
Network-Agnostic State Machine Replication

Erica Blum1, Jonathan Katz2, and Julian Loss1

1 University of Maryland
2 George Mason University

Abstract. We study the problem of state machine replication (SMR)—
the underlying problem addressed by blockchain protocols—in the pres-
ence of a malicious adversary who can corrupt some fraction of the par-
ties running the protocol. Existing protocols for this task assume either
a synchronous network (where all messages are delivered within some
known time ∆) or an asynchronous network (where messages can be de-
layed arbitrarily). Although protocols for the latter case give seemingly
stronger guarantees, this is not the case since they (inherently) tolerate
a lower fraction of corrupted parties.

We design an SMR protocol that is network-agnostic in the following
sense: if it is run in a synchronous network, it tolerates ts corrupted
parties; if the network happens to be asynchronous it is resilient to ta ≤ ts
faults. Our protocol achieves optimal tradeoffs between ts and ta.

1 Introduction

State machine replication (SMR) is a fundamental problem in distributed
computing [18,19,31] that can be viewed as a generalization of Byzantine
agreement (BA) [20, 30]. Roughly speaking, a BA protocol allows a set
of n parties to agree on a value once, whereas SMR allows those par-
ties to agree on an infinitely long sequence of values with the additional
guarantee that values input to honest parties are eventually included in
the sequence. (See Section 3 for formal definitions. Note that SMR is not
obtained by simply repeating a BA protocol multiple times; see further
discussion in Section 1.1.) The desired properties should hold even in the
presence of some fraction of corrupted parties who may behave arbitrarily.
SMR protocols are deployed in real-world distributed data centers, and
the problem has received renewed attention in the context of blockchain
protocols used for cryptocurrencies and other applications.

Existing SMR protocols assume either a synchronous network, where
all messages are delivered within some publicly known time bound ∆,
or an asynchronous network, where messages can be delayed arbitrarily.
Although it may appear that protocols designed for the latter setting are
strictly more secure, this is not the case because they also (inherently)

tolerate a lower fraction of corrupted parties. Specifically, assuming a
public-key infrastructure (PKI) is available to the parties, SMR proto-
cols tolerating up to ts < n/2 adversarial corruptions are possible in a
synchronous network, but in an asynchronous network SMR is achievable
only for ta < n/3 faults (see [8]).

We study here so-called network-agnostic SMR protocols that offer
meaningful guarantees regardless of the network in which they are run.
That is, fix thresholds ta, ts with 0 ≤ ta < n/3 and ta ≤ ts < n/2. We seek
to answer the following question: Assuming a PKI, is it possible to have an
SMR protocol that tolerates (1) ts (adaptive) corruptions if the network
is synchronous and (2) ta (adaptive) corruptions even if the network is
asynchronous? We show that the answer is positive iff ta + 2ts < n.

Our work is directly inspired by recent results of Blum et al. [5], who
study the same problem but for the simpler case of Byzantine agreement.
We match their bounds on ta, ts and, as in their work, show that these
bounds are optimal in our setting.1 While the high-level structure of our
SMR protocol resembles the high-level structure of their BA protocol, in
constructing our protocol we need to address several technical challenges
(mainly due to the stronger liveness property required for SMR; see the
following section) that do not arise in their work.

1.1 Related Work

There is extensive prior work on designing both Byzantine agreement and
SMR/blockchain protocols; we do not provide an exhaustive survey, but
instead focus only on the most relevant prior work.

As argued by Miller et al. [25], many well-known SMR protocols that
tolerate malicious faults (e.g., [7,16]) require at least partial synchrony in
order to achieve liveness. Their HoneyBadger protocol [25] was designed
specifically for asynchronous networks, but can only handle t < n/3 faults
even if run in a synchronous network. Blockchain protocols are typically
analyzed assuming synchrony [12, 26]; Nakamoto consensus, in particu-
lar, assumes that messages will be delivered much faster than the time
required to solve proof-of-work puzzles.

We emphasize that SMR is not realized by simply repeating a (multi-
valued) BA protocol multiple times. In particular, the validity property
of BA only guarantees that if a value is input by all honest parties then

1 It is not clear that SMR implies BA in the network-agnostic setting when ta+2ts ≥ n.
Thus, impossibility of SMR when ta +2ts ≥ n does not follow from the impossibility
result for BA shown by Blum et al. [5].

that value will be output by all honest parties. In the context of SMR
the parties each hold multiple inputs in a local buffer (where those inputs
may arrive at arbitrary times), and there is no way to ensure that all
honest parties will select the same value as input to some execution of
an underlying BA protocol. Although generic techniques for compiling a
BA protocol into an SMR protocol are known [8], those compilers are not
network-agnostic and so do not suffice to solve our problem.

Our work focuses on protocols being run in a network that may be
either synchronous or fully asynchronous. Other work looking at similar
problems includes that of Malkhi et al. [24], who consider networks that
may be either synchronous or partially synchronous; Liu et al. [21], who
design a protocol that tolerates a minority of malicious faults in a syn-
chronous network, and a minority of fail-stop faults in an asynchronous
network; and Guo et al. [13] and Abraham et al. [2], who consider tem-
porary disconnections between two synchronous network components.

A slightly different line of work [22, 23, 27, 28] looks at designing pro-
tocols with good responsiveness. Roughly speaking, such protocols still
require the network to be synchronous, but terminate more quickly if the
actual message-delivery time is lower than the known upper bound ∆.
Kursawe [17] designed a protocol for an asynchronous network that ter-
minates more quickly if the network is synchronous, but does not tolerate
more faults in the latter case. Finally, other work [3, 9, 10, 29] considers
a model where synchrony is available for some (known) limited period of
time, but the network is asynchronous afterward.

1.2 Paper Organization

We define our model in Section 2, before giving definitions for the various
tasks we consider in Section 3. In Section 4 we describe a network-agnostic
protocol for the asynchronous common subset (ACS) problem. The ACS
protocol is used as a subprotocol of our main result, a network-agnostic
SMR protocol, that is described and analyzed in Section 5. In Section 6
we prove a lower bound showing that the thresholds we achieve are tight
for network-agnostic SMR protocols. As discussed, Blum et al. [5] show
an analogous result for BA that does not directly apply to our setting.

2 Model

Setup assumptions and notation. We consider a network of n par-
ties P1, . . . , Pn who communicate over point-to-point authenticated chan-

nels. We assume that the parties have established a public-key infrastruc-
ture prior to the protocol execution. That is, we assume that all parties
hold the same vector (pk1, . . . , pkn) of public keys for a digital-signature
scheme, and each honest party Pi holds the honestly generated secret key
ski associated with pki. A valid signature σ on m from Pi is one for which
Vrfypki(m,σ) = 1. For readability, we use 〈m〉i to denote a tuple (i,m, σ)
such that σ is a valid signature on message m signed using Pi’s secret key.

For simplicity, we treat signatures as ideal (i.e., perfectly unforgeable);
we also implicitly assume that parties use some form of domain separation
when signing (e.g., by using unique session IDs) to ensure that signatures
are valid only in the context in which they are generated.

Where applicable, we use κ to denote a statistical security parameter.

Adversarial model. We consider the security of our protocols in the
presence of an adversary who can adaptively corrupt some number of
parties. The adversary may coordinate the behavior of corrupted par-
ties and cause them to deviate arbitrarily from the protocol. Note, how-
ever, that our claims about adaptive security are only with respect to
the property-based definitions found in Section 3, not with respect to a
simulation-based definition (cf. [11, 14]).

Network model. We consider two possible settings for the network.
In the synchronous case, all messages are delivered within some known
time ∆ after they are sent, but the adversary can reorder and delay
messages subject to this bound. (As a consequence, the adversary can
potentially be rushing, i.e., it can wait to receive all incoming messages
in a round before sending its own messages.) In this setting, we also
assume all parties begin the protocol at the same time, and parties’ clocks
progress at the same rate. When we say the network is asynchronous, we
mean that the adversary can delay messages for an arbitrarily long period
of time, though messages must eventually be delivered. We do not make
any assumptions on parties’ local clocks in the asynchronous case.

We view the network as being either synchronous or asynchronous for
the lifetime of the protocol (although we stress that the honest parties do
not know which is the case).

3 Definitions

Although we are ultimately interested in state machine replication, our
main protocol relies on various subprotocols for different tasks. We there-
fore provide relevant definitions here. Throughout, when we say a pro-

tocol achieves some property, we include the case where it achieves that
property with overwhelming probability (in the implicit parameter κ).

3.1 Useful Subprotocols

In some cases we consider protocols where parties may not terminate
(even upon generating output); for this reason, we mention termination
explicitly in some definitions. Honest parties are those who are not cor-
rupted by the end of the execution.

Reliable broadcast. A reliable broadcast protocol allows parties to agree
on a value chosen by a designated sender. In contrast to the stronger
notion of broadcast, here honest parties might not terminate (but, if so,
then none of them terminate).

Definition 1 (Reliable broadcast). Let Π be a protocol executed by
parties P1, . . . , Pn, where a designated sender P ∗ ∈ {P1, . . . , Pn} begins
holding input v∗ and parties terminate upon generating output.

– Validity: Π is t-valid if the following holds whenever at most t parties
are corrupted: if P ∗ is honest, then every honest party outputs v∗.

– Consistency: Π is t-consistent if the following holds whenever at
most t parties are corrupted: either no honest party outputs anything,
or all honest parties output the same value v ∈ {0, 1}.

If Π is t-valid and t-consistent, then we say it is t-secure.

Byzantine agreement. A Byzantine agreement protocol allows parties
who each hold some initial value to agree on an output value.

Definition 2 (Byzantine agreement). Let Π be a protocol executed by
parties P1, . . . , Pn, where each party Pi begins holding input vi ∈ {0, 1}.

– Validity: Π is t-valid if the following holds whenever at most t of
the parties are corrupted: if every honest party’s input is equal to the
same value v, then every honest party outputs v.

– Consistency: Π is t-consistent if the following holds whenever at
most t of the parties are corrupted: every honest party outputs the
same value v ∈ {0, 1}.

– Termination: Π is t-terminating if whenever at most t parties are
corrupted, every honest party terminates with some output in {0, 1}.

If Π is t-valid, t-consistent, and t-terminating, then we say it is t-secure.

Asynchronous common subset (ACS). Informally, a protocol for the
asynchronous common subset problem [4] allows n parties, each with some
input, to agree on a subset of those inputs. (The term “asynchronous” in
the name is historical, and one can also consider protocols for this task
in the synchronous setting.)

Definition 3 (ACS). Let Π be a protocol executed by parties P1, . . . , Pn,
where each Pi begins holding input vi ∈ {0, 1}∗, and parties output sets of
size at most n.

– Validity: Π is t-valid if the following holds whenever at most t par-
ties are corrupted: if every honest party’s input is equal to the same
value v, then every honest party outputs {v}.

– Liveness: Π is t-live if whenever at most t of the parties are cor-
rupted, every honest party produces output.

– Consistency: Π is t-consistent if whenever at most t parties are cor-
rupted, all honest parties output the same set S.

– Set quality: Π has t-set quality if the following holds whenever at
most t parties are corrupted: if an honest party outputs a set S, then
S contains the inputs of at least t+ 1 honest parties.

3.2 State Machine Replication

Protocols for state machine replication (SMR) allow parties to maintain
agreement on an ever-growing, ordered sequence of blocks, where a block
is a set of values called transactions. An SMR protocol does not terminate
but instead continues indefinitely. We model the sequence of blocks output
by a party Pi via a write-once array Blocksi = Blocksi[1],Blocksi[2], . . .
maintained by Pi, each entry (or slot) of which is initially equal to ⊥. We
say that Pi outputs a block in slot j when Pi writes a block to Blocksi[j];
if Blocksi[j] 6=⊥ then we call Blocksi[j] the block output by Pi in slot j.

It is useful to define a notion of epochs for each party. (We stress that
these are not global epochs; instead, each party maintains a local view of
its current epoch.) Formally, we assume that each party Pi maintains a
write-once array Epochsi = Epochsi[1],Epochsi[2], . . ., each entry of which
is initialized to 0. We say Pi enters epoch j when it sets Epochsi[j] := 1,
and require:

– For j > 1, Pi enters epoch j − 1 before entering epoch j.
– Pi enters epoch j before outputting a block in slot j.

An SMR protocol is run in a setting where parties asynchronously
receive inputs (i.e., transactions) as the protocol is being executed; each

party Pi stores transactions it receives in a local buffer bufi. We imagine
these transactions as being provided to parties by some mechanism exter-
nal to the protocol (which could involve a gossip protocol run among the
parties themselves), and make no assumptions about the arrival times of
these transactions at any of the parties.

Definition 4 (State machine replication). Let Π be a protocol exe-
cuted by parties P1, . . . , Pn who are provided with transactions as input
and locally maintain arrays Blocks and Epochs as described above.

– Consistency: Π is t-consistent if the following holds whenever at
most t parties are corrupted: if an honest party outputs a block B in
slot j then all parties that remain honest output B in slot j.

– Strong liveness: Π is t-live if the following holds whenever at most t
parties are corrupted: for any transaction tx for which every honest
party received tx before entering epoch j, every party that remains
honest outputs a block that contains tx in some slot j′ ≤ j .

– Completeness: Π is t-complete if the following holds whenever at
most t parties are corrupted: for all j ≥ 0, every party that remains
honest outputs some block in slot j.

If Π is t-consistent, t-live, and t-complete, then we say it is t-secure.

Our liveness definition is stronger than usual, in that we require a
transaction tx that appears in all honest parties’ buffers by epoch j to
be included in a block output by each honest party in some slot j′ ≤ j.
(Typically, liveness only requires that each honest party eventually out-
put a block containing tx.) This stronger notion of liveness is useful for
showing that SMR implies Byzantine agreement (cf. Appendix A) and is
achieved by our protocol.

In our definition, a transaction tx is only guaranteed to be contained in
a block output by an honest party if all honest parties receive tx as input.
A stronger definition would be to require this to hold even if only a single
honest party receives tx as input. It is easy to achieve the latter from the
former, however, by simply having honest parties gossip all transactions
they receive to the rest of the network.

Our definition does not require that honest parties output a block in
slot j − 1 before outputting a block in slot j. If this behavior is unde-
sirable, one could instruct each party to withhold outputting a block in
slot j until it outputs blocks in all slots prior to j. Any protocol secure
with respect to our definition would remain secure if modified in this way.

4 An ACS Protocol with Higher Validity Threshold

Throughout this section, we assume an asynchronous network. We con-
struct an ACS protocol that is secure when the number of corrupted
parties is below one threshold, and provides validity even for some higher
corruption threshold. That is, fix ta ≤ ts with ta + 2 · ts < n. We show an
ACS protocol that is ta-secure, and achieves validity even for ts corrup-
tions. This protocol will be a key ingredient in our SMR protocol.

Our construction follows the high-level approach taken by Miller et
al. [25], who devise an ACS protocol based on subprotocols for reliable
broadcast and Byzantine agreement. In our case we need a reliable broad-
cast protocol that achieves validity for ts ≥ n/3 faults, and in Section 4.1
we show such a protocol. We then describe and analyze our ACS protocol
in Section 4.2.

4.1 Reliable Broadcast with Higher Validity Threshold

In Figure 1, we present a variant of Bracha’s (asynchronous) reliable
broadcast protocol [6] that allows for a more general tradeoff between
consistency and validity. Specifically, the protocol is parameterized by a
threshold ts; for any ta ≤ ts with ta + 2 · ts < n, the protocol achieves
ta-consistency and ts-validity.

Protocol Πts
BB

The sender P ∗ sends its input v∗ to all parties. Then each party does:

– Upon receiving v∗ from P ∗, send (echo, v∗) to all parties.
– Upon receiving (echo, v∗) messages on the same value v∗ from n − ts

distinct parties, do: if (ready, v∗) was not yet sent, then send (ready, v∗)
to all parties.

– Upon receiving (ready, v∗) messages on the same value v∗ from ts + 1
distinct parties, do: if (ready, v∗) was not yet sent, then send (ready, v∗)
to all parties.

– Upon receiving (ready, v∗) messages on the same value v∗ from n − ts
distinct parties, output v∗ and terminate.

Fig. 1. Bracha’s reliable broadcast protocol, parameterized by ts.

Lemma 1. If ts < n/2 then Πts
BB is ts-valid.

Proof. Assume there are at most ts corrupted parties, and the sender is
honest. All honest parties receive the same value v∗ from the sender, and

consequently send (echo, v∗) to all other parties. Since there are at least
n − ts honest parties, all honest parties receive (echo, v∗) from at least
n−ts different parties, and as a result send (ready, v∗) to all other parties.
By the same argument, all honest parties receive (ready, v∗) from at least
n− ts parties, and so can output v∗ (and terminate).

Fix any v 6= v∗. To complete the proof, we argue that no honest
party will output v. Note first that no honest party will send (echo, v).
Thus, any honest party will receive (echo, v) from at most ts other parties.
Since ts < n− ts, no honest party will ever send (ready, v). By the same
argument, this shows that honest parties will receive (ready, v) from at
most ts other parties, and hence will not output v. ut

Lemma 2. Fix ta ≤ ts with ta + 2 · ts < n. Then Πts
BB is ta-consistent.

Proof. Suppose at most ta parties are corrupted, and that an honest party
Pi outputs v. Then Pi must have received (ready, v) messages from at least
n−ts distinct parties, at least n−ts−ta ≥ ts+1 of whom are honest. Thus,
all honest parties receive (ready, v) messages from at least ts + 1 distinct
parties, and so all honest parties send (ready, v) messages to everyone. It
follows that all honest parties receive (ready, v) messages from at least
n− ta ≥ n− ts parties, and so can output v as well.

To complete the proof, we argue that honest parties cannot output
v′ 6= v. We argued above that all honest parties send (ready, v) to every-
one. Let P be the first honest party to do so. Since ta < ts+1, that party
must have sent (ready, v) in response to receiving (echo, v) messages from
at least n− ts distinct parties. If some honest Pj outputs v′ then, arguing
similarly, some honest party P ′ must have received (echo, v′) messages
from at least n− ts distinct parties. But this is a contradiction, since hon-
est parties send only a single echo message but 2 · (n− ts)− ta > n. ut

4.2 ACS with Higher Validity Threshold

In Figure 2 we describe an ACS protocol Πta,ts
ACS that is parameterized by

thresholds ta, ts, where ta ≤ ts and ta + 2 · ts < n. Our protocol relies on
two subprotocols: a reliable broadcast protocol Bcast that is ts-valid and
ta-consistent (such as the protocol Πts

BB from the previous section), and a
Byzantine agreement protocol BA that is ta-secure (since ta < n/3, any
asynchronous BA protocol secure for that threshold can be used). Our
ACS protocol runs several executions of these protocols as sub-routines,
so to distinguish between them we denote the ith execution by Bcasti,
resp., BAi, and say that these executions correspond to party Pi.

Protocol Πta,ts
ACS

At any point during a party’s execution of the protocol, let

S∗
def
= {i : BAi output 1} and let s = |S∗|. Define the following boolean

conditions:

– C1(v): at least n− ts executions {Bcasti}i∈[n] have output v.
– C1: ∃v for which C1(v) is true.
– C2(v): s ≥ n − ta, all executions {BAi}i∈[n] have terminated, and a

majority of the executions {Bcasti}i∈S∗ have output v.
– C2: ∃v for which C2(v) is true.
– C3: s ≥ n − ta, all executions {BAi}i∈[n] have terminated, and all

executions {Bcasti}i∈S∗ have terminated.

Each party does:

– For all i: run Bcasti with Pi as the sender, where Pi uses input vi.
– When Bcasti terminates with output v′i do: if execution of BAi has not

yet begun, run BAi using input 1.
– When s ≥ n − ta, run any executions {BAi}i∈[n] that have not yet

begun, using input 0.
– (Exit 1:) If at any point C1(v) for some v, output {v}.
– (Exit 2:) If at any point ¬C1 ∧ C2(v) for some v, output {v}.
– (Exit 3:) If at any point ¬C1 ∧ ¬C2 ∧ C3, output S := {v′i}i∈S∗ .

After outputting:

– Continue to participate in any ongoing Bcast executions.
– Once C1 = true, stop participating in any ongoing BA executions.

Fig. 2. An ACS protocol, parameterized by ta and ts.

Lemma 3. If ta + 2 · ts < n, then Πta,ts
ACS is ts-valid.

Proof. Note that ts < n/2. Say at most ts parties are dishonest, and all
honest parties have the same input v. By ts-validity of Bcast, at least n−ts
executions of {Bcasti} (namely, those for which Pi is honest) will result
in v as output, and so all honest parties can take Exit 1 and output {v}.
It is not possible for an honest party to take Exit 1 and output something
other than {v}, since ts < n− ts. Thus, it only remains to show that if an
honest party takes some other exit then it must also output {v}. Consider
the two possibilities:

Exit 2: Suppose some honest party P takes Exit 2 and outputs {v′}.
Then, for that party, C2(v

′) is true, and so P must have seen at least
b s2c+ 1 of the {Bcasti}i∈S∗ terminate with output v′. Moreover, P must

have s ≥ n− ta. Together, these imply that P has seen at least⌊
n− ta

2

⌋
+ 1 ≥

⌊
2ts
2

⌋
+ 1 > ts

executions of {Bcasti} terminate with output v′. At least one of those
executions must correspond to an honest party. But then ts-validity of
Bcast implies that v′ = v.

Exit 3: Assume an honest party P takes Exit 3. Then P must have
s ≥ n− ta, must have seen all executions {BAi}i∈[n] terminate, and must
also have seen all executions {Bcasti}i∈S∗ terminate. Because

|S∗| = s ≥ n− ta > 2ts,

a majority of the executions {Bcasti}i∈S∗ that P has seen terminate must
correspond to honest parties. By ts-validity of Bcast, all those executions
must have resulted in output v. But then C2(v) must be true for P , and
it would not have taken Exit 3. ut

Lemma 4. Fix ta ≤ ts with ta + 2 · ts < n, and say at most ta parties
are corrupted. If honest parties P1, P2 output sets S1, S2, then S1 = S2.

Proof. We consider different cases based on the possible exits taken by
P1 and P2, and show that in all cases their outputs agree.

Case 1: Either P1 or P2 takes Exit 1. Without loss of generality, as-
sume P1 takes Exit 1 and outputs {v1}. We consider different sub-cases:

– P2 takes Exit 1: Say P2 outputs {v2}. Then P1 and P2 must have
each seen at least n − ts executions of {Bcasti} output v1 and v2,
respectively. Since ts < n/2, at least one of those executions must be
the same. But then ta-consistency of Bcast implies that v1 = v2.

– P2 takes Exit 2: Say P2 outputs {v2}. For C2(v2) to be satisfied, P2

must have s ≥ n− ta, and must have seen at least⌊s
2

⌋
+ 1 ≥

⌊
n− ta

2

⌋
+ 1

executions of {Bcasti} output v2. As above, P1 must have seen at least
n− ts executions of {Bcasti} output v1. But since

(n− ts) +

⌊
n− ta

2

⌋
+ 1 ≥ n− ts +

⌊
2ts
2

⌋
+ 1 > n,

at least one of those executions must be the same. But then ta-
consistency of Bcast implies that v1 = v2.

– P2 takes Exit 3: We claim this cannot occur. Indeed, if P2 takes
Exit 3 then P2 must have s ≥ n − ta, and must have seen all exe-
cutions {BAi}i∈[n] terminate and all executions {Bcasti}i∈S∗ termi-
nate. Because P1 took Exit 1, P1 must have seen at least n − ts
executions {Bcasti}i∈[n] output v1, and therefore (by ta-consistency
of Bcast) there are at most ts executions {Bcasti}i∈[n] that P2 has
seen terminate with a value other than v1. The number of executions
of {Bcasti}i∈S∗ that P2 has seen terminate with output v1 is therefore
at least (n− ta)− ts > ts, which is strictly greater than the number of
executions {Bcasti}i∈S∗ that P2 has seen terminate with a value other
than v1. But then C2(v1) is true for P2, and it would not take Exit 3.

Case 2: Neither P1 nor P2 takes Exit 1. We consider two sub-cases:

– P1 and P2 both take Exit 2. Say P1 outputs {v1} and P2 outputs {v2}.
Both P1 and P2 must have seen all executions {BAi}i∈[n] terminate;
by ta-consistency of BA they must therefore hold the same S∗. Since
C2(v1) holds for P1, it must have seen a majority of the executions
{Bcasti}i∈S∗ output v1; similarly, P2 must have seen a majority of
the executions {Bcasti}i∈S∗ output v2. Then ta-consistency of Bcast
implies v1 = v2.

– Either P1 or P2 takes Exit 3. Say P1 takes Exit 3. (The case where
P2 takes Exit 3 is symmetric.) As above, P1 and P2 agree on S∗ (this
holds regardless of whether P2 takes Exit 2 or Exit 3). Since C3 holds
for P1 but C2 does not, P1 must have seen all executions {Bcasti}i∈S∗
terminate but without any value being output by a majority of those
executions. But then ta-consistency of Bcast implies that P2 also does
not see any value being output by a majority of those executions,
and so will not take Exit 2. Since P2 instead must take Exit 3, it
must have seen all executions {Bcasti}i∈S∗ terminate; ta-consistency
of Bcast then implies that P2 outputs the same set as P1.

This completes the proof. ut

Lemma 5. Fix ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
ACS is ta-live.

Proof. If some honest party P takes Exit 1 during an execution of Πta,ts
ACS ,

then P must have seen at least n − ts executions {Bcasti}i∈[n] with the
same output v. By ta-consistency of Bcast, all other honest parties will
eventually see at least those n− ts executions output v, and will generate
output (if they have not already generated output via another exit).

It remains to consider the case where no honest parties take Exit 1.
Let H be the indices of parties who remain honest, with |H| ≥ n− ta. By
ts-validity of Bcast, all honest parties see the executions {Bcasti}i∈H ter-
minate, and so all honest parties initiate the executions {BAi}i∈H . Since
no honest party takes Exit 1, all honest parties continue to participate in
all those executions. Consider some execution BAi being run by all honest
parties. As long as no honest party has s ≥ n−ta, each honest party must
be running BAi using input 1. By ta-validity of BA, this means that all
honest parties will eventually output 1 from that execution. We conclude
from this that some honest party will eventually have s ≥ n − ta; fur-
thermore, ta-consistency of BA then implies that all honest parties will
eventually have s ≥ n − ta. This means that all honest parties execute
all {BAi}i∈[n], and by ta-security of BA all those executions eventually

terminate. Define Ŝ∗
def
= {i : some honest player outputs 1 in BAi}. We

claim that all executions {Bcasti}i∈Ŝ∗ eventually terminate. To see this,

fix i ∈ Ŝ∗. Then by ta-validity of BA, some honest party P must have
used input 1 to BAi. But that implies that Bcasti must have terminated
for P . So ta-consistency of Bcast implies that Bcasti will terminate for all
honest parties. It follows that any honest party can take Exit 2 or 3. ut

Lemma 6. Fix ta ≤ ts with ta+2 · ts < n. Then Πta,ts
ACS has ta-set quality.

Proof. Consider some honest party P . Say P takes Exit 1 and outputs S =
{v}. Then P has seen at least n− ts executions {Bcasti} terminate with
output v. Of these, at least n−ts−ta > ts ≥ ta must correspond to honest
parties. By ts-validity of Bcast, those honest parties all had input v. This
means that S contains the inputs of at least ta + 1 honest parties.

Alternatively, say P takes Exit 2 or 3 and outputs a set S. Then P
must have |S∗| ≥ n− ta. At least

n− 2 · ta > max{(n− ta)/2, ta}

of the indices in S∗ correspond to honest parties, and ts-validity of Bcast
implies that for each of those parties the corresponding output value v′i
that P holds is equal to that party’s input. Thus, regardless of whether P
takes Exit 2 (and S contains the majority value output by {Bcasti}i∈S∗)
or Exit 3 (and S contains every value output by {Bcasti}i∈S∗), the set S
output by P contains the inputs of at least ta + 1 honest parties. ut

Theorem 1. Fix ta, ts with ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
ACS is

ta-secure and ts-valid.

Proof. Lemma 3 proves ts-validity. Lemmas 4 and 5 together prove ta-
consistency, and Lemma 6 shows ta-set quality. ut

Lemma 7. Fix ta ≤ ts with ta + 2 · ts < n. Then Πta,ts
ACS has bounded

communication complexity under either of the following conditions:

1. At most ta parties are corrupted.

2. At most ts parties are corrupted and all honest parties have the same
input.

Proof. Because Bcast from the previous section has bounded communica-
tion complexity, we only need to show that all honest parties eventually
stop participating in all BA executions. (This can occur either because
those executions all terminate, or because honest parties all set C1 = true
and stop participating in any still-running executions.)

Case 1: At most ta parties are corrupted. If some honest party P takes
Exit 1 during an execution of Πta,ts

ACS , then P must have seen at least n−ts
executions {Bcasti}i∈[n] with the same output value. By ta-consistency of
Bcast, all honest parties eventually see those executions output the same
value, and thus set C1 = true and stop participating in any still-running
BA executions.

On the other hand, if no honest parties take Exit 1 during an execution
of BA, then all honest parties continue to participate in all BA executions.
By ta-termination of BA, each of those executions will terminate.

Case 2: At most ts parties are corrupted and all honest parties have
the same input v. Because all honest parties have input v, ts-validity of
Bcast implies that all honest parties receive output v from at least n− ts
executions of {Bcasti}. So all honest parties will eventually set C1 = true
and thus stop participating in any still-running BA executions. ut

5 A Network-Agnostic SMR Protocol

In this section, we show our main result: an SMR protocol that is ts-secure
in a synchronous network and ta-secure in an asynchronous network. We
begin in Section 5.1 by briefly introducing a useful primitive called block
agreement. In Appendix B, we construct a block-agreement protocol se-
cure against t < n/2 parties in a synchronous network. We then use our
block-agreement protocol to construct an SMR protocol in Section 5.2.

5.1 Block Agreement

Block agreement is a form of agreement where (1) in addition to an input,
parties provide signatures (in a particular format) on those inputs, and
(2) a stronger notion of validity is required. Specifically, consider pairs
consisting of a block B along with a set Σ of signed buffers 〈bufj〉j .
(Recall that 〈m〉i denotes a tuple (i,m, σ) such that σ is a valid signature
on m with respect to Pi’s secret key.) We say a pair (B,Σ) is t-valid if:

– Σ contains signed buffers from strictly more than t distinct parties.

– For each 〈bufj〉j ∈ Σ, we have bufj ⊆ B.

A pair is valid if it is 0-valid (meaning it contains signed buffers from at
least one party).

Definition 5 (Block agreement). Let Π be a protocol executed by par-
ties P1, . . . , Pn, where each party Pi begins holding a valid pair (Bi, Σi)
and parties terminate upon generating output.

– Validity: Π is t-valid if whenever at most t of the parties are cor-
rupted, every honest party outputs a valid pair.

– Termination: Π is t-terminating if whenever at most t of the parties
are corrupted, every honest party terminates.

– Consistency: Π is t-consistent if the following holds whenever at
most t of the parties are corrupted: for any s ≤ t, if every honest
party inputs an s-valid pair, there is an s-valid (B,Σ) such that every
honest party outputs (B,Σ).

If Π is t-valid, t-consistent, and t-terminating, then we say it is t-secure.

We prove the following in Appendix B.

Theorem 2. There is a block-agreement protocol ΠBLA that is t-secure
for any t < n/2 when run in a synchronous network. Moreover, all honest
parties terminate with probability 1− 2−O(κ) after time κ ·∆.

5.2 State Machine Replication

We now combine our various sub-protocols to realize network-agnostic
SMR. At a high level, our SMR protocol Πta,ts

SMR (see Figure 3) proceeds as
follows. For each slot j, the parties attempt to reach agreement on a block
using the block-agreement protocol ΠBLA. If that protocol terminates,
parties use its output B as input to our ACS protocol Πta,ts

ACS . If ΠBLA

fails to terminate after a sufficiently long time, parties abandon it and
instead attempt to reach agreement using the ACS protocol directly.

By setting the timeout appropriately, we can ensure that in a syn-
chronous network ΠBLA terminates with overwhelming probability. Thus,
if the network is synchronous and at most ts parties are corrupted, all
parties agree on their input B to Πta,ts

ACS , and ts-validity of Πta,ts
ACS ensures

that all parties output B. On the other hand, if the network is asyn-
chronous and at most ta parties are corrupted, then ta-security of Πta,ts

ACS
ensures agreement.

Protocol Πta,ts
SMR

We describe the protocol from the point of view of party Pi holding a
set bufi that grows asynchronously via some external process.

For k = 1, . . ., do the following starting at time Tk := (∆+ κ∆) · (k − 1):

1. Set Epochsi[k] := 1, and initialize B := ∅, Σ := ∅.
2. Send 〈bufi〉i to every party.
3. While |Σ| ≤ ts:

– The first time 〈bufj〉j is received from Pj , set B := B ∪ bufj and
Σ := Σ ∪ {〈bufj〉j}.

4. At time Tk +∆, run ΠBLA on input (B,Σ).
5. If ΠBLA produces ts-valid output, let (B∗, Σ∗) denote that output. Oth-

erwise, at time Tk +∆+ κ ·∆ set (B∗, Σ∗) := (B,Σ).
6. Run BlockSet← Πta,ts

ACS using input B∗.

7. Set Blocksi[k] :=
⋃

B̂∈BlockSet B̂. Set bufi := bufi \ Blocksi[k].

Fig. 3. A protocol for state machine replication.

We note that Πta,ts
ACS does not guarantee termination. Given that any

SMR protocol must run indefinitely, however, this seems reasonable, es-
pecially since Πta,ts

ACS has bounded communication complexity when run in

the context of Πta,ts
SMR (cf. Lemma 7 and the proofs below).

We now prove security of Πta,ts
SMR in a network-agnostic setting.

Theorem 3 (Consistency). Fix ta, ts with ta < n/3 and ta+ 2 · ts < n.
Then Πta,ts

SMR is ta-consistent when run in an asynchronous network, and
ts-consistent when run in a synchronous network.

Proof. Assume first that at most ts parties are dishonest and the network
is synchronous. In any slot k, each honest party receives 〈bufj〉j from at
least the n−ts > ts honest parties, and the input (B,Σ) they use to ΠBLA

is ts-valid. Consistency of ΠBLA implies that every honest party outputs

the same ts-valid pair (B∗, Σ∗) after running ΠBLA for time κ · ∆. By
ts-validity of Πta,ts

ACS , this means every honest party obtains output {B∗}
from Πta,ts

ACS and then sets Blocks[k] = B∗.

If at most ta parties are dishonest and the network is asynchronous,
then ta-consistency of Πta,ts

ACS implies that all honest parties agree on the
same value BlockSet, and hence set Blocks[k] to the same value. ut

Theorem 4 (Strong liveness). Fix ta ≤ ts with ta + 2 · ts < n. Then
Πta,ts

SMR is ta-live when run in an asynchronous network, and ts-live when
run in a synchronous network.

Proof. By consistency of Πta,ts
SMR, we can refer to the values of Blocks[i]

without specifying any particular party. Consider some transaction tx
that every honest party received before entering epoch k. If tx appears
in Blocks[k′] for some k′ < k then we are done. Otherwise, every honest
party has tx in their buffer when they enter epoch k. We show that in
this latter case, tx is in Blocks[k].

Assume at most ts parties are corrupted and the network is syn-
chronous. Reasoning as in the proof of Theorem 3, every honest party
outputs the same ts-valid pair (B∗, Σ∗) after running ΠBLA for time κ ·∆,
and sets Blocks[k] = B∗. Since (B∗, Σ∗) is ts-valid, Σ∗ must contain a
signature on a subset of B∗ from at least one honest party. But an honest
party would have only signed a subset that includes tx, implying tx ∈ B∗.

Consider next the case where at most ta parties are dishonest and the
network is asynchronous. Every honest party Pi runs Πta,ts

ACS using an input
B∗i for which they have a ts-valid pair (B∗i , Σ

∗
i). Arguing as above, each

B∗i must contain tx. By ta-security of Πta,ts
ACS , all honest parties output the

same set BlockSet that contains B∗i for some honest party Pi, and hence
contains tx. It follows that every honest party includes tx in Blocks[k]. ut

Theorem 5 (Completeness). Fix ta, ts with ta < n/3 and ta+2·ts < n.
Then Πta,ts

SMR is ta-complete when run in an asynchronous network, and ts-
complete when run in a synchronous network.

Proof. By inspection of Πta,ts
SMR, a party outputs a block in slot k iff its

execution of Πta,ts
ACS in iteration k produces output. So if at most ta parties

are corrupted, completeness follows from ta-liveness of Πta,ts
ACS . If at most

ts parties are corrupted and the network is synchronous, then consistency
of ΠBLA implies that all honest parties run Πta,ts

ACS using the same input;

completeness then follows from ts-validity of Πta,ts
ACS . ut

6 Optimality of Our Thresholds

In this section we show that the parameters achieved by our SMR protocol
are optimal. This extends the analogous result by Blum et al. [5], who
consider the case of BA. We remark that, although SMR is generally
viewed as a stronger form of consensus than BA, it is unclear whether
SMR generically implies BA in a network-agnostic setting, and we were
not able to show such a result for the corruption thresholds of interest
(namely, when ta+2ts ≥ n). We thus need to prove impossibility directly.

Lemma 8. Fix ta, ts, n with ta + 2ts ≥ n. If an n-party SMR protocol is
ts-live in a synchronous network, then it cannot also be ta-consistent in
an asynchronous network.

Proof. Assume ta + 2ts = n and fix an SMR protocol Π. Partition the
n parties into sets S0, S1, Sa where |S0| = |S1| = ts and |Sa| = ta, and
consider the following experiment:

– Choose uniform m0,m1 ∈ {0, 1}κ.
– Parties in Sb begin running Π at global time 0 with their buffers

containing only mb. All communication between parties in S0 and
parties in S1 is blocked (but all other messages are delivered within
time ∆).

– Create virtual copies of each party in Sa, call them S0
a and S1

a. Parties
in Sba begin running Π (at global time 0) with their buffers containing
only mb, and communicate only with each other and parties in Sb.

Consider an execution of Π in a synchronous network where parties in
S1 are corrupted and simply abort. Uniform m0,m1 ∈ {0, 1}κ are cho-
sen, and the remaining (honest) parties start with their buffers containing
only m0. The views of the honest parties in this execution are distributed
identically to the views of S0∪S0

a in the above experiment. In particular,
ts-liveness of Π implies that, in the above experiment, all parties in S0
include m0 in Blocks[1]. Moreover, since parties in S0 have no informa-
tion about m1, they include m1 in Blocks[1] with negligible probability.
Analogously, all parties in S1 include m1 in Blocks[1] but include m0 in
Blocks[1] with negligible probability.

Next consider an execution of Π in an asynchronous network where
parties in Sa are corrupted, and run Π with their buffers containing m0

when interacting with S0 while running Π with their buffers containing
m1 when interacting with S1. Moreover, all communication between the
(honest) parties in S0 and S1 is delayed indefinitely. The views of the

honest parties here are distributed identically to the views of S0 ∪ S1
in the above experiment, yet the conclusion of the preceding paragraph
shows that ta-consistency is violated with overwhelming probability. ut

Acknowledgments

Work supported in part under financial assistance award 70NANB19H126
from the U.S. Department of Commerce, National Institute of Standards
and Technology, and NSF award #1837517.

References

1. Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling
Ren. Efficient synchronous Byzantine consensus, 2017. Available at
https://eprint.iacr.org/2017/307.

2. Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync
HotStuff: Simple and practical synchronous state machine replication, 2019. Avail-
able at http://eprint.iacr.org/2019/270.

3. Zuzana Beerliová-Trub́ıniová, Martin Hirt, and Jesper Buus Nielsen. On the the-
oretical gap between synchronous and asynchronous MPC protocols. In 29th An-
nual ACM Symp. on Principles of Distributed Computing (PODC), pages 211–218.
ACM Press, 2010.

4. Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations
with optimal resilience. In 13th Annual ACM Symp. on Principles of Distributed
Computing (PODC), pages 183–192. ACM Press, August 1994.

5. Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with
optimal asynchronous fallback guarantees. In 14th Theory of Cryptography
Conference—TCC 2019, volume 11891 of LNCS. Springer, 2019. Available at
https://eprint.iacr.org/2019/692.

6. Gabriel Bracha. An asynchronous b(n − 1)/3c-resilient consensus protocol. In
3rd Annual ACM Symp. on Principles of Distributed Computing (PODC), pages
154–162. ACM Press, 1984.

7. Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proac-
tive recovery. ACM Trans. Computer Systems, 20(4):398–461, 2002.

8. Miguel Correia, Nuno Ferreira Neves, and Paulo Veŕıssimo. From consensus to
atomic broadcast: Time-free Byzantine-resistant protocols without signatures. The
Computer Journal, 49(1):82–96, 2006.

9. Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asyn-
chronous multiparty computation: Theory and implementation. In 12th Intl. Con-
ference on Theory and Practice of Public Key Cryptography—PKC 2009, volume
5443 of LNCS, pages 160–179. Springer, 2009.

10. Matthias Fitzi and Jesper Buus Nielsen. On the number of synchronous rounds suf-
ficient for authenticated Byzantine agreement. In 23rd Intl. Symp. on Distributed
Computing (DISC), volume 5805 of LNCS, pages 449–463. Springer, 2009.

11. Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adap-
tively secure broadcast, revisited. In 30th Annual ACM Symp. on Principles of
Distributed Computing (PODC), pages 179–186. ACM Press, 2011.

12. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Advances in Cryptology—Eurocrypt 2015,
Part II, volume 9057 of LNCS, pages 281–310. Springer, 2015.

13. Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition
tolerance. In Advances in Cryptology—Crypto 2019, Part I, volume 11692 of LNCS,
pages 499–529. Springer, 2019.

14. Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Advances in
Cryptology—Eurocrypt 2010, volume 6110 of LNCS, pages 466–485. Springer, 2010.

15. Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for
Byzantine agreement. J. Computer and System Sciences, 75(2):91–112, 2009.

16. Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Ed-
mund L. Wong. Zyzzyva: Speculative Byzantine fault tolerance. ACM Trans.
Computer Systems, 27(4):7:1–7:39, 2009.

17. Klaus Kursawe. Optimistic Byzantine agreement. In 21st Symposium on Reliable
Distributed Systems (SRDS), pages 262–267. IEEE Computer Society, 2002.

18. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 1978.

19. Leslie Lamport. The part-time parliament. Technical Report 49, DEC Systems
Research Center, 1989.

20. Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals
problem. ACM Trans. Programming Language Systems, 4(3):382–401, 1982.

21. Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolic.
XFT: Practical fault tolerance beyond crashes. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 485–500. USENIX
Association, 2016.

22. Chen-Da Liu-Zhang, Julian Loss, Tal Moran, Ueli Maurer, and Daniel Tschudi.
Robust MPC: Asynchronous responsiveness yet synchronous security. Unpublished
manuscript.

23. Julian Loss and Tal Moran. Combining asynchronous and synchronous
Byzantine agreement: The best of both worlds, 2018. Available at
http://eprint.iacr.org/2018/235.

24. Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible Byzantine fault tolerance.
In 26th ACM Conf. on Computer and Communications Security (CCS), pages
1041–1053. ACM Press, 2019. Available at https://arxiv.org/abs/1904.10067.

25. Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey
badger of BFT protocols. In 23rd ACM Conf. on Computer and Communications
Security (CCS), pages 31–42. ACM Press, 2016.

26. Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol
in asynchronous networks. In Advances in Cryptology—Eurocrypt 2017, Part II,
volume 10211 of LNCS, pages 643–673. Springer, 2017.

27. Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the per-
missionless model. In 31st International Symposium on Distributed Comput-
ing (DISC), volume 91 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017.

28. Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant con-
firmation. In Advances in Cryptology—Eurocrypt 2018, Part II, volume 10821 of
LNCS, pages 3–33. Springer, 2018.

29. Arpita Patra and Divya Ravi. On the power of hybrid networks in multi-party
computation. IEEE Trans. Information Theory, 64(6):4207–4227, 2018.

30. M. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

31. Fred Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys, 22(4):299–319, 1990.

A SMR Implies Weak BA

We briefly discuss how SMR relates to BA. Specifically, we show that
SMR implies weak BA. A weak BA protocol Π satisfies validity and
consistency as in Definition 2, but instead of termination it achieves a
weaker liveness property. Namely, we say that Π is t-live if whenever at
most t parties are corrupted, every honest party outputs a value in {0, 1}
(but may not terminate).

In Figure 4 we show how to use an SMR protocol ΠSMR to achieve
weak BA.

Protocol Πts
WBA

We describe the protocol from the point of view of a party Pi with input vi.

– Set Vi := bufi := ∅.
– Send 〈vi〉i to every party. Upon receiving 〈vj〉j from party Pj , set

bufi := bufi ∪ {〈vj〉j}.
– Begin to run ΠSMR at time ∆.
– Upon outputting a block B = Blocksi[k] do: for all j such that B

contains 〈vj〉j and there is no pair (?, j) in V , add (vj , j) to V .
– If at any point during the execution |Vi| ≥ n − ts, then output the

majority value among all values in Vi.

Fig. 4. A protocol for weak Byzantine agreement, parameterized by ts.

Lemma 9 (Validity and liveness). Let ta + 2ts < n. If ΠSMR is ts-
live in a synchronous network (resp., ta-live in an asynchronous network),
then Πts

WBA is ts-valid and ts-live in a synchronous network (resp., ta-valid
and ta-live in an asynchronous network).

Proof. Assume all honest parties hold input v. Consider first the case
where at most ts parties are corrupted and the network is synchronous.
The initial message from each honest party is received by all other honest
parties by time ∆. By ts-liveness of ΠSMR, the block B = Blocks[1] output
by any honest party contains (v, i) for each honest party Pi. At that point,

each honest party will have |V | ≥ n− ts, and since ts < n/2 the majority
value in V will be v. Thus, all honest parties output v.

Next, consider the case where there are at most ta corrupted parties
and the network is asynchronous. If some honest party has |V | ≥ n− ts,
then at least n− ts− ta > ta of those values correspond to honest parties,
and hence v will be the majority value. Thus, any honest party who
outputs anything will output v. It remains to show that all honest parties
eventually have |V | ≥ n−ts. This follows from the fact that honest parties’
initial messages are eventually delivered to all honest parties, along with
ta-liveness of ΠSMR. ut

Lemma 10 (Consistency). For all t, if ΠSMR is t-consistent in a syn-
chronous (resp., asynchronous) network, then Πts

WBA is t-consistent in a
synchronous (resp., asynchronous) network.

Proof. The lemma is immediate. ut

B A Block-Agreement Protocol

Throughout this section, we assume a synchronous network.

The structure of our block-agreement protocol is inspired by the synod
protocol of Abraham et al. [1]. We construct our protocol in a modular
fashion. We begin by defining a subprotocol ΠP ∗

Propose (see Figure 5) in
which a designated party P ∗ serves as a proposer. A tuple (k,B,Σ,C) is
called a k-vote on (B,Σ) if (B,Σ) is valid and either:

– k = 0, or

– k > 0 and C is a set of valid signatures from a majority of the par-
ties on messages of the form (Commit, k′, B,Σ) with k′ ≥ k (where
possibly different k′ can be used in different messages).

When the exact value of k is unimportant, we simply refer to the tuple as
a vote. A message of the form status = 〈Status, k, B,Σ,C〉i is a correctly
formed Status message (from party Pi) if (k,B,Σ,C) is a vote. A message
〈Propose, status1, . . .〉∗ is a correctly formed Propose message if it contains
correctly formed Status messages from a majority of the parties.

We first show that any two honest parties who generate output in this
protocol agree on their output.

Lemma 11. If honest parties Pi and Pj output (Bi, Σi), (Bj , Σj) 6=⊥,
respectively, in an execution of ΠP ∗

Propose, then (Bi, Σi) = (Bj , Σj).

Protocol ΠP∗
Propose

We describe the protocol from the point of view of a party Pi with input a
vote (k,B,Σ,C). Let t = d(n+ 1)/2e.

1. At time 0, send statusi := 〈Status, k, B,Σ,C〉i to P ∗.
2. At time ∆, if P ∗ has received at least s ≥ t correctly formed Status

messages status1, . . . , statust (from distinct parties), then P ∗ sets

m := (Propose, status1, . . . , statuss),

and sends 〈m〉∗ to all parties.
3. At time 2∆, if a correctly formed Propose message 〈m〉∗ has been re-

ceived from P ∗, then send 〈m〉∗ to all parties. Otherwise, output ⊥.
4. At time 3∆, let 〈m〉j∗ be the correctly formed Propose message received

from Pj (if any). If there exists j such that 〈m〉j∗ 6= 〈m〉∗, output ⊥.
Otherwise, let statusmax = 〈Status, k′, B′, Σ′, C′〉 be the status message
in 〈m〉∗ with maximal k′ (picking the lowest index in case of ties).
Output (B′, Σ′).

Fig. 5. A protocol ΠP∗
Propose with designated proposer P ∗.

Proof. If Pi outputs (Bi, Σi) 6=⊥, then Pi must have received a correctly
formed Propose message 〈m〉∗ by time 2∆ that would cause it to output
(Bi, Σi). That message is forwarded by Pi to Pj , and hence Pj either
outputs ⊥ (if it detects an inconsistency) or the same value (Bi, Σi). ut

Assume less than half the parties are corrupted. We show that if there
is some (B,Σ) such that the input of each honest party Pi is a vote of the
form (ki, B,Σ,Ci), and no honest party ever receives a vote (k′, B′, Σ′, C ′)
with k′ ≥ mini{ki} and (B′, Σ′) 6= (B,Σ), then the only value an honest
party can output is (B,Σ).

Lemma 12. Assume fewer than n/2 parties are corrupted, and that the
input of each honest party Pi to ΠP ∗

Propose is a ki-vote on (B,Σ). If no hon-
est party ever receives a k′-vote on (B′, Σ′) 6= (B,Σ) with k′ ≥ mini{ki},
then every honest party outputs either (B,Σ) or ⊥.

Proof. Consider an honest party P who does not output ⊥. That party
must have received a correctly formed Propose message 〈m〉∗ from P ∗,
which in turn must contain a correctly formed Status message from at least
one honest party Pi. That Status message contains a vote (ki, B,Σ,Ci)
and, under the assumptions of the lemma, any other vote (k′, B′, Σ′, C ′)
contained in 〈m〉∗ with k′ ≥ ki has (B′, Σ′) = (B,Σ). It follows that P
outputs (B,Σ). ut

Finally, we show that when P ∗ is honest then all honest parties do
indeed generate output.

Lemma 13. Assume fewer than n/2 parties are corrupted. If every hon-
est party’s input to ΠP ∗

Propose is a vote and P ∗ is honest, then every honest
party outputs the same valid (B,Σ) 6=⊥.

Proof. Since every honest party’s input is a vote, P ∗ will receive at least
d(n + 1)/2e correctly formed Status messages, and so sends a correctly
formed Propose message to all honest parties. Since P ∗ is honest, this is
the only correctly formed Propose message the honest parties will receive,
and so all honest parties will output the same valid (B,Σ) 6=⊥. ut

We now present a protocol Πk
GC that uses ΠP ∗

Propose to achieve a form of
graded consensus on a valid pair (B,Σ). (See Figure 6.) As in the proto-
col of Abraham et al. [1], we rely on an atomic leader-election mechanism
Leader with the following properties: On input k from a majority of par-
ties, Leader chooses a uniform leader ` ∈ {1, . . . , n} and sends (k, `) to
all parties. This ensures that if less than half of all parties are corrupted,
then at least one honest party must call Leader with input k before the
adversary can learn the identity of `. A leader-election mechanism toler-
ating any t < n/2 faults can be realized (in the synchronous model with
a PKI) based on general assumptions [15]; it can also be realized more
efficiently using a threshold unique signature scheme.

Below, we refer to a message 〈Commit, k, B,Σ〉i as a correctly formed
Commit message (from Pi on (B,Σ)) if (B,Σ) is valid. We refer to a mes-
sage (Notify, k, B,Σ,C) as a correctly formed Notify message on (B,Σ) if
(B,Σ) is valid and C is a set of valid signatures on (Commit, k, B,Σ) from
more than n/2 parties; in that case, C is called a k-certificate for (B,Σ).
For an output ((B,Σ,C), g), we refer to g as the grade and (B,Σ,C) as
the output. When a party’s output is (B,Σ,C), we may also say that its
output is a k-certificate for (B,Σ).

Lemma 14. Assume fewer than n/2 parties are corrupted, and that the
input of each honest party Pi to Πk

GC is a ki-vote on (B,Σ). If no honest
party ever receives a k′-vote on (B′, Σ′) 6= (B,Σ) with k′ ≥ mini{ki}
in step 1 of Πk

GC, then (1) no honest party sends a Commit message on
(B′, Σ′) 6= (B,Σ) and (2) any honest party who outputs a nonzero grade
outputs a k-certificate for (B,Σ).

Proof. By Lemma 12, every honest party outputs either (B,Σ) or ⊥ in
every execution of ΠPropose in step 1. It follows that no honest party Pi

Protocol Πk
GC

We describe the protocol from the point of view of a party Pi with input a
vote (k′, B,Σ,C′). Let t = d(n+ 1)/2e.

1. At time 0, run parallel executions of ΠP1
Propose, . . . , Π

Pn
Propose, each using

input (k′, B,Σ,C′). Let (Bj , Σj) be the output from the jth protocol.
2. At time 3∆, call Leader(k) to obtain the response `. If (B`, Σ`) 6= ⊥,

send 〈Commit, k, B`, Σ`〉i to every party.
3. At time 4∆, if at least t correctly formed Commit messages
〈Commit, k, B`, Σ`〉j from distinct parties have been received, then form
a k-certificate C for (B`, Σ`), send m := (Notify, k, B`, Σ`, C) to every
party, output ((B`, Σ`, C), 2), and terminate.

4. At time 5∆, if a correctly formed Notify message (Notify, k, B,Σ,C) has
been received, output ((B,Σ,C), 1) and terminate. (If there is more
than one such message, choose arbitrarily.) Otherwise, output (⊥, 0)
and terminate.

Fig. 6. A graded block-consensus protocol Πk
GC, parameterized by k.

sends a Commit message on (B′, Σ′) 6= (B,Σ), proving the first part of
the lemma. Since less than half the parties are corrupted, this means an
honest party will receive fewer than d(n+ 1)/2e correctly formed Commit
messages on anything other than (B,Σ); it follows that if an honest party
outputs grade g = 2 then that party outputs (B,Σ,C) with C a k-
certificate for (B,Σ).

Arguing similarly, no honest party will receive a correctly formed
Notify message on anything other than (B,Σ). Hence any honest party
that outputs grade 1 outputs (B,Σ,C) with C a k-certificate for (B,Σ).

ut

Lemma 15. Assume fewer than n/2 parties are corrupted. If an honest
party outputs (B,Σ,C) with a nonzero grade in an execution of Πk

GC,
then no honest party sends a Commit message on (B′, Σ′) 6= (B,Σ).

Proof. Say an honest party outputs (B,Σ,C) with a nonzero grade. That
party must have received a correctly formed Notify message on (B,Σ).
Since that Notify message includes a k-certificate C with signatures from
more than half the parties, at least one honest party P must have sent a
Commit message on (B,Σ). This means that P must have received (B,Σ)
as its output from ΠP`

Propose. By Lemma 11, this means the output of any

other honest party from ΠP`
Propose is either (B,Σ) or ⊥. ut

Lemma 16. Assume fewer than n/2 parties are corrupted. If an honest
party outputs (B,Σ,C) with grade 2 in an execution of Πk

GC, then every
honest party outputs a k-certificate on (B,Σ) with a nonzero grade.

Proof. Say an honest party P outputs (B,Σ,C) with a grade of 2. By
Lemma 15, this means no honest party sent a correctly formed Commit
message on (B′, Σ′) 6= (B,Σ); it is thus impossible for any honest party to
output (B′, Σ′) 6= (B,Σ) with a nonzero grade. Since P sends a correctly
formed Notify message on (B,Σ) to all honest parties, every honest party
will output (B,Σ) with a nonzero grade. ut

Lemma 17. Assume fewer than n/2 parties are corrupted. Then with
probability at least 1/2 every honest party outputs a k-certificate on the
same valid (B,Σ) with a grade of 2.

Proof. The leader ` chosen in step 2 was honest in step 1 with probability
at least 1/2. We show that whenever this occurs, every honest party
outputs grade 2. Agreement on a valid (B,Σ) follows from Lemma 16.

Assume ` was honest in step 1. Lemma 13 implies that every honest
party holds the same valid (B`, Σ`) 6=⊥ in step 2, and so sends a correctly
formed Commit message on (B`, Σ`). Since there are at least d(n+ 1)/2e
honest parties, the lemma follows. ut

In Figure 7 we describe our block-agreement protocol ΠBLA.

Protocol ΠBLA

We describe the protocol from the point of view of a party P with input a
valid pair (B,Σ).

Initialize (k∗, B∗, Σ∗, C∗) := (0, B,Σ, ∅) and k := 1. While k ≤ κ do:

1. At time (5k − 5) · ∆, run Πk
GC using input (k∗, B∗, Σ∗, C∗) to obtain

output ((B,Σ,C), g).
2. At time 5k ·∆ do: If g > 0, set (k∗, B∗, Σ∗, C∗) := (k,B,Σ,C). If g = 2,

output (B,Σ). Increment k.

Fig. 7. A block-agreement protocol ΠBLA.

Lemma 18. If t < n/2, then ΠBLA is t-secure.

Proof. Assume fewer than n/2 parties are corrupted. Let k be the first
iteration in which some honest party outputs (B,Σ). We first show that

in every subsequent iteration: (1) every honest party Pi uses as its input
in step 1 a ki-vote on (B,Σ); and (2) corrupted parties cannot construct
a k′-vote on (B′, Σ′) 6= (B,Σ) for any k′ ≥ mini{ki}.

Say an honest party outputs (B,Σ) in iteration k. Then that party
must have output a k-certificate for (B,Σ) in the execution of Πk

GC in
iteration k. By Lemma 16, this means every honest party output a k-
certificate on (B,Σ) in the same execution of Πk

GC, and so (1) holds in
iteration k + 1. Moreover, Lemma 15 implies that no honest party sent
a Commit message on (B′, Σ′) 6= (B,Σ) in the execution of Πk

GC, and
so (2) also holds in iteration k + 1. Lemma 14 implies, inductively, that
the stated properties continue to hold in every subsequent iteration.

It follows from Lemma 14 that any other honest party P who generates
output in ΠBLA also outputs (B,Σ), regardless of whether they generate
output in iteration k or a subsequent iteration.

Lemma 17 shows that in each iteration of ΠBLA, with probability at
least 1/2 all honest parties output some (the same) valid (B,Σ) in that
iteration. Thus, after κ iterations all honest parties have generated valid
output with probability at least 1− 2−κ (note that all parties terminate
after κ iterations). ut

