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Abstract In this paper, we present the more accurate definition of strong
linear complexity of feedback shift registers based on Boolean algebraic than
before, and analyze the bound of strong linear complexity by the fixed feedback
function. Furthermore, the feedback shift registers with maximum strong linear
complexity are constructed, whose feedback functions require the least number
of monomials. We also show that the conclusions provide particular ideas and
criteria for the design of feedback shift registers.
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1 Introduction

The research for feedback shift registers (FSRs) can be traced back to the
1950s[1], which is still a basic theoretical problem in the field of secure commu-
nication so far. Periodic sequences generated by FSRs, such as m−sequences,
are widely used in cryptographic algorithms and communication coding for
their good statistical characteristics and implementation efficiency[2]. In re-
cent ten years, due to the inherent linear restriction of linear feedback shift
register (LFSR)[3], more and more symmetric cryptographic algorithms begin
to use the non-linear feedback shift register (NLFSR) as their driving compo-
nents[4]. Consequently the design standard of universality of NLFSR needs to
be solved. Generally speaking, for the design of the overall architecture about
cryptographic algorithms, the balance between the non-linear iterations and
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implementation efficiency may be considered. However, it is very necessary to
require FSRs as the driving components to generate sequences, which have
the sufficiently larger period and stronger linear complexity, or satisfy cer-
tain mutual constraints[5]. At present, because the algebraic logic of the cycle
structure of NLFSR is not clear, as the only non-linear component of many
lightweight cryptography algorithms, it has a great potential attack.

The linear complexity is usually an important measurement of pseudo-
random sequence, which is defined as the stage of the shortest LFSR that
generates it. In practice, for example, the Berlekemp-Massey’s synthesis al-
gorithm[6] can recover the whole pseudo-random sequence through the trun-
cated sequence with twice linear complexity length. In fact, for pseudo-random
sequences generated by different structures, other complexity can be defined,
such as 2−adic complexity[7]. At the same time, based on fault-tolerant mech-
anism, the k − error linear complexity can also be defined. For the NLFSR
sequences, it only can be determined that the linear complexity of de Bruijn
sequence is

[
2n−1 + n, 2n − 1

]
[8]. In general, because of the selection of the

initial states (the number of cycles in a state graph of FSR), we can not go
through all the periodic sequences with non-equivalent translation to deter-
mine the linear complexity of them generated by the FSR with large stages.

In the reference [9], the strong linear complexity of feedback register is
proposed for the first time, which is defined as the stage of the shortest LFSR
that generates all sequences generated by the feedback register. Since the cycle
structure of LFSR is known[10], the strong linear complexity is an important
index including the period and linear complexity of sequences generated by the
feedback register. At the same time, according to the reference [9], a strong
linear complexity of feedback register can be derived from related monomi-
als of its feedback function, which has a strong guiding role in the practical
design of the feedback register. Based on this definition, this paper gives a
more accurate definition of strong linear complexity on Boolean algebra, and
complements the relevant conclusions of the upper and lower bounds of strong
linear complexity of FSRs and an algorithm for finding the exact value of
strong linear complexity. Furthermore, the counting of all the r−cycles de-
fined in the reference [9] is given, and it is proved that when a (non-singular)
FSR with the prime stage has the maximum strong linear complexity, the cor-
responding feedback function consists of at least n−1

2

(
n+1
2

)
monomials; when

a FSR has the maximum strong linear complexity, the corresponding feedback
function consists of at least

[⌈
n−1
2

⌉
, n− 1

]
monomials. Meanwhile, the con-

structed method of the feedback function which satisfies the least number of
monomials is given. To a certain extent, it provides a criterion for the design
of feedback functions of FSRs.

In this paper, we first give the basic algebraic knowledge required for the
definition of strong linear complexity. Secondly, studying on the strong linear
complexity of FSRs as the research property, the corresponding conclusions are
given respectively from the analysis and design of FSRs. Finally, the specific
ideas are provided for the design of FSRs with the maximum strong linear
complexity.
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2 Basic Algebraic Knowledge

In this section, we refer to these references [11,13] to define a more rigorous
Boolean algebra and logic algebra, and then give the set space of feedback
functions of FSRs on this algebra structure. Thus, the strong linear complexity
of FSRs is defined accurately. Firstly, we give the definition on Boolean algebra,
function and polynomial.

Definition 1 let B be a set including at least two elements 0 and 1. If three
binary operations ∨,+, · and one unitary operation − are defined on B, then
call B a Boolean algebra, denoted by < B,∨,+, ·,−, 0, 1 >, and ∨,+, ·,− are
collectively Boolean operations. If B = B2 = {0, 1}, then the Boolean algebra
< B2,+, ·,−, > or < B2,∨, ·,−, > is called a logical algebra.

Definition 2[11] Let B be a Boolean algebra and n be a positive integer,
then the mapping Bn → B is called a n−variable Boolean function on B.

Definition 3[11] Every element of the Boolean algebra B is called a
Boolean constant, and the variable, which be valued in B, is called a Boolean
variable. The Boolean expression obtained by finite Boolean operations of some
Boolean constants and variables x1, · · · , xn is called a n−variable Boolean
polynomial on B, usually denoted by f(x1, · · · , xn), g(x1, · · · , xn).

Because of the following Proposition 1, we usually do not make a distinction
between the Boolean function and Boolean polynomial.

Proposition 1[11] Every n−variable Boolean polynomial determines a
unique n−variable Boolean function: (a1, · · · , a2) → f(a1, · · · , a2), and this
Boolean function is also denoted by f(x1, · · · , xn).

In general, the feedback function of FSR satisfies the following Proposition
2.

Proposition 2 The feedback function of n−stage FSR is a n−variable
Boolean function if and only if B is a logical algebra.

Under different Boolean algebra structures, the algebraic normal form of
Boolean polynomial is different. In general, we call the algebraic normal form
of Boolean polynomial on the logical algebra < B2,∨, ·,−, > as the complete
disjunctive normal form, and on the logical algebra < B2,+, ·,−, > as the Zhe-
galkin polynomial[13]. In the following, the Boolean algebra < B2,+, ·,−, > is
considered, and except for in this algebra structure, + means ”logical addition”
operation, and the rest means ”real addition”.

Next by the form of Proposition 3, we give the set space of feedback func-
tions of all FSRs on the logical algebraic < B2,+, ·,−, >.

Proposition 3 Let Γ be a set of all n−variable Boolean polynomial on
< B2,+, ·,−, >, then Γ is a 2n−dimensional vector space over F2. One group
of base vectors is the set of monomials {xi1xi2 · · ·xik |1 ≤ ij ≤ n, 1 ≤ j ≤ k}
and element 1 of n−variable Boolean polynomial, which we can call linear
variables.

According to Proposition 3, the number of all FSRs under these definitions
is 22

n

. In the following, we generally make f = f(x1, · · · , xn) to express the
feedback function of FSR, and f(x1, · · · , xn) = x1+g(x2, · · · , xn) to distinguish
the non-singular FSR from FSRs. At the same time, for the distinction between
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linear and non-linear, we require f to be a linear (an affine) Boolean polynomial
if and only if the algebraic degree of f is no more than 1. In addition, they are
all called nonlinear.

The reference [12] points out that Γ is the n−variable polynomial ring over
F2, namely,

Γ = F2[x1, x2, · · · , xn]/(xi
2 + xi)

where xi
2 ≡ xi mod (xi

2 +xi), 1 ≤ i ≤ n. Thus, for the feedback function f of
FSR, we can define an algebra-homomorphism δ over Γ , that is, Definition 4.

Definition 4[12] δ = δf : Γ → Γ , such that

δ(xi) = xi+1, 1 ≤ i < n

δ (xn) = f(x1, · · · , xn).

As Γ is a finite ring, there exits a minimum positive integer t such that

δn0+t(x1) = δn0(x1), n0 ≥ 0

and the period of δ is denoted by p(δ) = t+n0. Thus, for any feedback function
f , it can be determined the only group of ordered vectors in the vector space
Γ , namely

V P (δ) =
{
δ0(x1) = x1, δ

1(x1), · · · , δp(δ)−1(x1)
}

.

At the same time, it is obvious that when the feedback function f is non-
singular, then n0 = 0, and δ is an isomorphism[12]. In fact, we can obtain
some properties of V P (δ) by Proposition 4.

Proposition 4 For the ordered vector group V P (δ) of feedback function f
of any non-singular FSR, there exists

δp(δ)−1(x1) = f(xn, x1, · · · , xn−1).

Proof
f(f(xn, x1, · · · , xn−1), x1, x2, · · · , xn−1) = f(xn, x1, · · · , xn−1) + g(x1, x2, · · · , xn−1)

= xn + g(x1, x2, · · · , xn−1) + g(x1, x2, · · · , xn−1) = xn

Let the set of all periodic sequences generated by the non-singular FSR
with feedback function f under 2n different initial loadings, be Ω(f), and
the least common multiple of the minimal periods of sequences in Ω(f) is
denoted by p (Ω(f)). In the reference [12], it is proved that when the FSR is
non-singular, p (Ω(f)) = p(δ). Thus, p (Ω(f)) can be determined by restricted

to the sub-vector-space
∧
Γ of Γ generated by V P (δ) in fact. At the same time,

according to the reference [9], we can transform the strong linear complexity

of FSR into the dimension of
∧
Γ , that is Proposition 5.

Proposition 5 The strong linear complexity of FSR is equal to the di-

mension |Q| of sub-vector-space
∧
Γ generated by the corresponding V P (δ).

Proof According to the definition in the reference [9], the strong linear com-
plexity of FSR is equal to the stage of the shortest LFSR that generates all
sequences generated by the FSR. When the FSR is singular, its minimum
period sequence contains a pre-period sequence. It follows that all minimum
periodic sequences can be uniquely represented by
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δ0(x1) = x1, δ

1(x1), · · · , δp(δ)−1(x1)
}

(a1, a2, · · · , an)

where (a1, a2, · · · , an) is the initial n values of the corresponding sequence. Let

ε1, ε2, · · · , ε|Q| be a base of
∧
Γ , then{

δ0(x1) = x1, δ
1(x1), · · · , δp(δ)−1(x1)

}
=
(
ε1, ε2, · · · , ε|Q|

)
·A|Q|×P (δ).

Thus there exists a invertible matrix BP (δ)×|Q|, which makes
(
ε1, ε2, · · · , ε|Q|

)
·

A|Q|×P (δ) · BP (δ)×|Q| be exactly the generating matrix of LFSR with the
|Q| −stage, namely, the shortest LFSR corresponding to the generating matrix
can generate all the minimum periodic sequences. It proves by the uniqueness
of V P (δ).

In fact, the basis of
∧
Γ is also equal to the linear variables appearing in

V P (δ), which is illustrated by Example 1.
Example 1 Let a feedback function of 4− stage NLFSR be

f = x1 + x2,4 + x2,3,4

where x2,4 = x2x4 (Since xi · xi = xi, the representation method is an one-to-
one corresponding), then the corresponding ordered vector group V P (δ) is

x1, x2, x3, x4, x1 + x2,4 + x2,3,4, x2 + x1,3 + x1,3,4, x3 + x1,2,4 + x2,3,4, x4 + x1,2,3 + x1,3,4,
x1 + x1,2,4 + x2,3,4, x2 + x1,2,3 + x1,3,4, x3 + x2,4 + x1,2,4, x4 + x1,3 + x1,2,3

It shows that these linear variables in the sub-vector-space generated by this
ordered vector group V P (δ) are

{x1, x2, x3, x4, x2,4, x1,3, x1,3,4, x2,3,4, x1,2,4, x1,2,3}

Therefore, the strong linear complexity of NLFSR is 10. The same result is
also given in the reference [9].

If the dimension of
∧
Γ is relatively small, then the theory of LFSR can be

applied to analyze NLFSRs. Therefore, it is necessary to discuss the bound of
strong linear complexity of FSRs.

3 The Bound of Strong Linear Complexity for a Certain Feedback
Function

For one FSR, from Definition 4 and Proposition 5, it can be seen that its
feedback function uniquely determines its strong linear complexity. Let R be
the set of monomials of its feedback function, and Q be the set of linear

variables of the corresponding sub-vector-space
∧
Γ , namely, the cardinality |Q|

of Q is its strong linear complexity. We identify 2n− 1 monomials with 2n− 1
index sets I, namley, monomial subscript sets (I is any non-empty subset of
{1, · · · , n}, such as x2,4 ⇔ {2, 4}). Then On this basis, the r−cycle is defined,
that is, Definition 5.
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Definition 5 Make the operation +1 mod n on all elements (indicators)
in any I (Here, define modn for the complete system of residues {1, · · · , n}
of n). Through the factor of n times whole operations +1 mod n, we can get
a sequence of index sets {I1, · · · , Id(d |n )} such that I1 = Id+1. If the index
set |I1| = r(1 ≤ r ≤ n), we call the sequence of index sets, that is, the set
{I1, · · · , Id(d |n )}, as a r−cycle.

Let kr be the number of all r−cycles, then each r−cycle can be expressed
as rCi(1 ≤ i ≤ kr). To make it easier to understand, we take an example from
the reference [9].

Example 2 For n = 4, we start with any index set I such that r = 2.
For example, if we make the operation +1 mod n on elements in I1 = {2, 3},
then we can get I2 = {3, 4}, I3 = {1, 4}, I4 = {1, 2}, and the next operation
for I4 will go back to I1. So one 2−cycle is {{2, 3}, {3, 4}, {1, 4}, {1, 2}}. In
the same way, we can get another 2−cycle {{2, 4}, {1, 3}}. Thus for n = 4,
k2 = 2, 2C1 = {{2, 3}, {3, 4}, {1, 4}, {1, 2}}, 2C2 = {{2, 4}, {1, 3}}.

From Definition 5, it can be seen that a monomial corresponds to an index
set, and a r−cycle corresponds to d index sets with the cardinality r, that is,
d monomials with the algebraic degree r. In fact, all r−cycles can be regarded
as a partition of all r−order monomials. The Corollary 2.3 in the reference [9]
points out that all elements in Q can be obtained by the shift and combination
of the elements in R. To facilitate the formula derivation in the following
section, we give an equivalent theorem in relation to Corollary 2.3, that is,
Theorem 1.

Theorem 1 Let R be the set of index sets corresponding to all monomials
in the feedback function f of FSR, and Q be the set of index sets corresponding

to all linear variables in the corresponding sub-vector-space
∧
Γ . Then each

element in Q only satisfies the following two conditions:

1. If I ∈ Q and n ∈ I, then for each J ∈ R, we can deduce that J ∪
{i+ 1 : i ∈ I, i 6= n} ∈ Q;

2. If I ∈ rCi, then I ∈ rCi ⇒ rCi ⊂ Q.

According to Definition 4, the correspongding V P (δ) of any FSR contains
initial linear variables x1, · · · , xn and these which are including in f(x1, · · · , xn),
namely, ⋃

1≤i≤n
{i} ∪R ⊂ Q

Combined with Example 1, we apply Theorem 1 to calculate its strong linear
complexity of FSR.

Example 3 Let a feedback function of 4− stage NLFSR be

f = x1 + x2,4 + x2,3,4.

The analysis steps are as follows.

1. R = {{1} , {2, 4}, {2, 3, 4}} ⇒ {{1}, {2}, {3}, {4}} ∪R ⊂ Q;
2. Apply the condition 2 of Theorem 1 to know that



Title Suppressed Due to Excessive Length 7

{2, 4} ∈ {{2, 4}, {1, 3}} ⊂ Q, {2, 3, 4} ∈
{{2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}} ⊂ Q;

3. These index sets I, such that I ∈ Q and n ∈ I, are {4}, {2, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
in the above steps. Thus apply the condition 1 of Theorem 1 to know that

{1} ∈ R⇒ {{1}, {1, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}} ⊂ Q
{2, 4} ∈ R⇒ {{2, 4}, {2, 3, 4}, {2, 3, 4}, {2, 4}, {2, 3, 4}} ⊂ Q
{2, 3, 4} ∈ R⇒ {{2, 3, 4}, {2, 3, 4}, {2, 3, 4}, {2, 3, 4}, {2, 3, 4}} ⊂ Q

.

To the sum, since no new index set is added in the step 3,

Q = {{1}, {2}, {3}, {4}, {2, 4}, {1, 3}, {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}}

namely, |Q| = 10.
In particular, if there is a constant term 1 in f , then there must be a

linear variable 1 in Q. Therefore, for one FSR, if there is constant term 1 in
f , its maximum strong linear complexity is 2n; if there is no constant term 1,
its maximum strong linear complexity is 2n − 1. Consequently, for one non-
singular FSR, the lower bound of its strong linear complexity can be given
immediately, that is, Theorem 2.

Theorem 2 Let R be the set of index sets corresponding to all monomials
in the feedback function f of non-singular FSR. For all the r(2 ≤ r ≤ n −
1)−cycle rCi, if there exits l r−cycles rCj(1 ≤ j ≤ l ≤ kr), and each of them
has at least one element contained in R. It deduces that if f has a constant
term 1, then its strong linear complexity is at least

n−1∑
r=2

l∑
i=1

|rCi|+ n+ 1;

If f has no constant term 1, then at least

n−1∑
r=2

l∑
i=1

|rCi|+ n

Proof It is easy to prove by the condition 2 of Theorem 1.

For Theorem 2.4 in the reference [9], the bound is widened too much be-
cause the linear term is not considered. Thus we modify it a little and get
Theorem 3 in this section.

Theorem 3 Let R be the set of index sets corresponding to all monomials
in the feedback function f of non-singular FSR. Let r′(2 ≤ r′ ≤ n− 1) be the
smallest integer corresponding to the lowest degree of monomials except linear
terms in g(x2, · · · , xn). For all the r′−cycles r′Cj , if there exits l r′−cycles
r′Cj(1 ≤ j ≤ l ≤ kr′), and each of them has no element contained in R. It
deduces that if f has a constant term 1, then its strong linear complexity is
at most

2n − 1−
r′−1∑
i=2

(
n
i

)
−

l∑
j=1

∣∣∣r′Cj∣∣∣;
If f has no constant term 1, then at most
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2n − 2−
r′−1∑
i=2

(
n
i

)
−

l∑
j=1

∣∣∣r′Cj∣∣∣.
It can be seen that for one non-singular FSR, if there is constant term 1 in

f , its maximum strong linear complexity is 2n−1; if there is no constant term
1 in f , its maximum strong linear complexity is 2n−2. In fact, Theorem 3 also
gives a criterion to judge whether one FSR is non-singular, that is, Theorem
4.

Theorem 4 If one feedback function of FSR is non-singular, then its cor-
responding Q does not contain the index set {1, · · · , n}.

Proof It supposes that Q contain the index set {1, · · · , n}. According to the
condition 1 of Theorem 1, because the indicator 1 /∈ {i+ 1 : i ∈ I, i 6= n},
1 ∈ J . It follows that the feedback function f is non-singular, hence when
merging to get index set {1, · · · , n}, J = {1}. Therefore, {i+ 1 : i ∈ I, i 6= n} =
{2, · · · , n}, that is, I = {1, · · · , n}. So we can see that {1, · · · , n} ∈ R. It is
contradictory, and the theorem is proved.

From Theorem 4, we can also deduce the upper and lower bounds of strong
linear complexity of FSR, that is, if there is a constant term 1 in f , then the
value range of |Q| is[

n−1∑
r=2

l∑
i=1

|rCi|+ n+ 1, 2n −
r′−1∑
i=2

(
n
i

)
−

l∑
j=1

∣∣∣r′Cj∣∣∣];

if there is no constant term 1 in f , then the value range of |Q| is[
n−1∑
r=2

l∑
i=1

|rCi|+ n, 2n − 1−
r′−1∑
i=2

(
n
i

)
−

l∑
j=1

∣∣∣r′Cj∣∣∣].

In fact, from Theorem 2 to Theorem 3, in order to give the exact value of
|Q|, the key is to study on those r−cycles rCi, where n ∈ I ∈ rCi. Therefore,
the Algorithm 1 can be given to calculate the value of |Q| accurately, based
on the steps of Example 3.

According to actual application requirements, a FSR is designed to satisfy
the maximum strong linear complexity, and it is necessary to minimize the
number of monomials in its feedback function f as much as possible. According
to the existence, let f require at least |R|min monomials to make its FSR have
the maximum strong linear complexity. In the next section, we will give the
corresponding conclusions and construction methods.

4 Construction of FSRs with the Maximum Strong Linear
Complexity

In this section, we mainly discuss at least which combinations of monomials
are required for feedback functions of FSRs with the maximum strong linear
complexity. According to the condition 2 of Theorem 1, |R|min has its upper
bound, that is, |R|min is not more than the sum of number kr of all r(1 ≤
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Algorithm 1 Calculate the strong linear complexity of n(n ≥ 3)−stage FSR.
Require:

The set R of index sets corresponding to all monomials in the feedback function f of
FSR;

Ensure:
The strong linear complexity of FSR, |Q|;

1: Make the operation +1 mod n on all elements in Ii0(1 ≤ i ≤ |R|) ∈ R, sieve out duplicate
index sets, and set r(2 ≤ r ≤ n)−cycles rC10

, rC20
· · · , rCl0

(0 ≤ l0 ≤ kr);

2: For I1 ∈
⋃

10≤i0≤l0
2≤r≤n

rCi0
such that n ∈ I1, set I2 = Ij0 ∪ {i + 1 : i ∈ I1, i 6= n} (1 ≤

j ≤ |R|), which is different from the elements in
⋃

10≤i0≤l0
2≤r≤n

rCi0
. Make the operation

+1 mod n on all elements in I2 again, sieve out duplicate index sets, and set r(3 ≤ r ≤
n)−cycles rC11

, rC21
· · · , rCl1

(0 ≤ l1 ≤ kr).;

3: Repeat STEP2 until a certain p(n− 3 ≥ p ≥ 0) such that⋃
1p+1≤ip+1≤lp+1

3+p≤r≤n

rCip+1
⊆

⋃
1p≤ip≤lp
2+p≤r≤n

rCip
;

4: return |Q| =
∑

0≤j≤p
1j≤ij≤kj

2≤r≤n

∣∣∣rCij

∣∣∣+ n;

r ≤ n)−cycles. So we first give that kr should satisfy the law by the form of
Theorem 5.

Theorem 5 Let p1, . . . , pm be all nontrivial positive factors of n such
that 1 < pi ≤ r(1 ≤ i ≤ m). It follows that when 1 < r ≤

⌈
n−1
2

⌉
, the

cardinality of each r−cycle can only be n, np1 , . . . ,
n
pm

. If let the number of
r−cycles corresponding to its cardinality be y0, y1, . . . , ym respectively, then(

n− 1
r

)
= (n− r) · (y0 +

∑
1≤i≤m

yi
pi

)

and when
⌈
n+1
2

⌉
< r ≤ n− 1, the result of similar equation is symmetrical. In

particular, when n is a prime, kr =

(
n
r

)
/n.

Proof The cardinality of each r−cycle can only be a positive factor of n , thus
when 1 < pi ≤ r(1 ≤ i ≤ m) and 1 < pi ≤ r(1 ≤ i ≤ m), the cardinality of each
r−cycle can only be n, np1 , . . . ,

n
pm

. According to the definition of combination
number, it follows that (

n
r

)
= y0 · n+

∑
1≤i≤m

yi · npi .

At the same time, the number of index j(1 ≤ j ≤ n) in r−cycles, whose
cardinality is the above value, is exactly r, rp1 , . . . ,

r
pm

respectively, so it can
be obtained that (

n− 1
r − 1

)
= y0 · r +

∑
1≤i≤m

yi · rpi .
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By associating with the above two equations, we can obtain that(
n− 1
r

)
= (n− r) · (y0 +

∑
1≤i≤m

yi
pi

).

For
⌈
n+1
2

⌉
< r ≤ n−1, we only need to verify the complement set of each index

set on the {1, · · · , n} in arbitrary (n−r)−cycles, then it follows that the result
is symmetrical. In particular, when n is a prime, because y1 = · · · = ym = 0,

kr =
∑

0≤i≤m
yi = y0 =

(
n
r

)
/n.

In fact, Theorem 5 gives a simple method to solve the value of kr for a
certain n, r. Thus we use Theorem 5 to give the value of kr for r = 2 in the
form of Corollary 1, which also needs to be explicit in the following conclusions.

Corollary 1 k2 =
⌈
n−1
2

⌉
.

Proof When n is odd, k2 = y0 =

(
n
2

)
/n = n−1

2 ; When n(n ≥ 3) is even,

from Theorem 5 it can be seen that

2y0 + y1 = n− 1.

And because the number of index j(1 ≤ j ≤ n) in r−cycles, whose cardinality
is n

2 , is exactly 1, if and only if there is only one r−cycle
{{

1, n2 + 1
}
, · · · ,

{
n
2 , n

}}
,

namely, y0 = n−2
2 , y1 = 1. To the sum, the corollary is proved.

At the same time, if the n numbers {1, · · · , n} are linked end-to-end, then
any index set corresponging to the two numbers with the same distance is in
the same 2−cycle. Thus k2 is actually equal to the number of possible value
of distance between two numbers. Because the distance between two numbers
is at most

⌈
n−1
2

⌉
, k2 =

⌈
n−1
2

⌉
. Through this method of distance selection, we

can quickly get representative elements of index sets for all 2−cycles.
(The typically of representative elements of index sets in r−cycles means that
when the selected index set from a certain r−cycle appears in Q, according to
the condition 2 of Theorem 1, all index sets in this r−cycle are included in
Q.)

In fact, we can also get the sum
n∑
r=1

kr of numbers kr of all r(1 ≤ r ≤

n)−cycles, that is, Theorem 6.
Theorem 6 The sum of numbers kr of all defined r(1 ≤ r ≤ n)−cycles for

one FSR is
n∑
r=1

kr = Z(n)− 1 = 1
n

∑
d|n

φ(d)2
n
d − 1

where φ is the Euler function.

Proof In the cycle structure of n−tage pure circulating shift register, the state
with different weights is not on the same cycle. Its each state consists n com-
ponents. The position of the rightmost component of states is considered as
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1, and the position of the leftmost component is n. Note that the set of posi-
tions in any state with the weight r(r ≥ 1), where the component value is 1,
is J = {j1, · · · , jr}. Then its states on the same cycle can be represented by
J = J1, · · · , Jd(d |n ). Let the set of states with weight r on any cycle be rDi.
Since there is an one-to-one correspondence between the elements contained
in rDi and rCi(1 ≤ i ≤ kr), and the corresponding form means that each
element in the rDi = {J1, · · · , Jk(d |n )} and r−cycle rCi = {I1, · · · , Id(d |n )}
completely coincides under the corresponding situation of indexes, the sum
of the number of all r−cycles is equal to the number of cycles in the cycle
structure of n−tage pure circulating shift register. It follows that ∅, namely,
the all-zero state cycle, is not included in rDi, and it can be seen from the
reference [10] that the number of cycles in the cycle structure of n−tage pure
circulating shift register is Z(n). Thus the equation in the theorem is true.

It can be seen from Theorem 1 to Theorem 2 that these elements of Q,
which are not in rCj(1 ≤ j ≤ l ≤ kr), must be merged with the index sets in
R to upgrade a certain index set in r+i(i ≥ 1)−cycles through the condition 1
of Theorem 1, that is, those representative elements of index sets in rCj such
that n ∈ I. In fact, when n is a prime, we can get the following Theorem 7
and 8 by using the properties of representative elements of index sets.

Theorem 7 When n(n ≥ 3) is a prime, the feedback function f of non-
singular FSR requires |R|min = n+1

2 monomials to maximize its strong linear
complexity.

Proof When n is prime, according to Corollary 1, any FSR requires n−1
2 rep-

resentative elements of index sets to ensure the existence of corresponding
monomials in all 2−cycles. (Otherwise, according to the condition 1 of Theo-
rem 1, it is necessary to add a corresponding linear term so that the combined
index set is just the missing representative element of index sets in 2−cycles.)
For n − 2 ≥ r ≥ 2 and n ≥ 5, according to Theorem 5, since n is a prime, it
can be seen that the number of index n in each r + 1−cycle is exactly r + 1,
and the cardinality of each r+ 1−cycle is exactly n. Then there exists at least
one representative element of index sets in each r + 1−cycle is

C =

{
a1, a2, · · · , ar, n

∣∣∣∣when 1 ≤ i < j ≤ r, 2 ≤ ai < aj ≤ n− 1 and
there is at least one ak : n+1

2 ≤ ak ≤ n− 1

}
.

Otherwise, there are only three kinds of forms C ′ such that n ∈ C ′, namely,

C ′ =


{
a1, · · · , ar, n

∣∣when 1 ≤ i < j ≤ r ≤ n−3
2 , 2 ≤ ai < aj ≤ n−1

2

}{
1, a2, · · · , ar, n

∣∣when 2 ≤ i < j ≤ r, 3 ≤ ai < aj ≤ n− 1
}{

1, 2, a3, · · · , ar, n
∣∣when 3 ≤ i < j ≤ r, 3 ≤ ai < aj ≤ n− 1

}
For the first form C ′, we can make the operation (−1 mod n) ar times on all
elements in it to obtain the form C, where ak = n − ar; For the second form
C ′, we only make the operation (−1 mod n) one time on all elements in it to
obtain the form C, where ak = n−1; For the third form C ′, if a3 6= 3, then we
can make the operation (−1 mod n) one time on all elements in it to obtain
the second form C ′, and otherwise, because of r ≤ n− 2, the second form C ′
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can always be obtained by making the operation (−1 mod n) less than n times
on all elements in it.

It follows that we can get the value range of ak is n+1
2 ≤ ak ≤ n− 1. Thus

we can select the corresponding index set

{a1 − 1, · · · , ak−1 − 1, ak+1 − 1, · · · , ar − 1, n}

in any r−cycle to merge with the index set
{
ak, n

∣∣ak : n+1
2 ≤ ak ≤ n− 1

}
in

2−cycles to obtain the form C through the condition 1 of Theorem 1. At the
same time, these index sets

{
ak, n

∣∣ak : n+1
2 ≤ ak ≤ n− 1

}
can be considered

as representative elements of index sets for all 2−cycles.
Therefore, according to the mathematical induction, when we select the

n−1
2 representative elements of index sets{{

n+1
2 , n

}
,
{
n+3
2 , n

}
, · · · , {n− 1, n}

}
in 2−cycles, then we can get representative elements of index sets in each
r + 1(n − 2 ≥ r ≥ 2)−cycle. According to the condition 2 of Theorem 1, all
elements in each r(n − 1 ≥ r ≥ 1)−cycle can be included in Q. Therefore, if
f includes at least n−1

2 monomials corresponding to the n−1
2 representative

elements of index sets{{
n+1
2 , n

}
,
{
n+3
2 , n

}
, · · · , {n− 1, n}

}
in 2−cycles and x1, then we can maximize its strong linear complexity. And
for n = 3, f = x1 + x2x3. So the theorem is proved.

Similarly, since all linear terms are directly contained in Q, Corollary 2 can
be obtained.

Corollary 2 When n(n ≥ 3) is a prime, the feedback function f of FSR
requires |R|min = n−1

2 monomials to maximize its strong linear complexity.
For Corollary 2, f can be selected these monomials corresponding to the

n−1
2 representative elements of index sets{

{1, n} , {2, n} , · · · ,
{
n−1
2 , n

}}
in 2−cycles. For one FSR with an arbitrary stage, we have the following The-
orem 8 to describe.

Theorem 8 For n ≥ 3, the feedback function f of FSR requires |R|min
monomials to maximize its strong linear complexity, where⌈

n−1
2

⌉
≤ |R|min ≤ n− 1

Proof When n−2 ≥ r ≥ 1, let the selected representative element of index sets
in r + 1−cycles be

{
a1, · · · , ar, n

∣∣when 1 ≤ i < j ≤ r, 1 ≤ ai < aj ≤ n− 2
}

.
Then by merging with the index set {1, n} through the condition 1 of Theorem
1, there must exist one representative element of index sets

C =
{

1, a1 + 1, · · · , ar + 1, n
∣∣when 1 ≤ i < j ≤ r, 1 ≤ ai < aj ≤ n− 2

}
in r + 2−cycles. Note that those representative elements of index sets in r +
2−cycles, which do not satisfy the form C and contain the index n, can be
considered as
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D =
{
b1, · · · , br+1, n

∣∣when 1 ≤ i < j ≤ r, 2 ≤ bi < bj ≤ n− 1
}

.

Then we only merge the representative element of index sets

{
b1 − 1, · · · , bk−1 − 1, bk+1 − 1, · · · , br+1 − 1, n

∣∣when 1 ≤ i < j ≤ r, 2 ≤ bi < bj ≤ n− 1
}

in r+ 1−cycles and {bk, n |bk : 2 ≤ bk ≤ n− 1} to obtain the form D through
the condition 1 of Theorem 1. Therefore, according to the mathematical in-
duction, for f , we can select at most n− 1 monomials corresponding to these
n− 1 representative elements of index sets

{bi, n |bi : 1 ≤ bi ≤ n− 1}

in 2−cycles to maximize its strong linear complexity. Combined with Corollary
2, Theorem 8 is proved.

In the process of practical application, it can be seen from the proof
of Theorem 8 that we can find all representative elements of index sets in
r(
⌈
n−1
2

⌉
≥ r ≥ 3)−cycles, which do not satisfy the form C and satisfy the

form D (For n − 1 ≥ r ≥
[
n−1
2

]
, use the symmetry to know the existence of

the form C inevitably). Through these representative elements of index sets,
we can find the maximum union from

{bk, n |bk : 2 ≤ bk ≤ n− 1}.

Finally, the feedback function with maximum strong linear complexity can be
obtained by adding the above union, representative elements of index sets in
the missing 2−cycles and {1, n}. This construction method is illustrated in
the following Example 4.

Example 4 For n = 8 and r = 3, there are only two 3−cycles, where
index sets do not satisfy the form C and satisfy the form D, namely,

{{1, 3, 5} , {2, 4, 6} , {3, 5, 7} , {4, 6, 8} , {1, 5, 7} , {2, 6, 8} , {1, 3, 7} , {2, 4, 8}} ,
{{1, 3, 6} , {2, 4, 7} , {3, 5, 8} , {1, 4, 6} , {2, 5, 7} , {3, 6, 8} , {1, 4, 7} , {2, 5, 8}} .

For r = 4, there is only one 4−cycle, where index sets do not satisfy the form
C and satisfy the form D, namely,

{{1, 3, 5, 7} , {2, 4, 6, 8}}.

Through the analysis, the representative elements of index sets

{2, 4, 8} , {2, 5, 8} , {2, 4, 6, 8}

and the corresponding maximum union {2, 8} are selected. Then for n = 8, one
set of monomials of feedback function with maximum strong linear complexity
is

{{1, 8} , {2, 8} , {3, 8} , {4, 8}}.
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5 Conclusion

In fact, this paper extends the conclusion of Corollary 2.5 in the reference [9],
reveals the monomial structure of feedback function of FSR with the maximum
strong linear complexity, and further guarantees that when its corresponding
sub-vector-space generated by V P (δ) is itself of Γ , it provides the structure of
feedback function with the least number of monomials. Thus in order to design
a NLFSR in cryptographic algorithms, some design criteria are established.
At the same time, the next step of research will continue to study on the
maximum strong linear complexity of non-singular FSR with any stage, whose
the feedback function structure requires the least number of monomials, and
provide theoretical support for the operational non-singular FSR.
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