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Abstract

Incoercible multi-party computation (Canetti-Gennaro ’96) allows parties to engage in secure com-
putation with the additional guarantee that the public transcript of the computation cannot be used by a
coercive outsider to verify representations made by the parties regarding their inputs, outputs, and local
random choices. That is, it is guaranteed that the only deductions regarding the truthfulness of such
representations, made by an outsider who has witnessed the communication among the parties, are the
ones that can be drawn just from the represented inputs and outputs alone. To date, all incoercible secure
computation protocols withstand coercion of only a fraction of the parties, or else assume that all parties
use an execution environment that makes some crucial parts of their local states physically inaccessible
even to themselves.

We consider, for the first time, the setting where all parties are coerced, and the coercer expects to see
the entire history of the computation. We allow both protocol participants and external attackers to access
a common reference string which is generated once and for all by an uncorruptable trusted party. In this
setting we construct:
• A general multi-party function evaluation protocol, for any number of parties, that withstands

coercion of all parties, as long as all parties use the prescribed “faking algorithm” upon coercion.
This holds even if the inputs and outputs represented by coerced parties are globally inconsistent
with the evaluated function.

• A general two-party function evaluation protocol that withstands even the case where some of
the coerced parties do follow the prescribed faking algorithm. (For instance, these parties might
disclose their true local states.) This protocol is limited to functions where the input of at least one
of the parties is taken from a small (poly-size) domain. It uses fully deniable encryption with public
deniability for one of the parties; when instantiated using the fully deniable encryption of Canetti,
Park, and Poburinnaya [Crypto’20], it takes 3 rounds of communication.

Both protocols operate in the common reference string model, and use fully bideniable encryption (Canetti
Park and Poburinnaya, Crypto’20) and sub-sexponential indistiguishability obfuscation. Finally, we show
that protocols with certain communication patterns cannot be incoercible, even in a weaker setting where
only some parties are coerced.
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1 Introduction

Consider a tight-knit society whose members regularly meet behind closed doors and run their society’s
business with complete privacy. An external entity might be able to deduce information on the nature of the
interactions that take place in the society’s meetings from the external behavior of the society members, but
no direct information on what really takes place at the meetings can be obtained. As long as the meetings
are not directly monitored by the external entity, this continues to be the case even if the external entity has
coercive power over the society’s members and demand that they fully disclose the contents of the meetings:
All that the coercive entity can obtain is the word of the members, which may or may not be true.

Can we reproduce this situation online, where the society members communicate over public channels that
are accessible to the external entity? That is, can the society members engage in a multiparty computation
that allows them to limit the power of the external coercive entity to the power that it had when they met
behind closed doors? Furthermore, can they do so even in the case where all members are coerced, and the
coercive entity now expects to have the complete history of the interaction and the local states of all parties,
including all the local randomness used? Indeed, doing so essentially results in rewriting the entire history
of a system, in a way that’s undetectable to anyone that did not directly witness the events at the time and
location where they took place.

This is a special case of the incoercible multiparty computation problem, first studied in [CG96]. In a nutshell,
a multiparty protocol is incoercible if it enables the participants to preserve the privacy of their inputs and
outputs even against a coercive adversary who demands to see the entire internal state of the coerced parties.
Towards this end, each party is equipped with a “faking algorithm” that enables it to run the protocol as
prescribed on the given input x, obtain an output y, and then, given arbitrary values x′, y′, generate a “fake
random string” r′, such that:

Local consistency: The public communication transcript of the party is consistent with input x′, output y′

and local random string r′ for the party.

Global consistency: As long as all coerced parties follow their prescribed faking algorithms, and the inputs
and outputs claimed by all the coerced parties are consistent with the evaluated function, the entire
information reported by the parties should look like an honest execution of the protocol with these
inputs and outputs; this should hold regardless of whether the inputs and outputs are true, or fake, or
partially true and partially fake.

Furthermore, even if the inputs and outputs claimed by the individual parties, put together, are not
consistent with the evaluated function, the coercer should not be able to deduce any information which
it cannot deduce given the inputs and outputs alone. In other words, even when the coercer notices that
the inputs and outputs reported by the parties are inconsistent, the internal randomness r′ provided by
the coerced parties does not help the adversary to determine the source of the inconsistency (ie, which
parties are faking their inputs or outputs).

The above requirements relate to parties that follow their prescribed faking algorithm. (Essentially, this model
captures the case where the parties share a common interest to thwart an external coercer, as in the tight-knit
society example described above.) In addition, one may consider situations where parties deviate from the
prescribed faking algorithm, potentially in order to “collaborate” with the coercer, or to “frame” another party.
Here would like provide the following adtional guarantee:
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Unframeability: The global consistency guarantees continue to hold with respect to the parties that follow
the protocol during execution and the faking algorithm at coercion. This is the case even if some of the
players deviate arbitrarily from the prescribed faking algorithm.

Note that the above properties refer to the case where the coercer contacts the parties only after the protocol
has ended. We will return to this point later on. (Following [AOZZ15], we refer to this case as semi-honest
incoercibility.)

These requirements might indeed appear unobtainable at first. Still, assuming sender-deniable encryption
[CDNO96, SW14], the works of [CG96] construct an incoercible general multi-party function evaluation
protocol, for the case where only a minority of the parties are coerced. The protocols of [CGP15], [DKR14],
originally devised as adaptively secure protocols withstanding corruption of all parties, can withstand coercion
of a single party. The works of [MN06, AOZZ15] consider the case where all parties are coerced - in fact
they consider an even more adversarial setting of active coercions, where the coercer may force parties to
deviate from the protocol, to make it harder for them to deceive the coercer. To provide incoercibility against
such a stronger adversary, they consider a model where the parties have access to secure hardware whose
internals are not available even to the parties themselves.

Whether incoercibility is at all possible in a setting where all parties are coerced, the communication is
public, and the parties have full access to the transcripts of their own internal computations, has remains open.
Indeed, in this case the adversary obtains an entire transcript of a computation, which can be verified step by
step. Still, it should be unable to tell a fake transcript from a real one.

Our results. We consider the case where the parties have full access to the computing devices they use, all
communication is public, and all parties are eventually coerced. We allow parties to have access to a common
reference string, generated once and for all by a trusted party out of adversary’s reach. We concentrate on the
case where all corruptions and coercions take place only at the end of the protocol. (Indeed, when parties are
corrupted during protocol execution, and the adversary has access to all communication and all internal states
of the coerced or corupted parties, incoercibility becomes essentially unobtainable.) We consider two main
settings, or levels, of incoercibility:

Full incoercibility captures all the above three requirements: local consistency, global consistency, and
unframeability. More specifically, it considers the case where parties may have competing interests and there
is no coordination among them. In particular, while some parties present fake randomness, inputs, outputs,
others may present their true randomness, inputs and outputs. Moreover, here the adversary make fully
corrupt some of the parties, while coercing others.1

Cooperative incoercibility captures only local and global consistency. More specifically, it considers the
case where the parties have a common interest and want to protect themselves against an external coercer.
For this purpose, all parties either present their real randomness, inputs, and outputs, or else they all present
randomness computed via their faking algorithms - even if they choose to report their true inputs and outputs2.

1Recall that, when corrupting a party, the adversary is guaranteed to obtain the party’s true internal state. In contrast, when
coercing a party, the adversary may either obtain the true internal state or a fake one, depending on the party’s decision. See more
details on the modeling later on.

2As we explain later, one of our protocols only provides security in this model.
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Still, each party runs the faking algorithm locally, without any coordination of secret randomness. The inputs
and outputs claimed by the parties may or may not be coordinated ahead of time. In particular, they need not
be globally consistent with the evaluated function.

In both settings, the requirement is that the external coercive entity be unable to distinguish an interaction
with the protocol from an interaction with an idealized system where all the communication and all the
internal states of the coerced and corrupted parties are generated by a simulator that obtains only the claimed
inputs and outputs of the coerced parties and the true inputs and outputs of the corrupted parties.

We show:

• A cooperatively incoercible protocol for general secure multi-party function evaluation. Our protocol
works in the common reference string (CRS) model and requires 4 rounds of communication3.

• A fully incoercible protocol for secure two-party function evaluation, for functions with poly-size input
domains for at least one of the parties. For this protocol, we build an incoercible oblivious transfer
(OT) from any bideniable encryption with certain properties. When instantiated with the bideniable
encryption of [CPP20], twe obtain a 3-message protocol in the CRS model.

• A negative result: For n ≥ 3, no n-party protocols with a certain communication pattern can be secure
even against coercion of 2 parties, except for trivial functions.

On the significance of full incoercibility. With cooperative incoercibility only, the adversarial parties
may be able to provide an unequivocal proof that other parties are lying; thus, this type of incoercibility
doesn’t protect the participants against each other. In contrast, full incoercibility guarantees that the coercer
will not be able to use the protocol transcript to verify claims of parties — any deduction made by the coercer
will be exclusively based on “taking the word” of the coerced parties.4

We note that full incoercibility is similar in flavor to “off the record deniability” of bideniable encryption
schemes [CPP20], in the sense that both notions consider the case where the coerced parties may try “frame”
each others. We note however that, while there “off the record deniability” is incomparable to plain
bideniability, here full incoercibility implies cooperative incoercibility.

1.1 Technical Overview

On the definition of incoercible computation. We use the definition of incoercible computation from
[CGP15], which can be seen as the “UC equivalent” of the definition of [CG96], with one critical difference.

3Our notion of incoercibility concentrates on the requirements from the protocol for evaluating the given function. It is agnostic
to whether the evaluated function allows coercion in and of itself. For instance, consider the “voting functionality” that outputs the
tally, together with the names of the voters and their individual votes. This functionality is clearly coercible, even if implemented in a
completely ideal way. In fact, even the coercion-aware variant of this functionality is coercible. This means that even realizing this
functionality in a coercion-resilient manner will not help to thwart coercion attacks.

4The difference between these two notions can be best manifested by considering the protection they provide against a coercer
that gives parties incentives to demonstrate that the other is lying. Full incoercibility guarantees that the parties are immune to such
coercive situation, since they are provably unable to prove that otherds are lying. In contrast, since cooperative incoercibility does
allow protocols where parties are able to prove that other players are lying, it does not protect the players from a “prisoner’s dilemma”
situation where players are incentivized to expose their real secrets, against their better interests.
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(See section 1.2 for the discussion of the difference between the two.) Specifically, this definition models
coercion as the following special form of corruption: When a party is notified that it is coerced, it first contacts
the its caller to ask whether to disclose true or fake randomness, and if fake, what value (input and output)
to report to the coercer. The response can be either “fake” together with an input and an output, or “tell the
truth”. In the former case, the coerced party runs the faking algorithm with the prescribed value; in the latter
case it reveals its actual internal state.

In the ideal process, when the simulator asks to coerce a party, the ideal functionality obtains from the
environment either the value v to be presented, or the ”tell the truth” directive. If the response was a value
v, then the functionality forwards v to the simulator. If the response was ”tell the truth”, then the ideal
functionality provides the actual input and output values of the coerced party to the simulator. Crucially,
the simulator isn’t told if this value is true or fake. Intuitively, the fact that the simulator can simulate the
protocol without learning whether the inputs were real or fake, means that in the real world the adversary
doesn’t learn this information either.

Observe that this definition captures full incoercibility. Indeed, it is up to the environment to decide whether
to instruct the parties to fake to a set of inputs and outputs that is either globally consistent or globally
inconsistent. Unframeability is captured by allowing the adversary to corrupt some of the parties and obtain
their real local state. Cooperative incoercibility is obtained from the above definition by restricting the
environment in two ways: first, it must give “tell the truth” instructions to either all parties, or else to no
party; second, we prohibit party corruption.

As noted in [CG96], this definition of incoercibility immediately implies semi-honest adaptive security.

Obstacles to incoercibility: inversion and coordination. We start by giving some intuition for why it
is hard to build incoercible protocols. For instance, consider a two-party computation protocol based on
Yao garbled circuits [Yao86], where the sender sends a garbled circuit, together with labels for the inputs of
the sender and the receiver; the latter is sent via oblivious transfer (OT). If both the sender and the receiver
become coerced and decide to lie about their inputs and outputs, then:

• The receiver needs to demonstrate how it obtained a (potentially fake) output of the OT corresponding
to a different receiver bit that the actual on. At the same time, the receiver shouldn’t be able to obtain
the true OT output for that bit, as this would violate sender privacy.

• The sender needs to explain how the garbled circuit was generated, i.e. it needs to provide the generation
randomness. However, the sender has already sent its own labels over the public channel, and now it
has to come up with different generation randomness such that those same labels, which correspond to
the true input, would now correspond to another, fake input.

Furthermore, this generation randomness also has to be consistent with the labels of the receiver and
fake input of the receiver, which the sender doesn’t even know.

This example already demonstrates two difficulties with designing incoercible protocols. One is the problem
of inversion, where some or all parties have to invert some randomized function f(x; r) with respect to a
different x′ (like the generation of a garbled circuit)5. The other is a problem of coordination, where parties

5Note that in the model where not everybody is coerced, it is easy to avoid the inversion problem altogether by, e.g., secret-sharing
r across all parties, thus guaranteeing that the coercer never gets to see r.
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have to lie about their intermediate states in a consistent way, even though parties do not know fake inputs
and outputs of each other.

These problem are reminiscent of the problems arising in the context of adaptive security. However, the
adaptive security setting is significantly milder, since the “faking algorithm” is accessible only to the simulator,
and can make use of the simulator’s global view of the computation. In contrast, here the faking algorithm
needs to be run only using the local view of a party. In addition, the adversary has access to the same
faking algorithm held by the simulator, so the simulator cannot keep secret “trapdoors” related to the faking
algorithm.

We note that the above challenges manifest themselves even in the relatively simple context of deniable
encryption, or in other words the task of realizing the incoercible variant of the ideal secure message
transmission functionality. Indeed, despite having a number of clean and modular constructions of protocols
that realize secure message transmission from adaptively secure (i.e. non-committing) encryption schemes
[BH92, CFGN96, DN00, CDMW09, HOR15, HORR16, YKT19], the only known fully deniable encryption
protocol is both complex and non-modular [CPP20]: it is built from the ground up using obfuscation, and
both the construction and its security proof are quite heavy.

Extending this direct approach to constructing general incoercible MPC protocols appears daunting. We thus
take an alternative, more modular approach and use fully deniable encryption as a primitive in our protocols,
along with other, more standard primitives.

Fully deniable encryption. A key component in all our constructions is fully deniable (interactive)
encryption. Specifically, we use the scheme of [CPP20]. In a nutshell, this is a scheme which withstands
coercion of both the sender and the receiver even in the off-the-record setting. The protocol requires a
common reference string, takes 3 rounds, and assumes subexponential indistinguishability obfuscation and
one way functions. Roughly, deniable encryption give the following security guarantee:

1. the adversary cannot distinguish whether it sees

• real randomness s of the sender, real randomness r of the receiver, and the communication
transcript for plaintext m, or

• fake randomness of the sender s′ consistent with fake m, fake randomness of the receiver r′

consistent with fake m, and the communication transcript for plaintext m′.

2. (off-the-record setting) the adversary cannot distinguish whether it sees

• real randomness s of the sender, fake randomness r′ of the receiver consistent with m′, and the
communication transcript for plaintext m,

• fake randomness of the sender s′ consistent with m, real randomness of the receiver r consistent
with m′, and the communication transcript for plaintext m′,

• fake randomness s′ of the sender consistent with m, fake randomness r′ of the receiver consistent
with m′, and the communication transcript for plaintext m′′.

This should hold for any, potentially equal, m,m′,m′′.
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1.1.1 Incoercible oblivious transfer and 2PC with short inputs

Incoercible oblivious transfer has the functionality of a standard oblivious transfer - i.e. it allows the receiver
to obtain exactly one value xb (corresponding to its own input b), out of two values x0, x1 held by the sender.
However, it additionally provides security guarantees against a coercer: that is, even if the coercer demands
to see all randomness used by both parties in the protocol, parties can successfully lie about their inputs. That
is, the sender can claim that it used any, possibly different inputs x′0, x

′
1 (and provide convincing randomness

supporting this claim). Similarly, the receiver can claim it used a possibly different input bit b′, and received
a different output x′ of its choice.

This primitive can be constructed from any receiver-oblivious deniable encryption (DE) with public receiver
deniability. Here “public receiver deniability” means that the faking algorithm of the receiver doesn’t take
true receiver coins as input (thus anyone can fake on behalf of the receiver). “Receiver-oblivious” DE means
that the adversary cannot tell if the receiver messages were generated honestly (following the algorithm of
DE), or instead chosen at random (in this case, we say that these messages were generated obliviously);
further, this indistinguishability should hold even given fake random coins of the sender. We note that the
deniable encryption of [CPP20] has public receiver deniability, and in the appendix A we show that it is also
receiver-oblivious.

Theorem 1 Any receiver-oblivious deniable encryption, which remains deniable even in the off-the-record
setting and has public receiver deniability, can be converted into fully incoercible 1-out-of-m oblivious
transfer, for any polynomial m, in a round-preserving way.

The construction of incoercible OT is inspired by the construction of adaptively secure OT from non-
committing (adaptively secure) encryption [CLOS02]. Namely, let x0, x1 be the inputs of the sender, and
b be the input of the receiver. The parties should run in parallel two instances of DE: DE0 and DE1. The
sender’s input to each DEi is xi, for both i = 0, 1. The receiver should pick random r and generate messages
of DEb honestly (using r as randomness of the receiver in the protocol), while messages of DE1−b should be
generated by the receiver obliviously.

It is easy to see that the receiver can learn only xb but not x1−b, since the receiver knows r, which allows
it to decrypt DEb, but doesn’t know randomness for DE1−b and therefore cannot decrypt it. The sender, in
turn, doesn’t learn the receiver bit b, since it doesn’t know which execution was generated obliviously by the
receiver. Further, this OT is indeed incoercible: the sender can directly use deniability of DE to claim that
different inputs x′0, x

′
1 were sent. The receiver can lie about its input b by claiming that DEb was generated

obliviously, and by presenting fake r′ as randomness for DE1−b. This fake r′ can be generated by using the
faking algorithm on DE1−b and y′, where y′ is the desired fake output of the oblivious transfer. Note that the
receiver doesn’t know true coins for obliviously generated DE1−b, but it can generate fake r′ anyway due to
the fact that receiver deniability is public.

This construction can be extended to 1-out-of-m incoercible OT in a straightforward way.

Incoercible 2PC for short inputs from incoercible OT. Recall that, when the number m of possible
inputs of some party is polynomial, standard 1-out-of-m OT immediately implies general 2PC [GMW87]:
The OT sender should input to the OT m possible values of f(x, y), corresponding to m possible values
of the receiver’s input y, and a single sender’s input x. Using incoercible 1-out-of-m OT in this protocol
immediately makes the resulting 2PC protocol incoercible.
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Incoercible MPC from OT? Despite the fact that standard OT implies general secure multi-party com-
putation [GMW87], it is not clear whether incoercible OT implies incoercible MPC as well. In particular,
simply plugging (even ideal) incoercible OT into the protocol of [GMW87] doesn’t seem to result in an
incoercible protocol, even just for two parties. The problem here is the following: recall that this protocol
works by letting the parties compute additive secret shares of each wire of the circuit of f(x1, x2). On one
hand, since in the normal execution two shares add up to the value of the wire of f(x1, x2), the same should
hold in the fake case: fake secret shares should add up to the value of the wire of f(x′1, x

′
2). However, it is

not clear how, upon coercion, parties can compute these fake shares locally, without the knowledge of the
other party’s input.

1.1.2 Incoercible MPC

A natural starting point for building an incoercible MPC is to have the parties run any secure MPC protocol,
where each message is encrypted under a separate instance of deniable encryption. If in addition the parties
are allowed to communicate outside of the view of the adversary - e.g. by meeting physically - and if they are
comfortable sharing their fake inputs with each other, this method immediately gives incoercible MPC. Indeed,
upon coercion parties can use their out-of-band channel to all agree on some transcript tr′ = tr({x′i, r′i}) of an
underlying MPC executed on their fake inputs. When coerced, each party can use deniability of encryption to
lie (by presenting consistent randomness and keys of deniable encryption) that it sent and received messages
of tr′. In addition, each party should claim that x′i, r

′
i are the true input and randomness which it used to

compute the messages of tr′.

However, this protocol fails when no out-of-band interaction is possible, since the parties do not have means to
agree on tr′. To fix this problem, we combine deniability with adaptive security. That is, we use MPC which
is adaptively secure and has a special property called corruption oblivious simulation (defined in [BCH12]
in a setting of leakage tolerance). Roughly, it means that there is a “main” simulator which simulates the
transcript, and in addition each party has its own, “local” simulator which simulates the coins of that party,
using that party’s inputs only and the state of the “main” simulator (but not the inputs of other parties). If
parties had a way to agree on the same simulation randomness rSim, then upon coercion, they could do the
following: First they should run the main simulator on rSim to generate (the same) simulated transcript tr′

of an underlying adaptive MPC, and then each party should use its own local simulator to locally compute
fake coins consistent with this simulated transcript and its own input. Finally, as before, each party can use
deniability of encryption to claim that the messages of tr′ were indeed sent.

It remains to determine how the parties agree on the random coins rSim of the main simulator. A natural
approach to do this is to let one of the parties (say, the first) choose rSim at random and send it, encrypted
under deniable encryption, to each other party at the beginning of the protocol, for case that they need to fake
later. However, this introduces another difficulty: now the adversary can demand to see rSim, and revealing it
would allow the adversary to check that the transcript was simulated and thus detect a lie. Therefore, instead
of sending rSim, the first party should send randomly chosen seed s to all other parties. This seed is not used
by parties in the execution of the protocol. However, upon coercion each party can use a pseudorandom
generator to expand s into a string rSim||s′, where rSim, as before, is used to produce the same simulated
transcript of an adaptive MPC, and s′ is what parties will claim as their fake seed (instead of a true seed s).
Note that it is safe to reveal s′ to the adversary, since s′||rSim is pseudorandom, and therefore s′ cannot help
the adversary to indicate in any way that tr′ was simulated.
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We underline that security of this protocol is only maintains in the cooperative setting. As a result, this
protocol is useful in scenarios where parties “work together” and are interested in keeping all their inputs
secret, rather than turn against each other trying to make sure others get caught cheating. We note however
that the protocol remains secure even if inputs of some parties are real and inputs of some other parties are
fake - as long as randomness of all parties is fake. Indeed, it might happen so that a certain party is not
interested in lying about its input, but still wishes the whole group of people to succeed in deceiving; then
this party may provide fake randomness for its real input, thus not ruining the joint attempt to deceive, while
achieving its own goals6. Further, this protocol maintains the best possible security even in the case when
the claimed inputs and outputs are clearly inconsistent. The following informal theorem summarizes the
discussion:

Theorem 2 Assuming deniable encryption and adaptively secure MPC protocol with a global CRS and
corruption-oblivious simulation, there exist cooperatively incoercible secure function evaluation protocols.

We spell out the protocol. We need the following ingredients:

• 2-round adaptively secure MPC aMPC with global CRS7 and corruption-oblivious simulator, e.g. that
of [CPV17].

• 3-round delayed-input8 deniable encryption DE, e.g. that of [CPP20]. While that construction is not
delayed-input, we observe that it is easy to turn any deniable encryption into its delayed-input version.
This can be done by letting the sender send a randomly chosen key k using deniable encryption, and
also send m⊕ k in the clear at the last round.

The protocol then proceeds as follows, with 4 rounds of communication:

1. In rounds 1− 3 parties exchange the messages of the first round of aMPC, encrypted under point-to-
point deniable encryption.

2. In rounds 2− 4 parties exchange the messages of the second round of aMPC, encrypted under point-
to-point deniable encryption. It is important that deniable encryption requires its input only by the last
round, since parties receive the messages of the first round of aMPC only after round 3.

3. In rounds 2 − 4 party 1 sends to each party randomly chosen seed, encrypted under point-to-point
deniable encryption. Note that each party receives the same value of seed.

After round 4, parties learn all messages of aMPC and therefore can compute the output. Note that our
protocol is delayed input, since inputs are required only by round 3. Upon coercion, each party first computes
fake transcript tr′ of aMPC. tr′ is computed by running the “main” simulator of aMPC on rSim, where
rSim is obtained by expanding seed into seed′||rSim using a prg. (Note that parties use the same rSim and
therefore obtain the same tr′ upon coercion). Next, each party can use its local simulator to produce fake coins
consistent with tr′ and fake input x′. Therefore, each party can claim that the transcript of the underlying
protocol was tr′, and this claim will be consistent with party’s own fake input, and across different parties.
Finally, each party should claim that the seed value sent by party 1 was in fact seed′.

6Note that this scenario highlights a subtle but important difference between the modelling of coercion in [CG96] and [CGP15].
Indeed, in [CG96], if the party is given a real input, it has to provide its true randomness.

7The CRS of the protocol is said to be global, if the simulator can simulate the execution, given the CRS (as opposed to generating
the CRS on its own, possibly from a different distribution, or with underlying trapdoors).

8That is, only the third message of the sender depends on the plaintext.
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Note that our construction crucially uses the fact that underlying adaptive MPC has global CRS. Indeed, this
allows to put this CRS as part of the final CRS of the protocol, and lets parties simulate the transcript of
underlying adaptive MPC with respect to that CRS. Had the CRS been local, parties would have to generate
it during the protocol and thus eventually provide the adversary with the generation coins; yet, security of
protocols with local CRS usually holds only as long as the generation randomness of this CRS remains
private.

1.1.3 Impossibility of incoercible MPC with lazy parties

Impossibility of incoercible MPC with lazy parties. We show that unlike 2-party protocols, multiparty
protocols with some communication structure cannot be incoercible (this holds even against coercion of only
2 parties). Concretely, let us say that a party is lazy, if it only sends its messages in the first and the last
round of a protocol, but doesn’t send anything in intermediate rounds (if any). In particular, in all 2 round
protocols all parties are lazy by definition. We show that coercing a lazy party and some output-receiving
party allows to learn information about inputs of other parties, therefore rendering the protocol insecure for
most functions:

Theorem 3 (Informal) Assume there exists an n-party protocol withstanding 2 corruptions and 1 coercion
for computing function f with a lazy party, where n ≥ 3. Then the function f is such that for any inputs
x1, . . . , xn it is possible, given x1, xn, and f(x1, . . . , xn), to compute f(x, x2, . . . , xn) for any x.

We consider this negative result to be especially important in light of the fact that building fully incoercible
protocols may require complicated obfuscation-based constructions. For instance, consider the following
natural attempt to build a 3-round fully incoercible protocol. Take deniable encryption of [CPP20] which
essentially lets the sender send an encryption of a plaintext together with some auxiliary information, which
the receiver can decrypt using an obfuscated decryption program. This protocol features a “ping-pong”
communication pattern, with a total of 3 messages sent between a sender and a receiver. One could attempt to
turn it into MPC with a similar “ping-pong” communication pattern by letting n− 1 senders P1, . . . , Pn−1
send its input to a single receiver Pn in a similar manner, and let the obfuscated evaluation program of
the receiver decrypt the messages and evaluate the result. While this approach sounds very plausible and
appealing in a sense that it potentially requires only minor modifications of the construction of deniable
encryption, our impossibility result implies that such protocol cannot be incoercible.

Finally, it is interesting to note that this impossibility result is “tight” both with respect to the number of
participants n, and with respect to coercion operation (as opposed to adaptive corruption). Indeed, there exists
a 3-round two-party incoercible protocol (e.g. our OT-based protocol), and a 3-round multi-party adaptively
secure protocol [DKR14], which features such a “ping-pong” communication pattern.9

To get an idea of why impossibility holds, consider standard MPC with a super-lazy party who only sends its
messages in the very last round; clearly, such a protocol is insecure, since the adversary who corrupts this
party together with some output-receiving party can rerun the protocol on many inputs of the lazy party and
therefore infer some information about the inputs of uncorrupted parties.

Such an attack in the standard MPC case doesn’t work when a lazy party sends messages in two rounds of
the protocol. However, we show that in case of incoercible protocols there is a way for a lazy party to modify

9Note that formally speaking, the protocol of [DKR14] takes 4 rounds; however, the receiver learns the output already after round
3. The 4-th round is only required to send this output back to everyone.
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its last message such that the protocol now thinks that a different input is used - despite the fact that its first
message still corresponds to the original input. With this technique in place we can mount the same attack
as described before. This technique is based on the observation in [CPP20] that sender-deniability in any
deniable encryption implies that a party can “fool” its own protocol execution into thinking that a different
input is being used. We refer the reader to section 5 for details.

1.1.4 On the difference between n = 2 and n ≥ 3 parties

Since some of our results only hold for the case of n = 2 or n ≥ 3 , we briefly comment on the difference.

Impossibility of incoercible MPC with lazy parties. This result inherently uses the fact that the number
of parties is at least 3. The reason is that our attack allows the adversary, who corrupts P1 and Pn, learn
f(x, x2, . . . , xn) for any x (in addition to x1, xn, and f(x1, . . . , xn)). As we can see, in case n = 2,
f(x, x2, . . . , xn) becomes f(x, x2), which the adversary learns anyway upon corruption of both parties; thus
this attack doesn’t give the adversary any power when n = 2. And indeed, our OT-based 2PC has the property
that the sender is lazy (i.e. it sends messages only in the first and in the last round).

Off-the-record incoercibility. Our OT-based 2PC remains incoercible even in the off-the-record scenario,
whereas our MPC doesn’t. However, we don’t think that there is some inherent obstacle to obtaining off-
the-record security in the case of many parties. We believe that it could be done, especially if each action of
each party is protected by obfuscation. (The reason why our 2PC protocol is incoercible in the off-the record
scenario is because so is the underlying deniable encryption scheme; in turn, the latter is incoercible because
all actions of parties are protected by obfuscation).

1.1.5 Discussion, open problems, and future work

Our results naturally lead to the following open problems:

• Round complexity: is it possible to build an incoercible protocol, withstanding coercion of all parties,
for general functions in 3 rounds? (Recall that 3 rounds is the minimum s [BNNO11].)

• Full incoercibility: Is it possible to obtain a protocol which withstands coercion of all parties and
remains incoercible even in the off-the-record setting - with any number of rounds?

The protocols in this paper follow a blueprint of composing deniable encryption with non-deniable primitives,
resulting in a simple and clean protocol design. However, it could be problematic to use this approach for
answering the questions listed above. The reason is the following. Since incoercible MPC implies deniable
encryption, any construction of incoercible MPC:

• either has to use some construction of deniable encryption,

• or has to build deniable encryption from scratch, at least implicitly.

As we explain in more detail next, improving on our results would likely require the latter. Given the
complexity of the [CPP20] construction, such modification will require better tools for abstracting and
mudularizing this construction and similar ones.
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On obtaining full incoercibility for n ≥ 3. A natural attempt to build a fully incoercible protocol is to
combine deniable encryption (secure even in the off-the-record setting) with other, weaker-than-incoercible
primitives (e.g. standard MPC). Unfortunately, this is unlikely to help. Indeed, a very simple argument
made by [AOZZ15] shows that in any construction of off-the-record incoercible MPC with the help of secure
channels, parties have to use these (perfectly deniable!) channels in an inherently non-deniable way: that is,
if a party sends (receives) a message M via secure channel during the protocol, then its faking algorithm
cannot instruct this party to lie about M10. This can be informally interpreted as follows: in any incoercible
protocol which uses deniable encryption, deniable encryption can be replaced with standard encryption such
that the protocol still remains incoercible11. This in turn indicates that such a protocol would have to be
incoercible to begin with.

1.2 Related Work

Receipt-free and coercion-resistante voting schemes. The study of incoercibility has started with the
specific functionality of voting. Indeed, a long line of work, including [BT94, BMN+09] and many others,
studies incoercibility in the context of voting schemes, including notions such as receipt-freeness and coercion
resistance. It is important to stress that, while these works share the overall concerns and goals as the presnt
work, there are a number of significant differences:

First, while this work concentrates on the case where the parties actually follow the protocol until the point
of coercion, which happens only after the after the protocol execution took place, these works consider
the case where parties may deviate from the protocol instructions right from the start. In accordance, that
their solutions inherently include a physical component (a “voting booth”). Second, their notion of coercion
resistance imposes restriction both on the protocol and on the evaluated function. In contrast, we provide
general tools for incoercible secure evaluation of any function, thus allowing to separate the analysis of the
properties of the evaluated function from the security of the implementation.

Prior work on generic incoercible MPC. The prior work on generic incoercible MPC can be split into
two parts, depending on whether it focuses on semi-honest or active coercion (in the language of [AOZZ15]).
Intuitively, a coercer is semi-honest if it lets the party participate in the protocol as prescribed (by following
the instructions of the protocol), but after that demands to see the entire view of that party and checks whether
it matches the claimed input of that party. In contrast, an active coercer assumes full control over the party
and in particular may instruct the party to deviate from the protocol, in order to make it harder for the party to
deceive the coercer.

As already noted in [BT94] in the context of secure voting, active coercion is clearly unachievable with
cryptography alone: coerced parties have no hope of lying about their inputs if the adversary watches over
their shoulder during the computation. As a result, security against active coercion requires some form of
physical unaccessibility assumption. Indeed, to come up with the protocol secure against active coercion,
[AOZZ15] makes use of a stateful hardware token which can generate keys, distribute them to all parties, and
encrypt.

10Roughly, this is because said party doesn’t know whether its peer is lying or telling the truth; it could be telling the truth, thus
revealing true M , and from definition of off-the-record deniability, their joint state should look valid even in the case when the party
is lying and its peer is telling the truth - as long as their inputs and outputs are consistent.

11We underline again that this is an informal statement - indeed, such a statement is tricky to even formalize, let alone prove.
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In contrast, semi-honest incoercibility is well within the reach of “digital cryptography”, without the need
to assume inaccessible hardware: sender-deniable encryption and encryption deniable for both parties
was constructed by [SW14] and [CPP20] respectively, from indistinguishability obfuscation and one-way
functions, and it was shown back in 1996 how to transform any sender-deniable encryption into incoercible
MPC which withstands coercion of up to half participants [CG96]. The protocols of [CGP15], [DKR14],
originally devised as adaptively secure protocols withstanding corruption of all parties, can withstand coercion
of a single party.

Active incoercibility has been studied in the works of [MN06] for the specific functionality of voting, and later
the works of [UM10], [AOZZ15], which develop a framework for UC incoercibility and give constructions
of UC-incoercible protocols for general functionalities, using inaccessible hardware.

Note that, although from a practical standpoint active incoercibility is stronger and more desirable than
semi-honest one, from theoretical perspective semi-honest and active incoercibility are two completely
different and incomparable problems. Indeed, achieving semi-honest incoercibility requires solving the
problem of “inverting the computation” - i.e. finding randomness which makes some computation appear to
stem from a different input (note that this problem is also interesting on its own, without its connection to
incoercibility). Active incoercibility, as discussed above, inherently requires inaccessible hardware to hide
parts of the computation and thus avoids the inverting problem altogether; instead, the goal there is to ensure
that the active coercer cannot force parties to output something committing, while making the underlying
physical assumptions as realistic as possible.

Impossibility results. [CG96] shows that semi-honest incoercible computation is not achievable against
unbounded adversaries; this impossibility holds even in the presence of private channels. To the best of our
knowledge, in the computational setting no impossibility results specific to incoercible MPC were known.
However, the impossibility of non-interactive (i.e. 2-message) receiver-deniable encryption [BNNO11]
immediately implies that 2-round incoercible MPC is impossible, even against coercion of a single party
which receives the output12 (in particular, the 2-round protocol of [CGP15] only withstands coercion of a party
which doesn’t receive the output); this impossibility holds for all functions which imply a bit transmission.

On the difference between the definitions of incoercible MPC in [CG96] and [CGP15]. In this work
we use the definition of incoercible computation from [CGP15]. We briefly explain how it differs from the
one in [CG96]. The definitions of [CG96] and [CGP15] are conceptually similar but differ in case when an
environment instructs a party to fake, but sets its fake input and output to be exactly the same as its real input
and output. In this case the definition in [CG96] instructs the party to output its true randomness, while the
definition in [CGP15] instructs the party to run the fake algorithm anyways and output the resulting fake
randomness.

This difference may appear minor - indeed, if a party is not going to lie about its inputs nor outputs, why fake
the randomness? Nevertheless, there are situations when a party may want to fake its randomness anyways.

12Indeed, any incoercible protocol for a message transmission functionality can be turned into a 2-message receiver-deniable
encryption, by letting the party R which receives the output be a receiver of deniable encryption, and letting the sender run the MPC
protocol on behalf of all other parties. In particular, the first message (sent by the receiver) will consist of all messages sent by R in
the first round of the protocol, and the second message (sent by the sender) will consist of all messages sent to R in rounds 1 and 2.
Messages sent by R in round 2 of MPC protocol do not have to be sent, since S doesn’t receive the output, nor does S have to deny
later.
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Indeed, as we discuss in the technical overview, our incoercible MPC protocol only retains its incoercibility
properties as long as all parties disclose their fake coins to the coercer. In particular, there may be a party
which has no interest in lying about its own input, but which anticipates that other participants may need to
lie about theirs, and which thus decides to give out its fake randomness to make sure its true randomness
doesn’t compromise other parties’ security.

2 Preliminaries

2.1 Incoercible computation

We use the definition of incoercible computation from [CGP15], which can be regarded as a re-formulation of
the definition of [CG96] within the UC framework. (We note that the formulations of [MN06, AOZZ15] are
similar to and consistent with the one we use, with the exception that they allow also Byzantine corruptions and
incorporate modeling of ideally opaque hardware.) Specifically, for full incoercibility, we consider protocols
that, in addition to the standard corruption instruction from the adversary, take a coercion instruction; upon
receiving this instruction, the party notifies a predetermined external entity (say, its “caller” via subroutine
output) that it was coerced and expects an instruction to either “tell the truth”, in which case it reveals its
entire local state to the adversary, or “fake to input x and output y”, in which case a faking algorithm, which
is provided as part of the protocol, is run on inputs x, y and the current local state. The output of the faking
algorithm is presented to the adversary as the (fake) internal state of the party.

Cooperative environments. A cooperative environment is one that’s guaranteed: (a) not to corrupt
parties, and (b) to either instruct all coerced parties to “tell the truth”, or else to instruct neither of the
coerced/corrupted parties to “tell the truth.” (In the latter case the environment gives each coerced party
values x, y and the party is expected to generate fake randomness that explains the messages sent by the party
as consistent with input x and output y.

Coercion-aware ideal functionalities. An ideal functionality can now enforce incoercibile imlpementa-
tions via the following mechanism: When asked by the adversary (or, simulator) to coerce a party P , the
ideal functionality outputs a request to coerce P to the said external entity, in the same way as done by the
protocol. If the response is “fake to input x and output y, then the pair x, y is returned to the adversary. If the
response is “tell the truth” then the actual input x and output y are returned to the adversary. Crucially, the
simulator is not told whether the returned values are real or fake.

This behavior is intended to mimic the situation where the computation is done “behind closed doors” and no
information about it is ever exposed, other than the inputs and outputs of the parties. In particular, such an
ideal functionality does not prevent situations where the outputs of the parties are globally inconsistent with
their inputs, or where a certain set of inputs of the parties are inconsistent with auxiliary information that’s
known outside the protocol execution. Indeed, the only goal here is to guarantee that any determination made
by an external coercer (modeled by the environment) after interacting with the protocol, could have been
done in the ideal model, given only the claimed inputs and outputs.

Figures 1, 2 and 3 depict incoercible variants of the standard ideal functionalities for secure message
transmission, oblivious transfer, and multiparty function evaluation, respectively.
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Functionality FIMT

• Upon receiving input (Send, sid,R,m) from party S, where R is an identity for the intended
receiver, send (sid, S,R, |m|) to the adversary. When receiving ok from the adversary, output
(Receive, sid, S,m) to R.
• Upon receiving (Coerce, sid, P ) from the adversary, where P ∈ {S,R}, output (Coerce, sid)

to P . Upon receiving V from P do: If V = (tell-truth) then send m to the adversary. If
V = (fake-to,m′) then send m′ to the adversary.
• Upon receiving (Corrupt, sid, P ) from the adversary, where P ∈ {S,R}, output (Corrupt, sid)

to P , and send m to the adversary.
Figure 1: The Incoercible Message transmission Functionality FIMT.

Functionality FIOT

• Upon receiving input (OT-Sender, sid,R, (m0,m1)) from party S, where R is an identity for the
intended receiver, send (sid, S,R) to the adversary. When receiving ok from the adversary, output
(OT-Receiver, sid, S) to R.
• Upon receiving input (OT-Receiver, sid, b) from R, send sid to the adversary. When receiving ok

from the adversary, output (OT-Receiver, sid,mb) to R.
• Upon receiving (Coerce, sid, P ) from the adversary, where P ∈ {S,R}, output (Coerce, sid) to
P . Upon receiving V from P do: If V = (tell-truth) then send P ’s input and output to the
adversary. If V = (fake-to, v) then send v to the adversary.
• Upon receiving (Corrupt, sid, P ) from the adversary, where P ∈ {S,R}, output (Corrupt, sid)

to P , and send P ’s input and output to the adversary.
Figure 2: The Incoercible Oblivious Transfer Functionality FIOT.

As discussed in the introduction, we note that the present definitional framework is only concerned about
incoercible implementations of a given ideal functionality. The do not adress the question of whether the
ideal functionality itself is susceptible to coercion.

We say that π is a fully incoercible message transmission protocol if π UC-realizes FIMT. If π UC-realizes FIMT

only with respect to cooperative environments then π is a cooperatively incoercible message transmission
protocol.

Similarly, we say that π is a fully incoercible oblivious transfer protocol if π UC-realizes FIOT. If π UC-
realizes FIOT only with respect to cooperative environments then π is a cooperatively incoercible oblivious
transfer protocol.

Similarly, say that π is a fully incoercible function evaluation protocol if π UC-realizes FIFE. If π UC-realizes
FIFE only with respect to cooperative environments then π is a cooperatively incoercible function evaluation
protocol.

2.2 Deniable Encryption

Since deniable encryption is a main building block in our constructions, we review the definition, taken from
[CPP20]. We note that the definition below implies the simulation-based notion of deniable communication.
That is, if π satisfies Definition 1 , then π is an off-the-record incoercible secure message transmission
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Functionality FIFE

• Upon receiving input (Init, sid, P1, ..., Pn, f from party Pi, send (sid, P1, ..., Pn, f) to the adversary.
When receiving (ok,Pi) from the adversary, output (Init, sid, P1, ..., Pn, f) to Pi.
• Upon receiving input (Init, sid, xi) from Pi, record (Pi, xi). Once (Pi, xi) are recorded for all
i = 1..n, compute (y1, ..., yn)← f(x1, ..., xn) and send (Output, sid) to the adversary.
• When receiving output from Pi, output yi to Pi.
• Upon receiving (Coerce, sid, Pi) from the adversary output (Coerce, sid) to Pi. Upon receiving
V from Pi do: If V = (tell-truth) then send Pi’s input and output to the adversary. If V =
(fake-to, v) then send v to the adversary.
• Upon receiving (Corrupt, sid, Pi) from the adversary output (Corrupt, sid) to Pi, and send Pi’s

input and output to the adversary.
Figure 3: The Incoercible Function Evaluation Functionality FIFE.

protocol. However, we note that we require additional properties of receiver-obliviousness and public-
receiver-deniability from deniable encryption for our OT-based protocol

We denote by π(CRS, s, r,m) the messages sent by parties when running deniable encryption protocol on
input m with randomness s of the sender and r of the receiver.

Definition 1 Deniable bit encryption in the CRS model. π = (DE.Setup,DE.msg1,DE.msg2,DE.msg3,
DE.Dec,DE.SFake,DE.RFake) is a 3-message deniable interactive encryption scheme for message space
M = {0, 1}, if it satisfies the following correctness and deniability properties:

• Correctness: There exists negligible function ν(λ) such that for at least (1−ν)-fraction of randomness
rSetup ← {0, 1}|rSetup| the following holds: let CRS ← DE.Setup(rSetup). Then for any m ∈ M
Pr[m′ 6= m : s ← {0, 1}|s| , r ← {0, 1}|r| , tr ← π(CRS, s, r,m),m′ ← DE.Dec(CRS, r, tr)] ≤
ν(λ), where the probability is taken over the choices of s and r.

• Bideniability: No PPT adversary Adv wins with more than negligible advantage in the following
game, for any m0,m1 ∈M:

1. The challenger chooses random rSetup and generates CRS← DE.Setup(rSetup). It also chooses
a bit b at random.

2. If b = 0, then the challenger generates the following variables:

(a) It chooses random s∗, r∗ and computes tr∗ = π(CRS, s∗, r∗,m0).

(b) It gives the adversary (CRS,m0,m1, s
∗, r∗, tr∗).

3. If b = 1, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ ← π(CRS, s∗, r∗,m1);

(b) It sets s′ ← DE.SFake(CRS, s∗,m1,m0, tr
∗; ρS) and r′ ←

DE.RFake(CRS, r∗,m1,m0, tr
∗; ρR), for randomly chosen ρS , ρR.

(c) It gives the adversary (CRS,m0,m1, s
′, r′, tr∗).

4. Adv outputs b′ and wins if b = b′.
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• Off-the-record deniability: No PPT adversary Adv wins with more than negligible advantage in the
following game, for any m0,m1,m2 ∈M:

1. The challenger chooses random rSetup and generates CRS← DE.Setup(rSetup). It also chooses
b ∈ {0, 1, 2} at random.

2. If b = 0, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ ← π(CRS, s∗, r∗,m0);

(b) It sets r′ ← DE.RFake(CRS, r∗,m0,m1, tr
∗; ρR), for randomly chosen ρR.

(c) It gives the adversary (CRS,m0,m1,m2, s
∗, r′, tr∗).

3. If b = 1, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ ← π(CRS, s∗, r∗,m1);

(b) It sets s′ ← DE.SFake(CRS, s∗,m1,m0, tr
∗; ρS) for randomly chosen ρS .

(c) It gives the adversary (CRS,m0,m1,m2, s
′, r∗, tr∗).

4. If b = 2, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ ← π(CRS, s∗, r∗,m2);

(b) It sets s′ ← DE.SFake(CRS, s∗,m2,m0, tr
∗; ρS) for randomly chosen ρS and r′ ←

DE.RFake(CRS, r∗,m2,m1, tr
∗; ρR) for randomly chosen ρR.

(c) It gives the adversary (CRS,m0,m1,m2, s
′, r′, tr∗).

5. Adv outputs b′ and wins if b = b′.

Receiver-obliviousness. We say that deniable encryption satisfies receiver-obliviousness, if no adversary
can win the following game, for any m in the plaintext space:

1. The challenger chooses random rSetup and generates CRS← DE.Setup(rSetup). It also chooses a bit b
at random.

2. If b = 0, then the challenger generates the following variables:

(a) It chooses random s∗, r∗ and computes tr∗ = π(CRS, s∗, r∗,m).

(b) It gives the adversary (CRS,m, s∗, tr∗).

3. If b = 1, then the challenger generates the following variables:

(a) The challenger chooses random s∗, r∗ and computes tr∗ as follows. It sets a1 =
DE.msg1(CRS, s∗,m), chooses a2 at random, and sets a3 = DE.msg3(CRS, s∗,m, a1, a2).
It sets tr∗ = (a1, a2, a3).

(b) It gives the adversary (CRS,m, s∗, tr∗).

4. Adv outputs b′ and wins if b = b′.
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In other words, the adversary cannot tell if messages of the receiver are honestly generated or simply chosen
at random (as long as the adversary doesn’t see the random coins of the receiver).

We observe that any protocol that satisfies the requirements of Definition 1 is a fully incoercible message
transmission protocol as defined above.

Theorem 4 Let π be a protocol that satisfies Definition 1. Then π UC-realizes FIMT.

Public receiver deniability. We say that receiver deniability is public, if DE.RFake(CRS,m′, tr; ·) only
takes as input the CRS, the fake plaintext, the transcript of the execution, and its own random coins. In other
words, true random coins r of the receiver are not required to run RFake.

Deniable encryption with public receiver deniability is built in [CPP20]. In appendix A we note that it also
satisfies receiver-obliviousness.

2.3 Adaptively Secure Protocols with Corruption-Oblivious Simulation

Another concept that will be useful to us is adaptive security with coercion-oblivious simulation. Spcifically
we consider adaptively secure protocols [CFGN96] where the simulator can be splitted in several parts, as
follows:

• The “main” simulator Sim(rSim)→ (tr, state), which simulates the transcript tr of the protocol, and
also generates a state to be used by “local” simulators;

• “Local” simulators Simi(state, xi, yi; ·) → ri, where each Simi takes as input the state of the main
simulator, input and output of party i, and possibly its own random coins. It outputs ri, a simulated
randomness of party i.

We call such simulation coecrcion-oblivious. The security requirement is now stated as follows: the transcript
of a real protocol execution, together with randomness of each party, should be indistinguishable from a
simulated transcript, together with simulated randomness of each party. Note that this requirement is not
trivial, since simulators have to work “locally” (without knowing other parties’ inputs) and still have to jointly
generate a consistently-looking picture. We refer the reader to [BCH12] for formal treatment.

A 2-round adaptively secure MPC protocol with corruption-oblivious simulator appears in [CPV17]. That
protocol uses indistinguiahability obfuscation and one way functions.

3 Incoercible Oblivious Transfer

In this section we describe our construction of incoercible oblivious transfer. As noted in the introduction,
such a protocol immediately implies incoercible 2PC for the case where one of the parties has polynomial
input space.
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Incoercible Oblivious Transfer
The CRS: CRS = CRSDE, where CRSDE is a CRS of deniable encryption with receiver-obliviousness, and
public receiver deniability.
Inputs: inputs x0, x1 of the sender S; input bit b of the receiver R.
The protocol:
The sender chooses random coins s0, s1 for two executions of deniable encryption, where S acts as a sender.
The receiver chooses randomness r for a single execution of deniable encryption where it acts as a receiver.
The sender and the receiver run two instances of deniable encryption, DE0 and DE1, in parallel. Here:
• In each execution i, for i = 0, 1, the sender computes its messages by honestly running the code of

deniable encryption on its input xi, randomness si, and the transcript so far;
• In the execution b the receiver computes its messages by honestly running the code of deniable

encryption on its randomness r and the transcript so far. In the execution 1− b the receiver instead
generates all its messages at random, using randomly chosen r̃.

At the end of both executions, the receiver sets its output in the protocol to be DE.Dec(r;DEb).

Faking procedure of the sender S
Inputs: fake inputs x′0, x

′
1 of the sender, true inputs and randomness x0, s0, x1, s1 of the sender, the protocol

transcript (DE0,DE1), and the CRS.
In order to fake, the sender runs the faking algorithm of deniable encryption for each execution, i.e. computes
s′i ← DE.SFake(si, xi, x

′
i,DEi; ·) for both i = 0, 1. It gives s′0, s

′
1 to the adversary.

Faking procedure of the receiver R
Inputs: fake input b′ and fake output x′ of the receiver, true inputs and randomness b, r, r̃ of the receiver, the
protocol transcript (DE0,DE1), and the CRS.
In order to fake, the receiver claims that messages of the receiver in execution 1 − b′ were generated at
random, and sets fake r̃′ to be the concatenation of these receiver messages. Next, it uses public deniability
of the receiver to compute r′ ← DE.RFake(x′,DEb′ ; ·). It gives r′, r̃′ to the adversary.

Figure 4: Incoercible Oblivious Transfer.

3.1 Protocol Description

For simplicity, we consider 1-out-of-2 OT (the construction can be generalized to 1-out-of-n OT in a
straightforward way), and we also assume that all inputs are bits. Our protocol is described on fig. 4. It
requires a special deniable encryption (DE) scheme, where deniability of the receiver is public (i.e. the faking
algorithm of the receiver doesn’t take receiver’s true coins as input), and which satisfies receiver-obliviousness,
i.e. the real transcript is indistinguishable from a transcript where receiver simply generated all its messages
at random. As noted in [CPP20], their DE protocol satisfies public receiver deniability. In appendix A we
note that this protocol is also receiver-oblivious.

Before stating the theorem, we remind that we consider the model of semi-honest coercions of potentially all
parties, and we assume that all coercions happen after the protocol finishes. We refer the reader to section 2
for a description of our coercion model.

Theorem 5 Assume DE is an interactive deniable encryption scheme which satisfies public receiver denia-
bility and receiver obliviousness, and remains deniable even in the off-the-record scenario. Then the protocol
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on fig. 2 is a semi-honest, fully incoercible oblivious transfer protocol.

3.2 Proof of the Theorem

Correctness. Correctness immediately follows from correctness of deniable encryption.

Incoercibility. Consider the simulator depicted on fig. 5, which essentially generates two transcripts of
deniable encryption, each encrypting plaintext m = 0, and then uses faking algorithm of deniable encryption
to simulate the coins. Note that the simulator generates the simulated coins in the same way (by using faking
algorithm), no matter whether the party is corrupted or coerced.

We need to show that for every pattern of corruptions and coercions, and every set of real and fake inputs
and outputs, the real execution is indistingusihable from a simulated one. This boils down to showing
indistinguishability in the following cases:

1. If claimed inputs and outputs are consistent, we should prove indistinguishability between the case
where both the sender and the receiver show their true coins, the case where both the sender and the
receiver show their fake coins, the case where the sender shows true coins and the receiver shows fake
coins, and the case where the sender shows fake coins and the receiver shows true coins.

2. If claimed inputs and outputs are inconsistent, we should prove indistinguishability between the case
where the sender shows true coins and the receiver shows fake coins, the case where the sender shows
fake coins and the receiver shows true coins, and the case where they both show fake coins.

The proof is very straighforward and uses two main steps - (a) switching between normally and obliviously
generated execution of DE, using obliviousness and public receiver deniability of DE, and (b) switching
randomness of DE of the sender between real and fake, using sender-deniability of DE.

Below we formally prove indistinguishability between the simulated execution (HybSim) and the real execution
with consistent inputs inputs x′0, x

′
1, b
′ and output x′b′ , where both parties tell the truth (i.e. disclose their true

coins) (HybReal). Indistinguishability between other distributions can be shown in a very similar manner.

• HybSim. This is the execution from fig. 5, where both the sender and the receiver are either cor-
rupted or coerced, and the values reported to the simulator are the following: inputs x′0, x

′
1 of the

sender, input b′ of the receiver, output x′ = x′b′ of the receiver. The simulator gives the adversary
(DE0,DE1, s

′
0, s
′
1, r
′
b′ , r̃
′).

• Hyb1. In this hybrid the receiver generates messages in DE1−b′ obliviously (instead of generating
them honestly, using r1−b′). Indistinguishability between this and the previous hybrid follows from
obliviousness of the receiver of deniable encryption. Note that it is important for the reduction that
the receiver deniability is public, since the reduction needs to compute fake randomness of execution
1− b′, r′1−b′ , for which it doesn’t know the true coins r1−b′ .

• Hyb2. In this hybrid the sender encrypts x′0 (instead of 0) in the execution i = 0. It also gives the
adversary its true randomness s0 instead of fake s′0. Indistinguishability follows from bideniability of
the encryption scheme DE0.
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Simulation of communication
Inputs given to simulate the communication: CRS.
The simulator chooses random s0, s1, r0, r1, and computes DEi ← DE(si, ri, 0) for both i = 0, 1, i.e. sets
DEi to be the transcript of the protocol for deniable encryption, computed with the sender input 0, sender
randomness si, and receiver randomness ri. (DE0,DE1) is a simulated transcript of the protocol.

Simulation of corruption and coercion of the sender S
Inputs additionally given to simulate the coercion of S: claimed inputs x′0, x

′
1 of S.

The simulator computes s′i ← DE.SFake(si, 0, x
′
i,DEi; ·) for both i = 0, 1. It gives s′0, s

′
1 to the adversary.

Simulation of corruption and coercion of the receiver R
Inputs additionally given to simulate the coercion of R: claimed input b′, claimed output x′.
The simulator claims that messages of the receiver in execution 1− b′ were generated at random, and sets
fake r̃′ to be the concatenation of these receiver messages. Next, it computes r′b′ ← DE.RFake(x′,DEb′ ; ·).
It gives r′b′ , r̃

′ to the adversary.
Figure 5: Simulation

• HybReal. In this hybrid the sender encrypts x′1 (instead of 0) in the execution i = 1. It also gives
its true randomness s1 instead of fake s′1. Indistinguishability follows from sender deniability of the
encryption scheme DE1.

Note that this distribution corresponds to the real world where parties use x′0, x
′
1, b
′ as inputs.

4 4-Round Incoercible MPC

4.1 Description of the protocol

In this section we describe our protocol achieving incoercibility even when all parties are coerced, but only in
cooperative scenario. That is, as discussed in the introduction, the deception remain undetectable only as
long as all parties lie about their randomness (however, then can still tell the truth about their inputs, if they
choose so). We remind that in this work we only focus on coercions and corruptions which happen after the
protocol execution.

Our protocol is presented on fig. 6. As discussed more in detail in the introduction, the protocol essentially
instructs parties to run the underlying adaptively secure protocol, where each message is encrypted under a
separate instance of deniable encryption. In addition, party P1 sends to everyone the same seed seed of the
prg, to be used in the faking procedure. Parties’ faking algorithm instructs parties to use seed to derive (the
same for all parties) coins rSim, which are used to generate (the same for all parties) simulated transcript σ′

of the underlying MPC. Next each party uses the local simulator of that MPC (recall that we need that MPC
to have corruption-oblivious simulator) to simulate its own fake coins of the underlying MPC. Finally parties
claim that they indeed exchanged messages of σ′, using deniability of encryption.

Faking the inputs vs faking the inputs and the outputs. We note that it is enough for parties to be able
to fake their inputs (as opposed to inputs and outputs), due to the standard transformation allowing parties to
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mask their output with a one time pad k: f ′((x1, k1), (x2, k2)) = f(x1, x2)⊕ k1||f(x1, x2)⊕ k2. Indeed,
here faking the output can be achieved by faking inputs ki instead. Thus, in the protocol, we only describe an
input-faking mechanism.

Theorem 6 Assume the existence of the following primitives:

• aMPC = (aMPC.msg1, aMPC.msg2, aMPC.Eval, aMPC.Sim, aMPC.Simi) is a 2-round adaptively
secure MPC with corruption-oblivious simulation, in a global CRS model;

• DE = (DE.msg1,DE.msg2,DE.msg3,DE.Dec,DE.SFake,DE.RFake) is a 3-message, delayed-input
deniable encryption protocol, in a CRS model;

• prg is a pseudorandom generator.

Then the protocol iMPC on fig. 6, 7 is a 4-round semi-honest MPC protocol in a CRS model13, which is
cooperatively incoercible.

We note that all required primitives can be built using subexponentially-secure indistinguishability obfuscation
and one-way functions ([CPP20, CPV17]). Therefore we obtain the following corollary:

Corollary 1 Assume the existence of subexponentially secure indistinguishability obfuscation and subexpo-
nentially secure one-way functions. Then in a CRS model there exists a 4-round semi-honest MPC, which is
cooperatively incoercible.

Notation and indexing. Subscript i, j on the message of the protocol means that the message is sent
from Pi to Pj . Subscript i, j of the randomness means that this randomness is used as sender or receiver
randomness in the protocol where i is the sender and j is the receiver.

For example, M1i,j is the first message of aMPC, sent from Pi to Pj . Our protocol transmits this message
inside deniable encryption, which in turn consists of messages a1i,j , a2j,i, and a3i,j . To compute these
messages, party Pi uses its sender randomness si,j,1, and party Pj uses its receiver randomness ri,j,1.

4.2 Proof of the Theorem

Correctness. Correctness of the protocol immediately follows from correctness of the underlying aMPC
protocol and correctness of deniable encryption DE.

Incoercibility. We define a simulator which can simulate communication and internal states of all parties,
given inputs and outputs only, but without knowing whether these inputs are real or fake.

We can assume that the simulator knows the output y before the protocol starts, due to the following
standard transformation, where parties additionally choose OTP keys ki and use it to mask the output:
f ′((x1, k1), x2, k2) = f(x1, x2)⊕ k1||f(x1, x2)⊕ k2. Due to this transformation, the simulator can always
choose output z of parties uniformly at random, and once the first coercion occurs and the true output y

13Note that our CRS is global (recall that the notion of deniability or incoercibility only makes sense in the global CRS model).

21



4-round incoercible MPC protocol iMPC:
The CRS: CRS = (CRSDE,CRSaMPC), where CRSDE is a CRS of deniable encryption, and CRSaMPC is a
CRS of adaptively secure MPC protocol.
Inputs: inputs x1, . . . , xn of parties P1, . . . , Pn, respectively;
Randomness: each party Pi generates the following random values:

1. si,j,1, ri,j,1, j 6= i, which is sender and receiver randomness of DE, used to send and receive aMPC
messages of round 1;

2. si,j,2, ri,j,2, j 6= i, which is sender and receiver randomness of DE, used to send and receive aMPC
messages of round 2;

3. saMPC,i, which is randomness of party Pi in the underlying aMPC protocol.
In addition, party P1 chooses at random:

1. seed, which will be used by parties to generate coins of the simulator rSim and fake seed′;
2. s1,j,3, j 6= 1, which is sender randomness of DE used to send seed;

Finally, parties Pi, i 6= 1 generate r1,i,3, which is receiver randomness of DE, used to receive seed.
We denote all randomness generated by each party Pi by si.
The protocol:

1. Round 1: Each party Pi sends to each other party Pj , j 6= i, the following:
a1i,j = DE.msg1(CRSDE; si,j,1).

2. Round 2: Each party Pi sends to each other party Pj , j 6= i, the following:
• a2i,j = DE.msg2(CRSDE; ri,j,1, a1j,i).
• b1i,j = DE.msg1(CRSDE; si,j,2).

In addition, P1 sends to each other party Pj , j 6= 1, the following:
• c11,j = DE.msg1(CRSDE; s1,j,3).

3. Round 3: Each party Pi for each j 6= i computes {M1i,1, . . . ,M1i,n} ←
aMPC.msg1(CRSaMPC;xi; saMPC,i), and sends the following:
• a3i,j = DE.msg3(CRSDE; si,j,1,M1i,j , a1i,j , a2j,i).
• b2i,j = DE.msg2(CRSDE; ri,j,2, b1j,i).

In addition, each party Pi except P1 sends to P1 the following:
• c2i,1 = DE.msg2(CRSDE; r1,i,3, c11,i).

4. Round 4: Each party Pi, for each j 6= i, computes M1j,i ←
DE.Dec(CRSDE; rj,i,1, a1j,i, a2i,j , a3j,i). Next for each j 6= i it computes {M2i,1, . . . ,M2i,n} ←
aMPC.msg2(CRSaMPC;xi,M11,i, . . . ,M1n,i; saMPC,i), and sends the following:
• b3i,j = DE.msg3(CRSDE; si,j,2,M2i,j , b1i,j , b2j,i).

In addition, P1 sends to each other party Pj , j 6= 1, the following:
• c31,j = DE.msg3(CRSDE; s1,j,3, seed, c11,j , c2j,1).

5. Evaluation: Each party Pi, for each j 6= i, computes M2j,i ←
DE.Dec(CRSDE; rj,i,2, b1j,i, b2i,j , b3j,i). Next for each j 6= i it computes y ←
aMPC.Eval(CRSaMPC;xi,M11,i, . . . ,M1n,i,M21,i, . . . ,M2n,i; saMPC,i). It sets y to be its
output in the protocol.

By π = iMPC(CRS, (x1, s1), . . . , (xn, sn)) = ({a1i,j , a2i,j , a3i,j}i 6=j , {b1i,j , b2i,j , b3i,j}i 6=j ,
{c11,j , c2j,1, c31,j}j 6=1) we denote the transcript of our protocol.
By σ = aMPC(CRSaMPC, (x1, saMPC,1), . . . , (xn, saMPC,n)) = ({M1i,j ,M2i,j}i 6=j) we denote the tran-
script of underlying adaptive MPC protocol aMPC.

Figure 6: 4-round incoercible MPC protocol.
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Faking procedure of party Pi, i = 1, . . . , n
Inputs: Pi’s true input xi, fake input x′i, true output y, real random coins si, and the protocol transcript π.

1. learning the seed: P1 knows the seed seed (which it generated). For i 6= 1, Pi computes
seed← DE.Dec(CRSDE; r1,i,3, c11,i, c2i,1, c31,i).

2. expanding the seed: Pi computes prg(seed) and parses the result as rSim||seed′, where |seed| =
|seed′|.

3. computing fake transcript: Pi computes the fake transcript and state (σ′, state) ←
aMPC.Sim(CRSaMPC, y, rSim) of the underlying 2-round MPC protocol. Let σ′ =

(
{
M1′i,j ,M2′i,j

}
i 6=j

).

4. computing fake coins of the underlying MPC: Pi computes the fake coins s′aMPC,i ←
aMPC.Simi(CRSaMPC, state, x

′
i, y) of the underlying MPC protocol, using the local simulator.

5. computing fake coins of deniable encryption: Pi computes the fake coins for each instance of
deniable encryption as follows:
s′i,j,1 ← DE.SFake(CRSDE, si,j,1,M1i,j ,M1′i,j , a1i,j , a2j,i, a3i,j ; ·), to claim that it sent M1′i,j in-
stead of M1i,j ;
s′i,j,2 ← DE.SFake(CRSDE, si,j,2,M2i,j ,M2′i,j , b1i,j , b2j,i, b3i,j ; ·), to claim that it sentM2′i,j instead
of M2i,j ;
r′i,j,1 ← DE.RFake(CRSDE, ri,j,1,M1j,i,M1′j,i, a1j,i, a2i,j , a3j,i; ·), to claim that it received M1′j,i
instead of M1j,i;
r′i,j,2 ← DE.RFake(CRSDE, ri,j,2,M2j,i,M2′j,i, b1j,i, b2i,j , b3j,i; ·), to claim that it received M2′j,i
instead of M2j,i.
Further, if i = 1, then for each j 6= 1 the party computes:
s′1,j,3 ← DE.SFake(CRSDE, s1,j,3, seed, seed

′, c11,j , c2j,1, c31,j ; ·), to claim that it sent seed′ instead
of seed.
If i 6= 1, then Pi computes
r′1,i,3 ← DE.RFake(CRSDE, r1,i,3, seed, seed

′, c11,i, c2i,1, c31,i; ·), to claim that it received seed′ in-
stead of seed.

The output of the faking procedure: Finally, Pi gives the adversary its fake internal state s′i, where:

• If i 6= 1, s′i =
{
s′i,j,1

}
j 6=i

,
{
r′i,j,1

}
j 6=i

,
{
s′i,j,2

}
j 6=i

,
{
r′i,j,2

}
j 6=i

,
{
r′1,i,3

}
, s′aMPC,i.

• If i = 1, s′i =
{
s′i,j,1

}
j 6=i

,
{
r′i,j,1

}
j 6=i

,
{
s′i,j,2

}
j 6=i

,
{
r′i,j,2

}
j 6=i

,
{
s′1,j,3

}
j 6=1

, s′aMPC,i, seed
′.

(Note that all other information which Pi should know in the honest execution, e.g. seed′ or M1′i,j , can be
derived by the adversary using random coins s′i, input x′i, the transcript π, and the CRS.)

Figure 7: Faking procedure of party Pi, i = 1, . . . , n
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Simulation of communication
Inputs given to simulate the communication: CRS; output of the protocol y

1. computing simulated transcript: the simulator chooses rSim at random and computes the simulated
transcript and state (σ′, state)← aMPC.Sim(CRSaMPC, y, rSim) of the underlying MPC protocol. Let
σ′ = (

{
M1′i,j ,M2′i,j

}
i 6=j

).

2. computing messages of π: the simulator chooses seed′ at random. It also chooses
{si,j,1}j 6=i , {ri,j,1}j 6=i , {si,j,2}j 6=i , {ri,j,2}j 6=i , {r1,j,3}j 6=1 , {s1,j,3}j 6=1 uniformly at random, and
uses these randomness to compute messages of deniable encryption, ({a1i,j , a2i,j , a3i,j}i 6=j ,

{b1i,j , b2i,j , b3i,j}i 6=j , {c11,j , c2j,1, c31,j}j 6=1), encrypting M1′i,j , M2′i,j , seed
′, respectively.

3. the output of the simulator: The simulator outputs the simulated communication
π′ = ({a1i,j , a2i,j , a3i,j}i 6=j , {b1i,j , b2i,j , b3i,j}i 6=j , {c11,j , c2j,1, c31,j}j 6=1).

Simulation of coercion of Pi

Inputs additionally given to simulate the coercion of the party Pi: Pi’s input x′i (without the information
whether this input is real or fake)

1. computing fake coins of the underlying MPC: the simulator computes the fake coins s′aMPC,i ←
aMPC.Simi(CRSaMPC, state, x

′
i, y; ·) of the underlying MPC protocol, using the local simulator.

2. The output of the simulator: The simulator gives the adversary simulated internal state s′i of Pi,
where:
• If i 6= 1, s′i = {si,j,1}j 6=i , {ri,j,1}j 6=i , {si,j,2}j 6=i , {ri,j,2}j 6=i , {r1,i,3}, s

′
aMPC,i.

• If i = 1, s′i = {si,j,1}j 6=i , {ri,j,1}j 6=i , {si,j,2}j 6=i , {ri,j,2}j 6=i , {s1,j,3}j 6=1, s′aMPC,i, seed
′.

(Note that all other information which Pi should know in the honest execution, e.g. seed′ or M1′i,j ,
can be derived by the adversary using random coins s′i, input x′i, the transcript π′, and the CRS.)

Figure 8: Simulation

becomes known, set the corresponding ki to be z ⊕ (y||y). From now on we assume that the simulator knows
the output y ahead of time.

Simulation. The simulator is formally described on fig. 8. Informally, the simulator uses the underlying
simulator of aMPC to simulate communication between parties, σ′. It then encrypts messages of σ′ under
deniable encryption. It encrypts randomly chosen seed′ under deniable encryption as well. This concludes
the description of simulation of communication.

Upon coercion of a party, given an input x′i (without knowing whether xi is real or fake), the simulator
computes fake random coins of aMPC by running the local simulator aMPC.Simi on input x′i. These are the
only coins which are faked by the simulator; the simulator reveals true values of seed′ and all randomness of
DE.

Let x1, . . . , xn and x′1, . . . , x
′
n be some inputs to the protocol, and let y be some output. Consider the

following distributions:

• HybReal: this is the distribution corresponding to the real execution of the protocol with inputs
x′1, . . . , x

′
n, where parties disclose their true inputs and randomness.

• HybFake: this is the distribution corresponding to the real execution of the protocol with inputs
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x1, . . . , xn, where parties disclose fake inputs x′1, . . . , x
′
n, output y, and fake randomness.

• HybSim: this is the distribution corresponding to the simulation from figure 8, where the simulator is
given output y and claimed inputs x′1, . . . , x

′
n.

We need to show the following:

1. If x′1, . . . , x
′
n and y are consistent (i.e. f(x′1, . . . , x

′
n) = y), then we need to show that HybSim ≈

HybReal and HybSim ≈ HybFake.

2. If x′1, . . . , x
′
n and y are not consistent, then we need to show that HybSim ≈ HybFake.

We show this below. First, we show indistinguishability between HybSim ≈ HybFake, for any values
x1, . . . , xn, x′1, . . . , x

′
n, and y:

• HybFake. We start with the distribution corresponding to the real-world execution of the protocol, where
parties fake their random coins upon coercion. In other words, the adversary sees CRS, π, and x′i, s

′
i

for each i, generated as in fig. 6, 7. In particular, the truly sent transcript σ of the underlying MPC is a
transcript on inputs xi; however, parties claim that they instead sent (simulated) transcript σ′, which
appears consistent with fake inputs x′i.

• Hyb1. In this hybrid P1 sends seed′ instead of seed inside {c11,j , c2j,1, c31,j}j 6=1, and parties (both
senders and receivers) give the adversary true randomness for this deniable encryption (instead of
faking it to seed′). Indistinguishability between this and the previous distribution holds by n − 1
invocations of bideniability of encryption for plaintexts seed and seed′.

• Hyb2. In this hybrid we switch rSim||seed′ from prg(seed) to uniformly random. Indistinguishability
holds by security of a prg. Note that seed is not used anywhere else in the distribution, thus the
reduction is possible.

• HybSim. In this hybrid we set {a1i,j , a2i,j , a3i,j}i 6=j to encrypt 1-round messages of simulated σ′

(consistent with fake x′i), instead of encrypting 1-round messages of real transcript σ (consistent with
xi). Also, all parties give true randomness {si,j,1}j 6=i , {ri,j,1}j 6=i, instead of giving fake randomness
consistent with σ′.

Similarly, we change {b1i,j , b2i,j , b3i,j}i 6=j to encrypt 1-round messages of simulated σ′ (consistent
with fake x′i), instead of encrypting 1-round messages of real transcript σ (consistent with xi). Also,
all parties give true randomness {si,j,2}j 6=i , {ri,j,2}j 6=i, instead of giving fake randomness consistent
with σ′.

Indistinguishability between this and the previous distribution holds by 2n(n − 1) invocations of
bideniability of encryption, where plaintexts are messages of σ and σ′.

Note that this is the simulated distribution.

Further, for the case when f(x′1, . . . , x
′
n) = y, in one last step we show that HybSim ≈ HybReal:

• HybReal. Compared to HybSim, we switch the messages of aMPC, encrypted inside deniable encryption,
from simulated σ′ to real σ, which is the true transcript of aMPC on inputs x′i. In addition, parties
reveal their true randomness saMPC,i instead of computing simulated s′aMPC,i consistent with x′i using
the local simulator aMPC.Simi.

25



Indistinguishability between this and the simulation follows from adaptive security of aMPC. Note
that indeed rSim, randomness of the simulator, is not used anywhere else in the distribution.

This distribution corresponds to the real execution of the protocol on inputs x′i, where parties disclose
their true randomness upon being coerced.

This concludes the security proof.

5 Incoercible MPC with Lazy Parties is Impossible

In this section we describe our impossibility result for incoercible MPC protocols with a certain communica-
tion pattern. We consider the synchronous model of communication, where parties send their messages in
rounds. We call a party lazy, if it sends its messages only in the first and in the last round of the protocol, but
not in any other round14. We show that a protocol for 3 or more parties cannot be incoercible, as long as there
is at least one lazy party Z, and there is another party (different from Z) which receives the output.

In particular, this impossibility rules out protocols with the following communication structure, which is a
natural extention of a “ping-pong” communication of 3-message 2PC to a multiparty setting: assume just
one party receives the output; we call this party the receiver, and call all other parties the senders. Then the
communication proceeds as follows:

• In round 1 the senders send out their messages to everybody;

• In round 2 the receiver sends its messages to the senders;

• In round 3 the senders send out their messages to everybody15.

Our impossibility is based on the fact that in an incoercible protocol with lazy party Z it is possible to do a
variation of a residual function attack, similar to impossibility of standard (non-incoercible) non-interactive
MPC. Concretely, we show that security against coercion of a lazy party Z implies that Z can always pick an
input x′ different from its real input x and generate a different last message of the protocol corresponding to
new input x′, such that the resulting transcript will be a valid transcript for this new input x′, as if Z used
x′ even in the first message (despite the fact that in reality its first message was generated using x). As a
result, the adversary may corrupt Z together with some output-receiving party and evaluate the function on
any possible input of Z, thus compromising security of other parties.

Theorem 7 Let n ≥ 3, and assume there exists an n-party protocol for evaluating function f(x1, . . . , xn),
such that P1 is lazy and Pn receives the output. Further, assume it is secure against coercion of P1, and
against corruption of P1 and Pn. Then the function f is such that for any inputs x1, . . . , xn it is possible,
given x1, xn, and f(x1, . . . , xn), to compute f(x, x2, . . . , xn) in polynomial time for any x of the same
length as x1.

Note that, while the theorem statement also holds for the case of 2 parties, it doesn’t imply any impossibility
since for any 2-input function f it is always possible to compute f(·, x2) given x1, x2, and thus the theorem
doesn’t impose any restrictions on functions f which can be computed incoercibly using 2-party protocols.

14In particular, when the protocol requires only 2 rounds, each party is lazy by definition.
15Note that in standard, non-deniable MPC the last message doesn’t need to be sent to parties who don’t receive the output.

However, in deniable MPC parties who don’t get the output may still need the last message in order to fake.
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Algorithm NewMessage
NewMessage(x1, r1, x

′
1, α, com; ρ)

Inputs: input x1 and randomness r1 of P1 in the MPC protocol; new desired input x′1; communication of P1

in round 1 α, communication of all other parties com; local random coins ρ = ρ1||ρ2.
Constants: arbitrary fixed input X0 of length |X|, e.g. all-zero input X0 = 0|X|.
• Compute c̃om = com(α;X0; ρ1).
• Compute r′1 ← Fake1(r1, x1, x

′
1, c̃om; ρ2).

• Output β′ = NMFN (x′1, comN−1; r
′
1).

Figure 9: Algorithm NewMessage to generate the last message consistent with a different x′1.

Proof of theorem 7. Without loss of generality we assume that the lazy party is P1, and party which
receives the output is Pn. Further, we assume that P1 is the first to send its messages in round 1, and the last
to send its messages in round N .

Let us denote the randomness of P1 by r1, the concatenated randomness of all other parties by R =
r2|| . . . ||rn, the input of P1 by x1, the concatenated input of all other parties byX = x2|| . . . ||xn. In addition,
let X0 denote some fixed set of inputs such that |X| = |X0|, e.g. all-zero inputs 0|X|. Let NMFi denote the
next message function of the protocol for party 1 in round i. Let Eval(xn; transcript; rn) denote the output
evaluation function of party Pn which takes as input its randomness rn, input xn, and all communication
in the protocol. Let α = NMF1(x1; r1) denote the concatenated messages sent by P1 to all other parties in
round 1, com = com(α;X;R) denote the concatenated messages sent by parties P2, . . . , Pn in all rounds,
comN−1 denote com except for messages of the last round, and β = NMFN (x1, comN−1; r1) denote the
concatenated messages sent by P1 to all other parties in round N . Finally, let Fake1(r1, x1, x′1, com; ρ)
denote the faking algorithm of party P1, which takes as input its true coins and input r1, x1, desired fake
input x′1, and com, all communication sent to P1. Fake1 could be deterministic or randomized; without loss
of generality we assume that it is randomized using its own random coins ρ.

Consider the following algorithm NewMessage (fig. 9) which for any x′1 allows P1 to generate a different
β′ such that (α, com, β′) is a valid transcript resulting in the output f(x′1, X). The intuition behind this
procedure is as follows: First, P1 computes a transcript which starts with the same α but continues with a
different c̃om (computed under freshly chosen randomness of other parties and fixed inputs X0). Next, it
runs its faking algorithm to generate fake coins r′1 which make this transcript look consistent with x′1 (in
particular, this makes r′1, x

′
1 look like valid coins and input for α, even though α was generated under x1).

Finally, it uses fake r′1 to generate its last message β′ using the original communication com and new input
x′1. In the following lemma 1 we claim that β′, together with the original communication (α, com), forms a
valid transcript for inputs x1, X which will be evaluated correctly by the output-receiving party:

Lemma 1 Let α, com, β′ be generated as described above, and let the protocol be secure against the coercion
of P1. Then for any f, x1, X, x′1, with overwhelming probability over the choice of r1, R, ρ it holds that
Eval(xn;α, com, β′; rn) = f(x′1, X).

Proof of lemma 1. This statement follows from the correctness of the protocol and its security against
a coercion of P1. Indeed, consider the adversary who tries to distinguish whether it sees the transcript
corresponding to inputs x1, X0, and fake randomness of P1 for input x′1, or the transcript of the protocol on
inputs x′1, X

0 with the true randomness of P1. More formally:
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• In the first case, the adversary receives (α, c̃om, β̃) and r′1, where r1, ρ1, ρ2 are uniformly cho-
sen, α ← NMF1(x1; r1), c̃om ← com(α,X0; ρ1), β̃ = NMFN (x1, c̃omN−1; r1), and r′1 ←
Fake1(r1, x1, x

′
1, c̃om; ρ2). In other words, (α, c̃om, β̃) is a transcript of the protocol on inputs x1, X0

with randomness r1, ρ1, and r′1 is fake randomness for input x′1.

• In the second case, the adversary receives (α, c̃om, β̃) and r′1, where r′1, ρ1, ρ2 are uniformly cho-
sen, α ← NMF1(x

′
1; r
′
1), c̃om ← com(α,X0; ρ1), β̃ = NMFN (x′1, c̃omN−1; r

′
1). In other words,

(α, c̃om, β̃) is a transcript of the protocol on inputs x′1, X
0 with randomness r′1, ρ1.

Given one of the two distributions, the adversary proceeds as follows. It chooses randomnessR = r2|| . . . ||rn
(which is concatenated randomness for parties P2, . . . , Pn) and computes com = com(α;X;R). Next it
computes β′ = NMFN (x′1, comN−1; r

′
1). It then runs Eval(xn;α, com, β′; rn).

Note that in the second case (α, com, β′) is a transcript of the protocol on inputs x′1, X with uniformly
chosen random coins r′1, R, and therefore, by correctness, it holds that with overwhelming probability
Eval(xn;α, com, β′; rn) = f(x′1, X). By indistinguishability of the first and the second case, it should also
be true that in the first case Eval(xn;α, com, β′; rn) = f(x′1, X). Finally, note that in the first case the
resulting β′ is obtained exactly as in algorithm NewMessage, which concludes the proof of the lemma.

Now we finish the proof of the theorem 7. We claim that the adversary who corrupts P1 and Pn in the real
world can compute f(x, x2, . . . , xn) for any input x (of the same length as x1), where x1, . . . , xn are inputs
of the parties in the protocol. Indeed, the adversary can do so in two steps: first it corrupts P1 to learn r1
and x1 and runs β′ ← NewMessage(x1, r1, x, α, com; ρ) for any desired input x and random ρ (as before,
α, com is the communication of P1 in round 1 and of all other parties). Next it corrupts Pn to learn rn and
computes Eval(xn;α, com, β′; rn), which is with overwhelming probability equal to f(x, x2, . . . , xn), as
shown in the lemma 1. Note that in the ideal world the adversary who only corrupts P1 and Pn and learns
x1, xn, and f(x1, . . . , xn) cannot compute residual function f(·, x2, . . . , xn) (except for some functions f ),
and therefore the adversary in the real world has an advantage. This finishes the proof of the theorem 7.
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A Receiver-oblivious DE

In this appendix we briefly explain why the construction of [CPP20] is receiver-oblivious. In their construction,
the sender and the receiver exchange messages µ1, µ2, µ2, where µ1 and µ3 are sent by the sender and only µ2
is sent by the receiver. In their construction, parties never do any computation themselves; instead they only
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choose random coins and then run special obfuscated programs P1, P2, P3 to compute messages µ1, µ2, µ2,
respectively.

In particular, the message of the receiver µ2 is a result of applying an extracting PRF RG on randomness
r of the receiver and the first message µ1 in the protocol (again, computed using the obfuscated program);
using the fact that this PRF is a strong extractor, it is possible to change the output of the PRF to a uniformly
random value indistinguishably, even in a presence of a PRF key. More concretely, it can be shown that
(s, µ1, µ2, µ3) is indistinguishable from (s, µ1, u, µ3), where s is the true randomness of the sender, and u
is uniformly random string of size µ2; thus, even the sender cannot tell whether the second message of the
protocol is generated by the receiver honestly or obliviously.

Let us reduce this statement to security of strong extractor. Assume someone can distinguish between the
transcript with µ2 = RGkR(r, µ1) or random u, then we can win the strong extractor game as follows. We
choose the sender randomness s at random and try to guess what the plaintext m will be (since m is simply a
bit, the guess will succeed with one half probability). We compute µ1 = P1(s,m), and give µ1 as an input
to the challenger of the strong computational extractor game. The challenger chooses the key kR for the
extracting PRF RG, chooses random r and either gives us µ2 = RGkR(r, µ1) or uniformly random u, together
with the key kR. We can use these values to reconstruct the rest of the distribution, including the obfuscated
programs (note that r is not required anywhere else). Thus, if someone breaks receiver-obliviousness, then
our reduction can break the strong extractor property of the PRF.

B Input-Delayed Deniable Encryption

In this appendix we show how to transform any deniable encryption into its input-delayed version - i.e. an
encryption where only the last message depends on the plaintext.

Theorem 8 Any deniable encryption can be transformed to a deniable encryption with the same number of
rounds, where the plaintext should be determined only by the last round.

Proof. The idea is to transmit a one-time pad key k (instead of the plaintext m) using the deniable
encryption protocol, and in the last round also send k ⊕m in the clear. More formally, the sender should
pick random k, such that |k| = |m|, before the protocol starts, and use deniable encryption to transmit k;
in addition, during the last round the sender should also send c = k ⊕m in the clear. The receiver should
execute decryption procedure of deniable encryption to learn k, and then set its message to be k ⊕ c. Note
that in such a protocol m has to be determined only by the last round.

To fake the communication to a different plaintext m′, both the sender and the receiver should compute fake
k′ = c⊕m′, and then use the corresponding faking algorithm of deniable encryption in order to create fake
random coins of the sender/receiver, making the transcript consistent with k′.
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