
New Insights On Differential And Linear Bounds Using Mixed
Integer Linear Programming

(Full Version)*

Anubhab Baksi

Nanyang Technological University, Singapore

anubhab001@e.ntu.edu.sg

Abstract. Mixed Integer Linear Programming (MILP) is a very common method of modelling
differential and linear bounds for ciphers, as it automates the process of finding the best differential
trail or linear approximation. The Convex Hull (CH) modelling, introduced by Sun et al. (Eprint
2013/Asiacrypt 2014), is a popular method in this regard, which can convert the conditions corresponding
to a small (4-bit) SBox to MILP constraints efficiently. In our work, we study this modelling with CH
in more depth and observe a previously unreported problem associated with it.
Our analysis shows, there are SBoxes for which the CH modelling can yield incorrect modelling. As
such, using the CH modelling may lead to incorrect differential or linear bounds. This arises from
the observation that although the CH is generated for a certain set of points, there can be points
outside this set which also satisfy all the inequalities of the CH. As apparently no variant of the CH
modelling can circumvent this problem, we propose a new modelling for differential and linear bounds.
Our modelling makes use of every points of interest individually. This modelling works for an arbitrary
SBox, and is able to find the exact bound.
Additionally, we also explore the possibility of using redundant constraints, such that the run time
for an MILP solver can be reduced while keeping the optimal result unchanged. For this purpose, we
revisit the CH modelling and use the CH constraints as redundant constraints (on top of our usual
constraints, which ensure the aforementioned problem does not occur). In fact, we choose two heuristics
from the convex hull modelling. The first uses all the inequalities of a convex hull, while second uses a
reduced number of inequalities. Apart from that, we also propose to use the solutions for the smaller
rounds as another heuristic to find the optimal bound for a higher round.
With our experiments on round-reduced GIFT-128, we show it is possible to reduce the run time a few
folds using a suitable choice of redundant constraints. Further, we observe the necessity to consider
separate heuristics for the differential and linear cases. We also present the optimal linear bounds for
11- and 12-rounds of GIFT-128, extending from the best-known result of 10-rounds.
Keywords. differential cryptanalysis, linear cryptanalysis, milp, heuristic

1 Introduction

Mixed Integer Linear Programming (MILP) is among the most frequently used tool in symmetric
key cryptography, as evident from a large volume of research works [1,10,11,15,21,22,24,25]. More
particularly, MILP is used to determine the bounds for differential cryptanalysis [4] and linear
cryptanalysis [13] for a lot of modern ciphers. MILP aided techniques generally give an opportunity
to cover more rounds with more precision. Since the differential and linear cryptanalytic methods
are essential for any cipher design, MILP aided techniques are frequently used in cipher design and
further cryptanalysis, such as design of GIFT [2] or the improved differential bounds on GIFT in [25].

In the process, the problem of differential/linear bounds for a (reduced round) cipher is converted
to an MILP instance, which is then solved using a standard solver. It is to be noted that the
modelling from a differential/linear bound to an MILP instance can be done in various ways. As
the efficiency of such a solver greatly depends on the formulated MILP instance, the research
community has been active to find out optimal way for modelling. For example, the authors of [11]

*This is the full version of the paper with the same title accepted in International Conference on Information
Technology and Communications Security (SecITC) – 2020. The author likes to thank Sim Siang Meng (DSO National
Laboratories, Singapore), Xiaoyang Dong (Tsinghua University, Beijing, PR China), Raghvendra Rohit (University
of Rennes, Rennes, France) and the (anonymous) reviewers for their valuable feedback. This paper uses shorthand
notations for the interest of conciseness. In particular, it uses the string notation for the SBox (instead of the more
common table based notation), and] to denote the cardinality. Conversion of elements of Fn

2 to-and-from F2n is
assumed intrinsically.

https://sites.google.com/view/secitc/
https://sites.google.com/view/secitc/

experiment with heuristic techniques that can make the MILP solver can solve those instances in
less time.

Apart from this, the MILP aided techniques are used in context of the classical impossible
differential cryptanalysis [3]. The MILP modellings for impossible differential are directly taken
from that of the differential case [6,18]. Hence, any improvement in the modelling for the differential
case will likely improve the impossible differential too.

Our Contributions

The authors of [22] have introduced a MILP modelling by incorporating the concept of Convex
Hull (CH), which becomes quite popular in the literature [17, 21, 23, 25]. It follows-up from Mouha
et al.’s model [15].

We observe a problem related to this modelling which is not reported so far in the literature.
We show the convex hull modelling only works when the SBox meets certain condition. Thus,
applying the convex hull method to an arbitrary SBox may lead to incorrect results. The problem
arises to due a property of the convex hull. That is, it may happen that a point may be inside the
hyper-volume of the convex hull while the convex hull is generated excluding that point. Variations
of the CH model, such as [21], are also affected by this problem. Eventually, this problem does not
occur in common SBoxes, like GIFT (1A4C6F392DB7508E) [2] or PRESENT (C56B90AD3EF84712) [5].

In case the problem occurs, one may need to look for an alternate modelling; since apparently
no variant of the convex hull modelling can properly work with such an SBox. To address this issue,
i.e., to work with all SBoxes, we propose a different MILP modelling. This modelling works for both
differential and linear cases, and can give the exact bound (similar to [21]). Further, this model
can be fine-tuned to use with impossible differential cases (such as, [18]), or to find the minimum
number of active SBoxes (used in the design of the GIFT family of block ciphers [2]), or iterative
trails (like [25]). It is not explicitly tested though, this modelling will likely work for SBoxes with
higher (> 4) sizes (unlike the CH modelling of [22]).

On top of this, we propose heuristic methods to reduce the execution time. This is inspired
from [11], where the authors experiment with various heuristics to improve run time of the MILP
instances. These heuristics create a new MILP instance, but do not alter the actual MILP problem
(thus, the optimal bound remains unchanged). Using suitable heuristic may help the MILP solver
to return the optimal solution faster.

We experiment with three main heuristics, along with its combinations. We show how one
heuristic applies better to the differential cases, whereas the other applies better to the linear cases.
We indeed show a few folds reduction of run time compared to the corresponding no heuristic
cases. Interestingly, the idea for two of our main heuristics is actually taken from the convex hull
modelling of [22]. The third idea makes use of the optimal bounds already available for smaller
rounds.

For benchmark, we take the lightweight cipher GIFT-128 [2], and run the MILP differential
and linear instances for reduced rounds. As mentioned, the problem associated with convex hull
modelling does not appear for the GIFT SBox. Therefore, we are able to verify our results with
existing MILP bounds on GIFT reported in the literature, namely [10, 11, 21, 24]; and also with [12],
which uses a Simple Theorem Prover (STP) based approach is used (instead of MILP). We also
test with GIFT-64 [2] and PRESENT [5]; and report the optimal linear bounds for GIFT-128 for 11-
and 12-rounds for the first time in the literature.

2 Background

As previously mentioned, the problem of differential or linear bounds is converted to an MILP
instance through a proper modelling. After this, this MILP instance is solved by some state-of-the-
art solver, like Gurobi1. For the sake of completeness, we briefly describe the relevant MILP models
in the subsequent part.

1https://www.gurobi.com/

2

https://www.gurobi.com/

This idea of using MILP is introduced by Mouha et al. [15]. The next major contribution
comes from Sun et al. [22], where the convex hull (which is actually a concept in computation
geometry [7,16]) is used to form the linear constraints. This is quite useful as the code to find convex
hull is implemented in the open-source tool Sage2. The authors of [22] also propose a heuristic
algorithm to reduce the number of constraints returned by the convex hull, so that the MILP
instance thus constructed becomes faster to solve (but it does not change the underlying problem
of differential/linear bound). However, this claim is apparently not backed-up by any experimental
result.

It may be noted that, we actually model the Difference Distribution Table (DDT) [19, Chapter
3.4] (see Definition 1) for the differential case, and the Linear Approximation Table (LAT) [19,
Chapter 3.3] (see Definition 2) for the linear case. The convex hull method treats a given DDT/LAT
as distinct points in a hyper-cube. Then, the hyper-dimensional convex hull of the desired points
in the DDT/LAT is computed. Since a convex hull is represented by a set of linear inequalities,
those can be directly used for the constraints for the MILP instance3. As a side note, it can be
mentioned that the sign of the elements in the LAT does not play any role in finding the linear
bound, hence the absolute LAT can be used for simplification purpose.

Definition 1 (Difference Distribution Table (DDT)). For an n×n SBox S, it is the 2n×2n

matrix, where the row δ (= 0, 1, . . . , 2n − 1) and column ∆ (= 0, 1, . . . , 2n − 1) stores the number of
solution(s) x for S(x)⊕ S(x⊕ δ) = ∆.

Definition 2 (Linear Approximation Table (LAT)). The LAT for an n × n SBox S is the
2n × 2n matrix where the row γ (= 0, 1, . . . , 2n − 1) and column Γ (= 0, 1, . . . , 2n − 1) stores
|{γ · ~x⊕ Γ · ~y = 0}| − 2n−1, where ~x denotes the input variables to the SBox, ~y denotes the output
variables, and · denotes the dot product.

As a side note, it can be mentioned that non-MILP models are used in the literature. Examples
include (but not limited to), [12] which uses STP modelling, [9] which uses SAT modelling, [20]
which uses Constraint Programming (CP), Matsui’s approach [14].

2.1 Mouha et al. (Branch Number: Inscrypt’11)

As mentioned, Mouha et al. first propose MILP modeling for differential and linear cases [15]. The
corresponding bounds are found by finding the minimum number of active SBoxes.

The Differential Branch Number (DBN) and the Linear Branch Number (LBN) are used
subsequently. The DBN of the mapping F is defined as minx,δ 6=0{HW(δ) + HW(F (x)⊕ F (x⊕ δ))};
and that of LBN as minα 6=0,β,LAT[α,β] 6=0{HW(α) + HW(β)}; where HW(·) denotes Hamming weight.

Differential The first type of constraints come from modeling an XOR operation. Denoting x0, x1
as the inputs to the XOR and y as the output bit, the following linear constraints model this
operation (d is a dummy variable of type binary):

x0 + x1 − 2d ≥ 0;

d− xi ≥ 0 for i = 0, 1;

d− y ≥ 0.

Next the constraints for the linear layer, L. For simplicity, we consider it in the binary non-
singular matrix form, say, of dimension b. Assume, as before, (x0, x1, . . . , xb−1) as the input variables
denoting the difference (i.e., if the ith bit of L is active then xi = 1), and (y0, y1, . . . , yb−1) as the

2https://www.sagemath.org/
3The inequalities are not strict, i.e., of the type ≤ or ≥ (but not of the type < or >). The MILP solvers generally

cannot handle strict inequalities, hence the inequalities representing CH suits well for forming the constraints of
MILP instances.

3

https://www.sagemath.org/

output variables denoting the difference. Given the DBN is D, a new dummy variable of type binary
d is created. Finally the following linear constraints represent L:

b−1∑
i=0

xi +
b−1∑
i=0

yi −D · d ≥ 0;

d− xi ≥ 0 for i = 0, 1, . . . , b− 1;

d− yi ≥ 0 for i = 0, 1, . . . , b− 1.

It is to be noted that, the variable d in both cases indicates whether the corresponding operation
is active. The objective function of the MILP problem is set to minimize the arithmetic sum of the
d-variables which indicate the SBoxes.

Once the minimum number of active SBoxes is found, the bound for differential probability can
be computed by assuming the transition in each SBox takes maximum probability. This generally
amounts for a lower bound for the differential probability, since it is possible for the transition in
several SBoxes to take some lower probability.

Linear The modeling for the linear bound is similar to that of the differential. Therefore only the
modifications are mentioned here for brevity: No constraint is needed for the XOR operation, and
DBN is replaced by LBN.

2.2 Sun et al. (Active SBox: Eprint’13/Asiacypt’14)

The authors of [22] propose to use CH, which converts the input difference– output difference
relations of the DDT into linear constraints. This modelling is particularly useful for bit-oriented
ciphers like GIFT [2]. Since this model, similar to that of [15], uses the number of active SBoxes;
it is not possible to get the exact bound, as the maximum transition probability for each active
SBox is assumed when computing the bound. Although not explored, a similar modelling would
also work for the linear case.

Consider a w × v SBox where (x0, x1, . . . , xw−1) denotes the (non-zero) input difference vector,
and (y0, y1, . . . , yv−1) denotes the (non-zero) output difference vector. A dummy variable A of type
binary is created, which indicates whether the SBox is active (A = 1) or not (A = 0). The following
constraints capture this property:

A− xi ≥ 0 for i = 0, 1, . . . , w − 1;

w−1∑
i=0

xi −A ≥ 0.

Now the augmented vector (x0, x1, . . . , xw−1, y0, y1, . . . , yv−1) denote a (non-zero) input difference
– (non-zero) output difference pattern in the DDT. Each of the vectors denote a point in the hyper-
dimension. Then the concept of CH is applied on the set of all of the augmented vectors, to convert
the set of hyper-dimensional points to non-strict linear inequalities.

Generally, the number of constraints returned by the mathematical tools4 is in a few hundreds
for a 4× 4 SBox. For example, the number of such constraints for the GIFT SBox is 237 [25, Section
3.3].

In order to reduce the number of linear constraints, which in turn is expected to reduce the
execution time for the MILP solver; the authors of [22] also discuss about a greedy algorithm. For
example, the number of constraints for the GIFT SBox can be reduced to 21 [25, Section 4.2].

The basic idea of the greedy algorithm is to remove some of the linear constraints from the set
of all linear constraints for the CH. To see how it works, consider two constraints l0 and l1. Among
all the 2w+v points in the hyper-dimension, suppose ni of them are not satisfied by li respectively,
i = 0, 1. Those hyper-dimensional points which do not satisfy at least one constraint correspond

4The only tool used in the literature so far is Sage, to the best of our knowledge.

4

to the 0 transitions of the DDT. Suppose, n0 > n1; then l0 is given preference to be in the set of
chosen constraints. This is done over all constraints.

In addition to the convex hull constraints, other constraints are also considered, as discussed
here. If the SBox is bijective (v = w), the following two constraints can be inserted into the MILP
instance:

w

w−1∑
i=0

yi −
w−1∑
i=0

xi ≥ 0,

w
w−1∑
i=0

xi −
w−1∑
i=0

yi ≥ 0.

The branch number based constraints from [15] are used only if the branch number is > 2. The
authors mention that the branch number based constraints are redundant and hence are skipped if
the branch number = 2 [22, Section 2.2].

2.3 Sun et al. (Exact Bound: Eprint’14)

Extending the works of [22], the authors of [21] incorporate the individual transitions into the
hyper-dimensional points (by increasing the dimension). After this, the convex hull is computed
as in [22]. As the individual transitions of DDT are modelled, now it is possible to find the exact
bound, thereby improving the modelling from [22]. The greedy algorithm proposed in [22] is used
to reduce the number of linear constraints in the CH.

To see how this modelling works, we adopt (from [25, Section 4.2]) the example of the 4× 4
SBox used in GIFT, 1A4C6F392DB7508E. There are 4 non-zero transitions in the DDT, namely
(16, 6, 4, 2). Those non-zero transitions are modelled by respectively a three-dimensional point. In
particular, the 16 transition (corresponds to 2log2 16/16 = 1-probability) is modelled by (0, 0, 0);
the 6 transition (corresponds to 2log2 6/16 ≈ 2−1.415-probability) is modelled by (0, 0, 1); the 4
transition (corresponds to 2log2 4/16 = 2−2-probability) is modelled by (0, 1, 0); and finally the
2 transition (corresponds to 2log2 2/16 = 2−3-probability) is modelled by (1, 0, 0). Now the eight-
dimensional vectors (x0, x1, x2, x3, y0, y1, y2, y3), which indicate the (non-zero) input difference –
(non-zero) output difference relations of this SBox, are augmented with the corresponding three-
dimensional vectors indicate the individual transitions. Thus now we have points over the binary
eleven-dimensional space, on which the convex hull is computed. Finally, the objective function is set
to minimize

∑2
i=0,(p0,p1,p2)=(2,4,6)

(
log2

pi
16 × qi

)
, where (q0, q1, q2) is the augmented vector (denoting

the individual transitions). The exact complexity for differential distinguisher is calculated by
raising the result of the MILP solver to the power of 2.

2.4 Li et al. (Heuristic: Eprint’19)

On top of the MILP modelling proposed in [21], the authors of [11] experiment by altering the
following parameters (in such a way that the solution to the MILP problem remains unchanged),
as given next.

1. Number of constraints. Insert redundant constraint (i.e., this constraint is satisfied given
other constraints) to the MILP instance. This will not change the solution, but will likely
influence the solver’s run time.

2. Ordering of constraints. The ordering of the constraints given by the code for convex hull
can be altered. Similar to the previous case, the solution will not change.

3. Ordering of variables. The linear constraints can be written by changing the variables. For
example, the constraint a0x0 + a1x1 + · · · + an−1xn−1 ≥ b can be written as, a1x1 + · · · +
an−1xn−1 + a0x0 ≥ b.

The authors show that, all three types of heuristics influence the search strategy of Gurobi.
Thus, by carefully studying the effect of those heuristics on run time of Gurobi, it is possible to

5

create a new instance of the MILP problem which is faster to solve (but has the same optimal
solution).

3 Problem with Convex Hull Modelling

In this part, we describe our finding on the convex hull modelling used to find differential and linear
bounds. For simplicity, we only consider the modelling from [22], i.e., without probability encoding
for individual transitions.

As noted already, the convex hull method solves the problem of converting a DDT/LAT to
MILP-compatible format. It maps a set of binary hyper-dimensional points to a system of non-strict
linear inequalities with real coefficients. Thus, all the points will satisfy the corresponding linear
constraints which describe the convex hull.

However, there is no check to ascertain a point not in the set of hyper-dimensional points does
not satisfy all the linear constraints. As a convex hull has certain other properties, it may happen
that a particular point which is not within the set of points (which is used to create the convex
hull) still satisfies all the inequalities that govern the convex hull. In other words, the hyper-volume
created by some other points includes this point. Thus, the convex hull model will take this point
as a valid point (i.e., as if this point belongs to the set of points based on which the convex hull is
generated). If used in the MILP instance, the solver will consider the point (which is outside the
set of points for which the CH is generated, but inside the hyper-volume of the CH) as valid. This
can lead to wrong results. Indeed, our experiments confirm that this actually occurs to a number of
SBoxes.

For a simple example, consider the 4×4 trivial SBox: 0123456789ABCDEF. There are 16 non-zero
transitions in its DDT. Each being 16, are at the diagonal: (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5),
(6, 6), (7, 7), (8, 8), (9, 9), (a, a), (b, b), (c, c), (d, d), (e, e), (f, f). Thus the convex hull is generated
for the 16 eight-dimensional points. This is given by the following eight linear inequalities with
dummy variables z0, z1, . . . , z7 (each of type binary), as returned by Sage:

−z4 + 1 ≥ 0,−z5 + 1 ≥ 0,−z6 + 1 ≥ 0,−z7 + 1 ≥ 0,+ z4 ≥ 0,+ z5 ≥ 0,+ z6 ≥ 0,+ z7 ≥ 0.

Since the corner points of the eight-dimensional cube are used to create the CH, it inherently
contains all other points, i.e., all 256 points ∈ F8

2 satisfy all the inequalities of the CH. This is due
to the following property: For any two points ~u and ~v in convex hull, any linear combination of ~u
and ~v is also in the convex hull.

Out of those 256 points which satisfy the generated CH, 16 are of the form: (0, 0, 0, 0, y0, y1, y2, y3)
or (x0, x1, x2, x3, 0, 0, 0, 0). Hence those points can be caught by proper modelling; such as,

∑3
i=0 xi−

1 ≥ 0,
∑3

i=0 yi−1 ≥ 0. The rest 240 points (none of which is at the diagonal of the DDT), correspond
to zero transitions of the DDT; yet the convex hull model cannot capture it. As a result, the MILP
instance will consider those points as non-zero transitions.

Note that, the modelling in [22] does not explicitly check whether any zero transition satisfies
all the inequalities of the convex hull. Thus, the problem will go unnoticed, if an extra cross-check
is not used. So far, this step seems missing in the literature.

Since those points with zero transitions satisfy all the inequalities for the CH, the same will hold
after few inequalities are removed (as per the greedy algorithm in [22]/Section 2.2). The greedy
approach starts with the set of the zero transitions, and then checks which inequality removes the
maximum number of zero transitions. However, since all zero transitions satisfy all the inequalities,
the set of points which do not satisfy at least of the inequalities is null; and hence, this step will be
trivially skipped.

Here we present a few typical SBoxes with the same undesirable CH property: Some zero
transitions in DDT or LAT lie within the hyper-volume of the convex hull (which is generated by
points with non-zero transitions). We take the representatives of each of the 302 Affine Equivalence
(AE) classes from [8, Chapter 5.4.2]. The results are summarized in Table 1 (Table 1(a) for differential
and Table 1(b) for linear). Out of the 302 SBoxes tested, 49 show undesired property for differential
and 13 for linear. For instance, with the AE representative #245 of [8] (40132567E8A9CDBF), the

6

non-zero transitions in the DDT are 16, 6, 4, 2. See Table 2 for its DDT. The number of points
with non-zero transitions in its DDT is 86, the corresponding convex hull is given by 59 linear
inequalities (see Appendix A). Out of the 170 zero transitions in the DDT (ignoring the cases where
either the input difference or the output difference is 0), 80 of those satisfy all the convex hull
inequalities. Thus, for this SBox, the usual MILP modelling given in [22] could lead to incorrect
results for the differential case.

Table 1: Typical SBoxes with undesired zero transitions in respective convex hulls

(a) Differential

A
E

#
re

p
re

se
n
ta

ti
v
e

]
P

o
in

ts
fo

r
C

H

]
C

H
in

eq
u
a
li
ti

es

]
Z

er
o

tr
a
n
si

ti
o
n
s

in
C

H

245 86 59 80
246 82 54 77
247 84 49 78
250 80 56 74
251 80 52 74
252 80 49 76
253 73 42 70
254 73 76 69
255 73 56 69
256 73 48 68
257 73 54 66
258 79 71 70
260 80 59 74

A
E

#
re

p
re

se
n
ta

ti
v
e

]
P

o
in

ts
fo

r
C

H

]
C

H
in

eq
u
a
li
ti

es

]
Z

er
o

tr
a
n
si

ti
o
n
s

in
C

H

261 75 67 69
262 75 59 68
263 75 57 69
264 80 65 74
265 74 72 68
266 68 80 62
267 68 52 64
268 68 98 63
269 82 68 75
270 82 39 77
272 72 80 68
276 82 55 75
277 76 72 69

A
E

#
re

p
re

se
n
ta

ti
v
e

]
P

o
in

ts
fo

r
C

H

]
C

H
in

eq
u
a
li
ti

es

]
Z

er
o

tr
a
n
si

ti
o
n
s

in
C

H
278 70 58 65
279 64 78 59
280 72 73 66
281 70 79 64
282 71 61 66
283 71 46 68
284 68 52 61
286 67 63 61
287 58 28 53
288 49 18 135
289 58 16 159
290 48 46 44
291 50 22 137

A
E

#
re

p
re

se
n
ta

ti
v
e

]
P

o
in

ts
fo

r
C

H

]
C

H
in

eq
u
a
li
ti

es

]
Z

er
o

tr
a
n
si

ti
o
n
s

in
C

H

292 55 22 150
294 58 48 56
295 58 60 53
296 52 72 47
297 46 22 126
298 46 22 125
299 42 22 114
300 30 12 189
301 28 12 176
302 16 8 210

(b) Linear

A
E

#
re

p
re

se
n
ta

ti
v
e

]
P

o
in

ts
fo

r
C

H

]
C

H
in

eq
u
a
li
ti

es

]
Z

er
o

tr
a
n
si

ti
o
n
s

in
C

H

258 28 34 24
290 40 36 26
292 32 16 26
293 44 93 38
294 28 22 26
295 28 53 24
296 40 36 34
297 24 12 62
298 24 14 20
299 32 16 26
300 16 8 154
301 16 8 186
302 16 8 210

As noted earlier, this problem is not implicitly resolved by the greedy algorithm to reduce the
number of linear inequalities. The undesired points satisfy all the convex hull inequalities, whereas
the greedy algorithm only looks for the points which do not satisfy at least one of the inequalities.
Thus, by picking the inequalities one by one, and checking how many points do not satisfy this
particular inequality will not reveal those points. Stated in other words, since those points satisfy
the set of all the inequalities of the convex hull, all inequalities of any subset (of the set of all
inequalities) will be satisfied by those points. However, one may incorporate a simple check by
testing whether any point with zero transitions satisfies all the inequalities.

Separate Convex Hulls for Individual Transitions It may be noted that the undesired
property may also hold if each transition in DDT/LAT is modelled by separate convex hulls. For
example, with the same SBox as before (40132567E8A9CDBF), the convex hull for the 6 transition
in the DDT is given by 7 eight-dimensional points. The corresponding convex hull is given by 7
linear inequalities. Out of 170 zero transitions in the DDT, 12 satisfy all the inequalities.

Relation to Affine Equivalence It appears that this characteristic of CH does not follow the
affine equivalence property. The case for the SBoxes 1032456789ABCDEF (representative of AE #301
from [8]) and 126CDE39F58BA047 (belongs to the same AE class) can be taken as an example. For
the former SBox, the CH problem appears for both the differential and linear cases, but the latter
SBox is free from it for both the cases. Therefore there are likely more SBoxes with this problem
than presented in Table 1, finding which is left open for the future research.

7

Table 2: DDT for SBox 40132567E8A9CDBF

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 4 2 2 4 0 2 2 0 0 0 0 0 0 0 0
2 0 2 4 2 4 2 0 2 0 0 0 0 0 0 0 0
3 0 2 2 4 0 2 2 4 0 0 0 0 0 0 0 0
4 0 2 2 0 2 4 4 2 0 0 0 0 0 0 0 0
5 0 2 4 2 2 4 2 0 0 0 0 0 0 0 0 0
6 0 0 2 2 2 2 4 4 0 0 0 0 0 0 0 0
7 0 4 0 4 2 2 2 2 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 6 0 4 2 0 2 2 0
9 0 0 0 0 0 0 0 0 2 6 0 0 4 0 2 2
a 0 0 0 0 0 0 0 0 0 4 6 2 0 0 2 2
b 0 0 0 0 0 0 0 0 0 2 2 4 0 6 2 0
c 0 0 0 0 0 0 0 0 2 0 2 0 6 4 2 0
d 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
e 0 0 0 0 0 0 0 0 4 0 0 0 2 2 2 6
f 0 0 0 0 0 0 0 0 0 2 0 6 2 0 2 4

4 Automated Bounds with MILP: Our Proposal

In case the problem (described in Section 3) is observed for the given SBox, a new modelling different
from that of [22] may be of interest since no variant of the CH based model can circumvent this
problem, to the best of our knowledge. In this regard, we devise a new strategy for a Substitution-
Permutation Network (SPN) permutation. We describe our modelling for 4 × 4 SBox only for
simplicity, though it can be generalized if needed. We denote the state size and number of rounds
as b (counting from 0) and η (counting from 1), respectively.

Our modelling is inspired from the MILP modelling proposed in [1] and the concept of indicator
constraint (also known as the big M method5) used in linear programming where the large constant,
M , is chosen. In our case, it is sufficient to choose M = twice the SBox size (= 8). Unlike [1],
however, we do not rely on any Boolean function based optimization; the constraints are directly
fed to the MILP instance instead.

To get the optimal differential probability, the result from the MILP solver is negated (assuming
the maximization variation, see Section 4.1), and raised to the power of 2. So, if εd is the result
from the MILP solver, the attacker will need at least 2εd+1 chosen inputs, following [19, Chapter
3.4]. For the linear case, if the result from the MILP solver (for the maximization variation) is εl,
the attacker would need at least 22εl known inputs [19, Chapter 3.4].

4.1 Modelling

In this part, we describe the MILP modelling for the differential case. The MILP formulation for
the linear case is much alike, hence we skip the details for conciseness. For completeness, the main
differences in the linear case are as follow. The absolute values for the biases are considered. Since
±1

2 linear bias is equivalent to 1 differential probability, each Qpi,j in the linear case are multiplied
by 2 (the notations are described later).

Assume each of the p transitions (corresponds to 2log2 p/16 probability transition, 1 ≥ p > 0) has
qp frequency in the DDT. For example, there are fifty-seven 2 transitions (each corresponds to 2−3

probability transition) for the SBox 40132567E8A9CDBF, as can be seen from its DDT in Table 2;
hence q2 = 57.

5The indicator constraint is a well-known concept in the operations research community. Consider the linear
constraint, ~a>~x ≥ b, where ~x ∈ Rd is a variable; and ~a ∈ Rd, b ∈ R are constants, for some d. The idea here is to
introduce a Boolean variable y, multiplied by a large constant (M). Depending on other constraints or a penalty in
the objective function; y indicates whether the constraint is active (the feasible solution must satisfy it) or not (the
constraint is redundant in the sense that the feasible solution of may not satisfy it): ~a>~x ≥ b + My. Theoretically an
arbitrarily large M can be chosen, but doing so could slow down the solution process.

8

First, for the ith SBox (i = 0, 1, . . . , b/4−1) at the jth round (j = 1, . . . , η); we create the binary
variables:

Qi,j to indicate if it is active;
Qpi,j to indicate if it takes a p transition;

Qpi,j,l, for l = 0, 1, . . . , qp − 1 to indicate which among the qp trails is chosen;

~xi,j = (x0i,j , x
1
i,j , x

2
i,j , x

3
i,j) to indicate the input difference;

~yi,j = (y0i,j , y
1
i,j , y

2
i,j , y

3
i,j) to indicate the output difference.

Next, we set the constraints for each SBoxes:

MQi,j ≥
∑3

l=0 x
l
i,j +

∑3
l=0 y

l
i,j to check if it is active;

Qi,j =
∑

pQ
p
i,j to ensure if active, it will take exactly one of the qp trails;

For each p transition, do:

Qpi,j,l =
∑qp−1

l=0 Qli,j to check which trail among all qp-trails is chosen.

After this, each Qpi,j,l for l = 0, 1, . . . , qp−1 and for each p, is used to model respective transitions.
For example, the (6, 7) trail which is a 4 transition in the DDT for the SBox 40132567E8A9CDBF

(see Table 2 for its DDT) is modelled as: MQ4
i,j ≥ (x0i,j) + (1− x1i,j) + (1− x2i,j) + (x3i,j) + (y0i,j) +

(1− y1i,j) + (1− y2i,j) + (1− y3i,j). Basically, each negative literal is taken as is, and each positive
literal is subtracted from 1; then added together.

Also, we have to give the initial input difference to at least one variable at the beginning (j = 1),

i.e.,
∑b/4−1

i=0

∑3
l=0 x

l
i,1 ≥ 1.

There will be additional constraints representing the linear layer. For a bit-permutation based
cipher like GIFT-128, 128 equality constraints are inserted for each round from 2 to η. For example,
the second entry in the permutation (1→ 33) is modelled as x18,j = y10,j−1. If required, this can be
generalized to other type of linear layers.

Finally, the objective function is fit: Minimize
∑b/4−1

i=0

∑η
j=1

∑
p<1 log2

p
16 ×Q

p
i,j . For better

readability, we express it as: Maximize
∑b/4−1

i=0

∑η
j=1

∑
p<1

(
− log2

p
16

)
×Qpi,j .

4.2 Optimizations

Using the idea described earlier (in Section 4.1), we construct the MILP problems and attempt to
solve them using the Gurobi solver. Being inspired from [11], we put redundant constraints in the
MILP problem. Using redundant constraints together with the usual constraints does not change
the optimal result, but could make the execution faster.

As for the choice of the heuristics, we reuse the idea of CH [22]/Section 2.2. Therefore, we
put additional constraints in the MILP problem together with the usual constraints (described in
Section 4.1). We basically employ three main heuristics and combinations of those heuristics. The
main heuristics are termed as All Convex Hull, Chosen Convex Hull and Previous Solutions and
are described next.

All Convex Hull (All-CH) In this heuristic, we use all the inequalities generated for the convex
hull. The convex hull is generated with all points in the DDT/LAT the correspond to non-zero
transitions.

The choice of this heuristic is motivated by the observation that the claim made in [22] (i.e.,
having all the inequalities from the convex hull in the MILP instance will make the solver taking
more time) is apparently not supported by any experimental result. Follow-up works, such as [21,25],
seem to accept this claim without any apparent experimental result too. In fact, it is claimed in [17]
that, increasing the size of the constraints that describe the DDT of an SBox may indeed reduce
the run time.

Chosen Convex Hull (Chosen-CH) In this heuristic, we reduce the number of inequalities
for the convex hull (which is generated with points corresponding to non-zero transitions of the
DDT/LAT) by applying a randomized version of the greedy algorithm (the greedy algorithm is
proposed in [22]). The randomization is applied in tie-breaking: When multiple inequalities are not

9

satisfied by same number of zero transitions, we break time tie uniformly. This way, we run the
algorithm few times to get the smallest number of constraints.

Therefore, this heuristic can be thought as an improvement over that of [22], as it is non-
deterministic in nature and chooses the smallest system of inequalities after a few runs.

Previous Solutions (Prev-Sol) Suppose, we want to know the optimal bound for round η and
we already have optimal bounds (possibly by solving MILP instances) for rounds 0, 1, . . . , η− 16. In
this case, the solutions for the previous rounds can be fed to the MILP instance. Since we know
the optimal bounds for smaller rounds, the objective functions can be assigned to those optimal
bounds; thus creating new constraints.

For example, suppose we have the optimal solutions up to 3rd round: s1, s2, s3; and want the
optimal solution for the 4th (so, η = 4) round. We create the 1-round objective function for
each round {(1), (2), (3), (4)}, and assign with s1 to create 4 constraints. Next, we create the
2-round objective function by adding the 1-round objective functions for two consecutive rounds
{(1, 2), (2, 3), (3, 4)}, and assign each with s2 to create 3 constraints. Finally, we create the 3-
round objective function by adding the 1-round objective functions for three consecutive rounds
{(1, 2, 3), (2, 3, 4)}, and assign each with s3 to create 2 constraints.

More specifically, assume the optimal bound corresponding to the jth (j ∈ {1, . . . , η− 1}) round
is sj , we insert the following inequalities (taking the maximization variant of the objective function,
Section 4.1):

b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,1 ≤ s1,

b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,2 ≤ s1,

...
b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,η−1 ≤ s1,

b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,η ≤ s1,

η constraints

b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,1 +

b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,2 ≤ s2,

b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,2 +

b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,3 ≤ s2,

...
b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,η−2 +

b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,η−1 ≤ s2,

b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,η−1 +

b/4−1∑
i=0

∑
p<1

(
− log2

p

16

)
×Qpi,η ≤ s2,

η − 1 constraints

...

6Note that, this assumption is practical. As the run time for higher rounds take significantly longer than the
smaller rounds, generally the solutions for the smaller rounds are available.

10

b/4−1∑
i=0

η−1∑
j=1

∑
p<1

(
− log2

p

16

)
×Qpi,j ≤ sη−1,

b/4−1∑
i=0

η∑
j=2

∑
p<1

(
− log2

p

16

)
×Qpi,j ≤ sη−1.

2 constraints

It may be stated that this heuristic can still be used if the solution for some round j ∈
{1, . . . , η − 1} is not available. In this case, the constraints with sj at the right hand side will be
skipped. A variant, where not all available constraints are not used, can be considered in the future
scope.

Note that, the all-CH modelling itself is sufficient to construct the MILP instances to find
the exact bound. The same argument applies to the chosen-CH modelling (which is indeed used
in [22] and its follow-up works, such as [21, 25]) as well. In other words, it is possible not to use the
usual constraints in our model (generated as per Section 4.1), but only use either of the all-CH or
chosen-CH model to obtain the optimal bounds. Here we term these two models are heuristics, as
these are redundantly used with the usual constraints in a bid to make the execution faster. The
previous solutions based approach is not self sufficient and will likely not give correct results if the
usual constraints are not used together with it.

Although we use the convex hull inequalities (namely, all-CH and chosen-CH) here, the problem
mentioned earlier (in Section 3) does not apply (even if the SBox has undesired zero transitions
in its DDT/LAT). This is because those inequalities are used as redundant constraints, on top
the usual constraints (described in Section 4.1). Those usual constraints are sufficient to ensure no
unwanted point is included. Also, all our models (regardless of whether a heuristic is used or not)
are designed for finding the optimal bounds.

4.3 Results

Here we present our experimental results for the differential and linear cases for GIFT-128, GIFT-64
and PRESENT for reduced rounds. Results are obtained from a workstation with 16× Intel Xeon
E7-8880 physical cores (shared among multiple users), running Gurobi 8.1 on 64-bit Ubuntu 18.04.
It remains to see how those heuristics perform with a different solver and/or environment.

As the Gurobi solver is deterministic7, only extraneous factor that can affect the execution time
is the system load. To mitigate this factor, we run each MILP instances for a few times and take
the average.

The experimental results for run time are summarized in Table 3. Here we present the average
run time (in seconds) for the differential and linear MILP instances for reduced round (1 to 8)
GIFT-128 corresponding to the cases where no heuristic is applied (only the usual constraints
are used); usual constraints with all-CH constraints are used, usual constraints with chosen-CH
constraints are used, usual constraints with previous solutions are used, usual constraints with
previous solutions and all-CH constraints are used, usual constraints with previous solutions and
chosen-CH constraints are used. The MILP instances with previous solutions as heuristic appear to
slow down the solver for the differential case, particularly round 5 onward.

The relative (1.0×) run times for each of the heuristics, with respect to the cases where no
heuristic is used; can be seen from Figure 1. The differential case is shown in Figure 1(a) (a zoomed
in version till the 5th round is also shown), and the linear case is given in Figure 1(b). As evident
from the experimental results, it is generally difficult to find a general trend. Still, one may notice
significant improvement in run time, generally by a few folds. For example, the all-CH heuristic is
more suitable for the differential case; whereas the both the previous solutions with all-CH and the
previous solutions with chosen-CH is more suitable for the linear case. Also, it appears that all
three the previous solutions based heuristics model perform somewhat similarly for the differential
case, and in general are slower than that of no heuristic. However, the same three heuristics perform
faster than no heuristic for the linear case.

7https://support.gurobi.com/hc/en-us/articles/360031636051-Is-Gurobi-Optimizer-deterministic-

11

https://support.gurobi.com/hc/en-us/articles/360031636051-Is-Gurobi-Optimizer-deterministic-

Table 3: Average run time for MILP instances for GIFT-128 with various heuristics

Round(s) 1 2 3 4 5 6 7 8

Differential

– 4.29 16.68 16.06 504.66 6698.07 914.91 1142.62 3142.78

All-CH 0.25 3.47 15.05 63.15 931.07 607.34 754.12 2708.20

Chosen-CH 0.69 6.23 25.56 173.39 1949.50 1148.18 1239.64 4671.95

Prev-Sol 2.49 0.55 11.00 2097.36 12754.98 70514.22 122874.35 123434.43

Prev-Sol + All-CH 0.89 1.21 12.94 2034.16 9841.02 47055.10 127680.92 200204.50

Prev-Sol + Chosen-CH 0.38 1.064 10.512 1943.44 10867.38 40964.27 103575.79 229649.26

Linear

– 0.33 0.62 2.71 80.98 4546.46 2108.19 6814.77 38826.96

All-CH 0.31 1.67 4.18 28.84 80.36 2698.96 3374.94 15166.05

Chosen-CH 0.38 0.73 2.24 10.69 3205.41 1241.32 2649.87 13120.24

Prev-Sol 0.15 0.49 1.40 32.87 2435.58 1110.57 2639.03 20523.93

Prev-Sol + All-CH 0.22 0.61 2.01 19.46 52.88 1546.41 1750.24 9199.43

Prev-Sol + Chosen-CH 0.21 1.35 2.56 16.42 50.77 1764.47 1992.35 7065.79

Table 4: Optimal bounds for GIFT-128, GIFT-64 and PRESENT

Round(s) 1 2 3 4 5 6 7 8 9 10 11 12

GIFT-128
Differential 1.415 3.415 7.000 11.415 17.000 22.415 28.415 39.000 45.415 49.415 54.415 60.415

Linear 1.000 2.000 3.000 5.000 7.000 10.000 13.000 17.000 22.000 26.000 31.000 36.000

GIFT-64
Differential 1.415 3.415 7.000 11.415 17.000 22.415 28.415 38.000 42.000 48.000 52.000 58.000

Linear 1.000 2.000 3.000 5.000 7.000 10.000 13.000 16.000 20.000 25.000 29.000 31.000

PRESENT
Differential 2.000 4.000 8.000 12.000 20.000 24.000 28.000 32.000 36.000 41.000 46.000 52.000

Linear 1.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000 22.000

Table 4 shows the optimal bounds till round 12 for GIFT-128, GIFT-64 and PRESENT. We do
not put the average run time corresponding to rounds 9 onward as those cases are not run sufficient
times (as each of such cases takes a long time to run). These results are consistent with the existing
literature [10,11,12,21,24].

Moreover, we present the optimal linear bounds of GIFT-128 for 11th and 12th rounds. The
input masks are shown in Table 5 (Table 5(a) for 11 rounds and Table 5(b) for 12 rounds). Here
weight counts the sum of − log2 (|p|/8) over the state, where p is a transition in the LAT for the
corresponding input mask. The inactive SBoxes are shown by ·, and the 1- and 2-weights are shown
respectively by the markers γ and γ. The total of the weights is 31 and 36 for 11th and 12th rounds,
respectively; which are also indicated in Table 4. Further, we show the (input mask, output mask)
for 11-rounds in Figure 2, and for 12-rounds in Figure 3 for each SBox (both in Appendix B). The

active SBoxes with weight 1 (i.e., ±4 transitions in the LAT) are shown by the marker γΓ , and the

active SBoxes with weight 2 (i.e., ±2 transitions in the LAT) are shown by the marker γΓ — γ
represents the input mask and Γ represents the output mask.

5 Conclusion

We attempt to study the problem of modelling differential and linear bounds using MILP in depth.
In the process, we revisit the modelling proposed in [22], and explore a related shortcoming. It
may happen for an SBox that the hyper-volume of convex hull will contain some undesired points.
Although this probably does not happen with the commonly used SBoxes, it can still be inferred
that this model is not generic as it depends on specific properties of the SBox.

Therefore, we propose our new MILP modelling which works for any SBox and is partly inspired
from [1]. Our modelling is simpler, and it does not require specialized library call like convex hull
or Boolean logic minimization.

At the same time, we also follow [11], where the authors observe that the number of constraints
can influence the solution time taken by the MILP solver Gurobi. Being motivated by their research,
we experiment with redundant constraints. The redundant constraints are inserted along with the

12

1 2 3 4 5 6 7 8
Round(s) →

0.0

25.0

50.0

75.0

100.0

T
im

e
re

la
ti

ve
to

n
o

h
eu

ri
st

ic
→

1 2 3 4 5
Round(s) →

0.0

1.0

2.0

3.0

4.0

T
im

e
re

la
ti

ve
to

n
o

h
eu

ri
st

ic
→

(a) Differential

1 2 3 4 5 6 7 8
Round(s) →

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
re

la
ti

ve
to

n
o

h
eu

ri
st

ic
→

(b) Linear 0.0 0.5 1.0

0.0

0.5

1.0

All-CH

Chosen-CH

Prev-Sol

Prev-Sol + All-CH

Prev-Sol + Chosen-CH

Fig. 1: Relative performance of MILP heuristics for GIFT-128

usual constraints (which are enough to specify the MILP instance). Those constraints do not change
the optimal solution, but can improve the run time. With our experiment, we observe significant
speed-up with the redundant constraints, compared to the case with only usual constraints. We
also show that one needs separate heuristic depending on the MILP instance is for differential or
linear bound.

In the future scope, one may extend the search for heuristics. As we are always using our own
constraints (described in Section 4.1), any other modelling can be used as a heuristic. This includes,
the branch number based model [15] or that of [1]. One may also try to model the zero transitions
(using an analogous modelling to ours), and use those as redundant constraints in a way that the
MILP instance does not take those transitions. The effect of the heuristics is not straightforward,
and more experiments are needed in this direction. Next, the problem with convex hull modelling
can be more formally studied, and the SBoxes can be characterized with respect to this problem.
Lastly, the effect of a different solver and/or environment can be studied.

A Convex Hull Inequalities For SBox 40132567E8A9CDBF

Here we present the complete system of 59 inequalities that represent the convex hull with the dummy
variables z0, z1, z2, z3, z4, z5, z6, z7 (each of type binary) for the 4×4 SBox 40132567E8A9CDBF. This
convex hull is created for the non-zero transitions in the DDT, namely with these 86 trails: (0, 0),
(1, 2), (1, 3), (1, 6), (1, 7), (2, 1), (2, 3), (2, 5), (2, 7), (3, 1), (3, 2), (3, 5), (3, 6), (4, 1), (4, 2), (4, 4),
(4, 7), (5, 1), (5, 3), (5, 4), (5, 6), (6, 2), (6, 3), (6, 4), (6, 5), (7, 4), (7, 5), (7, 6), (7, 7), (8, b), (8, d),
(8, e), (9, 8), (9, e), (9, f), (a, b), (a, e), (a, f), (b, 9), (b, a), (b, e), (c, 8), (c, a), (c, e), (d, 8), (d, 9),
(d, a), (d, b), (d, c), (d, d), (d, e), (d, f), (e, c), (e, d), (e, e), (f, 9), (f, c), (f, e), (1, 1), (1, 4), (2, 2),

13

Table 5: Optimal linear bounds of GIFT-128
(a) 11-Round

Round Input Mask Weight

1 d·d··········58················· 4
2 1··6············1··9············ 5
3 ························c···c··· 2
4 ······11························ 3
5 ·c······························ 1
6 2······························· 1
7 1·······2······················· 3
8 ························8·8····· 2
9 ······5···············5········· 4
10 ·4···4·························· 2
11 22······44······················ 4

Total 31

(b) 12-Round

Round Input Mask Weight

1 ·······a···············b········ 2
2 ·················2···2·········· 2
3 ····22······················11·· 5
4 ·1·······6·············c·1······ 5
5 ················8·8··28········· 5
6 ····56··············59·········· 7
7 ·················c···c·········· 2
8 ····························11·· 3
9 ·······················c········ 1
10 ·············1·················· 1
11 ···················8············ 1
12 ············1···············4··· 2

Total 36

(2, 4), (3, 3), (3, 7), (4, 5), (4, 6), (5, 2), (5, 5), (6, 6), (6, 7), (7, 1), (7, 3), (8, a), (9, c), (a, 9), (b, b),
(c, d), (e, 8), (f, f), (8, 8), (9, 9), (a, a), (b, d), (c, c), (e, f), (f, b).

− z1 + 1 ≥ 0,

− z4 + 1 ≥ 0,

− z2 + 1 ≥ 0,

− z3 + 1 ≥ 0,

− z5 + 1 ≥ 0,

− z6 + 1 ≥ 0,

− z7 + 1 ≥ 0,

+ z1 − 2z2 − z3 + z4 + 2z5 + 3z6 + 3z7 ≥ 0,

− z1 − z2 − z4 + z5 − z6 + z7 + 3 ≥ 0,

− z1 − z2 − z3 + z5 + z7 + 2 ≥ 0,

+ 3z1 + 3z2 + 3z3 + 2z4 − z5 − z6 − z7 ≥ 0,

+ z6 ≥ 0,

+ z1 − 2z2 − z3 + z5 + 2z6 + 2z7 + 1 ≥ 0,

− z1 − z2 + z3 + z5 + z6 − z7 + 2 ≥ 0,

+ 2z1 − z2 + z3 − 2z4 − z5 + 2z6 + z7 + 2 ≥ 0,

− z1 + z2 − z3 + z4 − z5 − z6 − z7 + 4 ≥ 0,

+ z1 + z2 − z3 − z4 + z5 − z6 + 2 ≥ 0,

+ z5 ≥ 0,

+ z1 − z2 − z3 + z4 + z5 + 2z6 + 2z7 ≥ 0,

+ z3 ≥ 0,

+ z1 + z2 + z3 − z5 − z6 − z7 + 2 ≥ 0,

+ z1 + z2 + z3 + z4 − z6 ≥ 0,

+ z2 + z3 − z4 + z5 + z6 − z7 + 1 ≥ 0,

+ z1 + z2 + z3 − z5 + z6 + z7 ≥ 0,

+ z1 + z2 + z3 + z5 + z6 − z7 ≥ 0,

+ z1 + z2 + z4 − z5 + z6 − z7 + 1 ≥ 0,

+ z1 + z2 + z3 + z4 − z7 ≥ 0,

+ z2 + z3 + z4 + z5 − z6 − z7 + 1 ≥ 0,

− z2 − z3 + z5 + z6 + z7 + 1 ≥ 0,

+ 2z1 + z2 + 2z3 + 2z4 − z5 − z6 + z7 ≥ 0,

+ z1 ≥ 0,

+ 2z1 + 2z2 + z3 + 2z4 − z5 + z6 − z7 ≥ 0,

+ z1 + 2z2 + 2z3 + 2z4 + z5 − z6 − z7 ≥ 0,

+ z1 + z2 + z3 + z4 − z5 ≥ 0,

+ z7 ≥ 0,

− z3 + z4 + z5 + z6 + z7 ≥ 0,

+ z1 + z2 − z3 − z5 + z6 − z7 + 2 ≥ 0,

+ z1 − z2 + z3 − z4 − z5 + z6 + 2 ≥ 0,

− z1 + z3 − z4 + z5 − z7 + 2 ≥ 0,

+ z1 + z3 + z4 − z5 − z6 + z7 + 1 ≥ 0,

+ z1 − z2 − z4 + z6 + z7 + 1 ≥ 0,

+ z1 − z2 − z3 + z6 + z7 + 1 ≥ 0,

+ z2 ≥ 0,

− z1 + z2 + z3 − z4 − z6 − z7 + 3 ≥ 0,

− z1 + z2 + z3 + z5 − z6 − z7 + 2 ≥ 0,

+ z1 − z2 + z5 + z6 + z7 ≥ 0,

− z2 − z3 + z4 + 2z5 + 2z6 + 2z7 ≥ 0,

− z1 − z2 + z3 − z4 + z5 − z6 + 3 ≥ 0,

− z1 − z2 − z3 + 2z4 + 3z5 + 2z6 + 3z7 ≥ 0,

+ z4 ≥ 0,

+ z2 + z3 − z4 − z5 − z6 − z7 + 3 ≥ 0,

− z1 + z4 + z5 + z6 + z7 ≥ 0,

− z1 − z2 + z3 + 2z4 + 2z5 + 2z6 + z7 ≥ 0,

− z1 − z2 + z3 + z4 + z5 + z6 + 1 ≥ 0,

− z2 + z4 + z5 + z6 + z7 ≥ 0,

− 2z1 + z2 + 2z3 − z4 + z5 − z6 − 2z7 + 4 ≥ 0,

+ z1 + z3 − z4 − z5 + z6 + z7 + 1 ≥ 0,

+ z1 − z2 − z3 − z4 − z5 − z6 − z7 + 5 ≥ 0,

− z1 − z2 − z3 − z4 − z5 + z6 − z7 + 5 ≥ 0.

The following 80 trails corresponding to the zero transition in the DDT (refer to Table 2) satisfy
all the inequalities for the convex hull: (1, 8), (1, 9), (1, c), (1, e), (1, f), (2, 9), (2, a), (2, b), (2, e),
(2, f), (3, 9), (3, a), (3, b), (3, d), (3, e), (4, 8), (4, a), (4, c), (4, d), (4, e), (5, 8), (5, 9), (5, a), (5, b),
(5, c), (5, d), (5, e), (5, f), (6, 8), (6, c), (6, d), (6, e), (6, f), (7, 9), (7, b), (7, c), (7, e), (7, f), (9, 1),

14

(9, 2), (9, 3), (9, 4), (9, 6), (9, 7), (a, 1), (a, 2), (a, 3), (a, 4), (a, 5), (a, 7), (b, 1), (b, 2), (b, 3), (b, 5),
(b, 6), (b, 7), (c, 1), (c, 2), (c, 4), (c, 5), (c, 6), (c, 7), (d, 1), (d, 2), (d, 3), (d, 4), (d, 5), (d, 6), (e, 2),
(e, 3), (e, 4), (e, 5), (e, 6), (e, 7), (f, 1), (f, 3), (f, 4), (f, 5), (f, 6), (f, 7).

B Optimal Linear Bounds for GIFT-128

0

d1

8

16

24

1

9

17

25

2

d1

10

18

26

3

11

19

27

4

12

20

28

5

13

5a

21

29

6

14

85

22

30

7

15

23

31

(a) Round 1

0

18

8

16

18

24

1

9

17

25

2

10

18

26

3

64

11

19

94

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

(b) Round 2

0

8

16

24

c1

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

c1

5

13

21

29

6

14

22

30

7

15

23

31

(c) Round 3

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

14

22

30

7

18

15

23

31

(d) Round 4

0

8

16

24

1

c2

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

(e) Round 5

0

23

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

(f) Round 6

0

18

8

28

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

(g) Round 7

0

8

16

24

85

1

9

17

25

2

10

18

26

85

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

(h) Round 8

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

54

14

22

54

30

7

15

23

31

(i) Round 9

0

8

16

24

1

46

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

46

13

21

29

6

14

22

30

7

15

23

31

(j) Round 10

0

23

8

47

16

24

1

23

9

47

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

(k) Round 11

Fig. 2: Input and output masks for an 11-round optimal linear bound of GIFT-128

References

1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP modeling for (large) s-boxes to optimize
probability of differential characteristics. IACR Trans. Symmetric Cryptol. 2017(4) (2017) 99–129 1, 8, 12, 13

2. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: Gift: A small present. Cryptology ePrint
Archive, Report 2017/622 (2017) https://eprint.iacr.org/2017/622. 1, 2, 4

3. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible fault analysis of RC4 and differential fault analysis of
RC4. In: Fast Software Encryption: 12th International Workshop, FSE 2005, Paris, France, February 21-23, 2005,
Revised Selected Papers. (2005) 359–367 2

4. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In: Advances in Cryptology -
CRYPTO ’90, 10th Annual International Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1990, Proceedings. (1990) 2–21 1

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y., Vikkelsoe, C.:
PRESENT: An ultra-lightweight block cipher. In: CHES. Volume 4727., Springer (2007) 450–466 2

6. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impossible differentials and
zero-correlation linear approximations. IACR Cryptology ePrint Archive 2016 (2016) 689 2

15

https://eprint.iacr.org/2017/622

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

a2

15

23

b2

31

(a) Round 1

0

8

16

24

1

9

17

23

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

23

29

6

14

22

30

7

15

23

31

(b) Round 2

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

23

12

20

28

14

5

25

13

21

29

18

6

14

22

30

7

15

23

31

(c) Round 3

0

8

16

24

1

18

9

68

17

25

18

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

c2

31

(d) Round 4

0

8

16

85

24

1

9

17

25

2

10

18

85

26

3

11

19

27

4

12

20

28

5

13

21

2a

29

6

14

22

85

30

7

15

23

31

(e) Round 5

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

54

12

20

54

28

5

68

13

21

98

29

6

14

22

30

7

15

23

31

(f) Round 6

0

8

16

24

1

9

17

c1

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

c1

29

6

14

22

30

7

15

23

31

(g) Round 7

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

14

5

13

21

29

18

6

14

22

30

7

15

23

31

(h) Round 8

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

c1

31

(i) Round 9

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

18

21

29

6

14

22

30

7

15

23

31

(j) Round 10

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

85

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

(k) Round 11

0

8

16

24

1

9

17

25

2

10

18

26

3

11

19

27

4

12

18

20

28

4f

5

13

21

29

6

14

22

30

7

15

23

31

(l) Round 12

Fig. 3: Input and output masks for a 12-round optimal linear bound of GIFT-128

7. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Springer-Verlag Berlin
Heidelberg (2008) 3

8. De Cannière, C.: Analysis and Design of Symmetric Encryption Algorithms. Katholieke Universiteit Leuven,
Belgium (2007) PhD Thesis. 6, 7

9. Eskandari, Z., Kidmose, A.B., Kölbl, S., Tiessen, T.: Finding integral distinguishers with ease. In: Selected Areas
in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB, Canada, August 15-17, 2018, Revised
Selected Papers. (2018) 115–138 3

10. Ji, F., Zhang, W., Ding, T.: Improving matsui’s search algorithm for the best differential/linear trails and its
applications for des, desl and gift. Cryptology ePrint Archive, Report 2019/1190 (2019) https://eprint.iacr.

org/2019/1190. 1, 2, 12
11. Li, L., Wu, W., Zheng, Y., Zhang, L.: The relationship between the construction and solution of the milp models

and applications. Cryptology ePrint Archive, Report 2019/049 (2019) https://eprint.iacr.org/2019/049. 1,
2, 5, 9, 12

12. Liu, Y., Liang, H., Li, M., Huang, L., Hu, K., Yang, C., Wang, M.: STP models of optimal differential and linear trail
for s-box based ciphers. Cryptology ePrint Archive, Report 2019/025 (2019) https://eprint.iacr.org/2019/025.
2, 3, 12

13. Matsui, M.: Linear cryptanalysis method for DES cipher. In Helleseth, T., ed.: Advances in Cryptology -
EUROCRYPT ’93, Workshop on the Theory and Application of of Cryptographic Techniques, Lofthus, Norway,
May 23-27, 1993, Proceedings. Volume 765 of Lecture Notes in Computer Science., Springer (1993) 386–397 1

14. Matsui, M.: On correlation between the order of s-boxes and the strength of des. In De Santis, A., ed.: Advances
in Cryptology — EUROCRYPT’94, Berlin, Heidelberg, Springer Berlin Heidelberg (1995) 366–375 3

15. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear
programming. In: Information Security and Cryptology - 7th International Conference, Inscrypt 2011, Beijing,
China, November 30 - December 3, 2011. Revised Selected Papers. (2011) 57–76 1, 2, 3, 4, 5, 13

16

https://eprint.iacr.org/2019/1190
https://eprint.iacr.org/2019/1190
https://eprint.iacr.org/2019/049
https://eprint.iacr.org/2019/025

16. Mount, D.M.: CMSC 754 – Computational Geometry (lecture notes) (2016) https://www.cs.umd.edu/class/

fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf. 3
17. Sasaki, Y., Todo, Y.: New algorithm for modeling s-box in milp based differential and division trail search. In

Farshim, P., Simion, E., eds.: Innovative Security Solutions for Information Technology and Communications,
Cham, Springer International Publishing (2017) 150–165 2, 9

18. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and cryptanalysis aspects - revealing
structural properties of several ciphers. In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 -
May 4, 2017, Proceedings, Part III. (2017) 185–215 2

19. Stinson, D.R.: Cryptography - theory and practice. Discrete mathematics and its applications series. CRC Press
(2006) 3, 8

20. Sun, S., Gerault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., Hu, L.: Analysis of aes, skinny, and others
with constraint programming. IACR Trans. Symmetric Cryptol. 2017(1) (2017) 281–306 3

21. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.: Towards finding the best
characteristics of some bit-oriented block ciphers and automatic enumeration of (related-key) differential and
linear characteristics with predefined properties. IACR Cryptol. ePrint Arch. 2014 (2014) 747 1, 2, 5, 9, 11, 12

22. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential
characteristic search: Application to simon, present, lblock, des(l) and other bit-oriented block ciphers. Cryptology
ePrint Archive, Report 2013/676 (2013) https://eprint.iacr.org/2013/676. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

23. Zhang, P., Zhang, W.: Differential cryptanalysis on block cipher skinny with milp program. Security and
Communication Networks 2018 (10 2018) 1–11 2

24. Zhou, C., Zhang, W., Ding, T., Xiang, Z.: Improving the milp-based security evaluation algorithm against
differential/linear cryptanalysis using a divide-and-conquer approach. Cryptology ePrint Archive, Report 2019/019
(2019) https://eprint.iacr.org/2019/019. 1, 2, 12

25. Zhu, B., Dong, X., Yu, H.: MILP-based differential attack on round-reduced gift. Cryptology ePrint Archive,
Report 2018/390 (2018) https://eprint.iacr.org/2018/390. 1, 2, 4, 5, 9, 11

17

https://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
https://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf
https://eprint.iacr.org/2013/676
https://eprint.iacr.org/2019/019
https://eprint.iacr.org/2018/390

	New Insights On Differential And Linear Bounds Using Mixed Integer Linear Programming

