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Abstract

We study information-theoretic secure multiparty protocols that achieve full security, includ-
ing guaranteed output delivery, at the presence of an active adversary that corrupts a constant
fraction of the parties. It is known that 2 rounds are insu�cient for such protocols even when
the adversary corrupts only two parties (Gennaro, Ishai, Kushilevitz, and Rabin; Crypto 2002),
and that perfect protocols can be implemented in 3 rounds as long as the adversary corrupts less
than a quarter of the parties (Applebaum , Brakerski, and Tsabary; Eurocrypt, 2019). Further-
more, it was recently shown that the quarter threshold is tight for any 3-round perfectly-secure
protocol (Applebaum, Kachlon, and Patra; FOCS 2020). Nevertheless, one may still hope to
achieve a better-than-quarter threshold at the expense of allowing some negligible correctness
errors and/or statistical deviations in the security.

Our main results show that this is indeed the case. Every function can be computed by 3-
round protocols with statistical security as long as the adversary corrupts less than third of the
parties. Moreover, we show that any better resiliency threshold requires 4 rounds. Our protocol
is computationally ine�cient and has an exponential dependency in the circuit's depth d and
in the number of parties n. We show that this overhead can be avoided by relaxing security
to computational, assuming the existence of a non-interactive commitment (NICOM). Previ-
ous 3-round computational protocols were based on stronger public-key assumptions. When
instantiated with statistically-hiding NICOM, our protocol provides everlasting statistical secu-
rity, i.e., it is secure against adversaries that are computationally unlimited after the protocol
execution.

To prove these results, we introduce a new hybrid model that allows for 2-round protocols
with linear resiliency threshold. Here too we prove that, for perfect protocols, the best achievable
resiliency is n/4, whereas statistical protocols can achieve a threshold of n/3. In the plain model,
we also construct the �rst 2-round n/3-statistical veri�able secret sharing that supports second-
level sharing and prove a matching lower-bound, extending the results of Patra, Choudhary,
Rabin, and Rangan (Crypto 2009). Overall, our results re�ne the di�erences between statistical
and perfect models of security, and show that there are e�ciency gaps even for thresholds that
are realizable in both models.
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1 Introduction

Interaction is a valuable and expensive resource in cryptography and distributed computation.
Consequently, a huge amount of research has been devoted towards characterizing the amount of
interaction, typically measured via round complexity, that is needed for various distributed tasks
(e.g., Byzantine agreement [LF82, DR85, FM85], coin �ipping [Cle86, MNS16], and zero-knowledge
proofs [GK96, CKPR01]) under di�erent security models. In this paper, we focus on two central
cryptographic goals: secure-multiparty-computation (MPC) of general n-party functionalities and
veri�able secret sharing (VSS) [CGMA85b]. We strive for full information-theoretic security, in-
cluding guaranteed output delivery, at the presence of a computationally-unbounded active (aka
Byzantine or malicious) rushing adversary that controls up to t of the parties. In this setting, origi-
nally presented in the classical works of Ben-Or, Goldwasser, and Wigderson [BGW88] and Chaum,
Crépeau and Damgård [CCD88], we assume that each pair of parties is connected by a secure and
authenticated point-to-point channel and that all parties have access to a common broadcast chan-
nel, which allows each party to send a message to all players and ensures that the received message
is identical.

The round complexity of information-theoretic MPC was extensively studied [BB89, BFKR90,
FKN94, SYY99, IK00, GIKR01a, GIKR02, IK02, PCRR09, IKP10, KPR10, IKKP15, ABT18,
ACGJ18, GIS18, ACGJ19, ABT19, AKP20]. For passive perfect security, it was recently showed
that optimal resiliency of t = b(n− 1)/2c and optimal round complexity of two can be simultane-
ously achieved [ABT18, GIS18]. For active-security the picture is more complicated, and there seems
to be a tradeo� between the number of rounds r and the resiliency threshold t. If the adversary
is allowed to corrupt a single party (t = 1) then 2 rounds are su�cient whenever n ≥ 4 [IKKP15].
Any larger resiliency threshold t > 1 requires at least three rounds [GIKR01a, GIKR02]. For 3-
round error-free perfectly-secure protocols, it was recently showed that a resiliency threshold of
t = b(n− 1)/4c is achievable [ABT19] and that no better resiliency can be achieved [AKP20]. The
latter paper also shows that, for error-free perfectly-secure protocols, 4 rounds su�ce for a threshold
of tp = b(n− 1)/3c which is known to be optimal for perfect protocols regardless of their round
complexity [BGW88].

In this paper, we will be studying the other extreme point of this tradeo�. We �x a minimal
model of communication (i.e., a round-complexity bound rmin) for which linear resiliency is real-
izable, and try to characterize the best achievable resiliency t within this model. Since 2-round
protocols cannot achieve resiliency larger than 1, we ask:

Q1: What is the best resiliency threshold t that can be achieved by a three-round
protocol with full information-theoretic active security? Can we beat the b(n− 1)/4c
perfect-MPC barrier by resorting to statistical security?
Q2: Can we formalize a meaningful two-round model in which a linear resiliency thresh-
old is achievable ?

We provide a complete answer to the �rst question and show that statistical three-round protocols
can achieve b(n− 1)/3c resiliency and nothing beyond that! We also answer the second question to
the a�rmative by presenting a new two-round hybrid model in which linear-resiliency is achievable.
This model will serve as a stepping stone towards constructing three-round protocols. Along the
way, we reveal new interesting di�erences between perfectly-secure error-free protocols to protocols
that achieve perfect-secrecy but make errors with negligible probability. We continue with a detailed
account of our results starting with the two-round hybrid model.
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1.1 Two-Round Protocols in a Single-Input First-Round Hybrid Model

Single-Input First-Round Hybrid (SIFR) Model. We present a new Single-Input First-
Round Hybrid Model (SIFR). In this model the communication network, which contains the usual
peer-to-peer/broadcast channels, is augmented with some ideal n-party functionalities F that are
restricted in two ways: (1) Every party Pi is allowed to invoke the functionalities multiple times but
only during the �rst round ; and (2) The ideal functionalities must be single-input functionalities,
that is, when Pi invokes a functionality F isi : {0, 1}∗ → ({0, 1}∗)n the functionality delivers an
output that depends only on the input of Pi. For example, both the authenticated-private channel
functionality (that delivers a message from Pi to Pj) and the broadcast functionality (that delivers
a message from Pi to all other parties) are simple instances of single-input functionalities. A more
interesting example is the polynomial-VSS functionality that takes from Pi a degree-t polynomial Q
over some �nite �eld F, and delivers to every party Pj an evaluation of Q in some canonical point
αj ∈ F. We refer to this model as the F-SIFR model or simply as the SIFR model when we wish
to keep the oracles F unspeci�ed.

We will be interested in two-round protocols in the SIFR model. In such protocols, all the �rst-
round messages depend solely on the input of a single party and the only �mixing� (between di�erent
inputs of di�erent parties) occurs during the second round. Hence, two rounds are indeed essential
for computing any non-trivial functionality. As an additional feature, we note that single-input
functionalities can be trivially implemented with passive security via a single-round protocol, and
so any two-round protocol in the SIFR model immediately translates into a two-round passively-
secure protocol in the plain model.

Limitations of Perfect protocols in SIFR Model. To get a sense of the model, note that one
can perfectly compute any degree-2 functionality over any �nite �eld F of size larger than n with
resiliency of t = b(n− 1)/4c. Roughly speaking, at the �rst round each party uses the single-input
Fpoly functionality to share each input via Shamir-based secret-sharing with polynomials of degree
t; then each party locally computes the functionality over the shares (making an arbitrary number
of additions and a single multiplication). At the end of this local computation, each party holds a
share of the output that lies on a degree-2t polynomial. At the second round, the parties broadcast
the output shares and apply Reed-Solomon decoding to overcome the e�ect of at most t adversarial
corruptions.1 In fact, it was recently showed in [AKP20] (building on [ABT19]) that degree-2
functionalities over any binary extension �eld are complete under non-interactive reductions either
with perfect resiliency of b(n− 1)/3c or with statistical resiliency of b(n− 1)/2c. Therefore, the
above observation yields an b(n− 1)/4c-perfect protocol in our model for an arbitrary functionality.
In Section 5, we prove that for perfect protocols this is the best achievable threshold.

Theorem 1.1 (perfect 2-round SIFR-protocols). General n-party functionalities can be perfectly-
computed in two rounds in the SIFR Model with resiliency of t if and only if t ≤ b(n− 1)/4c.

The upper-bound holds in the Fpoly-SIFR model. The lower-bound holds relative to any (vector
of) computationally-unbounded single-input functionalities and applies even when the adversary
is non-rushing. In fact, the negative result shows that even the AND functionality cannot be
computed in this model. As a corollary, for any t ≥ n/4, the theorem rules out the existence of

1The above description ignores some technical details such as output randomization which can be easily applied
in the Fpoly-SIFR model; see for example [ABT19].
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t-private secret sharing scheme that is robustly-multiplicative in the sense that parties can locally
convert shares of x and shares of y to shares of xy that are t-robust, i.e., they are recoverable even
at the presence of t-corruptions. (This notion of multiplicative secret-sharing is stronger than the
standard variants of multiplicative and strongly-multiplicative secret sharing, see [CDM00].) The
negative part of Theorem 1.1 is proved by turning a two-round n/4-perfectly secure protocol for
the AND-functionality in the SIFR hybrid model into a two-party protocol in the plain model for
AND with perfect security against semi-honest adversaries, contradicting the impossibility result
of [CK89].

Statistical protocols in Fvss-SIFR Model. We show that the n/4 lower-bound can be bypassed
by allowing the protocol to make negligible correctness errors while preserving perfect secrecy.2 Our
protocol makes use of the bivariate version of the VSS functionality, denoted by Fvss. Roughly
speaking, this single-input functionality receives a symmetric bivariate polynomial F (x, y) of degree
less than or equal to t from a dealer and sends the polynomial fi(x) = F (x, i) to every party Pi.
(See Fig 4 in Section 3 for a formal de�nition.)

Theorem 1.2 (statistical 2-round SIFR-protocols). Any n-party functionality f of degree-2
over some �nite �eld F of cardinality larger than n can be computed by a two-round Fvss-
SIFR protocol with b(n− 1)/3c-resiliency, perfect-secrecy, statistical-correctness and complexity of
poly(S, n, log |F|, log(1/ε)) where S is the circuit size of f and ε is the error probability.

Moreover, a similar result applies to any functionality f except that the complexity is also ex-
ponential in the depth of the Boolean circuit that computes f . The dependency in the depth can
be avoided at the expense of downgrading security to computational and under the assumption that
one-way functions exist.

The �Moreover� part follows from the �rst part by using the aforementioned completeness of
degree-2 functionalities [AKP20, Thm. 5.23] whose overhead is exponential in the circuit's depth in
the case of information-theoretic security. This makes the statistical variant of the theorem e�cient
only for NC1 functionalities.3 Similar limitations apply to all known constant-round protocols
in the information-theoretic setting even for the case of passively-secure protocols. Let us further
mention that even ine�cient protocols are non-trivial since security holds against a computationally-
unbounded adversary.

On the proof of Thm. 1.2: Round Compression via Guards. The proof of Theorem 1.2 is
based on several novel components. In a nutshell, following a blue-print suggested in [AKP20], we
derive a three-round protocol π in the SIFR-hybrid model. We then exploit the special structure of
the last two-rounds and show how to compress them into a single round. In slightly more concrete
terms, at the end of the �rst round, some party, say Alice, holds two values a and b and some other
party, say Bob, also has a copy of b. (Think of b as a secret-share that was shared by Alice in the
�rst round of π.) The purpose of the remaining rounds is to release to all parties a value c = g(a, b)
that depends on Alice's a and Bob's b while keeping b private. This is done by using two additional

2Formally, this means that, in addition to standard statistical security, the output distribution of the simulator
S in the ideal world and the output distribution of the adversary A in the real world are identically distributed.
(See Section A for formal de�nitions.) This additional property does not seem to be very useful as a feature, but it
indicates more accurately what is needed in order to bypass the lower-bounds in the perfect setting.

3As usual in such settings, the exponential dependency in the depth can be replaced by an exponential dependency
in the (non-deterministic) branching-program complexity of f .

6



rounds: First Alice broadcasts a, and then Bob computes the value c based on (a, b) and broadcasts
the result. The key observation is that all the relevant information (a and b) is known to Alice, and
the role of Bob is to make sure that the outcome c is computed properly with respect to his own
copy of b. (Other consistency mechanisms take care of the �correctness� of a). We abstract this
notion via a new form of Secure Computation with a Guard (SCG) and show that if one is willing
to tolerate statistical errors, then any function g can be realized (in the plain model) by a single-
round protocol that employs correlated randomness. Furthermore, the correlated randomness can
be sampled by Bob in a single preprocessing round. This allows us to collapse the last two rounds
of π into a single round (plus an additional o�ine preprocessing that is being handled during the
�rst round.) Overall, our single-round SCG's allow us to compress the three-round SIFR-protocol
into a two-round SIFR-protocol. The resulting protocol makes use of the Fvss functionality and an
additional single-input functionality Ftss that essentially deals the shares of a random multiplicative
triple (a, b, c = ab). In order to remove the Ftss oracle, we �rst implement it in three-rounds in the
Fvss-SIFR model, and then compress the last round via an additional use of SCG. (See Section 3 for
further details.) Our SCG constructions are based on a combination of message-authentication codes
(MACs) and multiparty private-simultaneous-message protocols [FKN94, IK97] (also known as fully-
decomposable randomized encoding of functions [IK00, AIK06]). (See Section 2 for details.)

1.2 Two-Round Veri�able Secret Sharing

Motivated by Theorem 1.2, our next goal is to realize the Fvss functionality in the standard model
within a minimal number of rounds. The round complexity of VSS was extensively studied in
the literature [GIKR01a, PCRR09, FGG+06, KKK09, KPR10, BKP11, Agr12, IKKP15, PR18].
In the perfect setting, we have a complete answer: In order to achieve a linear resiliency t, one
must use a two-round protocol, and within this �budget� the best achievable resiliency is t =
b(n− 1)/4c [GIKR01a]. Patra et al. [PCRR09] were the �rst to suggest that this bound may be
bypassed by allowing negligible statistical errors. Speci�cally, they view VSS as a stand-alone two-
phase primitive, and showed that the sharing phase of VSS with statistical error and perfect secrecy
can be realized in two rounds if and only if t ≤ b(n− 1)/3c.

Unfortunately, the resulting protocol does not implement the polynomial-based Fvss-
functionality and so we cannot plug it into Theorem 1.2. Indeed, the existing protocol su�er
from several caveats that make it less suitable for MPC applications. Speci�cally, after the sharing
phase some of the honest parties may not hold a valid share, let alone a �second-level share�. In
addition, the sub-protocol needed for the �reconstruction� phase is relatively complicated and re-
quires two rounds. In contrast, existing perfect VSS protocols [GIKR01a, KKK09] realize the Fvss

functionality, and correspondingly enable a trivial single-round reconstruction in which the parties
broadcast their views. The possibility of an analogous statistical realization of Fvss in two rounds
and resiliency threshold of b(n− 1)/3c was left open by previous works. In Section 4, we answer
this question in the a�rmative.

Theorem 1.3 (2-round statistical protocols for Fvss ). There exists a 2-round protocol that
b(n− 1)/3c-securely realizes the n-party functionality Fvss over an arbitrary �nite �eld F of cardinal-
ity larger than n with perfect secrecy and statistical correctness. The communication complexity is
polynomial in n, log |F| and log(1/ε) where ε is the error-probability. The computational complexity
is polynomial in log |F|, log(1/ε) and exponential in the number of parties.

The exponential dependency in the number of parties is due to the use of a clique �nding
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algorithm over an �agreement graph� of size n. While this dependency is unfortunate, the protocol
is still meaningful since it provides security against unbounded adversaries. The existence of a
similar protocol with polynomial dependency in n is left as an interesting open question.

Resiliency Lower-bounds. We further strengthen the lower-bounds of [PCRR09] and show that
any resiliency of t ≥ n/3 cannot be achieved by a VSS with a two-round sharing phase even if both
secrecy and correctness are statistical, and even if the adversary is non-rushing. This result applies
to the more general setting where the VSS is viewed as a two-phase primitive, as opposed to an
MPC functionality. (See Section 6.1.) We also reveal an additional qualitative di�erence for the
t ≥ n/3 regime: No matter how many rounds are used in the sharing phase, the reconstruction phase
cannot be implemented by letting the parties broadcast their local view. That is, even during the
reconstruction some secrecy must be maintained. (See Section 6.2.) Indeed, existing constructions
in this regime [RB89, KPR10], employ information-theoretic MACs or signatures and keep some of
the secret-key information private even during reconstruction. Our result shows that this is inherent.

1.3 Three-Round MPC in the Standard Model

We can now get back to the case of three-round plain-model protocols for general functionalities.
Recall that in Q1 we asked what is the best resiliency that can be achieved by 3 rounds protocols.
This question was recently resolved in the perfect setting. Speci�cally, it was shown that 3 rounds
can achieve a resiliency of t = b(n− 1)/4c [ABT19]4, and that even a slightly better resiliency
threshold of t = b(n− 1)/4c+ 1 requires at least four rounds [AKP20].5

Again, we show that a small statistical error allows us to bypass the lower-bound. Speci�cally,
by taking the two-round Fvss-SIFR protocol from Theorem 1.2 and instantiating the Fvss oracle
with the two-round implementation from Theorem 1.3, we derive a three-round statistical protocol
that remains secure as long as at most b(n− 1)/3c of the parties are being corrupted. We further
prove a matching lower bound on the resiliency of three-round statistical protocols by showing that
a 3-round protocol with (b(n− 1)/3c+ 1)-resiliency for an authenticated-VSS functionality can be
collapsed into a VSS with a 2-round sharing phase, contradicting our VSS negative results. (See
Section 7 for further details.) Overall we derive the following theorem.

Theorem 1.4 (3-round protocols with optimal resiliency). Every n-party functionality can be com-
puted in three-rounds with statistical security against an active rushing computationally-unbounded
adversary that corrupts at most b(n− 1)/3c of the parties. The communication complexity of the
protocol is polynomial in n, 2D and S and the computational complexity is polynomial in 2n, 2D and
S where S and D are the size and depth of the Boolean circuit that computes f .

Furthermore, the security threshold is tight for three-round protocols. That is, there is a �nite
functionality that cannot be computed in three rounds at the presence of an active (non-rushing)

4The positive result can now be obtained by combining the simple 2-round VSS-hybrid protocol for quadratic
functions (Thm 1.1) with the 2-round perfect-VSS of [GIKR01a] and with the completeness of degree-2 arithmetic
functionalities [AKP20]. The original proof from [ABT19] was signi�cantly more complicated since it relied on a
weaker degree-2 completeness result that was applicable only over the binary �eld.

5The impossibility of three-round plain-model perfect protocols with resiliency t ≥ b(n− 1)/4c + 1 seems to be
incomparable to the impossibility of two-round perfect SIFR-model protocols (Theorem 1.1). One could deduce
the latter result from the former with the aid of two-round protocols for single-input functionalities with perfect
resiliency of t ≥ b(n− 1)/4c+ 1. However, such protocols do not exist even for the special case of the VSS function-
ality [GIKR01a].
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computationally-unbounded adversary that corrupts b(n− 1)/3c+ 1 of the parties.

Theorem 1.4 fully characterizes the feasible security threshold of three-round protocols with
information-theoretic active security. As already mentioned the exponential dependency in the
depth is expected, and seems to be unavoidable given the current state of the art. The exponential
dependency in n is derived from our VSS construction (Theorem 1.3), and we hope that future
works will be able to improve it and get a polynomial overhead.

Downgrading to computational security. One way to bypass the exponential blow-up in n
is to replace the two-round b(n− 1)/3c-statistical VSS with the cryptographic VSS of [BKP11].
The latter achieves the same b(n− 1)/3c-resiliency against computationally-bounded adversaries
assuming the existence of a non-interactive commitment (NICOM). Speci�cally, by plugging this
VSS into the computational part of Theorem 1.2, we get the following theorem. (See Section 4.2
for details.)

Theorem 1.5 (3-round computational MPC). Assuming the existence of NICOM, every n-party
functionality f admits a three-round protocol with computational security against a computationally-
bounded adversary that actively corrupts up to t ≤ b(n− 1)/3c of the parties. The complexity is
polynomial in n and in the circuit's size of f . Moreover, if f is a single-input functionality the
round complexity can be reduced to 2.

The optimality of three rounds for any t > 1 is owing to the two-round impossibility result of
[GIKR02] that remains valid even in the cryptographic setting. For the special case of t = 1 and
n = 4, [IKKP15] shows a two-round construction from any one-way function. Other existing round-
optimal constructions [ACGJ18, BJMS18] work with t < n/2, albeit rely on public-key encryption
schemes and two-round witness indistinguishable proofs (ZAPs). These assumptions are believed
to be strictly stronger than NICOM that can be based on injective one-way functions [Blu81,
Yao82, GL89] or even on general one-way functions assuming standard complexity-theoretic de-
randomization assumptions [BOV07].

We further mention that if one employs a perfectly-hiding NICOM, then our protocol achieves
everlasting security, i.e., it is secure against adversaries that are computationally unlimited after the
protocol execution [Unr18]. For this result one has to invoke the statistical variant of Theorem 1.2,
and so the protocol is e�cient only for NC1 functionalities or general single-input functionalities.
Perfectly-hiding NICOM can be based on collision-resistance hash functions at the CRS model [?, ?].
Even in this model, the round-complexity lower-bounds of [GIKR02] hold, and one cannot hope for
two-round protocols.

The �moreover� part of the theorem covers an interesting family of �single-input� functionalities
including important tasks such as distributed ZK, multiplication triple generation (modellled via
Ftss) and VSS. Our two-round protocol complements the incomparable result of [GIKR02] that
achieves a similar round-complexity with perfect-security, but with a smaller resiliency threshold of
t < n/6. The proof of Theorem 1.5 of appears in Section 4.2.

1.4 Discussion: The bene�t of errors

Since the works of Rabin and Ben-Or [RB89] and Beaver [Bea89], it is known that statistical pro-
tocols can achieve a resiliency threshold ts = b(n− 1)/2c that is strictly larger than the best
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resiliency threshold tp = b(n− 1)/3c that is achievable by perfect protocols [PSL80, BGW88]. Pa-
tra et al. [PCRR09] were the �rst to suggest that the statistical setting may lead to better round
complexity even for thresholds of t ≤ tp which are perfectly realizable (i.e., realizable with perfect
security). Speci�cally, they showed that the sharing phase of statistical VSS with t = b(n− 1)/3c
can be carried in two rounds, bypassing a three-round lower-bound of [GIKR02]. Another indi-
cation for a possible advantage was given by [IKKP15] who showed that 4-party linear functions
can be statistically computed in two rounds with threshold of t = 1 which is impossible in the
perfect setting as shown by [GIKR01b, Thm 8].6 However, to the best of our knowledge, so far we
did not have a single example of an in�nite MPC functionality whose statistical round complexity
is strictly smaller than its perfect round complexity under a perfectly-realizable threshold t ≤ tp.
Theorem 1.4 settles this question in a strong way showing that, for any n/4 ≤ t ≤ b(n− 1)/3c,
statistical t-security can be achieved for all functions in three rounds, whereas perfect t-security
cannot be achieved in three rounds even for simple �nite functionalities [AKP20].

The separation proved in the SIFR model (Thm 1.1 vs. Thm 1.2) should be taken with more
care. An immediate corollary of Thm 1.1 asserts that for any perfect resiliency-threshold t that
is larger than b(n− 1)/4c, one cannot transform an r-round perfect-VSS (modeled as some ideal
sharing functionality) into an r+ 1-round general MPC in a �black-box� way. Furthermore, since it
is known that for tp = b(n− 1)/3c perfect VSS takes exactly 3 rounds, one can naively conclude that
for such resiliency general perfectly-secure MPC cannot be implemented in less than 3+2 = 5 rounds.
Nevertheless, [AKP20] constructed a 4-round perfectly-secure tp-resilient MPC protocol in the plain
model. This construction is based on a 3-round implementation of the Fvss functionality in a fairly
complicated way that exploits the concrete properties of the underlying Fvss-protocol. Speci�cally,
the transformation makes use of intermediate values that are available before the Fvss-protocol
terminates. The impossibility of perfect two-round Fvss-SIFR protocol for general functionalities
(Thm 1.1) should therefore be interpreted as saying that such a complication is inherent ! In contrast,
the statistical relaxation allows us to obtain a signi�cantly simpler reduction (i.e., two-round Fvss-
SIFR) as shown in Thm 1.2.

We end up the introduction, by depicting in Figure 1 the resiliency-vs-round landscape of MPC
in various models.

Organization. The paper is somewhat lengthy, but the di�erent sections are relatively self-
contained and the reader may choose which sections to read. Part I is devoted to the positive
results where Section 2 presents and constructs Secure-Computation-with-Guard protocols, Sec-
tion 3 employs these protocols towards the construction of a 2-round statistical Fvss-SIFR Protocols
for general functionalities, and Section 4 provides 2-round VSS protocols that realize the Fvss func-
tionality in the plain model. Negative results appear in Part II including impossibility results for
perfect 2-round SIFR protocols (Section 5), and plain-model lower-bounds for VSS and MPC (Sec-
tions 6 and 7). Our upper-bounds will be proved under the framework of universal-composability
(UC) [Can01a], and the lower-bounds will be proved under weaker security models (this only makes
them stronger). Some background on the security model appears in Appendix A.

6We thank Yuval Ishai for pointing this out.
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2 Secure Computation with a Guard

In this section we present the notion of Secure Computation with a Guard (SCG) that will be
employed later in our constructions. Our SCG constructions will be based on a new form of ex-
tended private simultaneous message (ePSM) protocols that extend the private simultaneous mes-
sage (PSM) protocols of [FKN94]. All these primitives have a common set-up: a group of senders
(e.g., P1, . . . , Pm or, just Alice and Bob in the case of SCG) each holding an input xi is trying to
deliver some value f(x1, . . . , xm) to a receiver Carol who holds no input while keeping the inputs
hidden from Carol. All three primitives employ some form of a set-up/o�ine phase (that is inde-
pendent of the inputs) and a single-round of online interaction from the senders to the receiver. In
a nutshell, PSM achieves a minimal form of privacy against Carol, whereas ePSM and SCG provide
an additional correctness property when some of the senders are malicious. In ePSM, this is based
on a trusted set-up, while SCG employs a single-round o�ine protocol and it is tailored to the case
where some of the inputs of Alice are known to Bob. In the following subsections, we will de�ne
these primitives and present information-theoretic constructions whose complexity is polynomial in
the formula-size of the underlying function. (We will always apply these primitives to functions
that are computable by such formulas.)

2.1 PSM Protocols

In a PSM protocol, proposed by [FKN94], there are m honest parties, P1, . . . , Pm, each Pi holding a
secret input xi, and all having access to a common random string r. Each Pi sends a single message
to Carol depending on xi and r. Based on these messages, Carol can compute f(x1, . . . , xm), but
nothing else. PSM is formally de�ned as follows:

De�nition 2.1 (PSM Protocols). Let X1, . . . , Xm, Z be �nite sets, and let X = X1× . . .×Xm. An
m-party PSM protocol psm, computing a m-argument function f : X → Z consists of:

� A message computation function psmi : Xi × R → Mi, for every party i ∈ {1, . . . ,m}, where
R is a �nite set (domain of the common random string) and Mi is a �nite message domain.

� A reconstruction function rec : M1 × . . .×Mm → Z.

The protocol psm =
(
psm1, . . . , psmm, rec

)
should satisfy the following properties.

1. (Correctness) For every (x1, . . . , xm) ∈ X and r ∈ R,

rec(psm1(x1, r), . . . , psmm(xm, r)) = f(x1, . . . , xm).

2. (Security against Receiver) There exists a simulator Spsm, such that for every
(x1, . . . , xm) ∈ X,

Spsm

(
f(x1, . . . , xm)

)
≡ (psm1(x1, r), . . . , psmm(xm, r)),

where r is a common random string.

The complexity of the protocol is measured by the maximal circuit complexity of psmi, rec and Spsm.
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Consider the (m+1)-party functionality F that takes xi from Pi and ⊥ from Carol, and delivers
f(x1, . . . , xm) to Carol and⊥ to Pi. Then the PSM security is equivalent to standard perfect-security
of MPC against an adversary that can corrupt only the receiver (and the parties P1, . . . , Pm are
always assumed to be honest).

Lemma 2.2 (Polynomial-time PSM Protocols [IK02]). For every m-party functionality f that ad-
mits a Boolean NC1 circuit of size s, there exists a PSM protocol with complexity of poly(s). In
particular, if s = poly(m) then there exists a PSM protocol with complexity poly(m).

2.2 Extended PSM

We extend the notion of PSM in two ways. First, we consider a setting where all the involved par-
ties including the receiver hold correlated randomness from a polynomially-samplable distribution
instead of the parties alone holding a common string. (The correlated randomness is assumed to
be distributed by a trusted party.) Second, in addition to security against the receiver, we require
statistical security with abort against an active adversary that corrupts an arbitrary subset of the
senders. In the following, we let f ′(x1, . . . , xm) denote the variant of f that agrees with f on inputs
in X and outputs ⊥ if some sender uses ⊥ as its input.

De�nition 2.3 (Extended PSM (ePSM) Protocols). Let X1, . . . , Xm, Z be �nite sets, and let X =
X1 × . . .×Xm. An m-party extended PSM protocol epsm, computing f : X → Z consists of:

� A randomized correlated-randomness generator function egen that samples a tuple in R1 ×
. . .×Rm ×Re, where each Ri is a �nite set.

� For i ∈ {1, . . . ,m}, Pi's message computation function epsmi such that epsmi : Xi×Ri →Mi,
where Mi is a �nite message domain.

� A reconstruction function erec : M1 × . . .×Mm ×Re → Z.

We say that
(
egen, epsm1, . . . , epsmm, erec

)
is an ε-extended PSM (ε-ePSM) if the following hold.

1. (Correctness) For every (x1, . . . , xn) ∈ X and (r1, . . . , rn, re) picked by egen,

erec(epsm1(x1, r1), . . . , epsmn(xn, rn), re) = f(x1, . . . , xn).

2. (Security against Receiver) There exists a two-phase randomized simulator S = (Soff ,Son),
such that for every (x1, . . . , xm) ∈ X,(

re, (epsm1(x1, r1), . . . , epsmm(xm, rm))
)
≡

(
Soff(rS),Son(f(x1, . . . , xm); rS)

)
,

where rS denotes the random tape of the simulator and (r1, . . . , rm, re)← egen.

3. (ε-Security against Senders) There exists a two-phase randomized simulator S = (Soff ,Son)
such that for any malicious (computationally-unbounded) adversary epsm∗T corrupting a set of
T ⊂ {1, . . . ,m} parties, and every sequence of inputs x = (x1, . . . , xm) the following holds.

� (O�ine Security) The random variables rT and r′T have the same distribution, where
rT = (ri)i∈T for (r1, . . . , rm, re) ← egen, and r′T = Soff(T ; rS) where rS is the random
tape of the simulator.
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� (Online Security) Fix some arbitrary value ρ ∈
∏
i∈T Ri, and consider the conditional

variables (r1, . . . , rm, re)← egen subject to rT = ρ and a uniformly random rS subject to
ρ = Soff(T ; rS). Then, the random variables

erec(y1, . . . , ym, re) where yT = epsm∗T (ρ, xT ), yT̄ = (epsmi(xi, ri))i/∈T (1)

and
f ′(xT̄ , x

′
T ) where x′T = Son(T, yT ; rS) (2)

are ε-close in statistical distance.

The complexity of the protocol is measured by the maximal circuit complexity of egen, psmi, rec and
the above simulators.

We de�ne security against the receiver via an o�ine/online simulator in order to capture the
case where the inputs are selected adaptively according to the receiver's randomness re. (For this
reason, the o�ine simulator receives no input.)

Item 3 is equivalent to the standard security-with-abort MPC de�nition against any coalition
of the senders for a protocol that computes the functionality F (de�ned in the previous section).
Indeed, o�ine security guarantees that the view of the adversary can be perfectly simulated in
the ideal world, and online security guarantees that conditioned on any view of the adversary, the
distribution of the output of Carol in the real experiment is ε-close to the distribution of the output
in the ideal world. Observe that the online simulator is extremely simple, it just looks at the message
outputted by the corrupted senders and translates it to an f ′-input.

Remark 2.4 (ePSM vs robust-PSM). We would like to mention the existence of a primitive called
robust-PSM (see [PC16]) which is strictly stronger than ePSM. Speci�cally, robust-PSM achieves
the same security guarantees as ePSM, but it only requires shared randomness among the senders
(plus local uncorrelated randomness), as opposed to correlated randomness among all parties as is
ePSM. However, the use of correlated randomness makes our construction arguably simpler, and
since it su�ces for our purposes, we keep it here for self-containment.

Construction. In the following, we describe an ePSM protocol for a function f , based on any
PSM protocol psm for f and one-time ε-secure MAC. At a high-level, the correlated randomness for
the parties includes the standard PSM randomness together with authentication-tags on each of the
possible PSM-messages that may be sent in the online phase. The receiver gets the keys of these
MACs permuted under a random shift. At the online phase, each party sends the PSM message
that corresponds to its input and authenticate using the corresponding tag. The receiver veri�es
the tags and runs the PSM reconstruction function.

In the following, we assume that each of the input domains Xi are ordered, and for σi ∈
{1, . . . , |Xi|} we consider the mapping that takes the j-th element in the domain Xi to the j + σi
(mod |Xi|) element. By abuse of notation we let σi denote this mapping. We further assume that
psm =

(
psm1, . . . , psmm, rec

)
is a PSM for f in which the message sent by the i-th party is taken

from the �nite domain Mi. We assume that MAC is a keyed function over the key domain K and
message domain M = ∪i∈[m]Mi. We will need the following (non-standard) security de�nition: For
every pair of messages w 6= w′ ∈M and pair of tags v, v′ in the range of MAC, it holds that

Pr
k←K

[v′ = MACk(w
′) | v = MACk(w)] ≤ ε,
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whenever v ∈ {MACk(w) : k ∈ K}. (We refer to the above event as �conditional forgery�.) Note
that such a MAC can be constructed unconditionally by letting {MACk} be a family of pair-wise
independent hash functions from M to some range of size at least 1/ε.

egen:

� For each i ∈ {1, . . . ,m}, sample a MAC key kxi for every x ∈ Xi and a random shift σi of the elements of
Xi. In addition, sample shared-randomness rpsm for the PSM protocol psm =

(
psm1, . . . , psmm, rec

)
.

� For each i ∈ {1, . . . ,m}, send to Pi the values rpsm, σi and the list of pairs {(x, zx)}x∈Xi
where

zx = MACkxi (psmi(x, rpsm)), and send to Carol a shifted list of all MAC keys Li = {kσi(x)
i }x∈Xi . (That

is, the key in the xth position is moved to the σi(x) position.)

epsmi: Given input xi and correlated randomness
(
rpsm, {(x, zx)}x∈Xi

, σi

)
, epsmi output yi :=(

psmi(xi, rpsm), zxi
, σi(xi)

)
.

erec: Given the messages (yi)i∈{1,...,m} and correlated randomness Li for all i ∈ {1, . . . ,m}, do:
If some yi = ⊥, output abort; otherwise parse yi = (wi, vi, ui).
Output abort if for some i it holds that vi 6= MACki(wi) where ki is the ui-th key in key list Li.
Otherwise, output rec(w1, . . . , wm).

Protocol epsm =
(
egen, epsm1, . . . , epsmm, erec

)

Figure 2: Protocol epsm =
(
egen, epsm1, . . . , epsmm, erec

)
Lemma 2.5. Protocol epsm is an ε-ePSM protocol when instantiated with an ε-secure MAC.

Proof. Correctness follows immediately from the correctness of the psm and MAC protocols. For secu-
rity against receiver, de�ne S = (Soff ,Son) in the following way. The simulator Soff samples a MAC key
kxi for every i ∈ {1, . . . ,m} and x ∈ Xi, and outputs (kxi )i∈{1,...,m},x∈Xi . The simulator Son, receives
f(x1, . . . , xm) and (kxi )i∈{1,...,m},x∈Xi as inputs, samples (a1, . . . , am)← Spsm(f(x1, . . . , xm)), where
Spsm is the underlying PSM simulator, samples random indices i1, . . . , im, where ij ∈ {1, . . . , |Xj |},
sets bj := (aj , MAC

k
ij
j

(aj), ij) for all j ∈ {1, . . . ,m} and outputs (b1, . . . , bm). It is not hard to see

that for any (x1, . . . , xm) ∈ X it holds that(
re, (epsm1(x1, r1), . . . , epsmm(xm, rm)

)
≡

(
Soff(rS),Son(f(x1, . . . , xm); rS)

)
.

For ε-security against senders, de�ne S = (Soff ,Son) in the following way. The simulator Soff

samples a random string r for egen, computes egen(r) = (r′1, . . . , r
′
m, r

′
e) and outputs (r′i)i∈T . Ob-

serve that for each i, this de�nes a shift σi, a list of MAC tags {(x, zi,x)}x∈Xi , and a list of MAC

keys {kσi(x)
i }x∈Xi .

The simulator Son, receives T , (r′1, . . . , r
′
m, r

′
e) and y′T := epsm∗T (r′T , xT ) as inputs, and parses

y′i = (w′i, v
′
i, u
′
i), where w

′
i is the PSM message, v′i is the corresponding MAC, and u′i the corre-

sponding shifted index. For each i ∈ T the simulator veri�es (1) that v′i = MACk(w
′
i) where k = k

u′i
i ;

and (2) that w′i equals to the PSM message of epsmi(x
′
i, r
′
i) where x

′
i ∈ Xi is the unique input for

which σi(x
′
i) = u′i. If both conditions hold, the simulator outputs (x′i)i∈T . Otherwise, the simulator

outputs (⊥, . . . ,⊥).
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It remains to show that for any �xed x = (x1, . . . , xm) both o�ine security and online security
hold. First, observe that the distribution of (r1, . . . , rm, re, yT ) in the real world is the same as
the distribution of (r′1, . . . , r

′
m, r

′
e, y
′
T ) generated by the simulator. This readily implies that o�ine

security holds. Since the distributions are the same, we stick with the notation (r1, . . . , rm, re, yT ),
and for i ∈ T , we denote yi = (wi, vi, ui).

For the online security, let r be the randomness used for generating the correlated randomness
egen(r) = (r1, . . . , rm, re). Fix some value ρ, and condition on the event rT = ρ. Let us further
condition on an arbitrary �xing of the correlated randomness of the honest parties ri : i /∈ T .
Correspondingly, yT̄ = (epsmi(xi, ri))i/∈T is �xed as well as yT = epsm∗T (ρ, xT ). (Here we assume,
without loss of generality, that the adversary is deterministic; If this is not the case, arbitrarily
�x some �good� coins for the adversary.) Overall, the only �un�xed� randomness in the system

corresponds to re. Speci�cally, for every i and x ∈ Xi, the MAC key k
σi(x)
i is distributed uniformly

subject to the constraint that MAC
k
σi(x)
i

(psmi(x, rpsm)) is �xed according to the values given in ri.

Observe that, by construction, the online simulator Son mimics the real process except that
it veri�es that an extra condition (2) holds. We therefore claim that f ′(xT̄ ,Son(T, yT ; r)) =
erec(yT , yT̄ , re) except when the following bad event E happens: there exists an i ∈ T for which
condition (2) fails, but condition (1) passes for all i's.

To see that the claim holds, observe that under ¬E either (A) both conditions (1) and (2) hold
for all i's, or (B) condition (1) fails for some i. In the latter case, the output in the ideal world is
f ′(xT ,⊥) = ⊥, and the output in the real world is⊥ as well. In the former case, the output in the real
world is f(xT̄ , x

′
T ) where x′i ∈ Xi is the unique input for which σi(x

′
i) = ui, for i ∈ T , and the output

in the ideal world is rec(w1, . . . , wm), where, by condition (2), wi = psm(x′i, rpsm) for every i ∈ T .
Therefore, by the perfect correctness of the underlying PSM protocol, rec(w1, . . . , wm) = f(xT̄ , x

′
T ).

We conclude that f ′(xT̄ ,Son(T, yT ; r)) = erec(yT , yT̄ , re) except when event E happens.
Next, we show that the event E happens with probability at most ε over the choice of r. Indeed,

given ρ and x we can �nd the �rst i for which (2) does not hold, and attack the MAC via the pair
of messages mi, wi and the pair of tags zx′i , vi, where x

′
i is the unique input for which σi(x

′
i) = ui,

mi := psmi(x
′
i, rpsm) is the PSM message corresponding to x′i using the randomness rpsm de�ned by

ρ, and zx′i is the tag of mi according to ρ. Since (2) does not hold over i then wi 6= mi. If (1) holds
over i, then the pair of messages mi 6= wi and the pair of tags zx′i , vi form a successful �conditional
forgery�, and so Pr[E] ≤ ε as required.

Lemma 2.6 (Polynomial-time extended PSM Protocols). Let f : {0, 1}m → {0, 1}p be a Boolean
circuit of size poly(m), depth O(logm), and bounded fan-in and fan-out gates. Then there exists an
extended PSM protocol with complexity poly(m, log(1/ε)) for f .

Proof. We take the underlying PSM to be the protocol promised in Lemma 2.2 with poly(m)
complexity. Let ` = poly(m) denote the maximal bit-length of a message that a party sends in this
protocol, and take {MACk} be a family of pair-wise independent hash functions from {0, 1}` to {0, 1}s
where s = dlog2(1/ε)e. Such a family can be constructed by circuits of complexity polynomial in
`+s (in fact even linear by [IKOS08]). Finally, it is not hard to see that the simulators of Lemma 2.5
have running time polynomial in m and s. The claim follows.
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2.3 Secure Computation with a Guard

We now introduce our �nal primitive in this series: secure computation with a guard (SCG). In this
variant, we have a sender Alice, who holds an input (a, b), a guard Bob who holds b, and a receiver
Carol that holds no input. As usual, the goal is to release the value of f(a, b) to the receiver Carol.7

Intuitively, Bob's role is to make sure that Alice uses b in the computation. Formally, we require
perfect security against Carol (as before), and �statistical security with abort� against Alice (who
may choose an arbitrary a or choose to abort the computation). When the guard Bob is corrupted,
and Alice is honest, we only require that the output will either be f(a, b) or ⊥. We emphasize that
a corrupted guard may abort the computation in a way that depends on Alice's input (a, b). While
this is weaker than standard �security with abort� de�nition, it still su�ces for our purposes.

Syntactically, the online phase consists of a single message from Alice/Bob to Carol. For the
o�ine phase, we move from the trusted set-up assumption, and let Bob send a single message to
both Alice and Carol.

In the following, we let f ′(a, b) denote the variant of f that agrees with f on inputs (a, b) ∈ A×B
and outputs ⊥ if a = ⊥.

De�nition 2.7 (Secure Computation with Guards). Let f : A × B → C be a function over the
�nite sets A,B and C. An SCG protocol consists of the following algorithms.

� An o�ine randomized algorithm scg.off that is invoked by Bob and, based on randomness rB
generates a message α for Alice, a message γ for Carol, and state information β for Bob.

� Online algorithm scg.onA for Alice (resp., scg.onB for Bob) that take o�ine message α (resp.,
β) and input (a, b) (resp., b) and generates a message sA (resp., sB) for Carol.

� Recovery algorithm R for Carol, that takes (γ, sA, sB) and generates an output.

An SCG should satisfy the following properties.

1. (Correctness under honest execution) For any input (a, b) and any choice of randomness
rB, it holds that R(γ, sA, sB) = f(a, b) where (α, β, γ) = scg.off(rB), sA = scg.onA(α, a, b) and
sB = scg.onB(β, b).

2. (Security against Receiver) There exists a two-phase randomized simulator S = (Soff ,Son),
such that for every a ∈ A, b ∈ B,(

Soff(rS),Son(f(a, b); rS)
)
≡

(
γ, sA, sB

)
,

where rS denotes the random tape of the simulator, and (α, β, γ) ← scg.off, sA =
scg.onA(α, a, b) and sB = scg.onB(β, b) are distributed as in a real protocol over the choice
of randomness held by Alice and Bob.

3. (ε-Security against Alice) There exists a two-phase randomized simulator S = (Soff ,Son)
such that for any malicious (computationally-unbounded) adversary scg.on∗A and every input
(a, b) the following holds.

7In our protocols a is usually known only to Alice at the beginning of the online round, but it is made public at
the end of this round. Accordingly, we will not try to hide it and, in fact, we will typically let the function f release
a as part of its output.

17



� (O�ine Security) The random variables α and α′ have the same distribution, where α
is sampled according to scg.off and α′ = Soff(rS), where rS is the random tape of the
simulator.

� (Online Security) Fix some arbitrary value α. Consider a uniformly chosen rB (resp., a
uniformly random rS) subject to the event that the �rst entry of scg.off(rB) is α (resp.,
the output of Soff(rS) is α). Then, the random variables

R(γ, s∗A, sB) and f ′(a′, b) (3)

are ε-close in statistical distance, where the left (conditional) distribution corresponds to
the real execution, i.e., s∗A = scg.on∗A(α, a, b), sB = scg.onB(β, b) where β is the second
output of scg.off(rB), and the (conditional) distribution on the right corresponds to the
ideal execution, i.e., a′ = Son(rS , b, s

∗
A)).

4. (Security against Bob) For every input a, b and every values of β∗, γ∗, s∗B , it holds that

R(γ∗, scg.onA(α∗, a, b), s∗B) ∈ {f(a, b),⊥}.

Construction. One can base SCG on a 2-sender ePSM protocol by letting Bob sample the cor-
related randomness in the �rst round. When Bob is honest, we get the guarantees of ePSM and so
security against Alice and against the receiver follow immediately. To cope with a dishonest Bob,
we further let Alice send the value f(a, b) as part of her online message, and let the Carol output ⊥
if this value is inconsistent with the value recovered by the ePSM. This construction is sound but
ine�cient since the complexity grows linearly with the domain A×B. (Remember that we should
append a tag for every possible PSM-message.) We resolve this by �collapsing� a multiparty-ePSM
into a two-sender PSM. This guarantees that each bit of the PSM messages depends on a single
bit of the message which means that we have to authenticate only O(log |A| + log |B|) messages.
Details follow.

Formally, for a function f : Fm1
2 × Fm2

2 → Fp2, we present an SCG protocol based on any
(m1 + m2)-party extended PSM protocol epsm = (egen, epsm1, . . . , epsmm1+m2

, erec) for f , viewed
as an (m1 + m2)-party functionality over the inputs a1, . . . , am1 , b1, . . . , bm2 . In the o�ine phase,
Bob runs egen of epsm and hands over the correlated-randomness corresponding to the �rst set of
m1 parties to Alice and that of the receiver to Carol in the o�ine phase. In the online phase, Alice
emulates the �rst m1 parties, while Bob emulates the last m2 parties in the online phase.

scg.off: Bob runs (r1, . . . , rm1+m2
, re) ← egen and sends α = (r1, . . . , rm1

) to Alice and γ = re to Carol,
and sets β = (rm1+1, . . . , rm2

).

scg.on: Alice holds inputs a ∈ Fm1
2 and b ∈ Fm2

2 while Bob holds b ∈ Fm2
2 . We write a = (a1 . . . , am1) and

b = (b1, . . . , bm2
)

� (Alice:) Alice computes si = epsmi(ai, ri) for i ∈ {1, . . . ,m1}.
She sends to Carol the message sA =

(
{si}i∈{1,...,m1}, z

)
, where z = f(a, b).

� (Bob:) Bob computes si = epsmi(bi−m1
, ri), for i ∈ {m1 + 1, . . . ,m1 +m2}.

He sends to Carol the message sB = (si : i ∈ {m1 + 1, . . . ,m1 +m2}).

Protocol scg= (scg.off,scg.on)
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� (Carol's output:) Given an o�ine message γ and online messages sA, sB , Carol extracts the values
s = (s1, . . . , sm1+m2

) and z, and computes z′ = erec(s, γ). She outputs z′ if z′ = z, and ⊥ otherwise.

Figure 3: Protocol scg= (scg.off,scg.on)

Lemma 2.8. Protocol scg = (scg.off, scg.on) is a SCG protocol.

Proof. Correctness under honest execution follows immediately from the correctness of the under-
lying epsm protocol. Security against Bob follows readily as well, since Carol checks whether the
output of the epsm protocol z′ is equal to z = f(a, b), which was received from an honest Alice.

For security against receiver, let S ′ = (S ′off ,S ′on) be the corresponding simulator against receiver
of the underlying epsm protocol. De�ne S = (Soff ,Son) in the following way. The simulator Soff(rS)
outputs the same as S ′off(rS), and the simulator Son(f(a, b); rS) �rst computes (s1, . . . , sm) :=

S ′on(f(a, b); rS), sets sA =
(
{si}i∈{1,...,m1}, f(a, b)

)
, sB = (si : i ∈ {m1 + 1, . . . ,m1 + m2}), and

outputs (sA, sB). Perfect security against receiver of the underlying epsm protocol implies that
for every a ∈ A and b ∈ B,

(
S ′off(rS), s1, . . . , sm) ≡

(
re, (epsm1(x1, r1), . . . , epsmm(xm, rm)

)
so(

Soff(rS),Son(f(a, b); rS)
)
≡
(
γ, sA, sB

)
, where γ, sA, sB are distributed according to an honest

execution of the protocol. Security against the receiver follows.
For ε-security against Alice, let S ′ = (S ′off ,S ′on) be the corresponding simulator against senders in

the underlying epsm protocol, with T = {1, . . . ,m1}, and de�ne S = (Soff ,Son) in the following way.
The simulator Soff(rS) outputs the same value as S ′off(T, rS). The simulator Son, upon receiving rS ,
scg.on∗A(Soff(rS), a, b) and b, �rst parses scg.on∗A(Soff(rS), a, b) to the corresponding epsm messages
(s1, . . . , sm1), and to the value z which is the output of the function according to Alice. Then, the
simulator computes (a′1, . . . , a

′
m1

) := S ′on(T, rS , (s1, . . . , sm1)) and sets a′′ := ⊥ if some a′i = ⊥, and
otherwise sets a′′ := (a′1, . . . , a

′
m1

). If a′′ = ⊥ or f(a′′, b) 6= z then Son outputs ⊥, and otherwise it
outputs a′′.

For any a ∈ A and b ∈ B, o�ine security of the underlying epsm protocol clearly implies the
o�ine security of the scg protocol. For the online security, take any ρ in the support of α, and
condition on α = ρ and α′ = ρ. Observe that for any value z that scg.on∗A might send to Carol as
the output of the SCG, if we condition on the event that scg.on∗A sends z to Carol we obtain a new
adversary, denoted scg.onzA. For each such adversary, the online security of the underlying epsm
protocol implies that the random variables

erec(s1, . . . , sm1+m2 , γ) and f ′(a′′, b)

are ε-close in statistical distance, where (r1, . . . , rm1+m2 , re) ← egen, α = (r1, . . . , rm1),
β = (rm1+1, . . . , rm1+m2), γ = re, (s1, . . . , sm1 , z) = scg.onzA(α, a, b), (sm1+1, . . . , sm1+m2) =
scg.onB(β, b), rS is the random tape of the simulator, and (a′′, z) = Son(rS , b, scg.onzA(Soff(rS), a, b)).
We conclude that for the original adversary scg.on∗A the random variables(

erec(s1, . . . , sm1+m2 , γ), zreal
)

and
(
f ′(a′′, b), zideal

)
are ε-close in statistical distance, where (r1, . . . , rm1+m2 , re) ← egen, α =
(r1, . . . , rm1), β = (rm1+1, . . . , rm1+m2), γ = re, (s1, . . . , sm1 , zreal) = scg.on∗A(α, a, b),
(sm1+1, . . . , sm1+m2) = scg.onB(β, b), rS is the random tape of the simulator, and
(a′′, zideal) = Son(rS , b, scg.on∗A(Soff(rS), a, b)).
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Let M be a procedure that takes inputs x and y and outputs x if x = y and ⊥ oth-
erwise. Observe that the �rst random variable in Equation (3) is distributed exactly like
M
(
erec(s1, . . . , sm, γ), zreal

)
. Similarly, the second random variable in Equation (3) is distributed

exactly like M
(
f ′(a′′, b), z

)
. Therefore, the random variables in Equation (3) are ε-close. This

concludes the proof.

Lemma 2.9 (Polynomial-time SCG Protocols). Let A = {0, 1}m1, B = {0, 1}m2 and C = {0, 1}p.
Let m = m1 + m2 and let f : A × B → C be a Boolean circuit with depth logarithmic in m, size
polynomial in m and bounded fan-in and fan-out. For every ε > 0 there exists an SCG protocol with
complexity poly(m) · log(1/ε).

Proof. This follows immediately from Lemma 2.6 with f : {0, 1}m → {0, 1}p, X1 = . . . = Xm =
{0, 1} and Z = {0, 1}p.

3 A Two-Round Statistically-Secure Fvss-SIFR Protocol

In this section, we prove Theorem 1.2. That is, our goal is to build a 2-round statistical protocol in
the Fvss-SIFR model that can evaluate any n-party degree-2 functionality (over a �eld larger than
n). As a starting point, we will make use of the following completeness theorem proved in [AKP20,
Prop. 4.5 and Thm. 5.23] (building on [ABT19]).

Proposition 3.1 ([AKP20]). Let F be an n-party functionality that can be computed by a Boolean
circuit of size S and depth D and let F be an arbitrary extension �eld of the binary �eld F2. Then,
the task of securely-computing F non-interactively reduces to the task of securely-computing the
degree-2 n-party functionality f over F that each of its outputs is of the form

xαxβ +
n∑
j=1

rj , (4)

where xα and xβ are the inputs of party Pα and Pβ respectively and rj is an input of party Pj for
j ∈ {1, . . . , n}.

The reduction preserves active perfect-security (resp., statistical-security) with resiliency thresh-
old of b(n− 1)/3c (resp., b(n− 1)/2c) and the complexity of the function f and the overhead of
the reduction is poly(n, S, 2D, log |F|). Furthermore, assuming one-way functions, one can get a
similar reduction that preserves computational-security with resiliency threshold of b(n− 1)/2c and
complexity/security-loss of poly(n, S, log |F|).

Throughout this section we �x F to an F2-extension �eld of size larger than n, and assume that
the sharing functionality Fvss (to be de�ned in Section 3.1) is de�ned with respect to the �eld F.8
By Proposition 3.1, it su�ces to focus on functionalities whose output can be written as (4). We
design a 2-round Fvss-SIFR protocols for such functionalities by making an extensive use of secure
computation with a guide (SCG) primitive. The construction is composed of the following steps.

8In fact, all the results of this section hold over an arbitrary �nite �eld. We focus on �elds of characteristic 2 since
Proposition 3.1 is limited to such �elds.
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TSS. First, in Section 3.2, we design a 2-round Fvss-SIFR protocol for the triple secret sharing
(TSS) functionality that veri�ably generates a secret-sharing of a party's triple secrets a, b, c satis-
fying the product relation c = ab. By making use of SCG, we derive a 2-round Fvss-SIFR protocol
for TSS in which the sharing is completed in the �rst round and the veri�cation of the product
relation is done in the second round.

Guided-degree-2. Subsequently in Section 3.3, we consider the task of computing a degree-2
function that can be written as (4) under the simplifying assumption that the inputs are already
secret-shared (under Shamir's sharing) and that one of the parties (�the guide�) knows all the shares
(i.e., the corresponding polynomials). Further, this relaxed �guided-degree-2� functionality, FGdeg2c,
allows the guide to abort the computation. We realize FGdeg2c by a 2-round Fvss-SIFR protocol
whose �rst round is an o�ine (input-independent) round. Our construction makes use of the above
TSS protocol and of SCG's.

Degree-2 computation Finally, in Section 3.4, we present a protocol for computing degree-
2 functionalities in 2-rounds in the Fvss-model. For this we follow a blueprint of [AKP20] that
essentially reduces this task to the task of realizing the �Guided-degree-2� functionality.

Set-up. Through this section, we denote the set of n parties by P and �x the resiliency t to
b(n− 1)/3c. Also, for an integer x, we use ‖x‖ to denote the set {1, . . . , x}. All the protocols in
this section will be proven under the framework of universal-composability (UC) [Can01a]. (See
Appendix A for details.)

3.1 Secret-Sharing and the Fvss Functionality

Secret sharing background. We recall some basic background and terminology about
polynomial-based secret sharing. In the following, we associate with every party Pi a unique non-
zero �eld element and, for simplicity, we abuse notation and denote this element by i. We say that
a value s is t-shared amongst P, denoted as [s], if there exists a polynomial f(x) of degree at most
t with f(0) = s such that every honest party Pi holds f(i). Recall that t+ 1-shares su�ces for re-
constructing the secret, and that one can use noisy-interpolation to recover the secret from n shares
out of which t are corrupted (since t = b(n− 1)/3c). We say that s is doubly t-shared amongst P,
denoted as [[s]], if there exist a primary degree-t polynomial f(x) whose free coe�cient is s, and
secondary degree-t polynomials {fi(x)}i∈{1,...,n} with f(i) = fi(0) for i ∈ {1, . . . , n}, such that every
honest party Pi holds the scalar f(i), the polynomial fi(·), and the scalars {fj(i)}j∈{1,...,n}. Conse-
quently, f(0) is t-shared via the polynomial f(x) and for each each i ∈ {1, . . . , n}, the i-th �rst-level
share, f(i), is being t-shared via the polynomial fi. We refer to fi(j) as the j-th share-share of the
i-th share of s. In Section 3.4, we will make use of a somewhat non-standard notion of double (2t, t)
secret-sharing, denoted by 〈s〉, in which the primary polynomial is of degree 2t.

The Fvss-SIFR model. The protocols in this section operate in the Fvss-SIFR model, that is,
parties are allowed to make calls at the �rst-round to the single-input functionality Fvss de�ned
below in Fig. 4.
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Fvss receives F (x, y) from D ∈ P. If F (x, y) is not a symmetric bivariate polynomial of degree less than
or equal to t in both x and y, then it replaces F (x, y) with a default choice of such polynomial (e.g., the
zero polynomial). Lastly, it sends the univariate polynomial fi(x) = F (x, i) to every Pi.

Functionality Fvss

Figure 4: Functionality Fvss

3.2 Triple Secret Sharing

The goal of this protocol is to allow a dealer to share three values (a, b, c) via VSS such that c = ab
holds. This is done in two phases: in the distribution phase the parties receive the shares of a, b, c
from the functionality, where a, b, c were chosen by the dealer; in the veri�cation phase the parties
get 1 from the functionality if c = ab, and 0 otherwise. Given access to an ideal VSS in the �rst
round, we implement the distribution phase in a single round, and use one additional round for the
veri�cation phase.

The functionality Ftss is corruption aware.9 An honest D always sends a triple (a, b, c) such
that c = ab, so the output of the veri�cation phase is always 1. However, a corrupt D is allowed
to choose the sharing-polynomials fa(x), f b(x), f c(x) that de�ne the output of the distribution
phase. In the veri�cation phase, the functionality veri�es that f c(0) = fa(0)f b(0), and if the
equation does not hold then the output of the veri�cation phase is 0. If veri�cation passes, the
dealer is allowed to fail the veri�cation and announce a failure value. If the equation holds and
the dealer does not wish to fail the veri�cation, the output of the veri�cation phase is 1. We
abstract out the need in a functionality Ftss given in Fig. 5 and present our protocol subsequently.

The functionality Ftss receives a set of parties C ⊆ P controlled by the ideal adversary.

� Distribution Phase.

� If the dealer D is honest, then Ftss receives from D a triple (a, b, c), so that c = ab. Ftss picks three
random degree-t polynomials fa(x), f b(x), f c(x) conditioned on fa(0) = a, f b(0) = b and f c(0) = c.
Ftss sends (fa(x), f b(x), fc(x)) to the dealer, and sends (fa(i), f b(i), fc(i)) to Pi.

� If the dealer D is corrupt, then Ftss receives from D three univariate polynomials fa(x), f b(x), f c(x).
If one of these polynomials is of degree more than t, it is being replaced with the default zero
polynomial. In addition, the dealer may decide to fail veri�cation by sending a special �failure�
symbol. The functionality sends (fa(i), f b(i), f c(i)) to Pi.

� Veri�cation Phase.

� If D is honest then Ftss sends 1 to all parties.

� For a corrupt D, the functionality sends 0 to all parties if the dealer asked to �fail� veri�cation or if
f c(0) 6= fa(0)f b(0). Otherwise, Ftss sends 1 to all parties.

Functionality Ftss

Figure 5: Functionality Ftss

9At a high level this means that the functionality depends on the identities of the corrupt parties. This idea was
�rst introduced by [Can01b] in the UC-framework. For more information, see [AL17, Section 6.2]

22



We begin by presenting a 3-round protocol for Ftss in the Fvss-SIFR model, where the distribution
phase is concluded by the end of round 1 and the veri�cation phase is concluded by the end of round
3. Then, we show how to shave a round via SCG and derive a two round protocol with a single
round for each phase.

Round 1. Following the idea proposed in [BGW88] and recalled in [AL17], the dealer chooses
two polynomials of degree at most t, fa(x) and f b(x) with fa(0) = a and f b(0) = b. It then picks
a sequence of t polynomials f1(x), . . . , f t(x), all of degree at most t such that f c(x) which is equal
to fa(x)f b(x)−

∑t
α=1 x

αfα(x) is a random polynomial of degree at most t with the constant term
equalling ab. Both [BGW88, AL17] elucidate the idea of choosing the coe�cients of f1(x), . . . , f t(x)
in a way that simultaneously cancels out the higher order coe�cients and randomizes the remaining
coe�cients of the product polynomial fa(x)f b(x). The dealer hides these t + 3 polynomials in
symmetric bivariate polynomials,

F a(x, y), F b(x, y), F c(x, y), F 1(x, y), . . . , F t(x, y)

where
Fα(0, i) = Fα(i, 0) = fα(i), ∀α ∈ {a, b, c, 1, . . . , t},

and invokes t + 3 instances of Fvss. At the end of the �rst round the sharings are returned by the
Fvss functionalities, and each party Pi holds the univariate degree-t polynomials

Fα(i, ·) ∀α ∈ {a, b, c, 1, . . . , t}.

In particular, Pi can extract the �rst-level share f
α(i) by taking the zero-coe�cient of the polynomial

Fα(i, ·). This concludes the distribution phase. In the next two rounds, the parties will verify that
the product relation c = ab holds.

Round 2. After R1, every party Pi veri�es that f
c(i) = fa(i)f b(i)−

∑t
α=1 x

αfα(i). In R2, each
Pi either announces that equality holds or broadcasts a complaint and appends to the complaint es-
sentially all the information that she holds. Speci�cally, Pi broadcasts for every α ∈ {a, b, c, 1, . . . , t}
the �eld elements

Fα(i, 1), . . . , Fα(i, n).

Round 3. In order to make sure that a complaint made by some Pi is justi�ed, each party Pj
checks if the values released as a part of Pi's complaint are consistent with the corresponding j-
values, i.e., {Fα(i, j) : α ∈ {a, b, c, 1, . . . , t}}. If they are consistent, Pj �ack� (approve the shares of
the complaint) and otherwise it rejects it. Finally, the parties reject the dealer if there exists a party
Pi whose complaint is accepted in the following sense: (1) At least n−t parties ack-ed the complaint;
and (2) The values released by Pi �justify� a complaint, i.e., (2a) for every α ∈ {a, b, c, 1, . . . , t}
there exists a unique degree-t polynomial that is consistent with the points released by Pi and (2b)
the free-coe�cients of these polynomials, {zα : α ∈ {a, b, c, 1, . . . , t}} do not satisfy the relation
zc = zazb −

∑t
α=1 z

αzα. This concludes the veri�cation phase.
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Shaving a round via SCG. To conclude the veri�cation in round 2, we compress the rounds 2
and 3 into a single one via an SCG. Speci�cally, for each (i, j, k), party Pi plays the role of a sender
Alice, whose online input consists of a complaint bit x (where x = 1 indicates a complaint) and the
j-the entries of her shares {Fα(i, j) : α ∈ {a, b, c, 1, . . . , t}}, the party Pj plays the role of the guard
Bob who holds his copy of the shares and �makes sure� that the inputs are consistent, and the party
Pk plays the role of the receiver Carol. So the function of our interest is g : F2 × Ft+3 → Ft+4

de�ned by

g(x, {xα}α∈{a,b,c,1,...,t}) =

{
(x, 0, . . . , 0) if x = 0,

(x, {xα}α∈{a,b,c,1,...,t}) otherwise,
(5)

with A := {0, 1}, B := Ft+3 and C := {0, 1}×Ft+3 (as per De�nition 2.7). The o�ine of the SCGs
are run during the �rst round, and the online in round 2. An SCG instance that leads to ⊥ for a
Carol, is labelled as silent.

Analysis (sketch). For an honest Pi with genuine complaint, all the n − t SCG invocations
that correspond to the honest Pjs will spit out the correct share-shares (via correctness), while
the rest will either be silent or spit out correct share-shares (via SCG security against Bob). This
enables public reconstruction of the ith �rst-level shares, fα(i), for all α ∈ {a, b, c, 1, . . . , t} and so
subsequent public veri�cation will instate the compliant publicly. Thus an honest party can always
convince others about its complaint and can ensure D's disquali�cation.

On the other hand, a corrupt Pi cannot disqualify an honest dealer. Indeed, in order to disqualify
D a cheating Pi must get at least n− t ≥ 2t+ 1 acks on his accusation. At least t+ 1 of these acks
are generated by honest guards Pj , which means that for these j's the corresponding SCGs released
the �correct� second-level sharing that was distributed by the dealer. Correspondingly, assuming
that Step (2a) does not fail (in this case the complaint is discarded), the publicly reconstructed
polynomials must be consistent with the dealer's polynomials Fα(i, ·) for all α ∈ {a, b, c, 1, . . . , t},
and therefore that public veri�cation succeeds and the dealer is not discarded.

Protocol tss is described in Fig. 6, and its security and complexity are stated in Lemma 3.2.
The function g from Eq. (5) is computed using εscg-SCG with εscg = 2−O(κ), where κ is the security
parameter.

Inputs: D has inputs (a, b, c) such that c = ab. All parties share a statistical security parameter 1κ.

Distribution Phase (R1). D and the parties do the following

� (VSS calls) The dealer D chooses, for each α ∈ {a, b, c, 1, . . . , t}, a random degree-t polynomial fα(x)
subject to fa(0) = a, f b(0) = b, f c(0) = c and f c(x) = fa(x)f b(x)−

∑t
α=1 x

αfα(x).
For α ∈ {a, b, c, 1, . . . , t}, the dealer invokes an instance of Fvss with a random symmetric bivariate
polynomial Fα(x, y) of individual degree at most t for which Fα(x, 0) = Fα(0, x) = fa(x).

� (SCG o�ine calls) For every triple (i, j, k), Pi in the role of Alice, Pj in the role of Bob, and Pk in the

role of Carol, run scg.offijk, an execution of the o�ine phase of an SCG instance scgijk for function
g as given in Equation 5.

� (Local Computation) Each party Pi gets from the Fvss instances t+ 3 degree-t univariate polynomials

Protocol tss
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Fαi (·), and sets flagi = 0, if F ci (0) = F ai (0)F bi (0)−
∑t
α=1 i

αFαi (0) and flagi = 1 otherwise.

� (Output) Each Pi outputs (F ai (0), F bi (0), F ci (0)). The dealer outputs (fa(x), f b(x), f c(x)).

Veri�cation Phase (R2). The parties do the following.

� (SCG online calls) For every (i, j, k), the protocol scg.onijk is executed where:

� Pi, as Alice, inputs x = flagi and {xα = Fαi (j)}α∈{a,b,c,1,...,n};
� Pj , as Bob, inputs {xα = Fαj (i)}α∈{a,b,c,1,...,n};
� Pk, as the receiver Carol, either gets ⊥ (the execution is �silent�) or gets the output

(flagijk, {zαijk}α∈{a,b,c,1,...,n}).
� (Local Computation) Party Pk discards D if there exists a party Pi for which:

� At least n− t executions of {scgijk}j are non-silent. Let Li denote the set of all such js.

� All {flagijk}j∈Li
from non-silent executions are 1.

� For every α ∈ {a, b, c, 1, . . . , n}, there is a unique polynomial F̂αi of degree at most t such that

F̂αi (j) = zαijk for all j ∈ Li but F̂
c
i (0) 6= F̂ bi (0)F̂ bi (0)−

∑t
α=1 i

αF̂αi (0).

� (Output) If Pk discarded D then it outputs 0. Otherwise it outputs 1.

Figure 6: Protocol tss

Lemma 3.2. Let κ be a security parameter, let n be the number of parties, and let t < n/3. Protocol
tss is a statistically UC-secure implementation of Ftss in the Fvss-SIFR model against a static, active
rushing adversary corrupting up to t parties. The error of the protocol is upper-bounded by 2−κ, and
its complexity is poly(n, log |F|, κ).

Proof. Here we only prove the complexity of the protocol. The proof of security is deferred to
Appendix B.3. Consider the function g : A × B → C, given in Equation 5, where A = {0, 1},
B = Ft+3 and C = {0, 1} × Ft+3. Letting q = |F| we can parse B and C as {0, 1}(t+3) log q

and {0, 1}(t+3) log q+1. Observe that g can be represented as an NC0 circuit of size O(t log q), and
therefore, by Lemma 2.9, the complexity of the εscg-SCG computing g is polynomial in n, log |F|
and log(1/ε) = O(κ). The theorem follows since there are n3 such instances.

3.3 Guided Degree-2 Computation

Our goal in this section is to implement a two-round protocol whose �rst round is an o�ine (input-
independent) round for the �guided-degree-2� functionality FGdeg2c. Roughly, the parties are as-
sumed to hold (standard �rst-level) t-shares of the values xα, xβ, w1, . . . , wm and one of the parties
G plays the role of a �guide� who holds all the shares of these values (i.e., the corresponding polyno-
mials). The goal is to release to all parties the value y = xα ·xβ+w1 + ...+wm. Correspondingly, we
refer to xα and xβ as the multiplicands and to w1, . . . , wm as the summands.10 The functionality
FGdeg2c is corruption aware, and a corrupt guide is allowed to selectively-abort the computation,
i.e., to decide for each honest party Pi whether her output yi equals to y or to ⊥.

10The functionality is implicitly parameterized by the number of summands m. Jumping ahead, m will always
taken to be n+ 1 where n is the number of parties.
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The functionality FGdeg2c receives a set of parties C ⊆ P controlled by the ideal adversary.
Input:

� If the guide is honest then the guide holds a sequence of univariate polynomials Xα, Xβ ,W 1, . . . ,Wm,
and each honest Pi holds x

α
i := Xα(i), xβi = Xβ(i), w1

i = W 1(i), . . . , wmi = Wm(i).

� If the guide is corrupt then each honest Pi holds x
α
i , x

β
i , w

1
i , . . . , w

m
i , which are consistent with some

degree-t polynomials Xα, Xβ ,W 1, . . . ,Wm.

Output:

� If the guide is honest then the functionality delivers to all parties the value y = Xα(0)Xβ(0)+W 1(0)+

... + Wm(0). The functionality also delivers xαi := Xα(i), xβi = Xβ(i), w1
i = W 1(i), . . . , wmi = Wm(i)

to each corrupt Pi.

� If the guide is corrupt then she �rst gets the polynomials Xα, Xβ ,W 1, . . . ,Wm de�ned by the honest
parties' inputs, and then decides, for each honest party Pi, whether Pi gets the value y = Xα(0)Xβ(0)+
W 1(0) + ...+Wm(0) or an abort symbol ⊥.

Functionality FGdeg2c

Figure 7: Functionality FGdeg2c

As a warmup, we begin with a 3-round Fvss-SIFR protocol (whose �rst round is an o�ine
round) that strongly relies on Beaver's randomization technique [Bea91]. We will later show how
to compress one round while keeping the �rst round input-independent.

1. R1 (Input independent round) The parties execute the tss protocol with the guide as the
dealer, where the guide holds three random inputs a, b, c that satisfy c = ab. This step
involves invoking Fvss. At the end of this round the guide holds the sharing polynomials
A(x), B(x), C(x) and Pi holds ai := A(i), bi := B(i), ci := C(i).

2. R2 Given the input polynomials Xα, Xβ,W 1, . . . ,Wm, the guide broadcasts the scalars u =
xα − a and v = xβ − b where xα = Xα(0) and xβ = Xβ(0), and broadcasts, for each
j ∈ {1, . . . , n}, the scalar

yj = uv + uB(j) + vA(j) + C(j) +W 1(j) + · · ·+Wm(j).

Note that if the guide is honest the yj 's form a fresh t-sharing of the output y. The rest of the
protocol will be devoted to verifying that the above equalities hold. This round also concludes
the veri�cation phase of TSS.

3. R3 Party Pj holds the original inputs x
α
j , x

β
j , w

1
j , . . . , w

m
j and the shares (aj , bj , cj) that were

veri�ed by the TSS functionality. (If the veri�cation phase of TSS returned 0 then the parties

abort.) Pj broadcasts the value uj = xαj −aj and vj = xβj −bj . Also, Pj uses the guide's broad-
cast values u and v together with his local shares, aj , bj , cj , w

1
j , . . . , w

m
j , to locally compute

the value yj , and broadcasts an �ack� if the answer equals to the one sent by the guide.

4. (Local computation) The parties collect the broadcasted values of (u1, . . . , un) and (v1, . . . , vn)
and robustly reconstruct the secrets u0 and v0 (via noisy polynomial interpolation).
If these values are inconsistent with the guide's values u, v, output abort.
Else, if the yj 's, broadcasted by the guide, are all consistent with a degree t polynomial Y and
there are at least n− t acks, output Y (0).
Otherwise, abort.
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Analysis (sketch). Assuming that the guide is honest, the adversary learns the yj 's, and the
values u, v. Beaver's randomization guarantees that these values can be perfectly simulated given
the output y. To see that the honest parties output the correct value y observe that: (1) At most
t of the ui's (resp., vi's) are corrupted and therefore u (resp., v) is reconstructed correctly; and (2)
Every honest party broadcasts an ack for the corresponding yj and therefore there are at least n− t
acks. On the other hand, even if the guide is corrupted, the honest parties will always reconstruct
u = Xα(0)−A(0) and v = Xβ(0)−B(0) correctly (since the corresponding polynomials are of degree
t and the parties see at least n− t correct evaluations of these polynomials.) Therefore, a corrupted
dealer must broadcast u, v (or abort the computation). Consequently, any vector (y′1, . . . , y

′
n) that

is sent by a cheating guide either leads to abort or must be consistent with a degree-t polynomial
Y ′ that agrees with the polynomial Y = uv+ uB(x) + vA(x) +C(x) +W 1(x) + · · ·+Wm(x) on at
least (n− t)− t ≥ t+ 1 �honest� points, and so Y ′ = Y and the output of the honest parties will be
Y ′(0) = Y (0) = y as required. In fact, the above protocol perfectly reduces FGdeg2c to Ftss, and a
corrupt leader can only force unanimous abort. (The two-round version will introduce a statistical
error and will allow the leader to selectively abort honest parties.)

Shaving a round via SCG. In order to remove the second round, we let each Pj guard the
value of yj via the use of SCG. Speci�cally, we let the guide play the role of Alice, and initiate
in the �rst round n2 copies of SCG for every guard Pj and every receiver Pk with the function
g : F2 × F2+m → F3 de�ned as follows. The �rst argument (known only to Alice the guide) is (u, v)
the second �guarded� argument (known both to the guide and to the guard Pj) is (a, b, c,w1, . . . ,wm)
and the output is

g
(

(u, v), (a, b, c,w1, . . . ,wm)
)

= (u, v, uv + ub + va + c + w1 + . . .+ wm). (6)

In the second round, these SCG's are invoked where the guard Pj takes (aj , bj , cj) from the dis-
tribution phase of Ftss. In addition, Pj broadcasts the uj and vj (again computed based on the
distribution phase of the TSS). The �nal local computation is performed just like in the above
protocol where the outputs of the SCG's take the place of the yj 's.

Analysis of the modi�ed protocol. The analysis remains essentially the same except for two
main di�erences. Firstly, we run n di�erent SCG's for each potential receiver Pk. Therefore, even if
the guard Pj is honest, a corrupted guide (as Alice) can choose for every honest receiver Pk whether
to �silent� the corresponding SCG or to set the output to yj . As a result a corrupted guide can force
a selective abort. Secondly, even if the guard Pj is honest, with non-zero probability a corrupted
guide (as Alice) can make Pk to output (u, v, y′j) where u, v are the correct values, but y′j 6= yj is
not a share of y. As a result, with non-zero probability a corrupt Alice can make Pk to output a
value y′ 6= y, and so there is a (small) error probability.

We present the protocol in Fig. 8, and state its security and complexity in Theorem 3.3. All
calls to SCG are done with error parameter εscg = 2−O(κ), where κ is the security parameter.
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All parties share a statistical security parameter 1κ.

R1 (input independent round) The parties do the following in parallel.

� (TSS call) The guide picks three random �eld elements a, b, c such that c = ab. The parties execute
the distribution phase of the tss protocol with the guide as the dealer with inputs (a, b, c).

� For every pair (j, k), the guide in the role of Alice, Pj in the role of Bob, and Pk in the role of Carol,

run scg.offjk, an execution of the o�ine phase of an SCG instance scgjk for function g as given in
Equation 6.

Inputs: The guide holds a sequence of degree-t univariate polynomials Xα, Xβ ,W 1, . . . ,Wm, and each
Pj holds the values x

α
j = Xα(j), xβj = Xβ(j), w1

j = W 1(j), . . . , wmj = Wm(j).

R2 Let fa(·), f b(·), f c(·) denote the output polynomials of the guide in the distribution phase of tss, and
let (aj , bj , cj) denote the outputs of Pj . The parties do the following:

� (TSS completion) The parties execute the veri�cation phase of tss, and compute the veri�cation bit.

� (SCG online calls) For every (j, k) the protocol scg.onjk is executed, where:

� The guard, as Alice, inputs u = (Xα(0) − fa(0)), v = (Xβ(0) − f b(0)), a = fa(j), b = f b(j),
c = f c(j), and {w` = W `(j)}`∈{1,...,m}.

� Pj , as Bob, inputs a = aj , b = bj , c = cj , {w` = w`j}`∈{1,...,m}.
� Pk, as the receiver Carol, either gets ⊥ (the execution is �silent�), or gets the output (ujk, vjk, yjk).

� (Recovering u, v) Each party Pj broadcasts uj := xαj − aj and vj := xβj − bj .
� (Local computation) Every Pk acts as follows.
Pk recovers the degree-t sharing polynomials fu(x) and fv(x) of the broadcasted shares {u1, . . . , un}
and {v1, . . . , vn}, respectively via noisy-interpolation. Set u := fu(0) and v := fv(0).
Pk outputs ⊥ if one of the following holds.

� The veri�cation phase of TSS returned 0.

� There exists some non-silent scgjk for which ujk 6= u or vjk 6= v.

� At least t+ 1 executions of {scgjk}j are silent.
� The values {yjk}j of non-silent scgjk do not lie on a polynomial of degree t.

If non of the above holds, then Pk interpolates over the values {yjk}j of non-silent scgjk to obtain a
degree t polynomial Y (x), and outputs Y (0).

Protocol Gdeg2c

Figure 8: Protocol Gdeg2c

Theorem 3.3. Let κ be a security parameter, let n be the number of parties, and let t < n/3. Pro-
tocol Gdeg2c is a statistically UC-secure implementation of FGdeg2c in the Fvss-SIFR model against a
static, active rushing adversary corrupting up to t parties. The error of the protocol is upper-bounded
by 2−κ and its complexity is poly(m,n, log |F|, κ).

Proof. Here we only prove the complexity of the protocol. The proof of security is deferred to
Appendix B.4. By Lemma 3.2 the complexity of tss is poly(n, log |F|, κ), and so it remains to
analyse the SCG calls. There are n2 instances of SCG for the function g, described in Equation
6. Observe that g : A × B → C, where A = F2, B = Fm+3 and C = F3. Hence we can represent
A,B and C as {0, 1}2 log q, {0, 1}(m+3) log q and {0, 1}3 log q, respectively, where q = |F|. Therefore
g can be represented as a Boolean circuit of size at most poly(mn log |F|) and depth at most
O(log(mn log |F|)). (With the same argument as in the proof of Lemma 3.2.) We conclude that
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for every (j, k) the complexity of the SCG computing g is poly(m,n, log |F|, κ) (Lemma 2.9). This
concludes our proof.

3.4 Degree-2 Computation

In this section we present a protocol for computing degree-2 functionalities in 2-rounds in the Fvss-
model. In the following, we consider without loss of generality only a special family of degree-2
functionalities, described in Fig. 9.

� Input. Party Pi holds a vector of `i inputs to the functionality, denoted (xLi−1+1, . . . , xLi−1+`i), where

Li−1 =
∑i−1
j=1 `j and L0 = 0.

� Output. All parties receive the output vector, denoted (y1, . . . , ym). Each yk is of the form yk =
xαxβ + x1 + . . . + xn, where each of xα, xβ , x1, . . . xn is either an input variable of one of the parties,
or a constants speci�ed by the functionality.

Functionality Fdeg2c

Figure 9: Functionality Fdeg2c

By Proposition 3.1, the computation of any degree-2 functionality can be reduced to the computation
of a functionality from this family. The reduction is non-interactive, and it preserves the security
and the resiliency threshold.

The [AKP20] blueprint. For simplicity, in the exposition, we assume that the parties receive
only a single output y = xαxβ +x1 + . . .+xn. Let us recall (an oversimpli�ed version) the blueprint
of [AKP20].

1. Share the inputs xα, xβ, x1, . . . , xn via Fvss. At the end of this round, each party Pi uses
the �rst-level shares to compute yi := xαi x

β
i + x1

i + . . . + xni . These yi's collectively de�ne a
degree-2t polynomial Y (x) whose free coe�cient is the output y.

2. Since the degree of the polynomial Y (·) is too high to allow noisy-interpolation (at the presence
of t = b(n− 1)/3c corrupted points), the parties cannot recover the output y by broadcasting
their shares. Instead, we reduce the problem to the task of �recovery under t erasures� (which
is solvable in this regime) as follows. For each i, invoke a sub-protocol �guided� by Pi that
delivers yi to all parties. We do not care if a corrupted guide aborts the computation as long
as she cannot generate an erroneous output and as long as an honest guide leads to correct
outputs.

3. Once the yi's are distributed the parties recover a consistent degree 2t polynomial and output
the zero coe�cient.

We implement this idea using the ideal functionality FGdeg2c in the second round. Observe

that Pi knows the �rst-order shares xαi , x
β
i , x

1
i , . . . , x

n
i , as well as all their second-order shares

{xαij , x
β
ij , x

1
ij , . . . , x

n
ij}j∈P, while every Pj knows the second-order shares x

α
ij , x

β
ij , x

1
ij , . . . , x

n
ij . Hence,

in the second round the parties can call FGdeg2c with Pi as a guide, in order to reveal the share
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yi. Envisioning double sharing as a matrix (whose i-the column consists of the the evaluations of
the i-th polynomial), we refer to such a call as an application of FGdeg2c on the i-th column of the
double sharing of the input variables. An honest Pi always reveals the correct share, while a corrupt
Pi is forced to either reveal the correct share, or to abort the computation to (some of) the parties.
Finally, at the end of the second round, the parties can recover the output y.

Randomization. While the above protocol is correct, it is not private. Indeed, the degree-2t
polynomial Y (x) is non-randomized, and so it might leak information about the inputs. Like
in [AKP20], we solve this problem by generating a random 〈0〉-sharing, which is used to randomize
Y (x). We remind the reader that a 〈0〉-sharing means that the value 0 is shared via a degree-
2t polynomial O(x), and for every i and j party Pi holds a degree-t polynomial Oi(x) such that
Oi(0) = O(i), and Pj holds Oi(j). Observe that Y (x) + O(x) is a random degree-2t polynomial
whose free coe�cient is y, and so we can let the parties reveal the shares yi+O(i). The last addition
will be performed as part of the ith call to FGdeg2c by letting O(i) take the role of an additional
summand.

We generate 〈0〉 using existing techniques via VSS (for example see [AKP20]). In the following
we present the functionality F〈0〉 responsible for generating a 〈0〉, and mention that it can be
implemented in one round in the Fvss-SIFR model. We denote by zss a one-round Fvss-SIFR
protocol for F〈0〉.

Given a set of parties C ⊂ P that are controlled by ideal adversary, F〈0〉 receives {si}i∈C and
{sij}i∈{1,...,n};j∈C. It picks a random polynomial of degree at most 2t, f(x), for which

f(0) = 0 and f(i) = si ∀i ∈ C.

It further picks a set of random polynomials {fi(x)}i∈{1,...,n} of degree at most t such that for each i,

fi(0) = f(i) and fi(j) = sij ∀j ∈ C.

It sends (f(i), fi(x), {fj(i)}j∈P) to every Pi.

Functionality F〈0〉

Figure 10: Functionality F〈0〉
Denote by zss a single-round protocol that implements F〈0〉 in the Fvss-SIFR model, and let

us implement FGdeg2c using the 2-round protocol Gdeg2c promised by Theorem 3.3. Since the
�rst round of Gdeg2c is input-independent, we derive a 2-round implementation of Fdeg2c in the
Fvss-SIFR. The full protocol is presented in Fig. 11.

Inputs: Party Pi holds a vector of `i inputs to the functionality, denoted (xLi−1+1, . . . , xLi−1+`i), where

Li−1 =
∑i−1
j=1 `j and L0 = 0. All parties share a statistical security parameter 1κ.

Protocol deg2c
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Output: All parties receive the output vector, denoted (y1, . . . , ym). Each yk is of the form yk = xαxβ +
x1 + . . . + xn, where each of xα, xβ , x1, . . . xn is either an input variable of one of the parties, or a
constants speci�ed by the functionality.

R1 The parties do the following in parallel

� (VSS calls) Every party Pi picks, for each of its inputs xj a symmetric bivariate polynomial Xj(·, ·)
of degree at most t in each variable whose free coe�cient is xj and initiates an instance of Fvss.
For every constant xγ used by the functionality, the parties take the constant bivariate polynomial
F (x, y) = γ as the sharing polynomial of xγ .

� (ZSS calls) For each output k ∈ {1, . . . ,m} the parties initiate an instance zssk of zss, which is
concluded by the end of the round.

� (GDeg2 o�ine calls) For every output k ∈ {1, . . . ,m} and every i ∈ {1, . . . , n} the parties execute
the o�ine part of an instance, Gdeg2cki , of Gdeg2c where Pi plays the role of the guide.

� (Local computation) At the end of this round, we have [[xj ]] for every j ∈ {1, . . . , Ln+1}, and m
independent zero sharings 〈o1〉, . . . , 〈om〉 where o1 = · · · = om = 0.

R2 The parties do the following:

� (GDeg2 completion) For every output k ∈ {1, . . . ,m} and every i ∈ {1, . . . , n} the parties do the
following. Let xα, xβ , x1, . . . , xn be the input variables of the k-th output. The parties execute the
online part of Gdeg2cki with the guide Pi over the i-th column of [[xα]], [[xβ ]], [[x1]], . . . , [[xn]] and
〈om〉. Let yki,j denote the output that Pj receives from the protocol.

� (Local computation) Each party Pj �nds, for each output k ∈ {1, . . . ,m}, the (unique) univariate
polynomial fkj of minimal degree for which fkj (i) = yki,j for every yki,j 6= ⊥. Then Pj outputs the

values (f1
j (0), . . . , fmj (0)).

Figure 11: Protocol deg2c

We prove the following theorem, which together with Proposition 3.1, implies Theorem 1.2 from
the introduction.

Theorem 3.4. Let κ be a security parameter, let n be the number of parties, and let t < n/3.
Protocol deg2c is a statistically UC-secure implementation of Fdeg2c in the Fvss-SIFR model against
a static, active rushing adversary corrupting up to t parties. The error of the protocol is upper-
bounded by 2−κ and its complexity is poly(n, log |F|, κ).

The security of protocol deg2c is proved in Appendix B.5, and its complexity follows immediately
from Theorem 3.3.

Remark 3.5 (Perfect secrecy). We mention that all protocols in this section are actually
statistically-correct perfectly-secret protocols (see De�nition A.2) in the Fvss-SIFR model. For tss
this was already proved in Appendix B.3. We omit the proof for Gdeg2c and only give a proof-sketch
for the perfect-secrecy of deg2c.

Consider the 2-round deg2c protocol in the Fvss-SIFR model, and note that the adversary has
no e�ect on the �rst round messages of the honest parties, but only on the second round messages.
It is not hard to see that the �rst round messages of the honest parties do not violate the secrecy
property, and so we only need to consider the second round messages of the honest parties. The
adversary can a�ect those messages only via her �rst round messages, that consist of (1) Fvss calls,
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and (2) scg executions. We argue that no malicious strategy can cause the honest parties to violate
the privacy property in the second round.

For (1), observe that the Fvss calls consist of input-sharing, and calls to Fvss as part of Gdeg2c.
Any input-sharing call to Fvss is equivalent to picking the corrupt parties inputs in the ideal-world,
and so does not violate the secrecy. For the Fvss calls as part of Gdeg2c, observe that in Gdeg2ci
party Pi makes calls to Fvss whose purpose is to keep the privacy of the i-th columns of the inputs,
and that those i-th columns are already known to Pi. Therefore, when Pi is corrupt, the adversary
already knows the i-th columns, so privacy is preserved even if the Fvss calls of Gdeg2ci are done
with malicious values.

For (2), consider some scg execution with Alice, Bob and Carol, computing g(a, b). Observe that
if Alice is corrupt then the adversary already knows all the inputs to the scg execution. Furthermore,
since in the deg2c protocol the input a is always reconstructed in the second round of the protocol,
even when Bob is corrupt the adversary gets to know all the SCG's inputs. Finally, if only Carol is
corrupt then, by the perfect privacy against corrupt receiver, her view can be perfectly simulated.

4 Veri�able Secret Sharing

In this section we introduce a new statistical VSS (Section 4.1) that realizes the Fvss functionality
(de�ned in Section 3.1) and recall the existing cryptographic VSS of [BKP11] (Section 4.2). In the
latter section, we also suggest a simpli�ed protocol for an arbitrary single-input functionalities.

Throughout this section, we let κ denote a statistical security parameter that guarantees a
correctness error of 2−Ω(κ) (and perfect secrecy). We will assume, without loss of generality, that
κ = ω(log n) where n is the number of parties. The underlying �eld for sharing, F, can be taken
to be an arbitrary �nite �eld of size q as long as q is larger than the number of parties n. We will
also assume, without loss of generality, that q = 2Ω(κ). (If this is not the case, we can move to a
su�ciently large extension �eld, and use the observation that any Fvss over an extension �eld can
be projected down to an Fvss over a base �eld whose size is at least n+ 1). Finally, we assume that
basic arithmetic operations over F can be implemented with polynomial complexity in the log |F|.
As usual, we �x the resiliency t to b(n− 1)/3c.

4.1 Statistical VSS

In this section, we construct the �rst 2-round statistical VSS that produces [[s]] of D's secret from
F. The existing 2-round VSS of [PCRR09, Agr12] does not generate [[·]]-sharing and further the
set of secrets that are allowed to be committed is F∪ {⊥}. The latter implies that a corrupt D has
the liberty of not committing to any secret or put di�erently, the committed secret can be ⊥. A
natural consequence of being able to produce [[·]]-sharing is that the reconstruction turns to a mere
one-round communication of shares followed by error correction, unlike the complicated approach
taken in [PCRR09, Agr12].

As a stepping stone towards a statistical VSS, we �rst build two weaker primitives: interactive
signature and weak commitment.

4.1.1 Interactive Signature

An interactive signature protocol is a two-phase protocol (distribute, verify & open), involving four
entities� a dealer D ∈ P, an intermediary I ∈ P, a receiver R ∈ P and a set of veri�ers P. In
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the distribute phase, the dealer D, on holding a secret s, distributes the secret and a signature
on the secret to intermediary I and private veri�cation information to each party Pi in P. The
verify & open phase consists of two parts. In the veri�cation, I and the veri�ers P together verify
that the secret and signature are �consistent� with the veri�cation information and output a public
accept/reject value. In the opening, R receives the secret and signature from I and some veri�cation
information from the veri�ers. Based on this information, R decides whether to accept or reject the
message.

Intuitively, we require �ve properties from the primitive� (a) privacy: when D, I,R are honest,
the adversary who may corrupt up to t veri�ers, should learn nothing about the secret; (b) unforge-
ability: When D and R are honest, the adversary who corrupts I and up to t veri�ers cannot �open�
to R a secret s′ that is di�erent from D's original secret s; (c) nonrepudiation: assuming that I and
R are honest, the adversary, who corrupts D and up to t veri�ers, cannot pass the veri�cation phase
and make R reject I's opening message (i.e., D cannot repudiate to not have sent the message to I
during distribute phase); (d) correctness i.e., R outputs D's secret when D and I are honest. We
give the formal de�nition below; and lastly (e) output-extraction: Assuming that D is corrupt and
R is honest, at the end of the execution the adversary can compute the output of R.

De�nition 4.1 (Interactive Signature Scheme (ISS)). In an interactive signature scheme (ISS)
amongst a set P of n parties, there are three distinguished parties, a dealer D ∈ P, an intermediary
I ∈ P, and a receiver R ∈ P. All parties in P play the role of veri�ers. At the beginning of the
protocol, D holds an input s ∈ F, referred to as the secret, and each party (including the dealer)
holds an independent random string. The protocol consists of two phases, a distribute phase, and a
verify & open phase with the following syntax.

- Distribute: In this phase, D sends s to a designated intermediary I ∈ P. D also sends private
information (computed based on its secret and randomness) to I and to each of the veri�ers
in P.

- Verify & open: This phase consists of two parts, veri�cation and opening.

� In the veri�cation, the parties communicate in order to ensure that the information re-
ceived from D are consistent. The veri�cation ends with a public accept or reject, indi-
cating whether the veri�cation is successful or not.

� In the opening, I sends s to the receiver R, and all veri�ers send information to R in
order to make sure that R accepts only the correct value s.

If the veri�cation failed, then R outputs ⊥. Otherwise, upon a successful veri�cation, R veri�es
that the value s′ ∈ F received from I is valid, using the information received from the veri�ers
in the opening. If s′ is valid then R outputs s′, otherwise R outputs ⊥.

A two-phase, n-party protocol as above is called a (1−ε)-secure ISS scheme, if for any adversary
A corrupting at most t parties amongst P, the following holds:

- Correctness: If D and I are honest, the verify phase will complete with a success and an honest
R accepts and outputs s in the open phase.

- ε-nonrepudiation: Assume that I and R are honest. Then the probability that the veri�cation
succeeds and R does not accept the value s′ sent by I in the opening is at most ε.

- ε-unforgeability: Assume that D and R are honest and let V be any possible view of the adversary
in the ISS execution. Then, conditioned on V, the probability that R outputs either s or ⊥ is
at least 1− ε.
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- Privacy: If D, I and R are honest, then the distribution of the adversary's view is identical for
any two secrets s and s′. Denoting Vs as A's view during the ISS scheme when D's secret is
s, the privacy property demands Vs ≡ Vs′ for any s 6= s′.

- Output extraction: In any execution where D is corrupt and R is honest, the output of R can be
extracted from the view V of the corrupt parties .

We would like to note that the existence of a similar primitive, known as information-checking
protocol (ICP) [RB89, CR93, CDD+99]. ICP is played amongst three entities a dealer D, an
intermmediary INT and a receiver R, where the veri�cation information is held by R alone. In a
variant of ICP [PR10, PCR09], R is replaced with the set of parties P, similar to our de�nition,
but the secret and the signature are disclosed in the public. We introduce the de�nition above that
suits best for our protocols using ISS as the building block.

We now present an ISS scheme where the two phases will require one round each, so the ver-
i�cation and opening can are run in parallel. At a very high level, D hides its secret s as the
free-coe�cient of a high-degree polynomial f and gives out the polynomial as its signature to I. A
bunch of secret evaluation points and evaluation of the signature polynomial on those points are
given out as veri�cation information to the veri�ers. (The idea of using secret evaluation points
dates back to Tompa and Woll [TW86].) To open the value, I will send the polynomial f(·) to
R and the veri�ers will release their points to R as well who will make sure that the values are
consistent. The additional veri�cation phase, will make sure that the dealer indeed handed �valid�
points to the veri�ers. Speci�cally, each veri�er will use a random subset of his evaluation points
and will make sure that they are consistent with a padded version of f . The high-degree of the
polynomial and the padding ensure that the privacy of the secret and signature is maintained during
the veri�cation. It should be noted that a cheating I, exercising its rushing capability, may try to
foil the cut-and-choose proof during the verify phase. Nevertheless, we show that such an adversary
will be caught, with overwhelming probability, during the opening phase. We present our protocol
iSig, state its properties below and prove in Appendix C.1.

Inputs: D has input s in the beginning of distribute phase. All parties share a statistical security
parameter 1κ.

Output: Every party outputs Success or Failure in the end of verify phase. R outputs s′ or ⊥ in the
end of open phase and all other parties output nothing. If D is honest, then s′ = s.

R1 (distribute phase): D does the following.

- D chooses a random polynomial f(x) over F of degree at most nκ+1, where κ is the statistical security
parameter, with f(0) = s. It further picks a random polynomial r(x) over F of degree at most nκ+ 1.

- D picks nκ random, non-zero, distinct elements from F, denoted by αi1, . . . , αiκ for i ∈ ‖n‖.
- D sends f(x) and r(x) to I and {(αij , fi,j = f(αij), rij = r(αij))}j∈‖κ‖ to Pi.

R2 (verify & open phase): For the veri�cation, the parties do the following.

- I picks a random non-zero value c ∈ F and broadcasts the polynomial g(x) = f(x) + cr(x) and c.
Each veri�er Pi chooses a random subset of κ/2 indices Li ⊂ ‖κ‖ and broadcasts {(αij , fij , rij)}j∈Li

.

Protocol iSig
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- We say Pi accepts I if g(αij) = fij + crij for all j ∈ Li. Every Pj (including D, I and R) outputs
Success if at least 2t+ 1 Pi accepts and Failure otherwise.

For the opening, the parties do the following.

- I sends f(x) to R. Let L̄i := ‖κ‖ \ Li denote the complement of Li. Each veri�er Pi sends to R the
set {(αij , fij)}j∈L̄i

.

- We say Pi reaccepts I if (a) it accepted I in verify phase and (ii) f(αij) = fij for at least κ/8 of the
indices j ∈ L̄i.
R outputs s = f(0) if (a) at least t + 1 Pi reaccepts AND (b) it outputted Success in verify phase,
and ⊥ otherwise.

Figure 12: Protocol iSig

Lemma 4.2. The Protocol iSig is (1−2−Ω(κ))-secure ISS tolerating a static, active rushing adversary
corrupting t parties. Moreover, the protocol achieves perfect privacy, and perfect correctness, and
can be implemented in time poly(n, κ, log |F|).

4.1.2 Weak Commitment

As a stepping stone towards VSS, we �rst build a weaker primitive called weak commitment
(WC) [AKP20]. We say that a value s is committed amongst P, denoted as bse, if there exists
a polynomial f(x) of degree at most t with f(0) = s such that every honest party Pi either holds
f(i) or ⊥ and at least t+ 1 honest parties hold non-⊥ values. The WC functionality (to be de�ned
below) allows a designated dealer to generate a commitment to a value s, and therefore can be
viewed as a distributed information-theoretic variant of cryptographic commitment schemes.

Remark 4.3 (WC vs. Weak VSS). WC can be viewed as a (weaker) variant of the typical building
block of VSS, known as Weak Secret Sharing (WSS). WC has a clean goal of ensuring that� for
a unique secret s, at least t + 1 honest parties must hold the shares of the secret. WSS, on the
other hand, ensures that a unique secret must be committed in the sharing phase so that either the
secret or ⊥ will be reconstructed later during the distributed reconstruction phase. It is noted that
a committed secret in WC needs the help of the dealer for its opening, unlike the secret committed
in WSS. With a simpler instantiation, weak commitment and opening are su�cient to build a VSS
scheme as observed by [AKP20].

To de�ne the functionality Fwcom, we let the dealer D send a polynomial g(x) and a set P′,
indicating who should receive a share. An honest D will send g(x) of degree at most t and P′ = P.
When a corrupt D sends either a polynomial which is of degree more than t or a set of size less than
n−t (denying shares to at least t+1 honest parties), all the parties receive ⊥ from the functionality.
See Fig. 13 for a formal de�nition.

Fwcom receives g(x) and a set P′ from D ∈ P.

� If g(x) has degree more than t or |P′| < n− t, it sends ⊥ to every Pi.

Functionality Fwcom

35



� Else it sends g(i) to every Pi ∈ P′ and ⊥ to everyone else.

Figure 13: Functionality Fwcom

Realizing Fwcom. At a high level, D, on holding a polynomial g(x) of degree at most t, initiates
the protocol by picking a symmetric bivariate polynomial G(x, y) of degree t in both variables
uniformly at random over F such that G(x, 0) and G(0, y) are the same as the input polynomial
g(x) (with change of variable for G(0, y)). Following some of the existing WSS/VSS protocols based
on bivariate polynomials [GIKR01a, KKK09], D sends gi(x) = G(x, i) to party Pi and in parallel the
parties exchange random pads to be used for pairwise consistency checking of their common shares.
When a bivariate polynomial is distributed as above, a pair of parties (Pi, Pj) will hold the common
share G(i, j) via their respective polynomials gi(x) and gj(x). Namely, gi(j) = gj(i) = G(i, j).
A pair (Pi, Pj) is marked to be in con�ict when the padded consistency check fails. In addition,
D runs an ISS protocol for every ordered pair (i, j) with Pi as the intermediary and Pj as the
receiver for secret G(i, j). This allows D to pass a signature on G(i, j) to Pi who can later use
the signature to convince Pj of the receipt of G(i, j). (D,Pi) are marked to be in con�ict when
one of the n instances with Pi as the intermediary results in failure. Now a set of non-con�icting
parties, W, of size n− t, including D, is computed (using a deterministic clique �nding algorithm).
Due to pair-wise consistency of the honest parties in W, their polynomials together de�ne a unique
symmetric bivariate polynomial, say G′(x, y) and an underlying degree t univariate polynomial
g′(x) = G′(x, 0), the latter of which is taken as D's committed input. For an honest D, such a set
exists and can be computed (in exponential time in n), albeit, it may exclude some honest parties.
The possibility of exclusion of some of the honest parties makes this protocol di�erent from existing
3-round constructions where D gets to resolve inconsistencies in round 3 and therefore an honest
party is never left out of such a set. The honest parties in W output the constant term of their
gi(x) polynomials received from D as the share of g′(x). An honest outsider recomputes its g′i(x)
interpolating over the non-⊥ outcomes from interactive signatures (as a receiver) corresponding to
intermediaries residing in set W. When D is honest, the correct gi(x) can be recovered this way,
thanks to the unforgeability of the signature and as a result, every honest party will hold a share of
g(x). For a corrupt D, while non-repudiation allows honest parties in W to convey and convince an
honest outsider about their common share, the corrupt parties in W can inject any value as their
common share. As a result, the interpolated polynomial may be an incorrect polynomial of degree
more than t. In this case, an honest outsider may not be able to recover its polynomial g′i(x) and
share of g′(x). Protocol swcom is described in Fig. 14, which we prove realizes functionality Fwcom

(Lemma 4.4) in Appendix C.2.
We point out that the error in the outputs of the honest parties in WC are totally inherited

from the underlying ISS instances.

Inputs: D has input g(x). All parties share a statistical security parameter 1κ.

Output: The parties output [g(0)] if D is honest and bg′(0)e otherwise for some g′(x) of degree at most
t. The parties output ⊥, if D is discarded.

Protocol swcom
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R1: D and every party Pi do the following in parallel.

- D chooses a random symmetric bivariate polynomial G(x, y) of degree at most t in each variable such
that G(x, 0) = g(x). D sends to each Pi the polynomial gi(x) = G(x, i).

- For every ordered pair (Pi, Pj), D initiates the distribute phase of one instance of iSig, denoted as
iSigij , with Pi as the intermediary, Pj as the receiver and G(i, j) as the secret (and with security
parameter 1κ).

- Each Pi picks a random polynomial ri(x) of degree at most t and sends rij = ri(j) to every Pj .

R2: Each Pi sets its share si = gi(0). For each ordered pair (i, j), the parties Pi and Pj broadcast
mi(x) = gi(x) + ri(x) and mij = rij + gj(i) respectively. For each ordered pair (i, j), the parties execute
the verify and open phases of iSigij and let Pj outputs g

′
ij or ⊥ in iSigij .

Local Computation: A pair (Pi, Pj) is called con�icting pair if mi(j) 6= mij or mj(i) 6= mji. A pair
(D,Pi) is called con�icting pair if any of the iSigij instances for j ∈ ‖n‖ results in Failure. Compute a
set, W, of n− t pairwise non-con�icting parties including D deterministically (a clique �nding algorithm
can be used). If no such set exists, then D is discarded and W is reset to ∅. Otherwise, every Pi 6∈ W
computes a polynomial g′i(x) interpolating over {g′ji}Pj∈W. If degree of g′i(x) is more than t, then Pi
resets si to ⊥. Otherwise, Pi resets gi(x) = g′i(x) and si = g′i(0).

Figure 14: Protocol swcom

Lemma 4.4. Protocol swcom is a statistically UC-secure implementation of Fwcom against a static,
active rushing adversary corrupting up to t parties. Moreover, it is a statistically-correct and
perfectly-secret protocol (De�nition A.2). The error of the protocol is upper-bounded by 2−Ω(κ),
the communication complexity is poly(n, κ, log |F|), and the computational complexity is exponential
in n and polynomial in κ and log |F|.

While we never need to reconstruct a b·e-shared secret, non-robust reconstruction can be enabled
by allowing D to broadcast the committed polynomial and the parties their shares. The D's
polynomial is taken as the committed one if n − t parties' share match with it. Clearly an honest
D's opened polynomial will be accepted and a non-committed polynomial will always get rejected.

4.1.3 The Statistical VSS

VSS allows a dealer to distributedly commit to a secret in a way that the committed secret can be
recovered robustly in a reconstruction phase. Our VSS protocol vss allows a dealer D to generate
double t-sharing of the constant term of D's input bivariate polynomial F (x, y) of degree at most t
and therefore allows robust reconstruction via Read-Solomon (RS) error correction, unlike the weak
commitment scheme swcom.

At a high level, protocol svsh proceeds in the same way as the weak commitment scheme swcom,
except that the blinder polynomial of Pi is now committed via an instance of swcomi, with Pi as
the dealer. A happy set W is formed as follows. The parties look for a set W that contains n − t
parties, including the dealer, such that the parties in W are not con�icting in the VSS execution,
and also that they are not con�icting in each other's swcom execution (i.e., if Pi ∈ W, then W is
a valid happy set in swcomi). The set W is used as the happy set in the instance swcomi, for any
Pi ∈W (the parties ignore all other instances of swcom).

Two con�icting honest parties cannot belong to W, implying all the honest parties in W are
pairwise consistent. Since there are at least n − 2t ≥ t + 1 honest parties in W, this implies
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that together they de�ne a unique symmetric bivariate polynomial, say F ′(x, y), and an underlying
degree t univariate polynomial f ′(x) = F ′(x, 0), the latter of which is taken as D's committed input.

Since for any Pi ∈ W the set W is a valid happy set in swcomi, the blinded polynomial broad-
casted by a corrupt party from W is consistent with F ′(x, y). This follows from the fact that
the shares (pads) that the parties in W receive as a part of swcomi remain unchanged, implying
n − 2t ≥ t + 1 of the honest parties in W ensure the consistency of the blinded polynomial of the
corrupt party. This feature crucially enables an honest party Pi that lies outside W to extract
out her polynomial f ′i(x) = F ′(x, i) and thereby completing the double t-sharing of f ′(0). To re-
construct f ′i(x), Pi looks at the blinded polynomial of all the parties in Pj ∈ W for which she has
non-⊥ output in swcomj . For each such party, the blinded polynomial evaluated at i and subtracted
from Pi's share/pad from swcomj , allows Pi to recover one value on f ′i(x). All the honest parties
in W (which is at least t + 1) contribute to one value each, making sure Pi has enough values to
reconstruct f ′i(x). A corrupt party in W, being committed to the correct polynomial as per F ′(x, y),
with respect to the parties in its W set, cannot inject a wrong value. Protocol vss is now described
in Fig. 15.

We point out that the error in the outputs of the honest parties in VSS are totally inherited
from the underlying WC and in turn the ISS instances.

Inputs: D has input F (x, y), a symmetric bivariate polynomial of degree at most t.

Output: The parties output [[F (0, 0)]] when D is honest and [[F ′(0, 0)]] otherwise where F ′(x, y) is a
bivariate polynomial of degree at most t.

R1 D and every party Pi do the following in parallel.

- D sends to each Pi the polynomial fi(x) = F (x, i).

- Each party Pi picks a random polynomial hi(x) of degree at most t and initiates an instance of swcom,
denoted as swcomi as a dealer with polynomial hi(x).

R2 For each ordered pair (i, j), Pi and Pj broadcast pi(x) = fi(x)+hi(x) and pij = hij+fj(i) respectively,
where hij is the share of Pj in swcomi. In parallel, parties execute R2 of swcomi for all i ∈ {1, . . . , n}.

Local Computation The parties execute the local computation step of swcomi for i ∈ P in the following
way. A pair (Pi, Pj) is called VSS-con�icting pair if pi(j) 6= pij or pj(i) 6= pji. The parties determin-
istically compute a set W of size at least n − t, such that (1) D ∈ W, (2) all parties in W are not
VSS-con�icting, and (3) for any Pi ∈ W, all parties in W are not con�icting in swcomi. (This can be
done by brute-force.) If no such set exists, then D is discarded, a default sharing is assumed and W is set
to P. Otherwise, for every Pi ∈W the parties complete the local computation of swcomi with the set W
as the clique. Every Pi 6∈W computes the set Wi of indices j such that Pi has non-⊥ output in swcomj ,
and resets polynomial fi(x) to the degree t polynomial interpolated over the values {pj(i)−hji}Pj∈W∩Wi

(where pj(x) was broadcasted by Pj in R2 and Pi has its share hji from swcomj). Finally, every Pi
outputs fi(0) and fi(x).

Protocol svsh

Figure 15: Protocol svsh

The following theorem, whose proof is deferred to Appendix C.3, implies Theorem 1.3 from the
introduction.
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Theorem 4.5. Protocol svsh is a statistically UC-secure implementation of Fvss against a static, ac-
tive rushing adversary corrupting up to t parties. Moreover, it is a statistically-correct and perfectly-
secret protocol (De�nition A.2). The error of the protocol is upper-bounded by 2−κ, the communi-
cation complexity is poly(n, κ, log |F|), and the computational complexity is exponential in n and
polynomial in κ and log |F|.

It is easy to note that svsh generates [[F (0, 0)]] via the set of polynomials{
F (x, 0), {fi(x)}i∈{1,...,n}

}
. Plugging in the above VSS in the deg2c protocol, we get a 3-

round MPC for degree-2 computation (Theorem 1.4). We note that although the both components,
the VSS and the deg2c protocol achieve perfect secrecy and statistical correctness, the combined
protocol only achieves statistical security. Indeed, the notion of perfectly-secret statistically-secure
protocols (de�ned in Section A) is not preserved under composition.

4.2 Cryptographic VSS and Computation of any single-input functions

We brie�y recall the construction of [BKP11]. In Round 1, D publicly commits to a symmetric
bivariate polynomial F (x, y) using a NICOM and delivers the opening corresponding to fi(x) =
F (x, i) to Pi. The commitments are computed in a way that simple public veri�cation su�ce for
the checking of pairwise consistency between the common points (such as fi(j) and fj(i)). To ensure
that the commitments correspond to a polynomial of degree at most t in both x and y, it su�ces if
the honest parties (which are n−t in number) con�rm that their received polynomials are consistent
with their commitments and they are of degree at most t. If this is not true, then Pi's goal is to make
D publicly reveal the polynomial consistent with the commitments in the second round. Towards
realizing the goal, Pi commits to a pad publicly and send the opening to D alone during Round 1. If
D �nds the opening inconsistent to the public commitment, then it turns unhappy towards Pi and
opens the commitments corresponding to fi(x) publicly. Otherwise, it blinds the opening of fi(x)
using the pad and makes it public. When Pi's check about fi(x) fails, she similarly turns unhappy
with D and opens the pad which in turn unmask the opening for fi(x). A corrupt Pi cannot change
the pad and dismiss an honest D, owing to the binding property of NICOM. A corrupt D however
may choose not to hand Pi the correct fi(x) in Round 1 and reveal fi(x) correctly in Round 2.
The above technique therefore makes the fi(x) that is consistent with the public commitment of
D publicly known when D and Pi are in con�ict (and Pi is honest). We recall the protocol in
the Appendix C.4. By plugging the computational VSS into the deg2c protocol from Section 3 we
derive the �rst part of Theorem 1.5 from the introduction. : The running time of the protocol is
polynomial in κ and n, and the error of the protocol is negligible in κ.

Remark 4.6 (An alternative realization of TSS in the cryptographic setting). In the cryptographic
setting, the VSS of [BKP11] has the special feature of making the share (the entire univariate
polynomial) of a party public when they are in con�ict. We can tweak the TSS protocol (Section 3.2)
so that the shares for all the t + 3 instances are made public for party Pi in round 2, if Pi is in
con�ict with D (which also includes the reason that Pi's share do not satisfy the relation). This
allows the public veri�cation for corrupt parties in round 2 itself and thus TSS concludes in 2 rounds,
like the VSS. We, in fact, can prove a stronger version of the result� any single-input function takes
2 rounds in cryptographic setting. TSS is a special case. We present this general result below.
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4.2.1 Cryptographic MPC for single-input functions

In this section, we obtain a 2-round protocol for every function whose outputs are determined by
the input of a single party (single-input functions). This class of functions include important tasks
such as distributed ZK and VSS. While a VSS protocol will be implied from our result from this
section, we have separated out VSS in the previous section, as the VSS of [BKP11] is used in a
non-blackbox way for MPC for single-input functions.

[GIKR02] reduces secure computation of a single-input function to that of degree-2 polynomials
and subsequently show a 2-round construct to evaluate the latter with perfect security and threshold
t < n/6. In this work, we complement their reduction with a 2-round protocol to evaluate a degree-2
polynomial with threshold t < n/3 and relying on NICOMs. Let the sole input-owner be denoted as
D ∈ P, the inputs be x1, . . . , xm and the degree-2 polynomial be p (in most general form, there can
be a vector of such polynomials). Broadly, the goal is to compute 2t-sharing of p(x1, . . . , xm) and
reconstruct the secret relying on the guidance of D in 2 rounds. The protocol starts with D sharing
all the inputs using m instances of VSS. For the guided reconstruction, D locally computes the
shares p(x1

i , . . . , x
m
i ) (p applied on the ith shares of the inputs) of the degree 2t polynomial holding

p(x1, . . . , xm) in the constant term and broadcasts all the n points. In Round 2, apart from the
checks Pi conducts inside the VSS instances, it also veri�es if the broadcast of D is consistent with
her received polynomials. If the check fails, then it becomes unhappy with D in all the instances
and opens the pads distributed in the VSS instances to expose all the polynomials in her share.
This allows public reconstruction of the correct p(x1

i , . . . , x
m
i ). The reconstruction in Round 2 is

then achieved simply by �tting a degree 2t polynomial over the values p(x1
i , . . . , x

m
i )� (i) if Pi is

not in con�ict with D, this value is taken from D's broadcast (ii) otherwise, this value is publicly
recomputed as explained. If there is no such 2t degree polynomial, then D is concluded to be
corrupt and is discarded. An honest D will always broadcast the correct values p(x1

i , . . . , x
m
i ) that

lie on a 2t degree polynomial and a corrupt unhappy Pi cannot open a di�erent value than this (due
to binding property of NICOM). Lastly, since these values correspond to a non-random 2t degree
polynomial, they are randomized using a 〈0〉 before broadcast. The 〈0〉 sharing is created by D by
running t additional instances of VSS.

We present the functionality and the protocol below, the security proof of the latter (Lemma 4.7)
is deferred to Appendix C.4.1. We assume the output is given to everyone for simplicity. For a
function that outputs distinct values for the parties, say yi to Pi, the functionality can be modi�ed to
deliver yi to Pi. This can be implemented by D t-sharing ([·]-sharing) a random pad, padi for every
party Pi, where the bivariate polynomial (used for sharing) and all the commitment opening are
disclosed to Pi, who becomes unhappy when there is any inconsistency. D broadcasts masked values
p(x1

j , . . . , x
m
j )+padij so that y

i+padi gets publicly reconstructed and yi gets privately reconstructed
by Pi alone.

Fsif receives x
1, . . . , xm from D, computes y = p(x1, . . . , xm) and returns y to every party, where p is a

degree-2 polynomial in the inputs of D.

Functionality Fsif

Figure 16: Functionality Fsif
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Inputs: D has input x1, . . . , xm.

Output: The parties output p(x1, . . . , xm).

R1 D picks a symmetric and random bivariate polynomial F j(x, y) with F j(0, 0) = xj and initiates an
instance of cvsh for j ∈ {1, . . . ,m}. It additionally picks a symmetric and random bivariate polynomial
M j(x, y) and initiates an instance of cvsh for j ∈ {1, . . . , t} (used for randomization). Assume that D
sends {f1

i (x), . . . , fmi (x),m1
i (x), . . . ,mt

i(x)} to Pi in these cvsh instances. D further broadcasts yi =

p(f1
i (0), . . . , fmi (0)) +

∑t
j=1 i

jmj
i (0). All the parties participate in these instances and perform their

respective steps.

R2 Run R2 of all the instances. Further Pi checks if the value yi broadcasted by D is consistent with
the received polynomials. If this check fails, it becomes unhappy with D in all the VSS instances and
opens the pads to publicly reconstruct {f1

i (x), . . . , fmi (x),m1
i (x), . . . ,mt

i(x)} as per cvsh protocol. Every
party recomputes yi for every Pi in con�ict with D. Let V be the set of parties who do not have con�ict
with D. Every party checks if {yi}i∈{1,...,n} lie on a 2t degree polynomial, where yi is broadcasted by D
when Pi is not in con�ict with D and yi is the publicly recomputed value otherwise. In case of yes, then
every party outputs the constant term of the polynomial. Otherwise, D is discarded and p evaluated on
default inputs is taken as output.

Protocol sif

Figure 17: Protocol sif

Lemma 4.7. Protocol sif realizes Fsif tolerating a static, active rushing adversary corrupting t
parties, relying on NICOM. The complexity of the protocol is polynomial in κ and n.

Part II

Negative Results

5 Limitation of Perfectly-Secure Two-Round SIFR Protocols

In this section, we prove that there exists an n-party functionality that cannot be t-perfectly com-
puted in two rounds in the F-SIFR model for any t ≥ n/4 and any tuple of single-input functionali-
ties F . Formally, we prove the following theorem which implies the only-if direction of Theorem 1.1
from the introduction.

Theorem 5.1. Let n ≥ 4 and t ≥ n/4 be positive integers. Then there exists an n-party functionality
that, for every tuple of single-input functionalities F , cannot be t-perfectly computed in two rounds
in the F-SIFR model.

Proof outline. By a player-partitioning argument (e.g., [Lyn96]), it is enough to prove the theo-
rem for the case n = 4 and t = 1. We prove that, for any tuple F , there is no two-round protocol
πeand in the F-SIFR for computing the following �extended AND� functionality,

eAND(x, y,⊥,⊥) = (xy, xy, xy, xy), x, y ∈ {0, 1},

with perfect security against an adversary that corrupts a single party. Towards this end, we show
that any such protocol πeand can be converted into a 2-party protocol πand in the plain model (where
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parties have only access to private channels) that computes the AND function with perfect semi-
honest privacy. The latter is known to be impossible (see [CK89] and [CDN15, Chapter 3.4]) even
for ine�cient protocols, leading to a contradiction. The conversion from πeand to πand is based on
the following crucial observation: The output of the �rst party, P1, in the protocol πeand does not
depend on the second-round messages of the third and forth parties, P3, P4. (See Lemma 5.2 in
Section 5.1.) Therefore, these two parties can be removed and their �rst-round messages (which
depend only on their local randomness) can be perfectly sampled by P2. (See Section 5.2.)

5.1 Properties of πeand

In this section we analyse the protocol πeand. We denote the parties by P1, . . . , P4, where P1 holds
x, P2 holds y, and P3, P4 have no input. We begin by presenting some simplifying assumptions and
notation.

Canonical form. For simplicity and without loss of generality, we may assume that πeand is of the
following canonical form. In the �rst round, every Pi is only allowed a single call to a single-input
functionality, denoted F isi, where the arguments to F isi are all the inputs and randomness of Pi.
We do not allow any other form of communication during the �rst round. In the second round of
computation, the parties communicate only via the broadcast channel.

Observe that any protocol π can be turned to a canonical form protocol while keeping the perfect
security. Indeed, all �rst round private-messages, broadcast-messages and calls to multiple single-
input-functionalities made by Pi can be �wrapped� by a single call to a single-input functionality F isi

whose input consists of the inputs and randomness of Pi. Additionally, any private communication
from Pi to Pj in the second round can be simulated by broadcasting an encrypted version of the
message under one-time pads whose corresponding key is being sent to Pj in the �rst round via F isi.

Notation. We denote the jth output of F isi, which is given to Pj , by aij , and the broadcast of Pi
in the second round by bi. We denote the private-view of party Pi at the end of the �rst round by
Vi, and it includes all the information available to Pi at the end of the �rst round. Vi consists of
the input (if any) of Pi, the randomness of Pi, and all incoming messages (aji)j 6=i that Pi received
in the �rst round. We de�ne the view of Pi to be (Vi, b1, . . . , bn) i.e. all the information available
to Pi at the end of the second round.

The protocol πeand de�nes the functionalities {F isi}i∈{1,...,4}, how each party samples its own ran-
domness, and how to compute the broadcast of the second round given the private-view.

We now prove that in an honest execution of πeand, the �rst party P1 can compute the output
xy based only on its private-view and the broadcast of P2 in the second round. This property will
be crucial in the reduction from πeand to πand.

Lemma 5.2. There exists a function g, mapping a pair (V1, b2) to a bit, for which the following
holds. For all x, y ∈ {0, 1}, if V1 and b2 were generated by an honest execution of πeand(x, y) then
g(V1, b2) = xy.

Proof. Consider an honest execution of πeand over randomly chosen inputs x, y, and let us denote
by T0 (resp., T1) the distribution of (V1, b2) conditioned on the event that the output of P1 in the
protocol is 0 (resp., 1). To prove the claim, we show that the support of T0 is disjoint from the
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support of T1. This readily implies existence of g that outputs the unique β such that (V1, b2) ∈ Tβ ,
and the perfect correctness of πeand will imply that β = xy. So our goal is to prove T0 ∩ T1 = ∅.

Assume towards a contradiction, that T0 and T1 are not disjoint, and so there exists a pair
(V1, b2), that occurs in honest executions with output xy as 0 as well as 1. Let E0 and E1 be two
honest executions, such that in both of them the private-view of P1 is V1, the broadcast of P2 in
the second round is b2, and the output of P1 in E0 is 0, while the output of P1 in E1 is 1.

For β ∈ {0, 1}, let rβi be the randomness of Pi according to Eβ for i ∈ {2, 3, 4}, and let bβi be
the broadcast of Pi according to Eβ for i ∈ {1, 3, 4}. Note that at the end of E0 the view of P1

is (V1, b2, b
0
3, b

0
4), and at the end of E1 the view of P1 is (V1, b2, b

1
3, b

1
4). Starting from E0 and E1

we derive executions E∗0 and E∗1 with the following properties. On one hand, in E∗β , all the parties
behave just like in Eβ except that P4 (resp., P3) acts maliciously in E∗0 (resp., E∗1), and so security
implies that the output of P1 in E∗β should be β just like in Eβ . On the other hand, the view of
P1 in E∗0 will be identical to its view in E∗1 , and so P1 will terminate with the same output in both
cases, and we derive a contradiction. We now describe E∗0 and E∗1 .

In E∗0 , all honest parties have the same randomness as in E0 and P4 is maliciously corrupt. P4

plays honestly with randomness r0
4 in the �rst round, and in the second round broadcasts b14. Then

the private-view of P1 is V1, the broadcast of P2 is b2, the broadcast of P3 is b03 and the broadcast
of P4 is b14. Therefore, the view of P1 at the end of the execution is (V1, b2, b

0
3, b

1
4).

In E∗1 , all honest parties have the same randomness as in E1 and P3 is maliciously corrupt. P3

plays honestly with randomness r1
3 in the �rst round, and in the second round broadcasts b03. Then

the private-view of P1 is V1, the broadcast of P2 is b2, the broadcast of P3 is b03 and the broadcast
of P4 is b14. Therefore, the view of P1 at the end of the execution is (V1, b2, b

0
3, b

1
4).

5.2 The Reduction: From πeand to πand

Given πeand, we derive a semi-honest 2-party protocol πand for computing the AND functionality,
AND(x, y) = (xy, xy); x, y ∈ {0, 1}, given access to only private channels. At a high-level the two
parties P1 and P2 in πeand take the roles of P1 and P2 respectively, in πand. They then simulate a
partial honest execution of πeand so that P1 ends up with (V1, b2) and can apply the function g from
Lemma 5.2 to obtain xy. Once P1 computes xy, it can send it to P2. We let P2 simulate P3 and P4

while exploiting the fact that, by Lemma 5.2, it su�ces to simulate only their �rst-round messages
which are independent of the inputs.

Round 1: The parties operate as follows.

� P1 samples randomness r1 as in πeand, computes F1
si(x; r1) = (a11, a12, a13, a14), and sends a12 to P2.

� P2 samples randomness r2 as in πeand, computes F2
si(y; r2) = (a21, a22, a23, a24), and sends a21 to P1.

Round 2: P2, on holding (y, r2, a12), emulates P3, P4's message of �rst round and its own message for
second round as follows. P2 samples randomness r3 and r4 and computes F3

si(r3) = (a31, a32, a33, a34)
and F4

si(r4) = (a41, a42, a43, a44). Let V2 := (y, r2, a12, a32, a42), and let b2 be the broadcast of P2 in
πeand(x, y) according to the private-view V2 in round 2. P2 sends a31, a41, b2 to P1.

Round 3: P1, on holding (x, r1, a21, a31, a41, b2), operates in this round as follows. Let V1 :=

Protocol πand(x, y)
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(x, r1, a21, a31, a41) and let z := g(V1, b2), where g is as per Lemma 5.2. P1 sends z to P2. At the
end of the round, both parties output z and terminate.

Figure 18: Protocol πand(x, y)

5.3 Proving Security of πand

In order to get a contradiction, it remains to show that πand has perfect correctness and perfect
privacy. We begin by proving the following lemma.

Lemma 5.3. Let x, y ∈ {0, 1}. (V1, b2) generated by πand(x, y) has the same distribution as the
private-view of P1 and the broadcast of P2 in an honest execution of πeand(x, y).

Proof. The random variables r1, r2, r3 and r4 have the same distribution in πeand(x, y) and in
πand(x, y) (although r3, r4 are sampled by P3 and P4 in πeand, and by P2 in πand). Therefore,
we conclude that the incoming messages (a21, a31, a41, b2) in πand are distributed exactly like the
corresponding messages (a21, a31, a41, b2) in πeand. The claim follows.

We continue by proving the correctness and privacy of πand.

Lemma 5.4 (Correctness). Protocol πand achieves perfect correctness.

Proof. Let x, y ∈ {0, 1}, and consider an execution of πand(x, y). It is enough to show that z = xy.
Lemma 5.3 implies that (V1, b2) are distributed exactly like in an honest execution of πeand(x, y).
Therefore, Lemma 5.2 implies that z = g(V1, b2) = xy, as required.

Lemma 5.5 (Privacy). Protocol πand achieves perfect semi-honest privacy.

Proof. We present a simulator Sand to a semi-honest adversary who corrupts one party (either P1

or P2). The core idea lies in the fact that the view of P1/P2 in πand is a subset of the party's view in
an honest execution of πeand and so the simulator of the former protocol, with input and output of
the corrupt party, would simply need to invoke the corresponding simulator for the latter protocol,
and then prune the returned view to get its output. We split into cases for P1 and P2.

P1 is (passively) corrupted. The simulator receives x and xy and needs to produce the
view and output of P1: (x, r1, a21, a31, a41, b2, xy). Let A1

eand be an adversary against πeand that
corrupts P1 and acts honestly throughout the execution of πeand, and let S1

eand be the corresponding
simulator. Since the output of the honest parties in the simulation has the same distribution as in
the real world, we conclude that on input x = 1 the simulator S1

eand always sends 1 to the ideal
functionality (or otherwise the output of the honest parties in the simulation of πeand(1, 1) will not
be 1), and on input x = 0 the simulator S1

eand always sends 0 to the ideal functionality (otherwise
the output of the honest parties in the simulation of πeand(0, 1) will not be 0). Therefore, the ideal
functionality always sends xy back to S1

eand.
Upon receiving x and xy, the simulator Sand invokes the simulator S1

eand in the following way. It
de�nes the input of S1

eand to be x, and then emulates the role of the ideal functionality, by receiving
the value x back from S1

eand, and giving it xy in return. It continues to emulate S1
eand in order to get its

output, denoted as (x, r1, a21, a31, a41, b2, b3, b4), and �nally Sand outputs (x, r1, a21, a31, a41, b2, xy).
We need to show that for any x, y ∈ {0, 1} the output of Sand, when given (x, xy), is distributed

exactly like the view of P1 in an execution of πand(x, y). The perfect privacy of πeand implies that
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the output of Sand (which is the partial output of S1
eand) is distributed exactly like the (partial) view

of P1 in an honest execution of πeand(x, y). Lemma 5.3 implies that the view of P1 in πand(x, y) is
also distributed exactly like the (partial) view of P1 in an honest execution of πeand(x, y), and so
the claim follows.

P2 is (passively) corrupted. The simulator receives y and xy. Since the correctness im-
plies that z is equal to xy, which is known to the simulator, it is enough to show how to sample
(r2, a12, r3, r4).

Let A2
eand be an adversary against πeand that corrupts P2 and acts honestly throughout the

execution of πeand, and let S2
eand be the corresponding simulator. Similarly to the case of P1, on any

input y ∈ {0, 1} the simulator S2
eand always sends y to the ideal functionality, and receives xy back

from the functionality.
Upon receiving y and xy, the simulator Sand emulates the simulator S2

eand in the following way.
It de�nes the input of S2 to be y, and then emulates the role of the ideal functionality, by receiving
the value y back from S2

eand, and giving it xy in return. It continues to emulate S2 in order to get its
output, denoted (y, r2, a12, a32, a42, b1, b3, b4). The simulator Sand then samples r3 and r4 according
to πeand and outputs (r2, a12, r3, r4).

We need to show that for any x, y ∈ {0, 1} the output of Sand, when given (y, xy), is distributed
exactly like the view of P2 in an execution of πeand(x, y). By de�nition, both in the real execution
and in the simulation the random strings r3 and r4 have the same distribution, and are independent
of (r2, a12), and so it remains to show that (r2, a12) have the same distribution in both cases.
This follows because r2 and a12 in πand(x, y) are distributed exactly like in an honest execution of
πeand(x, y), and the output of S2 is also distributed exactly like in an honest execution of πeand(x, y),
as required.

This completes the proof of Theorem 5.1.

6 Lower Bounds for statistical VSS

In this section, we prove two lower bounds for statistical VSS on the number of rounds needed
for sharing and reconstruction. In the �rst lower bound (Section 6.1), we prove that there is no
statistical-VSS with t ≥ n/3 whose sharing phase can be completed within 2 rounds. This result
was known for a VSS with perfect-privacy (see [PCRR09]), and we show that it holds even for a
VSS with statistical-privacy and even when the adversary is non-rushing. Our second lower bound
(Section 6.2) shows that no matter how many rounds are devoted to the sharing phase, there is
no statistical-VSS with t ≥ n/3 whose reconstruction phase consists of a single round in which the
parties fully broadcast their view.

Following standard literature on VSS (starting from [CGMA85a]), we treat VSS as a stand-alone
primitive, as opposed to MPC functionality. (This choice only makes the lower bounds stronger
since the MPC variant satis�es the stand-alone de�nition.)

De�nition 6.1 (ε-secure VSS). Let Y be a �nite domain, |Y | > 2, and let P be a set of parties
that includes a distinguished dealer D ∈ P. A VSS protocol consists of two phases, a sharing phase
and a reconstruction phase, with the following syntax.

� Sharing: At the beginning, D holds a secret s ∈ Y and each party including the dealer holds
an independent random input ri. The sharing phase may span over several rounds. At each
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round, each party can privately send messages to the other parties and it can also broadcast
a message. Each message sent or broadcasted by Pi is determined by the view of Pi, consists
of its input (if any), its random input and messages received from other parties in previous
rounds.

� Reconstruction: At the beginning of the reconstruction, the parties are holding their view from
the sharing phase. The reconstruction phase may span over several rounds, and at each round
the parties send messages based on their view. At the end of the reconstruction, each party
outputs a value.

Let ε > 0. A two-phase, n-party protocol as above is called an ε-secure (n, t)-VSS, if for any
adversary A = (Ash,Arec) corrupting at most t parties, the following holds:

� Correctness: If D is honest then all honest parties output s at the end of the reconstruction
phase, with probability at least 1− ε.

� Privacy: If D is honest then the adversary's view during the sharing phase reveals almost no
information on s. Formally, let Ds is the view A in the sharing phase on secret s. Then, for
any s 6= s′, the random variables Ds and Ds′ are ε-close in statistical-distance.

� Commitment: If D is corrupt then, except with probability 1 − ε, at the end of the sharing
phase there is a value s∗ ∈ Y such that at the end of the reconstruction phase the output is
s∗. More formally, we assume that an adversary A that corrupts D is a two-phase adversary
A = (Ash,Arec) where Ash takes randomness rA, plays the sharing phase and outputs a state Z.
At the reconstruction phase Arec gets Z and, in addition, a bit σ and tries to �ip the outcome
depending on σ. Speci�cally, let H denote the set of honest parties. For r = (ri)i∈H and σ ∈
{0, 1} denote by yr,rA(i, σ) the �nal output of party Pi in an execution with Ash(rA),Arec(Z, σ)
where the random tape of an honest party Pj is set to rj. Then the commitment property
requires that

Pr
r,rA

[∃s∗ ∈ Y : ∀i ∈ H, σ ∈ {0, 1}, s∗ = y(i, σ)] > 1− ε.

Notation. For a VSS protocol π with s rounds in the sharing phase and r rounds in
the reconstruction phase, we write π =

(
sh, rec

)
, sh =

(
{sh1

i }i∈P, . . . , {shsi}i∈P

)
and rec =(

{rec1
i }i∈P, . . . , {recri }i∈P

)
where shji and recji denote the next message function of party Pi in the

j-th round of the sharing and reconstruction phase, respectively. We assume without loss of gen-
erality that only the �rst round of the protocol consists of private messages, and that all other
rounds consist only of broadcasts (see [GIKR01a, Lemma 2]). We denote by aij the transcript of

the point-to-point communication done in the �rst sharing round from Pi to Pj , and by bshj

i and

brecj
i the broadcast message sent by Pi in the jth round of shj and recj , respectively. The full view
of party Pi at the end of sh, consists of all incoming broadcast messages, and the private view, Vi,
that constitutes of Pi's input (if Pi is the dealer), its random coins ri, and the private communica-
tion that it has received in sh. (The information sent out by Pi can be computed from the initial
input, randomness and received information. Thereby, they are not considered as a part of the view.
Furthermore, since all parties agree on the broadcasts messages, we exclude them from the private
view.)

46



Statistical distance. Let X,Y and Z be random variables. We denote by ∆(X,Y ) the statistical
distance between X and Y , and use the notation X ≈ε Y to denote that ∆(X,Y ) ≤ ε. In the proof,
we use the following standard properties of the statistical distance: (1) if X ≈ε Y and Y ≈δ Z then
X ≈ε+δ Z, and (2) for any randomized procedureM, it holds that ∆(M(X),M(Y )) ≤ ∆(X,Y ).

6.1 Statistical VSS with 2 Sharing rounds is impossible with t ≥ n/3

In this section we prove the following theorem.

Theorem 6.2. Let ε < 1/4 and let r be an arbitrary positive integer. There is no ε-secure VSS for
n ≤ 3t parties, with 2 rounds of sharing and r rounds of reconstruction. Moreover, this holds even
if privacy is relaxed to non-rushing adversaries.

Proof. By a player-partitioning argument (e.g., [Lyn96]) it is enough to show this for the case n = 3
and t = 1. Denote the parties by P1, P2 and P3, where P1 is the dealer. We assume the existence
of a VSS π with 2 rounds of sharing that satis�es ε-correctness and ε-privacy (against non-rushing
adversaries), and present a non-rushing adversary that breaks commitment with probability at least
1− 3ε. Since ε < 1/4, the error in commitment is 1− 3ε > 1/4 > ε and so π cannot be an ε-VSS.

We begin by de�ning a pair of adversaries A0 and A1 that corrupt the dealer P1. Eventually, we
will combine A0 and A1 into a single adversary that can switch between the two adversaries after
the sharing phase thus violating the commitment property.
The adversary Aσ.

1. In the �rst round, the adversary Aσ samples a random string r1 and executes an honest run
with input σ, except that it sends some �xed garbage message to P3, e.g., ⊥, over the private
channel. Formally, compute sh1

1(σ; r1) = (a12, a13, b
sh1

1 ) and send a12 to P2, ⊥ to P3 and

broadcast bsh1

1 .

2. Let a21 be the message that P2 sent to P1 in the �rst round and let bsh1

2 , bsh1

3 be the broadcasts
sent by P2 and P3 at the �rst round. The adversary samples a �fake� view for P1 by sampling a
random �rst-round message from P3 that is consistent with P3's broadcasted value. Formally,
the adversary samples a random string r̄3, on behalf of P3, conditioned on the event that b̄

sh1

3 =

bsh1

3 where (ā1
31, ā

1
32, b̄

sh1

3 ) = sh1
3(r̄3). Denote the fake private-view of P1 by V1(σ; r1, r̄3) =

(σ, r1, a21, ā31).

3. In the second round, Aσ behaves honestly as per the above fake view and the broadcasts
(bsh1

2 , bsh1

3 ). (Note that this is well de�ned because it is a possible view of an honest party
P1, who received malicious messages from P3.) Denote the broadcasts of the second round by
bsh2
1 , bsh2

2 , bsh2
3 .

4. At the reconstruction phase Aσ continue to play honestly according to the fake view and the
public broadcasts.

Consider an execution of the protocol with Aσ. Observe that, from P2's point of view, it is
impossible to tell whether Aσ was cheating or whether P3 was cheating and P1 was playing honestly
with the �fake� view. We can therefore use correctness against corrupted P3 to prove the following
claim.
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Claim 6.3. For every σ ∈ {0, 1}, in an execution of π with Aσ, the �nal output of P2 is σ with
probability at least 1− ε.

Proof. Consider the following adversary P ∗3 that corrupts P3 as follows. In the �rst round P ∗3
samples a random string r3, computes sh1

3(r3) = (a31, a32, b
sh1

3 ), sends a32 to P2 and broadcasts bsh1

3 .
Then, P ∗3 samples a random string r̄3 conditioned on the event that the broadcast de�ned by sh1

3(r̄3)

is bsh1

3 . Let ā31 be the private message that P3 sends to P1 according to sh1
3(r̄3). The adversary P ∗3

sends ā31 to P1. After receiving the �rst-round message a23 from P2, the adversary P
∗
3 prepares a

fake view V3 that consists of the original randomness r3, incoming message ⊥ from P1 and incoming
message a23 from P2. In the following rounds, P ∗3 continues to play honestly according to π as if it
has private view V3.

Consider an execution of π with P ∗3 where both P1 and P2 play honestly and P1's input is σ.
By correctness, the output of P2 must be σ except with probability ε. The claim follows by noting
that the full view of P2 (private part plus broadcasts) in such an execution is identically distributed
to P2's view under a random execution with Aσ (and honest P2 and P3).

Before combining A0 and A1 into a single adversary we will need two additional observations.

A0 and A1 induce a common pre�x. First, we argue that, due to ε-privacy, from P2's point
of view the pre�x of the two executions is almost identically-distributed. Formally, consider the
random variables r2(σ), a12(σ),bsh1

1 (σ),bsh1

3 (σ),bsh2

1 (σ) that correspond to a random execution with
Aσ.

Claim 6.4. It holds that(
r2(0), a12(0), bsh1

1 (0), bsh1

3 (0), bsh2

1 (0)
)
≈ε
(
r2(1), a12(1), bsh1

1 (1), bsh1

3 (1), bsh2

1 (1)
)
.

Note that the above holds even when adding the values a13(0) and a13(1) (since they are �xed

in both cases to ⊥) and when adding the values a21(0) and a21(1), and bsh1

2 (0) and bsh1

2 (1), since
they are functions of P2's randomness r2.

Proof. Consider the passive adversary P ∗2 who plays according to π. Note that on the LHS we have
the (partial) view of the adversary during the sharing phase in an execution of π(0) where P1 and P3

are honest, while on the RHS we have the (partial) view of the adversary during the sharing phase

in an execution of π(1) where P1 and P3 are honest. Indeed, in both cases the messages a12, b
sh1

1

and bsh1

3 are sampled as if P1 and P3 are honest. Furthermore, for any �xing of those messages,

and the randomness r2, the message bsh2

1 is sampled as if both parties are honest because r̄3 is

sampled conditioned on the event that sh1
3(r̄3) produces the broadcast bsh1

3 , so it is exactly as if P3

himself samples the randomness again conditioned on his broadcast. The claim therefore follows
from ε-privacy.

An equivalent form of A1. Next let us consider a modi�ed version of A1 denoted by A′1. In this
version the adversary behaves identically to A1 in the sharing phase, but does the following in the
reconstruction phase. Given the messages a12, a21, b

sh1

1 , bsh1

2 , bsh1

3 , bsh2

1 collected during the sharing

phase, the adversary plays according to the following strategy R(a12, a21, b
sh1

1 , bsh1

2 , bsh1

3 , bsh2

1 ):
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� Re-sample a fresh fake private view, denoted by V1(1; r̃1, r̃3), that is consistent with

a12, b
sh1

1 , bsh1

2 , bsh1

3 , bsh2

1 . Formally, V1(1; r̃1, r̃3) consists of input 1, randomness r̃1 and incoming
messages ã31 and a21 where r̃1 and ã31 are de�ned as follows. Sample a random tape, r̃1, for
P1, and a random tape, r̃3, on behalf of P3 conditioned on the following conditions. (1) The
randomness r̃1 is consistent with the �rst-round messages sent by A1 in the sharing phase, i.e.,
sh1

1(1; r̃1) = (a12, ?, b
sh1

1 ); (2) The randomness r̃3 is consistent with the �rst-round broadcast

of P3, i.e., sh1
3(r̃3) = (?, ?, bsh1

3 ); and (3) The randomness r̃1 and r̃3 are consistent with the

second-round broadcast of P1, i.e., sh2
1(V1(1; r̃1, r̃3), bsh1

1 , bsh1

2 , bsh1

3 ) outputs bsh2

1 . If no such
(r̃1, r̃3) exist abort with failure.

� Play honestly according to the public broadcasts, bsh1

1 , bsh1

2 , bsh1

3 and bsh2

1 , bsh2

2 , bsh2

3 , and ac-
cording to the new fake private view V1(1; r̃1, r̃3).

We show that A′1 is essentially equivalent to A1, and, most importantly, under this attack P2 is
likely to output 1 after reconstruction. Formally, let us denote by V2(r2, r3) (respectively, V ′2(r2, r3))
the full view of P2 in an execution with A1 (resp., A′1) in which the random tapes of P2 and P3 are
set to r2 and r3, respectively. We prove the following claim.

Claim 6.5. For every �xing of r2, r3, the random variables V2(r2, r3) and V ′2(r2, r3) are identically
distributed. Consequently, in a random execution of π with A′1, the �nal output of P2 is 1 with
probability at least 1− ε.

Proof. In both executions, the �rst-round messages of all parties are distributed identically. Let
us �x these messages, then condition on this, the second round messages of all parties are also
distributed identically. Let us �x these messages as well. Observe that A1 now plays honestly
according to the public broadcasts and according to the private fake view V1(σ; r1, r̄3) whereas A′1
plays honestly according to the same public broadcasts and according to the re-sampled fake view
V1(1; r̃1, r̃3). This leads to the same distribution since, conditioned on the messages of the sharing
phase, the two fake views are identically distributed.

The �Consequently� part now follows from Claim 6.3.

Gluing the two adversaries into a single adversary. We de�ne an adversary B that violates
commitment as follows. At the sharing phase execute A0 and at the reconstruction phase choose
between two strategies: B(0): Continue as in A0 or B(1): Continue as A′1, i.e., apply R on the

messages (a12, a21, b
sh1

1 , bsh1

2 , bsh1

3 , bsh2

1 ) that were collected in the sharing phase.
Let us denote by Eσ(rB, r2, r3) the event that when executing the protocol with randomness

rB, r2 and r3 for B, P2 and P3, the �nal output of P2 is σ when B plays the σ-strategy in the
reconstruction phase. We claim that

Pr
rB,r2,r3

[E0 ∧ E1] ≥ 1− Pr
rB,r2,r3

[¬E0]− Pr
rB,r2,r3

[¬E1] ≥ 1− 3ε.

We elaborate on the last inequality. First,

Pr
rB,r2,r3

[¬E0] ≤ ε

follows from Claim 6.3 since under strategy 0, B plays exactly like A0. Next, we show that

Pr
rB,r2,r3

[¬E1] ≤ 2ε.
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By Claim 6.5, it su�ces to show that the full view of P2 under B(1) attack is ε-close to the full view
of P2 under A′1 attack. Indeed, recall that, by Claim 6.4, the random variables

(r2, a12, a21, b
sh1

1 , bsh1

2 , bsh1

3 , bsh2

1 )

in both executions are ε-close. To prove that the entire views are ε-close, we observe that the
rest of the view in both experiments can be sampled by applying the same randomized process to
the above values (the pre�xes of the execution). Speci�cally, sample local randomness r3 for P3

consistently with bsh1

3 , set a13 = ⊥ and generate the messages a23, a32 and bsh2

3 by letting P2(r2)
and P3(r3) play honestly according to a12 and a13 = ⊥. The transcript of the reconstruction is
sampled by letting P2 and P3 continue via an honest execution and letting P1 play according to
R(a12, a21, b

sh1

1 , bsh1

2 , bsh1

3 , bsh2

1 ). It can be veri�ed that this procedure perfectly samples the view of
P2 in an interaction with B(1) (resp., A′1) when it is applied on a random pre�x of such an execution.

Finally, note that whenever E0 ∧ E1 occur then the commitment property is violated. This
completes the proof of Theorem 6.2.

6.2 The Necessity of Secrecy during Reconstruction

Theorem 6.6. Let ε < 1/4 and let s be a positive integer. There is no ε-secure VSS for n ≤ 3t
parties, with s rounds of sharing and a single round in the reconstruction in which all parties
broadcast their view from the sharing phase. Moreover, this holds even when the adversary plays
honestly during the sharing phase.

Proof. By a player-partitioning argument (e.g., [Lyn96]), it is enough to show this for the case
n = 3 and t = 1. Denote the parties by P1, P2 and P3, where P1 is the dealer. We assume the
existence of a VSS π with s rounds of sharing and a single round in the reconstruction in which all
honest parties broadcast their view from the sharing phase. We further assume that the protocol
satis�es ε-correctness and ε-privacy (against rushing adversaries), and present a rushing adversary
that breaks commitment with probability at least 1 − 3ε. Since ε < 1/4, the error in commitment
is 1− 3ε > 1/4 > ε, violating the fact that π has error at most ε.

For r = (r1, r2, r3) let Vi(r, σ) denote the full view of Pi after an honest execution of the sharing
phase of the protocol, with input σ to P1, and with randomness rj for party Pj . We consider an
execution of π where A in�uencing the execution corrupts the dealer, P1, in the following way. In
the sharing phase, A emulates an honest P1 with input 0. In the reconstruction phase, it may follow
either of the following two strategies.

S0: A emulates an honest P1. That is, A broadcasts its view from the sharing phase.

S1: The rushing adversary A �rst sees the view of P2, denoted v2. Then, A samples r′ such that
V2(r′, 1) = v2 and broadcasts V1(r′, 1). (If there is no such randomness the adversary fails.)

First, the correctness property implies that when A picks strategy S0 then the output is 0 with
probability 1 − ε. We continue by showing that when A picks strategy S1 the output is 1 with
probability 1− 2ε. Let

p = Pr
r,r′:V2(r′,1)=V2(r,0)

[P2(V1(r′, 1), V2(r, 0), V3(r, 0)) = 1],

denote the probability that under S1 party P2 outputs 1. Note that �rst r is sampled, and then r′

is sampled conditioned on V2(r′, 1) = V2(r, 0) (if there is no such r′ then V1(r′, 1) is set to ⊥).
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By privacy, p is at least

Pr
r,r′

[P2(V1(r′, 1), V2(r′, 1), V3(r, 0)) = 1]− ε,

where in Prr,r′ [P2(V1(r′, 1), V2(r′, 1), V3(r, 0)) = 1] �rst r′ is sampled, and then r is sampled con-
ditioned on V2(r′, 1) = V2(r, 0) (if there is no such r then V3(r, 0) is set to ⊥). Indeed, by the
privacy property the random variables V2(r, 0) and V2(r′, 1) are ε-close. The random variables
(V1(r′, 1), V2(r, 0), V3(r, 0)) and (V1(r′, 1), V2(r′, 1), V3(r, 0)) are also ε-close, because they can be
sampled by the same randomized procedure which is given either V2(r, 0) or V2(r′, 1), respectively.
Concretely, given a view v2, the procedure samples r and r′ conditioned on V2(r, 0) = V2(r′, 1) = v2,
and outputs V1(r′, 1), v2, V3(r, 0). (Again, if there is no such r′ then V1(r′, 1) is set to ⊥, and if
there is no such r then V3(r, 0) is set to ⊥.) It can be veri�ed that this procedure perfectly sam-
ples (V1(r′, 1), V2(r, 0), V3(r, 0)) (resp., (V1(r′, 1), V2(r′, 1), V3(r, 0))) when it is given a sample from
V2(r, 0) (resp., V2(r′, 1)).

Now, by correctness,

Pr
r,r′

[P2(V1(r′, 1), V2(r′, 1), V3(r, 0)) = 1] > 1− ε.

Indeed, the random variable V1(r′, 1), V2(r′, 1), V3(r, 0) has the same distribution as the reconstruc-
tion phase's broadcasts in an execution with an honest dealer whose input is 1, and a rushing
adversary P ∗3 that plays as follows. In the sharing phase P ∗3 plays honestly, and in the reconstruc-
tion phase P ∗3 �rst sees the view of P2, denoted v2, and then samples r such that V2(r, 0) = v2

and broadcasts V3(r, 0). (If there is no such randomness the adversary fails.) By the correctness
property, the probability that the output of P2 is 1 in the presence of P ∗3 is at least 1 − ε. We
conclude that p ≥ 1− 2ε.

Let E0 be the event that P2 outputs 0 with A taking S0. Likewise, let E1 be the event that
P2 outputs 1 with A taking S1. Observe that the commitment fails with probability Pr[E0 ∧ E1],
because when both E0 and E1 occur, the adversary can choose the output of the parties. We've seen
that Pr[E0] ≥ (1− ε) and Pr[E1] ≥ (1− 2ε). Therefore, the probability to violate the commitment
is at least, Pr[E0 ∧ E1] = 1−Pr[Ē0 ∨ Ē1] ≥ 1− (Pr[Ē0] + Pr[Ē1]) ≥ 1− 3ε. This concludes the proof.

7 Lower Bound for Statistical MPC

In this section we prove that there exists a functionality that requires at least 4 rounds of commu-
nication, in the t ≥ n/3 regime with statistical security. This implies that our 3-rounds statistical
MPC upper bound has optimal resiliency, and cannot be extended to the t ≥ n/3 regime.

We show that there exists a functionality favss that requires at least 4 rounds of computation,
in the t ≥ n/3 regime with statistical security. We use the round-reduction technique of [AKP20]
to show that any 3-round protocol for an authenticated-VSS functionality favss can be collapsed
into a statistical VSS with a 2-round sharing phase (with statistical privacy), contradicting our VSS
lower bound of two sharing rounds. Lastly, we note that our transformation allows us to reduce any
k-round MPC computing favss to a (k − 1)-round VSS. To keep the presentation simple, we focus
on the case of k = 3. In the following section we prove the following theorem.

Theorem 7.1. Let n ≥ 3 and t ≥ n/3 be positive integers. Then there exists an n-party functionality
favss which cannot be computed in 3 rounds with error ε < 0.01.

51



By a player-partitioning argument (e.g., [Lyn96]), it is enough to show this for the case n = 3
and t = 1. We denote the parties by P1, P2 and P3. We show that there exists a function favss such
that if there exists a 3-round protocol for computing favss with error ε < 0.01, then there exists a
statistical VSS protocol with 2 rounds in the sharing phase and error less than 1/4. Since the latter
contradicts Theorem 6.2, this implies that every protocol for favss that has error at most ε requires
at least 4 rounds.

The authenticated-VSS functionality favss. The functionality favss takes a single input
z ∈ {0, 1} from P1, and delivers 2-out-of-2 secret sharing of z to P1 and P2, together with an
authentication tag on z to P1. The randomness for the secret sharing and for the one-time MAC
is generated by combining the local randomness of P2 and P3, and the MAC key is delivered to P2

and P3. Concretely, the functionality takes two random bits b2 and b3, from P2 and P3, respectively,
and delivers s2 := b2 + b3 to P2 and s3 := b2 + b3 + z to P3, as the shares of z. (It is not hard
to see that when (b2 + b3) is uniformly distributed, then one share reveals no information about z,
while given both s2 and s3 the value z can be reconstructed by computing s2 + s3.) In addition, the
functionality takes two random strings r2 and r3 from P2 and P3, respectively, and uses the bitwise
XOR r2 + r3 as a random string to the MAC function. Formally,

favss(z; b2, r2; b3, r3) = (MAC(z; r2 + r3); b2 + b3, r2 + r3; b2 + b3 + z, r2 + r3),

where MAC is a MAC over a single-bit messages which achieves one-time ε-security for ε < 0.01.
(This means that for any adversary A, and any message z ∈ {0, 1}, the probability over a random
choice of the MAC-key r, that A(z, MAC(z; r)) outputs MAC(1 − z; r) is at most ε. Such a MAC
scheme can be obtained by using any family of pair-wise independent hash-functions, with an image
of size larger than 1/ε.)

7.1 The Reduction

Assume towards a contradiction that there exists a 3-round protocol πavss that computes favss with
error ε < 0.01. (For simplicity, we assume that the error parameter of MAC is equal to the error
parameter of the protocol.) We assume without loss of generality that only the �rst round of πavss

consists of private messages, and that all other rounds consist only of broadcasts (see [GIKR01a,
Lemma 2]). Building on πavss, we construct a 2-round VSS protocol πvss, where the dealer is P1.

Inputs: P1 has input z ∈ {0, 1}, P2 and P3 have no inputs.

Sharing Phase (2 rounds). For i ∈ {2, 3}, Pi samples an input bi ← {0, 1} and a random string ri for
MAC. All parties invoke the �rst two rounds of πavss, with inputs z, (b2, r2) and (b3, r3).

Reconstruction Phase. The reconstruction phase is as follows.

� Round 1. The parties simulate the third round of πavss. Denote the output of P1 in πavss, which is
the authentication tag of z, by t.

� Round 2. P1 broadcasts (z, t).

Protocol πvss
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� Round 3. P2 and P3 broadcast their views and outputs from the simulation of the protocol πavss.

Local Computation. Let (z′, t′) denote the value broadcasted by P1 in the second round of the recon-
struction phase. Also, for i ∈ {2, 3}, let (si, ρi) denote the output that Pi claims to obtain in πavss,
where si is the share, and ρi is the MAC-key. (This tuple is broadcasted by Pi in the third round of the
reconstruction phase.)

� P1 outputs z.

� For i ∈ {2, 3}, set the �ag flagi = 1 if z′ is inconsistent with the MAC veri�cation according to the
key given to Pi (that is, if MAC(z′; ρi) 6= t′). Note that flagi is known to all parties.

� If flagi = 0 then Pi outputs z
′.

� If flag2 = 1 and flag3 = 0 then P2 fails.

� If flag2 = 0 and flag3 = 1 then P3 fails.

� Otherwise flag2 = flag3 = 1. In this case P2 and P3 use the broadcasted views to compute the
third round of πavss again, but in this time as if P1 broadcasted some canonical string, which we take
to be the all zero string 0. Given the views, P2 and P3 can also compute each other's output in this
case. Let (s′2, ρ

′
2) be the output of P2 and let (s′3, ρ

′
3) be the output of P3. P2 and P3 output s′2 + s′3.

Figure 19: Protocol πvss

We will prove that πvss is a δ-secure VSS protocol for δ = 0.1. Since the sharing phase of the
protocol consists of only two rounds this contradicts Theorem 6.2. The privacy, correctness and
commitment proof appears in Sections 7.2, 7.3, and 7.4 respectively. In a nutshell, privacy follows
from the privacy of the original protocol since the view of P2 (resp., P3) after the sharing phase is
a pre�x of its full view in πavss which is independent of the secret input z of P1 when b3 (resp., b2)
is a random bit. Correctness follows from the correctness of πavss since the output of an honest P1

in πavss should be a tag t such that for an honest P2 (resp., P3) whose output is a MAC key ρ it
holds that MAC(z; ρ) = t, so the honest parties always output z in the reconstruction phase. Finally,
to establish commitment we will show (again based on the security of πavss) that a violation of the
commitment property implies that P1 can forge the MAC.

7.2 Privacy

Consider an adversary A that corrupts P2. (The case of P3 is symmetric.) For σ ∈ {0, 1}, let Dσ
be the distribution of the view of A in the sharing phase when z = σ, consisting of its randomness,
received private messages in the �rst round of πvss and the broadcasts of the sharing phase. We
need to show that

D0 ≈δ D1.

Let B be an adversary against πavss, who corrupts P2 and acts exactly like A in the simulation of
πavss, and let S be the corresponding simulator. Consider an execution of πavss with random inputs
to P3, and input z ∈ {0, 1} to P1, and note that the view of B in the �rst two rounds of πavss is
distributed exactly like Dz.

In the ideal model S communicates with the ideal functionality by sending some values (b2, r2)
and receiving (s2, ρ), and outputs a view of B. Denote by S0 (resp., S1) the distribution of the
output of S restricted to the �rst two rounds, when z = 0 (resp., z = 1). Because (b3, r3) are
uniformly distributed, then (s2, ρ) are uniformly distributed for any input z ∈ {0, 1} of P1, and so

53



S0 ≡ S1. Moreover, since πavss is ε-secure then Si ≈ε Di for i ∈ {0, 1}. Hence

D0 ≈ε S0 ≡ S1 ≈ε D1,

and so D0 ≈2ε D1, and 2ε < δ (since ε < 0.01 and δ = 0.1), as required.

7.3 Correctness

Assume that all parties are honest. Since πavss is correct, with probability at least 1− ε the outputs
of the parties, denoted (t; s2, ρ; s3, ρ), are according to favss(z; b2, r2; b3, r3). Conditioned on this
event, and since P1 is honest, it holds that z′ = z and t′ = t = MAC(z; ρ), so the output of P2 and
P3 is indeed z, as required.

In the case that there is one malicious party, assume without loss of generality that P2 is
malicious. Since πavss is correct, with probability at least 1 − ε the outputs of the honest parties,
denoted t and s3, ρ, are according to favss(z; b

∗
2, r
∗
2; b3, r3) for some b∗2 and r∗2. Conditioned on this

event, and since P1 is honest, it holds that z′ = z and t′ = t = MAC(z; ρ), so the output of P3 is
indeed z, as required.

7.4 Commitment

In order to prove the commitment property of πvss, we prove that there exists a predictor function
Val0(V2,V3, b

sh1
, bsh2

) that receives the private views V2 and V3 of the honest parties in the sharing

phase, and the broadcasts of the sharing phase bsh1
, and bsh2

, such that for any two-phase adversary
A = (Ash,Arec) corrupting P1 and any input σ ∈ {0, 1} that is given to Arec, it holds that

Pr[Val0(V2,V3, b
sh1

, bsh2

) = y(2, σ) = y(3, σ)] > 1− δ/2, (7)

where y(i, σ) is the output of Pi when Arec receives input σ (see De�nition 6.1). By applying
union-bound on σ ∈ {0, 1}, this implies that the commitment property holds with probability 1− δ.

The predictor function. Let V2 and V3 be the private views of P2 and P3, and let bsh1
=

(bsh1

1 , bsh1

2 , bsh1

3 ) and bsh2
= (bsh2

1 , bsh2

2 , bsh2

3 ) be the broadcasts of the sharing phase. Note that

V2,V3, b
sh1

and bsh2
fully determine the broadcasts brec1

2 and brec1
3 , of P2 and P3, that correspond to

the third round of πavss. Let brec1(0) = (0, brec1
2 , brec1

3 ), that is, in brec1(0) we take the broadcast of
P1 in the last round of πavss to be the all zero string 0. Let (s0

2, ρ
0
2) and (s0

3, ρ
0
3) be the output of

P2 and P3, respectively, if we continue the simulation of πavss with broadcasts brec1(0) in the third

round. We de�ne the predictor function Val0(V2,V3, b
sh1
, bsh2

) to output s0
2 + s0

3.

Before proving Eq. (7), we show that it is hard for a corrupt dealer to forge z and its tag and
replace them with z′ and t′ that will verify against the unknown keys held by P2, P3.

Lemma 7.2 (Unforgeability of Secret in πvss). Let C be any adversary against πvss who corrupts
P1. Consider an execution of πvss with adversary C, denote by (b2, r2) and (b3, r3) the inputs of P2

and P3, respectively, in the simulation of πavss, and let s2 and s3 be the shares in the corresponding
outputs. Let (z′, t′) be the broadcast of C in the second round of the reconstruction phase. Then the
probability that z′ 6= s2 + s3 and t′ = MAC(z′; r2 + r3) is at most 2ε.
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Proof. Fix any adversary C, and let B be an adversary against πavss that corrupts P1 and acts
exactly like C in all rounds of πavss. At the end of the execution B locally computes the values
(z′, t′) that C would have broadcasted in the second round of the reconstruction, and outputs those
values.

Consider an execution of πavss with adversary B and random inputs (b2, r2) and (b3, r3) to the
honest parties. Note that the distribution of all messages in such an execution is the same as
the distribution of messages in the simulation of πavss in πvss with adversary C. In particular, the
outputs of all parties in an execution of πavss with adversary B have the same distribution as the
the outputs of P2 and P3 in the simulation of πavss in πvss, together with the broadcast of C in the
second round of the reconstruction phase. Therefore, It is enough to show that in an execution of
πavss with adversary B and random inputs (b2, r2) and (b3, r3) to the honest parties, the probability
that

z′ 6= s2 + s3 and t′ = MAC(z′; r2 + r3) (8)

is at most 2ε, where s2 and s3 are the shares in the outputs of P2 and P3.
We continue by showing that an adversary in the ideal world can output (z′, t′) satisfying Equa-

tion (8) with probability at most ε. Next, since the distribution of the outputs of all parties in the
real world is ε-close to the distribution of the outputs of all parties in the ideal model, it follows
that this event occurs with probability at most 2ε, as required.

In the ideal model, the adversary sends some value z ∈ {0, 1} to the ideal functionality, and
the honest parties send random values for (b2, r2) and (b3, r3) to the ideal functionality. Then, the
ideal adversary receives t = MAC(z; r2 + r3), from the functionality, and the honest parties P2 and
P3 receive (s2, r2 + r3) and (s3, r2 + r3), respectively, which they output. Note that s2 + s3 = z.
The adversary, who only knows z and t outputs some values (z′, t′). Since r2 and r3 are uniformly
distributed, it follows that r2 + r3 is uniformly distributed, so, by the security of the MAC scheme,
the probability that z′ 6= z and t′ = MAC(z′; r2 + r3) is at most ε.

We continue with the proof of the commitment property. In order to establish Eq. (7), we can
merge the two-phase adversary (Ash,Arec) into a single adversary A and hardwire the bit σ. We
further assume, without loss of generality, that A is deterministic. Consider an execution of πvss

where P1 is corrupted by A and let EA
not-commit

denote the event that the output of some honest party

is not Val0(V2,V3, b
sh1
, bsh2

). We need to show that Pr[EA
not-commit

] ≤ δ/2, and so we assume towards
contradiction that Pr[EA

not-commit
] > δ/2. We will show that the adversary A can be translated to

an adversary C that violates Lemma 7.2. We begin with an analysis of A.

Analysis of A. Let EAcorrect be the event that the outputs of P2 and P3 in the simulation of
πavss, denoted (s2, ρ) and (s3, ρ), are according to favss(z

∗; b2, r2; b3, r3) for some z∗ ∈ {0, 1}. The
correctness of πavss implies that Pr[EAcorrect] > 1− ε, so

Pr[EAnot-commit ∧ EAcorrect] > δ/2− ε.

Note that whenever EAcorrect occurs then flag2 = flag3 because P2 and P3 hold the same random
string ρ = r2 + r3 as the output of πavss. Furthermore, if EA

not-commit
occurs then necessarily

flag2 = flag3 = 0, or otherwise (if flag2 = flag3 = 1) the output of the honest parties will

be Val0(V2,V3, b
sh1
, bsh2

). This means that t′ = MAC(z′; ρ), and so the honest parties output z′ 6=
Val0(V2,V3, b

sh1
, bsh2

).
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Denote the event that t′ = MAC(z′; r2 + r3) and z′ 6= Val0(V2,V3, b
sh1
, bsh2

) by EA. We conclude
that

Pr[EA] > δ/2− ε.

Adversary C. Consider the following adversary C against πvss, who corrupts P1 in the following
way. In the sharing phase C acts exactly like A. In the �rst round of the reconstruction, C broadcasts
the all zero string 0. In the second round of the reconstruction, C locally computes the values (z′, t′)
that A would have broadcasted (if C continued to play like A), given all broadcasts and private
messages from the three rounds of πavss. Adversary C broadcasts (z′, t′) in the second round of the
reconstruction.

Let EC be the event that z′ 6= Val0(V2,V3, b
sh1
, bsh2

) and t′ = MAC(z′; r2 + r3), in an execution of

πvss with adversary C. Since A is deterministic, and V2,V3, b
sh1
, bsh2

fully determine brec1
2 , brec1

3 , the
event EA depends only on the sharing phase. Since in the sharing phase adversary C acts exactly
like adversary A, it follows that event EC occurs with probability at least δ/2− ε in an execution of
πvss with adversary C.

Note that the shares in the outputs of the honest parties in the simulation of πavss in πvss with
adversary C are s2 and s3 such that s2 + s3 = Val0(V2,V3, b

sh1
, bsh2

). Therefore, whenever event
EC occurs, then z′ 6= s2 + s3, and t′ = MAC(z′; r2 + r3). From Lemma 7.2 this event occurs with
probability at most 2ε. But then

0.04 < δ/2− ε < 2ε < 0.02, since ε < 0.01 and δ = 0.1,

which implies a contradiction. This completes the proof of the lower bound.
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Part III

Appendix

A The Security Model

In this section we describe the security model. We prove our lower bounds in the standard model,
and we prove the upper bounds in stronger framework of universal-composability (UC) [Can01a].

A.1 The Standard Model

In the standard model, the security of a protocol is analyzed by comparing what an adversary can do
in the real execution of the protocol to what it can do in an ideal execution, that is considered secure
by de�nition (in the presence of an incorruptible trusted party). In an ideal execution, each party
sends its input to the trusted party over a perfectly secure channel, the trusted party computes the
function based on these inputs and sends to each party its respective output. Informally, a protocol
is secure if whatever an adversary can do in the real protocol (where no trusted party exists) can
be done in the above described ideal computation. We refer to [Can00, Gol01, Lin17] for further
details regarding the security model.

The �ideal� world execution involves parties in P, an ideal adversary S who may corrupt at most
t parties, and a functionality F . The �real� world execution involves the honest parties in P, and a
real world adversary A who may corrupt t of the parties. Let the corrupt set be denoted as I. We
let idealF ,S(z),I(~x) denote the random variable consisting of the output pair of the honest parties
and the ideal-world adversary S controlling the corrupt parties in I upon inputs ~x = (x1, . . . , xn)
for the parties and and auxiliary input z for S. Similarly, let realΠ,A(z),I(~x) denote the random
variable consisting of the output pair of the honest parties and the adversary A controlling the
corrupt parties in I in the real execution, upon inputs ~x for the parties and and auxiliary input z
for A.

De�nition A.1 (Perfect, Statistical and Computational Security). Let F be a functionality and
let Π be a n-party protocol involving P. We say that Π perfectly-securely realizes F if for every
probabilistic real world adversary A, there exists an ideal world adversary S whose running time
is polynomial in the running time of A such that for every I ⊂ P of cardinality at most t, every
~x ∈ ({0, 1}∗)n where |x1| = . . . = |xn|, and every z ∈ {0, 1}∗, it holds that the random variables{

idealF ,S(z),I(~x)
}

and
{
realΠ,A(z),I(~x)

}
(9)

are identically distributed.
For the statistical case, the parties and adversaries are parameterised with a statistical security

parameter κ, and the random variables in (9) (which are viewed as ensembles parameterized by κ)
are required to be statistically-indistinguishable. For computational security, the adversaries run
in time polynomial in κ, and statistical indistinguishability is replaced with computational indistin-
guishability.

We use ≡, ≡s and ≡c to denote perfect, statistical and respectively computational indistinguisha-
bility.
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A.2 The UC-Framework

In this section we give a high-level description of the UC-framework [Can01a]. We follow the
presentation of [CDN15] that slightly deviates from the presentation of [Can01a]. For further details
and a formal de�nition, the reader is referred to [Can01a, CDN15].

At a high level, in the UC-framework security is still argued by comparing the real world to the
ideal world. However, now in both worlds the execution is done in the presence of an additional
interactive process, called the environment, and denoted Z.

In the real-world all parties communicate with Z in the following way. The environment gener-
ates the inputs of the honest parties, and receives their outputs at the end of the execution. The
environment also fully controls the corrupt parties, that send to Z all the messages they receive, and
follow the orders of Z. In the ideal world, the simulator S and the ideal functionality F communi-
cate with Z in the following way. The honest parties' inputs generated by Z are given to the ideal
functionality F , and the outputs corresponding the honest parties are given to Z. The simulator S
simulates the communication between Z and the corrupt parties.

A protocol is said to be statistical UC-secure if there exists a polynomial-time simulator S such
that for any environment Z, the environment cannot distinguish the real-world from the ideal-world
with more than negligible advantage in the security parameter κ. When security holds only with
respect to polynomial-time environments, we say that we obtain computational UC-security.

The hybrid model. The UC-framework is appealing because it has strong composability proper-
ties. Consider a protocol ρ that securely implements an ideal functionality G in the F-hybrid model
(which means that the parties in ρ have access to an ideal functionality F), and let π be a protocol
that securely implements F . The composition theorem guarantees that if we replace in ρ each call
to F with an execution of π we obtain a secure protocol. This means that it is enough to prove the
security of a protocol in the hybrid model, where the analysis is much simpler.

A.2.1 Additional Security Requirements

For the upper bound, we sometimes consider even stronger security requirements, such as perfect-
secrecy, where we require that the views of the corrupt parties are perfectly simulated by the
simulator.

De�nition A.2 (Statistically-correct and Perfectly-secret Protocols). A protocol that statistically
realizes F has perfect-secrecy if the messages that Z receives from the corrupt parties in the real-
world (which is the view of the corrupt parties) are perfectly simulated by the simulator S in the
ideal world.

We also consider a hybrid version of statistical and computational security. Here, we require
that an environment which is polynomially-bounded during the execution and is allowed to be
unbounded after the execution, cannot distinguish the real-world from the ideal-world. We re-
fer to this notion as computational security with everlasting secrecy. Observe that this security
notion lies between computational-security (where we consider only environments that are always
polynomially-bounded) and statistical-security (where we also consider environments that are un-
bounded during the execution of the protocol). We mention that the composition theorems of
UC-security hold for protocols with everlasting security (i.e., the composition of two protocols with
everlasting security results in a protocol with everlasting security). For a formal de�nition and
statement of the composition theorem, the reader is referred to [MQU10].
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B Appendix: Two-round Statistical MPC in Fvss-SIFR Model

B.1 Beaver's Circuit Randomization Technique

Beaver's circuit randomization method [Bea91] is a well known method for securely computing
[x · y], from [x] and [y], using a precomputed t-shared random and private multiplication-triple, say
([a], [b], [c]), at the expense of two public reconstructions of t-shared values. The parties �rst (locally)
compute [e] and [d], where [e] = [x]− [a] = [x−a] and [d] = [y]− [b] = [y− b], followed by the public
reconstruction of e = (x− a) and d = (y − b). Since the relation xy = ((x− a) + a)((y − b) + b) =
de+ eb+ da+ c holds, the parties can locally compute [xy] = de+ e[b] + d[a] + [c], once d and e are
publicly known. The above computation leaks no additional information about x and y if a and b
are random and unknown to the adversary.

B.2 Properties of Bivariate Polynomials

We state some well known standard properties of symmetric bivariate polynomials below which are
used to prove security of our WC and VSS protocol. (Proofs can be found in [AL17].)

Lemma B.1. ([AL17]) Let K ⊆ [n] be a set of indices such that |K| ≥ t+1. Let {fk(x)}k∈K be a set
of polynomials of degree atmost t. If for every i, j ∈ K, it holds that fi(j) = fj(i), then there exists a
unique symmetric bivariate polynomial F (x, y) of degree atmost t such that fi(x) = F (x, i) = F (i, x)
for every i ∈ K.

Lemma B.2. ([AL17]) Suppose I ⊂ {1, . . . , n} with |I| ≤ t, and q1(x), q2(x) are two degree t
polynomials over F such that q1(i) = q2(i) for every i ∈ I. Then the following distributions are
indistinguishable; i.e, {

(i, F 1(x, i))
}
i∈I} ≡

{
(i, F 2(x, i))

}
i∈I

where F 1(x, y) and F 2(x, y) are symmetric degree t bivariate polynomials chosen at random under
the constraints that F 1(x, 0) = q1(x) and F 2(x, 0) = q2(x), respectively.

B.3 Triple Secret Sharing

Proof of Lemma 3.2. In this section we prove that protocol tss is UC-secure. For this, we need to
de�ne a polynomial time simulator S. At the beginning of execution S receives the set of corrupt
parties C, and sends it to the ideal functionality Ftss. During its execution, the simulator simulates
the execution of the corrupt parties, forwarding all messages sent between Z and the (simulated)
parties in C. We denote by H := P \ C the set of honest parties. We divide the proof in two cases,
based on whether the dealer D is honest or corrupt.

B.3.1 Honest Dealer

Distribution phase simulation. The simulator receives the set of values {ai, bi, ci}i∈C from
Ftss, at the beginning of the computation. It picks a set of t + 3 random polynomials
f̄a(x), f̄ b(x), f̄ c(x), f̄1(x), . . . , f̄ t(x) as follows: (i) the polynomials f̄a(x), f̄ b(x), f̄ c(x) are such that
f̄a(i) = ai, f̄

b(i) = bi, f̄
c(i) = ci and their constant terms are equal to three random values ā, b̄, c̄

satisfying c̄ = āb̄; (ii) f̄ c(x) = f̄a(x)f̄ b(x)−
∑t

α=1 x
αf̄α(x).

Following an honest dealer S picks, for every α ∈ {a, b, c, 1, . . . , t}, a random symmetric bivariate
polynomial F̄α(x, y) of individual degree at most t for which F̄α(x, 0) = F̄α(0, x) = f̄a(x). It then
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simulates t+ 3 calls to Fvss using these t+ 3 bivariate polynomials, giving the corrupt parties their
corresponding shares. For the simulation of the o�ine phase of the SCG, S generates an o�ine
message from every honest Bob to a corrupted Alice or to a corrupted Carol as follows.

� (Corrupt Alice) For i ∈ C, j ∈ H and any k ∈ P, let (αi,j,k, βi,j,k, γi,j,k) := scg.off(ri,j,k) where
ri,j,k denotes a fresh random tape. The simulator S sends αi,j,k to Pi (Alice) as the message
from Pj (Bob) in the execution of scg.offi,j,k. If, in addition, Carol is corrupted (i.e., k ∈ C)
then the simulator also sends γi,j,k to Pk (Carol), as the message from Pj (Bob).

� (Only Carol is Corrupted) For i, j ∈ H, k ∈ C, let Si,j,k = (Si,j,koff ,Si,j,kon ) be the correspond-

ing simulator against corrupt receiver and let ri,j,kS denote a fresh random tape. S sends

Si,j,koff (ri,j,kS ) to Pk (Carol) as the corresponding message from Pj (Bob) in the execution of
scg.offi,j,k.

At this stage, Z received all the messages from honest parties to corrupt parties. The simulator
receives from Z the messages from corrupt parties to honest parties. Observe that in every execution
of scg.offijk in which Pj (Bob the guard) is corrupt and Pi (Alice) is honest (resp., the receiver Pk
is honest), we hold the correlated randomness αi,j,k that Pj (Bob) sends to Pi (resp., γ

i,j,k that Pj
sends to Pk). Finally, the simulator instructs Ftss to deliver the outputs of the distribution phase.

Veri�cation phase simulation. First, for every corrupt receiver Pk, we make the following
simulations.

� (Honest Alice and Bob) For i, j ∈ H, execute the online receiver's simulator

Si,j,kon ((0, 0, . . . , 0), ri,j,kS ) in order to obtain the messages to the receiver Pk in scg.oni,j,k.

� (Corrupt Alice and honest Bob) For i ∈ C and j ∈ H, the simulator sends
scg.onB((F̄ a(i, j), F̄ b(i, j), F̄ c(i, j), F̄ 1(i, j), . . . , F̄n(i, j)), βi,j,k) to Pk (Carol) as the message
from Pj (Bob), where β

i,j,k is the string that was sampled by scg.off(ri,j,k) in the simulation
of the �rst round.

� (Honest Alice and corrupt Bob) For i ∈ H and j ∈ C, we know the random string that Pj (Bob)
sent to Pi (Alice) in the �rst round, denoted αi,j,k and we also know the input of Pi (Alice) for
scg.oni,j,k, which are ai,j,k := 0, and bi,j,k := (F̄ a(i, j), F̄ b(i, j), F̄ c(i, j), F̄ 1(i, j), . . . , F̄n(i, j)),
and so the simulator sends scg.onA(αi,j,k, ai,j,k, bi,j,k) to Pk (Carol) as the message from Pi
(Alice).

The simulator also receives the bit 1 from Ftss, indicating that the veri�cation succeeded, and sends
it to the corrupt parties. This completes the communication from honest parties to corrupt parties.
The simulator receives from Z the messages from corrupt parties to honest parties, and orders Ftss

to deliver the outputs of the veri�cation phase.

To analyze the simulator, we show that any environment Z cannot distinguish between the real
world and the simulated world. For this, we �x Z, and assume without loss of generality that it is
deterministic. This �xes the set of corrupted parties C, as well as the inputs of the honest dealer
(a, b, c). We begin by analysing the corrupt parties' view, and then continue with the analysis of
the outputs of the honest parties.
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The corrupt parties' view. We show that the distribution of the corrupt parties' view in the
ideal world is identical to the distribution in the real world.

In the real world, the view of the corrupt parties consists of (1) the polynomials
{F a(x, i), F b(x, i), F c(x, i), F 1(x, i), . . . , Fn(x, i)}i∈C delivered by the Fvss functionality, (2) the mes-
sages from scg.offi,j,k for j ∈ H and either i ∈ C or k ∈ C (or both), and (3) the messages from
scg.oni,j,k for k ∈ C.

In the ideal model the simulator receives the shares {ai, bi, ci}i∈C from Ftss. Denote by
{F̄ a(x, y), F̄ b(x, y), F̄ c(x, y), F̄ 1(x, y), . . . , F̄n(x, y)}i∈C the polynomials generated by the simulator.
A standard analysis along the lines of [AL17, Section 6.6] shows that the random variables

{F a(x, i), F b(x, i), F c(x, i), F 1(x, i), . . . , Fn(x, i)}i∈C

and
{F̄ a(x, i), F̄ b(x, i), F̄ c(x, i), F̄ 1(x, i), . . . , F̄n(x, i)}i∈C

have the same distribution. Both in the ideal world and the real world, condition on any sample
{fai (x), f bi (x), f ci (x), f1

i (x), . . . , fni (x)}i∈C from this distribution. It remains to show that the distri-
bution of the o�ine and online phases of the scg are the same in the ideal-world and real-world.

To see this, �rst observe that for all SCG's where either Pi or Pj are corrupt, the simulated
executions of the SCG's are done exactly like in a real-world execution. Additionally, if only Pk is
corrupt, then (a) in the real world the execution is independent of other executions of SCG's and
(b) in the ideal world it is perfectly simulated by the simulator against corrupt receiver of the scg.
This concludes the analysis of the corrupt parties' view.

The honest parties' outputs. It remains to show that conditioned on the corrupt parties' view,
the output of the honest parties has the same distribution in the real-world and in the ideal-world.
Fix any such view V, and let {ai, bi, ci}i∈C be the shares of a, b, c received from Fvss according to
V. Observe that the degree-t polynomials fa(x), f b(x), f c(x), which are either picked by the dealer
(in the real-world) or by the ideal functionality (in the ideal-world), are uniformly distributed
conditioned on the shares {ai, bi, ci}i∈C and the secrets a, b, c. (In particular, if |C| = t then those
polynomials are �xed.) Fix any such polynomials fa(x), f b(x), f c(x). Note that both in the ideal-
world and in the real-world the dealer outputs (fa(x), f b(x), f c(x)) in the distribution phase, and
any honest party Pi always outputs (fa(i), f b(i), f c(i)) in the distribution phase. Furthermore, in
the ideal-world any honest party outputs 1 at the veri�cation phase. We need to show that this
happens with probability 1 − ε in the real-world as well, where ε will be determined later in the
analysis. For this, it is enough to show that no honest party Pk discards the dealer.

Let E be the real-world event that for every corrupt Pi (as Alice) and
honest Pj (as Bob), the output of an honest Pk (as Carol) in scgi,j,k is ei-
ther (0, . . . , 0), ⊥, or (1, F a(i, j), F b(i, j), F c(i, j), F 1(i, j), . . . , Fn(i, j)), where
{F a(i, j), F b(i, j), F c(i, j), F 1(i, j), . . . , Fn(i, j)}i∈C,j∈P are the shares that the corrupt parties
receive from Fvss. Observe that, by (online) εscg-security against Alice, event E occurs with
probability 1 − ε even conditioned on V, for ε ≤ t(n − t)2εscg. In the following we show that in
the real-world, conditioned on E, no honest party Pk discards the dealer, which implies that the
protocol is ε-secure.

We begin by showing that an honest Pk cannot reject the dealer due to an honest Pi. Indeed,
since the dealer is honest then the polynomials F a(x, y), F b(x, y), F c(x, y), F 1(x, y), . . . , Fn(x, y)
are chosen correctly, so flagi = 0. For an honest Pj , by the correctness of scgi,j,k, the output is
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always (0, . . . , 0). On the other hand, for a corrupt Pj , by security against Bob, the output is either
(0, . . . , 0) or ⊥ with probability 1. Therefore, an honest dealer is never discarded due to a honest
party Pi.

We continue by showing that an honest party Pk does not discard the dealer due to a corrupt
party Pi. For a non-silent scgi,j,k, denote its output by (flagi,j , z

a
i,j , z

b
i,j , z

c
i,j , z

1
i,j , . . . , z

n
i,j). Recall

that Pk rejects due to Pi if and only if (1) the set Li of all indices j such that scgi,j,k is non-silent
is of size at least n − t, (2) all {flagi,j}j∈Li are 1, and (3) the outputs of the non-silent scg in-

stants de�ne unique polynomials of degree at most t, denoted fai (x), f bi (x), f ci (x), f1
i (x), . . . , fni (x),

such that f ci (0) 6= fai (0)f bi (0) −
∑n

`=1 i
` · f `i (0). We assume that (1) and (2) hold, and show

that (3) cannot hold. Since |Li| ≥ n − t ≥ 2t + 1, then Li contains at least t + 1 in-
dices j such that j ∈ H. Since we condition on the event E, for each such j it holds that
(zai,j , z

b
i,j , z

c
i,j , z

1
i,j , . . . , z

n
i,j) = (F a(i, j), F b(i, j), F c(i, j), F 1(i, j), . . . , Fn(i, j)). Therefore, the out-

put of the non-silent scg instants either do not de�ne degree-t polynomials, or de�ne the polynomials
F a(i, x), F b(i, x), F c(i, x), F 1(i, x), . . . , Fn(i, x). Finally, in both cases condition (3) does not hold,
as required. This completes the security proof of the protocol.

B.3.2 Corrupt Dealer

In the corrupt dealer case, the honest parties have no inputs, and so the simulator can simply
execute the protocol tss by taking the role of the honest parties.

Distribution phase simulation. The simulator begins the simulation of the �rst round by taking
the role of the honest parties, computing their messages in the various executions of scg.off, and
giving them to the corrupt parties. In this stage the corrupt parties have two types of interactions.
First, an interaction with honest parties in scg.off, in which the simulator takes the messages from
Z and delivers them to the corresponding honest parties. Second, Z generates t + 3 bivariate
polynomials F a(x, y), F b(x, y), F c(x, y), F 1(x, y), . . . , F t(x, y) on behalf of the dealer, who should
sends them to Fvss. Upon receiving those polynomials, the simulator �rst checks that all of them
are symmetric bivariate polynomials of individual degree t. Any polynomial that does not satisfy
this condition is replaced by the default zero polynomial. Then, the simulator takes the role of Fvss

and sends the corresponding shares to the (simulated) honest parties.

Interaction with Ftss. The simulator sends the univariate polynomials F a(x, 0), F b(x, 0), F c(x, 0)
as an input to the ideal Ftss functionality. If the polynomial F c(x, 0) is not equal to the polyno-
mial F a(x, 0)F b(x, 0) −

∑n
α=1 x

αFα(x, 0) then the simulator asks Ftss to fail the veri�cation. The
simulator orders Ftss to deliver the outputs of the distribution phase.

Veri�cation phase simulation. The simulator continues with the execution of the protocol by
�rst simulating the messages from honest parties to corrupt parties and then by receiving from Z
the messages from corrupt parties to honest parties. Finally, the simulator orders Ftss to deliver
the outputs of the veri�cation phase.

To analyze the simulator, we show that any environment Z cannot distinguish between the real
world and the simulated world. For this, we �x Z, and assume without loss of generality that it is
deterministic. This �xes the set of corrupted parties C. We begin by analysing the corrupt parties'
view, and then continue with the analysis of the outputs of the honest parties.
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The corrupt parties' view. Since the dealer holds all the inputs to the protocol, and the
simulator perfectly emulates the honest parties in an execution of the protocol tss, then the corrupt
parties' view has the same distribution as the corrupt parties' view in the real world. This concludes
the analysis of the corrupt parties' view.

Output of honest parties. It remains to show that conditioned on the corrupt parties' view,
the output of the honest parties has the same distribution in the real-world and in the ideal-
world. Fix any such view V, and observe that it fully determines the bivariate degree-t polynomials
F̄ a(x, y), F̄ b(x, y), F̄ c(x, y), F̄ 1(x, y), . . . , F̄n(x, y) that are distributed by Fvss. Therefore, the out-
put of an honest party Pi in the distribution phase, both of the real-world and the ideal-world, is
F̄ a(0, i), F̄ b(0, i), F̄ c(0, i). It remains to show that the output of the veri�cation phase in the real-
world has the same distribution as the output of the veri�cation phase in the ideal-world. In the ideal
world, we know that the output is 0 if and only if F̄ c(x, 0) 6= F̄ a(x, 0)F̄ b(x, 0)−

∑n
α=1 x

αF̄α(x, 0).
In the real world, we split into cases.

� Assume that F̄ c(x, 0) 6= F̄ a(x, 0)F̄ b(x, 0)−
∑n

α=1 x
αF̄α(x, 0) so the output in the ideal-world

is 0. In the real-world, by the analysis of [AL17], there exists an honest party Pi for which
F̄ c(i, 0) 6= F̄ a(i, 0)F̄ b(i, 0) −

∑n
α=1 i

αF̄α(i, 0). We show that any honest Pk discards the
dealer due to Pi. Fix an honest Pj and note that the by the correctness of SCG the out-
put of Pk in scgi,j,k is (1, F̄ a(i, j), F̄ b(i, j), F̄ c(i, j), F̄ 1(i, j), . . . , F̄n(i, j)). Furthermore, by
the security against corrupt Bob, for any corrupt Pj the output of Pk in scgi,j,k is either
(1, F̄ a(i, j), F̄ b(i, j), F̄ c(i, j), F̄ 1(i, j), . . . , F̄n(i, j)) or ⊥. It is not hard to see that all the
conditions for discarding the dealer hold, so Pk discards the dealer and output 0, as required.

� Assume that F̄ c(x, 0) = F̄ a(x, 0)F̄ b(x, 0)−
∑n

α=1 x
αF̄α(x, 0) so the output in the ideal-world is

1. By the same analysis that appears in the honest D case, we conclude that with probability
1 − ε for ε ≤ t(n − t)2εscg no honest party Pk rejects the dealer, so the output of all honest
parties is 1.

This concludes the security proof of the protocol.

B.4 Guided Degree-2 Computation

Proof of Theorem 3.3. In this section we prove that protocol Gdeg2c is UC-secure. By the compos-
ability properties of UC-security (see Section A), it is enough to prove security in the Ftss-hybrid
model. For this, we need to de�ne a polynomial time simulator S. At the beginning of execution
S receives the set of corrupt parties C, and sends it to the ideal functionality FGdeg2c. During its
execution, the simulator simulates the execution of the corrupt parties, forwarding all messages sent
between Z and the (simulated) parties in C. We denote by H := P \C the set of honest parties. We
divide the proof in two cases, based on whether the guide is honest or corrupt.

B.4.1 Honest Guide

O�ine round simulation. The simulator picks random triples {(ai, bi, ci)}i∈C and delivers them
to the corrupt parties, as the values from Ftss. For the simulation of the o�ine phase of SCG, we
generate an o�ine message from every honest Bob to a corrupt Carol as follows. For j ∈ H, k ∈ C,
let Sj,k = (Sj,koff ,S

j,k
on ) be the corresponding simulator against corrupt receiver and let rj,kS denote a
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fresh random tape. S sends Sj,koff (rj,kS ) to Pk (Carol) as the corresponding message from Pj (Bob) in
the execution of scg.offj,k.

The simulator receives from Z the messages from corrupt parties to honest parties. Observe
that this means that in executions of scg.off where Pj is corrupt we hold the randomness that Pj
(Bob) sends to the honest guard (Alice) or to an honest Pk (Carol) in scg.offj,k.

Input stage. At this stage the inputs of the honest parties are given to FGdeg2c. The simulator

receives the shares {(xαi , x
β
i , w

1
i , . . . , w

m
i )}i∈C, and the output y from FGdeg2c.

Online round simulation. For each i ∈ C the simulator computes ui := xαi −ai and vi := xβi −bi.
The simulator samples a degree-t polynomial f̄u(x) conditioned the shares {ui}i∈C, and a polynomial
f̄v(x) conditioned on the shares {vi}i∈C, and sets u := fu(0) and v := fv(0). The simulator sets
yi := uv + ubi + vai + ci + w1

i + . . . + wmi for each i ∈ C, and then samples a degree-t polynomial
f̄y(x) conditioned on the shares {yi}i∈C and the secret y. (In particular, if |C| = t then f̄y is �xed.)

The simulator continues by simulating the communication from honest parties to corrupt parties.
First, the simulator gives 1 to the corrupt parties as the output of the veri�cation phase of Ftss.
For the reconstruction of u and v, the simulator gives {f̄u(i), f̄v(i)}i∈H to the corrupt parties as
the broadcasts of the honest parties. It remains to simulate the online phase of the SCG. For every
corrupt receiver Pk, we make the following simulations.

� For j ∈ H, the simulator executes the online receiver's simulator Sj,kon ((u, v, f̄y(j)), rj,kS ) in
order to obtain the messages to Pk in scg.onj,k.

� For j ∈ C, we know the random string that Pj (Bob) sent to the guard (Alice) in the �rst
round, denoted αj,k and we also know the input of the guard (Alice) for scg.onj,k, which is
u := u, v := v, a := aj , b := bj , c := cj , and w1 := w1

j , . . . ,w
m := wmj , so the simulator sends

scg.onA(αj,k, (u, v), (a, b, c,w1, . . . ,wm)) to Pk (Carol) as the message from the guard (Alice).

This completes the communication from honest parties to corrupt parties. The simulator receives
from Z the messages from corrupt parties to honest parties, and orders FGdeg2c to deliver the outputs
to the parties.

To analyze the simulator, we show that any environment Z cannot distinguish between the real
world and the simulated world. For this, we �x Z, and assume without loss of generality that it is
deterministic. This �xes the set of corrupted parties C, as well as the inputs {xαi , x

β
i , w

1
i , . . . , w

m
i }i∈H

and Xα(x), Xβ(x),W 1(x), . . . ,Wm(x), of the honest parties. Observe that this also �xes the value
of y := Xα(0) · Xβ(0) + W 1(0) + . . . + Wm(0). We begin by analysing the corrupt parties' view,
and then continue with the analysis of the outputs of the honest parties.

The corrupt parties' view. We show that the distribution of the corrupt parties' view in the
ideal world is identical to the distribution in the real world.

In the real world, the view of the of the corrupt parties' consists of (1) the shares {ai, bi, ci}i∈C

delivered by the Ftss functionality, (2) the messages from scg.offj,k for j ∈ H and k ∈ C, (3) the
messages from scg.onj,k for k ∈ C, (4) the bit 1 from the veri�cation of Ftss, and (5) the shares
{ui, vi}i∈H of u and v.
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By the (t + 1)-wise independence of random degree-t polynomials, the simulated shares of the
corrupt parties {ai, bi, ci}i∈C are distributed exactly like in the real-world. Fix those shares. In

the real world it holds that the shares of u are ui = xαi − ai and the shares of v are vi = xβi − bi,
and so they are �xed for all i ∈ C. Furthermore, in the real world the sharing polynomials fu(x)
and fv(x) of the secrets u and v are uniformly distributed under the constraints {fu(i) = ui}i∈C

and {fv(i) = vi}i∈C. Therefore the polynomials f̄u(x) and f̄v(x) in the ideal world have the same
distribution as the polynomials fu(x) and fv(x) in the real world. We conclude that the shares
{ui, vi}i∈H have the same distribution in both worlds. Fix the polynomials fu(x) and fv(x) as well,
and let u := fu(0) and v := fv(0).

In the real world it holds that the i-th share of y, as de�ned by u, v, {ai, bi, ci}i∈C and
{w1

i , . . . , w
m
i }i∈C is yi := uv + ubi + vai + ci + w1

i + . . . + wmi for all i ∈ C. By the security of
Beaver's trick (see [Bea91] and also Appendix B.1) the polynomial fy(x) is uniformly distributed
under the constraints {fy(i) = yi}i∈C and fy(0) = y. Therefore, in both worlds fy(x) has the same
distribution, and we �x its value as well.

It remains to show that the distribution of the o�ine and online phases of the scg are the same
in the ideal-world and real-world. This follows since for all SCG's where Pj is corrupt, the simulated
executions of the SCG's are done exactly like in a real-world execution. On the other hand if only
Pk is corrupt, then in the real world the execution is independent of other executions of SCG's, and
in the ideal world it is perfectly simulated by the simulator against corrupt receiver of the scg. This
concludes the analysis of the corrupt parties' view.

The honest parties' outputs. It remains to show that conditioned on the corrupt parties' view,
the output of the honest parties has the same distribution in the real-world and in the ideal-world.
Fix any view V of the corrupt parties. Observe that in the ideal world all honest parties output y.
We show that this happens with probability 1 in the real world as well.

Fix any execution of the protocol Gdeg2c conditioned on V, let fa(x), f b(x), f c(x) be the
polynomials that share a, b, c, let fu(x) and fv(x) the polynomials that share u and v, let
yj := uv + ubj + vaj + cj + w1

j + . . . + wmj for all j ∈ P, and let fy(x) be the polynomial de-
�ned by the yj 's. By the correctness of Beaver's trick (see [Bea91] and also Appendix B.1), it
follows that fy(x) is a degree-t polynomial such that fy(0) = y. By the correctness of the SCG
protocol, for any honest Pj and Pk the output of scgj,k is (u, v, yj). Furthermore, by the security
against corrupt Bob, for any honest Pk and corrupt Pj the output of scgj,k is either (u, v, yj) or ⊥.
We conclude that there are at most t silent SCG's, the values u and v are correct in all non-silent
SCG's, and the shares yj of non-silent SCG's de�ne a degree-t polynomial whose free-coe�cient is
y. Therefore all honest parties Pk output y, as required.

B.4.2 Corrupt Guide

In the corrupt guide case, the simulator knows the inputs of the honest parties, and so the simulator
can simply execute the protocol Gdeg2c by taking the role of the honest parties.

O�ine round simulation. The simulator begins the simulation of the �rst round by taking the
role of the honest parties, and computing their messages in the various executions of scg.off. It then
sends the corresponding messages from honest parties to corrupt parties to the corrupt parties.

In this stage the corrupt parties have two kinds of interactions. First, an interaction with
honest parties in scg.off, in which the simulator takes the messages from Z and delivers them to
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the corresponding honest parties. Second, Z generates polynomials fa(x), f b(x), f c(x) and sends
them to Fvss. Upon receiving those polynomials, the simulator �rst checks that all of them are of
degree t. If some polynomial is not so, then it is replaced by some arbitrary polynomial. Then, the
simulator takes the role of Ftss and sends the simulated honest parties their corresponding shares.

Input stage. At this stage the inputs of the honest parties are given to FGdeg2c. The simulator re-

ceives the values {xαi , x
β
i , w

1
i , . . . , w

m
i }i∈C and Xα(x), Xβ(x),W 1(x), . . . ,Wm(x) From FGdeg2c. For

each simulated honest party Pi, the simulator sets its input to be xαi := Xα(i), xβi := Xβ(i), w1
i :=

W 1(i), . . . , wmi := Wm(i).

online round simulation. The simulator simply continues with the execution of the protocol, by
�rst simulating the messages from honest parties to corrupt parties, and then by sending messages
from Z to the honest parties, and by simulating the veri�cation phase of Ftss.

Interaction with FGdeg2c. For each honest party Pi, if the output of Pi in the simulation was ⊥
then the simulator orders FGdeg2c to send ⊥ to Pi. Otherwise, the simulator orders FGdeg2c to send
the correct output to Pi. The simulator orders FGdeg2c to deliver it outputs to the parties.

To analyze the simulator, we show that any environment Z cannot distinguish between the real
world and the simulated world. For this, we �x Z, and assume without loss of generality that it is
deterministic. This �xes the set of corrupted parties C, as well as the inputs {xαi , x

β
i , w

1
i , . . . , w

m
i }i∈H

of the honest parties. Observe that this also �xes the polynomialsXα(x), Xβ(x),W 1(x), . . . ,Wm(x),
and the value of y := Xα(0) ·Xβ(0) + W 1(0) + . . . + Wm(0). We begin by analysing the corrupt
parties' view, and then continue with the analysis of the outputs of the honest parties.

The corrupt parties' view. Since the guide knows all the inputs to the protocol, and the
guide is corrupt, then the output of the simulator, which simply executes the protocol Gdeg2c the
environment, has the same distribution as the view of the corrupt parties' in the real world. This
concludes the analysis of the corrupt parties' view.

Output of honest parties. It remains to show that conditioned on the corrupt parties' view,
the output of the honest parties has the same distribution in the real-world and in the ideal-
world. Fix any view V of the corrupt parties, and observe that it fully determines the degree-t
polynomials fa(x), f b(x), f c(x) that share a, b, c, and the output of the veri�cation phase of Ftss. If
the veri�cation phase of Ftss returns 0 then all parties reject both in the real world and in the ideal
world. Hence, from now on we assume that the veri�cation phase of Ftss returns 1.

Recall that the simulator simulates a full execution of the protocol Gdeg2c by taking the role
of the honest parties and the ideal functionalities. Therefore, there is a one-to-one correspondence
between simulated executions and real executions. For any such execution, the set of honest parties
that output ⊥ is the same between the ideal world and the real world. Moreover, in the ideal world
the honest parties that don't output ⊥ necessarily output y. Therefore, it is enough to show that
the probability that all honest parties in the real world output either ⊥ or y is at least 1− ε, where
ε will be determined later in the analysis.

Let fu(x) and fv(x) be the degree-t polynomials de�ned by the shares ui := xαi − ai and

vi := xβi − bi for i ∈ H. Let u := fu(0) and v := fv(0), and let fy(x) be the polynomial de�ned

71



by the shares yi := uv + ubi + vai + ci + w1
i + . . . + wmi for i ∈ H. By the correctness of Beaver's

trick (see [Bea91] and also Appendix B.1), it follows that fy(x) is a degree-t polynomial such that
fy(0) = y.

Let E be the real-world event that for all honest Pj (as Bob) and all honest Pk (as Carol),
the output of Pk in scgj,k is of the form (u, v, fy(j)), (u′, v′, ∗) or ⊥, for any (u′, v′) 6= (u, v), and
where ∗ is any possible value. By (online) εscg-security against Alice, event E occurs with probability
1 − ε even conditioned on V, for ε ≤ (n − t)2εscg. In the following we show that in the real-world,
conditioned on E, the output of any honest party Pi is either y or ⊥, which implies that the protocol
is ε-secure.

Fix some honest Pk. If some non-silent scgjk outputs (u′, v′, ∗) such that (u′, v′) 6= (u, v) then the
output of Pk is ⊥. Similarly, if there are at least t+ 1 silent SCG's then its output is ⊥. Otherwise,
there are at least n − t non-silent SCG's, which imply that there are at least (n − t) − t ≥ t + 1
non-silent SCG's where Pj is honest, and in this case the output is necessarily (u, v, fy(j)). Observe
that those t + 1 shares fully determine the polynomial fy(x), so if the output of some other SCG
is not on this polynomial then the output is ⊥ and otherwise the output is y. This concludes the
proof of security of the protocol.

B.5 Degree-2 Computation

Proof of Theorem 3.4. In this section we prove that protocol deg2c is UC-secure. By the composabil-
ity properties of UC-security (see Section A), it is enough to prove security in the (Fvss,F〈0〉,FGdeg2c)-

hybrid model. We denote the call corresponding to zssk by (F〈0〉)k, and the call corresponding to

Gdeg2cki by (FGdeg2c)
k
i .

In the following, we de�ne a polynomial time simulator S. At the beginning of execution S
receives the set of corrupt parties C, and sends it to the ideal functionality Fdeg2c. During its
execution, the simulator simulates the execution of the corrupt parties, forwarding all messages sent
between Z and the (simulated) parties in C. We denote by H := P \ C the set of honest parties.

First round simulation. In the �rst round, for each input xu of an honest party Pi, the simulator
samples a random symmetric bivariate polynomial Xu(x, y) of degree at most t in each variable,
and gives Xu(j, x) to each corrupt Pj .

For each k ∈ {1, . . . ,m}, the simulator receives from the environment inputs {skj }j∈C and

{skij}i∈P,j∈C for the call to the ideal functionality (F〈0〉)k. The simulator picks a random degree-

2t polynomial Ok and random degree-t polynomials {Oki }i∈P under the constraints Ok(0) = 0,
Ok(j) = sj , O

k
i (0) = Ok(i), and Oki (j) = sij for all i ∈ P and j ∈ C. The simulator sends

{Ok(j), Okj (x), Ok1(j), . . . , Okn(j)} for each corrupt Pj .
The simulator receives from the environment a symmetric bivariate polynomialXu(x, y) of degree

at most t in each variable, for each input xu of a corrupt party Pj (if Xu(x, y) is not a symmetric
bivariate polynomial of degree at most t in each variable then it sets Xu(x, y) = 0).

Interaction with Fdeg2c. For each input xu of a corrupt party Pj , the simulator sends Xu(0, 0)
as the corresponding input to Fdeg2c, where Xu(x, y) is the polynomial received from Z in the
simulation of the �rst round. The simulator receives the output (ȳ1, . . . , ȳm) from Fdeg2c.
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Second round simulation. For each k ∈ {1, . . . ,m} the simulator does the following. Assume
that yk is de�ned to be xαxβ + x1 + . . . + xn by Fdeg2c. For γ ∈ {α, β, 1, . . . , n}, consider xγ , and
de�ne the bivariate polynomial Xγ(x, y) as follows.

� If xγ is a constant then set Xγ = xγ .

� If xγ is an input xu of an honest party then set Xγ = Xu, where Xu was sampled by the
simulator.

� If xγ is an input xu of a corrupt party then set Xγ = Xu, where Xu was given by Z to the
simulator.

For each j ∈ C set ȳkj := Xα(j, 0)Xβ(j, 0) + X1(j, 0) + . . . + Xn(j, 0) + Ok(j). Sample a random

degree-2t polynomial f̄k(x) under the constraints {f̄k(j) = ȳkj }j∈C and f̄k(0) = ȳk. The simulation
of the calls to FGdeg2c is done as follows.

� For each i ∈ H, the simulator gives f̄k(i) and {Xα(j, i), Xβ(j, i), X1(j, i), . . . , Xn(j, i), Oki (j)}
to the corrupt party Pj , as the output of (FGdeg2c)

k
i .

� For each j ∈ C, the simulator gives {Xα(x, j), Xβ(x, j), X1(x, j), . . . , Xn(x, j), Okj (x)} to the

corrupt party Pj , as the output of (FGdeg2c)
k
j .

Finally, the simulator orders Fdeg2c to deliver the outputs to the parties.

To analyze the simulator, we show that any environment Z cannot distinguish between the real
world and the simulated world. For this, we �x Z, and assume without loss of generality that it is
deterministic. This �xes the set of corrupted parties C, as well as the inputs of the honest parties.
We begin by analysing the corrupt parties' view, and then continue with the analysis of the outputs
of the honest parties.

The corrupt parties' view. We show that the distribution of the corrupt parties' view in the
ideal world is identical to the distribution in the real world. In the real world the view of the corrupt
parties consists of

1. the polynomials {Xu(x, j)}j∈C from Fvss for any input xu of an honest party,

2. the shares {Ok(j), Okj (x), Ok1(j), . . . , Okn(j)} from F〈0〉 for any k ∈ {1, . . . ,m} and j ∈ C,

3. the polynomials {Xα(x, j), Xβ(x, j), X1(x, j), . . . , Xn(x, j), Okj (x)} from (FGdeg2c)
k
j , for each

j ∈ C and k ∈ {1, . . . ,m}, where Xα, Xβ, X1, . . . , Xn are the polynomials corresponding to
the k-th output, and

4. the output yki and the shares {Xα(i, j), Xβ(i, j), X1(i, j), . . . , Xn(i, j), Oki (j)} from (FGdeg2c)
k
i

for any i ∈ H, j ∈ C and k ∈ {1, . . . ,m}, where Xα, Xβ, X1, . . . , Xn are the polynomials
corresponding to the k-th output.

By standard properties of symmetric bivariate polynomials (see Section B.2), the partial view that
contains only (1) has the same distribution in the real world and in the ideal world. Fix any such
partial view. Note that this partial view also �xes the messages from Z to calls to F〈0〉, and since
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the output of F〈0〉 is sampled in the same way in both worlds, then the partial view that contains
only (1) and (2) has the same distribution in the real world as in the ideal world. Fix (2) as well,
and observe that the polynomials Xu(x, y) that Z sends Fvss as the inputs of the corrupt parties
are �xed as well, which means that (3) is also �xed.

It remains to show that conditioned on (1) � (3), the distribution of the partial view (4) is
the same in both worlds. Observe that for any k ∈ {1, . . . ,m} and i ∈ H the partial output
{Xα(i, j), Xβ(i, j), X1(i, j), . . . , Xn(i, j), Oki (j)}j∈C of (FGdeg2c)

k
i is already �xed. Therefore, it is

enough to show that the distribution of {yki }k∈{1,...,m},i∈H is the same of both worlds.

In the real-world, for any k ∈ {1, . . . ,m} consider the degree-2t polynomial fk(x) :=
Xα(0, x)Xβ(0, x) + X1(0, x) + . . . + Xn(0, x) + Ok(x). Note that fk(i) = yki for any i ∈ H, and
so it is enough to show that {fk(x)}k∈{1,...,m} and {f̄k(x)}k∈{1,...,m} have the same distribution.

Note that for any j ∈ C the value fk(j) is �xed by the partial view (3), and it is equal to ȳkj .

We continue by showing that fk(0) = ȳk. Consider some xγ for γ ∈ {α, β, 1 . . . , n}. Note that
if xγ is a constant then Xγ(x, y) is a �xed constant polynomial; if xγ is an input xu of a cor-
rupt party, then Xγ(x, y) was already �xed, and in the ideal world the input xu to Fdeg2c is set
to Xγ(0, 0); if xγ is an input xu of an honest party, then in the ideal world the input to Fdeg2c

is xu, and in real world, by the de�nition of the protocol, Xγ(0, 0) = xu. We conclude that
fk(0) = Xα(0, 0)Xβ(0, 0) +X1(0, 0) + . . .+Xn(0, 0) = ȳk is a �xed value.

Therefore, by the de�nition of F〈0〉, for any k ∈ {1, . . . ,m} the polynomial fk(x) is uniformly

distributed conditioned on the values {fk(j) = ȳkj }j∈C and fk(0) = ȳk, and the random variables

{fk(x)}k∈{1,...,m} are independent. This implies that {fk(x)}k∈{1,...,m} and {f̄k(x)}k∈{1,...,m} have
the same distribution, and concludes the analysis of the corrupt parties' view.

Output of honest parties. It remains to show that conditioned on the corrupt parties' view,
the output of the honest parties has the same distribution in the real-world and in the ideal world.
Fix any view V of the corrupt parties. In the ideal world the outputs of the honest parties are
(f̄1(0), . . . , f̄m(0)). In the real world, for any k ∈ {1, . . . ,m} each honest party receives fk(i) from
(Fdeg2c)

k
i , for i ∈ H. Furthermore, for each j ∈ C an honest party either receives fk(j) or ⊥.

Therefore, each honest party has at least (n − t) ≥ 2t + 1 evaluations of the polynomial fk(x),
and so it can reconstruct fk(x). Therefore, the output of any honest party is (f1(0), . . . , fm(0)).
Finally, we've seen that (f̄1(0), . . . , f̄m(0)) = (f1(0), . . . , fm(0)), which concludes the proof.

C Appendix: Veri�able Secret Sharing

C.1 Interactive Signature

We prove the following claims to prove Lemma 4.2.

Claim C.1. Protocol iSig satis�es correctness with probability 1.

Proof. If D, I and R are honest, then the veri�cation will conclude with Success since all the n− t
honest parties will accept I. In the opening, R outputs the dealer's secret s = f(0) with probability
1, since all the n− t honest veri�ers will reaccept I.

Claim C.2. Protocol iSig satis�es nonrepudiation except with probability O(n/|F|) + n2−Ω(κ).

Recalling that |F| > 2Ω(κ) and κ > ω(log n), the error simpli�es to 2−Ω(κ).

74



Proof. Suppose that I and R are honest. We analyze the probability that the veri�cation is com-
pleted with Success but the opening fails. This event happens only if at least 2t+ 1 veri�ers have
accepted I in the veri�cation, but at most t of them re-accepted it in the opening. This means that
there is at least one honest Pi who accepted I but did not re-accept it. We show that, for any �xed
honest party i, the probability of such an event is O(1/|F|) + 2−Ω(κ). By a union-bound over all
parties, this yields a bound of O(n/|F|) + n2−Ω(κ), as required.

Fix some honest party i. Fix the values (αij , fij , rij)j∈‖κ‖ and the polynomials f(x) and r(x)
that were sent by the (possibly corrupted) dealer D at the �rst round. We say that a point αij is
consistent if f(αij) = fij . A point which is not consistent is referred to as inconsistent. Let ` be
the number of consistent points. We distinguish between two cases.

Case 1: If ` > κ/3 then the probability that a random (κ/2)-subset L̄i contains less than κ/8
consistent points is 2−Ω(k) (e.g., by a Cherno�-bound). Hence in this case the probability that
party Pi does not re-accept is 2−Ω(k) (regardless of the event of accepting in the veri�cation phase).

Case 2: If ` ≤ κ/3 then Pi accepts only if there exists at least κ/6 inconsistent points αij that
pass the veri�cation check . That is, there exist κ/6 indices j ∈ ‖κ‖ for which

f(αij) + cr(αij) = fij + crij but f(αij) 6= fij ,

where c 6= 0 is chosen uniformly from F by I. Note that each inconsistent point αij de�nes at most
a single scalar c = (f(αij) − fij)/(rij − r(αij)) for which the above holds. (If the denominator is
zero then no scalar c satis�es the constraint.) Therefore there is only a constant number (actually
6) of scalars, that satis�es the above for a set of κ/6 inconsistent points. The probability that a
randomly chosen c falls into this set is O(1/|F|). This competes the second case. The claim follows.

Claim C.3. Protocol iSig satis�es unforgeability with probability (1 − 2Ω(κ)) assuming that κ =
ω(log n) and that |F| > 5(nκ+ 1).

Proof. Fix some view V of the adversary A. Assume that veri�cation has completed with Success

(as otherwise I's secret is not considered by R). Let D be an honest dealer whose input is f(x). Our
goal is to upper-bound the event that R accepts in the open phase a faulty polynomial f ′(x) 6= f(x)
of degree (nκ + 1). Note the f and f ′ can agree on a set Z of at most nκ + 1 points. Since R
accepts f ′ there must be at least one honest party i whose set of �opening point� Ti = {αi,j : j ∈ L̄i}
contains at least κ/8 = |Ti|/4 points from Z. Recall that each honest Ti is randomly selected (by the
honest dealer) and remains hidden from the adversary. Therefore, even conditioned on V, each point
in Ti falls in Z with probability at most |Z|/|F| < 1/5, and by a Cherno�-bound, the probability
of hitting at least |Ti|/4 points in Z is exponentially small in |Ti| = κ/2. Applying a union-bound
over all honest parties, we get an error probability of n2−Ω(κ) which is 2−Ω(κ) when κ = ω(log n).

Claim C.4. Protocol iSig satis�es perfect privacy.

Proof. The privacy has to be argued when D, I and R are honest and at most t of the veri�ers
are corrupt. The adversary learns κt points on f(x) and r(x) in the distribute phase. In verify
phase, the adversary learns κ

2 (2t+ 1) additional points on f(x) and r(x). So in total the adversary
learns κt + κ

2 (2t + 1) points on f(x) and r(x) which is less than the degree of the polynomials
(nκ+ 1). Thus, the constant term of the polynomials f(x) are information theoretically secure till
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the end of open phase, which further implies information theoretic security for s. In other words,
the distribution of the view of adversary for two secrets s and s′ are perfectly indistinguishable.

Claim C.5. Protocol iSig satis�es the output-extraction property.

Proof. The outcome of the veri�cation is public, and so if the veri�cation failed, the adversary
knows that R outputs ⊥. Otherwise the veri�cation succeeded. In this case, the adversary can
compute the message of any honest party to R, and compute the output of R. Indeed, an honest
I will send the polynomial f(x) which the corrupt dealer has generated. An honest veri�er Pi
will send {αi,j , fi,j}j∈L̄i , which the adversary can compute, since the corrupt dealer has generated
{αi,j , fi,j}j∈{1,...,κ}, and the set Li was broadcasted in the veri�cation.

C.2 Weak Commitment

Proof of Lemma 4.4. In this section we prove that protocol swcom is UC-secure with respect to
functionality Fwcom. For this, we need to de�ne a simulator S. Our simulator is e�cient when the
dealer is honest. However it runs in time polynomial in κ and 2n when the dealer is corrupt, and is
therefore only e�cient when the number of parties is logarithmic in the security parameter.

At the beginning of execution S receives the set of corrupt parties C, and sends it to the ideal
functionality Fwcom. During its execution, the simulator simulates the execution of the corrupt
parties, forwarding all messages sent between Z and the (simulated) parties in C. We denote by
H := P \ C the set of honest parties. We divide the proof in two cases, based on whether the dealer
D is honest or corrupt.

C.2.1 Honest Dealer

The simulator receives the shares of the corrupt parties {si}i∈C from the ideal functionality. The
simulator samples a symmetric bivariate polynomial Ḡ(x, y) of degree-t in each variable, conditioned
on Ḡ(i, 0) = si for all i ∈ C. The simulator takes the role of the honest parties, where the dealer
holds the polynomial Ḡ(x, y), and executes the protocol with Z (there is no need to execute the
local computation stage of the honest parties).

To analyze the simulator, we show that any environment Z cannot distinguish between the real
world and the simulated world. For this, we �x Z, and assume without loss of generality that it
is deterministic. This �xes the set of corrupted parties C, as well as the input of the honest dealer
g(x). We begin by analysing the corrupt parties' view, and then continue with the analysis of the
outputs of the honest parties.

The corrupt parties' view. We show that the distribution of the corrupt parties' view in the
ideal world is identical to the distribution in the real world.

In the real-world, the view of the corrupt parties consists of (1) the polynomials {G(x, i)}i∈C,
(2) the shares {ri(j)}i∈H,j∈C, (3) the ISS executions, and (4) the broadcasts mi(x), {mji}j∈P for
every i ∈ H.

By known properties of bivariate polynomials (see Section B.2), it follows that the distribution
of the polynomials {G(x, i)}i∈C is the same in both worlds, and so we �x those polynomials. The
padding polynomials {ri(x)}i∈H are picked in the same way in both world, and so we can �x the
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shares {ri(j)}i∈H,j∈C as well. Observe that except for the ISS executions, all �rst round messages
that the corrupt parties receive are �xed.

Consider the ISS execution iSigij for a pair (Pi, Pj). If both parties are honest, then the perfect
privacy implies that the corrupt parties' view in the execution of iSigij has the same distribution
in both worlds. If one of the parties is corrupt, then in both worlds iSigij is executed with input
G(i, j) by the dealer, and so the corrupt parties' view has the same distribution in both worlds. Fix
the view of the corrupt parties in those executions as well.

For each pair (Pi, Pj) of honest parties, the broadcast of Pi, which is mi(x), has the same
distribution in both worlds. Indeed,mi(x) is a random degree-t polynomial conditioned on {mi(k) =
G(i, k) + ri(k)}k∈C. Fix mi(x) and observe that the broadcast of Pj , which is mji = mi(j) is also
�xed.

It remains to consider the broadcasts of a pair (Pi, Pj) where one party is corrupt and the other
is honest. If Pi is honest and Pj is corrupt, then the broadcast of Pi was already �xed to be mi(x).
Otherwise Pj is honest and Pi is corrupt. Observe that the view of the �rst round was already �xed,
and note that this �xes the pad rij that Pi has to send to Pj . Therefore the broadcast of Pj is �xed
to be mij = G(i, j) + rij . This concludes the analysis of the corrupt parties' view.

The honest parties' outputs. It remains to show that conditioned on the corrupt parties' view,
the output of the honest parties has the same distribution in the real-world and in the ideal-world.
Condition on any view V of the corrupt parties. In the ideal world the output of an honest Pi is g(i).
We show that this happens with probability 1− ε in the real world, for ε that will be determined in
the analysis.

First, observe that all honest parties are not con�icting, and also that honest parties are not
con�icting with the dealer, so there always exists a clique of size n− t that consists of all the honest
parties, and so an honest dealer is never discarded.

Consider the event E in which for every pair (Pi, Pj) such that Pi is corrupt and Pj is honest
the output of iSigij is either G(i, j) or ⊥. It is not hard to see that conditioned on this event
the output of every honest party Pj is g(j). Indeed, if Pj is inside the clique then it outputs
G(j, 0) = g(j) according to the protocol. If Pj is outside the clique then, by the perfect correctness
of ISS, it receives correct shares G(i, j) from all honest Pi's inside the clique, and either a correct
share G(i, j) or ⊥ from a corrupt Pi inside the clique. Since there are at least n− 2t ≥ t+ 1 honest
parties inside the clique, Pj is able to recover G(x, j) and it outputs G(0, j) = g(j), as required.

Finally, note that by the unforgeability property of the ISS, event E occurs with probability at
least 1− ε for ε ≤ t(n− t)εiSig. This concludes the analysis of the honest dealer.

C.2.2 Corrupt Dealer

When the dealer is corrupt the honest parties have no inputs. Therefore the simulator S can take
the role of the honest parties, and executes the protocol with Z. At the end of the execution, if
there is no clique of size n − t then S sends x2t to the ideal functionality (thus making sure that
the outputs of all honest parties is ⊥). Otherwise there exists a clique of size n − t. In this case,
the simulator holds the shares of the at least n− 2t ≥ t+ 1 honest parties inside the clique, which
de�ne a symmetric bivariate polynomial G(x, y) of degree t in each variable. The simulator sets
g(x) := G(x, 0) and computes the set P′ of all honest parties outside the clique whose output in the
simulation is ⊥. The simulator sends g(x) and P′ to the ideal functionality.
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To analyze the simulator, we show that any environment Z cannot distinguish between the real
world and the ideal world. For this, we �x Z, and assume without loss of generality that it is
deterministic. This �xes the set of corrupted parties C. We begin by analysing the corrupt parties'
view, and then continue with the analysis of the outputs of the honest parties.

The corrupt parties' view. Since the honest parties have no inputs, and the simulator takes
the role of the honest parties in the ideal-world execution, it is not hard to see that the corrupt
parties' view in the ideal world is identical to the corrupt parties' view in the real world.

The honest parties' outputs. Recall that by the output-extraction property (see De�nition 4.1)
, the output of any honest receiver can be extracted from the view V of the corrupt parties. We
say that a view V of the corrupt parties is good if for any pair (Pi, Pj) of honest parties where the
veri�cation phase of iSigij ended with success, it holds that Pj accepts the value sent by Pi in the
opening of iSigij . By the non-repudiation property it holds that the view is good with probability
1− ε for ε ≤ (n− t)2εiSig. Condition on any good view V.

Recall that the simulator simulates a full execution of the protocol by taking the role of the
honest parties. Therefore, there is a one-to-one correspondence between simulated executions and
real executions. For each such execution, the set of parties that output ⊥ is the same between the
ideal world and the real world. Moreover, in the ideal world the honest parties Pi that do not output
⊥ necessarily output the value g(i), where g(x) was de�ned by the shares of the honest parties inside
the clique. Therefore, it remains to show that for honest parties outside the clique whose output is
not ⊥, the output is consistent with g(x). Therefore, we need to show that conditioned on V, the
probability that every party Pi outputs either g(i) or ⊥ is 1.

Since V is good, then for every pair (Pi, Pj) of honest parties where Pi is inside the clique and
Pj is outside the clique, Pj accepts the share G(i, j) from Pi. Since there are at least n− 2t ≥ t+ 1
honest parties inside the clique, it holds that their shares fully determine the degree t polynomial
G(x, j). Therefore, the output of Pj is either G(0, j) = g(j) (in the case all corrupt shares are either
⊥ or are consistent with G(x, j)) or ⊥ (if some share of a corrupt party is inconsistent with G(x, j)).
This concludes the proof of security of swcom.

C.3 Statistical VSS

Proof of Theorem 4.5. In this section we prove that protocol svsh is UC-secure with respect to
functionality Fvss. For this, we need to de�ne a simulator S. Our simulator is e�cient when the
dealer is honest. However it runs in time polynomial in κ and 2n when the dealer is corrupt, and is
therefore only e�cient when the number of parties is logarithmic in the security parameter.

At the beginning of execution S receives the set of corrupt parties C, and sends it to the ideal
functionality Fvss. During its execution, the simulator simulates the execution of the corrupt parties,
forwarding all messages sent between Z and the (simulated) parties in C . We denote by H := P \C
the set of honest parties. We divide the proof in two cases, based on whether the dealer D is honest
or corrupt.
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C.3.1 Honest Dealer

The simulator receives the shares of the corrupt parties {F (x, i)}i∈C from the ideal functionality. The
simulator samples a symmetric bivariate polynomial F̄ (x, y) of degree-t in each variable, conditioned
on F̄ (i, x) = F (x, i) for all i ∈ C. The simulator takes the role of the honest parties, where the
dealer holds the polynomial F̄ (x, y), and completes the execution of the protocol.

To analyze the simulator, we show that any environment Z cannot distinguish between the real
world and the simulated world. For this, we �x Z, and assume without loss of generality that it
is deterministic. This �xes the set of corrupted parties C, as well as the input of the honest dealer
F (x, y). We begin by analysing the corrupt parties' view, and then continue with the analysis of
the outputs of the honest parties.

The corrupt parties' view. We show that the distribution of the corrupt parties' view in the
ideal world is identical to the distribution in the real world.

In the real-world, the view of the corrupt parties consists of (1) the polynomials {F (x, i)}i∈C,
(2) the multiple executions of swcom, and (3) the broadcasts pi(x), {pji}j∈P for every i ∈ H.

By known properties of bivariate polynomials (see Section B.2), it follows that the distribution
of the polynomials {F (x, i)}i∈C is the same in both worlds, and so we �x those polynomials. Condi-
tioned on {F (x, i)}i∈C, the multiple instances of swcom are executed exactly like in the real world,
on random inputs for honest dealers, and so the view of the corrupt parties has the same distribution
in both worlds. Fix the view of the corrupt parties in those executions as well. Note that it �xes the
shares hik = hi(k) for any honest Pi and corrupt Pk. Furthermore, by a similar analysis to the one
in Section C.2.1, the polynomials hi(x) of honest parties Pi's are uniformly distributed conditioned
on {hi(k) = hik}k∈C.

It remains to consider the broadcasts of a pair (Pi, Pj) in the second round. We split into cases.

� When both parties Pi and Pj are honest, then in both worlds the broadcast of Pi, which is
pi(x), is a random degree-t polynomial conditioned on {pi(k) = F (i, k)+hi(k)}k∈C. Moreover,
the broadcast of Pj , which is pij is equal to pi(j). Therefore the broadcasts of the pair (Pi, Pj)
have the same distribution in both worlds.

� When Pi is corrupt and Pj is honest, the share hij that Pi sends to Pj in the �rst round
of wcomi was already �xed. Therefore, in both worlds the broadcast of Pj is �xed to be
F (i, j) + hij .

� When Pi is honest and Pj is corrupt, the broadcast pi(x) of Pi was already �xed (in the �rst
case), and so it is the same in both worlds.

This concludes the analysis of the view of the corrupt parties.

The honest parties' outputs. Recall that by the analysis of Section C.2.2 the view V fully
determines whether the correctness of swcomi holds for a corrupt Pi. We say that a view V of
the corrupt parties is good if correctness holds for all the executions of swcomi for corrupt Pi's.
By a similar analysis to the one in Section C.2.2, it follows that a view is good with probability
1− t · εswcom. Condition on any good view V.

In the ideal world the output of an honest Pi is F (x, i). By a similar analysis to the one in
Section C.2.1 it follows that the probability that correctness holds for all swcomi for honest Pi's is
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at least 1 − (n − t)εswcom. Conditioned on this event, we show that the output of an honest Pi in
the real world is F (x, i) as well.

First, observe that all honest parties are not VSS-con�icting, and also that honest parties are
not con�icting in swcomi for an honest Pi. Therefore we can take W to be the set of all honest
parties, so an honest dealer is never discarded.

We continue by proving that each honest Pi outputs F (x, i). This is clearly true for each honest
Pi in W, so it remains to show that this also holds for honest Pi's outside W. Consider any Pi /∈W.
By the correctness of swcom, all honest parties in W are also in Wi, so there are at least n−2t ≥ t+1
honest parties in Wi∩W. In the following we show that for any party Pj ∈Wi∩W party Pi recovers
the correct share F (j, i), and so Pi can recover F (x, i) using (at least) t+1 shares of the polynomial.

Consider an honest Pj ∈Wi ∩W. By the correctness of swcomj it holds that the output of Pi in
swcomj is hji = hj(i). We conclude that Pi recovers the share pj(x)−hji = F (j, i) +hj(i)−hj(i) =
F (j, i).

Consider a corrupt Pj ∈ W ∩Wi. By the correctness property of swcomj , for all honest parties
that have non-⊥ outputs in swcomj , the outputs are consistent with some degree-t polynomial
hj(x). Observe that all honest parties in W have non-⊥ outputs in swcomj , and so their shares
fully determine the polynomial hj(x). Furthermore, all parties in W are consistent with the degree-t
polynomial pj(x), so pj(k) = F (j, k) + hj(k) for all honest Pk ∈ W, which means that the shares
of those honest parties fully determine the polynomial pj(x) = F (j, x) + hj(x). We conclude that
Pi holds hji = hj(i) and recovers pj(i) − hji = F (j, i) + hj(i) − hj(i) = F (j, i), as required. This
concludes the analysis of an honest dealer.

C.3.2 Corrupt Dealer

When the dealer is corrupt the honest parties have no inputs. Therefore the simulator S can take
the role of the honest parties, and executes the protocol with Z. At the end of the execution, if
there is no set V ful�lling the required properties, then S sends x2t to the ideal functionality (thus
making sure that the outputs of all honest parties is the arbitrary polynomial). Otherwise there
exists a set V that ful�ls the required properties. In this case, the simulator computes the shares of
the honest parties inside W to obtain a symmetric bivariate polynomial F (x, y) of degree t in each
variable, and sends F (x, y) to the ideal functionality.

To analyze the simulator, we show that any environment Z cannot distinguish between the real
world and the ideal world. For this, we �x Z, and assume without loss of generality that it is
deterministic. This �xes the set of corrupted parties C. We begin by analysing the corrupt parties'
view, and then continue with the analysis of the outputs of the honest parties.

The corrupt parties' view. Since the honest parties have no inputs, and the simulator takes
the role of the honest parties in the ideal-world execution, it is not hard to see that the corrupt
parties' view in the ideal world is identical to the corrupt parties' view in the real world.

The honest parties' outputs. The analysis of the honest parties' outputs follows similar lines
to the one in the honest dealer case, and so it is omitted. This concludes the security proof of svsh.
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C.4 Cryptographic VSS

Here we recall the cryptographic VSS protocol of [BKP11].

Inputs: D has input F (x, y), a symmetric bivariate polynomial of degree t in both x and y.

Output: The parties output [[F (0, 0)]] when D is honest and [[F ′(0, 0)]] otherwise where F ′(x, y) is a
bivariate polynomial of degree at most t.

R1 D does the following:

◦ computes [comij , (fij , rij)] = Commit(fij) for i, j ∈ {1, . . . , n} and i ≥ j, where fij = F (i, j).

◦ assigns comij = comji and rij = rji for i, j ∈ {1, . . . , n} and i < j.

◦ sends (fij , rij) to Pi for j ∈ [1, n] and broadcasts comij for i, j ∈ {1, . . . , n}.

Each party Pi does the following

◦ chooses two sets of n random values (pi1, . . . , pin) and (gi1, . . . , gin).

◦ computes [pcomij , (pij , qij)] = Commit(pij) and [gcomij , (gij , hij)] = Commit(gij) for i, j ∈ {1, . . . , n}.
◦ sends (pij , qij) and (gij , hij) for j ∈ {1, . . . , n} to D, and broadcasts pcomij and gcomij for j ∈
{1, . . . , n}.

R2 D does the following for every party Pi

◦ veri�es if pij
?
= Open(pcomij , pij , qij) and gij

?
= Open(gcomij , gij , hij) for j ∈ {1, . . . , n} and becomes

unhappy with Pi if the check fails.

◦ broadcasts (fij , rij) for all j ∈ {1, . . . , n} when unhappy and broadcasts (αij , βij) for all j ∈ {1, . . . , n}
such that αij = fij + pij and βij = rij + gij otherwise.

Each party Pi does the following

◦ veri�es if deg(fi(x))
?
= t and fij

?
= Open(comij , fij , rij) for j ∈ {1, . . . , n} and becomes unhappy with

D if the check fails.

◦ broadcasts (pij , qij) and (gij , hij) for j ∈ {1, . . . , n} when unhappy and nothing otherwise.

Local Computation The pair (D,Pi) is said to be in con�ict if either (a) D is unhappy with Pi or (b)
Pi is unhappy with D or both. The parties who do not have any con�ict with D are denoted as V. D is
discarded if one of the following is true and a default [[·]]-sharing is assumed.

◦ D is in con�ict with more than t parties

◦ comij 6= comji for some i and j

◦ D broadcasts (fij , rij) such that fij 6= Open(comij , fij , rij) for some i and j

◦ D broadcasts fij for j = {1, . . . , n} such that they de�ne polynomial of degree > t for some i

◦ D broadcasts (fij , rij) and (fji, rji) for some i and j such that (fij 6= fji) or (rij 6= rji)

◦ D broadcasts (αij , βij) and Pi broadcasts (pij , qij) and (gij , hij) such that pij = Open(pcomij , pij , qij),
gij = Open(gcomij , gij , hij) for all j; and (f ′ij 6= Open(comij , f

′
ij , r

′
ij) or deg(f ′i(x)) > t) where

f ′ij = αij − pij , r′ij = βij − gij and f ′i(x) is the polynomial de�ned by f ′ijs for j ∈ {1, . . . , n}.

Protocol cvsh
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If D is not discarded, then every Pi in V outputs fi(x) received in R1. Every Pi 6∈ V outputs� (a)
fi(x) if D reveals it, (b) the polynomial derived from {αkj − pkj}j∈{1,...,n} when Pi opens pij and gij for
j ∈ {1, . . . , n} correctly or (c) a default polynomial otherwise. Pi is discarded when a default polynomial
is assumed for it. The output computation of every Pi 6∈ V can be done publicly by every party.

Figure 20: Protocol cvsh

Lemma C.6. Protocol cvsh realises functionality Fvss tolerating a static adversary A corrupting t
parties, possibly including the dealer D, relying on NICOM.

We omit the proof for this existing protocol.

C.4.1 Cryptographic MPC for single-input function

Proof sketch. As usual the proof is broken into two cases� honest dealer and corrupt dealer.
For the honest dealer case, the simulator receives the output p(x1, . . . , xm) on the inputs

of the honest dealer from the functionality and proceed to emulate the honest parties (includ-
ing D) to Z. The emulation invokes the honest VSS simulators for m + t instances (m in-
stance for the inputs and t instances for sharing random polynomials) with random shares
{f1
i (x), . . . , fmi (x),m1

i (x), . . . ,mt
i(x)} to the corrupt parties Pi as the inputs of the simulators. The

rest of the simulation is straight-forward as the simulation never needs the shares of the honest
parties from any of the VSS instances. Lastly, the simulator computes the n points on the 2t degree
polynomial that it needs to broadcast as follows. It �xes the t points coming from the t corrupt
parties. Then the constant term is set to p(x1, . . . , xm) received from the functionality. It then
�xes the remaining points by interpolating a random 2t-degree polynomial over these t + 1 points
(possibly �xing the remaining points uniformly at random). This makes sure that p(x1, . . . , xm) is
reconstructed as the output.

For the corrupt dealer case, the simulator plays the role of the honest parties and extracts all
the inputs of the corrupt D via invoking the simulators for corrupt D case for VSS. It then sends
these extracted inputs to the functionality to complete the simulation.
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