1/|F|.

Since ΠLOVe
CP has soundness error ε, we conclude that ΠVOLE

ZK has soundness error at most ε+ 1/|F|.
Finally, for the proof of knowledge property, observe that in ΠVOLE

ZK , the extractor can simulate FVOLE,
and so extract all of the random values ri. This corresponds to knowing the entire proof string π in the
underlying IP with LOVe, so we can run the same extraction algorithm as for ΠLOVe

CP .
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Transformation ΠLOVe
CP → ΠVOLE

ZK

Let t be the number of Random instructions in ΠLOVe
CP , the underlying C&P IP with LOVe.

Input phase: The prover has input the witness w1, . . . , wn:

1. The parties call F t+nVOLE, to obtain the random commitments r1, . . . , rt+n.

2. P sends di = ri − wi−t to V, for i = t+ 1, . . . , t+ n.

3. Both parties compute the commitment wi−t = ri − di, for i = t+ 1, . . . , t+ n.

4. The parties call Fcoin to obtain the identifier idπ ∈ {0, 1}λ.

Protocol: The parties execute the instructions in the protocol as follows:

1. Random(): For the i-th such instruction, output the commitment ri.

2. Send: The parties send the appropriate message according to the protocol.

3. +, ·: The parties run add or multiply-by-constant with corresponding commitments.

4. AssertZero(x): P sends τx to V, who checks that τx = βx.

Output phase: The verifier outputs 1 if all AssertZero instructions passed.

Figure 5: Zero-knowledge proof from VOLE and C&P IP with LOVe.

5 Streaming and Non-Interactive Proofs via Fiat-Shamir

We now show how to modify our previous constructions for arithmetic circuit satisfiability and disjunctions
to support streaming, and also be non-interactive via a variant of the Fiat-Shamir transform [FS87].

5.1 Streaming Interactive Proofs

We use the term streaming to refer to a protocol where both the prover and verifier algorithms can be
run using only a constant amount of memory, independent of the size of the statement and witness. For
disjunctive proofs, we relax this to allow O(m) memory, where m is the maximum number of branches in any
disjunction. Note that when looking at a C&P IP with LOVe, as well as requiring small memory for P and
V, we need that the linear oracle queries can be performed with small memory. It is enough to require that
P can compute the result of each oracle query incrementally during the protocol, and with constant memory;
when translating the IP with LOVe into a zero-knowledge proof based on VOLE (§ 4.4), this ensures that
the resulting protocol also has constant memory, since each AssertZero can be checked on-the-fly.

Recall that in our protocol for circuit satisfiability (§4.2), the multiplication gates are all verified in a batch
at the end of the computation. This requires storing all commitments created during each multiplication in
memory, leading to a memory cost that is linear in the circuit size.

We can easily avoid this by checking multiplications on-the-fly using an independent random challenge
from V for each multiplication. Below, we describe this variant of the multiplication subprotocol. To help
with removing interaction, we have also expanded the description of the protocol, by replacing Fix and
Reveal instructions with messages from the prover and calls to AssertZero. Note that this is purely a syntac-
tic change, since this is what is done anyway when compiling the C&P protocol to an IP with LOVe as in §4.1.

Streaming Mult(xi, yi): To evaluate the i-th multiplication gate:

1. Run Random() to get ai, ri, r
′
i.

2. Run Send[P→V](δi = ri − xiyi) and Send[P→V](δ
′
i = r′i − aiyi).

3. Let zi = ri − δi and ci = r′i − δ′i.

4. Run Send[V→P](ei ← F).
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5. Run Send[P→V](εi = eixi − ai).

6. Run AssertZero(eixi − ai − εi).

7. Run AssertZero(eizi − ci − εiyi).

Note that the first AssertZero call simply verifies that εi was revealed correctly, while the second call
verifies the result of the multiplication.

To analyze the soundness of this, consider a cheating prover who sends values

δi = ri − xiyi −∆i, δ′i = r′i − aiyi −∆′i (1)

(Note that we can ignore the case of a prover who sends εi 6= eixi − ai, since this will always be caught by
AssertZero.) The second assertion only passes if

eizi − ci − εiyi = 0

⇔ ei(xiyi + ∆i)− (aiyi + ∆′i)− (eixi − ai)yi = 0

⇔ ei∆i = ∆′i.

Since ∆i,∆
′
i are fixed before ei is chosen, if ∆i 6= 0 then verification succeeds with probability at most 1/|F|.

5.2 Removing Interaction From the Verifier

We now show how to transform the above protocol to remove all interaction from the verifier (apart from
calls to AssertZero), using a variant of the Fiat-Shamir transform. This transformation is similar to that
used for interactive oracle proofs [BCS16], where bounds were also given on the soundness of the resulting
non-interactive proofs. However, these bounds are not suitable for us, since in the worst case the soundness
can degrade exponentially with the number of rounds. Therefore, we also give concrete, tight bounds on the
soundness of the transformation when applied to the streaming protocol above (which has O(|C|) rounds).

In Figure 6 we define the transformation we use, which can be applied to any IP with LOVe. We make use
of the random identifier idπ as input to the first call to the random oracle; this ensures that P is committed
to π before it can obtain random challenges, and is crucial for security.

Transformation FS(Π)

Let x be the NP statement being proven, and Π the underlying IP with LOVe.
Let H : {0, 1}∗ → F be a random oracle.

• The prover chooses the proof string π, as in Π.

• Both parties receive the random public identifier idπ ∈ {0, 1}λ.

• P computes the first message a1, and challenge e1 = H(x‖idπ‖a1).

• For each round i > 1, P computes its message ai and the challenge

ei = H(ai‖ei−1)

• P sends the messages (a1, . . . , at).

• V recomputes all the challenges ei, makes the same queries to the linear verification oracle as in the original
protocol Π, and accepts if they all accept.

Figure 6: The transformation to non-interactive proof with LOVe.

Theorem 5. Let ΠCircuit be the protocol for arithmetic circuit satisfiability from § 5.1, with soundness error
1/|F|. Then, the compiled protocol FS(ΠCircuit) is a non-interactive IP with LOVe with soundness error at
most

3Q

|F|
+
Q

2λ
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where Q is the number of random oracle queries made by a malicious prover.

See § B for the proof.

5.3 Removing Interaction From AssertZero

We have just shown how to remove interaction from the verifier in our streamable IP with LOVe for circuit
satisfiability. However, when translating this into a zero knowledge proof using, e.g., VOLE as in § 4.4, we
still have to deal with all the AssertZero statements in a streaming-friendly manner. Ideally, we would like to
batch all AssertZero’s into one check by taking random linear combinations, however, this requires storing all
intermediate values in memory. We now show how to avoid this, by carrying out the AssertZero statements
both non-interactively and with constant memory.

Let ΠNI be any non-interactive C&P protocol, namely, one which does not contain any messages sent by
the verifier, but has an arbitrary number of AssertZero queries. In Figure 7, we show how to transform ΠNI

to have just one AssertZero. The idea is that, instead of taking a combination of all AssertZero’s at the end,
we compute this combination in an incremental manner. At each AssertZero on input γ, we take a random
challenge e (from a random oracle) and add e · γ to a running state z. At the end of the computation, to
verify that all the γ values were zero, we simply run AssertZero on z.

Transformation Stream(ΠNI)

Let H : {0, 1}∗ → F be a random oracle.

1. P first commits to its inputs as in ΠNI, and both parties receive the random identifier idπ ∈ {0, 1}λ.

2. For the i-th AssertZero(γi) instruction in ΠNI, if i = 1:

• Let e1 = H(idπ‖a1) (where a1 contains all messages sent until now)

• Compute z = e1γ1.

Otherwise, if i > 1:

• Let aji be the set of messages sent in SendP→V instructions since the previous AssertZero.

• Let ei = H(ei−1‖aji).
• Update z = z + eiγi.

3. All other instructions are kept the same.

4. At the end of the program, run AssertZero(z).

Figure 7: The transformation to a streamable non-interactive IP with LOVe.

Theorem 6. Let ΠNI be a non-interactive C&P protocol that is complete and has soundness error ε. Then,
the compiled protocol Stream(ΠNI) is a non-interactive IP with LOVe with soundness error

ε+
2Q+ 1

|F|
+
Q

2λ

where Q is the number of RO queries made by a malicious prover to H.

See § C for the proof.

5.4 Streaming with Disjunctions

Consider protocols Π1, . . . ,Πm for relations R1, . . . ,Rm, which have each been compiled to be streamable,
non-interactive IPs with LOVe with one query each, via our previous transformations. We can apply the
OR transformation (Theorem 1) to obtain a protocol ΠOR for proving that at least one of the Ri is satisfied.
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Since the original protocols were non-interactive and perform only one query, we can actually simplify the
transformation from Figure 1, since there is no need for the verifier to send the random ρi challenges, which
are used to compress the number of queries. As a result, the final protocol ΠOR essentially consists of running
Πi for the true branch, P sending the di-values, followed by one random challenge f from the verifier, then
a message containing f1, . . . , fm from the prover and m linear oracle queries.

We can now apply the Fiat-Shamir transformation in Figure 6 to this protocol, to squash it back to being
non-interactive. Since there is only one challenge from the verifier, it is easy to see that in this case, the
soundness error does not increase by more than an additive factor of Q/|F|, for Q random oracle queries.
Regarding memory usage, while each branch can be evaluated in constant memory, the prover has to keep
track of O(m) values to be checked at the end, giving O(m) memory cost for m branches.

Nested disjunctions and the logarithmic proofs. When repeatedly nesting disjunctions to obtain
more complex statements, or logarithmic sized OR proofs as in §3.3, we can apply the same transformations
to obtain non-interactive and streamable proofs. In this case, the exact soundness error depends on the
structure of the program and the sequence of the transformations. We leave it as future work to obtain a
general method for analyzing this type of construction.

6 Implementation and Evaluation

We implemented the non-interactive variant of the online portion of Mac′n′Cheese in the Rust programming
language. Our implementation is agnostic to the specific choice of finite field (so long as it is large enough
for the desired security level). Network communication between the prover and verifier is protected by TLS,
and we use the BLAKE3 hash function to generate challenges for the non-interactive protocol. Currently,
our implementation is single-threaded.

VOLE. Our implementation supports pluggable VOLE backends. The backend that we use, at present, is
a “dummy” backend, which (insecurely) generates random MACs by using a pre-shared seed with a PRNG.
This simulates the preprocessing scenario in which Random MACs have been pre-generated.

Streaming. To facilitate streaming, our implementation does not view its input as an explicit circuit
graph. Instead, the proof statement is lazily built-up by a series of function invocations. As a result, we
get reduced memory consumption (for free) as temporary values get automatically freed when they are no
longer in-scope.

In order to stream a two-way disjunction, both branches of the disjunction must be interleaved (otherwise
the prover would be forced to either buffer the entirety of a branch, or reveal which branch is ‘true’). To
achieve this interleaving, we leverage Rust’s async/await functionality to (cheaply) concurrently execute
both branches.

Optimizations. We have implemented constant-folding operations for MACs (akin to Skipgate [SRH+17]).
In particular, we track (on both the prover and the verifier) whether each MAC corresponds to a pub-
lic/constant value, and perform peephole optimizations on these values. For example, we lower the product
of a public value with a private value into a constant multiply to avoid the communication and computation
overhead which would be incurred if we ran the full multiplication protocol. We also compute multiplications
on purely public values without any communication and lower a public zero multiplied by a private value
into a public zero. These peephole optimizations enable users of the Mac′n′Cheese implementation to write
efficiently-executable proof statements without needing a value abstraction other than the MAC.

6.1 Evaluation

We benchmarked our implementation for prime field Fp for two choices of p: 261−1 and 2127−1. We include
p = 261 − 1 to compare most accurately with Wolverine, despite the fact that in the non-interactive setting
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n VOLEs Running time Max mem Total comm Running time Max mem Total comm
(millions) (seconds) (MB) (seconds) (MB)

p = 261 − 1 p = 2127 − 1

64 .8 .6 14.1 6.1 MB 1.1 14.2 12.1 MB
96 2.7 1.8 14.1 20.4 MB 3.8 14.2 40.8 MB

128 6.3 4.7 14.1 48.1 MB 9.3 14.2 96.5 MB
192 21.3 14.4 14.1 162.6 MB 32.4 16.8 325.1 MB
256 50.4 41.2 16.2 385.0 MB 79.3 20.3 770.0 MB
384 170.1 126.5 24.8 1.3 GB 276.2 40.0 2.5 GB
512 403.2 343.7 35.3 3.0 GB 649.3 60.2 6.0 GB
768 1360.1 1171.7 78.7 10.1 GB 1837.4 122.2 20.3 GB

1024 3223.3 2745.6 120.2 24.0 GB 3608.4 198.2 48.0 GB

Table 1: Performance results for the matrix multiplication experiment. The Max mem columns correspond to
the maximum memory used between the prover and verifier. The running time and total communication does not
account for the communication required by VOLE, which is roughly 130 ns and 1.32 bits per VOLE for p = 261 − 1,
respectively [WYKW20, Table 4].

we only get 61-bits of security. However, we note that this attack must necessarily be done online and thus
may be mitigated to a certain extent.

All benchmarks were run on a machine with 40 Intel Xeon Silver 4114 cores operating at 2.20 GHz.
All experiments were run locally, and thus bandwidth was not the limiting factor. To account for this
unrealistic deployment scenario, we provide the total communication required in our experiments, allowing
one to compute a rough estimation of the performance cost when the bandwidth is restricted. Also, as
noted above, these results do not include the cost of VOLE. We are in the process of integrating the VOLE
protocol recently presented by Weng et al. [WYKW20], but do not believe this will have a large impact on
the overall running time and communication cost given that a single VOLE for p = 261− 1 can be generated
in 130 ns at a communication cost of 1.32 bits [WYKW20, Table 4].

Mac′n′Cheese achieves a per multiplication cost of 2.5 µs for p = 261 − 1 and a per multiplication cost
of 4 µs for p = 2127 − 1. This is comparable to the 1.6 µs per multiplication achieved by Wolverine (which
uses p = 261− 1). We believe the discrepancy can be accounted for by the fact that the results presented for
Wolverine were over five threads, whereas Mac′n′Cheese is currently single-threaded.

To further explore the performance of Mac′n′Cheese, we ran two experiments, one to demonstrate the
overall performance of Mac′n′Cheese when disjunctions do not come into play, and one to demonstrate the
performance improvement when disjunctions are introduced. We discuss each in turn below.

Experiment 1: Matrix multiplication. In this experiment, we consider the setting where the prover
wants to convince the verifier that it knows two private n-by-n matrices that multiply to some public matrix
using the naive O(n3) multiplication algorithm. While a contrived example with seemingly no real-world
use case, this example has been explored in other works [WYKW20, ZXZS20, BCTV14] as a means for
benchmarking arithmetic-focused ZK schemes.

We ran Mac′n′Cheese on this proof statement, varying n from 64 to 1024; see Table 1 for our results.
Of particular note is the small amount of memory required—even for a large 1024-by-1024 matrix, both the
prover and verifier require under 200 MB of memory. However, note again that our results do not include
the memory cost of VOLE, which could potentially contribute another 160 MB of memory to our results.

Experiment 2: Disjunctions. In this experiment, we explore the effect our nested disjunction optimiza-
tion has on the overall running time and communication cost. We do so by combining the above matrix
multiplication proof statement with disjunctions by considering the (admittedly contrived) scenario of a
prover wanting to prove that it knows two n-by-n matrices such that their multiplication equals one of t
public matrices, where we vary t from two to sixteen.
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n t VOLEs Running time P mem Total comm Running time Max mem Total comm
(millions) (seconds) (MB) (MB) (seconds) (MB) (MB)

p = 261 − 1 p = 2127 − 1

64

2
1.6 1.3 14.1 12.1 2.0 14.1 24.3
.8 .8 14.1 6.1 1.7 14.1 12.1

4
3.2 2.8 14.1 24.3 4.5 14.1 48.5
7.9 1.4 14.1 6.1 3.8 14.1 12.1

8
6.4 5.6 14.1 48.5 9.3 16.1 97.0
7.9 3.1 14.1 6.1 7.7 14.1 12.1

16
12.7 11.9 14.1 97.0 19.2 14.1 194.0
7.9 6.6 14.5 6.1 15.5 16.6 12.1

128

2
12.6 11.4 14.1 96.5 18.9 14.1 193.0
6.3 7.2 14.1 48.3 16.3 14.1 96.5

4
25.3 23.9 14.1 193.0 39.2 14.1 386.0
6.3 12.1 14.8 48.3 32.6 17.3 96.5

8
50.6 49.2 16.1 386.0 80.5 14.1 772.0
6.3 24.9 17.8 48.3 65.6 22.3 96.5

16
101.2 103.6 14.1 772.0 168.6 14.1 1544.0

6.3 53.1 24.4 48.3 133.7 34.4 96.5

256

2
100.9 102.4 16.3 770.0 166.4 21.3 1540.0
50.5 64.0 24.8 385.0 142.1 27.4 770.0

4
201.9 209.3 16.2 1540.0 342.1 20.3 3080.0
50.5 108.9 29.3 385.0 282.5 37.4 770.0

8
403.7 435.9 18.1 3080.0 705.0 24.7 6160.0
50.5 223.9 39.3 385.0 568.0 57.3 770.0

16
807.4 813.2 16.4 6160.0 1396.6 27.6 12320.0
50.5 450.8 63.2 385.0 1137.3 101.3 770.0

Table 2: Performance results for the disjunction experiment. t denotes the number of matrix multiplications we are
OR-ing over. For any given disjunction number, the top row shows results for the naive approach and the bottom row
shows results when using our nested disjunction optimization. As before, the running time and total communication
does not account for the cost of VOLE.

Table 2 presents our results. We can immediately see the benefit of nested disjunctions both in terms of
running time and overall communication. For example, for 256-by-256 matrices with sixteen disjunctions,
we get the expected 16× communications improvement alongside a 1.2–1.8× running time improvement.
Note that the reason the running time does not scale with communication is because the prover and verifier
still need to compute all the branches and hence still need to pay the computation cost required there.
However, recall that our experiments are run locally and hence are not communication-bound; in bandwidth-
constrained environments the savings in communication will result in a potentially much larger running time
improvement. We also note that concurrent disjunctions increase the memory usage of both the prover and
verifier, at least for larger matrix sizes. This is due to the fact that both the prover and verifier are processing
t matrix multiplications at once.
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A More Details on Stacking

In this section we describe how to construct threshold stacking and give a full construction and proof for the
recursive stacking approach.

A.1 Threshold Stacking

We now describe how to construct a protocol for a higher threshold of true statements. Let S ⊂ [m] be the
subset of branches that P has a witness for and where |S| = r. We make the following modifications to ΠOR:

1. In the original protocol, P in Step 1 creates one string π that is getting sent to the oracle for queries by
V. This does not work in case of a general threshold r. One solution would be to concatenate m strings
π1, . . . , πm and use the respective substring for the respective oracle queries, but this will increase the
oracle length by a factor of m. As the oracle length might have an impact on efficiency, we want to
avoid this and will instead use a solution that only increases it by a factor r.

We can write each πi as having length ` = maxi∈[m] `i by padding it with 0s. The honest P will only
have πi, i ∈ S available. We can, for each of the ` elements of each πi, define a polynomial Πj∈[`] of
degree r − 1 such that Πj(i) = πi[j] for i ∈ S. Then, we can place the r coefficients of each Πj in π,
which therefore becomes π = Π1| . . . |Π`|r1, . . . , rm.

This requires us to modify how queries to the oracle will be made, but the change is simple. For each
query 〈πi, zi〉 =? yi we instead create the query 〈π, z̃i〉 =? yi where z̃i ∈ Fr`. We will let the first r
elements of z̃i consist of [zi[1], i ·zi[1], . . . , ir−1zi[1]] i.e. of the first element of zi multiplied with powers
of i. Then, the next r elements will consist of zi[2] multiplied with the same pattern of powers of i
etc. The reason for this is that the powers of i will later implicitly compute Πj(i) and therefore, for
the true branches, will reconstruct πi[j], such that the same inner product as in a real protocol will be
computed.

2. In Step 2, we need to communicate a different message ah,i for each i ∈ [m]. This is because we want
to execute multiple branches honestly but do not want to reveal which it is that we use. Our solution
is as follows: For each round h ∈ [t] where P sends messages we let Ah(X) be the polynomial of degree
r − 1 such that ∀s ∈ S : Ah(s) = ash. That means that we create a polynomial that agrees with the
correct messages for all valid branches. V will later use the interpolation of each Ah(X) at all i ∈ [m]
to determine the queries that it will issue4.

3. One can see Step 4 of ΠOR as P choosing m − 1 secret shares, where the choice of f later determines
the secret and thus the last share. Here, knowing these shares in advance allows P to “lie” in m − 1
proof instances. For the threshold setting, we can instead let P choose m− r shares fi, i 6∈ S in Step 4
and compute the di-values accordingly (use e.g. Shamir’s Secret Sharing). Later in Step 5 V sends r
challenges f1, . . . , fr. P will compute the remaining r shares of fi, i ∈ S such that the fi form a packed
secret sharing where f1, . . . , fr are indeed the secrets. It then sends all these shares to V who indeed
checks that they form a correct secret-sharing of the demanded secret with the correct threshold m−r.

We leave a full discussion of this protocol for the full version of this paper.

A.2 Formalizing Recursive Stacking

Constructing the basic protocol. We construct the base protocol ΠA−OR that shows the relation ROR

for two branches in Figure 8. The protocol ΠA−OR, on a high level, works as follows:

1. First, the prover adds random multiplication triples to the string π. This will later allow it to prove
that certain multiplicative relations hold between elements that are in the span of π. We do not care

4For this to work the Equisimulatability property of the individual protocols is not enough. It can be made to work though
as messages from P have a pseudorandom distribution over F.
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Protocol ΠA−OR

Let Π1,Π2 be protocols such that each Πi is ti-round qi-query equisimulatable public coin IP with LOVe over F
for relation Ri with oracle length `i.

Both P and V have inputs x1, x2 where xi ∈ L(Ri). P additionally has input wi∗ for (at least) one i∗ ∈ [2] such
that (xi∗ , wi∗) ∈ Ri∗ . We define q := q1 + q2, ` := max{`1, `2}, and t := max{t1, t2}. Let zk,i = zk,i| 0 · · · 0︸ ︷︷ ︸

`−`i times

.

1. P initially simulates Πi∗ on input (xi∗ , wi∗) to obtain the string πi∗ and the state sP0 . It then sets

π = πi∗ | 0 · · · 0︸ ︷︷ ︸
`−`i∗ times

|a1 . . . aℵb1 . . . bℵc1 . . . cℵ

where av, bv are chosen uniformly at random and cv = av · bv.

2. Define sP0 := (xi∗ , wi∗), s
P
ti∗ := ⊥. For h ∈ [t], P and V do the following:

(a) Let rV,ih be the length of the challenge that V would send for protocol Πi in round h. V sets
rh = max{rVh,1, rVh,2}, samples eh ← Frh uniformly at random and then sends it to P.

(b) P sets (ah, s
P
h) ← Πi∗(s

P
h−1, eh) where P only uses the first rPh,i∗ elements of eh as required by Πi∗ .

It computes ch ← CP(x̂, h, i∗, ah) and sends ch to V.

3. V samples 2ℵ strings {ρv,1, ρv,2}v∈[ℵ] of length q1, q2 each uniformly at random from F and sends these to
P.

4. P for i ∈ [2] computes

{(zk,i, yk,i)}k∈[qi] ← Q(xi, {eh, dec(x̂, h, i, ch)}h∈[ti]).

Additionally, for v ∈ [ℵ] it sets

ẑv,i =
∑

k∈[qi]
ρv,i[k]zk,i and ŷv,i =

∑
k∈[qi]

ρv,i[k]yk,i.

Then for v ∈ [ℵ] P computes µv,1 = 〈π, ẑv,1|0 . . . 0〉− ŷv,i, µv,2 = 〈π, ẑv,i|0 . . . 0〉− ŷv,2, dv,1 = µ1−av, dv,2 =
µ2 − bv and sends dv,1, dv,2 to V.

5. Define δi ∈ F3ℵ to be the vector that is 1 on the ith position and 0 everywhere else. Also, let γv be the
vector that is −dv,2 in the vth position, −dv,1 in the v + ℵth position, −1 in the v + 2ℵth position and 0
everywhere else. Then V does the following:

(a) Compute ẑv,1, ẑv,2, ŷv,1, ŷv,2 like P did in Step 4.

(b) For each v ∈ [ℵ] send the queries (0 . . . 0|γv, dv,1 ·dv,2), (ẑv,1|−δv, dv,1 + ŷv,1), (ẑv,2|−δv+ℵ, dv,2 + ŷv,2)
to the oracle.

V accepts if all queries are true, otherwise it rejects.

Figure 8: The protocol ΠA−OR for an OR-statement.

here how to show that P is actually doing this honestly, as this is covered in a different part of this
work.

2. Then, the evaluation of both branches is done in parallel as in ΠOR.

3. Now instead of performing the oracle queries separately, we let V choose random linear combinations
of the oracle queries similar to the intuition outlined in Section 3.3.

4. Finally P sends to V material that allows V to test if for at least one of the two branches all the queries
are correct by checking that the product of the µi is 0. V then performs these queries.

All queries that V will do are deterministic given the transcript. Furthermore, the additional messages that
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are sent by both P and V appear uniformly random. This will later allow us to recursively construct a proof
for more than 2 branches.

Theorem 7. Let Π1,Π2 be protocols such that each Πi is a ti-round qi-query equisimulatable Public Coin
IP with LOVe over F for relation Ri with oracle length `i, message complexity αi and soundness error εi.
Furthermore, let ℵ ∈ N+ and assume that av · bv = cv holds for all v ∈ [ℵ].

Then the protocol ΠA−OR in Figure 8 is a Public Coin IP with LOVe for the relation ROR with

1. round complexity 2 + max{t1, t2};

2. oracle length 3ℵ+ max{`1, `2};

3. query complexity 3ℵ;

4. message complexity (2 + q1 + q2)ℵ+ max{αi}; and

5. soundness error ε1 + ε2 +

(
1−

(
|F|−1
|F|

)2)ℵ
.

Here, (q1 + q2) · ℵ field elements of the message complexity are just to send the pseudorandom vectors
ρv,1, ρv,2 from V to P. In practice, these can either be sent as a random seed that will be chosen by V and
expanded by P or can be obtained using the Fiat-Shamir Transform, thus reducing the message complexity
to just an 2ℵ additive overhead over proving the longer branch. When |F| is exponential in the security
parameter, then ℵ can be set to 1, meaning that the overhead consists of 2 field elements.

Proof. Completeness. If (xi∗ , wi∗) ∈ Ri∗ and P has wi∗ then Steps 1-4 will run by the same argument as in
the completeness proof for ΠOR. All that remains to show is that the 3ℵ queries will all be accepting.

For the first query, we have for each v ∈ [ℵ] that

〈π, 0 . . . 0|γv〉 = −dv,2av − dv,1bv − cv
= −bv · µv,2 + avbv − av · µv,2 + avbv − cv
= −bv · µv,1 − av · µv,2 + avbv

= µv,1 · µv,2 − bv · µv,1 − avµv,2 + avbv

= (µv,1 − av) · (µv,2 − bv)
= dv,1dv,2

which holds because av · bv = cv and because 〈πi∗ , zk,i∗〉 = yk,i∗ for the true branch. The latter implies
that also 〈π,

∑
k∈[qi∗ ] ρv,i∗ [k]zk,i∗〉 =

∑
k∈[qi∗ ] ρv,i∗ [k]yk,i∗ and therefore µv,1 · µv,2 = 0.

For the remaining two queries, we observe for the first one that

〈π, ẑv,1| − δv〉 = 〈πi∗ |0 . . . 0, ẑv,1〉 − av
= (〈πi∗ |0 . . . 0, ẑv,1 − ŷv,1)− av + ŷv,1

= dv,1 + ŷv,1

and the other query follows along the same lines.
Round complexity, oracle length, query complexity and message complexity follow from an inspection of

the actual protocol definition.

Soundness. Consider that for a successful transcript we must have that all queries pass, i.e. in particular the
last two for each v ∈ [ℵ]. There we have from the definition that

〈π, ẑv,1| − δv〉 = 〈πj |0 . . . 0, ẑv,1〉 − av = dv,1 + ŷv,1

and
〈π, ẑv,2| − δv+ℵ〉 = 〈πj |0 . . . 0, ẑv,2〉 − bv = dv,2 + ŷv,2
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Here, av, bv are placeholders for the respective values that δv and δv+ℵ select from π. By subtracting ŷv,i
from each side we can then define µv,i as in the protocol.

As the first query for each v ∈ [ℵ] must also hold (and because av ·bv = cv) it must be that µv,1 ·µv,2 = 0,
since otherwise

dv,1 · dv,2 = µv,1 · µv,2 − bv · µv,1 − avµv,2 + avbv

6= −bv · µv,1 − avµv,2 + avbv

= −dv,2av − dv,1bv − cv.

The probability for a single v ∈ [ℵ] to have either of µv,i being 0 and thus µv,1 ·µv,2 = 0, can be computed
as follows: The events that either are 0 or not are independent. We have Pr[µv,1 = 0] = Pr[µv,2 = 0] = 1/|F|.
Hence, the probability of either of them not being 0 is Pr[µv,1 6= 0] = Pr[µv,2 6= 0] = (|F| − 1)/|F|. As they
are independent, the probability of both of them being non-zero simultaneously must be Pr[µv,1 = 0∧µv,2 =
0] = (|F| − 1)2/|F|2.

A dishonest prover can, when neither having w1 or w2, by assumption only make all oracle queries from
{(zk,1, yk,1)}k∈[q1] or {(zk,2, yk,2)}k∈[q2] be correct with probability ≤ ε1+ε2 by a union bound. Thus, assume
that both these from Π1 and Π2 don’t go through. Those queries actually made by V in ΠA−OR go through

for one v ∈ [ℵ] with probability 1 −
(
|F|−1
|F|

)2
by the reasoning shown above and the independent choice of

ρv,1, ρv,2. Repeating the experiment ℵ times as in the protocol yields the promised soundness error.

Honest-Verifier Zero-Knowledge.
We now construct a simulator S for the protocol ΠA−OR that will, on input x1, x2, output a transcript τ

that is perfectly indistinguishable from a transcript generated by interaction with an honest V.
Pick a protocol instance Πi at random, run its HVZK simulator Si and generate all ch using CP. This

will be perfectly indistinguishable from any transcript of Πj with i 6= j by the HVZK property of Πi and the
definition of Equisimulatability. Choose uniformly random ρv,i as in the real protocol. Additionally choose
uniformly random values dv,1, dv,2 for all v ∈ [ℵ]. This is indistinguishable from the dv,i from ΠA−OR where
they are computed by subtracting a uniformly random av or bv from a secret value.

Public Coin. The argument is the same as for ΠOR.

Recursing. We now show how to recursively apply the construction of ΠA−OR, which is possible if all the
initial protocols are equisimulatable.

Lemma 1. Let Π1, . . . ,Π2m be Public Coin IPs with LOVe with the same properties as in Theorem 7.
Furthermore, assume that all 2m are equisimulatable. Denote with Π′i the protocol obtained by applying
ΠA−OR to Π2i−1,Π2i. Then all Π′1, . . . ,Π

′
m are also equisimulatable.

Proof. By assumption, there already exists an algorithm CP which takes care of simulating all the messages
that each ΠA−OR would perform in Step 2. All that remains to show is that also the messages sent in Step 4
of each instance of ΠA−OR can be packed into one vector c. This follows trivially: by the proof of the zero-
knowledge property of ΠA−OR we know that all dv,i for each ΠA−OR are uniformly random. Let each Π′i use the
same repetition parameter ℵ, then CP on input dv,1, dv,2 will simply output c = [d1,1, . . . , dℵ,1, d1,2, . . . , dℵ,2].
Decode will reconstruct dv,1, dv,2 from such c accordingly.

This now allows us to construct a protocol for ROR by recursively applying Theorem 7 and Lemma 1. For
simplicity we assume that m is a power of 2.

Corollary 1. Let Π1, . . . ,Πm be protocols such that each Πi is a ti-round qi-query equisimulatable Public
Coin IP with LOVe over F for relation Ri with oracle length `i, message complexity αi and soundness error
εi. Furthermore, let ℵ ∈ N+ and assume that av,w · bv,w = cv,w holds for all v ∈ [ℵ], w ∈ [log2(m)].

Then there exists a protocol ΠR−OR that is a Public Coin IP with LOVe for the relation ROR with

1. round complexity 2 · log2(m) + maxi∈[q]{ti};
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2. oracle length 3 · log2(m) · ℵ+ maxi∈[m]{`i};

3. query complexity 3 · ℵ;

4. message complexity (2 log2(m) + 2 ·maxi∈[m] qi + 6(log2(m)− 1) · ℵ) · ℵ+ max{αi}; and

5. soundness error
∑
i∈[m] εi + (m− 1) ·

(
1−

(
|F|−1
|F|

)2)ℵ
.

Proof. The idea for ΠR−OR is straightforward - first apply Lemma 1 to go from m protocols to m/2 instances.
Throughout we will only use one oracle string π. Since P has (xi∗ , wi∗) ∈ Ri∗ it will first compute πi∗ as in
Πi∗ , pad it with 0s as in ΠOR and then add log2(m) · ℵ triples av,w, bv,w, cv,w where av,w, bv,w are uniformly
random and cv,w = av,w · bv,w. This is log2(m) as many triples as in ΠA−OR and we need these for the
recursion.

As before, we simulate the messages using the true branch and in the end compute the queries that would
occur in any of the m branches from the messages that V obtains based on each Πi. We then use the triples
for w = 1 to compute the dv-messages based on the instance of ΠA−OR where the true branch Πi∗ is a part of.
Then, for each of the overall m/2 instances of ΠA−OR we compute the queries which V would make. Observe
that we do not actually make these now. In each branch of ΠA−OR, the adversary could have lied only with

probability ε2i−1 + ε2i +

(
1−

(
|F|−1
|F|

)2)ℵ
by Theorem 7.

Next, as the remaining m/2 protocols are equisimulatable by Lemma 1, applying ΠA−OR to combine these
will lead to m/4 equisimulatable protocols. We again combine the m/2 equisimulatable public coin IPs with
LOVe using Theorem 7, now using the multiplication triples in π for w = 2. As we applied ΠA−OR in the last
step and know that each of the first layer of ΠA−OR instances makes 3ℵ queries, V chooses challenges ρ that
combine these appropriately as before. P computes the dv,i-values necessary for the multiplication proofs
done in the second layer of ΠA−OR instances on the inner products of the respective queries that would have
been made in the end of the first layer of ΠA−OR instances as before. The values dv,i that we send in the
second layer are computed based on the one of the m/4 instances of ΠA−OR that the true statement Πi∗ is a
part of. The soundness error is by the definition of ΠA−OR the sum of the soundness error on either branch

of the protocol plus an additional error term

(
1−

(
|F|−1
|F|

)2)ℵ
.

Repeating the aforementioned process log2(m) times then leads to the claimed properties.

Again, we have that (2 ·maxi∈[m] qi+6(log2(m)−1) · ℵ) · ℵ field elements are chosen uniformly at random
by V. In terms of practical complexity, our proof loses in soundness as m increases, which is expected. The

additional loss term (m−1) ·
(

1−
(
|F|−1
|F|

)2)ℵ
does, on the other hand, not have such a big impact: if F = 2

then we’d have to choose ℵ = 193 for m = 2 to bring this error term down to ≈ 2−80. If we set m = 1024
then ℵ = 217 is sufficient. On the other hand, if |F| is exponential in the security parameter then we can
always let ℵ = 1 and the additional term in ΠR−OR would still be negligible.

B Proof of Theorem 5

Proof. When transforming the interactive protocol ΠCircuit, for each i > 1, the i-th challenge is computed as:

ei = H(ai‖ei−1)

where ai is the prover’s messages which were sent in the last round, that is, ai = (δi‖δ′i‖εi−1).
We begin by defining two events, concerning a malicious prover A in the protocol FS(ΠCircuit) for some

arithmetic circuit C (corresponding to a statement x). We define the value ∆i based on the deviation by A
in the i-th multiplication gate, as in (1).

We define the events:
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1. E1 to be the event thatA outputs a proof string π and a corresponding accepting transcript (a1, . . . , at).

2. E2 to be the event that both of the following hold: (1) If (q1, . . . , qt) := (x‖idπ‖a1, a2‖e1, . . . , at‖et−1),
and A queries both qi and qj for some i < j, then qi was queried first; and (2) For any i where ∆i 6= 0,
A queries ai‖ei−1.

Lemma 2. Let x be a statement defining an arithmetic circuit C, and A be a malicious prover who makes
Q queries to the random oracle H. Then, Pr[E1 ∧ ¬E2] ≤ Q

|F| .

Proof. Suppose that event E1 occurs, and E2 does not. Then, at least one of the following holds: (1) A
queried qj = aj‖ej−1, and then later qi, for some i < j, (2) There exists an i where ∆i 6= 0, and A did not
query ai‖ei−1.

Suppose (1) is true, and let i, j be a pair of indices where i < j and j− i is smallest, such that A queried
qj before qi. We can therefore assume that A did not query the oracle on qj−1 before querying qj = aj‖ej−1.
Since ej−1 = H(qj−1), this means that the behaviour of A up until querying aj‖ej−1 is independent of ej−1,
and so this query happens with probability at most Q/|F|.

In case (2), let i be such that ∆i 6= 0, but A did not query ai‖ei−1. Since the behaviour of A is
independent of ei, it can only produce a consistent transcript with probability 1/|F|, since it must firstly
send εi = eixi − ai, and without knowing ei this only holds with probability 1/|F|, unless xi = 0. Even
if xi = 0, then A must still have passed the second AssertZero, which requires that ∆iei = ∆′i, hence also
requires guessing ei.

Lemma 3. Let A be a malicious prover for some statement x that is not satisfiable, and suppose that A
makes Q queries to the random oracle. Then, Pr[E1 ∧ E2] ≤ 2Q/|F|+ 2−λ.

Proof. Suppose that the proof accepts and event E2 occurs. Since x is not satisfiable, there must exist a
multiplication gate i, with inputs xi, yi, for which A used the incorrect product when committing to xiyi;
that is, ∆i 6= 0. By assumption, A queried ai‖ei−1 to the random oracle to obtain ei, for which ∆iei = ∆′i,
since the proof accepts. We will now show that the value ∆i must have been fixed at the time of A querying
ai‖ei−1. Recall that ∆i is the difference between the value δ′i = ri − xiyi an honest prover should send, and
the actual δi sent by the adversary. For ∆i to be fixed, it is enough to show that ri, xi, yi have all been fixed
at this point.

Claim 1. If A made query qi = (ai‖ei−1), then it also queried q1, . . . , qi−1, and all these queries were made
after submitting the proof π, except with probability at most Q · (|F|−1 + 2−λ).

Proof. Suppose at least one such query was not made, and let j < i be an index where qj was not queried,
but qj+1 = (aj+1‖ej) was. Since ej = H(qj), the probability that A queried qj+1 is at most Q/|F|. Next,
we argue that all queries q1, . . . , qi must have been made after π was chosen by A. Note that by assumption
(1) of event E2, these queries were all made in order so we only need to consider q1. If q1 = x‖idπ‖a1 was
queried before choosing π, then it was made independently of idπ, so this happens only with probability at
most Q/2λ.

Assume now that all queries q1, . . . , qi were made after choosing the proof π. It follows that ri was
fixed prior to these queries being made. Since xi, yi are determined by some message sent in a previous Fix
instruction, and also by π, these values were also fixed by these queries. This implies that ∆i is already
determined when A queries qi, and a similar argument holds for ∆′i. Hence, the probability that ei satisfies
∆iei = ∆′i is at most Q/|F|.

Taking a union bound across all failure events, we get an overall probability of at most 2Q/|F|+Q/2λ.

Finally, considering a statement x which is not satisfiable, we can sum up the bounds from Lemmas 2
and 3, getting

Pr[E1] = Pr[E1 ∧ E2] + Pr[E1 ∧ ¬E2] ≤ 3Q

|F|
+
Q

2λ
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C Proof of Theorem 6

Proof. Define the possible challenge queries q1 = idπ‖a1 and qi = ei−1‖aji , for i > 1.

Claim 2. Suppose A queried qi for some i. Then, A also queried q1, . . . , qi−1, and made all these queries
in order, after submitting π, except with probability at most Q/|F|+Q/2λ.

Proof. This proceeds identically to the Claim in the proof of Theorem 5.

Now consider an A in an execution of Stream(ΠNI), where there exists an i such that γi 6= 0 (and so in
the original proof ΠNI, the proof accepts with probability at most ε). Let i be the largest such index, and
define

zi =

i∑
j=1

ejγj

If the proof accepts (that is, if AssertZero(z) succeeds), then it must hold that zi = 0.
By the Claim, if A queries qi to the random oracle, then it previously queried each of q1, . . . , qi−1 in turn,

and after receiving the identifier idπ (except with negligible probability). It follows that when querying qi,
all the γj , for j ≤ i, had been fixed, because these are determined uniquely by the randomness in π and the
messages sent prior to this instruction, which were all given as part of the queries {qj}j≤i. Hence, in this
case, we have Pr[zi = 0] ≤ Q/|F|, because it only holds if

ei = −γ−1i
i−1∑
j=1

ejγj (2)

On the other hand, if A does not query qi to the oracle, then the execution of A is independent of ei.
After completing the protocol, therefore, the probability that ei = H(qi) satisfies (2) is 1/|F|.

Combining the above failure events, the overall soundness is no more than

ε+
2Q+ 1

|F|
+
Q

2λ
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