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Abstract—With the emerging popularity of cloud computing, the problem of how to query over cryptographically-protected data has
been widely studied. However, most existing works focus on querying protected relational databases, few work has shown interests in
graph databases. In this paper, we first investigate and summarize two single-instruction queries, namely Graph Pattern Matching
(GPM) and Graph Navigation (GN). Then we follow their design intuitions and leverage secure Multi-Party Computation (MPC) to
implement their functionalities in a privacy-preserving manner. Moreover, we propose a general framework for processing
multi-instruction query on secret-shared graph databases and present a novel cryptographic primitive Oblivious Filter (OF) as a core
building block. Nevertheless, we formalize the problem of OF and present its constructions using homomorphic encryption. Finally, we
conduct an empirical study to evaluate the efficiency of our proposed OF protocol.
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1 INTRODUCTION

1.1 Background

Graph Database-as-a-Service (GDaaS) has been adopted by
many companies because of its always-on availability, high
scalability, and fast development. In GDaaS, companies
upload their data onto a cloud graph database, and the
cloud server stores and processes the graph data. Although
GDaaS has the above advantages, it comes with privacy
concerns. First, cloud servers face internal threats such as
misadministration and corrupted employee. For example,
in 2020, an Amazon engineer accessed several users’ videos
without authorization [1]. Second, cloud servers face more
external threats than dedicated data centers [2].

1.2 System Model & Threat Model

System Model. Motivated by the existing work on secure
database search [3], [4] based on secret sharing [5], in this
paper, we consider the two-server system model for GDaaS
which consists of the following participants:

o A data holder who owns graph data. We also assume that
the data holder has moderate storage and computation
resources (e.g. small companies’ data center). The data
holder is denoted as .

e Two cloud servers who store H'’s graph data. We denote the
two cloud servers as Sy and S;.

o A client who queries graph data from &y and S;. We
assume the client has very limited storage, computation,
and communication resources (e.g. phone, web front-end).
The client is denoted as C.

Figure 1 shows the interactions between those parties. First,

the data holder outsources its graph data to the two cloud

servers. Then, the client sends a query to both cloud servers.

Finally, the servers return the query result to the client.
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Fig. 1. Two-server GDaaS System Model.

Threat model. First, we assume that the data holder H is
trusted as the graph data is owned by H. Second, we assume
that the two cloud servers Sy, S1 are semi-honest and non-
colluding, which has been widely adopted in prior MPC
work [6], [7], [8]. In semi-honest threat model, also known as
honest-but-curious adversary, the legitimate participant will
not deviate from the pre-defined protocol but will attempt
to learn all possible information from its received messages
[6]. Third, we assume that the client C is trusted as client
authentication and authorization can be easily achieved
using existing mechanisms.

1.3 Problem Statement

For simplicity, we adopt the widely used Edge-Labelled Graph
Model, where only edges are assigned with labels to indicate
different types of connections. Formally, an edge-labelled
graph with n vertices, m edges, and k labels is denoted as
G =(V,E,L), where V = {vy,...,v,} is the vertex set, L =
{l1,..., 11} is the label set,and E = {ej,....,ep} CV XL XV
is the edge set.

Given graph data G = (V, E, L), the data holder should
first split G into two parts (denoted as [G]o and [G]1), and
sends [G]o to Sp, [G]1 to Si. Given a graph query, the
client parses the query into graph traversal instructions ¥ in
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Gremlin [9], and the instruction set W is then broadcast to S
and S;. Then, the cloud servers should be able to calculate
the query result based on [G], [G]1, and V. Finally, the client
receives the query result. During above processes, the cloud
servers should not be able to learn any private information
about the underlying graph data G, e.g., the exact vertices of
an edge, the labels of an edge, and the number of neighbors
of a vertex.

One trivial solution is that the cloud servers first send
both [G]p and [G]; to the client, and then the client performs
a local processing of its query on graph G. This solution
preserves the privacy of G with the only leakage from the
splitting scheme. However, such solution has a large amount
of communications between the client and the servers, and
hence it is not communication efficient.

Here, we say a secure graph database processing proto-
col should be communication efficient in two aspects. First,
given an instruction set, the protocol should concretely have
small communication cost between the client and the two
servers. The intuition is that the client is usually a mobile
phone, or a laptop with unstable network condition. Second,
the protocol should have a low asymptotic communication
complexity between the two cloud servers. This is because
graph data are usually large in practice, and it is important
for the protocol to maintain high scalability.

1.4 Technical Overview

In this section, we give a technical overview of our secure
graph query database protocol. We adopt the abstraction of
query functionalities by a popular graph query language
— Gremlin [9], where all the queries are treated as traver-
sal instructions, and later a traversal machine is applied to
evaluate all instructions on the graph data. Conceptually, a
traversal machine working on a graph consists of a set of
traversal instructions and a set of traversers. The traversal
machine moves all traversers on graph topology according
to the instructions, where the result of the query is the final
locations of all halted traversers.

Existing work in graph query languages has shown that
graph query functionalities can be categorized into two cat-
egories: Graph Pattern Matching (GPM) and Graph Navigation
(GN) [10]. Hence, we expect secure graph query processors
to support both GPM and GN queries.

Limitations of Prior Art. In the literature, little work has
been done on the secure graph database search problem. A
recent work of GraphSE? [11] supports GPM by leveraging
searchable symmetric encryption [12], [13], [14]. Although
GraphSE? claims its support of graph navigation (that is,
GN), its evaluation process involves linear rounds of com-
munication with the client. Also, GraphSE? does not use
a general technique like MPC or homomorphic encryption,
which makes it lack of support for downstream secure com-
putations (e.g. analytics). Figure 2 shows the system model
of GraphSE?. Given an edge-labelled graph G = (V, E, L),
data holder H first splits the graph into two subgraphs,
ie, Gog = (‘/E),Eo,Lo) and G; = (VhEl,Ll). Then, the
data holder encrypts both subgraphs, and sends Enc(Gy)
and Enc(G1) to cloud servers Sy and S; respectively. On
receiving an instruction set ¢; and an initial traverser set
t; from C, Sy and Sy process ¢ and t; on Enc(Gyp) and
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Fig. 2. High-level system model of GraphSE?2, where 1), is the traversal
instructions, Enc(Go) and Enc(G1) are the encrypted subgraphs, ¢, is
the traverser set.
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Fig. 3. A summary of our system model, where [G]o and [G]; are shared
graphs.

Enc(G1), and return the encrypted next traversal location
Enc(t2) to the client. Afterwards, C decrypts the message
and gets the traverser set ¢ and so on. Consequently,
GraphSE? involves a lot of communications between client
and servers when dealing with complex navigation queries.

Our Proposed Approach. Our work overcomes those lim-
itations by utilizing generic secure computation techniques
(i.e. MPC), and a new primitive called oblivious filter. Secure
multiparty computation (MPC) is a cryptographic tool that
allows multiple parties to securely evaluate a function based
on their private inputs. And MPC has been widely adopted
in many secure computation applications [15], [16].

First, we introduce how to use a secret sharing scheme to
distribute the graph G onto the public cloud servers while
meeting our privacy requirements. The shared graphs are
denoted as [G]o, [G]1 respectively. We take a careful design
to ensure that information leakage is contained in a minimal
level, and can also efficiently check the connectivity between
two public vertices (e.g. uw and v). This connectivity check
is essential for many graph operations including GPM and
GN query functionalities. Our connectivity check protocol
adopts the Private Set Membership (PSM) protocol from
[17], and requires O(cf) communication complexity, where
d is the maximum degree of graph G.

Then, we present concrete construction of the Processor
in Figure 3 in the MPC-hybrid world. The ideal functionality
of the processor can be written as t' < Fprocess(G, ¥, t).
Therefore, a secure protocol realizing Fprocess should take
two shares of G, a public ¢, and a shared traverser set ¢
which indicates the current location of traversal as input.
The main idea is to get the neighbors of the current traverser
set [t] in [G], and then apply v to obliviously filter the
neighbors accordingly. Here, we introduce a new primitive
called oblivious filter to perform the filter functionality. The
resulting location is then denoted as the result traverser set
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[t'], ie.,
[t}/ — Hprocess([G]a 1/)7 [t])

In this work, we introduce an instantiation of such protocol
using generic MPC techniques.

As for our new primitive oblivious filter, we investigate
its relation with existing primitives such as PIR, PSI and
proposed a construction based on homomorphic encryption.
Conceptually, oblivious filter allows one party (P for exam-
ple) to oblivious filter the other party’s value vector (P; for
example), and at the end, parties receive the shared result.
Oblivious filter ensures that P learns nothing about P;’s
value vector, and P; does not know which value is filtered.
Though oblivious filter naturally leaks the size of the filtered
result, this leakage is often negligible in secure computation
task. Finally, we carry out experiments and demonstrate the
efficiency of oblivious filter.

1.5 Organization

We organize the rest of this paper as follows. In section 2,
we introduce the background knowledge of secure compu-
tation, graph models, and graph queries. In section 3, we
describe our secret sharing scheme for graph data. Section 4
describes the secure evaluation of single instruction queries,
and section 5 introduces the framework of evaluating multi-
query instructions. Afterwards, section 6 introduces a new
primitive called oblivious filter and conducts experiments
on its performance. Finally, Section 7 concludes this paper.

2 PRELIMINARIES

Syntax. In the following of this paper, we use a pair with
angle brackets, i.e., { and ), to denote the data that is only
visible to the corresponding party. The ordering that we use
is (#, S, S1,C). For example (z, y, 2, k) means that z is only
visible to H, y is only visible to Sy, z is only visible to S;, and
k is only visible to C. Also we use L to represent empty. We
further simplify the notation and omit the empty symbol
L. That is, we use [z] or ([z]o, []1) as an abbreviation of
(L, [*]o, [x]1, L), (x,0) as an abbreviation of (z, L, L, 1),
and (o, x) as an abbreviation of (1, 1, | x).

2.1 Secure Computation Techniques

Secret Sharing. Secret sharing is a cryptography primitive
which aims to distribute a secret among a group of parties
(participants), such that each party holds a random share
of the secret [5]. Secret sharing ensures that only with a
sufficient amount of shares from the parties, the secret can
be revealed. More formally, a secret sharing scheme consists
of a pair of algorithms (Shr, Rec), where the algorithm Shr
splits the secret into shares, and Rec reconstructs the secret
from shares. In particular, for the two-party case,

o ([z]o, [x]1) = Shr({z,0)),

s (z,0) < Rec(([z]o, [z]1))-

Secret sharing has been the core of many well-known MPC
protocols, e.g. GMW [18], SPDZ [6]. In this work, we choose
additive secret sharing in a finite group to facilitate efficient
arithmetic operations.

Additive Homomorphic Encryption. Additive homomor-
phic encryption is an asymmetric encryption scheme which
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allows addition over two ciphertexts [19], [20], [21]. With
a formal description, additive homomorphic encryption is
a tuple of algorithms (Gen, Enc, Dec, Eval), with “+” as its
homomorphic operation. That is,

o (pk,sk) < Gen(1*): Given a security parameter A, Gen
generates the public key pk and secret key sk.

o ¢+ Encpi(m): Enc encrypts a message m with public key,
and returns a cipher c.

o m < Decy(c): Dec decrypts a cipher ¢ with secret key,
and reveals the message m.

Additive homomorphism ensures that, for all m,m2 and
pk, Encpk(mi + ma) = Evaly(Encpk(ma), Encpk(mz)). In
this work, we use the paillier [19] additive homomorphic
encryption scheme. The details of paillier encryption scheme
can be found in Appendix A.

2.2 Graph Model and Representation

Graph databases use graph model as the basic data structure
for graphs. For simplicity, in this work, we use a limited, yet
simple and widely-adopted Edge-labeled Graph Model [10],
where edges are assigned with labels to indicate different
relationships between nodes. Formally, edge-labeled graph
is defined as follows.

Definition 1 (Edge-labeled graph). An edge-labeled graph G
is a tuple list (V, E, L), where V. = {v1,v2,...,v,} is a
finite set of vertices, E = {ej, €a, ..., €, } is a finite set of
edges, and L = {ly,...,I;} is a finite set of labels, with
n, m and k denoting the number of vertices, edges, and
labels, respectively. In addition, E C V' x L x V.

l
ly

Fig. 4. An example of edge-labeled graph, where /; and I are two labels
between vertices v; and vs.

Most existing graph databases use either Adjacency Ma-
trix (AM) or Adjacency List (AL) to represent edge-labelled
graph, e.g. OrientDB!, Ne04j2, and MS Graph Engine3. On
the one hand, AM uses matrix elements to indicate whether
a pair of vertices are connected in the graph. Therefore, AM
has O(n?) storage complexity, and can check the connectiv-
ity of two vertices in O(1). On the other hand, each line in
AL describes the set of neighbors of a vertex in the graph.
This makes AL has O(n + m) storage complexity, and it can
check the connectivity of two vertices in O(d), where d is
the maximum degree of the graph. Since AM has quadratic
storage complexity, it does not scale well for large graphs.
Hence, we choose AL to represent graph database. For the
example in Figure 4, let V = {v1,v2}, L = {l,l2}, the above
example can be represented in the following adjacency list:

U1 - (ll,vz), (12,1)2)
Va2 \
1. OrientDB: https://www.orientdb.org/

2. Neo4j: https:/ /neo4j.com/
3. MS Graph Engine: https://www.graphengine.io/
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2.3 Graph Query Functionalities

Graph query languages express the searching functionality

and serve as the core component of graph database sys-

tems. Even though existing graph query languages differ
enormously, e.g. Cypher [22], SPARQL [23], and Gremlin

[9], on the high level, they share two most fundamental

functionalities [10], [24]: Graph Pattern Matching (GPM) and

Graph Navigation (GN).

Graph Pattern Matching (GPM). GPM refers to the problem

of finding the exact graph pattern that matches for a given

graph. A graph pattern G in GPM, is essentially a graph
with constants and variables. The constants are denoted as

Const(G) € VU E UL, where G = (V, L, E) is the graph

data. And, the variables are denoted as Var(G).

Definition 2 (Match). Given an edge-labeled graph G =
(V,L,E) and a graph pattern G = (V, L, E), a match
is defined as h € Const(G) U Var(G) — Const(G), such
that the mapping h maps constants to themselves and
variables to constants; if the image of G under h is
contained within G, then h is a match.

For example, assume we have a GPM query “Find the
vertices that have [y relation with v1” and a graph G as in
Figure 4. This query can be converted into a graph G with
variable 0 (see Figure 5), that is, G = (V,E, L), where
V = {’Ul,(S}, E = {(1]1,41,5)}, and L = {11} To find a
match, the graph pattern G is first matched to the graph G,
and then the graph database searches for the occurrences
of the pattern. Many existing literatures [25], [26], [27] have
provided practical GPM algorithms for fixed-size queries.

=0

Fig. 5. An example of graph pattern, where ¢ is a variable.

Conceptually, the matching algorithms first list all pos-
sible mappings H, then for every mapping h € H, search
if h(G) C G. We adopt Ullmann’s match algorithm [28]
to apply a depth-first tree search algorithm. The details of

Ullmann’s match algorithm is shown in Figure 6.

Inputs. A graph G, a graph pattern G, a mapping set H.
Outputs. The matched mapping set H'.
Algorithm.

1) Build the search tree. Every node in the search tree
at level ¢ represents a mapping from J; to a possible
vertex v € G.

2) Prune subtrees by eliminating repeated variables val-
ues, that is, the matching h is an injective (one-to-one)
mapping.

3) Forward check if all the edges connecting two nodes
in the tree preserve the relationships between their
corresponding variables, if not, delete the edges.

4) Return all paths that remained in the tree from root to
a leaf.

Fig. 6. Ullmann’s match algorithm [28] for graph pattern matching.

Graph Navigation (GN) and Graph Traversal Machine. In
general, GN allows navigation towards the graph topology.
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GN queries have long been established as the core of navi-
gational querying in graphs by the research community [29],
[30], [31] and are widely adopted in graph query languages,
e.g. SPARQL, Cypher and Gremlin. In this work, we focus
on Gremlin’s graph traversal machine [9].

Formally, a traversal machine consists of a graph G, a
traversal instruction set ¥, and traverser set t. The traverser
setis defined as ¢ C VUFEUL, and it can be understood as all
possible locations in the graph G. Evaluating a single step
traversal instruction 1 € W can be taken as a specification
of one of the following maps:

1) flatMap, which moves the traverser set .

e P(V) — P(E): Move from vertices to edges;

o P(E) — P(V): Move from edges to vertices;

e P(U) x G — P(U): Move according to pattern G;

2) filter, which filters the traverser set ¢.

e P(E) x I, — P(E): Filter edges with index set I;

e« P(V) x I, — P(V): Filter vertices with index set I,,;

e P(E) x L — P(E): Filter edges with label | € L;
where we use P(x) to denote the power set of *. Also, here
we focus on the most basic graph traversal, Simple Traversal,
where traversal instructions are processed in a sequential
order (11 ~ g ~ ... ~ ¢)y|). For the rest of this paper, we
use the term “instruction” or “traversal instruction” to short
for a single step traversal instruction.

3 SECRET SHARING OF GRAPH DATA

Though we have specified the plaintext graph model, graph
representation, and graph query functionalities, it still re-
mains a challenge of how to securely and efficiently share
the graph between two parties. On the one side, the graph
sharing scheme should be secure against a semi-honest
adversary. On the other side, it should also support: (1)
secure validity check for a constant string, i.e., check whether
a string exists in vertex set or label set, and (2) secure
connectivity check for two shared vertices, namely v; and vs.
Here, ‘shared vertex’ means that the vertex is secret shared
between Sy and S;.

Intuitively, as is shown in Section 2.2, an edge-labelled
graph G could be sufficiently represented by a vertex list V/,
a label list L, and an adjacency list A. This graph representa-
tion method uses V' and L for existence check of a string and
retrieves the string’s index if it is valid. Afterwards, given
two vertex-IDs, the adjacency list A checks the connectivity
of the two vertices.

In our solution, we adopt such design intuition and
utilize two different data structures for the graph sharing
scheme, namely shared lookup table and shared adjacency list.
To begin with, we use hash(v) to represent hashed strings,
where hash(x) is a cryptographic hash function. First, we
hash all the strings in the original graph, and share the
hashed values S = hash(V) U hash(L), i.e., ([S]o, [S]1) «
Shr((S,0)). The shared string list is later used for validity
checking. Then, to allow secure connectivity check of two
vertices, we build a shared index lookup table [T], which
allows index retrieving for a vertex string or a label string.
Finally, we share the indexed adjacency list [A] to allow the
connectivity check between two vertices. We will describe
the details of shared lookup table [T] and shared adjacency
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list [A] later. In summary, a shared graph [G] is represented
as:

Shared lookup tables [T']. Formally, a shared lookup ta-
ble associates with algorithms BuildT and LookupT, where
BuildT generates the shared coefficients, and later those
coefficients are used by LookupT to determine if a value
is in the table. We present the detailed algorithms in Figure
7.Let X = {xo,...,xg—1} and Y = {yo, ..., ya—1} be two sets
with the same length d, and we want to share the mapping
X — Y. Additionally, we define the final result [T as a set
of polynomial coefficients [ag], ..., [a4—1], where the shared
[a;] are the coefficients used to retrieve the mapping results.
For sharing the graph, we build a shared index lookup table
by [T] < BuildT(hash(V),ind(V)).

Notation. X = {zg,...,xq-1} and Y = {yo, ..., ya—1 } have
d elements, and we also define [T] = [ag], ..., [ag—1]-
Algorithm 1. [T] + BuildT(X,Y).
1) Data holder gets the polynomial coefficients from the
mapping: ao, ..., ag—1 < Lagrangelnterpolation(X
Y);
2) For every a € {ag,..,aq—1}, data holder shares the
coefficients to servers: [a] <— Shr({a, 0)).

Algorithm 2. [y] + LookupT(z, [T]).

1) S; calculates [y]; = [aol; + [a1]iz + ... + [@a—1]iz? .

Fig. 7. Algorithms for shared lookup table.

In Figure 7, we use the term “Lagrangelnterpolation” to
denote the function that interpolates the input mapping and
outputs a polynomial with degree d — 1. The resulting co-
efficients ay, .., ag—1 and the polynomial f(z) = Zf;ol a;zt
satisfy that f(x;) = y; for all z; € X and y; € Y. The
computation complexity of computing all coefficients of
Lagrangelnterpolation is O(dlogd) according to [32], and
sharing the coefficients requires d|[*]|-bit communication,
where |[x]| indicates the bit size of the shares. As for the
lookup algorithm, evaluating the polynomial only requires
d additions and d multiplications using Horner’s Method
[33], and lookup algorithm requires no extra communication
cost.

Shared adjacency list [A]. The purpose of a shared adja-
cency list is to allow the connectivity check for two vertices
with a given label. A simple way is to reconstruct all the
indexes and apply a plaintext lookup, but unfortunately
this leaks access patterns. To share the adjacency list, first
we use an indexed representation for the head node of the
adjacency list, i.e.,, u of the A,, and then we include the
tail node’s index in the edge representation, and pad every
line in adjacency list to the maximum degree d with “0”s.
Finally, we share the mapped element in the adjacency list.
Notice that we do not need to share the head vertex indexes
as long as they are stored in order. For example, the shared
adjacency list of Figure 4’s case is:

ind(wvo) :([ind(lo)l]s; [ind(wv1)]:), ([ind(l2)]s; [ind(v1)]:),
ind(vy) :([ind(0)]s, [ind(0)l:), ([ind(0)};;, [ind(0)].),
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where Sy holds the list with ¢ = 0 and S; holds the
list with ¢ = 1. This secret sharing scheme has storage
complexity of O(4nd + 2n + m) on both servers’ side and
checks connectivity of two vertices with one invocation of
private set membership (PSM) protocol. The protocol we
choose is the circuit-based PSM protocol from [17] with O(d)
communication overheads.

Security. This sharing scheme for graphs inevitably inherits
the leakage profile from shared lookup table and shared
adjacency list. All those leakages are leaked to servers Sy
and S;. Specifically, [S] leaks the total number of vertices
and labels (|V'| 4 |L|), the shared lookup table [T'] leaks the
number of vertices (|V]), and the shared adjacency list [A]
additionally leaks the maximum degree of the graph ().
Here, we only discuss the leakage of those data structures,
and leave the security of connectivity check in Section 4.
In summary, the leakage profile of this sharing scheme is
defined as: R
Lshare = (IV],|L], d).

4 EVALUATING A SINGLE-INSTRUCTION QUERY

Recall that, in section 2.3, we have introduced how to
convert GPM (graph pattern) queries and GN (path) queries
into traversal instructions. In this section, we show the
secure processing of single-instruction queries, e.g., a GPM
query or a GN query that could be translated into only
a single instruction. The security of our protocols follows
the standard semi-honest definition using simulation-based
security proof technique [34], [35], where security says that
the behavior of the adversary can be simulated given only
the view of an honest participant.

Methodology. With the aim of secure and efficient single-
instruction query evaluation, we first formalize the ideal
functionalities of answering GPM and GN queries. We then
present and analyze the secure constructions using real
world vs. ideal world simulation paradigm. To allow an
easy analysis, we describe functionalities with a leakage
profile £, which models the information leakage. Also, some
of our proposed protocols leak a known private set member-
ship protocol in MPC. To give an abstraction of the whole
protocol, we prove the security in the MPC-hybrid model,
where we assume the presence of a private set membership
protocol [17].

4.1 Securely Evaluating A GPM Query

Recall that a GPM query is essentially a graph pattern that
could be represented as a graph G = (V, E), containing
constants and variables. Formally, we adopt the graph pat-
tern matching algorithm from Ullmann [28], and describe
the ideal functionality of GPM as Fgpm in Figure 8, where
we use PSM(z € X, X € X*) to denote a private set
membership protocol that checks whether = € X. This
functionality works among C, &y, and S;, and allows the
secure evaluation of a graph pattern query (containing a
single instruction) over the secret shared graph database.
The ideal functionality Fg,m could be split into three phases:
1) Check phase, where the client checks the validity of a
given graph pattern by sending all strings in graph
pattern to the ideal functionality;
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2) GetID phase, where the client retrieves IDs for every
query string;

3) Query phase where the client first builds Tree(CNS), and
then checks the existence of an edge in Tree(G) in a
depth-first-search manner.

Global Parameters. Security parameter A.
Check. Given a hash set Hset from C, and [G]; from S;,
1) Invokes (S, T, A) + Rec([G));
2) For all 0; € Hset,letb; = 1ifo; € S, 0orb; =0
otherwise;
3) Returns by, ..., bjpset| to C.
GetID. Given a hash set Hset from C, and [G]; from S;,
1) Invokes (S, T, A) + Rec([G));
2) For all o; € Hset, invokes ind; < FiookupT(0j,T);
3) Returns indy, ..., ind|{set| to C.
Query. On receiving Eset from C (Eset holds all edges in
G containing d; only or §; with lower-level variables), and
[G]; from S;,
1) Invokes (S, T, A) + Rec([G));
2) For every (h;,l;,t;) € Eset, finds Ap,;, and let b; = 1
if (I,t) € Ap;, or b; = 0 otherwise;
3) Returns by, ..., b, (0 is the output size) to C.

Fig. 8. Ideal Functionality Fgpm.

Protocols in Figures 9, 10, and 11 describe the detailed
constructions of Check phase, GetID phase, and Query phase
for functionality Fgpm, respectively.

C.Check. Given a graph pattern G, client C:
1) Initiates Hset = ();
2) Forall ¢; € Const(G), calculates and pushes hash(¢;)
into Hset;
3) Sends Hset to servers S;;
4) On receiving messages from S;, C invokes b1, ..., bjpset|
< Rec({[b1]o, -, [bltset|J0s [b1]1; -, [BlHset|]1)), aborts if
3j < [Hset|,b; = 0.
8S;.Check. On receiving a hashed list Hset from C, server
Sii
1) Initiates [by];, ..., [bjHset)]i = 0;
2) For every o; € Hset, invokes [b;] < PSM(ao;, [S]).
3) Sends [b1];, ..., [Dhset|]i to C.

Fig. 9. Protocol IIgpm.Check for functionality Fgpm.

Lemma 1. Protocol Ilg,m is secure against non-adaptive
adversary in the MPC-hybrid model.

Proof. For the security proof of Il;pm, we use a simulator for
each server for Ilgpm.Check, Ilgpm.GetlD, and Ilgpm.Query,
and prove its security in the MPC-hybrid model.

Simulator for S;: During the Check phase, S; eventually
receives nothing, therefore the simulation for Check phase
is trivial. To simulate the GetID phase and query phase, the
simulator uniformly samples random IDs for every edge
header ¢,, and then obtains the final result. This simula-
tion is indistinguishable from the real execution under the
condition that the simulator cannot distinguish between a

C.GetID. Given a graph pattern G, client C:
1) Initiates Hset = (J;

2) Forall ¢; € Const(G), calculates and pushes hash(¢;)
into Hset;

3) Sends Hset to servers S;;

4) On receiving S;’s messages, invokes indy, ..., ind|psey|
< Rec(([indl]o, ceny [ind|Hset‘]0, [indl]l, ey [ind|Hset‘]1>).

8S;.GetlID. On receiving a hash set Hset from C,
1) Forall o; € Hset, invokes [ind;]; < LookupT ([T, o;);
2) Sends [ind];, ..., [indpeet|Js to C.

Fig. 10. Protocol IIgpm.GetlID for functionality Fgpm.

C.Query. Once client has indy, ..., ind |pset|,

1) Replaces all ¢; € Const(G) with ind;;

2) Builds the match search tree Tree(G) by replacing
variables with possible vertex-IDs, then prunes re-
peated vertex-IDs over a possible match path (from
root to a leaf).

3) Performs forward check in a depth-first manner, for

each possible match path, at level j of Tree(G),

a) Let Eset represents all edges in G containing & ; only
or §; with lower-level variables;
b) Sends Eset to S; as Query?2;
¢) Invokes b <— Rec({[b]o, [b]1));
d) Delete the nodes if b = 0.
S;.Query. On receiving Eset from C, for every (h,l,t) €
Eset:
1) Finds the shared adjacency list [Ap];;
2) Lets [b]; = PSM((L,t), [Ar)i);
3) Sends [b]; back to C.

Fig. 11. Protocol IIgpm.Query for functionality Fgpm.

randomly sampled vertex-ID and the real vertex-ID for a
specific string. Since we only assume a non-adaptive semi-
honest adversary and the real vertex-IDs are no-repeatable
and independently distributed, the simulation completes.

Communication efficiency. The check phase has commu-
nication complexity of O(|Const(Q)]) for C, Sy, and S;.
And the GetID phase has communication complexity of
O(|Const((Q)]) for Sy and S;. As for query phase, the
communication complexity depends on the actual query,
and at the worst case, it invokes O(|d|(n + m)p) length-
d PSM protocols, where p is the number of all possible
combinations of variables and d is the maximum degree of
vertices. This brings the total communication complexity of
secure GPM to O(|8|(n + m)pd).

4.2 Securely Evaluating A Single-Instruction GN Query

Recall that in Section 2.3, GN queries allow the navigation
towards the topology of the graph. Similar to Fgpm, the ideal
functionality Fg, could be divided into three phases:

1) Check phase, where the client checks if a rich-text query
is valid. This phase is identical to Fgpm.Check;

2) GetID phase, where the client retrieves IDs for every
query string. This phase is also identical to Fgpm.GetID;
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3) Query phase, which takes a shared traverser as input
and outputs a new shared traverser based on the latest
traversal instruction;

Note that we also assume the existence of a MPC
equality test protocol, denoted as EQ, which checks if two
shared values are equal. Existing frameworks such as SPDZ
[36], [37], [38] can perform EQ with online communication
complexity of O(f) bits for 3-bit integers [39].

Query.flatMap. On receiving a flatMap instruction v, and
shared candidate set [U],

1) Invokes (S, T, A) + Rec([G]), U + Rec([U));

2) Gets the adjacency list Aj,g(,) for every ind(u) €
ind(U), finds its neighbor vertex index ' with label
defined in instruction ¢, pushes v’ into U’;

3) Invokes [U’] + Shr(U").

Query.filter. On receiving a filter instruction 1), and shared
candidate set [U],

1) Invokes (S, T, A) + Rec([G]), U + Rec([U));

2) Filters ind(U) with condition defined by instruction
¢. Pushes the filtered elements into U’;

3) Invokes [U’] < Shr(U").

Fig. 12. Ideal Functionality Fgn.Query.

Formally, a traverser is defined as t = ([U], ), where U
is an abstract term referring to the location of the traverser,
and v is a traversal instruction extracted from the rich-
text query. Note that we have summarized all the possible
instructions in Section 2.3 in two types, i.e., flatMap and
filter. Thus, we divide the functionality of query phase into:
Query.flatMap and Query.filter. We show the ideal function-
ality of processing a single-instruction GN query in Figure
12.

C.Query.flatMap Given a single-instruction path query
with condition «, C:

1) Sends ind(U), ¥y—se OF ey, to S;;

2) On receiving server’s messages, invokes by, ...
ReC(([b1]07 vy [bk}o, [bl]h vy [bkh»;

S;.Query.flatMap
On receiving ind(U) and an instruction ¢,,_,. from C,

1) Extracts current candidate set [u;]; € [U];, and its
corresponding shared adjacency list [Ay];;

2) For all [Ay,]; € [Ayls, filters and gets the in-
dication vector for every edge in [Ayl;, that is
[bl]iv ey [b‘U|,j]z — EQ([Au7 (*)]za ¢v%e);

3) Sends [b1];, ..., (b )i to C;

On receiving ind(U) and an instruction t,_,, from C,

7bk<_

1) Extracts current candidate set [E,;]; € [Ey]; which is
in the form of (label, tail vertex): ([I], [t]);

2) For all [E,,|; € [Eyl; filters and gets the in-
dication vector for every edge in [Ey];, that is
[bl]iv ) [b\Ul]z — EQ([EU7 (*)}17 ¢e%v);

3) Sends [b1];, ..., [b|U|}2 toC;

Fig. 13. Protocol IIg,.Query.flatMap for functionality Fgn.

More precisely, in the secure instantiation of Fgn, the
representation of location indicator U depends on the cur-
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C.Query.filter Given a single-instruction path query with
condition ¢,

1) Sends ind(U), ¥ to S;;

2) On receiving server’s messages, invokes by, ..., 0 4
< ReC(<[b1]07 vy [b|U|CZ]O’ [bl]ly ey [b\U|d]1>)’

S;.Query.filter
On receiving an instruction 1) from C,

1) Extracts current candidate set [u;]; € [U];, and its
corresponding shared adjacency list [Ay];;

2) For all [A,,]; € [Ayl; filters and gets the in-
dication vector for every edge in [Ay];, that is
[bl]ia EEE) [b‘UW]Z <~ EQ([Auj (*)]u ¢1)—>e);

3) Sends [b1];, ..., [bIUIJ]i to C;

Fig. 14. Protocol IIg,.Query filter for functionality Fgn.

rent traversal location. On the one hand, if the input tra-
verser t = (U, ¢) locates within a vertex set, U is defined
as U C ind(V) = {v1,...,v.}, and we additionally use
Ay = {A,,,..., Ay, } to denote the adjacency list corre-
sponding to U. By using such construction of Ay, Fgn
naturally supports mapping from vertex set to edge set.
On the other hand, if the traverser locates within an edge
set, U is defined as U = ind(E) = {e1, ..., e}, and we use
Ey ={4,,(1),..., Ay, (d), Ap,(1), ..., Ay, (d)} to denote the
corresponding edge set extracted from A. Note that at the
beginning of each traversal, we define the initial location as
Vg, where V; = ind(V'). We present two secure instantiations
for Fgn.Query, ie. Fgn.Query.FlatMap and Fg,.Query.Filter,
in Figures 13 and 14, respectively. Since we use standard
MPC arithmetic for the protocol, consequently, the protocol
is secure under the MPC-hybrid model and the security
proof is trivial.

Communication efficiency. The communication cost for
those protocols depends on the instruction and the database
itself, and it requires O(|U|) invocations of PSM and addi-
tionally O(|Const(Q)|) communications.

5 EVALUATING A MULTI-INSTRUCTION QUERY

Note that we have introduced how to securely evaluate
a single-instruction query in Section 4. In this section, we
introduce how to evaluate a multi-instruction query. Recall
that we want the overall protocol to (1) have small commu-
nication between the client and the servers, and (2) have
good asymptotic communication complexity between the
two servers.

éSingle Instruction Evaluation (SIE) :
' ind(G) |

filter :

[v] U]
1/}17“"71[}\\1/\ 71/}27““31/}]‘1’

Fig. 15. Single Instruction Evaluation (SIE).
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Now, we show how to evaluate multi-instruction queries
based on existing Single Instruction Evaluation (SIE) proto-
cols, i.e. IIgpm.Query and Ilgn.Query. We summary the gen-
eral execution structure of SIE in Figure 15, where I1.Query
takes input of a public instruction and a shared traversal
set, and outputs a shared indicator vector [b]. Considering
the scenario of single-instruction evaluation, the servers can
reconstruct [b] to the client, and then the client itself can
“filter” the indexes of the query result. Here, in single-
instruction evaluation, the client only communicate with the
servers twice (sending the query, and getting the reconstruc-
tion result) to get the query result.

Trivially, to evaluate a multi-instruction query with set
U, we can result < SIE(...SIE(SIE(t = ([U],¥)))...), which
involves || invocations of SIE. And therefore, O(|¥| - |U])
bit communications between the client and the servers.
This result is undesirable and contradicts our design goal.
Conceptually, in multi-instruction evaluation, we want to let
Sp and S “obliviously” filter the indexes ind(G) using the
shared [b]. That is, the client is removed from the interme-
diate instruction evaluation, and it only gets involved at the
beginning and the end of the evaluation (2 rounds). In this
work, we propose a novel cryptographic primitive called
Oblivious Filter, which we will present later in Section 6.
We denote the Single Instruction Evaluation with Oblivious
Filter as OF-SIE, and show the framework of secure multi-
instruction evaluation in Figure 16, where OF-SIE is sequen-
tially executed. Informally, for a traverser ¢t = ([U], ¥) with
instruction set ¥ = {11, ..,%|y|}, the evaluation routine is
result <— OF-SIE(...OF-SIE(OF-SIE(¢ = ([U], ¥)))...), where
we denote the initial traversal location as [U], and the final
traversal location as [U’]. Also, OF-SIE reduces the secure
computation input size, and hence makes it asymptotically
better than the trivial solution.

........... e 7
O] | OFSIE:  OFSIE: Ay UL Re it
VT it et OF-0lE : 0

Fig. 16. Multi-Instruction Evaluation Framework.

6 OBLIVIOUS FILTER

In this section, we present the building block for our pro-
posed general query processing system, i.e., oblivious filter.

6.1 Definitions

We define the Oblivious Filter (OF) as a two-party function-
ality between a server and a client. The server in OF holds a
list of pairs (t, v), and each pair consists of an indication bit
t; € {0,1} and a fixed finite value v; € V. The client in OF
holds a choice vector ¢ € {0,1}".

Oblivious filter protocols allow two party (a server and
a client) to jointly filter server’s private vector v, and output
a shared vector [v'], such that: (1) for every v; € vy, if t; =
¢i, then v; € v/, and (2) both parties learn nothing about
which input value in v belongs to [v']. Formally, we give
the following definitions of oblivious filter.
Definition 3 (Correctness). Given security parameter A € N,

foranyn € N,m € N<n,c,t € {0,1}",v € V", and

[v] < Hor({(t,v),c)), then Vo' € v/ =v; € v,¢; = ;.
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Then we give the simulation-based security definition
of oblivious filter. Formally, security holds that any party’s
view during the attack can be simulated given only its own
input and output.

Definition 4 (Security). Let Ilor be an oblivious filter pro-
tocol. We say that Ilof is secure if for all adversaries A,
there exists a polynomial-time simulator S, such that

{(So(1*, nym, v, t, [v/]o), v))} =
[(viewI™" (, (v, £), &) output™ (A, (v, £), )},

{(S1(1* n,m, e, [V']h), v')} =
{(view!'" (X, (v, ), c)),output™F (X, ((v,t),c)))}.

Relations with other primitives. Oblivious filter can be seen
as a instantiation of Private Function Evaluation (PFE) [40],
[41] with shared outputs. Moreover, one building block for
PFE — Oblivious Extended Permutation (OEP) [42] could
be seen as a relaxation of oblivious filter, where the filter
function is held by client instead of both parties. Roughly,
OEP assumes that server holds an extended permutation
7w : {L,..,m} — {1,..,n}, a mask r € V", while client
holds a private input v € V. At the end of OEP protocol,
client learns {v-1(1)+71, ..., Vr—1() +7n }, and server holds
{r1,...,rn}. Though the design intuition is similar, oblivi-
ous filter takes a simpler construction from homomorphic
encryption (other than universal circuits), which makes it
more communication efficient than the OEP protocols.

Additionally, oblivious filter can also be seen as a simpler
version of Private Secret-Shared Set Intersection (PS3I) [43]
and therefore has a more efficient construction comparing
with PSI, which assumes two parties hold a list (t.,v.)
and (ts, vs) respectively, and the protocol finally outputs
the shared intersection of v, and v.. Notice that for all
v, € vl C v.and v, € v, C v, t.; = ts; holds. PS’I
ensures that at the end of the protocol, two parties only
learn the shares the intersection and nothing else. Our work
is also related to other primitives, such as oblivious data
structures [44] and oblivious shuffling [41], [45], [46], [47].
In the literature, there are three approaches for PFE pro-
tocol construction [41]: homomorphic encryption, universal
circuit, and oblivious switching network. We follow such
design intuition and try to build oblivious filter based on
HE.

Later on, we will present a construction of oblivious filter
using HE, and introduce a variant of oblivious filter, namely
secret-shared oblivious filter.

6.2 Construction of OF from HE

First, we present a simple construction of OF based on ad-
ditive homomorphic encryption. We present the description
of this protocol (OF-HE) in Figure 17. The main idea is that
server first performs a secure evaluation to shuffle indicator
vector, without knowing additional information about t.
During the setup phase, both parties generate encryption
key pairs by (pk,sk) < Gen(1%), and exchange public key
with each other. At the beginning of the protocol, the client
first uses its public key to encrypt its choice vector ¢ and
sends it to the server. Then the server performs secure evalu-
ation between the encrypted c and t, and gets the encrypted



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

c — t. Afterwards, the server generates a random permuta-
tion m; € S, encrypts and shuffles value v. After it, the
server sends it to client (75 (Encpi (¢ — t)), m5(Encpi, (v))).

Then the client filters Encp(7s(v))) by decrypting the
first part of server’s message ms(Encpi (¢ — t)). As a result,
client gets a new vector Ency, (ms(v’))). Then the client
samples a new vector r and gets Encpy, (v/ —r)). Next, the
client applies a new permutation 7. € S™ to the encrypted
result and sends Ency, (7.(v' —r))) back to server. After
decryption, the server sets [v']g = m.(v/ —r) and the client
sets [v']; = m.(r).

Inputs. A list of n pairs (t,v) from server, where t €
{0,1}™,v € V"; A bit vector ¢ € {0,1}" from client.
Outputs (shared). [v'], s.t. v/ C v, and for every element
v" € v/, its corresponding t’ equals to c.

Setup. Server and client both run Gen(1*), and sends their
public key to the other party.

Protocol.

1) Client uses its own public key pk. to encrypt the
choice vector c, then sends Encpy. (c) to server.

2) Server generates a random permutation 7, € S”,
and gets Encpi (¢ — t) < Eval(Encpy (c), Encpk (t)),
shuffles the result (7s(Encp (¢ —t)), Encpr, (75(V)))
and sends to client.

3) Client performs decryption on server’s first message,
and gets m4(c — t). Then client filters second message
based on 7s(c — t):

a) Initiates an empty set: v, = ().

b) For every item Ency_ (vr, (5)) in 75(Enc,pi (v)), if
(cr, —tx,) = 0, push Encpi (v, () into V.

¢) The final size of v/, is denoted as n.

4) Client randomly samples a size-n vector r +* V" and
a random permutation . € S™. Then client evaluates
Encpk, (v] — r;) < Eval(Encpy, (v]), Encpy, (1;)) and
updates v/, by Encp (v/ — r). Finally, client applies
the permutation and sends back 7. (Encp (v — 1)) to
server .

5) Server decrypts the message and gets [v']o = 7 (v —
r). Client gets [v']; < m.(r).

Fig. 17. Instantiation of OF from Additive HE.

Lemma 2. The protocol described in Figure 17 is a secure
instantiation for oblivious filter functionality.

The correctness of the simple construction could be
easily verified. As for the security of this construction, we
prove the security of OF-HE in Appendix B.

Now we analyze the complexity of this protocol.

¢ Round complexity: constant-round and communicating
m + n ciphers in total.

o Computation complexity: the server performs m + n
public-key operations and client performs n times HE
evaluations.

6.3 Secret-Shared Oblivious Filter

Since we use a shared input and shared output format in
our querying framework, in this subsection, we present a
variant of OF, i.e., Secret Shared Oblivious Filter (S5-OF). In
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this variant of OF, we assume that server and client both
hold the shares of a list (t, v), and they both know a public
choice bit ¢ € {0, 1}. We formally describe this functionality
in Figure 18. In the following, we will present two different
constructions of SS-OF.

Inputs (shared). A list of n pairs of shares ([t], [v]), where
t € {0,1}™,v € V™. A public choice bit ¢ € {0,1}
Outputs (shared). [v'], s.t. for all v’ € v/, its corresponding
t’ equals to c.

Fig. 18. Functionality of SS-OF.

6.3.1 Construction of SS-OF from Oblivious Filter

SS-OF functionality can be achieved from a two-fold obliv-
ious filter (see Figure 18). For the first round, P, inputs
[t]o and [v]o to IIof, and P; inputs [t];. Then Ilor outputs
[[v']o]o to Py, and [[v']p]1 to P;. For the second round, P
inputs [v]o to Ilor, and P inputs [t]; and [v];, then IToF out-
puts [[v']1]o to Py, and [[v']1]1 to Py. Finally, [[v']o]o+[[V']1]o
and [[v']o]1 + [[v']1]1 are the reshares of the result v'.

Inputs (shared). A list of n pairs of shares ([t], [v]), where
t € {0,1}™,v € V"; A public choice bit ¢ € {0, 1}.
Outputs (shared). [v'], s.t. forall v’ € v/, its corresponding
' equals to c.

Setup. Py runs (pk, sk) < Gen(1*), and sends pk to P;.
Protocol.

1) Py and P, performs a OF protocol, where Py inputs
[t]op and [v]o, Py inputs [t];.

2) At the end, Py receives share [[v']g]o, and P; receives
share [[v']o]1.

3) Switch roles of Py and P, where Py inputs [t]; and
[V]l.

4) At the end, P, receives share [[v']1]o, and P; receives
share [[v']1]1.

5) Py calculates the reshared result as [¥/]o = [[v/]o]o +
[[v']1]o, and P; calculates the reshared result as
V' = [[v]ol + [V']i]1.

Fig. 19. Constructing SS-OF from OF.

6.3.2 Construction of SS-OF from Secret-Shared Shuffle

We borrow the general idea from [46], and describe a generic
construction of SS-OF from Secret-Shared Shuffle in Figure
20. The communication and computation complexities of
this construction mainly depend on the secret-shared shuffle
protocol, and to the best of our knowledge, the most efficient
secret-shared shuffle protocol [47] achieves O(N log N - \)
communication, where N is the set size and A is the security
parameter. With an efficient secret-shared shuffle protocol
such as [47], constructing SS-OF from secret-shared shuffle
is also efficient.

6.4 Experiments

We implement oblivious filter using Paillier encryption
scheme [19]. Our code is written in C++ with GMP library.
Our test environment is Quad-Core Intel Core i5 2.40GHz
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TABLE 1
Running time of OF-HE by filtering 50% of client’s input data.

Key size 1024 bit 2048 bit
Input data size 100 1,000 10,000 100,000 100 1,000 10,000 100,000
Offline time Server 0.366872  3.73717  40.4863 400.302 | 1.83838 18.9394 187.717 1,953.53
Client | 0.373998  3.74880  40.3731 399.779 | 1.84555  18.9853 187.553  1,950.47
Online time SEI:VEI' 0.062351 0.647129 7.31345 67.1577 | 0.363488 4.07819 44.9030  399.079
Client | 0.131378  1.28905  14.3267 127.836 | 0.831858 8.41821 96.0366  821.004

(1) Both parties invoke a secret-shared shuffle protocol to per-
mute data ([r(t)], [7(v)]) < Permute([n], ([t], [v])), where
the i-th permuted element is denoted as ([t (;)], [vri)])-
(2) Both parties reconstruct the permuted vector [7(t)] of
the resulting database ([7(t)], [7(Vv)]),

(3) Both parties keep the shares of [v.(;] for which the
corresponding indicator bit t ;) = c.

Fig. 20. Constructing SS-OF from Secret-Shared Shuffle.

CPU with 16G RAM, and we run the test on different
size of databases in local area network. Specifically in our
experiment, our protocol can finish oblivious filter on 105
data within about 30 minutes. We report the detailed exper-
imental result of OF using HE (OF-HE) in Table 1, where
we set the modulus to 1,024 bit and 2,048 bit, respectively.
From them, we can find that the evaluation time of OF are
linear with data size on both server and client’s sides, which
indicates its scalability.

7 CONCLUSION

In this paper, we focus on the problem of how to perform
scalable and secure query on secret shared graph databases.
To do this, we first summarized the queries on secret
sharing graph database into two single instruction queries,
i.e., Graph Pattern Matching (GPM) and Graph Navigation
(GN), and a multi-instruction that is composed by single in-
struction queries. We then leveraged secure multiparty com-
putation technique to securely evaluate GPM and GN. Next,
we proposed a general framework for processing multi-
instruction query and introduced a novel cryptographic
primitive Oblivious Filter (OF) as a core building block. We
constructed OF with homomorphic encryption and proved
that our proposed framework has sub-linear complexity and
is resilient to access-pattern attacks. Finally, empirical study
demonstrated the efficiency of our proposed OF protocol.
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APPENDIX A
PAILLIER ENCRYPTION

We introduce the paillier encryption scheme [19] which is
used to construct oblivious filter. Paillier is an instantia-
tion of additive homomorphic encryption with algorithms
(Gen, Enc, Dec, Eval). We introduce the details of these algo-
rithms below.

Key Generation. (pk,sk) < Gen(1%): Takes a security
parameter A as input, generates the public key pk for en-
cryption and secret key sk for decryption.

o First, generates two large prime numbers with bit size
equal to the security parameter ¢,p < large prime, and
ensures that ged(pg, (p — 1)(¢ — 1)) = 1.

e Lets n = pg and calculate A = lem(p — 1,4 — 1).

« Randomly selects a group generator for n?, g <% 7y,
and ensures that n divides the order of g, if not, repeat
this step.

e Calculates p =
L(z)=(x—1)/n.

o Lets pk = (n, g) and sk = (A, ).

(L(¢* mod n?))~! mod n, where

Encryption. ¢ < Encpc(m): Takes a message m and public
key pk as input, returns the encrypted cipher c.

« Randomly selects a number r +% Z*.
« Generates the ciphertext ¢ = g™r" mod n?.

Decryption. m < Decg(c): Takes a ciphertext ¢ and secret
key sk as input, returns the decrypted message m.

e m=cy mod n.

Evaluation. ¢ = Evaly(co, ¢1):
o Calculates ¢ = ¢p - ¢; mod n?.

Here we do not illustrate the details of the correctness
and the security properties of paillier, for those who are
interested we refer to the original work [19]. Other additive
homomorphic encryption schemes can be found in [20], [21].

APPENDIX B
SECURITY PROOFS

In this part, we prove the security of our proposed protocols
using real-ideal world paradigm [34], [35]. First, we start by
showing the security definitions.

Definition 5 (Computational Indistinguishability). Let a
be the inputs and A € N be the security parameter,
two probability functions {Fo(a,A)}acfo,13+,ren} and
{F1(a,; ) }aeqo,13+,2en} are said to be computational
indistinguishable, if for every non-uniform polynomial-
time algorithm 4, there exits a negligible function
negl()\), such that for every a € {0,1}* and every A € N,

| PrlA(Fo(a, A)) = 1]| — [Pr[A(Fi(a, A)) = 1]| < negl(}).

Definition 6 (Simulation-based Security). Let F = (Fo, F1)
be a functionality, we say a protocol 7 securely computes
F in the presence of static semi-honest adversaries if
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there exists a probabilistic polynomial-time algorithm Sy
and S; such that

{(So(1, 2, Fo(a,v)), Fla,y))} =
{(Viewg (>‘> x, y)aOUtPUtﬂ- ()‘7 X, y))}a
{(Sl(l)‘,y,}'l(:c,y)),]:(x,y))} é
{(viewT (A, z, y),output™ (A, z,y))},
where z, y are inputs from Py and P, separately.

Definition 7 (IND-CPA Security). A public-key encryption
scheme is said to be IND-CPA secure if for all probabilis-
tic polynomial-time adversary A4,

Pr[Game™(1*) = 1] < % + negl(\),

where the IND-CPA game Game™ (1) is defined as
follows:

1) The challenger generates a key pair based on security
parameter: (pk, sk) < KeyGen(1*). Then the challenger
sends pk to the adversary;

2) The adversary selects two messages (mg,m;) and
sends them to the challenger;

3) The challenger throws a random coin b € {0,1}, then
encrypts my, with pk, and sends ¢ < Enc,g(my) to
adversary;

4) The adversary runs an arbitrary attacking algorithm
b+ A(c) to guess whether c is the encryption of my
or my. If b =1V, return 1, otherwise return 0.

Security proof of lemma 2.

Lemma 2. The protocol described in Figure 17 is a secure instan-
tiation for oblivious filter functionality.

Simulator Sj.

{(So(lk,n7m7v,t7 [V/]O)vv’)} =
{(viewg®" (X, (v, t), c)),outputF (X, (v, t),c)))}.

To simulate the server in OF, first extract the output size n
from the ideal output [v']o. According to the definition 5,
the simulator Sy is given the original server’s input v, t and
the output [v']p = v/ — .

For step 1, the server receives the encrypted messages
from client, therefore the simulation is trivial. For step 2-3,
we let Sy chooses a random permutation 7, and sends back
to the client with tuple (Encp (7,(c — t)), Encpk, (7,(V))).
Finally, Sy decrypts the messages it receives and outputs
the plaintext as its output. Now, the view of the simulator
in step 2, for every fixed R € {0,1}" with m ‘1’s, we have

Pr[So(1*,n,m,v,t, [v']o) = R] = Pr[r,.(c — t) = R],
Pr[viewg " (), ((v,t),¢))] = Pr[rs(c — t) = R].
Since 7, and 7(s) are both uniformly random permutations

of B or B’s fixed permutation, and therefore, Pr[m,(c — t) =
R] = Pr[ms(c — t) = R]. That is,

Pr[So(1*, n,m, v, t, [v']o) = R] = Pr[views* (A, ((v,t), c))].

Since the function output is deterministic, the simulation
of the output is trivial. That is, the function output of proto-
col Ilor can be simulated by Sy with perfect correctness.
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Simulator 5.
{(S$10*, n,m, e, [v]h),v)} =
{(viewT (A, {(v,t), c)),output™ (X, {(v,t),c)))}.

To simulate the client in OF, first extracts the output size
n from the ideal output [v'];. According to the definition,
simulator S is given c and [v']; = .

For step 1, first S; sends Encpy, (c) to the server. This sim-
ulation is computationally indistinguishable from the real
execution assuming the encryption scheme is IND-CCA2
secure. Then, until step 4, S1 gets Encp (v'). Finally, S,
samples a random vector r’ € V", and sends Encp (v/ —1’)
to the server. Note that for a fixed R € {0,1}™,

Pr[v' —r' = R =Pr[v' —r=R].
Therefore, it holds that
Pr[Sl(IA, n,m,c,[v']1) = R] = Pr[view?OF()\, ((v,t),c))].

Also since the function output is deterministic, the simula-
tion of the output is trivial.
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