
tardigrade: An Atomic Broadcast Protocol for
Arbitrary Network Conditions

Erica Blum1, Jonathan Katz1?, and Julian Loss2??

1 University of Maryland College Park
{erblum,jkatz2}@umd.edu

2 CISPA Helmoltz Center for Information Security
lossjulian@gmail.com

Abstract. We study the problem of atomic broadcast—the underlying
problem addressed by blockchain protocols—in the presence of a ma-
licious adversary who corrupts some fraction of the n parties running
the protocol. Existing protocols are either robust for any number of cor-
ruptions in a synchronous network (where messages are delivered within
some known time ∆) but fail if the synchrony assumption is violated, or
tolerate fewer than n/3 corrupted parties in an asynchronous network
(where messages can be delayed arbitrarily) and cannot tolerate more
corruptions even if the network happens to be well behaved.

We design an atomic broadcast protocol (tardigrade) that, for any
ts ≥ ta with 2ts + ta < n, provides security against ts corrupted parties
if the network is synchronous, while remaining secure when ta parties
are corrupted even in an asynchronous network. We show that tardi-
grade achieves optimal tradeoffs between ts and ta. Finally, we show a
second protocol (upgrade) with similar (but slightly weaker) guarantees
that achieves per-transaction communication complexity linear in n.

Keywords: Atomic broadcast · Byzantine agreement · Consensus.

1 Introduction

Atomic broadcast [10] is a fundamental problem in distributed computing that
can be viewed as a generalization of Byzantine agreement (BA) [21,33]. Roughly
speaking, a BA protocol allows a set of n parties to agree on a value once, even
if some parties are Byzantine, i.e., corrupted by an adversary who may cause
them to behave arbitrarily. In contrast, an atomic broadcast (ABC) protocol
allows parties to repeatedly agree on values by including them a totally-ordered,
append-only log maintained by all parties. (Formal definitions are given in Sec-
tion 3. Note that ABC is not obtained by simply repeating a BA protocol mul-
tiple times; this point is discussed further below.) Atomic broadcast is used as a

? Work performed under financial assistance award 70NANB19H126 from the U.S.
Department of Commerce, National Institute of Standards and Technology, and also
supported in part by NSF award #1837517.

?? Portions of this work were done while at University of Maryland and Ruhr University
Bochum.



2 E. Blum et al.

building block for state machine replication, and has received renewed attention
in recent years for its applications to blockchains and cryptocurrencies.

Different network models for atomic broadcast can be considered. In a syn-
chronous network [2,8,15,19,29], all messages are delivered within some known
time ∆. In an asynchronous network [16,26], messages can be delayed arbitrarily.
(Some work assumes the partially synchronous model [13], where messages are
delivered within some time bound ∆ that is unknown to the parties. We do not
consider this model in our work.) Assuming a public-key infrastructure (PKI),
atomic broadcast is feasible for ts < n adversarial corruptions in a synchronous
network, but only for ta < n/3 faults in an asynchronous network. A natural
question is whether it is possible to design a protocol that can withstand strictly
more than n/3 faults if the network happens to be synchronous, without entirely
sacrificing security if the network happens to be asynchronous. More precisely,
fix two thresholds ta, ts with ta ≤ ts. Is it possible to design a network-agnostic
atomic broadcast protocol that (1) tolerates ts corruptions if it is run in a syn-
chronous network and (2) tolerates ta corruptions if it is run in an asynchronous
network? Depending on one’s assumptions about the probabilities of different
events, a network-agnostic protocol could be preferable to either a purely syn-
chronous protocol (which loses security if the network is asynchronous) or a
purely asynchronous one (which loses security if there are n/3 or more faults).

We settle the above question in a model where there is a trusted dealer who
distributes information to the parties in advance of the protocol execution:

– We present an atomic broadcast protocol, tardigrade,1 that achieves the
above for any ta, ts satisfying ta + 2ts < n. We also prove that no atomic
broadcast protocol can provide the above guarantees2 if ta+ 2ts ≥ n, and so
tardigrade is optimal in terms of the thresholds it tolerates.

– We also describe a second protocol, upgrade, that is sub-optimal in terms
of ta, ts but has asymptotic communication complexity comparable to state-
of-the-art asynchronous atomic broadcast protocols (see Table 1).

Our work is inspired by work of Blum et al. [5], who show analogous results
(with the same thresholds) for the simpler problem of Byzantine agreement. We
emphasize that ABC is not realized by simply repeating a (multi-valued) BA
protocol multiple times. In particular, the validity property of BA guarantees
only that if a value is used as input by all honest parties then that transaction
will be output by all honest parties. In the context of ABC, however, each honest
party holds a local buffer containing multiple values called transactions. Trans-
actions may arrive at arbitrary times, and there is no way to ensure that all
honest parties will input the same transactions to some execution of an underly-
ing BA protocol. (Although generic transformations from BA to ABC are known

1 Tardigrades, also called water bears, are microscopic animals known for their ability
to survive in extreme environments.

2 This does not contradict the existence of synchronous ABC protocols for ts < n,
since such protocols are insecure in an asynchronous setting even if no parties are
corrupted.



Atomic Broadcast for Arbitrary Network Conditions 3

Protocol Communication Network model

HoneyBadger [26] O(n · |tx|) Asynchronous

BEAT1 / BEAT2 [12] O(n2 · |tx|) Asynchronous

Dumbo1 / Dumbo2 [16] O(n · |tx|) Asynchronous

tardigrade O(n2 · |tx|) Network-agnostic

upgrade O(n · |tx|) Network-agnostic

Table 1. Per-transaction communication complexity of ABC protocols, for transactions
of length |tx|, assuming infinite block size and suppressing dependence on the security
parameter for simplicity.

in other settings [9], no such transformation is known for the network-agnostic
setting we consider.) Indeed, translating the approach of Blum et al. from BA
to ABC introduces several additional challenges. In particular, as just noted, in
the context of atomic broadcast there is no guarantee that honest parties ever
use the same transaction, making it more challenging to prove liveness. A cen-
tral piece of our construction is a novel protocol for the fundamental problem of
asynchronous common subset (ACS). Our ACS protocol achieves non-standard
security properties that turn out to be generally useful for constructing proto-
cols in a network-agnostic setting; it has already served as a crucial ingredient
in follow-up work [6] on network-agnostic secure computation.

1.1 Related Work

There is extensive prior work on both Byzantine agreement and atomic broad-
cast/SMR/blockchain protocols; we do not provide an exhaustive survey, but
instead focus only on the most closely related works.

Miller et al. [26] already note that well-known SMR protocols that tolerate
malicious faults (e.g., [8,19]) fail to achieve liveness in an asynchronous network.
The HoneyBadger protocol [26] is designed for asynchronous networks, but only
handles t < n/3 faults even if the network is synchronous.

Several of the most prominent blockchain protocols rely on synchrony [15,29];
Nakamoto consensus, in particular, relies on the assumption that messages will
be delivered much faster than the time required to solve proof-of-work puzzles,
and is insecure if the network latency is too high or nodes become (temporarily)
partitioned from the network.

We focus on designing a single protocol that may be run in either a syn-
chronous or asynchronous network while providing security guarantees in either
case. Related work includes that of Malkhi et al. [25] and Momose and Ren [27],
who consider networks that may be either synchronous or partially synchronous;
Liu et al. [22], who design a protocol that tolerates a minority of malicious faults
in a synchronous network and a minority of fail-stop faults in an asynchronous
network; and Guo et al. [17] and Abraham et al. [2], who consider temporary
disconnections between two synchronous network components.



4 E. Blum et al.

A different line of work [23,24,30,31] designs protocols with good responsive-
ness. Roughly, such protocols still require synchrony, but terminate in time pro-
portional to the actual message-delivery time δ rather than the upper bound on
the network-delivery time ∆. Kursawe [20] gives a protocol for an asynchronous
network that terminates more quickly if the network is synchronous (but does
not tolerate more faults in that case). Finally, other work [3,11,14,32] considers
a model where synchrony is available for some (known) period of time, and the
network is asynchronous afterward.

1.2 Paper Organization

We describe our model in Section 2, and give formal definitions in Section 3. In
Section 4, we describe a protocol for the asynchronous common subset (ACS)
problem. Then, in Section 5, we show how to construct a network-agnostic atomic
broadcast protocol (tardigrade) achieving optimal security tradeoffs using
ACS and other building blocks. In Section 6, we present a second atomic broad-
cast protocol (upgrade) that achieves per-transaction communication complex-
ity linear in n at the cost of tolerating fewer corruptions.

2 Model

We consider protocols run by n parties P1, . . . , Pn, over point-to-point authen-
ticated channels. Some fraction of these parties are controlled by an adversary,
and may deviate arbitrarily from the protocol. For simplicity, we generally as-
sume a static adversary who corrupts parties prior to the start of the protocol;
in Section 5.6, however, we do briefly discuss how tardigrade can be modified
to tolerate an adaptive adversary who may corrupt parties as the protocol is
executed. Parties who are not corrupted are called honest.

In our model, the network has two possible states. The state is fixed prior
to the beginning of the execution; however, the state is not known to the hon-
est parties. When the network is synchronous, all parties begin the protocol at
the same time, parties’ clocks progress at the same rate, and all messages are
delivered within some known time ∆ after they are sent. The adversary is able
to adaptively delay and reorder messages arbitrarily (subject to the bound ∆).
When the network is asynchronous, the adversary is able to delay messages for
arbitrarily long periods of time (as long as all messages are eventually delivered).
The parties still have local clocks in the asynchronous setting; however, in this
case their clocks are only assumed to be monotonically increasing. In particular,
parties’ clocks are not necessarily synchronized, and they may start the protocol
at different times.

We assume the network is either synchronous or asynchronous for the life-
time of the protocol. A more general model would consider a network that al-
ternates between periods of synchrony and asynchrony. Our adaptively secure
protocol (cf. Section 5.6) tolerates an asynchronous network that later becomes



Atomic Broadcast for Arbitrary Network Conditions 5

synchronous so long as the attacker does not exceed ta corruptions until all it-
erations initiated while the network was asynchronous are complete, and does
not exceed ts corruptions overall. Handling a synchronous network that later
becomes asynchronous is only interesting if some mechanism is provided to “un-
corrupt” parties (as in the proactive setting). This is outside our model, and we
leave treatment of this case as an interesting direction for future work.

We assume a trusted dealer who initializes parties with some information
prior to execution of the protocol. Specifically, we assume the dealer distributes
keys for threshold signature and encryption schemes, each secure for up to ts
corruptions. In a threshold signature scheme there is a public key pk, private
keys sk1, . . . , skn, and (public) signature verification keys (pk1, . . . , pkn). Each
party Pi receives ski, pk, and (pk1, . . . , pkn), and can use its secret key ski to
create a signature share σi on a message m. A signature share from party Pi on
a message m can be verified using the corresponding public verification key pki
(and is called valid if it verifies successfully); for this reason, we can also view such
a signature share as a signature by Pi on m. We often write 〈m〉i as a shorthand
for the tuple (i,m, σi), where σi is a valid signature share on m with respect
to Pi’s verification key, and implicitly assume that invalid signature shares are
discarded. A set of ts+1 valid signature shares on the same message can be used
to compute a signature for that message, which can be verified using the public
key pk; a signature σ on a message m is called valid if it verifies successfully
with respect to pk. We always implicitly assume that parties use some form of
domain separation when signing to ensure that signature shares are valid only
in the context in which they are generated.

In a threshold encryption scheme, there is a public encryption key ek, (pri-
vate) decryption keys dk1, . . . , dkn, and public verification keys vk1, . . . , vkn that
can be used, as above, to verify that a decryption share is correct (relative to
a particular ciphertext). A party Pi can use its decryption key dki to generate
a decryption share of a ciphertext c; any set of ts + 1 correct decryption shares
enable recovery of the underlying message m. Security requires that no collection
of ts parties can decrypt on their own.

We idealize the threshold signature and encryption schemes for simplicity,
but they can be instantiated using any of several known protocols; in particular,
we only require CPA-security for the threshold encryption scheme. We assume
that signature shares and signatures have size O(κ), where κ is the security
parameter; this is easy to ensure using a collision-resistant hash function. We
assume that encrypting a message m of length |m| produces a ciphertext of
length |m|+O(κ), and that decryption shares have length O(κ); these are easy
to ensure using standard KEM/DEM mechanisms.

3 Definitions

In this section, we formally define atomic broadcast and relevant subprotocols.
Throughout, when we say a protocol achieves some property, we include the
case where it achieves that property with overwhelming probability in a security



6 E. Blum et al.

parameter κ. Additionally, in some cases we consider protocols where parties
may not terminate even upon generating output; for this reason, we mention
termination explicitly in our definitions when applicable.

Many of the definitions below are parameterized by a threshold t. This will
become relevant in later sections, where we will often analyze a protocol’s proper-
ties in a synchronous network with ts corruptions, as well as in an asynchronous
network with ta corruptions.

3.1 Broadcast and Byzantine Agreement

A reliable broadcast protocol allows parties to agree on a value chosen by a des-
ignated sender. Honest parties are not guaranteed to terminate; hence, reliable
broadcast is weaker than standard broadcast. However, if there is some honest
party who terminates, then all honest parties terminate.

Definition 1 (Reliable broadcast). Let Π be a protocol executed by parties
P1, . . . , Pn, where a designated sender P ∗ ∈ {P1, . . . , Pn} begins holding input v∗

and parties terminate upon generating output.

– Validity: Π is t-valid if the following holds whenever at most t parties are
corrupted: if P ∗ is honest, then every honest party outputs v∗.

– Consistency: Π is t-consistent if the following holds whenever at most t
parties are corrupted: either no honest party outputs a value, or all honest
parties output the same value v.

If Π is t-valid and t-consistent, then we say it is t-secure.

We reserve the term “broadcast” for reliable broadcast. When a party Pi
sends a message m to all parties (over point-to-point channels), we say that Pi
multicasts m.

Byzantine agreement (BA) is closely related to broadcast. In a BA protocol,
there is no designated sender; instead, each party has their own input and the
parties would like to agree on an output.

Definition 2 (Byzantine agreement). Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi begins holding input vi ∈ {0, 1}.

– Validity: Π is t-valid if the following holds whenever at most t of the parties
are corrupted: if every honest party’s input is equal to the same value v, then
every honest party outputs v.

– Consistency: Π is t-consistent if whenever at most t parties are corrupted,
every honest party outputs the same value v ∈ {0, 1}.

– Termination: Π is t-terminating if whenever at most t parties are corrupted,
every honest party terminates with some output in {0, 1}.

If Π is t-valid, t-consistent, and t-terminating, then we say it is t-secure.



Atomic Broadcast for Arbitrary Network Conditions 7

3.2 Asynchronous Common Subset

Informally, a protocol for the asynchronous common subset (ACS) problem [4]
allows n parties, each with some input, to agree on a subset of those inputs.
(The term “asynchronous” in the name is historical, and one can also consider
protocols for this task in the synchronous setting.)

Definition 3 (ACS). Let Π be a protocol executed by parties P1, . . . , Pn, where
each Pi begins holding input vi ∈ {0, 1}∗, and parties output sets of size at most n.

– Validity: Π is t-valid if the following holds whenever at most t parties are
corrupted: if every honest party’s input is equal to the same value v, then
every honest party outputs {v}.

– Consistency: Π is t-consistent if whenever at most t parties are corrupted,
all honest parties output the same set S.

– Liveness: Π is t-live if whenever at most t parties are corrupted, every
honest party generates output.

If Π is t-consistent, t-valid, and t-live, we say it is t-secure.

For our analysis, it will be helpful to define a few additional properties.

Definition 4 (ACS properties). Let Π be as above.

– Set quality: Π has t-set quality if the following holds whenever at most t
parties are corrupted: if an honest party outputs a set S, then S contains the
input of at least one honest party.

– Validity with termination: Π is t-valid with termination if, whenever at
most t parties are corrupted and every honest party’s input is equal to the
same value v, then every honest party outputs {v} and terminates.

– Termination: Π is t-terminating if whenever at most t parties are corrupted,
every honest party generates output and terminates.

3.3 Atomic Broadcast

Protocols for atomic broadcast (ABC) allow parties to maintain agreement on
an ever-growing, ordered log of transactions. An atomic broadcast protocol does
not terminate but instead continues indefinitely. We model the local log held
by each party Pi as a write-once array Blocksi = Blocksi[1],Blocksi[2], . . .. Each
Blocksi[j] is initially set to a special value ⊥. We say that Pi outputs a block in
iteration j when Pi writes a set of transactions to Blocksi[j]; similarly, for each
i, j such that Blocksi[j] 6= ⊥, we refer to Blocksi[j] as the block output by Pi in
iteration j. For convenience, we let Blocksi[k : `] denote the contiguous subarray
Blocksi[k], . . . ,Blocksi[`] and let Blocksi[: `] denote the prefix Blocksi[1 : `].

For simplicity, we imagine that each party Pi has a local buffer bufi, and that
transactions are added to parties’ local buffers by some mechanism external to
the protocol (e.g., via a gossip protocol). Whenever Pi outputs a block, they
delete from their buffer any transactions that have already been added to their



8 E. Blum et al.

log. We emphasize that a particular transaction tx may be provided as input
to different parties at arbitrary times, and may be provided as input to some
honest parties but not others.

Definition 5 (Atomic broadcast). Let Π be a protocol executed by parties
P1, . . . , Pn who are provided with transactions as input and locally maintain ar-
rays Blocks as described above.

– Completeness: Π is t-complete if the following holds whenever at most t
parties are corrupted: for all j > 0, every honest party outputs a block in
iteration j.

– Consistency: Π is t-consistent if the following holds whenever at most t
parties are corrupted: if an honest party outputs a block B in iteration j
then all honest parties output B in iteration j.

– Liveness: Π is t-live if the following holds whenever at most t parties are
corrupted: if every honest party is provided a transaction tx as input, then
every honest party eventually outputs a block that contains tx.

If Π is t-consistent, t-live, and t-complete, then we say it is t-secure.

In the above definition, a transaction tx is only guaranteed to be contained
in a block output by an honest party if every honest party receives tx as input.
A stronger definition might require that a transaction is output even if only a
single honest party receives tx as input; however, it is easy to achieve the latter
from the former by requiring honest parties to forward new transactions they
receive to the rest of the parties in the network.

4 ACS with Higher Validity Threshold

A key component of our atomic broadcast protocol is an ACS protocol for asyn-
chronous networks that is secure when the number of corrupted parties is below
a fixed threshold ta, and guarantees validity up to a higher threshold ts. More
precisely, fix ta ≤ ts with ta + 2 · ts < n; we show a ta-secure ACS protocol
that achieves ta-termination, ts-validity with termination, and ta-set quality.
Throughout this section, we assume an asynchronous network. (Of course, the
protocol achieves the same guarantees in a synchronous network.)

Our protocol is adapted from the ACS protocol of Ben-Or et al. [4] (later
adapted by Miller et al. [26]), which is built using subprotocols for reliable broad-
cast and Byzantine agreement. We present our construction in two steps: first,
we describe an ACS protocol Πta,ts

ACS∗ (cf. Figure 1) that is ta-secure and has ta-set

quality, but is non-terminating. Then, we construct a second protocol Πta,ts
ACS (cf.

Figure 2) that uses Πta,ts
ACS∗ as a subprotocol. Πta,ts

ACS inherits security and set qual-

ity from Πta,ts
ACS∗ , and additionally achieves ta-termination and ts-validity with

termination.

Protocol Πta,ts
ACS∗ . At a high level, an execution of Πta,ts

ACS∗ involves one instance
of reliable broadcast and one instance of Byzantine agreement per party Pi,



Atomic Broadcast for Arbitrary Network Conditions 9

denoted Bcasti and BAi, respectively. Informally, Bcasti is used to broadcast
Pi’s input vi, and BAi is used to determine whether Pi’s input will be included
in the final output. When a party receives output v′i from Bcasti, they input 1
to BAi. Once a party has received output from n− ta broadcasts, they input 0 to
any BA instances they have not yet initiated. Each party keeps track of which
BA instances have output 1 using a local variable S∗ := {i : BAi output 1}. At
the end of the protocol, if a party observes a majority value v in the set of values
{v′i}i∈S∗ , it outputs the singleton set {v}; otherwise, it outputs {v′i}i∈S∗ , i.e.,
the set of all values broadcast by parties in S∗.

We assume an ABA subprotocol that is secure for ta < n/3 corruptions and
has communication complexity O(n2), such as the ABA protocol of Mostéfaoui
et al. [28]. We also assume an asynchronous reliable broadcast protocol Bcast
that is ts-valid and ta-consistent with communication complexity O(n2 |v|). It
is straightforward to adapt Bracha’s (asynchronous) reliable broadcast proto-
col [7] to achieve these properties; an example construction can be found in
Appendix A.1.

Πta,ts
ACS∗

– Set commit := false and S∗ := ∅.
– Run Bcastj as the sender with input vj , and for each i 6= j run Bcasti

with Pi as the sender.
– Upon Bcasti terminating with output v′i: if Pj has not yet begun running

BAi then begin running it with input 1.
– Upon BAi terminating with output 1: add i to S∗.
– Upon setting |S∗| to n − ta: for any BAi that Pj has not yet begun

running, begin running BAi with input 0.

Predicates:

C1(v): at least n− ts executions {Bcasti}i∈[n] have output v.
C1: ∃v for which C1(v) is true.

C2(v): |S∗| ≥ n−ta, all executions {BAi}i∈[n] have terminated, and a strict
majority of the executions {Bcasti}i∈S∗ have output v.

C2: ∃v for which C2(v) is true.
C3: |S∗| ≥ n − ta, all executions {BAi}i∈[n] have terminated, and all

executions {Bcasti}i∈S∗ have terminated.

Output conditions:
(Event 1) If C1(v) = true for some v and commit = false then:

set commit := true and output {v}.
(Event 2) If C1 = false, C2(v) = true for some v, and commit = false then:

set commit := true and output {v}.
(Event 3) If C1 = C2 = false, C3 = true, and commit = false then:

set commit := true and output {v′i}i∈S∗ .

Fig. 1. An ACS protocol, from the perspective of party Pj with input vj .



10 E. Blum et al.

Lemma 1. Fix ts, ta with ta + 2 · ts < n, and assume there are at most ts
corrupted parties during some execution of Πta,ts

ACS∗ . If an honest party Pi outputs
a set Si, then ∃vj ∈ Si such that vj was input by an honest party Pj.

Proof. We show that Pi’s output Si always includes a value that was output
from an execution of Bcast where the corresponding sender is honest. The lemma
follows from ts-validity of Bcast.

Suppose Pi generates output due to Event 1, so Si is a singleton set {v}.
Pi must have received v as output from at least n − ts executions of {Bcasti}.
Because n− 2ts > ta ≥ 0, at least one of those corresponds to an honest sender.

Next, suppose Pi generates output due to Event 2. Again, Si is a singleton

set {v}. Pi must have seen at least b |S
∗|
2 c + 1 broadcast instances terminate

with output v, and furthermore |S∗| ≥ n − ta. Therefore, Pi has seen at least⌊
n−ta

2

⌋
+ 1 ≥

⌊
2ts
2

⌋
+ 1 > ts executions of {Bcasti} terminate with output v.

Since there are at most ts corrupted parties, at least one of those executions
must correspond to an honest sender.

Finally, suppose Pi generates output due to Event 3, so Si = {v′i}i∈S∗ . Since
there are at most ts corrupted parties and |S∗| − ts ≥ n − ta − ts > ts ≥ 0, at
least one party in S∗ is honest. ut

Lemma 2. If ta + 2 · ts < n, then Πta,ts
ACS∗ is ts-valid.

Proof. Assume at most ts parties are corrupted, and all honest parties have
the same input v. By ts-validity of Bcast, at least n− ts executions of {Bcasti}
(namely, those for which the sender is honest) will eventually output v. It follows
that all honest parties eventually set C1(v) = true, at which point they will
output {v} if they have not already generated output. It only remains to show
that there is no other set an honest party can output.

If an honest party generates output S due to Events 1 or 2, then S is a
singleton set. Since all honest parties have input v, Lemma 1 implies S = {v}.

To conclude, we show that no honest party can generate output due to
Event 3. Assume toward a contradiction that some honest party P generates
output due to Event 3. Then P must have seen Bcasti terminate (say, with out-
put vi) for all i ∈ S∗. Since also |S∗| ≥ n− ta > 2ts, a majority of those execu-
tions {Bcasti}i∈S∗ correspond to honest senders and so (by ts-validity of Bcast)
resulted in output v. But then C2(v) would be true for P , and P would not
generate output due to Event 3. ut

Lemma 3. Fix ta ≤ ts with ta + 2 · ts < n, and assume at most ta parties
are corrupted during an execution of Πta,ts

ACS∗ . If honest parties P1, P2 output sets
S1, S2, respectively, then S1 = S2.

Proof. Say P1 generates output due to event i and P2 generates output due
to event j, and assume without loss of generality that i ≤ j. We consider the
different possibilities.

First, assume i = 1 so Event 1 occurs for P1 and S1 = {v1} for some value v1.
We have the following sub-cases:



Atomic Broadcast for Arbitrary Network Conditions 11

– If Event 1 also occurs for P2, then S2 = {v2} for some value v2. P1 and P2

must have each seen some set of at least n− ts > n/2 executions of {Bcasti}
output v1 and v2, respectively. The intersection of these sets is non-empty;
thus, ta-consistency of Bcast implies that v1 = v2 and hence S1 = S2.

– If Event 2 occurs for P2, then once again S2 = {v2} for some v2. P2 must

have |S∗| ≥ n − ta, and must have seen at least
⌊
|S∗|
2

⌋
+ 1 ≥

⌊
n−ta

2

⌋
+ 1

executions of {Bcasti} output v2. Moreover, P1 must have seen at least n−ts
executions of {Bcasti} output v1. Since

n− ts +

⌊
n− ta

2

⌋
+ 1 ≥ n− ts +

⌊
2ts
2

⌋
+ 1 > n, (1)

these two sets of executions must have a non-empty intersection. But then
ta-consistency of Bcast implies that v1 = v2 and hence S1 = S2.

– If Event 3 occurs for P2 then P2 must have seen all executions {Bcasti}i∈S∗

terminate, where |S∗| ≥ n−ta. We know P1 has seen at least n−ts executions
{Bcasti}i∈[n] output v1, and so (by ta-consistency of Bcast) there are at
most ts executions {Bcasti}i∈[n] that P2 has seen terminate with a value
other than v1. The number of executions of {Bcasti}i∈S∗ that P2 has seen
terminate with output v1 (which is at least (n − ta) − ts > ts) is thus
strictly greater than the number of executions {Bcasti}i∈S∗ that P2 has seen
terminate with a value other than v1 (which is at most ts). But then C2(v1)
would be true for P2. We conclude that Event 3 cannot occur for P2.

Next, assume i = j = 2, so Event 2 occurs for P1 and P2. Then S1 = {v1}
and S2 = {v2} for some v1, v2. Both P1 and P2 must have seen all executions
{BAi}i∈[n] terminate. By ta-consistency of BA, they must therefore agree on S∗.
P1 must have seen a majority of the executions {Bcasti}i∈S∗ output v1; similarly,
P2 must have seen a majority of the executions {Bcasti}i∈S∗ output v2. Then
ta-consistency of Bcast implies v1 = v2.

Finally, consider the case where j = 3 (so Event 3 occurs for P2) but i > 1 (so
P1 generates output due either to Event 2 or 3). As above, ta-consistency of BA
ensures that P1 and P2 agree on S∗. Moreover, P2 must have seen all executions
{Bcasti}i∈S∗ terminate, but without any value being output by a majority of
those executions. But then ta-consistency of Bcast implies that P1 also does not
see any value being output by a majority of those executions, and so Event 2
cannot occur for P1; thus, Event 3 must have occurred for P1. Therefore, ta-
consistency of Bcast implies that P1 outputs the same set as P2. ut

Lemma 4. If ta ≤ ts and ta + 2 · ts < n, then Πta,ts
ACS∗ is ta-live.

Proof. It follows easily from ta-security of Bcast and BA that if any honest party
generates output then all honest parties generate output, so consider the case
where no honest parties have (yet) generated output. Let H denote the indices
of the honest parties. By ts-validity of Bcast, all honest parties eventually see
the executions {Bcasti}i∈H terminate, and so all honest parties input a value to
the executions {BAi}i∈H . By ta-security of BA, all honest parties eventually see
those executions terminate and agree on their outputs. There are now two cases:



12 E. Blum et al.

– If all executions {BAi}i∈H output 1, then it is immediate that all honest
parties have |S∗| ≥ n− ta.

– If BAi outputs 0 for some i ∈ H, then (by ta-validity of BA) some honest
party P must have used input 0 when running BAi. But then P must have
seen at least n − ta other executions {BAi} output 1. By ta-consistency of
BA, this implies that all honest parties see at least n− ta executions {BAi}
output 1, and hence have |S∗| ≥ n− ta.

Since all honest parties have |S∗| ≥ n − ta, they all execute {BAi}i∈[n]. Once
again, ta-termination of BA implies that all those executions will eventually
terminate. Finally, if i ∈ S∗ for some honest party P then P must have seen BAi
terminate with output 1; then ta-validity of BA implies that some honest party
used input 1 when running BAi and hence has seen Bcasti terminate. It follows
that P will see Bcasti terminate. As a result, we see that every honest party can
(at least) generate output due to Event 3. ut

Lemma 5. If ta ≤ ts and ta + 2 · ts < n, then Πta,ts
ACS∗ has ta-set quality.

Proof. If an honest party P outputs S = {v} due to Event 1, then P has seen
at least n − ts executions {Bcasti} terminate with output v. Of these, at least
n− ts− ta > 0 must correspond to honest senders. By ts-validity of Bcast, those
honest parties must have all had input v, and so set quality holds. Alternatively,
say P outputs a set {v} due to Event 2. Then P must have |S∗| ≥ n − ta, and

at least b |S
∗|
2 c + 1 ≥ bn−ta2 c + 1 > ta of the executions {Bcasti}i∈S∗ output v.

At least one of those executions must correspond to an honest party, and that
honest party must have had input v (by ts-validity of Bcast); thus, set quality
holds. Finally, if P output a set S due to Event 3, then S contains every value
output by {Bcasti}i∈S∗ with |S∗ ≥ n − ta. Since S∗ must contain at least one
honest party, set quality follows as before. ut

Theorem 1. Fix ta, ts with ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
ACS∗ is ta-secure

and ts-valid, and has ta-set quality.

Proof. Lemma 2 proves ts-validity. Lemmas 3 and 4 together prove ta-liveness
and ta-consistency, and Lemma 6 proves ta-set quality. ut

Lemma 6. If ta ≤ ts and ta + 2 · ts < n, then Πta,ts
ACS∗ has ta-set quality.

Proof. If an honest party P outputs S = {v} due to Event 1, then P has seen
at least n − ts executions {Bcasti} terminate with output v. Of these, at least
n− ts− ta > 0 must correspond to honest senders. By ts-validity of Bcast, those
honest parties must have all had input v, and so set quality holds. Alternatively,
say P outputs a set {v} due to Event 2. Then P must have |S∗| ≥ n − ta, and

at least b |S
∗|
2 c + 1 ≥ bn−ta2 c + 1 > ta of the executions {Bcasti}i∈S∗ output v.

At least one of those executions must correspond to an honest party, and that
honest party must have had input v (by ts-validity of Bcast); thus, set quality
holds. Finally, if P output a set S due to Event 3, then S contains every value
output by {Bcasti}i∈S∗ . Since |S∗| ≥ n− ta, S∗ must contain at least one honest
party, and so set quality follows as before. ut



Atomic Broadcast for Arbitrary Network Conditions 13

Protocol Πta,ts
ACS . Protocol Πta,ts

ACS∗ does not guarantee termination. We transform

Πta,ts
ACS∗ to a terminating ACS protocol Πta,ts

ACS using digital signatures. The parties

first run Πta,ts
ACS∗ . When a party Pi generates output Si from that protocol, it then

notifies the other parties by multicasting a signature share〈commit, Si〉i on Si.
Any party who receives enough signature shares to form a signature—or receives
a signature directly—multicasts the signature to all other parties, outputs the
corresponding set, and terminates.

Πta,ts
ACS

– Run Πta,ts
ACS∗ using input vj .

– Upon receiving output Sj from Πta,ts
ACS∗ , multicast 〈commit, Sj〉j .

– Upon receiving ts + 1 signature shares of (commit, S), form a signature
σ on (commit, S), multicast (commit, S, σ), output S, and terminate.

– Upon receiving a valid signature σ of (commit, S), multicast
(commit, S, σ), output S, and terminate.

Fig. 2. A terminating ACS protocol, from the perspective of party Pj with input vj .

Lemma 7. Πta,ts
ACS is ta-terminating.

Proof. If one honest party terminates Πta,ts
ACS then all honest parties will eventu-

ally receive a valid signature and thus terminate Πta,ts
ACS . But as long as no honest

parties has yet terminated, ta-liveness of Πta,ts
ACS∗ implies that all honest parties

will generate output from Πta,ts
ACS∗ ; moreover, ta-consistency of Πta,ts

ACS∗ implies that
all those outputs will be equal to the same set S. So the n− ta ≥ ts + 1 honest
parties will send signature shares on S to all parties, which means that all honest
parties will terminate. ut

Lemma 8. Fix ta, ts with ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
ACS is ta-secure,

ta-terminating, and ts-valid with termination, and has ta-set quality.

Proof. Lemma 7 implies that Πta,ts
ACS is ta-live as well as ta-terminating. If an

honest party outputs a set S from Πta,ts
ACS , then (as long as at most ts parties

are corrupted) at least one honest party must have output S from Πta,ts
ACS∗ . Thus,

Πta,ts
ACS inherits ta-set quality, ta-consistency, and ts-validity (without termina-

tion) from Πta,ts
ACS∗ (cf. Theorem 1). It is straightforward to extend ts-validity to

ts-validity with termination using an identical argument as in Lemma 7. ut

Communication complexity of Πta,ts
ACS . Let |v| be the size of each party’s in-

put. Recall that each instance of Bcast has communication complexity O(n2 |v|),
and each instance of BA has cost O(n2). Since the inner protocol Πta,ts

ACS∗ consists
of n parallel instances of Bcast and BA, the cost of the inner protocol is O(n3 |v|).
In the remaining steps, each party sends a set of size at most n plus a signature
share (or signature) to everyone else, contributing an additional O(n2 ·(n |v|+κ))
communication. The total communication for Πta,ts

ACS is thus O(n3 |v|+ n2κ).



14 E. Blum et al.

5 Network-Agnostic Atomic Broadcast

In this section, we show our main result: for any ts ≥ ta with ta + 2ts < n,
an atomic broadcast protocol that is ts-secure in a synchronous network and
ta-secure in an asynchronous network.

5.1 Technical Overview

At a high level, each iteration of the protocol consists of four main steps. First,
there is an information-gathering phase in which each party sends its input to all
other parties, and waits for a fixed amount of time to receive inputs from others.
Any party who receives enough inputs during the first phase will use them as
input to a synchronous block agreement (BLA) protocol Πts

BLA. If the network
is synchronous and at most ts parties are corrupted, the BLA subprotocol will
output a set of inputs that contains sufficiently many honest parties’ inputs.
The BLA subprotocol is run for a fixed amount of time, with the timeout chosen
to ensure that (with high probability) it will terminate before the timeout if
the network is synchronous. This brings us to the third phase, in which parties
run the ACS protocol Πta,ts

ACS . If a party received output from the BLA protocol
before the timeout, they will use that as their input to the ACS subprotocol;
otherwise, they wait until they have received sufficiently many inputs from other
parties and use those. The final phase occurs once parties have received output
from the ACS protocol. The parties use that output to form the next block.

The BLA and ACS protocols are designed to have complementary security
properties. In particular, if the network is synchronous then the BLA protocol
will ensure that all honest parties use the same input value B in the ACS pro-
tocol. This is exactly why Πta,ts

ACS has ts-validity with termination: so that that,
in this case, all parties will be in agreement on the singleton set {B} after run-
ning Πta,ts

ACS . On the other hand, if the network is not synchronous and at most
ta parties are corrupted, it is possible that Πts

BLA will not succeed, and parties

may input different values to Πta,ts
ACS . However, in this case ta-security of Πta,ts

ACS

ensures that the parties will agree on a set of values B = {β1, β2, . . . }. More-
over, the output-quality property ensures that at least a constant fraction of the
values in B were contributed by honest parties.

5.2 Block Agreement

We use a block-agreement protocol to agree on objects that we call pre-blocks.
(The name alludes to their role in our eventual atomic broadcast protocol, where
they will serve as an intermediate between parties’ raw inputs and the final
blocks.) A pre-block is a vector of length n whose ith entry is either ⊥ or a
message along with a valid signature by Pi on that message. The quality of
a pre-block is defined as the number of entries that are not ⊥; we say that a
pre-block is a k-quality pre-block if it has quality at least k.

Definition 6 (Block agreement). Let Π be a protocol executed by parties
P1, . . . , Pn, where parties terminate upon generating output.



Atomic Broadcast for Arbitrary Network Conditions 15

– Validity: Π is t-valid if whenever at most t of the parties are corrupted and
every honest party’s input is an (n− t)-quality pre-block, then every honest
party outputs an (n− t)-quality pre-block.

– Consistency: Π is t-consistent if whenever at most t of the parties are
corrupted, every honest party outputs the same pre-block B.

If Π is t-valid and t-consistent, then we say it is t-secure.

A synchronous block-agreement protocol can be constructed using a straight-
forward adaptation of the synod protocol by Abraham et al. [1]. (For complete-
ness, a construction and security analysis can be found in Appendix A.2.)

Theorem 2. Fix a maximum input length |m|. There is a block-agreement pro-
tocol ΠBLA with communication complexity O(n3κ2 +n2κ|m|) that is t-secure for
any t < n/2 when run in a synchronous network and terminates in time 5κ∆.

5.3 A Network-Agnostic Atomic Broadcast Protocol

We now describe our atomic broadcast protocol tardigrade (cf. Figure 3), pa-
rameterized by thresholds ts and ta. Let L denote a desired maximum block size,
i.e., the maximum number of transactions that can appear in a block. At a high
level, parties agree on each new block via the following steps. First, each party Pi
chooses a set Vi of L/n transactions from among the first L transactions in its lo-
cal buffer. (We assume without loss of generality that parties always have at least
L transactions in their buffer, since they can always pad their buffers with null
transactions.) Next, Pi encrypts Vi using a (ts, n)-threshold encryption scheme
to give a ciphertext µi. (As in HoneyBadger [26], transactions are encrypted
to limit the adversary’s ability to selectively censor certain transactions.) Each
party signs its ciphertext and multicasts it, then waits for a fixed period of time
to receive signed ciphertexts from the other parties. Whenever a party receives
a signed ciphertext during this time, they add it to a pre-block. Any party who
forms an (n − ts)-quality pre-block in this way within the time limit will input
that pre-block to ΠBLA. The parties then wait for another fixed period of time
to see whether ΠBLA outputs an (n− ts)-quality pre-block. If a party receives an
(n− ts)-quality pre-block as output from ΠBLA within this time limit, it inputs
that pre-block to the ACS protocol Πta,ts

ACS . Otherwise, if some party does not
receive suitable output within the time limit, it inputs a pre-block containing
the signed ciphertexts it received directly from other parties. (In this case, if
a party has not received enough signed ciphertexts to form an (n − ts)-quality
pre-block, it waits for additional ciphertexts to arrive before inputting its pre-
block to Πta,ts

ACS .) At this point, each party waits for Πta,ts
ACS to output a set of

pre-blocks. The output of Πta,ts
ACS is passed into a subroutine ConstructBlock that

performs threshold decryption for each ciphertext in each pre-block in the set,
and combines the resulting transactions into a final block.

Each party begins iteration k when its local clock reaches time Tk := λ·(k−1),
where λ > 0 is a spacing parameter. (The value of λ is irrelevant for the security
proofs, but can be tuned to achieve better performance in practice; see further



16 E. Blum et al.

Πta,ts
ABC

For each iteration k = 1, 2, . . . do:

– At time Tk = λ·(k−1): sample V ← ProposeTxs(L/n,L) and encrypt V
using pk to produce a ciphertext µ. Multicast (input, 〈µ〉j).

– Upon receiving a signed input (input, 〈µ〉i) from Pi (for iteration k):
• If this is the first input received for iteration k, create a new pre-

block βkj := (⊥, . . . ,⊥) and set readyk := false.
• If βkj [i] = ⊥: set βkj [i] := 〈µ〉j .
• If Bkj is an (n − ts)-quality pre-block and readyk = false, set

readyk := true.
– At time Tk +∆: if readyk = true, run ΠBLA using input βkj .
– At time Tk +∆+ 5κ∆:
• Terminate ΠBLA (if it has not already terminated). If ΠBLA had

output an (n− ts)-quality pre-block β∗, run Πta,ts
ACS using input β∗.

Else, wait until readyk = true and then run Πta,ts
ACS using input βkj .

• When Πta,ts
ACS terminates with output B∗, run ConstructBlock(B∗)

to produce a block B. Then set Blocks[k] := B and delete from
bufj any transactions that appear in Blocks[k].

ProposeTxs(`,M): choose a set V of ` values {tx1, . . . , tx`} uniformly (with-
out replacement) from the first M values in bufj , then output V .

ConstructBlock(B∗): participate in threshold decryption for each unique ci-
phertext µ in each pre-block β ∈ B∗. Once all decryptions have
finished, output the set B of all unique transactions obtained.

Fig. 3. Our atomic broadcast protocol tardigrade, from the perspective of party Pj .

discussion in Section 5.4.) If the network is synchronous, parties’ clocks are
synchronized and so all parties begin each iteration at the same time. If the
network is asynchronous, we do not have this guarantee. In either case, parties
do not necessarily finish agreeing on block k prior to starting iteration k′ > k,
and so it is possible for parties to be participating in several iterations in parallel.

We implicitly assume that messages in each iteration, including messages cor-
responding to the various subprotocols, carry an identifier for the corresponding
iteration so that parties know the iteration to which it belongs. Importantly, the
executions of ΠBLA and Πta,ts

ACS associated with a particular iteration are entirely
separate from those of other iterations.

Theorem 3 (Completeness and consistency). Fix ta, ts with ta ≤ ts and
ta+2·ts < n. Then Πta,ts

ABC is ta-complete/consistent when run in an asynchronous
network, and ts-complete/consistent when run in a synchronous network.

Proof. First, consider the case where at most ts parties are corrupted and the
network is synchronous. In the beginning of each iteration k, each honest party
multicasts a set of transactions, and so every honest party can form an (n− ts)-
quality pre-block by time Tk +∆. Thus, every honest party starts running ΠBLA



Atomic Broadcast for Arbitrary Network Conditions 17

at time Tk +∆ using an (n − ts)-quality pre-block as input. By ts-security of
ΠBLA in a synchronous network (note ts < n/2), with overwhelming probability
every honest party outputs the same (n − ts)-quality pre-block β∗ from ΠBLA

by time Tk +∆+ 5κ∆. Therefore, each honest party inputs β∗ to Πta,ts
ACS . By

ts-validity with termination of Πta,ts
ACS , every honest party obtains the same out-

put B∗ from Πta,ts
ACS . So all honest parties eventually receive n − ts > ts valid

decryption shares for each ciphertext in each pre-block of B∗, and they all output
the same block.

The case where the network is asynchronous and at most ta parties are
corrupted is similar. In each iteration, each honest party multicasts a set of
transactions and so every honest party eventually receives input from at least
n− ta ≥ n− ts distinct parties and can form an (n− ts)-quality pre-block. This
means that every honest party eventually runs Πta,ts

ACS using an (n − ts)-quality

pre-block as input. By ta-security of Πta,ts
ACS , all honest parties eventually receive

the same output B∗ from Πta,ts
ACS . So all honest parties will eventually receive

n− ta > ts valid decryption shares for each ciphertext in each pre-block of B∗,
and they all output the same block. ut

In what follows, we let Blocks[k] denote the block output by honest parties
in iteration k. We now turn our attention to liveness. We begin by proving a
bound on the number of honest parties who contribute transactions to a block.
Formally, we say that an honest party Pi contributes transactions to a block B :=
ConstructBlock(B∗) if there is a pre-block β ∈ B∗ such that B[i] 6= ⊥. Using this
lower bound, we show that any transaction that is at the front of most honest
parties’ buffers will eventually be output with overwhelming probability. Liveness
follows by arguing that any transaction that is in the buffer of all honest parties
will eventually move to the front of most honest parties’ buffers.

Lemma 9. Fix ta, ts with ta ≤ ts and ta + 2 · ts < n, and assume at most
ta parties are corrupted and the network is asynchronous, or at most ts parties
are corrupted and the network is synchronous. Then in an execution of Πta,ts

ABC ,
for any block B output by an honest party, at least n − (ts + ta) honest parties
contributed transactions to B.

Proof. First, consider the case where at most ta parties are corrupted and the
network is asynchronous. As shown in the proof of Theorem 3, every honest party
executes Πta,ts

ACS using an (n− ts)-quality pre-block as input. Thus, the input of

every honest party to Πta,ts
ACS contains at least n − (ts + ta) ciphertexts created

by honest parties. By ta-set quality of Πta,ts
ACS , the output of Πta,ts

ACS contains some
honest party’s input and the lemma follows.

Next, consider the case where at most ts parties are corrupted and the net-
work is synchronous. As shown in the proof of Theorem 3, every honest party
executesΠta,ts

ACS using the same (n−ts)-quality pre-block β as input. By ts-validity

with termination of Πta,ts
ACS , all honest parties output B∗ = {β} from Πta,ts

ACS . Be-
cause β is (n−ts)-quality, it contains at least (n−2ts) honest parties’ ciphertexts;
the lemma follows. ut



18 E. Blum et al.

Lemma 10. Assume the conditions of Lemma 9. Consider an iteration k and
a transaction tx such that, at the beginning of iteration k, all but at most ts
honest parties have tx among the first L transactions in their buffers. Then for
any r > 0, tx is in Blocks[k : k+ r] except with probability at most (1− 1/n)r+1.

Proof. By Lemma 9, at least n− (ts + ta) honest parties contribute transactions
to Blocks[k]. So even if ts parties are corrupted, at least one of the n−2ts honest
parties who have tx among the first L transactions in their buffers contributes
transactions to Blocks[k]. That party fails to include tx in the set V of transac-
tions it chooses with probability

(
L−1
L/n

)
/
(
L
L/n

)
= 1− 1

n , and so tx is in Blocks[k]

except with probability at most 1 − 1
n . (Note that this does not take into ac-

count the fact that the adversary may be able to choose which honest parties
contribute transactions to B. However, because the parties encrypt their trans-
actions, the adversary’s choice has no effect on the calculation.) If tx does not
appear in Blocks[k], then we can repeat the argument in all successive iterations
k + 1, . . . , k + r until it does. ut

Theorem 4 (Liveness). Fix ta ≤ ts with ta + 2 · ts < n. Then Πta,ts
ABC is ta-live

in an asynchronous network, and ts-live in a synchronous network.

Proof. Suppose all honest parties have received a transaction tx. If, at any point
afterward, tx is not in some honest party’s buffer then tx must have already
been included in a block output by that party (and that block will eventually be
output by all honest parties). If all honest parties have tx in their buffers, then
they each have a finite number of transactions ahead of tx. By completeness,
all honest parties eventually output a block in each iteration. Additionally, by
Lemma 9, at least n− (ts + ta) honest parties’ inputs are incorporated into each
block, and so in each iteration all but at most ts honest parties each remove
at least L/n transactions from their buffers. It follows that eventually all but
at most ts honest parties will have tx among the first L transactions in their
buffers. Once that occurs, Lemma 10 implies that tx is included in the next κ
blocks except with probability negligible in κ. ut

The above shows that a transaction received by all honest parties is eventually
output. This is the standard notion of liveness in asynchronous networks. When
working in a synchronous model, on the other hand, it is common to analyze
liveness in more concrete terms. We provide such an analysis in Appendix C.

5.4 Efficiency and Choice of Parameters

The communication cost per iteration is dominated by the cost of the ACS and
BLA subprotocols. Both ACS and BLA are run on pre-blocks, which have size
L·|tx|+O(n·κ). Thus, each execution of BLA incurs cost O(n3κ2+n2L|tx|κ), and
an execution of ACS incurs cost O(n4κ + n3L|tx|). The overall communication
per block is therefore O(n4κ+ n3κ2 + n3L|tx|+ n2L|tx|κ).

At the beginning of every iteration, each honest party uniformly selects L/n
transactions from among the first L transactions in its buffer. The following



Atomic Broadcast for Arbitrary Network Conditions 19

lemma shows that the expected number of distinct transactions they collectively
choose is O(L):

Lemma 11. Assume the conditions of Lemma 9. In any iteration of Πta,ts
ABC ,

the expected number of distinct transactions contributed by honest parties to the
block B output by the honest parties in that iteration is at least L/4.

Proof. The expectation is minimized when all honest parties have the same L
transactions as the first L transactions in their buffers, so we assume this to be
the case. As in Lemma 10, for some particular such transaction tx, the probability
that some particular honest party fails to include tx in the set V of transactions
it chooses is 1 − 1

n . Since, by Lemma 9, at least n − (ts + ta) > n/3 honest
parties contribute transactions to B, the probability that none of those parties

choose tx is at most
(
1− 1

n

)n/3 ≤ e−1/3 < 3/4, and so tx is chosen by at least
one of those parties with probability at least 1/4. (Once again, we do not take
into account the fact that the adversary may be able to choose which honest
parties contribute transactions because honest parties encrypt the transactions
they choose.) The lemma follows by linearity of expectation. ut

Because each block contains O(L) transactions, the communication cost per
transaction is O((n4κ + n3κ2)/L + n3|tx| + n2|tx|κ). So for L = Θ(nκ), the
amortized communication cost per transaction is O(n3|tx|+ n2|tx|κ).

We remark that although each block contains at least L/4 distinct transac-
tions in expectation, it is possible that some of those transactions are not new,
i.e., they may have already been included in a previous block. This is possible
because honest parties may sample their input in some iteration before having
finished outputting blocks in all previous iterations. Thus, the actual commu-
nication cost per transaction may be higher than what we computed above. In
general, the amount of overlap between blocks will depend on the spacing pa-
rameter λ as well as the actual network conditions and the parties’ local clocks.
If λ is too small, some space in each block may be wasted on redundant trans-
actions; however, setting λ to be too large could introduce unnecessary delays
in a synchronous network. Understanding how different choices of λ affect our
protocol’s performance in various network conditions is an interesting challenge
for future work.

5.5 Optimality of Our Thresholds

We show that our protocol achieves the optimal tradeoff between the security
thresholds. This result does not follow immediately from the impossibility result
of Blum et al. [5] for network-agnostic Byzantine agreement because reductions
from BA to atomic broadcast do not trivially translate to the network-agnostic
setting; however, the main ideas of their proof readily extend to the case of
atomic broadcast.

Lemma 12. Fix ta, ts, n with ta + 2ts ≥ n. If an n-party atomic broadcast
protocol is ts-live in a synchronous network, then it cannot also be ta-consistent
in an asynchronous network.



20 E. Blum et al.

Proof. Assume ta + 2ts = n and fix an ABC protocol Π. Partition the n parties
into sets S0, S1, Sa where |S0| = |S1| = ts and |Sa| = ta. Consider the following
experiment:

– Choose uniform m0,m1 ← {0, 1}κ. At global time 0, parties in S0 begin
running Π holding only m0 in their buffer, and parties in S1 begin running
Π holding only m1 in their buffer.

– All communication between parties in S0 and parties in S1 is blocked. All
other messages are delivered within time ∆.

– Create virtual copies of each party in Sa, call them S0
a and S1

a. Parties in Sba
begin running Π (at global time 0) with their buffers containing only mb,
and communicate only with each other and parties in Sb.

Compare this experiment to a hypothetical execution Esync of Π in a syn-
chronous network, in which parties in S1 are corrupted and simply abort, and
the remaining parties are honest and initially hold only (uniformly chosen) m0 in
their buffer. The views of parties S0∪S0

a in the experiment are distributed iden-
tically to the views of the honest parties in Esync. Thus, ts-liveness of Π implies
that in the experiment, all parties in S0 include m0 in some block. Moreover,
since parties in S0 never receive information about m1, they include m1 in any
block with negligible probability. By a symmetric argument, in the experiment,
all parties in S1 include m1 in some block, and include m0 in any block with
negligible probability.

Now, consider a hypothetical execution Easync of Π, this time in an asyn-
chronous network. In this execution, parties in S0 and S1 are honest while parties
in Sa are corrupted. The parties in S0 and S1 initially hold m0,m1 ← {0, 1}κ, re-
spectively. The corrupted parties interact with parties in S0 as if they are honest
and have m0 in their buffer, and interact with parties in S1 as if they are honest
and have m1 in their buffer. Meanwhile, all communication between parties in S0

and S1 is delayed indefinitely. The views of the honest parties in this execution
are distributed identically to the views of S0 ∪ S1 in the above experiment, yet
the conclusion of the preceding paragraph shows that ta-consistency is violated
with overwhelming probability. ut

5.6 Adaptive Security

Our analysis of tardigrade assumes a static adversary who must choose the set
of corrupted parties prior to the start of the protocol. In fact, tardigrade is not
secure against an adaptive adversary, since an adaptive adversary can prevent
ΠBLA from terminating within time 5κ∆ by corrupting the parties who are cho-
sen as leaders. It is possible to modify tardigrade to achieve adaptive security
by suitably modifying ΠBLA in a relatively standard way: rather than choosing
a leader who acts as the only proposer, each party will act as the proposer for
one instance of the propose protocol, and a leader is then chosen retroactively
after all instances terminate. Designing an adaptively secure network-agnostic
atomic broadcast protocol with improved communication complexity is an in-
teresting direction for future work. (Note that the committee-based approach in
the following section is not adaptively secure.)



Atomic Broadcast for Arbitrary Network Conditions 21

6 Improving Complexity using Committees

In this section, we describe an extension to tardigrade that achieves lower
amortized communication complexity in the presence of a static adversary. The
improved protocol, upgrade, achieves expected communication complexity per
transaction that is linear in n; specifically, it has expected per-transaction com-
munication complexity O(nκ|tx| + κ2|tx|). This is made possible by delegating
the most expensive steps of tardigrade to a small committee.

To prove security for tardigrade, we often used the fact that any suffi-
ciently large subset of parties contained at least some minimum number of hon-
est parties. We cannot assume this about the committees in upgrade, as the
committee may be constant size, and in particular may be less than the number
of corrupted parties. Instead, we prove that upgrade is secure in a setting with
O(ε) fewer corrupted parties, where ε is a positive constant parameter of the
protocol. More formally, fix ts, ta as before, and fix t̂s such that t̂s ≤ (1− 2ε) · ts
(for some ε > 0); with probability 1 − e−O(ε2κ), the improved ABC protocol is
t̂s-secure in a synchronous network and ta-secure in an asynchronous network.
(Unless otherwise mentioned, all of the claims in this section hold with this
probability.)

As in tardigrade, we assume a trusted dealer who sets up threshold en-
cryption and signature schemes. During the setup phase, the dealer also selects
a committee C ⊂ {P1, . . . , Pn} of size O(κ) and provides each committee mem-
ber Pi ∈ C with a special credential πi that proves Pi is on the committee. (For
example, πi might be a signature 〈i〉D on the index i that can be checked against
the dealer’s public key.) We also assume that there is a collision-resistant hash
function H : {0, 1}∗ → {0, 1}κ known to all the parties.

6.1 Committee-Based Reliable Broadcast

We briefly describe a committee-based reliable broadcast protocol that will prove
useful in our improved ACS construction. The basis for the committee-based
protocol is a plain reliable broadcast protocol Bcast that is ts-valid and ta-
consistent with communication complexity O(n2 |v|) a hash of the sender’s input.
(An example construction can be found in Appendix A.1.) The sender sends their
input v individually to each of the committee members. If the hash output by
the reliable broadcast matches this value, the committee members propagate v
to all parties.

The security analysis uses standard techniques for broadcast; for complete-
ness, proofs can be found in Appendix D.2.

Communication complexity of Πta,ts
BB+ . Running the inner broadcast on hashes

of size O(κ) has communication complexity O(n2κ), while sending the value,
hash, and credential to all parties costs O(nκ(|m|+κ)). Thus, sending a message
of size |m| using the ‘wrapped’ reliable broadcast costs O(n2κ + n|m|κ + nκ2),
while sending it using the inner reliable broadcast alone costs O(n2|m|).



22 E. Blum et al.

Πta,ts
BB+ (v)

Throughout, let tκ := b (1−ε)·κ·ts
n

c.

– If Pi = P ∗: send input v to each Pj ∈ C, and input h = H(v) to Πts
BB.

– Run Πts
BB.

– If Pi ∈ C and Πts
BB has output h′: upon receiving a message v′ from P ∗

or (v′, h′, πj) from some Pj ∈ C, if H(v′) = h′, multicast (v′, h′, πi).
– Upon receiving (v′′, H(v′′), πj) from at least tκ + 1 distinct Pj ∈ C

(even if Πts
BB has not yet output a value), output v′′ and terminate.

Fig. 4. A reliable broadcast protocol for sender P ∗ and committee C, from the per-
spective of party Pi.

6.2 Committee-Based ACS

We can construct a committee-based ACS protocol (Figure 5) by making two
minor changes to the basic ACS protocol introduced in Section 4. First, the
inner (non-terminating) ACS protocol is modified to use the committee-based
broadcast described in Section 6.1. Because broadcast is used opaquely by the
inner ACS protocol, this change does not require any special modifications, and
the claims previously proven about the inner ACS protocol still hold. Second,
the termination wrapper is modified so that only the members of the committee
send the output in its entirety. Upon outputting a set S from the inner (non-
terminating) ACS subprotocol, each committee member Pi multicasts S and
〈commit, H(S)〉i, along with the credential they received from the dealer. The
other parties will echo signature shares and hashes, but not the set S itself.

Πta,ts
ACS+

(vj)

Throughout, let tκ := b (1−ε)·κ·ts
n

c.

– Input vj to Πta,ts
ACS .

– If Pj ∈ C: upon receiving output Sj from Πta,ts
ACS , compute h := H(Sj)

and multicast (Sj , 〈commit, h〉j , πj).
– Upon receiving at least tκ + 1 valid signature shares σi = 〈commit, h〉i

from distinct parties in C on the same value h, form a combined signa-
ture σ for h and multicast (σ, h).

– Upon receiving a valid combined signature σ for some h, multicast σ.
– Upon holding S, σ such that σ is a combined signature for h from parties

in C and S is a set such that H(S) = h, output S and terminate.

Fig. 5. A terminating ACS protocol with predetermined committee C, shown from the
perspective of party Pj with input vj .

The proof that Πta,ts
ACS+(v) is ta-secure and has t̂s-validity with termination is

very similar to the security proof for the basic ACS protocol, so we omit it.



Atomic Broadcast for Arbitrary Network Conditions 23

Communication complexity of Πta,ts
ACS+ . As before, let |m| represent the size of

parties’ inputs. When instantiated using the committee-based broadcast protocol
from Section 6.1, the communication complexity of the inner ACS protocol is
O(n3κ+ n2|m|κ+ n2κ2). Moving on to the rest of the protocol, we see that the
committee members multicast their output, a signature share, and the credential
they received from the dealer. (Note that the signature share is for a hash of
the output rather than the entire output.) Since the signature share, credential,
and hash are each of size O(κ), this step contributes O(n · κ(n · |m| + κ)) =
O(n2κ · |m|+nκ2). Next, all parties multicast a combined signature of size O(κ),
for a total cost of O(n2κ). All together, the total cost of the improved ACS
protocol is O(n3κ+ n2|m|κ+ n2κ2).

6.3 An ABC Protocol with Improved Communication Complexity

Here, we give an overview of upgrade. Because the high-level techniques are
similar to tardigrade, we will highlight the key differences between the two
protocols and defer further details to the appendix.

The first (and simplest) difference is that wherever tardigrade would run
an instance of the plain ACS protocol, upgrade runs the improved version
described in Section 6.2. The second difference concerns how parties choose and
share their inputs, and how those inputs are combined to form a final block.
At the beginning of the protocol, when parties choose a set of transactions to
input, they will now also choose a second, larger input set, which is encrypted
and sent only to the committee members. The committee members form the
large ciphertexts into a separate pre-block, which is used to construct the final
block in case ACS outputs only one small pre-block is output. Sending a large
pre-block all-to-all is costly, so the committee members also form a placeholder
called a block pointer. A block pointer contains a hash of a large pre-block and a
combined signature on that hash by members of the committee. In most steps,
the block pointer can be sent in place of the large pre-block. Although forming
and sharing the block pointer adds some extra communication, we are able to
significantly increase the expected number of distinct transactions.

References

1. I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren. Efficient synchronous
Byzantine consensus, 2017. Available at https://eprint.iacr.org/2017/307.

2. I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin. Sync HotStuff: Simple
and practical synchronous state machine replication. In 2020 IEEE Symposium on
Security and Privacy, pages 106–118. IEEE, 2020.

3. Z. Beerliová-Trub́ıniová, M. Hirt, and J. B. Nielsen. On the theoretical gap between
synchronous and asynchronous MPC protocols. In 29th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 211–218. ACM Press, 2010.

4. M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure computations with
optimal resilience (extended abstract). In 13th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pages 183–192. ACM Press, Aug. 1994.



24 E. Blum et al.

5. E. Blum, J. Katz, and J. Loss. Synchronous consensus with optimal asynchronous
fallback guarantees. In 17th Theory of Cryptography Conference—TCC 2019,
Part I, volume 11891 of LNCS, pages 131–150. Springer, 2019.

6. E. Blum, C.-D. L. Zhang, and J. Loss. Always have a backup plan: Fully se-
cure synchronous MPC with asynchronous fallback. In Advances in Cryptology—
Crypto 2020, Part II, volume 12171 of LNCS, pages 707–731. Springer, 2020.

7. G. Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In 3rd Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 154–162.
ACM Press, Aug. 1984.

8. M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation, OSDI
’99, pages 173–186. USENIX Association, 1999.

9. M. Correia, N. Neves, and P. Veŕıssimo. From consensus to atomic broadcast:
Time-free Byzantine-resistant protocols without signatures. The Computer Jour-
nal, 49(1):82–96, 2006.

10. F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From sim-
ple message diffusion to Byzantine agreement. Information and Computation,
118(1):158–179, 1995.

11. I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous multiparty
computation: Theory and implementation. In 12th Intl. Conference on Theory and
Practice of Public Key Cryptography—PKC 2009, volume 5443 of LNCS, pages
160–179. Springer, 2009.

12. S. Duan, M. K. Reiter, and H. Zhang. BEAT: Asynchronous BFT made practical.
In 25th ACM Conf. on Computer and Communications Security (CCS), pages
2028–2041. ACM Press, 2018.

13. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, Apr. 1988.

14. M. Fitzi and J. B. Nielsen. On the number of synchronous rounds sufficient for
authenticated Byzantine agreement. In I. Keidar, editor, Distributed Computing,
pages 449–463. Springer Berlin Heidelberg, 2009.

15. J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Advances in Cryptology—Eurocrypt 2015, Part II, volume 9057
of LNCS, pages 281–310. Springer, 2015.

16. B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang. Dumbo: Faster asynchronous BFT
protocols. In 27th ACM Conf. on Computer and Communications Security (CCS),
pages 803–818. ACM Press, 2020.

17. Y. Guo, R. Pass, and E. Shi. Synchronous, with a chance of partition tolerance.
In Advances in Cryptology—Crypto 2019, Part I, volume 11692 of LNCS, pages
499–529. Springer, 2019.

18. J. Katz and C.-Y. Koo. On expected constant-round protocols for Byzantine
agreement. JCSS, 75(2):91–112, 2009.

19. R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative
Byzantine fault tolerance. In Proceedings of Twenty-First ACM SIGOPS Sympo-
sium on Operating Systems Principles, SOSP ’07, pages 45–58. ACM, 2007.

20. K. Kursawe. Optimistic Byzantine agreement. In Proceedings of the 21st IEEE
Symposium on Reliable Distributed Systems, SRDS ’02, page 262. IEEE Computer
Society, 2002.

21. L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine generals problem.
ACM Trans. Programming Language Systems, 4(3):382–401, 1982.



Atomic Broadcast for Arbitrary Network Conditions 25

22. S. Liu, P. Viotti, C. Cachin, V. Quema, and M. Vukolic. XFT: Practical fault
tolerance beyond crashes. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 485–500, Savannah, GA, Nov. 2016.
USENIX Association.

23. C.-D. Liu-Zhang, J. Loss, U. Maurer, T. Moran, and D. Tschudi. MPC with syn-
chronous security and asynchronous responsiveness. LNCS, pages 92–119. Springer,
2020.

24. J. Loss and T. Moran. Combining asynchronous and synchronous byzantine agree-
ment: The best of both worlds. Cryptology ePrint Archive, Report 2018/235, 2018.
https://eprint.iacr.org/2018/235.

25. D. Malkhi, K. Nayak, and L. Ren. Flexible byzantine fault tolerance. In 26th ACM
Conf. on Computer and Communications Security (CCS), pages 1041–1053. ACM
Press, 2019.

26. A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of BFT
protocols. In 23rd ACM Conf. on Computer and Communications Security (CCS),
pages 31–42. ACM Press, 2016.

27. A. Momose and L. Ren. Multi-threshold Byzantine fault tolerance. In 28th Con-
ference on Computer and Communications Security (CCS), 2021. Available at
https://eprint.iacr.org/2017/307.

28. A. Mostéfaoui, M. Hamouma, and M. Raynal. Signature-free asynchronous byzan-
tine consensus with t < n/3 and O(n2) messages. pages 2–9. ACM Press, 2014.

29. R. Pass, L. Seeman, and a. shelat. Analysis of the blockchain protocol in asyn-
chronous networks. In Advances in Cryptology—Eurocrypt 2017, Part II, volume
10211 of LNCS, pages 643–673. Springer, 2017.

30. R. Pass and E. Shi. Hybrid consensus: Efficient consensus in the permissionless
model. In 31st International Symposium on Distributed Computing (DISC 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

31. R. Pass and E. Shi. Thunderella: Blockchains with optimistic instant confirmation.
In Advances in Cryptology—Eurocrypt 2018, Part II, volume 10821 of LNCS, pages
3–33. Springer, 2018.

32. A. Patra and D. Ravi. On the power of hybrid networks in multi-party computa-
tion. IEEE Transactions on Information Theory, 64(6):4207–4227, 2018.

33. M. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. J. ACM, 27(2):228–234, 1980.

A Useful Sub-Protocols

A.1 Reliable Broadcast with Higher Validity Threshold

In this section, we present a concrete protocol (cf. Protocol 6) that can be used
to instantiate the broadcast subprotocol needed for our ACS construction. Our
protocol is based on Bracha’s (asynchronous) reliable broadcast protocol [7], but
allows for a more general tradeoff between consistency and validity.

Lemma 13. If ts < n/2 then Πts
BB is ts-valid.

Proof. Assume there are at most ts corrupted parties, and the sender is honest.
All honest parties receive the same value v∗ from the sender, and consequently



26 E. Blum et al.

Πts
BB(v∗)

· Set ready = false.
· If Pi = P ∗: multicast v∗.
· Upon receiving initial value v∗ from P ∗, multicast (echo, v∗).
· Upon receiving (echo, v∗) messages on the same value v∗ from n −
ts distinct parties: if ready = false, set ready = true and multicast
(ready, v∗).

· Upon receiving (ready, v∗) messages on the same value v∗ from ts +
1 distinct parties: if ready = false, set readied = true and multicast
(ready, v∗).

· Upon receiving (ready, v∗) messages on the same value v∗ from n − ts
distinct parties: output v∗ and terminate.

Fig. 6. A reliable broadcast protocol with sender P ∗, from the perspective of party Pi.

send (echo, v∗) to all other parties. Since there are at least n− ts honest parties,
all honest parties receive (echo, v∗) from at least n− ts different parties, and as
a result send (ready, v∗) to all other parties. By the same argument, all honest
parties receive (ready, v∗) from at least n − ts parties, and so can output v∗

(and terminate). Fix any v 6= v∗; to complete the proof, we argue that no honest
party will output v. Note first that no honest party will send (echo, v). Thus, any
honest party receives (echo, v) from at most ts other parties. Since ts < n− ts,
no honest party will ever send (ready, v). By the same argument, this shows that
any honest party receives (ready, v) from at most ts other parties, and hence will
not output v. ut

Lemma 14. Fix ta ≤ ts with ta + 2 · ts < n. Then Πts
BB is ta-consistent.

Proof. Suppose at most ta parties are corrupted, and that an honest party Pi
outputs v. Then Pi must have received (ready, v) from at least n − ts distinct
parties, at least n− ts− ta ≥ ts + 1 of whom are honest. Thus, all honest parties
receive (ready, v) from at least ts + 1 distinct parties, and so all honest parties
send (ready, v) to everyone. It follows that all honest parties receive (ready, v)
from at least n−ta ≥ n−ts parties, and so can output v as well. To complete the
proof, we argue that an honest party cannot output v′ 6= v. We argued above
that every honest party sends (ready, v) to everyone. Since ta < ts + 1, each
honest party must have sent (ready, v) in response to receiving (echo, v) from
at least n − ts distinct parties. If some honest party outputs v′ then, arguing
similarly, every honest party must have received (echo, v′) from at least n − ts
distinct parties. But this is a contradiction, since an honest party sends only a
single echo message but 2 · (n− ts)− ta > n. ut



Atomic Broadcast for Arbitrary Network Conditions 27

A.2 A Block-Agreement Protocol

In this section, we show how to construct a block-agreement protocol that can be
used in our atomic broadcast protocol in Section 5. Throughout this section, we
assume the network is synchronous and at most t < n/2 parties are corrupted.

Recall from Definition 6 that block agreement is used to agree on pre-blocks,
which are vectors of length n such that the ith entry is either a valid signed
message by Pi or simply ⊥. A k-quality pre-block is a pre-block with at least k
non-⊥ entries. Honest parties are assumed to input (n − t)-quality pre-blocks,
and ignore any pre-blocks with quality less than n− t.

The structure of our block agreement protocol is inspired by the synod pro-
tocol of Abraham et al. [1]. We begin by defining a subprotocol ΠP∗

Propose (see
Figure 7) in which a designated party P ∗ serves as a proposer. A tuple (r, β, C)
is called a round r vote for a pre-block β if either:

– r = 0 and C = ∅, or
– r > 0 and C is a set of at least t + 1 signed messages 〈commit, ri, β〉i from

distinct parties such that ri ≥ r.

When the exact value of r is unimportant, we simply refer to the tuple as a vote.
At the start of the propose protocol, the proposer waits to receive a set V

of signed votes on valid pre-blocks such that |V | ≥ t + 1. Then, the proposer
determines a safe pre-block to propose from among these votes by finding the
vote (r∗, β∗, C∗) in V such that r∗ is greater than or equal to the round number
of all other votes in V (breaking ties by lowest party index). The proposer then
multicasts a proposal message 〈propose, (r∗, β∗, C∗), V 〉∗. An honest party who
receives a proposal will consider it valid if all of the following hold:

– the signatures on the propose message and on each vote in V are valid,
– β∗ is a valid pre-block,
– there is a round r∗ vote for β∗ in V ,
– |V | contains at least t+ 1 votes,
– r∗ is greater than or equal to the round number of all votes in V .

If any of these conditions are not met, the proposal is not considered valid.
We first show that any two honest parties who generate output in this pro-

tocol agree on their output.

Lemma 15. If honest parties Pi and Pj output βi, βj 6=⊥, respectively, in an
execution of ΠP∗

Propose, then βi = βj.

Proof. If Pi outputs βi 6=⊥, then Pi must have received a valid proposal message
for βi by time 2∆. That message is forwarded by Pi to Pj , and hence Pj either
outputs ⊥ (if the proposals do not match) or the same value βi. ut

Next, we show that if each honest party Pi inputs a vote (ri, β, Ci) on the
same pre-block β, and no honest party ever receives a vote (r′, β′, C ′) such that
r′ ≥ mini{ri} and β′ 6= β, then any honest party who outputs a value other than
⊥ outputs β.



28 E. Blum et al.

ΠP∗
Propose(r, β, C)

1. (All parties) At time 0: send votei := 〈vote, (r, β, C)〉i to P ∗.
2. (Only proposer) Until time ∆: Set V = ∅. Upon receiving a vote votej

from party Pj on a valid pre-block: if this is the first such message
received from Pj during this round, add votej to V .

3. (Only proposer) At time ∆, if |V | ≥ t, find the vote (r∗, β∗, C∗)
in V such that r∗ is greater than or equal to the round number of
all votes in V (breaking ties by lowest party index), and multicast
〈propose, (r∗, β∗, C∗), V 〉∗.

4. (All parties) At time 2∆, if a valid m = 〈propose, (r∗, β∗, C∗), V 〉∗ has
been received from P ∗, multicast m. Otherwise, output ⊥.

5. (All parties) At time 3∆: let mj denote the valid proposal forwarded
by Pj (if any). If there exists mj such that mj 6= m, output ⊥. Other-
wise, output the pre-block β∗ carried by the proposal m.

Fig. 7. A protocol ΠP∗
Propose parameterized by threshold t and designated proposer P ∗,

from the perspective of party Pi.

Lemma 16. If the input of each honest party Pi to ΠP∗

Propose is a round ri-vote
on the same valid pre-block β, and if no honest party ever receives a round r′-
vote on β′ 6= β with r′ ≥ mini{ri}, then every honest party outputs either β
or ⊥.

Proof. Consider an honest party P who outputs β 6=⊥. That party must have
received a valid proposal message from P ∗, which in turn must contain a vote
(ri, β, Ci) from at least one honest party Pi. Under the assumptions of the lemma,
any other vote (r′, β′, C ′) contained in the proposal message with r′ ≥ ri has
β′ = β. It follows that P outputs β. ut

Finally, we show that when P ∗ is honest then all honest parties do indeed
generate output.

Lemma 17. If each honest party Pi inputs a vote (ri, βi, Ci) on some valid pre-
block βi to ΠP∗

Propose, and P ∗ is honest, then there is some (n−t)-quality pre-block
β 6=⊥ such that every honest party outputs β.

Proof. P ∗ will receive at least t+1 votes from honest parties, and so sends a valid
proposal message on some (n − t)-quality pre-block β to all honest parties. (It
is possible for the set V to include votes from dishonest parties, but these votes
must be on (n − t)-quality pre-blocks.) Since P ∗ is honest, and the adversary
cannot forge signatures on other proposals behalf of P ∗, this is the only valid
proposal message the honest parties will receive. Therefore, all honest parties
output β 6=⊥. ut

We now present a protocol Πr
GC (Figure 8) that uses ΠP∗

Propose to achieve
a form of graded consensus on pre-blocks. As in the protocol of Abraham et
al. [1], we rely on an atomic leader-election mechanism Leader with the following



Atomic Broadcast for Arbitrary Network Conditions 29

properties: On receiving input r from a majority of parties, Leader chooses a
uniform leader P ∗ ∈ {1, . . . , n} and sends (r, P ∗) to all parties. This ensures
that if less than half of all parties are corrupted, then at least one honest party
must call Leader with input r before the adversary can learn the identity of the
leader. A leader-election mechanism tolerating any t < n/2 faults can be realized
(in the synchronous model with a PKI) based on general assumptions [18]; it
can also be realized more efficiently using a threshold unique signature scheme.

Below, we refer to a message 〈commit, r, β〉i as a valid commit message from
Pi on a pre-block β if the quality of β is at least (n − t) and the associ-
ated signature is valid. Commit messages are used to construct notify messages
(notify, r, β, C). A notify message (notify, r, β, C) is valid if β is an (n− t)-quality
pre-block and C is a set of valid commit messages such that (1) all commit mes-
sages carry the same pre-block β, (2) C contains messages from at least t + 1
distinct parties, and (3) for each ci = 〈commit, ri, β〉i ∈ C the round number ri
is greater than or equal to r.

We refer to the value g in a tuple (β,C, g) as the grade.

Πr
GC

At time 0: Set C′ = ∅. Call Leader(r) and let (r, P ∗) denote the output.
Run ΠP∗

Propose using input (r, β, C).

At time 3∆: Let β∗ denote the output of ΠP∗
Propose. If β∗ 6= ⊥, multicast

〈commit, r, β∗〉i. Until time 4∆, upon receiving a valid commit mes-
sage cj = 〈commit, rj , βj〉j from Pj , if this is the first such message
received from Pj , add cj to C′.

At time 4∆: If there is a subset C′′ ⊆ C′ of commit messages on the
same pre-block β′ such that (a) |C′′| ≥ t + 1, and (b) for each
cj = 〈commit, rj , β

′〉j ∈ C′′, rj ≥ r, then multicast (notify, r, β′, C′′),
output (β′, C′′, 2), and terminate.

At time 5∆: If a valid notify message (notify, r, β∗, C∗) has been received,
output (β∗, C∗, 1) and terminate (if there is more than one such mes-
sage, choose arbitrarily). Otherwise, output (⊥,⊥, 0) and terminate.

Fig. 8. A graded consensus protocol from the perspective of party Pi with input
(r, β, C).

Lemma 18. Assume that the input of each honest party Pi to Πr
GC is a vote

on the same (n− t)-quality pre-block β. If no honest party ever receives a round
r′ vote on β′ 6= β such that r′ is greater than or equal to the smallest round
number carried by an honest parties’ input in step 1 of Πr

GC, then (1) no honest
party sends a commit message on β′ 6= β and (2) any honest party who outputs
a nonzero grade outputs β.

Proof. By Lemma 16, every honest party outputs either β or⊥ in every execution
of ΠPropose in step 1. It follows that no honest party Pi sends a commit message



30 E. Blum et al.

on β′ 6= β, proving the first part of the lemma. Since at most t parties are
corrupted, this means an honest party will receive fewer than t+ 1 valid commit
messages on anything other than β; it follows that if an honest party outputs
grade g = 2 then that party outputs (β,C, 2).

Arguing similarly, no honest party will receive a valid notify message on
anything other than β. Hence each honest party that outputs grade 1 outputs
(β,C ′, 1). ut

Lemma 19. If an honest party outputs (β,C, g) such that g 6= 0 in an execution
of Πr

GC, then no honest party sends a commit message on β′ 6= β.

Proof. Say an honest party outputs (β,C, g) where g is nonzero. That party must
have received a valid notify message on β. Therefore, C must contain signatures
from at least t + 1 distinct parties. It follows that at least one honest party P
must have sent a commit message on β. This means that P must have received
β as its output from ΠP∗

Propose. By Lemma 15, this means the pre-block output

by any other honest party from ΠP∗

Propose is either β or ⊥. ut

Lemma 20. If some honest party outputs (β,C, g) with grade g = 2 in an
execution of Πr

GC, then each honest party Pi outputs (βi, Ci, gi) such that βi = β
and g > 0.

Proof. Say an honest party P outputs (β,C, g) such that g = 2. By Lemma 19,
this means no honest party sent a commit message on β′ 6= β; it is thus impossible
for any honest party to output β′ 6= β with a nonzero grade. Since P sends a
valid notify message on β to all honest parties before terminating, every honest
party will output β with a nonzero grade. ut

Lemma 21. During an execution of Πr
GC, the event that every honest party out-

puts the same (n− t)-quality pre-block β with a grade of 2 occurs with probability
at least 1/2.

Proof. The leader P ∗ is honest with probability at least n−t
n > 1/2. If the leader

is honest, agreement on an (n− t)-quality pre-block β follows from Lemma 20.
Therefore, it remains to show that whenever the leader is honest, every honest
party outputs grade 2.

Assume P ∗ is honest. Lemma 17 implies that every honest party receives the
same pre-block β 6=⊥ as output from ΠP∗

Propose. Thus, every honest party sends
a valid commit message on β by time 3∆. Consequently, each honest party Pj
receives n − t commit messages on the same pre-block β before time 4∆. This
causes them to output with grade g = 2. ut

In Figure 9 we describe the complete block-agreement protocol ΠBLA. Note
that parties do not terminate upon generating output; instead, parties terminate
after participating in all κ rounds of the protocol.

Lemma 22. If t < n/2, then ΠBLA is t-secure.



Atomic Broadcast for Arbitrary Network Conditions 31

ΠBLA(β)

Set (β′, C′) = (β, ∅) and set r = 0.
While r < κ:

· At time 5r ·∆: run Πr
GC using input (r, β′, C′).

· At time 5(r+ 1) ·∆: let (β∗, C∗, g) denote the output of Πr
GC. If g > 0,

set (β′, C′) = (β∗, C∗). Additionally, if g = 2, output β′. Set r = r+ 1.

Fig. 9. A block-agreement protocol ΠBLA with security parameter κ, from the perspec-
tive of party Pi.

Proof. Assume at most t parties are corrupted during an execution of ΠBLA.
Termination follows trivially from the protocol description, as parties terminate
after κ fixed-length rounds.

Let r∗ be the first round in which some honest party outputs a pre-block
β. We first show that in every subsequent round, the following hold: (1) every
honest party Pi uses as its input in step 1 a round ri vote on β; and (2) the
adversary cannot construct a round r′ vote on β′ 6= β for any r′ ≥ mini{ri}.

Consider some honest party Pi who outputs a pre-block β in round r∗. Pi
must have received a valid notify message for β during the graded consensus
subprotocol for that round. By Lemma 20, this means every honest party received
a valid notify message for β in the same execution of Πr

GC, and so claim (1)
holds in iteration r∗+ 1. Moreover, Lemma 19 implies that no honest party sent
a commit message on β′ 6= β in the execution of Πr

GC, and so claim (2) also
holds in iteration r∗+1. Lemma 18 implies, inductively, that the two claims will
continue to hold in every subsequent iteration. Thus, any other honest party
Pj who generates output in ΠBLA also outputs β, regardless of whether they
generate output in round r∗ or a later round. This proves t-consistency.

Lemma 21 shows that in each iteration of ΠBLA, with probability at least 1/2
there is an (n − t)-quality pre-block β such that all honest parties output β in
that iteration. Thus, after κ iterations all honest parties have generated (n− t)-
quality output except with negligible probability. This proves t-validity. ut

Communication complexity of block agreement. During the propose sub-
protocol, parties send and receive votes. Recall that a vote is a tuple (r, β, C),
where r is a constant, β is an input to the BLA protocol, and C is a set of O(n)
signatures σi on (commit, ri, β). Because ri is not necessarily equal to rj for all
σi, σj in C, the signatures cannot be combined into a single threshold signature.
Thus, a vote is size O(nκ + |m|), where |m| denotes the size of parties’ inputs.
The most expensive step of the propose subprotocol requires all parties to send
a vote to all other parties, resulting in an overall communication complexity for
the propose subprotocol of O(n2(nκ+ |m|)) = O(n3κ+ n2|m|).

In the graded consensus subprotocol, the parties participate in one run of
the propose subprotocol and send a constant number of all-to-all messages of
size O(nκ + |m|). Since both of these steps cost O(n3κ + n2|m|), the overall



32 E. Blum et al.

communication complexity for one instance of graded consensus is the same as
that of the propose protocol.

The BLA protocol runs κ iterations of the graded consensus protocol, for a
total communication cost of O(κ · (n3κ+ n2|m|)) = O(n3κ2 + n2κ · |m|).

B Proof of Lemma 12

Assume ta + 2ts = n and fix an ABC protocol Π. Partition the n parties into
sets S0, S1, Sa where |S0| = |S1| = ts and |Sa| = ta. Consider the following
experiment:

– Choose uniform m0,m1 ← {0, 1}κ. At global time 0, parties in S0 begin
running Π holding only m0 in their buffer, and parties in S1 begin running
Π holding only m1 in their buffer.

– All communication between parties in S0 and parties in S1 is blocked. All
other messages are delivered within time ∆.

– Create virtual copies of each party in Sa, call them S0
a and S1

a. Parties in Sba
begin running Π (at global time 0) with their buffers containing only mb,
and communicate only with each other and parties in Sb.

Compare this experiment to a hypothetical execution Esync of Π in a syn-
chronous network, in which parties in S1 are corrupted and simply abort, and
the remaining parties are honest and initially hold only (uniformly chosen) m0 in
their buffer. The views of parties S0∪S0

a in the experiment are distributed iden-
tically to the views of the honest parties in Esync. Thus, ts-liveness of Π implies
that in the experiment, all parties in S0 include m0 in some block. Moreover,
since parties in S0 never receive information about m1, they include m1 in any
block with negligible probability. By a symmetric argument, in the experiment,
all parties in S1 include m1 in some block, and include m0 in any block with
negligible probability.

Now, consider a hypothetical execution Easync of Π, this time in an asyn-
chronous network. In this execution, parties in S0 and S1 are honest while parties
in Sa are corrupted. The parties in S0 and S1 initially hold m0,m1 ← {0, 1}κ, re-
spectively. The corrupted parties interact with parties in S0 as if they are honest
and have m0 in their buffer, and interact with parties in S1 as if they are honest
and have m1 in their buffer. Meanwhile, all communication between parties in S0

and S1 is delayed indefinitely. The views of the honest parties in this execution
are distributed identically to the views of S0 ∪ S1 in the above experiment, yet
the conclusion of the preceding paragraph shows that ta-consistency is violated
with overwhelming probability.

C Concrete Liveness Analysis

Imagine an external observer watching the protocol, with a clock running at
rate ρ. (The observer’s clock is not visible to the honest parties and is not as-
sumed to be synchronized with parties’ local clocks.) Let ρi denote the (possibly
variable) rate at which Pi’s local clock runs relative to the observer’s clock.



Atomic Broadcast for Arbitrary Network Conditions 33

Fix some finite interval I = [Start,End] during an execution of the protocol.
From the perspective of the observer, it is possible to identify bounds ρmin(I),
ρmax(I) on the skew of honest parties clocks during interval I, so that for all
honest Pi, ρmin ≤ ρi ≤ ρmax. The observer can also determine an upper bound
δ(I) such that any message sent by time T ∈ [Start,End− δ] is delivered by time
T + δ. (Note that in an asynchronous network, δ(I) may be significantly greater
than ∆.) Lastly, we let βmax denote the maximum number of transactions in any
honest party’s buffer during a given interval. We emphasize that ρmin, ρmax, δ,
and βmax do not need to be known by the honest parties, and are used only for
the analysis.

For each i and each k, let Starti,k and Endi,k be the time according to the
observer’s clock when Pi begins iteration k and when Pi outputs block k, re-
spectively, and let Ii,k denote the interval [Starti,k,Endi,k]. (By completeness of
the protocol, Endi,k is well-defined for all i and k.)

The claims below apply in either setting (ta corruptions in an asynchronous
network, or ts corruptions in a synchronous network); however, in a synchronous
network the bounds are naturally simpler because we have ρmin = ρmax = ρ and
δ = ∆.

Lemma 23. For any iteration k, the number of new blocks started by honest
party Pi during the interval Ii,k := [Starti,k,Endi,k] is at most τ := ρmax

λ ·( 5κ∆+∆+A(δ,κ)
ρmin

)
(with overwhelming probability), where ρmin, ρmax, δ, βmax,

and τ are measured by an external observer over the interval Ii,k, and A(δ, κ)
is an upper bound such that the local running time of Πta,ts

ACS for Pi during the
interval Ii,k is at most A(δ, κ), with overwhelming probability in κ.

Proof. Let ρi be the rate of Pi’s local clock (or an upper bound on the rate,
if it is variable). Each honest party Pi begins a new block every λ clock ticks,
as measured by their local clock. Thus, the number of new blocks started by
an honest party Pi during the interval Ii,k is the length of Ii,k (in global time)
divided by λ/ρi.

We would like to find an upper bound on the length of Ii,k for all honest Pi.
The most significant contributors to the length of Ii,k are the running time of
ΠBLA and Πta,ts

ACS . The local running time of ΠBLA is at most 5κ∆ + ∆ for any
honest party, because Pi will timeout at this time if ΠBLA has not yet output.
Thus, the running time of ΠBLA for Pi according to the observer’s clock is at
most 5κ∆+∆

ρi
. By assumption, ρmin ≤ ρi for all Pi, and so the global running

time of ΠBLA for any honest party is at most 5κ∆+∆
ρmin

. Similarly, the running

time of Πta,ts
ACS from the observer’s perspective is bounded above by A(δ,κ)

ρmin
(with

overwhelming probability in κ).

We can simply add the bounds for ΠBLA and Πta,ts
ACS together to get an upper

bound on the entire length of the interval Ii,k. Plugging this bound into the
expression we had originally, we have the following bound on the number of new
blocks started by any Pi during the interval Ii,k, which holds with overwhelming



34 E. Blum et al.

probability in κ:

|Ii,k|
λ/ρi

≤
5κ∆+∆
ρmin

+A(δ, κ)
λ

ρmax

=
ρmax
λ
·
(

5κ∆+∆+A(δ, κ)

ρmin

)
(2)

This completes the proof. ut

The following lemma concerns the overall progress of the honest parties.

Lemma 24. Let t denote the number of dishonest parties during an execution
of Πta,ts

ABC , and let tx be a transaction that has been received by each honest Pi
by time Starti,k. Let ρmin, ρmax, δ, βmax, and τ be bounds as described above
over the interval IHk,k+cx·τ := [minPi∈H(Starti,k),maxPj∈H(Endj,k+c)]. Then with
overwhelming probability in the security parameter κ, there are at least n − t
honest parties Pi such that Pi removes at least βmax transactions from their
buffer during the interval [Starti,k,Starti,k+cx·τ ], where cx := βmax

L/n ·
n−t

n−(ts+ta) .

Proof. By Lemma 23, we know that every honest party Pi has output block k by
time Starti,k+τ . Therefore, by time Starti,k+τ , Pi has removed from their buffer
any transactions that are included in Blocks[k]. In particular, if Pi’s input was
included in block k, then Pi must have removed at least L/n transactions from
the front of their buffer between time Starti,k and Starti,k+τ .

Next, we can extend this argument to apply to sets of honest parties. Recall
from Lemma 9 that at least n− (ts + ta) honest parties’ inputs are included in
each block. Let S∗k+c·τ denote the set of honest parties whose inputs are included
in block k + c · τ (c = 0, 1, 2, . . . ). For each Pi ∈ S∗k+c·τ , notice that Pi must
have selected L/n transactions from their buffer as input at time Starti,k+c·τ ,
and those transactions were included in block k+ c · τ . Therefore, Pi must have
removed at least L/n transactions from their buffer at some point during the
interval [Starti,k+c·τ ,Starti,k+(c+1)τ ].

Consider a sequence of sets S∗k , S∗k+τ , S∗k+2τ , . . . , defined as above. Suppose
the adversary is able to choose S∗ in each iteration, subject to the constraint
that each S∗ must contain at least n − (ts + ta) honest parties. We would like
to find an upper bound on number of iterations needed to ensure that all but ts
of the honest parties have tx among the first L transactions in their buffer. For
convenience, assume that each honest parties initially has exactly βmax trans-
actions in their buffer ahead of tx, and assume without loss of generality that
parties P1, . . . , Pn−t are honest. In the worst case, the adversary chooses the
honest parties for each set in the sequence in a round robin fashion, i.e.:

S∗k+c·τ = {Pi | 1+c ·(n−(ts+ta)) ≤ i ≤ c+c ·(n−(ts+ta)) mod (n−t)}. (3)

Let cx := βmax
L/n ·

n−t
n−(ts+ta) , and consider the sequence of sets S∗k , . . . ,S∗k+cx·τ

determined according to the round robin strategy. All together, each honest party

is in at least b (n−(ts+ta))·cxn−t c = bβmaxL/n c distinct sets in the sequence. Therefore,

each honest party Pi has removed at least bβmaxL/n c · L/n = βmax transactions

from their buffer during the interval [Starti,k,Starti,k+cx·τ ]. ut



Atomic Broadcast for Arbitrary Network Conditions 35

D Atomic Broadcast with Improved Complexity

D.1 Protocol Description

This section contains a detailed description of the improved atomic broadcast
protocol, upgrade, which was deferred from Section 6.3. Pseudocode for the
protocol is presented in Protocol 1, and related utilities are defined in Figure 2.

At the beginning of the protocol, when parties choose a set of transactions
to input, they will now also choose a second, larger input set, which is encrypted
and sent only to the committee members. The committee members use these
ciphertexts to form a separate pre-block. (To distinguish between the two, we
refer to a pre-block composed of smaller ciphertexts as a ‘small pre-block’ and
a pre-block composed of larger ciphertexts as a ‘large pre-block.’) Sending this
large pre-block all-to-all would increase the communication complexity beyond
what we can afford. Thus, the committee members create a placeholder called a
block pointer that can be sent in its place at various points during the protocol. A
block pointer for a large pre-block βlg consists of a hash H(βlg) and a combined
signature by the committee members on H(βlg). We say that a block pointer
τ = (h, σ) is well-formed if σ is a valid combined signature on h. Committee
members will only create signature shares for a hash h if if they have received
a pre-block βlg such that h = H(βlg); thus, a block pointer acts as a promise
that a corresponding pre-block exists. Now, when parties provide input to BLA
and ACS, they will input a pair (βsm, τ) where βsm is a small pre-block and τ
is a block pointer.3 We refer to a pair (βsm, τ) as a block share, and say that a
block share (βsm, τ) is well-formed if βsm is an (n− t̂s)-quality pre-block and τ
is a well-formed block pointer. Because a block pointer is only size O(κ), running
BLA and ACS on block shares is only slightly more expensive than running BLA
and ACS on small pre-blocks alone.

In the event that ACS outputs only a single block share {(βsm, τ)}, the
committee members will wait to receive the large pre-block βlg that matches τ ,
at which point they will send βlg in full to all parties. In this case, the parties will
use βlg to construct the final block. Alternatively, if the output of ACS contains
multiple block shares, the committee members do not need to send βlg at all.
Instead, the parties will use the small pre-blocks to form the final block.

To simplify the protocol description, we implicitly assume a means of domain
separation between iterations. More precisely, we assume that parties can distin-
guish messages belonging to iteration k from messages belonging to iteration k′

for any k 6= k′ in some way that does not rely on arrival time (e.g. by including
a tag in each message), and a protocol message belonging to iteration k is only
ever used in iteration k.

Communication complexity of Πta,ts
ABC+ . We compute the communication com-

plexity of each step of the protocol. First, each party Pi samples a set of L/n

3 ACS is agnostic to the type of input it receives, so it can be used as-is. BLA is
not technically agnostic to the type of input, however, we can simply amend the
definition of a valid proposal to include a well-formed block pointer.



36 E. Blum et al.

transactions, and divides this set into n subsets of equal size. The jth subset is
encrypted and sent to party Pj . Each small ciphertext is size O(L|tx|/n2 +κ), so
the total cost of this step is O(n2κ+L|tx|). Separately, each party also chooses a
large sample of L/n transactions, encrypts it using the committee’s public key,
and sends the resulting ciphertext of size O(L|tx|/n+ κ) to only the committee
members. The total cost of this step is O(nκ(L|tx|/n+ κ)) = O(nκ2 + L|tx|κ).

As before, each party gathers the small ciphertexts they receive into a pre-
block. Meanwhile, the members of the committee gather large ciphertexts into
a separate pre-block. A small pre-block is size O(L|tx|/n + nκ), and a large
pre-block is size O(L|tx|+ nκ).

A member of the committee Pj who collects a large pre-block β will send
(β, 〈H(β)〉j , 〈j〉D) to all other members of the committee. These messages also
have size O(L|tx| + nκ), because the size of the signatures is absorbed by the
size of the large pre-block. Committee members will echo the first message
(β′, 〈H(β′)〉i, 〈i〉D) that they receive from each other committee member Pi ∈ C
(with their own signature and credential) until they either receive tκ signatures
on the same hash or they receive a block pointer directly, at which point they will
multicast the block pointer and stop echoing signatures. Sending and echoing the
large pre-blocks among the committee members incurs cost O(κ2(L|tx|+nκ)) =
O(nκ3 + L|tx|κ2). A block pointer has size O(κ), and so κ committee members
multicasting a block pointer contributes only O(nκ2) communication.

Recall that in original version of the protocol, parties input pre-blocks to
both BLA and ACS. In the new version, the inputs are block shares of size
O(L|tx|/n + nκ). Previously, we showed that the communication complexity of
BLA is O(n3κ2 + n2|m|κ) and the communication complexity of the improved
ACS is O(n3κ+ n2|m|κ+ n2κ2). Setting |m| = O(L|tx|/n+ nκ), the communi-
cation complexity of both protocols simplifies to O(n3κ2 + nκL|tx|).

After the parties receive a set of block shares as output from ACS, they
must use threshold decryption to reveal which transactions will be included in
the block. If the output of ACS contains only one block share, then the final
block will be constructed using the block pointer. In this case, each committee
member multicasts the corresponding large pre-block (waiting to receive it if
necessary), as well as one decryption share for each of the O(n) large ciphertexts
in the block indicated by the block pointer, for a total of O(n2κ2 + nκL|tx|).
Conversely, if the output of ACS contains more than one block share, the final
block will be constructed from the small pre-blocks. In this case, each committee
member sends decryption shares for each of the ciphertexts in each of the small
pre-blocks. The output contains up to O(n) pre-blocks, each containing O(n)
ciphertexts. Therefore, each committee member sends O(n2) decryption shares
to each party, for a total cost of O(nκ(n2κ)) = O(n3κ2).

Having computed the contribution of each step, we can see that the domi-
nating terms arise from BLA, ACS, and forming the block pointer, for a total of
O(n3κ2 + nκL|tx|+ nκ3 + L|tx|κ2) per block.

In order to compute the amortized cost of a block per transaction, we first
need to compute a lower bound on the expected number of distinct transactions



Atomic Broadcast for Arbitrary Network Conditions 37

per block. If the final block is constructed from a large pre-block indicated by a
block pointer, then it must contain samples of size L/n from at least n−(ts+ta)
honest parties – precisely the same as the basic protocol. In this case, by Lemma
11, we know that the expected number of distinct transactions is at least L/4. If
the final block is instead constructed from small pre-blocks, the calculation is not
exactly the same as before, but the steps are largely the same. In this case, the
final block will contain at least n−(ts+ta) pre-blocks input by honest parties, and
each of these pre-blocks contains samples of size L/n2 from at least n− (ts + ta)

honest parties, for a total of (n−(ts+ta))2
n2 · L honestly chosen transactions. As

before, for a given transaction tx, the probability that some particular honest
party’s sample does not include tx is 1− 1

n2 . By Lemma 9, at least n−(ts+ ta) >
n/3 honest parties contribute transactions to B, and so the probability that

none of those parties choose tx is at most
(
1− 1

n2

)n/3 ≤ e−1/9 < 9/10; thus,
tx is chosen by at least one of those parties with probability at least 1/10. (As
before, the fact that parties’ inputs are encrypted means that the adversary’s
ability to choose which ciphertexts are included in a block is irrelevant.) The
lemma follows by linearity of expectation.

We have shown that each block contains at least O(L) distinct transactions
in expectation. Setting L = n2κ, we obtain an amortized cost per transaction of
O(nκ|tx|+ κ2|tx|).

Security analysis. The improved protocol is secure for up to t̂s corrupted par-
ties in a synchronous network and up to ta corrupted parties in an asynchronous
network, where n > 2ts + ta and ta ≤ t̂s ≤ (1 − 2ε) · ts. Security for the im-
proved protocol can be argued very similarly to the original, so we will limit our
attention to details that differ from the original.

Let us begin with the consistency property. First, consider the case in which
the network is synchronous and there are at most t̂s corrupted parties. In this
case, any honest party’s encrypted inputs will be received by all honest parties
within time ∆, and so all honest parties hold an n − t̂s-quality small pre-block
by time Tk +∆. Likewise, the honest committee members are able to assemble
a block pointer and forward it to all parties by time Tk + 4∆. Thus, all parties
input a well-formed block share to ΠBLA.

ΠBLA is secure for any t < n/2 parties in a synchronous network, and so we
can rely on its security properties. In particular, consistency of ΠBLA ensures
that all honest parties output the same well-formed block share (βsm, τ) by time
Tk+4∆+5κ∆. Therefore, all honest parties input (βsm, τ) to the improved ACS
protocol. By t̂s validity of the ACS protocol, all honest parties receive (βsm, τ) as
output from ACS. By the security of the underlying threshold encryption scheme,
all honest parties output the same block after running the block construction
utility, as desired.

In the case that the network is asynchronous and there are most ta cor-
rupted parties, consistency of the improved protocol follows immediately from
ta-security of the ACS subprotocol.

Turning our attention to liveness, we note that the lower bounds on the
number of honest parties’ inputs included in the eventual output still hold when



38 E. Blum et al.

Protocol 1 Πta,ts
ABC+ : an ABC protocol, described from the perspective of Pj .

1: for k ∈ [1, 2, . . .] do
2: committee members:
3: create a new large pre-block βlgj,k = (⊥, . . . ,⊥) and set flag readylgk = false
4: upon receiving a large signed sample (large, 〈ν〉i) from Pi:
5: if βlgj,k[i] = ⊥: set βlgj,k[i] = νi

6: if βlgj,k is (n− t̂s)-quality and readylgk = false:

7: set readylgk = true and send (βlgj,k, 〈H(βlgj,k)〉j , 〈j〉D) to each Pi ∈ C
8: while τk = ⊥:
9: upon receiving the first valid (β, 〈H(β)〉i, 〈i〉D) from Pi ∈ C:

10: send (β, 〈H(β)〉j , 〈j〉D) to each Pi ∈ C
11: upon receiving valid (β′, 〈H(β′)〉j , 〈j〉D) (for the same β′)
12: from tκ + 1 distinct Pj ∈ C:
13: combine signature shares into a signature σ for H(β′)
14: set τk = (H(β′), σ) and multicast τk
15: upon receiving well-formed τ = (h, σ):
16: set τk = τ and multicast τk
17: upon receiving output B∗ from Πta,ts

ACS , if B∗ = {(βsmk , τ∗)}:
18: wait to receive β such that τ∗ points to β, then multicast β
19: all parties:
20: create a new small pre-block βsmj,k := (⊥, . . . ,⊥) and block pointer τk = ⊥
21: set flag readysmk = false
22: upon receiving a small signed sample (small, 〈µ〉i) from Pi:
23: if βsmj,k [i] = ⊥: set βsmj,k [i] = µi
24: if βsmj,k is (n− t̂s)-quality and readysmk = false: set readysmk = true
25: upon receiving a block pointer τ = (h, σ) from Pi ∈ C:
26: if τk = ⊥: set τk = τ
27: at time Tk := λ · (k − 1):
28: choose a sample V ← ProposeTxs(L/n,L)
29: partition Vj into n sets Vj,1, . . . , Vj,n of size L/n2, encrypt each set to
30: form ciphertexts µj,1, . . . , µj,n, and send (small, 〈µj,i〉j) to each Pi.
31: choose a sample Wj ← ProposeTxs(L/n,L), and encrypt it to form
32: a ciphertext µ. Send (large, 〈µ〉j) to each Pi ∈ C.
33: at time Tk + 4∆:
34: if readysmk = true and τ 6= ⊥: input (βsmj,k , τ) to ΠBLA

35: at time Tk + 4∆+ 5κ∆:
36: stop running ΠBLA

37: if ΠBLA has output well-formed (βsmk , τ∗): input (βsmk , τ∗) to Πta,ts
ACS

38: else: wait for readysmk = true and τ 6= ⊥, then input (βsmj,k , τ) to Πta,ts
ACS

39: wait for Πta,ts
ACS to output B∗

40: if B∗ = {(βsmk , τ∗)} = 1 :
41: wait to receive βlgk such that τ∗ points to βlgk
42: Bout ← ConstructBlock({βlgk })
43: else:
44: Bout ← ConstructBlock({βsmk |(βsmk , τ) ∈ B∗})
45: set Blocks[k] = Bout and delete all transactions tx ∈ Blocks[k] from bufj
46: end for



Atomic Broadcast for Arbitrary Network Conditions 39

Figure 2 Utilities for Πta,ts
ABC , described from the point of view of party Pj

1: function ProposeTxs(`,M):
2: choose ` values v1, . . . , v` uniformly at random (without replacement) from
3: the first M values in bufj
4: output {v1, . . . , v`}
5: function ConstructBlock(B): . B is expected to be a set of pre-blocks
6: for each pre-block β in B, for each unique ciphertext µ in β:
7: participate in threshold decryption for µ
8: upon completing decryption of all ciphertexts µ1, µ2, . . . :
9: output the set of transactions Bout = {tx | tx ∈ µi}

the inputs are block shares rather than sets of ciphertexts, because Πta,ts
ACS is

agnostic of the type of input value. Furthermore, as we showed earlier in this
section, both the new protocol and original protocol produce blocks containing
at least O(L) distinct transactions in expectation. Thus, the arguments we used
to prove liveness of the original protocol can be straightforwardly adapted to the
improved protocol.

Finally, we remark that the proof of Theorem 3 can be repurposed almost
verbatim to prove completeness of the improved protocol, using the security
properties of the block agreement subprotocol and improved ACS subprotocol.

D.2 Proofs

Let χs,n denote the distribution that samples a subset of the n parties, where
each party is included independently with probability s/n. We can use standard
Chernoff bounds to prove the following useful facts about the composition of
committees.

Lemma 25 (Chernoff bound). Let X1, ..., Xn be independent Bernoulli ran-
dom variables with parameter p. Let X :=

∑
iXi, so µ := E[X] = p · n. Then,

for δ ∈ [0, 1]:

– Pr[X ≤ (1− δ) · µ] ≤ e−δ2µ/2.

– Pr[X ≥ (1 + δ) · µ] ≤ e−δ2µ/(2+δ).

Lemma 26. Fix s ≤ n and 0 < ε < 1/3. If C ← χs,n, then:

1. C contains fewer than (1 + ε) · s parties except with probability e−
ε2s
2+ε .

2. C contains more than (1− ε) · s parties except with probability e−
ε2s
2 .

3. If there are at most t̂s ≤ (1 − 2ε) · ts corrupted parties, then C contains
fewer than (1 − ε) · s · tsn corrupted parties except with probability at most

e−ε
2s/(4−6ε).

4. If there are at most ta corrupted parties, then C contains more than (1− ε) ·
s · ts/n honest parties except with probability at most e−

ε2s
3 .



40 E. Blum et al.

Proof. Let H ⊆ [n] be the indices of the honest parties. Let Xj be the Bernoulli
random variable indicating if Pj ∈ C, so Pr[Xj = 1] = s/n. Define Z1 =

∑
j Xj ,

Z2 :=
∑
j 6∈H Xj , and Z3 :=

∑
j∈H Xj . Then:

1. Since E[Z1] = s, setting δ = ε in Lemma 25 yields

Pr [Z1 ≥ (1 + ε) · s] ≤ e−ε
2s/(2+ε). (4)

2. Using the other half of Lemma 25, setting δ = ε yields

Pr [Z1 ≤ (1− ε) · s] ≤ e−ε
2s/2. (5)

3. Since E[Z2] ≤ t̂s · s/n ≤ (1− 2ε) · ts · s/n and ts/n < 1/2, setting δ = ε
1−2ε

in Lemma 25 yields

Pr

[
Z2 ≥

(1− ε) · ts · s
n

]
≤ −eε

2s/(4−6ε). (6)

4. Assuming that there are at most ta corrupted parties, then E[Z3] ≥ (n −
ta) · s/n. Thus, plugging in δ = ε, we have

Pr [Z3 ≤ (1− ε)(n− ta) · s/n] ≤ e−ε
2 (n−ta)s

2n . (7)

Next, using the fact that ts/n < n/2 and (n− ta)/n > 2n/3, we see that

(1− ε)s · ts/n < (1− ε)s/2 < (1− ε)s · 2/3 < (1− ε)s · (n− ta)/n. (8)

Thus, Pr [Z3 ≤ (1− ε)s · ts/n] ≤ Pr [Z3 ≤ (1− ε)(n− ta) · s/n] . Putting these

two pieces together, we have Pr[Z3 ≤ (1 − ε)s · ts/n] ≤ e−
ε2(n−ta)s

2n ≤ e−
ε2s
3

(note the last step is only used to simplify the bound).
ut

Lemma 27. Πta,ts
BB+ is t̂s-valid.

Proof. Consider an execution in which the sender P ∗ is honest and holds input
v. P ∗ will input h = H(v) to Πts

BB and send v to each member of the committee.
By ts-validity of Πts

BB, every honest party eventually receives output h such
that h = H(v) from the inner broadcast. Thus, each honest committee member
Pi eventually sends (v, h, 〈i〉D), upon either receiving v directly from P ∗, or
receiving a matching (v, h, 〈j〉D) from another committee member. Additionally,
no honest committee member will ever send a message (v′, h′, 〈i〉D) such that
h′ 6= h or v′ 6= v.

By Lemma 26, except with negligible probability, there are not enough ma-
licious parties on the committee to cause an honest party to output v′ 6= v.
Furthermore, Lemma 26 also states that there are at least tκ + 1 honest parties
on the committee with overwhelming probability, so all honest parties will even-
tually receive enough messages on (v, h) to output v and terminate. ut

Lemma 28. Πta,ts
BB+ is ta-consistent.



Atomic Broadcast for Arbitrary Network Conditions 41

Proof. Suppose some honest party Pi outputs a value v. Pi must have received
messages of form (v, h, 〈j〉D) from at least tκ + 1 distinct members of the com-
mittee. With overwhelming probability, at least one of these messages was sent
by an honest committee member. Call that committee member Pj . An honest
committee member will only send such a message after receiving h as output
from the inner broadcast. By ta-consistency of the inner broadcast, all parties
eventually receive h as output from the inner broadcast. Hence, no honest com-
mittee member will ever send a message (v′, h′, 〈j〉D) for v′ 6= v, because this
would imply that either there is a collision such that H(v) = H(v′) for v 6= v′,
or that they received h′ 6= h from the inner broadcast. By Lemma 26, with
overwhelming probability there are at most tκ malicious parties on the commit-
tee, and so with this same probability no honest party will receive the tκ + 1
signatures for v′ 6= v required to output v′ 6= v during this execution.

Finally, as long as some honest committee member sent (v, h, 〈j〉D), that
message will eventually arrive at all parties. This will cause any honest committee
member who is still running to echo it, if they have not already. Since we showed
above that no honest party can terminate with output v′ 6= v, we see that all
parties will eventually receive enough messages of form (v, h, 〈j〉D), at which
point they will output v and terminate. ut

Lemma 29. Let ta ≤ t̂s. Then Πta,ts
ACS+(v) is ta-terminating.

Proof. Consider a point during an execution of Πta,ts
ACS+ such that no honest party

has seen a combined signature, and therefore, no honest parties have terminated.
While this holds, the inner loop Πta,ts

ACS remains live due to the ta-liveness prop-
erty. Thus, at any (global) time t1 during the execution such that no honest party
has yet seen a combined signature, there must be some (global) time t2 > t1 at
which an honest party in the committee outputs a value in the inner loop. Addi-
tionally, for any two honest parties that receive sets B, B′ as output from Πta,ts

ACS ,
we have B = B′. By Lemma 26, with overwhelming probability, at least tκ + 1
honest parties are on the committee. This means that eventually some honest
party will receive at least tκ + 1 signed outputs on the same h = H(B) from
members of the committee, at which point they will form a combined signature,
forward it to all parties, and begin waiting to receive B. The combined signature
will eventually be delivered to any honest party who is still running, and hence
they eventually also start waiting to receive such B. Because at least one of
the signatures in the combined signature must have been contributed an honest
committee member P ′ (with overwhelming probability, due to Lemma 26), every
party will eventually receive the set B from P ′ and terminate. ut


