
Round-Optimal and Communication-Efficient
Multiparty Computation

Michele Ciampi1, Rafail Ostrovsky2, Hendrik Waldner1, and Vassilis Zikas1

1 The University of Edinburgh, Edinburgh, UK
{mciampi,hendrik.waldner}@ed.ac.uk,vzikas@inf.ed.ac.uk

2 University of California, Los Angeles, CA, US
rafail@cs.ucla.edu

Abstract. Typical approaches for minimizing the round complexity of multi-party computation
(MPC) do so at the cost of increased communication complexity (CC) or reliance on setup assump-
tions. A notable exception is the recent work of Ananth et al. [TCC 2019], which used Functional
Encryption (FE) combiners to obtain a round optimal (two-round) semi-honest MPC in the plain
model with CC proportional to the depth and input-output length of the circuit being computed—we
refer to such protocols as circuit scalable. This leaves open the question of obtaining communication
efficient malicious security in the plain model which we answer in this work:
1) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols
into a circuit-scalable maliciously secure MPC in the plain model, assuming a (succinct) FE
combiner. By using our compiler with a round-optimal MPC, we derive the first round-optimal and
circuit-scalable maliciously secure MPC in the plain model.
2) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols
into a circuit-independent— i.e., with CC that depends only on the input-output length of the
circuit—maliciously secure MPC in the plain model, assuming Multi-Key Fully-Homomorphic
Encryption (MFHE). Again, by using this second compiler with a round-optimal MPC, we derive
the first round-optimal and circuit-independent maliciously secure MPC in the plain model. This is
the best to-date CC for a round-optimal malicious MPC protocol, which is even communication-
optimal when the output size of the function being evaluated is smaller than its input size (e.g., for
boolean functions).
Our compilers assume the existence of four-round maliciously secure oblivious transfer which can
be obtained from standard cryptographic assumptions.

1 Introduction . 1
1.1 Related Work . 2
1.2 Overview of our Results . 3

2 Technical overview . 4
3 Preliminaries . 10

3.1 Functional Encryption . 10
3.2 Decomposable Functional Encryption Combiner . 11
3.3 Multi Key Fully Homomorphic Encryption . 13
3.4 Symmetric Encryption, Authentication and Commitments . 14
3.5 Secure Multiparty Computation . 17
3.6 Privacy with Knowledge of Outputs . 19
3.7 k-Signaling MPC . 19

4 Our Compiler: Circuit-Scalable MPC . 23
5 Our Compiler: Circuit-Independent Efficient MPC . 35
6 From Privacy with Knowledge of Outputs to Standard Security 41

6.1 Informal Description . 42
6.2 Formal Description . 42

7 Individual Outputs for each party . 45
7.1 Informal Description . 45
7.2 Formal Description . 46

mailto:mciampi@ed.ac.uk,hendrik.waldner@ed.ac.uk,vzikas@inf.ed.ac.uk
mailto:rafail@cs.ucla.edu

1 Introduction

Secure multiparty computation (MPC) [Yao86, GMW87] allows different parties to jointly
evaluate any circuit over private inputs in such a way that each party learns the output
of the computation and nothing else. Many improvements in this area have led to better
protocols in terms of complexity assumptions and round complexity in the case of malicious
adversaries3 [GMW87,Kil88,IPS08,GMW87,BMR90,KOS03,KO04,Pas04,PW10,Wee10,Goy11].

Recently, the design of round-optimal MPC has attracted a lot of attention. Concretely, for
semi-honest adversaries, two rounds are necessary for secure MPC in the plain model (as any
one-round protocol is trivially broken). A lower bound was matched by [BL18,GS18], where
the authors present a two-round MPC protocol in the semi-honest model. Note that the above
lower bound holds even assuming a correlated-randomness setup. Similarly, [BL18,GS18] shows
that the same bound holds even for maliciously secure MPC, assuming a trusted correlated-
randomness setup. However, Garg et al. [GMPP16] proved that in the plain model four rounds
are necessary for maliciously secure MPC with a black-box simulator. This four-round lower-
bound was matched by several constructions for a range of common (polynomial) complexity
assumptions [CCG+19,BGJ+18,HHPV18]. Notwithstanding, a common drawback in all the
above constructions is that their communication complexity is proportional to the size (of the
description) of the circuit being evaluated. So the main question remains:

Is there a round-optimal MPC protocol in the plain model from standard complexity
assumptions which is also circuit-scalable, i.e., has communication complexity that depends only
the depth of the circuit being evaluated and its input and output length (and of course the
security parameter)?

Note that assuming correlated randomness, the above question has been answered to the
affirmative for malicious security by Quach et al. [QWW18], who proved that under the learning
with errors assumption (LWE) it is possible to design a two-round circuit-scalable MPC protocol
using a correlated-randomness setup. Moreover, the work of Morgan et al. [MPP20] shows that
it is possible to construct a circuit-independent4 2-party computation protocol in which only
one party gets the output relying on LWE only.5 A first step into answering the above question
in the plain model was taken for semi-honest adversaries in [ABJ+19,QWW18]. Interesting,
and most related to our results, Ananth et al. [ABJ+19] achieved its round-optimal (two-round)
and scalable solution by leveraging a connection between round-optimal semi-honest MPC and
functional encryption combiners. However, their two-round construction does not work in the
malicious setting, where, as already mentioned, four-rounds are necessary. This left the following
important question open:

Is there a round-optimal and circuit-scalable maliciously secure MPC protocol in the
plain model from standard (polynomial) complexity assumptions?

As the first of our two main contributions, we answer the above question to the affirmative,
by extending the investigation of the relation between FE combiners and MPC to the malicious
setting. This completing the landscape of circuit-scalable and round optimal MPC in the plain

3 A malicious adversary attacks the protocol following an arbitrary probabilistic polynomial-time strategy. Unless
stated differently, when we talk about the security of an MPC protocol against semi-honest or malicious
adversaries we assume that up to n− 1 parties can be corrupted, where n is the number of parties.

4 We stress that in our work the size of the circuit is always related via a polynomial p to the security parameter.
We use the term circuit-independent for MPC protocols whose communication complexity depend on the
security paramenters, the size of the input and the output, and does not depends on p. The same argument
holds for circuit-scalable MPC protocols.

5 The protocol proposed in [MPP20] does not assume broadcast, hence they obtain the best possible security
guarantees in such a model.

1

model. More concretely, we provide a round-preserving black-box compiler that compiles a wide
class of MPC protocols into a circuit-scalable protocol assuming any succinct FE combiner
(see below). Note that such FE combiners are known to exist based on the learning with
errors assumption. We next investigate whether our result can be strengthened to achieve
circuit-independent MPC:

Is there a round-optimal and circuit-independent maliciously secure MPC protocol in
the plain model from standard (polynomial) complexity assumptions?

Although the connection between MPC and FE does not seem to help here, we still answer
also the above question to the affirmative. Concretely, we propose a round-preserving black-
box compiler that compiles a wide class of MPC protocols into a circuit-independent protocol
assuming the existence of any compact Multi-Key Fully-Homomorphic Encryption (MFHE)
scheme that enjoys perfect correctness. Informally, the compactness property, here, requires that
the size of the cipthertexts and the size of the description of the encryption and decryption
algorithms depends only on the input-output size of the function being computed.

For the special case of constant parties, the MFHE scheme required for our compiler
exists based on perfect correct FHE [LTV12], which in turn can be instantiated from the
LWE assumption [BGV12]. Hence our result yields the first circuit-independent round-optimal
malicious MPC in the plain model for a constant number of parties—in particular the first
such 2-PC—based on standard polynomial-time assumptions. For the case of arbitrary many
parties, to our knowledge, such compact MFHE is only known to exist based on the Ring-LWE
and the Decisional Small Polynomial Ratio (DSPR) assumption [LTV12]. Hence, under these
assumptions, we obtain a circuit-independent round-optimal MPC protocol, as above, for arbitrary
many parties. Deriving compact MFHE—and hence also a circuit-independent round-optimal
MPC—from standard polynomial-time assumptions is an interesting open problem.

1.1 Related Work

Functional encryption (FE) [SW05, BSW11, O’N10] is a primitive that enables fine-grained
access control of encrypted data. In more detail, a FE scheme is equipped with a key generation
algorithm that allows the owner of a master secret key to generate a secret key skf associated
with a circuit f . Using such a secret key skf for the decryption of a ciphertext ct← Enc(msk, x)
yields only f(x). In other terms, the security of a functional encryption scheme guarantees that
no other information except for f(x) is leaked. A functional encryption combiner allows for the
combination of many FE candidates in such a way that the resulting FE protocol is secure as
long as any one of the initial FE candidates is secure. Ananth et al. [ABJ+19] show how to
construct an FE combiner, based on the learning with errors (LWE) assumption, that enjoys the
property of succinctness and decomposability (we elaborate more on the latter property in the
next section). The property of succinctness states that 1) the length of each secret key is related
to the depth and the length of the output of the circuit being evaluated and 2) the encryption
complexity is proportional to the depth of the circuit being evaluated and to the length of the
message being encrypted.

Given such a succinct FE combiner and an `-round semi-honest MPC (not necessarily
communication efficient), Ananth et al. show how to obtain an `-round circuit-scalable MPC
protocol that is secure against semi-honest adversaries. Given that such a combiner —as well as a
round optimal semi-honest MPC— can be constructed from LWE, this result can be instantiated
from the LWE assumption.

2

In [AJJM20] the authors also explore the relation between MFHE and MPC and, among
other results, the authors show how to obtain a circuit-independent MPC protocol that is secure
against semi-malicious adversary assuming Ring LWE, DSPR and 2-round OT6.

1.2 Overview of our Results

From FE combiners to circuit-scalable MPC. In this work we provide two main results,
we start by describing the first which is a round optimal MPC protocol that 1) is secure against
malicious adversaries 2) tolerates arbitrary many parties, 3) is secure under standard polynomial
time assumptions and 4) is circuit-scalable, i.e., has communication complexity proportional to
the depth of the circuit and the length of the input and output of the circuit being evaluated.7
We do so by extending the study of the connection between functional encryption combiners
and secure MPC to the malicious setting. In summary, we prove the following theorem.

Theorem 1 (informal). If there exists an `-round MPC protocol Π8 that is secure against
malicious adversaries and a succinct FE combiner, then there exists an `-round MPC protocol
Π ′ that is secure against malicious adversaries whose communication efficiency depends only
on the security parameter, the depth, the input length and the output length of the circuit being
evaluated, and that makes black-box use of Π.

Our compiler requires the input protocol Π to be k-Signaling. Informally, in a k-Signaling
MPC protocol each party has a private and a public input. The private inputs of the honest
parties are protected in the standard way, whereas the public input can be chosen (and signaled
to the honest parties) by the adversary in the round k − 1 of Π (this implies that the first k − 1
rounds of Π are independent from the inputs).

We further show how to turn any MPC protocol that does not require the input to compute
its first k − 1 rounds into a k-Signaling MPC protocol (more details on this new notion are
provided in the next section). This notion of k-Signaling MPC might be of independent interest.
Finally, we observe that the 4-round protocols proposed in [BGJ+18,CCG+19] can be turned
into k-Signaling MPC protocols, which in turn implies that we can obtain a communication
efficient round optimal MPC protocol from the LWE assumption in combination with any of the
assumptions DDH, QR, Nth Residuosity, or existence of malicious-secure OT. This allows us to
prove the following corollary.

Corollary 1 (informal). If the LWE assumption holds and any of the assumptions DDH,
QR, Nth Residuosity hold, or malicious-secure OT exists, then there exists a round optimal MPC
protocol that is secure against malicious adversaries whose communication efficiency depends
only on the security parameter, the depth, the input length and the output length of the circuit
being evaluated.

From MFHE to circuit-independent MPC. For the second contribution we show how to
combine an MPC protocol with a perfect correct, compact MFHE scheme to obtain a circuit-
independent MPC protocol. The notion of MFHE extends the notion of Fully-Homomorphic
Encryption (FHE) to the multi-party setting by allowing each party to generate a public-secret
key pair. All the ciphertexts generated using the public keys of the MFHE scheme can be
homomorphically combined thus obtaining a single ciphertext, which can be decrypted only
using all the secret keys.

6 We recall that a semi-malicious adversary behaves like a semi-honest adversary with the exception that he
decides the randomness and the input used to run the protocol.

7 All our result are with respect to black-box simulation.
8 We require an additional, non-standard property on the protocol Π that we discuss later.

3

The output of our compiler is a circuit-independent round optimal MPC protocol that
tolerates min{n0, n1} parties where n0 and n1 is the number of parties tollerated by the input
MPC protocol and the MFHE scheme respectively.

Our second contribution can be summarized as follows.
Theorem 2 (informal). If there exists an `-round MPC protocol Π9 that is secure against

malicious adversaries which tolerates n0 number of parties and a perfect correct, compact MFHE
scheme that tolerates n1 number of parties, then there exists an `-round MPC protocol Π ′ that is
secure against malicious adversaries whose communication efficiency depends (polynomially) only
on the security parameter, the input length and the output length of the circuit being evaluated,
and that makes black-box use of Π and tolerates min{n0, n1} number of parties.

Additionally, it is possible to improve the above result obtaining a protocol whose commu-
nication complexity depends only linearly to the input length (an polynomially to the output
length and the security parameter), by relying on pseudorandom generators (PRG). Hence, we
obtain an MPC protocol that is optimal in terms of round and communication complexity for
all the functions whose input-size is bigger than the output-size (e.g, boolean functions).

Given that a MFHE scheme for constant number of parties can be instantiated from LWE and
that a scheme for arbitrary many parties can be instantiated from Ring-LWE and DSPR [LTV12]
we obtain the following additional corollary.

Corollary 2 (informal). If the LWE (resp. Ring LWE and DSPR) assumption holds and any
of the assumptions DDH, QR, Nth Residuosity hold, or malicious-secure OT exists, then there
exists a round optimal circuit-independent MPC protocol for a constant (arbitrarily) number of
parties that is secure against malicious adversaries.

For completeness we have included a comprehensive comparison of our results with existing
round-optimal MPC protocols proven secure in the plain-model, under standard polynomial-time
complexity assumptions in Table 1.

2 Technical overview

In this section we give an overview of our two compilers.

From FE combiners to circuit-scalable MPC. Our starting point is the compiler proposed
in [ABJ+19]. The main building blocks of this compiler are an `-round semi-honest secure MPC
protocol and a succinct decomposable FE combiner. The property of decomposability requires
the functional key for f to be of the form (skf1 , . . . , skfn), and the master secret key needs to be
(msk1, . . . ,mskn), where ski and mski are the secret key and master secret key produced by the
i-th FE candidate respectively.

The construction proposed in [ABJ+19] is very intuitive, and roughly works as follows. The
MPC protocol computes the function g which takes n inputs, one for each party Pi with i ∈ [n].
The input of each party consists of a master secret key mski, a value xi and a randomness ri.
The function g uses the n master secret keys to compute an encryption of x1, . . . , xn using the
randomness r1, . . . , rn. Let xi be the input of the party Pi with i ∈ [n]. Each party Pi samples a
master secret key mski for the FE combiner, a random string ri and runs the MPC protocol Π
using (mski, xi, ri) as an input. In parallel, Pi computes the secret key skfi and sends it to all the
parties (we recall that skfi can be computed by party Pi due to the decomposability property of
the FE combiner). Let ct be the output of Π received by Pi, and let (skf1 , . . . , sk

f
i−1, sk

f
i+1, . . . , skfn)

be the keys received from all the other parties, then Pi runs the decryption algorithm of the
9 Also in this case we require Π to be k-signaling.

4

Communication
Complexity Assumptions Adversarial

Model Rounds

[ABJ+19,QWW18] poly(λ, n, d, Lin, Lout) LWE Semi-honest 2
[BL18,GS18] poly(λ, n, |f |) Semi-honest OT Semi-honest 2

[DHRW16] poly(λ, n, d, Lin, Lout)
piO and
lossy encryption Semi-honest 2

[GS17] poly(λ, n, |f |) Bilinear Maps Semi-honest 2
[HHPV18] poly(λ, n, |f |) QR Malicious 4

[BGJ+18] poly(λ, n, |f |) DDH/QR/
Nth Residuosity Malicious 4

[CCG+19] poly(λ, n, |f |) Malicious 4-round OT Malicious 4

[AJJM20] poly(λ, n, Lin, Lout)
Ring LWE and
DSPR and
2-round OT

Semi-malicious 2

This work poly(λ, n, d, Lin, Lout)
LWE and
malicious 4-round OT Malicious 4

This work? poly(λ, n, Lin, Lout)
LWE and
malicious 4-round OT Malicious 4

This work poly(λ, n, Lin, Lout)
Ring LWE and
DSPR and
malicious 4-round OT

Malicious 4

Table 1: Communication complexity of two-round semi-honest secure and four-round maliciously secure n-party
protocols in the all-but-one corruption model, with black-box simulation, based on polynomial-time assumptions.
We denote by |f | and d the size and depth of the circuit representing the MPC functionality f , respectively.
Lin and Lout denote, respectively, the input and output lengths of the circuit and piO stands for probabilistic
indistinguishability obfuscation. We recall that we can replace 4-round maliciously secure OT with either DDH,
QR, Nth Residuosity. ?Constant number of parties only.

FE combiner on input (skf1 , . . . , skfn) and ct thus obtaining f(x1, . . . , xn). Given that the MPC
protocol computes a function g whose complexity is poly(λ, d, Lin) and the size of each one
of the secret keys sent on the channel is poly(λ, d, Lout) the final protocol has communication
complexity poly(λ, n, d, Lin, Lout), where λ is the security parameter, d is the depth of f , Lin is
the length of the input of f and Lout is the output length of f (we recall that this is due to the
succinctness of the FE combiner). Starting from the above approach, we now show how to obtain
a circuit-scalable MPC protocol in the case of malicious adversaries (other than semi-honest) in
the plain model. As a first approach one can try to simply replace the semi-honest MPC protocol
with a maliciously secure one. Unfortunately, this does not work as a corrupted party P ?j might
create an ill formed master secret key mskj (i.e., mskj is not generated accordingly to the setup
procedure of the j-th FE candidate) and sample rj according to an arbitrary strategy. However,
we note that the second problem is straightforward to solve as we can modify the function g
evaluated by the MPC protocol Π in such a way that it uses the randomness r1 ⊕ · · · ⊕ rn to
compute the encryption ct (we note that in this case each party needs to sample a longer ri
compared to the semi-honest protocol described earlier).

To solve the first problem, we follow a similar approach. Each party Pi inputs an additional
random value rSetup

i to the MPC protocol and the function g is modified such that it generates
the master secret keys using the randomness R = rSetup

1 ⊕ · · · ⊕ rSetup
n and outputs to the party

5

Pi the ciphertext ct.10 Unfortunately, this approach is not round preserving, as the knowledge
of the master secret key mski, which becomes available only in the end of the execution of Π,
is required to generate the secret key skfi . Hence, if Π requires `-rounds, our final protocol
would consist of ` + 1 rounds as each party Pi needs to send its functional secret key skfi in
the (`+ 1)-th round. Besides this, the described protocol is also still insecure, since a corrupted
party P ?j might generate an ill formed secret key skfj , that could decrypt ct incorrectly, yielding
an incorrect output for the honest parties. However, we can prove that this protocol protects the
inputs of the honest parties. That is, it is secure under a notion called privacy with knowledge of
outputs (PKO) [IKP10,PC12]. We now describe how to modify the above protocol in such a
way that the round complexity is kept down to `, while achieving privacy with knowledge of
outputs. In the next step, we show how to promote any protocol that realizes any functionality
with privacy with knowledge of outputs to a secure MPC protocol in a round preserving (and
communication efficient) way.

Round preserving construction: privacy with knowledge of outputs. For simplicity, we describe
our protocol considering only two parties P0 and P1 and consider as a building block an MPC
protocol Π which consists of (` = 4)-rounds only (which is optimal). The protocol then can be
trivially extended to the case of n-parties and an arbitrary ` ≥ 4 as we show in the technical
part of the paper.

For our construction we need the first two rounds of Π to be independent of the inputs
(i.e., the input is required only to compute the last two rounds in our simplified example).
Assuming that the parties have access to a simultaneous broadcast channel where every party
can simultaneously broadcast a message to all other parties, our compiler works as follows (we
refer to Fig. 1 for a pictorial representation). Each party Pi commits to two random strings in
the first round c0

i := com(r0
i ; ρ0

i) and c1
i := com(r1

i ; ρ1
i) and sends, in the second round, ri1−i to

P1−i.11 Then Pi uses the randomness Ri := ri0 ⊕ ri1 to generate a master secret key mski, and
uses it to compute the secret key skfi which it sends in the fourth round. In parallel, P0 and P1
execute the MPC protocol Π that evaluates the function g′. The function g′ takes the inputs
of each party, where the input corresponding to party Pi (for each i ∈ {0, 1}) is of the form(
xi, (r0

i ; ρ0
i , r

1
i ; ρ1

i , r
i
1−i, ri,), (c0

1, c
1
1, c

0
2, c

1
2)
)
. In more detail, the input of each party Pi corresponds

to its actual input xi, all the commitments generated (by P0 and P1) in the first round, the
message ri1−i received in the second round from P1−i and the randomness used to generate
the commitments c0

i , c
1
i . The function g′ checks that 1) the commitments (c0

1, c
1
1, c

0
2, c

1
2) (that

are part of the inputs of the two parties) are the same, 2) the value r1−i
i sent in the second

round by the party Pi is committed in c1−i
i for each i ∈ {0, 1} and 3) the randomness used

to generate the commitments is correct. If all these checks are successful then g′ outputs a
ciphertext ct = Enc((mski)i∈{0,1}, (x0, x1); r0 ⊕ r1) for the FE combiner computed using the
randomness r0 ⊕ r1. Upon receiving the output of g′ (evaluated by Π), Pi computes the output
running the decryption algorithm of the FE combiner. Using this approach we guarantee that:
1) the ciphertext ct is computed honestly using honestly generated master secret keys and
randomnesses, 2) each party can compute its own master secret key already in the third round
so that a functional key can be generated and output in the last round and 3) the value ri1−i
that Pi receives in the second round corresponds to the value used in the commitment ci1−i
(hence, the master secret key that Pi obtains as part of the output of Π is consistent with the
master secret key he has created outside of Π). Unfortunately, we can only prove that the above
protocol preserves the privacy of the inputs of the honest parties, but the output computed by

10 R is parsed as n strings and each of the string is used to generate a different master secret key.
11 Note that only the committed message is sent, not the randomness ρ1−i

i .

6

the honest parties might still be incorrect. This is due to the fact that a corrupted party can
generate an ill formed secret key skfi and send it to the honest parties.

Full security. One way to solve this issue would be attaching a zero-knowledge proof to each
secret key skfi proving that skfi is generated correctly (and accordingly to the master secret key
generated by Π). It is easy to see that this would nullify our effort to construct a communication
efficient protocol as the size of the proof would depend on the complexity of the key-generation
algorithm of the FE combiner (that might depend on the size of the circuit f and not only on its
depth). We might need a succinct 4-round delayed-input zero-knowledge argument system that
can be securely composed in parallel with any MPC protocol.12 Unfortunately, we are not aware
of any protocols that enjoy such properties relying on standard assumptions. Luckily, the work
of Ishai et al. [IKP10] proposes a compiler to promote a protocol that is secure under the notion
of privacy with knowledge of outputs to a fully secure protocol (in the standard simulation based
sense). The compiler of [IKP10] relies on unforgeable signatures only (which in turn rely on
OWFs), and at a high level works as follows.

Each party generates a signing key and a verification key (vki, ski) for a signature scheme.
Then Pi runs Π ′ on input (vki, ski, xi) where xi represents the input of Pi. The output of the
MPC protocol consists of 1) the output of the function that the parties want to compute, denoted
as y, and 2) n signatures of y, one for each signing key. In parallel with Π ′, each party sends its
own verification key in the first round. A party Pi accepts y as a valid output if and only if all the
signatures output by Π ′ verify accordingly to the verification keys sent by all the parties in the
first round. For sake of completeness, in our work we show that the above compiler preserves the
round and the communication complexity of the input protocol Π ′. We note that this protocol
has the limitation that only functionalities with a single output can be computed (i.e., all the
parties get the same output). Indeed, to prove that the protocol is secure with unanimous abort13

it becomes crucial that every party sees the same y (and the same signatures).
To achieve any functionality from a single-output functionality, we consider the following

protocol Π ′′′ (a similar approach has been used in [LP09,AJW11]). In Π ′′′, each party Pi runs
Π ′′ on its actual input and a secret key for a symmetric-key encryption scheme. The output of
Π ′′ then contains a sequence of ciphertexts, where the i-th ciphertext contains the i-th output
of the functionality encrypted using the secret key chosen by the party Pi. Also in this case, we
will formally prove that the compiler preserves the round and the communication complexity of
the input protocol (Π ′′ in this case).

A note on MPC. We recall that for the construction of Π ′ (the protocol that provides privacy
but not correctness) we require the existence of an MPC protocol Π that uses the input of the
parties only to compute the last two rounds. This property is achieved by many existing MPC
protocols (e.g., [BGJ+18,BL18,CCG+19]). However, we note that to rely on the security of an
MPC protocol we need the input of the honest parties to be specified before the real (ideal)
world experiment starts. Therefore, the honest parties cannot choose an input that depends
on (for example) the first two messages of the protocol. More formally, the input of the honest
party cannot even be partially decided by the adversary. Contrary, in our construction we do
need that part of the input of the honest parties is adversarially decided. Indeed, we recall that
the input that each honest party provides to Π consists of its input, the randomness used to
generate some commitments and all the commitments that it has seen (even those generated by
the adversary). These commitments might be generated adaptively on the commitments received
from the honest party and on the first message of Π (since the adversary is rushing).
12 The delayed-input property guarantees that the zero-knowledge and the soundness property holds even in the

case where the adversary decides the statement in the last round.
13 The standard definition of secure MPC requires either all the honest parties to accept or to abort.

7

P0(x0)
x′0 ={x0, (r0

0, ρ
0
0, r

1
0, ρ

1
0, r

0
1, r0),

(c0
0, c

1
0, c

0
1, c

1
1)}

msk0 := FE0.Setup(r0
0 ⊕ r0

1)

skf0 := FE0.KeyGen(msk0, f)

mpcout0 = ct
output Dec((skf0 , sk

f
1), ct)

mpc1
0(1λ)

c1
0 := Com(r1

0; ρ1
0)

c0
0 := Com(r0

0; ρ0
0)

mpc2
0(1λ) r1

0

mpc3
0(x′0)

mpc4
0(x′0) skf0

P1(x1)
x′1 ={x1, (r0

1, ρ
0
1, r

1
1, ρ

1
1, r

1
0, r1),

(c0
0, c

1
0, c

0
1, c

1
1)}

msk1 := FE1.Setup(r1
0 ⊕ r1

1)

skf1 := FE1.KeyGen(msk1, f)

mpcout1 = ct
output Dec((skf0 , sk

f
1), ct)

mpc1
1(1λ)

c1
1 := Com(r1

1; ρ1
1)

c0
1 := Com(r0

1; ρ0
1)

mpc2
1(1λ)r0

1

mpc3
1(x′1)

mpc4
1(x′1)skf1

Fig. 1: FEi, with i ∈ {0, 1}, denotes a functional encryption candidate. The master secret key for the combiner
corresponds to the master secret keys of FE0 and FE1. A secret key for the combiner required to evaluate the
function f is generated by combining a secret key for FE0 (skf0) and a secret key for (skf1). Dec denotes the
decryption algorithm of the combiner which takes as input a combined secret key for the function f and a
ciphertext ct generated accordingly to a combined master secret key represented by (msk0,msk1). mpcki , with
i ∈ {0, 1} and k ∈ [4], represents the k-th message of the MPC protocol Π computed by Pi. The protocol Π
evaluates a function g′(x′0, x′1) where x′i = {xi, (r0

i , ρ
0
i , r

1
i , ρ

1
i , r

i
1−i, ri), (c0

0, c
1
0, c

0
1, c

1
1)} with i ∈ {0, 1}. The function

g checks if the commitments that are part of the two inputs x′0, x′1 are the same and if cbi has been computed
accordingly to the message rbi and the randomness ρbi for each i, b ∈ {0, 1}. If the check is successful, then g
computes two master secret keys msk0 and msk1 using respectively the randomnesses r1

0 ⊕ r1
1 and r0

0 ⊕ r0
1, and

computes an encryption ct of x0||x1 for the FE combiner using those master secret keys and the randomness
r0 ⊕ r1. The output of Π for Pi consists of mpcouti

= ct.

However, we observe that even if Pi needs to provide all the commitments it has received as
part of its input to Π, we do not care about protecting the privacy of this part of Pi’s input, we
just want to achieve a correct evaluation of Π. We show how to construct an MPC protocol
where the input of each party consists of two parts, a private part x and a public part w. The
private part x is protected in the standard simulation based security sense, whereas the public
part w can be determined adversarially, and does not need to be known before the experiment
starts (either the ideal or the real world experiment). We refer to MPC protocols that are secure
in this setting as k-Signaling MPC protocols (as part of the input is signaled in the (k − 1)-th
round by the adversary). We believe that this notion becomes fundamental in contexts where an
MPC protocol is used as a building block, and it is crucial to keep the round complexity low by
starting computing the messages of an MPC protocol before its inputs are fully specified. The
same notion is required also to construct our second compiler.

From MFHE to circuit-independent MPC. To obtain circuit-independent MPC, we rely
on a multi-key fully-homomorphic encryption scheme (MFHE) in combination with a non-
communication-efficient MPC protocol Π. A MFHE scheme consists of four algorithms, a setup
algorithm Setup that allows for the generation of public-secret key pair, an encryption algorithm
Enc that takes as input a public key and a message and outputs a cipthertext, an evaluation
algorithm Eval that takes as input a list of public keys PK, a set of cipthertext CT (generated
using the list of public keys PK) and a function f , and outputs a ciphertexts ct that contains
the evaluation of f on input the messages encrypted in the list CT. A decryption algorithm Dec
that on input all the secret keys, associated with the public keys of PK, and the cipthertext ct
outputs the decryption of ct. Additionally, we require the MFHE scheme to be compact, in more
detail, we require the size of the keys, the ciphertexts and the description of the algorithms Enc
and Dec to dependent only on the input-output size of f . For sake of simplicity, we describe our

8

P0(x0)
(pk0, sk0) := Setup(r0)

ct0 := Enc(pk0, x0; r′0)
ct′0 := Eval(pk0, pk1, f, ct0, ct1))
x′0 = {x0, (sk0, pk0, pk1, ct0, ct1,

ct′0, r0, r
′
0)}

output y = f(x0, x1)

mpc1
0(1λ)(pk0, ct0)

mpc2
0(x′0)

mpc3
0(x′0)

mpc4
0(x′0)

P1(x1)
(pk1, sk1) := Setup(r1)

ct1 := Enc(pk1, x1; r′1)
ct′1 := Eval(pk0, pk1, f, ct0, ct1))
x′1 = {x1, (sk1, pk0, pk1, ct0, ct1,

ct′1, r1, r
′
1)}

output y = f(x0, x1)

mpc1
1(1λ)(pk1, ct1)

mpc2
1(x′1)

mpc3
1(x′1)

mpc4
1(x′1)

Fig. 2: (Setup,Enc,Dec,Eval) represents a MFHE scheme. The MPC protocol checks that the cipthertexes ct0
and ct1 are in the domain of Enc and that both parties have input the same list of cipthertexes ct0, ct1. Then the
MPC protocol decrypts ct′0 and ct′1 and if the decrypted values corresponds to the same value y then the protocol
outputs y.

compiler only for the two party case and refer to Section 5 to the description of the protocol
that tolerates arbitrary many parties.

We provide a pictorial description of our protocol in Fig. 2. At a high level, our compiler
works as follows. Let xi be the secret input of the party Pi with i ∈ {0, 1}. Each party Pi runs
the setup algorithm using the randomness ri thus obtaining a private-secret key pair (pki, ski)
and encrypts its input using Enc with some randomness r′i, obtaining cti. Then Pi sends the
public key together with its encrypted output and the first message of the MPC protocol Π
to party P1−i. Upon receiving pk1−i and ct1−i from Pi−1, Pi runs the evaluation algorithm on
input pk0, pk1, f, ct0, ct1, obtaining ct′i. At this point Pi keeps executing the protocol Π on input
xi which consists of the randomness used to generate the MFHE keys, the randomness used
to generate cti, the list of all the ciphertexts (received and generated) CT = (ct0, ct1) and the
evaluated ciphertext ct′i. The function g computed by the MPC protocol Π does the following:
1) checks that both P0 and Pi have input the same list of ciphertexts CT, 2) for each i ∈ {0, 1}
uses the randomness ri and r′i to check that pki and cti are in the domain of the setup and of the
encryption algorithm respectively. If these checks are successful, then the function g decrypts ct′0
and ct′1 using the secret keys (sk0, sk1) (which can be generated using the randomnesses r0, r1)
thus obtaining y0 and y1. If y0 = y1 then g outputs y, otherwise it outputs ⊥. In a nutshell, we
use Π to check that all cipthertexts and public keys have been generated correctly and that all
the parties have obtained an encryption of the same value by running the MFHE evaluation
algorithm. The protocol that we have just described is circuit-independent since the size of the
public keys and the cipthertexts depends only on the input-output size of f and the protocol Π
evaluates a function g whose description size depends only on the input-output size of f and the
description of the circuits for Enc and Dec.

The communication complexity of this protocol is poly(λ, n, Lin, Lout), where Lin is the
input-size and Lout is the output size of the function being evaluated. We can slightly modify the
protocol above to get communication complexity O(Lin) + poly(λ, n, Lout). To do that, we can
rely on a folklore technique to reduce the size of the cipthertexts of the MFHE scheme relying on
pseudorandom generators (PRGs). In more detail, instead of providing an encryption of the input
xi under the MFHE scheme, each party Pi encrypts a short seed si of a PRG PRG using the FHE
scheme, i.e. Enc(pki, si; rsi), and sends this encryption along with the value wi = PRG(si)⊕ xi to
the other party. This size of the resulting message is then O(Lin) + poly(λ). The party Pi, upon
receiving (Enc(pk1−i, s1−i; rs1−i), w1−i) computes Enc(pk1−i,PRG(s1−i)), using homomorphic op-
erations, Enc(pk1−i, wi−1) by encrypting w1−i using pk1−i, and then homomorphically XORs
the resulting ciphertexts to receive Enc(pk1−i, x1−i). This ciphertext can now be used to run

9

the evaluation algorithm and compute Enc(pk0, pk1, f(x0, x1)). The parties now check that the
ciphertexts (w0, w1) are well formed by running the MPC protocol, exactly as in the previous
protocol.

We note that the above protocols require Π to be 2-signaling. Moreover, we need the
MFHE scheme to achieve perfect correctness. Removing this additional assumption remains an
interesting open problem.

3 Preliminaries

Before diving into the technical part, let us first introduce some needed terminology along with
formal definitions of the concepts and primitives used in our construction and analysis. A reader
familiar with the relevant literature can skip this part and refer to it later as needed.

Notation. We denote the security parameter with λ ∈ N. A randomized algorithm A is
running in probabilistic polynomial time (PPT) if there exists a polynomial p(·) such that for every
input x the running time of A(x) is bounded by p(|x|). We call a function negl : N→ R+ negligible
if for every positive polynomial p(λ) a λ0 ∈ N exists, such that for all λ > λ0 : ε(λ) < 1/p(λ).
We denote by [n] the set {1, . . . , n} for n ∈ N. We use “=” to check equality of two different
elements (i.e. a = b then...) and “:=” as the assigning operator (e.g. to assign to a the value of b
we write a := b). A randomized assignment is denoted with a← A, where A is a randomized
algorithm and the randomness used by A is not explicit. If the randomness is explicit we write
a := A(x; r) where x is the input and r is the randomness.

3.1 Functional Encryption

In this section, we recap the notion of (secret key) functional encryption (FE) [SW05,BSW11,
O’N10].

Definition 1 (Functional Encryption). Let C = {Cλ}λ∈N be a collection of circuit families
(indexed by λ), where every C ∈ Cλ is a polynomial time circuit C : Xλ → Yλ. A (secret-
key) functional encryption scheme (FE) for the circuit family Cλ is a tuple of four algorithms
FE = (Setup,KeyGen,Enc,Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ and generates a
master secret key msk. It also outputs the randomness r that has been used to generate the
master secret key.

KeyGen(msk, C): Takes as input the master secret key msk and a circuit C ∈ Cλ, and outputs a
functional key skC .

Enc(msk, x): Takes as input the master secret key msk, a message x ∈ Xλ to encrypt, and outputs
a ciphertext ct.

Dec(skC , ct): Is a deterministic algorithm that takes as input a functional key skC and a ciphertext
ct and outputs a value y ∈ Yλ.

A scheme FE is (approximate) correct, if for all λ ∈ N, msk← Setup(1λ), C ∈ Cλ, x ∈ Xλ, when
skC ← KeyGen(msk, C), we have

Pr [Dec(skC ,Enc(msk, x)) = C(x)] ≥ 1− negl(λ) ,

for a negligible function negl(·).

In contrast to the standard definition of secret key functional encryption, where the setup
algorithm just outputs a master secret key msk, we define our scheme in such a way that it

10

also outputs the randomness r, that has been used to generate the master secret key. This
has no effects on the security definition of the scheme since the master secret key msk and
the randomness r both remain in the control of the challenger. We need to rely on this little
modification later to enforce a party to generate a specific master secret key.

Now, we recall the definition of single key simulation security for a functional encryption
scheme as stated in [ABJ+19].

Definition 2 (Single Key Simulation Security of FE). Let FE be a functional encryption
scheme, C = {Cλ}λ∈N a collection of circuit families indexed by λ. We define the experiments
RealDFEC and IdealDFEC in Fig. 3. A functional encryption scheme FE is single key simulation
secure, if for any polynomial-time adversary A = (A1,A2,A3) exists a PPT simulator S and a
negligible function negl such that:

|Pr[RealFE(1λ,A) = 1]− Pr[IdealFE(1λ,A,S) = 1]| ≤ negl(λ) .

RealFE(1λ,A)
msk← Setup(1λ)
(C, st1)← A1(1λ)
skC ← KeyGen(msk, C)
(x, st2)← A2(skC , st1)
ct← Enc(msk, x)
α← A3(ct, skC , st2)
Output: α

IdealFE(1λ,A,S)
msk← Setup(1λ)
(C, st1)← A1(1λ)
skC ← KeyGen(msk, C)
(x, st2)← A2(skC , st1)
ct← S(msk, C, C(x))
α← A3(ct, skC , st2)
Output: α

Fig. 3: Single Key Simulation Security of FE

The succinctness definition provided in [ABJ+19] requires some restrictions on the circuit
size of the encryption algorithm, as well as on the size of the functional key. In our work, we
also require a bounded circuit size for the setup algorithm and we refer to this notion as strong
succinctness.

Definition 3 (Strong Succinctness). A functional encryption scheme FE = (Setup,KeyGen,
Enc,Dec) for a circuit class C containing circuits that take inputs of length `in, outputs strings
of length `out bits and are of depth at most d is succinct if the following holds: For any circuit
C ∈ C
– For the size of the circuit Setup(1λ) is poly(λ, d, `in) for some polynomial poly.
– Let msk ← Setup(1λ). The size of the circuit Enc(msk, ·) is poly(λ, d, `in, `out) for some

polynomial poly.
– The functional key skC ← KeyGen(msk, C) is of the form (C, aux) where |aux| ≤ poly(λ, d, `out, n)

for some polynomial poly.

3.2 Decomposable Functional Encryption Combiner

After recapping the notion of functional encryption, we are ready to define a decomposable
functional encryption combiner (DFEC) as introduced by Ananth et al. [ABJ+19].

Definition 4 (Decomposable Functional Encryption Combiner). Let C = {Cλ}λ∈N
be a collection of circuit families (indexed by λ), where every C ∈ Cλ is a polynomial time

11

circuit C : Xλ → Yλ and let {FEi}i∈[n] be the description of n FE candidates. A decomposable
functional encryption combiner (DFEC) for the circuit family Cλ is a tuple of five algorithms
DFEC = (Setup,Partition,KeyGen,Enc,Dec):

Setup(1λ, {FEi}i∈[n]): Takes as input a unary representation of the security parameter λ and
the description of n FE candidates {FEi}i∈[n] and generates a master key mski for each FE
candidate mski ← FE.Setupi(1λ) and outputs msk := {mski}i∈[n].

Partition(n,C): Takes as input the number of parties n and a circuit C and outputs (C1, . . . , Cn),
where each Ci is a circuit of depth polynomial in the depth of C.

KeyGen(msk, {FEi}i∈[n], (C1, . . . , Cn)): Takes as input the master secret key msk, the description
of n FE candidates {FEi}i∈[n], a partitioned circuit (C1, . . . , Cn), generates a functional key
skCi for each FE candidate skCi ← FE.KeyGeni(mski, Ci) and outputs skC := {skCi}i∈[n].

Enc(msk, {FEi}i∈[n], x): Takes as input the master secret key msk, the description of n FE
candidates {FEi}i∈[n], a message x ∈ Xλ to encrypt, and outputs a ciphertext ct.

Dec(skC , {FEi}i∈[n], ct): Is a deterministic algorithm that takes as input a functional key skC ,
the description of n FE candidates {FEi}i∈[n] and a ciphertext ct and outputs a value y ∈ Yλ.

A scheme DFEC is (approximate) correct, if for all λ ∈ N, msk← Setup(1λ, {FEi}i∈[n]), C ∈ Cλ,
x ∈ Xλ, when skC ← KeyGen(msk, C), we have

Pr [Dec(skC ,Enc(msk, x)) = C(x)] ≥ 1− negl(λ) ,

for a negligible function negl(·).

The notion of decomposability is natural if a functional encryption combiner is considered in
the context of multiparty computation. Since each party in an MPC protocol generates messages
that are sent to the other parties it is intuitive to also allow each party to generate a functional
key corresponding to their FE candidate that can be sent to everyone. The functional key of the
FE combiner used in the decryption procedure together with the messages sent by each party
contains of the functional keys of all the participating parties.

To ensure that all the algorithms of the functional encryption combiner are still polynomial
in the security parameter λ and the number of parties n, we need to introduce the notion of
polynomial slowdown.

Definition 5 (Polynomial Slowdown [ABJ+19]). A decomposable functional encryption
combiner DFEC = (Setup,Partition,KeyGen,Enc,Dec) satisifes polynomial slowdown, if the run-
ning time of all its algorithms are at most poly(λ, n), where n is the number of FE candidates
that are being combined.

The definition of single key simulation security of a functional encryption combiner should
capture the case that if at least one of the FE candidates is secure, then the combiner is also
secure. In the case of decomposability we give the adversary even more power by letting it choose
a set I of all the corrupted candidates, which contains all but one party.

Definition 6 (Single Key Simulation Security of DFEC [ABJ+19]). Let DFEC be a
decomposable functional encryption combiner, C = {Cλ}λ∈N a collection of circuit families indexed
by λ and {FEi}i∈[n] n FE candidates of which at least one is guaranteed to be secure. We define the
experiments RealDFEC and IdealDFEC in Fig. 4. A decomposable functional encryption combiner
DFEC is single key simulation secure, if for any polynomial-time adversary A = (A1,A2,A3)
exists a PPT simulator S and a negligible function negl such that:

|Pr[RealDFEC(1λ, {FEi}i∈[n], C,A) = 1]− Pr[IdealDFEC(1λ, {FEi}i∈[n], C,A,S) = 1]| ≤ negl(λ) .

12

RealDFEC(1λ, {FEi}i∈[n], C,A)
msk := {mski}i∈[n] ← Setup(1λ, {FEi}i∈[n])
(C1, . . . , Cn) = Partition(n,C)
skC ← KeyGen(msk, {FEi}i∈[n], (C1, . . . , Cn))
(I, st1)← A1(1λ, {FEi}i∈[n], C), where I ⊂ [n]

with |I| = n− 1.
(x, st2)← A2({mski}i∈I , skC , st1)
ct← Enc(msk, {FEi}i∈[n], x)
α← A3(ct, skC , st2)
Output: α

IdealDFEC(1λ, {FEi}i∈[n], C,A,S)
msk := {mski}i∈[n] ← Setup(1λ, {FEi}i∈[n])
(C1, . . . , Cn) = Partition(n,C)
skC ← KeyGen(msk, {FEi}i∈[n], (C1, . . . , Cn))
(I, st1)← A1(1λ, {FEi}i∈[n], C), where I ⊂ [n]

with |I| = n− 1.
(x, st2)← A2({mski}i∈I , skC , st1)
ct← S(msk, C, C(x))
α← A3(ct, skC , st2)
Output: α

Fig. 4: Single Key Simulation Security of DFEC

As in the case of an FE candidate, we also need to define succinctness for an FE combiner.
We, again, adapt the notion of Ananth et al. [ABJ+19] here and present our notion of strong
succinctness.

Definition 7 (Strong Succinctness). A decomposable FE combiner DFEC = (Setup,Partition,
KeyGen,Enc,Dec) for a circuit class C containing circuits that take inputs of length `in, outputs
strings of length `out bits and are of depth at most d is succinct if for every set of succinct FE
candidates {FEi}i∈[n], the following holds:
– For the size of the circuit Setup(1λ, {FEi}i∈[n]) it holds that Setup(1λ, {FEi}i∈[n]) ≤ poly(λ, n,
d, `in).

– Let msk← Setup(1λ, {FEi}i∈[n]). For the circuit Enc(msk, {FEi}i∈[n], ·) it holds that Enc(msk,
{FEi}i∈[n], ·) ≤ poly(λ, d, `in, `out, n) for some polynomial poly.

– The functional key skC ← KeyGen(msk, {FEi}i∈[n], (C1, . . . , Cn)), with (C1, . . . , Cn) =
Partition(n,C), is of the form (C, aux) where |aux| ≤ poly(λ, d, `out, n) for some polynomial
poly.

3.3 Multi Key Fully Homomorphic Encryption

In this section, we recap the definition definitions of multi key fully homomorphic encryption
(MFHE) as introduced by López-Alt, Tromer, and Vaikuntanathan [LTV12].

Definition 8 (Multi Key Fully Homomorphic Encryption). Let C = {Cλ}λ∈N be a
collection of circuit families (indexed by λ), where every C ∈ Cλ is a polynomial time circuit
C : Xλ → Yλ and n the number of participating parties. A multi key fully homomorphic encryption
(MFHE) for the circuit family Cλ is a tuple of four algorithms MFHE = (Setup,Enc,Eval,Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ and generates a
public key pk and a secret key sk.

Enc(pk, x): Takes as input a public key pk and a message x ∈ Xλ to encrypt, and outputs a
ciphertext ct.

Eval(C, (pki, cti)i∈[`]): Takes as input a circuit C, ` different public keys pki and ciphertexts cti
and outputs a ciphertext ct.

Dec({ski}i∈[n], ct): Is a deterministic algorithm that takes as input n secret keys {ski}i∈[n] and a
ciphertext ct and outputs a value y.

13

IND-CPAMFHE
β (1λ,A)

(pk, sk)← Setup(1λ)
(x0, x1, st)← A1(pk)
ct← Enc(pk, xβ)
α← A2(st, ct)
Output: α

Fig. 5: The IND-CPA Game.

A scheme MFHE is perfectly correct, if for all λ ∈ N, i ∈ [n], ` ≤ n, rSetup
i ← {0, 1}λ, rEnc

i ←
{0, 1}λ, (pki, ski)← Setup(1λ; rSetup

i), C ∈ Cλ, xi ∈ Xλ, we have

Pr
[
Dec({ski}i∈[n],Eval(C, (pki,Enc(pki, xi; rEnc

i))i∈[`])) = C(x1, . . . , x`)
]

= 1.

For n = 1 multi key FHE is equivalent to FHE. In the introductory paper of López-Alt,
Tromer, and Vaikuntanathan [LTV12], the setup algorithm also outputs an evaluation key
together with the public and secret key. In our work we assume that the information of the
evaluation key is contained in the public key.

Definition 9 (IND-CPA security of MFHE). Let MFHE = (Setup,Enc,Eval,Dec) be a
MFHE scheme. For β ∈ {0, 1}, we define the experiment
IND-CPAMFHE

β in Fig. 5, where the advantage of an adversary A = (A1,A2) is defined by

AdvIND-CPA
MFHE,A (λ) = |Pr[IND-CPAMFHE

0 (λ,A) = 1]− Pr[IND-CPAMFHE
1 (λ,A) = 1]|.

A multi key fully homomorphic encryption scheme MFHE is called secure, if for any PPT
adversary A = (A1,A2), there exists a negligible function negl such that: AdvIND-CPA

MFHE,A (λ) ≤
negl(λ).

Besides the security of a multi key FHE scheme, we also need to define what it means for a
multi key FHE scheme to be compact.

Definition 10 (Compactness). A multi key FHE scheme MFHE = (Setup,Enc,Eval,Enc,Dec)
for a circuit class C and n participating parties is called compact, if |ct| ≤ poly(λ, n), where
ct := Eval(C, (pki, cti)i∈[`]) with ` ≤ n and with description of the circuits Setup,Enc and Dec
being polynomial in the security parameter λ.

We note that this definition implies that public and secret key pairs are also independent
from the size of the circuit.

3.4 Symmetric Encryption, Authentication and Commitments

In this section, we recall the definitions of symmetric encryption, message authentication codes,
digital signatures, and commitments.

Definition 11 (Symmetric Encryption [GB96]). A symmetric encryption scheme (SE)
for the message spaceM is a tuple of three algorithms SE = (Setup,Enc,Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ, and outputs a key
k.

14

Enc(k,m): Takes as input the symmetric key k, a message m ∈ M to encrypt, and outputs a
ciphertext ct.

Dec(k, ct): Takes as input the symmetric key k and a ciphertext ct and outputs a message or ⊥
if decryption fails.

A scheme SE is correct, if for all λ ∈ N, k← Setup(1λ), m ∈M, we have

Pr [Dec(k,Enc(k,m)) = m] = 1 .

Security for a symmetric encryption scheme is defined in an indistinguishable manner.

Definition 12 (IND-CPA Security of SE). Let SE = (Setup,Enc,Dec) be an SE scheme,
for the message spaceM. For β ∈ {0, 1}, we define the experiment IND-CPASE

β in Fig. 6, where
the encryption oracle QEnc outputs ct← Enc(k, xβ) on a query (x0, x1). We define the advantage
of an adversary A in the following way

AdvIND-CPA
SE,A (λ) = |Pr[IND-CPASE

0 (λ,A) = 1]− Pr[IND-CPASE
1 (λ) = 1]| .

A symmetric encryption scheme SE is called IND-CPA secure, if for any PPT adversary A it
holds that AdvIND-CPA

SE,A (λ) ≤ negl(λ).

IND-CPASE
β (1λ,A)

sk← Setup(1λ)
α← AQEnc(·,·)(1λ)
Output: α

Fig. 6: IND-CPA Security Game for a symmetric encryption scheme SE.

In our protocol, it is sufficient to use a symmetric encryption scheme that fulfills one-time
security. In this special case of IND-CPA security the encryption oracle can only be queried once.
The one-time pad is a candidate scheme that fulfills this notion.

Definition 13 (Message Authentication Code [Gol04]). A message authentication code
(MAC) for the message spaceM is a tuple of three algorithms (Setup,Auth,Verify):

Setup(1λ): Takes as and input a unary representation of the security parameter 1λ, and outputs
a key k.

Auth(k,m): Takes as input the key k, a message m ∈M, and outputs a tag τ .
Verify(k,m): takes as input a key k, a message m and a tag τ and outputs either 0 or 1.

A scheme MAC is correct, if for all λ ∈ N, k← Setup(1λ), m ∈M, we have

Pr [Verify(k,m,Auth(k,m)) = 1] = 1 .

Definition 14 (Unforgeability of MAC). Let MAC = (Setup,Auth,Verify) be a MAC, for
the message spaceM. We define the experiment EUF-CMAMAC in Fig. 7 with Q being the set
containing the queries of A to the authentication oracle Auth(k, ·).

A message authentication code MAC is called existentially unforgeable under adaptive chosen-
message attacks (EUF-CMA secure), if for any PPT adversary A it holds that Pr[EUF-CMAMAC(λ,A) =
1] ≤ negl(λ).

15

EUF-CMAMAC(1λ,A)
k← Setup(1λ)
(m∗, τ∗)← AAuth(k,·)(1λ)
Output: Verify(k,m∗, τ∗) = 1 ∧m /∈ Q

Fig. 7: The Existentially Unforgeability Game for a message authentication code MAC.

We say that a MAC is one-time if the adversary can query its oracle only once.

Definition 15 (Digital Signature Scheme [Can03]). A digital signature scheme (DS) for
the message spaceM is a tuple of three algorithms DS = (Setup, Sign,Verify):

Setup(1λ): Takes as input a unary representation of the security parameter λ, and outputs a
verification key vk and a signing key sk.

Sign(sk,m): Takes as input the signing key sk, a message m ∈M to, and outputs a signature σ.
Verify(vk,m, σ): Takes as input the verification key vk, a message m ∈ X and a signature σ and

outputs either 0 or 1.

A scheme DS is correct, if for all λ ∈ N, (vk, sk)← Setup(1λ), m ∈M, we have

Pr [Verify(vk,m,Sign(sk,m)) = 1] = 1 .

A scheme DS is consistent, if for any m ∈ X , the probability that Setup(1λ) generates (vk, sk)
and Verify(vk,m, σ) generates two different outputs in two independent invocations is 0.

Definition 16 (Unforgeability of DS). Let DS = (Setup,Sign,Verify) be a DS scheme, for
the message space M. We define the experiment EUF-CMADS in Fig. 8 with Q being the set
containing the queries of A to the signing oracle Sign(sk, ·).

A digital signature scheme DS is called existentially unforgeable under adaptive chosen-
message attacks (EUF-CMA secure), if for any PPT adversary A it holds that Pr[EUF-CMADS(λ,A) =
1] ≤ negl(λ).

EUF-CMADS(1λ,A)
(vk, sk)← Setup(1λ)
(m∗, σ∗)← ASign(sk,·)(vk)
Output: Verify(vk,m∗, σ∗) = 1 ∧m /∈ Q

Fig. 8: The Existentially Unforgeability Game for a signature scheme DS.

We recap the definition of a commitment scheme as stated in [Lin10] as well the definition of
(computational) hiding and binding.

Definition 17 (Commitment Scheme). A commitment scheme (CS) is a PPT algorithm
Com that takes as an input a unary representation of the security parameter 1λ, a message m a
random value r and outputs a commitment.

The pair (m, r) is called the decommitment of c.

16

We recall that commitments are secure under parallel composition. We will use this fact in
the security proof of our compiler using the functional encryption combiner.

Definition 18 (Hiding of CS). Let Com be a CS scheme, then we define the experiment
HIDECom

β in Fig. 9 The advantage of an adversary A = (A1,A2) is defined in the following way:

AdvHIDE
Com,A(λ) = |Pr[HIDECom

0 (λ,A) = 1]− Pr[HIDECom
1 (λ) = 1]| .

A commitment scheme Com is called computational hiding, if for any PPT adversary
A = (A1,A2) it holds that AdvHIDE

Com,A(λ) ≤ negl(λ) and perfectly hiding if AdvHIDE
Com,A(λ) = 0.

HIDECom
β (1λ,A)

(m0,m1, st)← A1(1λ)
r ← {0, 1}λ

c = Com(mβ ; r)
α← A2(st, c)
Output: α

Fig. 9: Hiding Game for a commitment scheme CS.

Definition 19 (Binding of CS). Let Com be a CS scheme, then we define the experiment
BINDCom in Fig. 10.

A commitment scheme Com is called computational binding, if for any PPT adversary A it
holds that Pr[BINDCom(λ,A) = 1] ≤ negl(λ) and perfectly binding if Pr[BINDCom(λ,A) = 1] = 0.

BINDCom(1λ,A)
(c,m, r,m′, r′)← A(1λ)
Output: 1 if Com(m; r) = Com(m′; r′)

and 0 otherwise

Fig. 10: Binding Game for a commitment scheme CS.

3.5 Secure Multiparty Computation

We provide the definition of MPC against malicious adversaries. Parts of this section have been
taken verbatim from [Gol04].

A multi-party protocol is cast by specifying a random process that maps pairs of inputs
to pairs of outputs (one for each party). We refer to such a process as a functionality. The
security of a protocol is defined with respect to a functionality f . In particular, let n denote the
number of parties. A non-reactive n-party functionality f is a (possibly randomized) mapping
of n inputs to n outputs. A multiparty protocol with security parameter λ for computing a
non-reactive functionality f is a protocol running in time poly(λ, n) and satisfying the following
correctness requirement: if parties P1, . . . , Pn with inputs (x1, . . . , xn) respectively, all run an
honest execution of the protocol, then the joint distribution of the outputs y1, . . . , yn of the
parties is statistically close to f(x1, . . . , xn). In this setting we assume that every party has
access to a simultaneous broadcast channel where every party can simultaneously broadcast a
message to all the other parties.

17

In the rest of this work, we denote an `-round MPC protocol as π = (π.Round1, . . . , π.Round`,
π.Out), where π.Roundj , with j ∈ [`] denotes the next-message function that takes as input all
the messages generated by π in the rounds 1, . . . , j − 1 (that we denote with τj−1) the state of
the party Pi and outputs the message msgj,i. Additionally, we assume that all the parties run
the same next message function algorithms (the only difference is the randomness and the input
provided by each party). π.Out denotes the algorithm used to compute the final output of the
protocol.

Defining Security. We assume that readers are familiar with standard simulation-based definitions
of secure multi-party computation in the standalone setting. We provide a self-contained definition
for completeness and refer to [Gol04] for a more complete description. The security of a protocol
(with respect to a functionality f) is defined by comparing the real-world execution of the
protocol with an ideal-world evaluation of f by a trusted party. More concretely, it is required
that for every adversary A, which attacks the real execution of the protocol, there exist an
adversary S, also referred to as a simulator, which can achieve the same effect in the ideal-world.
Let us denote x = (x1, . . . , xn).

The real execution In the real execution of the n-party protocol π for computing f is executed in
the presence of an adversary A. The honest parties follow the instructions of π. The adversary
A takes as input the security parameter λ, the set I ⊂ [n] of corrupted parties, the inputs of the
corrupted parties, and an auxiliary input z. A sends all messages in place of corrupted parties
and may follow an arbitrary polynomial-time strategy. The interaction of A with a protocol π
defines a random variable Realπ,A(z),I(k,x) whose value is determined by the coin tosses of the
adversary and the honest players. This random variable contains the output of the adversary
(which may be an arbitrary function of its view) as well as the outputs of the uncorrupted parties.
We let Realπ,A(z),I denote the distribution ensemble {Realπ,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ .

The ideal execution – security with abort. In this variant of the ideal model, fairness and output
delivery are no longer guaranteed. This is the standard relaxation used when a strict majority
of honest parties is not assumed. In this case, an ideal execution for a function f proceeds as
follows:
– Send inputs to the trusted party: As before, the parties send their inputs to the trusted

party, and we let x′i denote the value sent by Pi.
– Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x′n)

:= (y1, . . . , yn) and sends {yi}i∈I to the adversary S.
– Adversary instructs trusted party to abort or continue: This is formalized by having

the adversary send either a continue or abort message to the trusted party. In the latter case,
the trusted party sends to each uncorrupted party Pi its output value yi. In the former case,
the trusted party sends the special symbol ⊥ to each uncorrupted party.

– Outputs: S outputs an arbitrary function of its view, and the honest parties output the
values obtained from the trusted party.
The interaction of S with the trusted party defines a random variable Idealf,S(z)(k,x) as

above. Having defined the real and the ideal world, we now proceed to define our notion of
security.

Definition 20. Let λ be the security parameter. Let f be an n-party randomized functionality,
and π be an n-party protocol for n ∈ N.

We say that π securely realizes f in the presence of malicious adversaries if for every PPT
adversary A there exists a PPT adversary S such that for any I ⊂ [n] the following ensembles

18

are computational indistinguishable:

{Realπ,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ , {Idealf,S(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ .

3.6 Privacy with Knowledge of Outputs

We consider a relaxed notion of security known as privacy with knowledge of outputs [IKP10,PC12].
In this the input of the honest parties is protected in the standard simulation based sense, but
the output of these parties might be incorrect. To formalize this notion we need to slightly
modify the ideal execution as follows.
1. Send inputs to the trusted party: The parties send their inputs to the trusted party,

and we let x′i denote the value sent by Pi.
2. Ideal functionality sends output to the adversary: The ideal functionality computes

(y1, . . . , yn) := f(x1, . . . , xn) and sends {yi}i∈I to the adversary A.
3. Output of the honest parties: The adversary S sends either a continue or abort message

or arbitrary values {y′i}i∈[n]\I to the ideal functionality. In the case of a continue message
the ideal functionality sends yi to the party Pi, in the case of an abort message every
uncorrupted party receives ⊥ and in the case that the ideal functionality receives arbitrary
values {y′i}i∈[n]\I it forwards them to the honest parties.

4. Outputs: S outputs an arbitrary function of its view, and the honest parties output the
values obtained from the trusted party.
The interaction of S with the trusted party defines a random variable IdealPKO

f,S(z)(k,x) as
above.

Having defined the real and the ideal world, we now proceed to define our notion of security.

Definition 21. Let λ be the security parameter. Let f be an n-party randomized functionality,
and π be an n-party protocol for n ∈ N.

We say that π securely realizes f with knowledge of outputs in the presence of malicious
adversaries if for every PPT adversary A there exists a PPT adversary S such that for any
I ⊂ [n] the following ensembles are computational indistinguishable:

{Realπ,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ , {IdealPKO
f,S(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ .

In this work we also consider single-output functionalities. A single-output functionality f is
such that (y1, . . . , yn) := f(x1, . . . , xn) with y1 = y2 = · · · = yn and x1, . . . , xn ∈ {0, 1}∗.

3.7 k-Signaling MPC

In this section we propose a new notion of MPC which we refer to as k-Signaling MPC. The
definitions of secure MPC protocols that we have considered so far require the honest parties’
inputs to be defined before the real (and ideal) world experiment. That is, in the standard
definition of MPC, an honest party cannot start the protocol and decide its input at a later
moment. We note that there are existing constructions of secure `-round MPC protocols that do
not require the input of the parties to compute the first k − 1 rounds with k ≤ `− 1. However,
the fact that a protocol does not need the input of the parties to compute the first k − 1 rounds
does not imply that the protocol retains its security in the case when the input of the honest
parties is decided in the round k and might depend on the first k − 1 rounds of the protocol
(hence, it can be adversarially influenced). Clearly, if the inputs for the honest parties are decided
by the adversary, we cannot hope to have any privacy on these inputs. Nonetheless, we could
guarantee that these inputs are correctly used in the protocol (given that the honest parties

19

follow the description of the protocol). In this paper we consider a definition of MPC where each
party Pi has two inputs (xi, wi) and require that 1) xi is protected in the standard simulation
based sense but it has to be fixed before the real (ideal) world experiment starts (like in the
standard definition of MPC) and 2) the input wi can be decided by the adversary. For example,
if the MPC protocol requires the input for the computation of the rounds k, k+ 1, . . . , ` then the
adversary provides an input wi to the party Pi at round k − 1. For the value wi our definition
guarantees no privacy (indeed, it is decided by the adversary), but it guarantees that the input
wi, which is known by Pi, is properly used in the computation of the output of the functionality.

To see why this definition can be useful, consider the case where we use an `-round MPC Π
protocol as a building block for a more complicated protocol Π ′. In Π ′ each party generates a
message ci using the randomness ri (for example, ci represents a commitment of a message mi

generated using the randomness ri). Now, suppose that the parties want to compute a function
f of their inputs x1, . . . , xn, the messages c1, . . . , cn and the randomnesses r1, . . . , rn, but each
party Pi wants to keep (xi, ri) private.

A simple solution to this problem would be to run the MPC protocol Π for the function
f , where each party Pi runs the MPC protocol Π using the input

(
(xi, ri), (c1, . . . , cn)

)
. The

function f checks that all the parties have input the same list of messages (c1, . . . , cn) and then
performs a computation on the received inputs. We note that each party Pi has to input all the
messages (c1, . . . , cn) and not just ci. Indeed, if this was the case then a corrupted party P ?j
could input any value c?j 6= cj to get more information than it should on the private inputs of
the honest parties. The problem with the above solution is that the protocol Π has to be run
after the messages (c1, . . . , cn) have been generated. This means that if the round complexity of
Π is ` then the round complexity of Π ′ becomes `′ > ` even if Π requires the inputs only for
the computation of the rounds `− 1 and ` of Π.

In this scenario our definition becomes particularly useful. Indeed, we can parallelize the
messages of Π with the other messages of Π ′ as long as each party Pi can specify the value
(xi, ri) before the execution of the protocol starts, and the values (c1, . . . , cn) at round k − 1
(we recall that, at round k, Π requires all the inputs). We now provide a formal definition of
our new notion and then show how to achieve it using a large class of MPC protocols in a
round-preserving way.

The real execution. In the real execution the n-party protocol Π for computing f is executed in
the presence of an adversary A. The honest parties follow the instructions of Π. The adversary
A takes as input the security parameter λ, the set I ⊂ [n] of corrupted parties, the inputs of the
corrupted parties, and an auxiliary input z. A sends all messages in place of corrupted parties
and may follow an arbitrary polynomial-time strategy. At round k − 1, A picks wi ∈ {0, 1}∗ and
sends it to the honest party Pi for each i ∈ [n] \ I. Then each honest party Pi uses the input
(xi, wi) to compute the rounds k, k + 1, . . . , ` of Π. The adversary A continues its interaction
with the honest parties following an arbitrary polynomial-time strategy.

The interaction of A with a protocol Π defines a random variable RealSigMPC
Π,A(z),I(k,x) whose

value is determined by the coin tosses of the adversary and the honest players. This random
variable contains the output of the adversary (which may be an arbitrary function of its view)
as well as the outputs of the uncorrupted parties. We let RealSigMPC

Π,A(z),I denote the distribution
ensemble {RealSigMPC

Π,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ .

The ideal execution
– Send inputs to the trusted party: Each honest party Pi sends xi = x′i to the ideal

functionality. The adversary sends (xj , wj)j∈I and (wi)i∈[n]\I to the ideal functionality.

20

Input: (x0
i , ki, x1

i , τi)i∈[n].
If Verify(ki, x1

i , τi) = 0 for any i ∈ [n], then output ⊥.
Compute y1, . . . , yn := f ′(x0

1||x1
1, . . . , x

0
n||x1

n) and
set y0

i := y1
i := yi for all i ∈ [n].

Output: (y0
i , y

1
i) to the party Pi for each i ∈ [n].

Fig. 11: Description of the function f .

– Ideal functionality sends output to the adversary: The ideal functionality computes
(y1, . . . , yn) := f(x1‖w1, . . . , xn‖wn) and sends {yi}i∈I to the adversary A and wi to Pi for
each i ∈ [n] \ I.

– Output of the honest parties: The adversary S sends either a continue or abort message
to the ideal functionality. In the case of a continue message the ideal functionality sends yi
to the party Pi, in the case of an abort message every uncorrupted party receives ⊥.

– Outputs: S outputs an arbitrary function of its view, and the honest parties output the
values obtained from the trusted party.
The interaction of S with the trusted party defines a random variable IdealSigMPC

f,S(z) (k,x) as
above. Having defined the real and the ideal world, we now proceed to define our notion of
security.

Definition 22 (k-Signaling MPC). Let λ be the security parameter. Let f be an n-party
randomized functionality, and Π be an n-party `-round protocol for n, ` ∈ N where the input is
required only to compute the rounds k, . . . , ` with 0 ≤ k ≤ `.

We say that a protocol Π is k-signaling if it realizes f in the presence of malicious adversaries
if for every PPT adversary with A there exists a PPT adversary S such that for any I ⊂ [n] the
following ensembles are computational indistinguishable:

{RealSigMPC
π,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ , {Ideal

SigMPC
f,S(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ .

From MPC protocols to k-Signaling MPC protocols. Our starting point is a 2n-parties
`-round MPC protocol Π that does not require the input to compute the first k − 1 rounds
and a one-time MAC scheme MAC = (Setup,Auth,Verify). To construct our n-party k-Signaling
MPC protocol we let each party to control two parties of Π, one that will be run on the private
input and a MAC key (this information is known from the beginning of the protocol), and one
that will be run on the signaled input (received in the end of round k − 1 from the adversary)
authenticated with the MAC key. The MPC protocol Π checks that the inputs are authenticated
accordingly to the secret key, and if this check is successful then a function f over the secret and
the signaled inputs of the parties is computed. The idea is that we can rely on the security of
Π to claim that the private input is protected. To make sure that the correct signaled inputs
are taken into account for the evaluation of the function, we rely on the fact that the signaled
inputs are authenticated.

We describe the construction more formally and present a proof. Let f ′ be an n-input
functionality and let Π be a 2n-party MPC protocol that realizes the 2n-input function f
described in Fig. 11 with the property that it needs the input of the parties only to compute the
rounds k, k+1, . . . , ` with 0 ≤ k ≤ `−1 where ` ∈ N represents the round complexity of Π. Now,
we construct a k-Signaling MPC protocol Π ′ that realizes f ′. In our construction each party
of Π ′ emulates two parties of Π. We denote with P 0

i and P 1
i the two parties (of the protocol

Π) emulated by the party Pi (of the protocol Π ′). Let xi be the private input of Pi, then Pi
performs the following steps.

21

1. Run the parties P 0
i and P 1

i until the round k − 1 (recall that P i0 and P i1 do not need any
input to compute the first k − 1 rounds).

2. Upon receiving the signaled input wi from the adversary, run Setup to sample a MAC key ki
and run P 0

i using the input (xi, ki).
3. Compute τi ← Auth(ki, wi) and run P 1

i using the input (wi, τi).
4. When the protocol Π is over, Pi checks if the outputs of P 0

i and P 1
i correspond to the same

value yi. If that is the case then Pi outputs yi, otherwise it aborts.

Theorem 1. Let Π be an 2n-party `-round MPC protocol that securely realizes the function f
of Fig. 11 and that requires the input only to compute the rounds k, k+1, . . . , ` with 0 ≤ k ≤ `−1
and let MAC = (Setup,Auth,Verify) be a one-time MAC secure scheme, then Π is an n-party
`-round k-Signaling MPC protocol that securely realizes the function f ′.

Proof. Let A′ be the adversary attacking our protocol Π ′. To simplify the description of the
proof we assume that only one party Pi is honest. The proof can be easily extended to the case
where more than one party is honest. To prove the security of our protocol we need to describe
a simulator S ′. Before doing that, we define an augmented machineM that works as described
in Fig. 12.M internally runs the adversary A′ and computes the messages for the party P 1

i . In
addition, all the messages received by the adversary A′ and the messages computed by P 1

i are
forwarded to the external interface ofM which we refer as the left-session, and all the messages
that come from the left session are forwarded to the adversary A′. In a nutshell,M acts as an
adversary for the protocol Π where only the party P 0

i is honest.

M(A′, r′A, ki) :
Run A′ using the randomness r′A
For each Round r = 1, . . . , k − 1

1. Upon receiving the message msgr,i,0 from the left session, run P 1
i thus obtaining the message

msgr,i,1 and send (msgr,i,0,msgr,i,1) to A′.
2. Upon receiving the messages {msgr,j,b}j∈I,b∈{0,1} from A′ send {msgr,j,b}j∈I,b∈{0,1} ∪ {msgr,i,1}

in the left session.
Round k

1. Upon receiving the message msgk,i,0 from the left session and upon receiving wi from A′, compute
τi ← Auth(ki, wi) and run P 1

i on input (wi, τi) thus obtaining the message msgk,i,1 and send
(msgk,i,0,msgk,i,1) to A′.

2. Upon receiving the messages {msgk,j,b}j∈I,b∈{0,1} from A′ send {msgk,j,b}j∈I,b∈{0,1} ∪ {msgk,i,1}
in the left session.

For each Round r = k + 1, . . . , `
1. Upon receiving the message msgr,i,0 from the left session, run P 1

i thus obtaining the message
msgr,i,1 and send (msgr,i,0,msgr,i,1) to A′.

2. Upon receiving the messages{msgr,j,b}j∈I,b∈{0,1} from A′ send {msgr,j,b}j∈I,b∈{0,1} ∪ {msgr,i,1}
in the left session.

Fig. 12: The augmented machineM which emulates the adversary for Π.

By assumption, we know that for every PPT adversary A there exists a simulator S such
that for any I ⊂ [2n] the following ensembles are computational indistinguishable:

{RealΠ,A(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ , {Idealf,S(z),I(k,x)}k∈N,〈x,z〉∈{0,1}∗ .

Hence, there exists a simulator S for the adversaryM(A′, ·, ·). At a high level, our simulator
S ′ internally runs S, and its formal description is provided in Fig. 13.

22

S ′
– Sample a MAC key ki.
– Sample a sufficiently long random R and run S for the adversaryM(A, R, ki).
– For every query

(
(x0

1, k1), (x1
1, τ1), . . . , (x1

i , τi), . . . , (x0
n, kn), (x1

n, τn)
)
issued by S do the following:

1. For each j ∈ [n] check if Verify(kj , x1
j , τj) = 0 then return ⊥ to S, else continue as follows.

2. Query the ideal functionality f using
(
(x0

1, x
1
1), . . . , x1

i , . . . , (x0
n, x

1
n)
)
, and receive(

(y0
1 , y

1
1), . . . , (y0

n, y
1
n)
)

:= f(x0
1, x

1
1, . . . , x

0
n, x

1
n) as an output.

3. For each i set yi := y0
i := y1

i .
4. Send (y1, . . . , yn) to S.

– When S stops, output what S outputs.

Fig. 13: The simulator S ′ for our k-Signaling MPC protocol Π ′.

Suppose by contradiction that our theorem does not hold. That is, suppose that there exists
an adversary A′ that breaks the security of Π ′, then we can construct an adversaryM(A′, ·, ·)
that breaks the security of Π. We note that the only other reason why the simulator S ′ could
fail is because S extracts a couple of value (x1

i , τi) such that Verify(ki, x1
i , τi) = 1 and x1

i 6= wi
(where wi is the values sent by A′). If this is the case, then we can construct a reduction to
break the security of the one-time MAC.

Note: the use of MAC seems redundant as it might be possible to argue that the simulator
S always extracts the signaled input, indeed we believe that the proof would work without
relying on a one-time MAC. However, given that the use of one-time MAC makes the proof
more intuitive and that one-time MACs can be instantiated information theoretically we have
chosen to provide the above proof.

ut

4 Our Compiler: Circuit-Scalable MPC

In this section we prove our main theorems on how to construct a circuit-scalable MPC protocol
that realizes any functionality f with privacy with knowledge of outputs. We refer to Section 2
for a simplified description of the protocol for the two-party case and to Fig. 14 for the formal
description of our compiler.

Our Construction makes use of the following cryptographic tools:

– An `-round k-signaling MPC protocol ΠM = (ΠM.Round1, . . . ,Π
M.Round`, ΠM.Out) (not

necessarily communication efficient) with k ≥ 3 that securely evaluates the function Cct
(described in Fig. 15), where ΠM.Roundk takes the input of the party Pi that we denote with
yi.14 In the description of our compiler we assume, without loss of generality, that ΠM is
3-signaling.15

– A strong succinct single-key simulation secure decomposable FE combiner DFEC = (DFEC.Setup,
DFEC.Enc,DFEC.KeyGen,DFEC.Dec,DFEC.Partition) for n FE candidates.

– A non-interactive computationally hiding commitment scheme Com.

14 To simplify the description of the protocol we assume that the entire input (the signaled part and the private
part) is provided in round k.

15 It is easy to see that any k′-signaling MPC with k′ > 3 can be turned into a 3-signaling MPC protocol since
that the signaled input received in round 2 can be ignore up to round k′ − 1.

23

ΠFE

Initialization: Each i ∈ [n] party Pi has input xi ∈ {0, 1}∗ as its secret input. We initialize τ0 to 1λ.

Round 1.
1. Compute msg1,i ← ΠM.Round1(1λ).
2. Sample ri→kSetup, r

i→k
com ← {0, 1}λ for all k ∈ [n], compute comi→k

Setup := Com(ri→kSetup; ri→kcom) and set
comi

Setup := {comi→k
Setup}k∈[n], openiSetup := (ri→kSetup, r

i→k
com)k∈[n].

3. Send (msg1,i, comi
Setup).

Round 2.
1. Let τ1 denote the transcript of the protocol ΠM up to round 1.
2. Compute msg2,i ← ΠM.Round2(τ1).
3. Send (msg2,i, (r

i→j
Setup)j∈[n]\{i}).

Round 3.
1. Let τ2 denote the transcript of the protocol ΠM up to round 2.
2. Compute msg3,i ← ΠM.Round3(yi, τ2), where yi := (xi, comSetup,i, openiSetup, R

i
Setup, r

Enc
i),

comSetup,i := {comk
Setup}k∈[n], RiSetup := (rj→kSetup)j∈[n],k∈[n]\{j} and rEnc

i ← {0, 1}λ.
3. Send msg3,i.

For each round k ∈ {4, . . . , `− 1}.
1. Let τk−1 denote the transcript of the protocol ΠM up to round k − 1.
2. Compute the second round message msgk,i ← ΠM.Roundk(τk−1).
3. Send msgk,i.

Round `.
1. Let τ`−1 denote the transcript of the protocol ΠM up to round `− 1.
2. Compute rSetup

i =
⊕

k∈[n] r
k→i
Setup.

3. Generate mski ← FEi.Setup(1λ; rSetup
i), compute the partition of C,

i.e. (C1 . . . , Cn) ← DFEC.Partition(1λ, C) and generate ski ← FEi.KeyGen(mski, Ci; rKeyGen
i) with

rKeyGen
i ← {0, 1}λ.

4. Compute the fourth round message msg`,i ← ΠM.Round`(τ`−1).
5. Send (msg`,i, ski).

Output Computation.
1. Let τ` denote the transcript of the protocol ΠM up to round `.
2. Compute the output of ΠM as (ct, (r̃k→iSetup)i∈[n],k∈[n]\{i})← ΠM.Out(τ`).
3. Check that (r̃k→iSetup)i∈[n],k∈[n]\{i} is equal to (rk→iSetup)i∈[n],k∈[n]\{i}, if not then Abort.
4. Output DFEC.Dec(skC , ct) with skC = (sk1, . . . , skn).

Fig. 14: Description of the protocol ΠFE that securely realizes any functionality with knowledge
of outputs.

Input: (xi, comSetup,i, openiSetup, R
i
Setup, r

Enc
i)i∈[n]

• Check that comSetup,i = comSetup,j for all i, j ∈ [n].
• Check that RiSetup = RjSetup for all i, j ∈ [n].
• Parse comSetup,i as {comk

Setup}k∈[n] and comi
Setup as {comi→k

Setup}k∈[n] for each i ∈ [n].
• Parse RiSetup as (r̃j→kSetup)j∈[n],k∈[n]\{j}.
• For all i ∈ [n], parse openiSetup as (ri→jSetup, r

i→j
com)j∈[n]

• For all i, j ∈ [n] check that comi→j
Setup = Com(ri→jSetup; ri→jcom)

• For all i ∈ [n], j ∈ [n] \ {i} check that r̃i→jSetup = ri→jSetup
If one of the above checks fails then output ⊥, continue as follows otherwise.
For each i ∈ [n], compute rSetup

i =
⊕

k∈[n] r
k→i
Setup and generate mski ← FEi.Setup(1λ; rSetup

i)
Let msk := (msk1, . . . ,mskn), x = (x1, . . . , xn), rEnc :=

⊕
i∈[n] r

Enc
i .

Output: ct := DFEC.Enc(msk, x; rEnc) and {rk→jSetup}j∈[n],k∈[n]\{j} to Pi.

Fig. 15: Circuit Cct

24

Theorem 2. Let DFEC be a single-key simulation secure decomposable FE combiner with
circuit size csSetup the setup algorithm DFEC.Setup, circuit size csct for the encryption algorithm
DFEC.Enc and functional key size ssk, let Com be a commitment scheme and let ΠM be an
`-round MPC protocol that securely realizes Cct, then ΠFE is an `-round MPC protocol that
realizes the single-output functionality C with knowledge of outputs which has communication
complexity poly(λ, n, csSetup, csEnc, ssk).

We split this theorem into two Lemmas and prove them separately:

Lemma 1. Let DFEC be a single-key simulation secure decomposable FE combiner with cir-
cuit size csSetup for the setup algorithm DFEC.Setup, circuit size csEnc for the encryption
algorithm DFEC.Enc and functional key size ssk, then ΠFE has communication complexity
poly(λ, n, csSetup, csEnc, ssk).

Proof. We divide the analysis of the communication complexity into two steps. In the first step,
we analyze the communication complexity of the inner MPC protocol ΠM and in the second
step the communication complexity of the additional values sent in the outer MPC protocol.

We remark that the operations executed inside the MPC protocol ΠM, besides the generation
of the master secret keys and the encryption, have communication complexity poly(λ, n). Since the
circuit size of the setup algorithm is csSetup and the circuit size of the encryption algorithm is csEnc
the resulting message length is poly(λ, n, csSetup, csEnc), i.e. |msgk,i| = poly(λ, n, csSetup, csEnc)
for all k ∈ {1, . . . , `} and all i ∈ [n].

After analyzing the communication complexity of the inner MPC protocl ΠM, we continue
with the analysis of the messages that are sent in addition to the messages of ΠM.

The additional messages, strings of length λ and commitments, that are output by every
party Pi for all i ∈ [n] in round k, with k ∈ {1, . . . , ` − 1} are of length poly(λ, n). Since the
additional output in round ` contains of the secret key ski for all i ∈ [n] and therefore increases in
size ssk. This results in a communication complexity of poly(λ, n, ssk) for the additional messages.

Combining the two analysis yields an overall communication complexity of poly(λ, n, csSetup,
csEnc, ssk). ut

To specify the values csSetup, csEnc and ssk we apply the definition of combiner succinctness
(Definition 7), which results in the fact that csEnc = poly(λ, n, d, Lout) and ssk = poly(λ, n, d, Lin).
For the circuit size csSetup of the setup algorithm Setup it holds that csSetup = poly(λ, n). This
results in an overall communication complexity of poly(λ, n, d, Lin, Lout).

Lemma 2. Let DFEC be a single-key simulation secure decomposable FE combiner, and let ΠM

be a k-signaling `-round MPC protocol (with k ≥ 3) that securely realizes Cct, then ΠFE is an
`-round MPC protocol that realizes the single-output functionality C with privacy with knowledge
of outputs.

Proof. To prove our lemma we need to show that for every PPT adversary A there exists a PPT
adversary S such that for any I ⊂ [n] the following quantity is negligible:

|Pr[RealΠFE,A(z),I(λ,x) = 1]− Pr[IdealPKO
C,S(z),I(λ,x) = 1]| ,

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.
Also in this case, for simplicity, we assume that all but one of the parties are corrupted,

where we denote the set that contains the indices of all the corrupted parties as I, i.e. |I| = n− 1.
Before describing how S works, we define an algorithmM that we refer to as the augmented
machine. The augmented machine internally runs the adversary A (we refer to this as the right
session), and acts as a proxy between A and its external interface with respect to the messages

25

of ΠM (we refer to this as the left session). To describe our simulator we then need to described
the augmented machine M and how S interacts with it (i.e., how the messages of ΠM are
computed).

The reason why we describe our simulator via the augmented machineM is to deal with
the rewinds that the simulator of ΠM might do. We note thatM acts as an adversary for the
protocol ΠM. Hence, we can consider the simulator ΠM.S for ΠM (which exists by assumption)
for the adversaryM. Our simulator S will then simply run ΠM.S. For the formal description of
M we refer to Fig. 16 and for the formal description of S we refer to Fig. 17.

M(rA) :

Round 1.
1. Receive the message msg1,i in the left session.
2. Sample ri→kSetup, r

i→k
com for all k ∈ [n], compute comi→k

Setup = Com(ri→kSetup; ri→kcom), set comi
Setup :=

{comi→k
Setup}k∈[n] and openiSetup := (ri→kSetup, r

i→k
com)k∈[n].

3. Send (msg1,i, comi
Setup) in the right session.

4. Receive (msg1,j , comj
Setup)j∈I as a reply in the right session and output {msg1,j}j∈I in the left

session.
Round 2.

1. Receive the message msg2,i in the left session.
2. Sample random values ri→jSetup′ .
3. Output msg2,i, {r

i→j
Setup′}j∈I in the right session.

4. Receive (msg2,j , r
j→i
Setup)j∈I as a reply in the right session and output {msg2,j}j∈I in the left session.

For each round k ∈ {3, . . . , `− 1}.
1. Upon receiving the message msgk,i from the left session forward it to A.
2. Receive the messages {msgk,j}j∈I and forward them in the left session.

Round `.
1. Receive the message msg`,i in the left session.
2. Compute rSetup

i =
⊕

k∈[n]\{i} r
k→i
Setup ⊕ ri→iSetup′ with a random value ri→iSetup′ and generate mski ←

FEi.Setup(1λ; rSetup
i), compute the partition of C, i.e. (C1 . . . , Cn) ← DFEC.Partition(1λ, C) and

generate ski ← FEi.KeyGen(mski, Ci; rKeyGen
i) for a random rKeyGen

i .
3. Send (msg`,i, ski) in the right session.
4. Receive (msg`,j)j∈I as a reply in the right session and output {msg`,j}j∈I in the left session.

Fig. 16: The augmented machineM which emulates the adversary for ΠM.

26

S
– Sample a sufficiently long random R and run the simulator ΠM.S for the adversaryM.
– For every query (xj , comSetup,j , openjSetup, R

j
Setup, r

Enc
j)j∈I and comSetup,i, R

i
Setup issued by ΠM.S do the

following:
1. Check that comSetup,i = comSetup,j , R

i
Setup = RjSetup for all j ∈ I, comj→k

Setup = Com(rj→kSetup; rj→kcom)
with openjSetup := (rj→kSetup, r

j→k
com)k∈[n] for all j ∈ I, k ∈ [n] and r̃j→kSetup = rj→kSetup with RiSetup :=

(r̃j→kSetup)j∈[n],k∈[n]\{j} for all j ∈ I, k ∈ [n] \ {j}. If one of these checks fails, Abort.
2. Compute rSetup

i =
⊕

k∈[n]\{i} r
k→i
Setup ⊕ ri→iSetup′ with a random value ri→iSetup′ and generate mski ←

FEi.Setup(1λ; rSetup
i).

3. Query the ideal functionality C using {xj}j∈I and receive C(x1, . . . , xn) as an output.
4. Compute rSetup

j =
⊕

k∈[n]\{i} r
k→j
Setup⊕ r

i→j
Setup′ for all j ∈ I and generate mskj ← FEj .Setup(1λ; rSetup

j).
Simulate a ciphertext ct ← DFEC.S({mski}i∈[n], C, C(x1, . . . , xn), I) and send ct∗ :=
(ct, {rk→lSetup}k∈[n]\{i},l∈[n]\{k}, {ri→lSetup′}l∈[n]\{i}) to ΠM.S.

– When ΠM.S stops, output what ΠM.S outputs.

Fig. 17: The simulator S for our protocol Π.

We describe the hybrid experiments that we use to prove the lemma. We first give an informal
description:

Hybrid H0: Hybrid H0 is identical to the real world.
Hybrid H1: In hybrid H1, the messages of the inner MPC protocol ΠM are is simulated using

the simulator ΠM.S (which exists by assumption). The transition between hybrid H0 and H1
is justified by the malicious security of the MPC protocol ΠM and formally proven in Claim 1.

Hybrid H2: In hybrid H2, commitments (comi→j
Setup)Setup}j∈I commit to the values (ri→jSetup)j∈I ,

but the values output in the second round and used to complete the remaining rounds are
freshly generated random values {ri→jSetup′}j∈I . The transition between hybrid H1 and H2 is
justified by the hiding property of the commitment Com and formally proven in Claim 2.16

Hybrid H3: In hybrid H3, the randomness used to generate the master secret key mski does is
computed using the randomness rSetup

i =
⊕

k∈[n]\{i} r
k→i
Setup⊕ri→iSetup′ where r

i→i
Setup′ is a randomly

sample value which is different from the ri→iSetup committed to in the first round. The transition
between hybrid H2 and H3 is justified by the hiding property of the commitment Com and
formally proven in Claim 3.

Hybrid H4: Hybrid H4 is identical to the ideal world. In this hybrid, the honestly generated
ciphertext ct is replaced by a simulated ciphertext that is generated using the simulator
DFEC.S of the functional encryption combiner DFEC. The transition between H3 and H4 is
justified by the succinct single-key simulation security of the functional encryption combiner
DFEC and requires the introduction of two intermediate hybrids H?

3 and H?
4, which are

described below. This hybrid is described in more detail on Page 33.

We also need to introduce the intermediate hybrids H?
3 and H?

4 :

Hybrid H?
3: The hybrid H?3, is an intermediate hybrid that works exactly as hybrid H3 with the

only difference that look ahead threads for the second and third round are created and freshly
sampled random values {ri→jSetup′′}j∈I instead of {ri→jSetup′}j∈I are output in the second round of
the main thread. Since the values {ri→jSetup′}j∈I and {ri→jSetup′′}j∈I are randomly sampled, the
output distribution of the messages in the second round is the same and therefore the hybrids
H3 and H?3 are perfectly indistinguishable. This hybrid is described in more detail on Page 32.

16 We make use of the fact here that commitments are secure under parallel composition, as mentioned after Defi-
nition 17, and output a new random value to all the parties Pj with j ∈ I.

27

Hybrid H?
4: In this hybrid, the same look ahead threads as in H?3 are created, but the honestly

generated ciphertext ct is replaced by a simulated ciphertext that is generated using the
simulator of the functional encryption combiner DFEC.S. The transition between the hybrids
is proven by relying on the succinct single-key simulation security of the functional encryption
combiner DFEC. To enforce that the master secret keys the corrupted parties generate match
the master secret keys that are generated by the challenger, we need to sample the values
{ri→jSetup′′}j∈I such that their XOR with the values output by the other parties in the second
round {rj→kSetup}j∈I,k∈[n]\{i} match the randomness used by the challenger for the master secret
key generation. This transition is formally proven in Claim 4.

For the formal description of the hybrids, we also use an augmented machine. More precisely,
we define a different augmented machine for each hybrid experiment. In addition, for each hybrid
experiment Hk with k ∈ {0, . . . , 4} we need to specify how to construct the answers to the query
made by the simulator ΠM.S. For the formal description of the augmented machines we refer
to Fig. 19, whereas the formal description of the hybrid experiments is provided in Fig. 18.

ut

Claim 1 (Transition from H0 to H1) Let ΠM be a maliciously secure MPC protocol, then the
output distributions of the hybrid experiments H0 and H1 are computationally indistinguishable.

Proof. By assumption we know that for every PPT adversary A′ there exists a PPT adversary
S ′ such that for any I ⊂ [n] the following quantity is negligible:

|Pr[RealΠM,A(z),I(k,x) = 1]− Pr[IdealCct,S′(z),I(k,x) = 1]|

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.
Suppose there exists an adversary A that can distinguish between the two hybrids with

non-negligible probability then we can use the adversary A′ :=M0(A, ·) to break the security of
ΠM. The description of the augmented machineM0 can be found in Fig. 19.

Note thatM0(A, ·) is a valid adversary for ΠM as, in each round k ∈ [`] it waits to receive
the messages of ΠM generated bye the honest party Pi and replies with the messages computed
by the malicious parties indexed by [n] \ {i}. In the reduction we have a challenger that, having
black box access to M0(A, ·), either interacts with it using the messages of ΠM generated
accordingly to the honest procedure or using the simulator S ′, which exists by the security
definition. We note that in the case where the messages are generated accordingly to the honest
procedure that the output ofM0(A, ·) corresponds to the output of H0, otherwise it corresponds
to the output of H0.

ut

Before we continue with the description of the transition between the remaining hybrids, we
need to distinguish between two different cases. The case where the adversary aborts in round
three with probability 1− negl(λ), and the case where the adversary completes the third round
with some non-negligible probability. In the case that the adversary aborts in the third round,
the following hybrids are not necessary, since the security in this case can be directly reduced to
the security of the inner MPC protocol ΠM. Indeed, note that the input of the honest parties
appears only in the messages of ΠM and nowhere else.

In the case that the adversary completes the third round with some non-negligible probability,
the proof continues as follows.

Claim 2 (Transition from H1 to H2) If Com is a computationally hiding commitment scheme,
then the output distribution of the hybrids H1 and H2 are computationally indistinguishable.

28

H0,

�

�
	H1, H2 , H3 , H4

1. Run ΠM against the adversary M0(A). Upon receiving comSetup,i in round 1 and
RiSetup in round 2, use (xi, comSetup,i, R

i
Setup) as the input for Pi and continue running

ΠM against the adversaryM0(A).

1. Run the simulator ΠM.S against the adversaryM0(A),M1(A) , M2(A) .

For every query (xj , comSetup,j , openjSetup, r
Enc
j)j∈I and comSetup,i issued by ΠM.S do

the following:
1. Check that comSetup,i = comSetup,j , R

i
Setup = RjSetup for all j ∈ I, comj→k

Setup =
Com(rj→kSetup; rj→kcom) with openjSetup := (rj→kSetup, r

j→k
com)k∈[n] for all j ∈ I, k ∈ [n] and

r̃j→kSetup = rj→kSetup with RiSetup := (r̃j→kSetup)j∈[n],k∈[n]\{j} for all j ∈ I, k ∈ [n] \ {j}. If
one of these checks fails, Abort.

2. Compute rSetup
i =

⊕
k∈[n] r

k→i
Setup and generate mski ← FEi.Setup(1λ; rSetup

i).

2. Compute rSetup
i =

⊕
k∈[n]\{i} r

k→i
Setup ⊕ ri→iSetup′ and generate mski ←

FEi.Setup(1λ; rSetup
i).

3. Query the ideal functionality using {xj}j∈I and receive C(x1, . . . , xn) as an
output.

4. Compute rSetup
j =

⊕
k∈[n]\{i} r

k→j
Setup⊕ r

i→j
Setup′ for all j ∈ I and generate mskj ←

FEj .Setup(1λ; rSetup
j). Simulate a ciphertext ct ← DFEC.S({mski}i∈[n],

C, C(x1, . . . , xn), I) and send ct∗ := (ct, {rk→lSetup}k∈[n]\{i},l∈[n]\{k} ∪
{ri→lSetup′}l∈[n]\{i}) to ΠM.S.

3. Compute rSetup
j =

⊕
k∈[n]\{i} r

k→j
Setup ⊕ ri→jSetup′ , generate

mskj ← FEj .Setup(1λ; rSetup
j) for all j ∈ I, compute

ct ← DFEC.Enc({mski}i∈[n], {xi}i∈[n]) and send ct∗ :=
(ct, {rk→lSetup}k∈[n]\{i},l∈[n]\{k} ∪ {ri→lSetup′}l∈[n]\{i}) to ΠM.S.

3. Compute rSetup
j =

⊕
k∈[n] r

k→j
Setup, generate mskj ← FEj .Setup(1λ; rSetup

j) for
all j ∈ I, compute ct ← DFEC.Enc({mski}i∈[n], {xi}i∈[n]) and send ct∗ :=
(ct, {rk→lSetup}k∈[n],l∈[n]\{k}) to ΠM.S

When ΠM.S stops, output what ΠM.S outputs.

Fig. 18: Description of the hybrids H0, . . . ,H4, where the machines M0, . . . ,M3 are defined
in Fig. 19

29

M0(A, rA), M1(A, rA) , M2(A, rA) :

Initialization Run A using the randomness rA.
Round 1.

1. Receive the message msg1,i in the left session.
2. Sample ri→kSetup, r

i→k
com for all k ∈ [n], compute comi→k

Setup = Com(ri→kSetup; ri→kcom), set
comi

Setup := {comi→k
Setup}k∈[n] and openiSetup := (ri→kSetup, r

i→k
com)k∈[n].

3. Send (msg1,i, comi
Setup) in the right session.

4. Receive (msg1,j , comj
Setup)j∈I as a reply in the right session and output {msg1,j}j∈I

in the left session.
Round 2.

1. Receive the message msg2,i in the left session.

2. Sample random values ri→jSetup′ .

3. Output msg2,i, {r
i→j
Setup′}j∈I , {r

i→j
Setup}j∈I in the right session.

4. Receive (msg2,j , r
j→i
Setup)j∈I as a reply in the right session and send {msg2,j}j∈I in

the left session.
For each round k ∈ {3, . . . , `− 1}.

1. Upon receiving the message msgk,i from the left session forward it to A.
2. Receive the messages {msgk,j}j∈I and forward them in the left session.

Round `.
1. Receive the message msg`,i in the left session.

2. Compute rSetup
i =

⊕
k∈[n] r

k→i
Setup rSetup

i =
⊕

k∈[n]\{i} r
k→i
Setup ⊕ ri→iSetup′ and generate

mski ← FEi.Setup(1λ; rSetup
i), compute the partition of C, i.e. (C1 . . . , Cn) ←

DFEC.Partition(1λ, C) and generate ski ← FEi.KeyGen(mski, Ci; rKeyGen
i) for a ran-

dom rKeyGen
i .

3. Send (msg`,i, ski) in the right session.
4. Receive (msg`,j)j∈I as a reply in the right session and output {msg`,j}j∈I in the

left session.

Fig. 19: The description of the augmented machinesM0, . . . ,M3 for the hybrids H0, . . . ,H4.

30

Proof. The difference between H1 and H2 is that the values sent in the third round are replaced
by random values (i.e., they are different from the committed values in the first round). Assuming
that the output distribution of H1 and H2 are distinguishable, we can construct an adversary A′
that breaks the hiding of Com. The adversary A′ works as follows.
1. Sample two sets of random values {ri→jSetup}j∈[n]\{i}, {r

i→j
Setup′}j∈[n]\{i} and send them to the

challenger C.
2. Upon receiving {comi→j

Setup}j∈[n]\{i} from C sample the values ri→iSetup, r
i→i
com ← {0, 1}λ and

compute comi→i
Setup := Com(ri→iSetup; ri→icom)

3. Set comi
Setup := {comi→j

Setup}j∈[n].
4. Act exactly as in H1 (and H2) with the following differences:

(a) In round one use comi
Setup := {comi→j

Setup}j∈[n] instead of freshly generated commitments
(b) In round two output the values {ri→jSetup}j∈[n]\{i}.
(c) For every query (xj , comSetup,j , openjSetup, R

j
Setup, r

Enc
j)j∈I and comSetup,i, R

i
Setup asked by

the simulator ΠM, check that comSetup,i = comSetup,j , R
i
Setup = RjSetup for all j ∈ I,

comj→k
Setup = Com(rj→kSetup; rj→kcom) with openjSetup := (rj→kSetup, r

j→k
com)k∈[n] for all j ∈ I, k ∈ [n]

and r̃j→kSetup = rj→kSetup with RiSetup := (r̃j→kSetup)j∈[n],k∈[n]\{j} for all j ∈ I, k ∈ [n] \ {j}. If one
of these check fails, reply to the simulator with Abort. In the case that these tests
pass, compute rSetup

i =
⊕
k∈[n] r

k→i
Setup and generate mski ← FEi.Setup(1λ; rSetup

i). Compute
rSetup
j =

⊕
k∈[n] r

k→j
Setup, generate mskj ← FEj .Setup(1λ; rSetup

j) for all j ∈ I, compute
ct← DFEC.Enc({mski}i∈[n], {xi}i∈[n]) and send ct∗ := (ct, {rk→lSetup}k∈[n],l∈[n]\{k}) to ΠM.S

(d) Output what A outputs.
The proof ends with the observation that the output of A′′ in the case where C has computed
the commitments using the values {ri→jSetup}j∈[n]\{i} corresponds to the output of H1, and to the
output of H2 otherwise. ut

Claim 3 (Transition from H2 to H3) If Com is a computationally hiding commitment scheme,
then the output distribution of the hybrids H2 and H3 are computationally indistinguishable.

Proof. In the transition from hybrid H2 to hybrid H3 the randomness of the party Pi that is
used to generate the master secret key mski changes from being determined by the committed
values of all the parties, i.e. rSetup

i =
⊕
k∈[n] r

k→i
Setup to a random value that is independent of the

commitments {comk→i
Setup}k∈[n] by computing rSetup

i =
⊕
k∈[n]\{i} r

k→i
Setup ⊕ ri→iSetup′ with a random

value ri→iSetup′ .
Assuming that the output distribution of H1 and H2 are distinguishable, we can construct

an adversary A′ that breaks the hiding of Com. The adversary A′ works as follows.
1. Sample two random values ri→iSetup, r

i→i
Setup′ and send them to the challenger C.

2. Upon receiving comi→i
Setup from C act exactly as in H2 (and H3) with the following differences:

(a) In round 1 use comi→i
Setup instead of freshly generated commitments.

(b) In round ` compute rSetup
i =

⊕
k∈[n] r

k→i
Setup and generate mski ← FEi.Setup(1λ; rSetup

i),
compute the partition of C, i.e. (C1 . . . , Cn) ← DFEC.Partition(1λ, C) and generate
ski ← FEi.KeyGen(mski, Ci; rKeyGen

i) for a random rKeyGen
i .

(c) For every query (xj , comSetup,j , openjSetup, R
j
Setup, r

Enc
j)j∈I and comSetup,i, R

i
Setup asked by

the simulator ΠM, check that comSetup,i = comSetup,j , R
i
Setup = RjSetup for all j ∈ I,

comj→k
Setup = Com(rj→kSetup; rj→kcom) with openjSetup := (rj→kSetup, r

j→k
com)k∈[n] for all j ∈ I, k ∈ [n]

and r̃j→kSetup = rj→kSetup with RiSetup := (r̃j→kSetup)j∈[n],k∈[n]\{j} for all j ∈ I, k ∈ [n] \ {j}. If
one of these check fails, reply to the simulator with Abort. In the case that these

31

tests pass, compute rSetup
i =

⊕
k∈[n] r

k→i
Setup and generate mski ← FEi.Setup(1λ; rSetup

i).
Compute rSetup

j =
⊕

k∈[n] r
k→j
Setup, generate mskj ← FEj .Setup(1λ; rSetup

j) for all j ∈ I,
compute ct← DFEC.Enc({mski}i∈[n], {xi}i∈[n]) and send ct∗ := (ct, {rk→lSetup}k∈[n],l∈[n]\{k})
to ΠM.S.

3. Output what A outputs.
The proof ends with the observation that the output of A′′ in the case where C computes

the commitments using the value ri→iSetup corresponds to the output of H2, and to the output of
H3 otherwise. ut

To make the next transition possible, we need to introduce an intermediate hybrid H?3. This
hybrid works as H3 with the difference that once the adversary A has received the third round,
it is rewound up to the end of the first round after A has provided its output. In the next step,
a set of new random values {ri→jSetup′′}j∈[n]\{i} is sampled and used to complete the interaction
with the adversary A instead of {ri→jSetup′}j∈[n]\{i} accordingly to H3. We introduce this hybrid
to simplify our last reduction to the security of the FE combiner. We provide a more detailed
description of the hybrid H?

3 below.

Hybrid H?
3: This hybrid works as hybrid H3 with the difference that look ahead threads

are created. In more detail, in this hybrid, the first three rounds of the protocol are ex-
ecuted as in hybrid H3. When the simulator ΠM.S of the inner MPC sends the query
(xj , comSetup,j , openjSetup, R

i
Setup, r

Enc
j)j∈I , the simulator checks that comSetup,i = comSetup,j ,

RiSetup = RjSetup for all j ∈ I, comj→k
Setup = Com(rj→kSetup; rj→kcom) with openjSetup := (rj→kSetup, r

j→k
com)k∈[n]

for all j ∈ I, k ∈ [n] and r̃j→kSetup = rj→kSetup with RiSetup := (r̃j→kSetup)j∈[n],k∈[n]\{j} for all
j ∈ I, k ∈ [n] \ {j}.
We now distinguish between two cases 1) the above check fails and 2) the above check is
successful. We denote the event in which 1) occurs with E1 and the event in which 2) occurs
with E2. In the case that E1 occurs, the hybrid behaves exactly as H3 (i.e., no rewinds are
needed) and the simulator S replies to the query (xj , comSetup,j , openjSetup, R

i
Setup, r

Enc
j)j∈I

with Abort.. In the case of E2, the current thread becomes a look ahead thread and the
execution is rewound until the beginning of the second round. Then the second and third
round is executed again with the difference that the random values {ri→jSetup′}j∈I sent in the
second round of the look ahead thread are replaced with freshly generated random values
{ri→jSetup′′}j∈I .
We distinguish again between the two cases where 1) the query made by ΠM.S to its ideal
functionality is valid (i.e., the ideal functionality for Cct does not return Abort) or 2) the
query made by ΠM.S is invalid and the ideal functionality returns Abort17. We denote with
F1 the event that the first case occurs and with F2 the event that the second case occurs. In
the case of F2, we rewind the adversary again, create another look ahead thread and behave
as described before. We repeat this procedure until the ideal functionality query asked by the
simulator ΠM.S fulfills the condition, which puts us into event F1. Since we need to ensure
that our hybrid experiment runs in polynomial time, we need to argue that the adversary
A gets rewound at most a polynomial number of times. We recall that in this proof we are
assuming that the event E1 happens with some non-negligbile probability p. Given that
the view of the adversary during the look-ahead threads is the same as in the main thread,
we can claim that Pr [E1] = Pr [F1]. Hence, the number of rewinds is polynomial in the
security parameter. Given that Pr [E1] = Pr [F1] and that the view of the adversary in

17 We recall that the ideal functionality for Cct is emulated by the simulator.

32

the look-ahead threads and in the main thread is identical, we can claim that the output
distribution of H3 and H?

3 are identical.

Claim 4 (Transition from H?
3 to H?

4) If DFEC is a single-key simulation secure decomposable
FE combiner, then the hybrids H?

3 and H?
4 are computationally indistinguishable.

Proof. The hybrids H?3 and H?4 differ in the generation of the ciphertext ct that is output by the
inner MPC protocol ΠM. In hybrid H?

3 the ciphertext is generated by encrypting the messages
(x1, . . . , xn) using the encryption procedure DFEC.Enc, whereas in hybrid H?

4 the ciphertext is
simulated using the inputs ({xj}j∈I , C, C(x1, . . . , xn), I) and the simulator of the functional
encryption combiner DFEC.S.

Assuming that the output distribution of H?3 and H?4 are distinguishable, we can construct an
adversary A′ that breaks the single-key simulation security of the decomposable FE combiner
DFEC. The adversary A′ works as follows.

1. Interact with A accordingly to H?
3 until the look ahead threads are created.

2. In the case that event E1 occurs, the reduction stops here and outputs Abort. In the case
that E2 occurs save the values rj→kSetup for all j ∈ I, k ∈ [n] and submit the set of corrupted
parties I and the circuit C to its underlying challenger C.

3. Upon receiving the master secret keys {mskj}j∈I , as well as the functional key skC =
(skC1 , . . . , skCn) with (C1, . . . , Cn)← DFEC.Partition(1λ, C) for the circuit C compute ri→jSetup′′ =⊕

k∈[n]\{i} r
k→j
Setup ⊕ r

Setup
j for all j ∈ I with {rk→jSetup}j∈I,k∈[n] learned from the creation of the

look-ahead threads.
4. Return to the main thread and output (ri→jSetup′′)j∈[n]\{i} in the second round. Continue with

the execution until event F1 occurs.
5. Act exactly as in H?3 (and H?4) until the commitments of a query (xj , comSetup,j , openjSetup, R

j
Setup,

rEnc
j)j∈I and comSetup,i, R

i
Setup, asked by the simulator of ΠM, are checked for equality and

correctness.
6. Query the ideal functionality using {xj}j∈I and receive C(x1, . . . , xn) as an answer.
7. Submit ({xk}k∈[n], C(x1, . . . , xn)) to the challenger C.
8. Upon receiving ct, send ct∗ := (ct, {rk→lSetup}k∈[n]\{i},l∈[n]\{k}, {ri→lSetup′′}l∈[n]\{i}) to ΠM.S.
9. Output what A outputs.

The proof ends with the observation that the output of A′′ in the case where C computes
the ciphertext using the values {xk}k∈[n] corresponds to the output of H?3, and to the output of
H?

4 otherwise.
For the final transition from H?

4 to H4, we need to simulate the ciphertext ct without the
creation of look ahead threads. Since we do not need to rely on the challenger of the functional
encryption combiner DFEC to simulate the ciphertext ct in H4, it is also not necessary to
program the master secret keys of the corrupted parties {mskj}j∈I to match the master secret
keys generated by the challenger. This allows the simulator S of the MPC protocol ΠFE to
simulate the ciphertext using the master secret keys {mskj}j∈I defined by the randomness
{rSetup
j }, i.e mskj ← FE.Setup(1λ; rSetup

j) for all j ∈ I with rSetup
j =

⊕
k∈[n]\{i} r

k→j
Setup ⊕ r

i→j
Setup′ .

Therefore there is no need to sample the additional random values {ri→lSetup′′}l∈[n]\{i}.
These changes do not affect the output distribution of H?

4 and H4, which makes the two
hybrids perfectly indistinguishable. ut

The following theorem follows immediately from Theorem 2 and the definition of strong
succinct FE combiners.

33

Theorem 3. Let DFEC be a succinct single-key simulation secure decomposable FE combiner,
then ΠFE is a circuit-scalable secure MPC protocol that realizes any single-output functionality
with knowledge of outputs.

Instantiations. To instantiate our compiler we need an `-round k-Signaling MPC protocol and
a succinct decomposable FE combiner. From Theorem 1 and from the fact that the 4-round
protocols proposed in [BGJ+18,CCG+19] do not require the input to compute the first two
rounds, we can construct a k-Signaling MPC protocol assuming that any of these assumptions
holds: DDH, QR, Nth Residuosity, or existence of malicious-secure OT assumptions holds.

Regarding the FE combiner, in [ABJ+19, Section 4], the authors mention that a functional
encryption scheme that fulfills succinctness and can be used as an instantiation for the FE
candidates of the the FE combiner is the scheme of Goldwasser et al. [GKP+13]. However,
our definition of strong succinctness for FE combiner requires the complexity of the setup
algorithm to be dependent only on the circuit depth, the input and the output size of the
function being computed. For their instantiation, the authors of [ABJ+19] consider the FE
protocol protocol proposed in [GKP+13]. This can be instantiated from an attribute based
encryption (ABE) scheme and leveled fully-homomorphic encryption (FHE) scheme, and becomes
succinct (in the key-size and the description of the encryption circuit) when instantiated with
one of the ABE schemes proposed in [BGG+14,GVW15] and one of the leveled FHE schemes
of [BGV12,GSW13]. Fortunately, the scheme of Goldwasser et al. [GKP+13] provides succinctness
also in the description of the setup algorithm when instantiated with the above ABE and FHE
schemes. In more detail, the FE protocol proposed in [GKP+13] runs the setup algorithm of
an ABE scheme N times, where N := poly(λ, d, Lin). The ABE schemes are used to compute
the evaluation function Eval for the underling FHE scheme Eval and has depth d (but its size
depends on f). Hence, we just need to make sure that also the description of the circuit of
the setup procedure of the ABE schemes proposed in [BGG+14,GVW15] depends only on the
circuit depth, input and output size of Eval. In the work of Boneh et al. [BGG+14, Section
4] the authors present an attribute based encryption scheme based on the LWE assumption,
where the setup algorithm takes as an input a unary representation of the security parameter λ
and the input length Lin of the circuit that needs to be computed. Therefore the running time
of this algorithm only depends on the security parameter and the circuit input-length, which
results in poly(λ, Lin). The predicate encryption scheme presented in [GVW15, Section 4] is also
based on the LWE assumption and the setup algorithm of this construction takes as an input a
unary representation of the security parameter λ, the input length Lin as well as the depth of
the circuit d. This allows us to bound the circuit size of the setup algorithm as poly(λ, d, Lin).
Hence, we get that the description of the setup circuit of the FE protocol of [GKP+13] is at
most csSetup = poly(λ, d, Lin, n). Given the above, we can now claim the following corollary.

Theorem 4. If the LWE assumption holds and any of the DDH, QR, Nth Residuosity, or
existence of malicious-secure OT assumptions holds, then there exists a round optimal (4-round)
circuit-scalable MPC protocol that realizes any single-output functionality with knowledge of
outputs.

By relying on the compiler that amplifies security from privacy with knowledge of outputs to
full security, based on signatures (Section 6) and the compiler that realizes any functionality
from single-output functionalities, based on symmetric encryption (Section 7).

Using the following observations:
1. A signature scheme can be instantiated from OWFs [Rom90];
2. The encryption scheme can be instantiated information-theoretically (just using one-time

pad).

34

we obtain the following corollary.

Corollary 1. If the LWE assumption holds and any of the DDH, QR, Nth Residuosity holds, or
there exists a malicious-secure OT, then there exists a round optimal (4-round) circuit-scalable
MPC protocol that realizes any functionality.

5 Our Compiler: Circuit-Independent Efficient MPC

In this section we prove our main theorems on how to construct a communication efficient MPC
protocol that realizes any functionality f with knowledge of outputs. We refer to Section 2 for
a simplified description of the protocol for the two-party case and to Fig. 24 for the formal
description of our compiler.

Our Construction makes use of the following cryptographic tools:
– An `-round k-signaling MPC protocol ΠM = (ΠM.Round1, . . . ,Π

M.Round`, ΠM.Out) (not
necessarily communication efficient) with k ≥ 2 that securely evaluates the function CDec
(described in Fig. 25), where ΠM.Roundk takes the input of the party Pi that we denote with
yi.18 In the description of our compiler we assume, without loss of generality, that ΠM is
2-signaling.19

– A multi-key fully homomorphic encryption scheme MFHE = (Setup,Enc,Eval,Dec) for n
keys.

Theorem 5. Let MFHE be a multi-key fully homomorphic encryption scheme with circuit size
csSetup for the setup algorithm MFHE.Setup, circuit size csEnc for the encryption algorithm
MFHE.Enc, circuit size csDec for the decryption algorithm MFHE.Dec and ciphertext size sct, let
ΠM be an k-signaling `-round MPC protocol that securely realizes CDec, then ΠFHE is an `-round
MPC protocol that realizes the single-output functionality C with knowledge of outputs which has
communication complexity poly(λ, n, csSetup, csEnc, csDec, sct).

We split this theorem into two Lemmas and prove them separately:

Lemma 3. Let MFHE be a multi-key fully homomorphic encryption scheme with circuit size
csSetup for the setup algorithm MFHE.Setup, circuit size csEnc for the encryption algorithm
MFHE.Enc, circuit size csDec for the decryption algorithm MFHE.Dec and ciphertext size sct,
then ΠFHE has communication complexity poly(λ, n, csSetup, csEnc, csDec, sct).

Proof. We divide the analysis of the communication complexity into two steps. In the first step,
we analyze the communication complexity of the inner MPC protocol ΠM and in the second
step the communication complexity of the additional values sent in the outer MPC protocol.

We remark that the operations executed inside the MPC protocol ΠM, besides the generation
of the public and secret keys, the encryptions and the decryption, have communication complexity
poly(λ, n). Since the circuit size of the setup algorithm is csSetup, the circuit size of the encryption
algorithm is csEnc and the circuit size of the decryption algorithm is csDec the resulting message
length is poly(λ, n, csSetup, csEnc, csDec), i.e. |msgk,i| = poly(λ, n, csSetup, csEnc, csDec) for all k ∈
{1, . . . , `} and all i ∈ [n].

After analyzing the communication complexity of the inner MPC protocol ΠM, we continue
with the analysis of the messages that are sent in addition to the messages of ΠM.
18 To simplify the description of the protocol we assume that the entire input (the signaled part and the private

part) is provided in round k.
19 It is easy to see that any k′-signaling MPC with k′ > 2 can be turned into a 2-signaling MPC protocol since

that the signaled input received in round 2 can be ignore up to round k′ − 1.

35

The additional messages, public keys and ciphertexts, that are output by every party Pi for
all i ∈ [n] in round 1 are of length poly(λ, n, sct, spk). This results in a communication complexity
of poly(λ, n, ssk) for the additional messages.

Combining the two analysis yields an overall communication complexity of poly(λ, n, csSetup,
csEnc, csDec, sct, spk, ssk). ut

To specify the values csSetup, csEnc, csDec and ssk we apply the definition of compactness for
MFHE (Definition 10), which results in sct = poly(λ, n). For the circuit sizes csSetup, csEnc and
csDec of the setup algorithm Setup, the encryption algorithm Enc and the decryption algorithm
Dec, it holds that csSetup = poly(λ), csEnc = poly(λ, Lin) and csDec = poly(λ, n, Lout). This
results in an overall communication complexity of poly(λ, n, Lin, Lout).
Lemma 4. Let MFHE be a multi-key fully homomorphic encryption scheme, and let ΠM be
a k-signaling `-round MPC protocol (with k ≥ 2) that securely realizes CDec, then ΠFHE is an
`-round MPC protocol that realizes the single-output functionality C.
Proof. To prove our lemma we need to show that for every PPT adversary A there exists a PPT
adversary S such that for any I ⊂ [n] the following quantity is negligible:

|Pr[RealΠFHE,A(z),I(λ,x) = 1]− Pr[IdealPKO
C,S(z),I(λ,x) = 1]| ,

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.
As before, simplicity, we assume that all but one of the parties are corrupted. We denote the

set that contains the indices of all the corrupted parties as I, i.e. |I| = n− 1. Before describing
how S works, we define an algorithm M that we refer to as the augmented machine. The
augmented machine internally runs the adversary A (we refer to this as the right session), and
acts as a proxy between A and its external interface with respect to the messages of ΠM (we refer
to this as the left session). To describe our simulator we then need to described the augmented
machineM and how S interacts with it (i.e., how the messages of ΠM are computed).

The reason why we describe our simulator via the augmented machineM is to deal with
the rewinds that the simulator of ΠM might do. We note thatM acts as an adversary for the
protocol ΠM. Hence, we can consider the simulator ΠM.S for ΠM (which exists by assumption)
for the adversaryM. Our simulator S will then simply run ΠM.S. For the formal description of
M we refer to Fig. 20 and for the formal description of S we refer to Fig. 21.

M(rA) :

Round 1.
1. Receive the message msg1,i in the left session.
2. Sample rSetup

i ← {0, 1}λ and compute (pki, ski) := Setup(1λ; rSetup
i).

3. Sample rEnc
i ← {0, 1}λ and compute cti := Enc(pki, 0; rEnc

i).
4. Output (msg1,i, pki, cti) in the right session.
5. Receive (msg1,j , pkij , ctij)j∈I as a reply in the right session.
6. Output {msg1,j}j∈I in the left session.

For each round k ∈ {2, . . . , `− 1}.
1. Upon receiving the message msgk,i from the left session forward it to A.
2. Receive the messages {msgk,j}j∈I and forward them in the left session.

Round `.
1. Receive the message msg`,i in the left session.
2. Send msg`,i in the right session.
3. Receive {msg`,j}j∈I as a reply in the right session and output {msg`,j}j∈I in the left session.

Fig. 20: The augmented machineM which emulates the adversary for ΠM.

36

S
– Sample a sufficiently long random R and run the simulator ΠM.S for the adversaryM.
– For every query (xj , ctj ,Kj , skj , rSetup

j , rEnc
j)j∈I issued by ΠM.S do the following:

1. Compute ct := Eval(C, (pki1, cti1), . . . , (pkin, ctin)).
2. For all j ∈ I, parse Kj as (pkjl , ctjl)l∈[n].
3. For all j ∈ I, l ∈ [n] check that (pkil, ctil) = (pkjl , ctjl).
4. For all j ∈ I check that (pkjj , sk

j
j) := Setup(1λ; rSetup

j) and ctjj := Enc(pkj , xj ; rEnc
j).

5. Compute y := Dec(sk1, . . . , skn, ct), yj := Dec(sk1, . . . , skn, ctj) and check that y = yj for all j ∈ I.
6. If one of the above checks fails then output ⊥, continue as follows otherwise.
7. Query the ideal functionality C using {xj}j∈I and receive y := C(x1, . . . , xn) as an output.
8. Send y to ΠM.S.

– When ΠM.S stops, output what ΠM.S outputs.

Fig. 21: The simulator S for our protocol ΠFHE.

We describe the hybrid experiments that we use to prove the lemma. We first give an informal
description:

Hybrid H0: Hybrid H0 is identical to the real world.

Hybrid H1: In hybrid H1, the messages of the inner MPC protocol ΠM are simulated using the
simulator ΠM.S (which exists by assumption). The transition between hybrid H0 and H1 is
justified by the malicious security of the MPC protocol ΠM and formally proven in Claim 5.

Hybrid H2: Hybrid H2 is identical to the ideal world. In this hybrid, the honestly generated
ciphertext cti is replaced by an encryption of 0 under the same public key instead of an
encryption of xi. The transition between H1 and H2 is justified by the IND-CPA security of
the multi-key fully homomorphic encryption scheme MFHE and formally proven in Claim 6.

For the formal description of the hybrids, we also use an augmented machine. More precisely,
we define a different augmented machine for each hybrid experiment. In addition, for each hybrid
experiment Hk with k ∈ {0, 1, 2} we need to specify how to construct the answers to the query
made by the simulator ΠM.S. For the formal description of the augmented machines we refer
to Fig. 23, whereas the formal description of the hybrid experiments is provided in Fig. 22.

37

H0,

�
�

�
�H1, H2

1. Run ΠM against the adversary M0(A). Upon receiving cti,Ki, ski, rSetup
i , rEnc

i in round 2, use
(xi, cti,Ki, ski, rSetup

i , rEnc
i) as the input for Pi and continue running ΠM against the adversaryM0(A).

1. Run the simulator ΠM.S against the adversaryM0(A), M1(A) .

For every query (xj , ctj ,Kj , skj , rSetup
j , rEnc

j)j∈I issued by ΠM.S do the following:
1. Check that (pkjj , sk

j
j) := Setup(1λ; rSetup

j), ctjj := Enc(pkj , xj ; rEnc
j) for all j ∈ I with

Kj = (pkjl , ctjl)l∈[n] and check that (pkil, ctil) = (pkjl , ctjl) for all j ∈ I, l ∈ [n]. Compute
ct := Eval(C, (pki1, cti1), . . . , (pkin, ctin)), y := Dec(sk1, . . . , skn, ct), yj := Dec(sk1, . . . , skn, ctj)
and check that y = yj for all j ∈ I. If one of these checks fails, Abort.

3. Query the ideal functionality C using {xj}j∈I , receive y := C(x1, . . . , xn) as an output and
send y to ΠM.S.

3. Send y to ΠM.S
When ΠM.S stops, output what ΠM.S outputs.

Fig. 22: Description of the hybrids H0,H1,H2, where the machines M0 and M1 are defined
in Fig. 23

M0(rA), M1(A, rA) :

Round 1.
1. Receive the message msg1,i in the left session.
2. Sample rSetup

i ← {0, 1}λ and compute (pki, ski) := Setup(1λ; rSetup
i).

3. Sample rEnc
i ← {0, 1}λ and compute cti := Enc(pki, xi; rEnc

i) cti := Enc(pki, 0; rEnc
i) .

4. Output (msg1,i, pki, cti) in the right session.
5. Receive (msg1,j , pkij , ctij)j∈I as a reply in the right session.
6. Output {msg1,j}j∈I in the left session.

For each round k ∈ {2, . . . , `− 1}.
1. Upon receiving the message msgk,i from the left session forward it to A.
2. Receive the messages {msgk,j}j∈I and forward them in the left session.

Round `.
1. Receive the message msg`,i in the left session.
2. Send msg`,i in the right session.
3. Receive {msg`,j}j∈I as a reply in the right session and output {msg`,j}j∈I in the left session.

Fig. 23: The augmented machineM which emulates the adversary for ΠM.
ut

Claim 5 (Transition from H0 to H1) Let ΠM be a maliciously secure MPC protocol, then the
output distributions of the hybrid experiments H0 and H1 are computationally indistinguishable.

Proof. By assumption we know that for every PPT adversary A′ there exists a PPT adversary
S ′ such that for any I ⊂ [n] the following quantity is negligible:

|Pr[RealΠM,A(z),I(k,x) = 1]− Pr[IdealCDec,S′(z),I(k,x) = 1]|

38

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.
Suppose there exists an adversary A that can distinguish between the two hybrids with

non-negligible probability then we can use the adversary A′ :=M0(A, ·) to break the security of
ΠM. The description of the augmented machineM0 can be found in Fig. 23.

Note thatM0(A, ·) is a valid adversary for ΠM as, in each round k ∈ [`] it waits to receive
the messages of ΠM generated bye the honest party Pi and replies with the messages computed
by the malicious parties indexed by [n] \ {i}. In the reduction we have a challenger that, having
black box access to M0(A, ·), either interacts with it using the messages of ΠM generated
accordingly to the honest procedure or using the simulator S ′, which exists by the security
definition. We note that in the case where the messages are generated accordingly to the honest
procedure that the output ofM0(A, ·) corresponds to the output of H0, otherwise it corresponds
to the output of H1.

Besides showing that the hybrids H0 and H1 are indistinguishable, we also need to show
that the outputs of the protocol in both of the hybrids is correct with respect to its inputs.
This means that we need to show that C(x1, . . . , xn) = Dec(sk1, . . . , skn,Eval(C, ct1

1, . . . , ctnn))
for all possible inputs (xi, cti,Ki := (pkij , ctij)j∈[n], ski, rSetup

i , rEnc
i)i∈[n] that pass all the tests

described in Fig. 25. We prove this by contradiction. Now, we assume that C(x1, . . . , xn) is
unequal to the output of the MPC protocol Dec(sk1, . . . , skn,Eval(C, ct1

1, . . . , ctnn)). In more detail,
C(x1, . . . , xn) 6= Dec(sk1, . . . , skn,Eval(C, ct1

1, . . . , ctnn)), where ctii := Enc(pkii, xi; rEnc
i) with (pkii,

ski) := Setup(1λ; rSetup
i). This directly yields a contradiction to the perfect correctness of the multi-

key FHE scheme (Definition 8) which states that C(x1, . . . , xn) = Dec(sk1, . . . , skn,Eval(C, ct1
1, . . . ,

ctnn)), where ctii := Enc(pkii, xi; rEnc
i) for any xi and any rEnc

i ← {0, 1}λ with (pki, ski) :=
Setup(1λ; rSetup

i) for any rSetup
i ← {0, 1}λ. ut

Claim 6 (Transition from H1 to H2) If MFHE is a semantic secure perfectly correct multi-
key fully homomorphic encryption scheme, then the output distribution of the hybrids H1 and H2
are computationally indistinguishable.

Proof. The difference between H1 and H2 is that the encryption of xi sent in the second round
is replaced by an encryption of 0. Assuming that the output distribution of H1 and H2 are
distinguishable, we can construct an adversary A′ that breaks the semantic security of MFHE.
The adversary A′ works as follows.
1. Receive pki from the challenger C.
2. Send (xi, 0) to the challenger C and receive cti as a reply.
3. Act exactly as in H1 (and H2) with the following differences:

(a) In round one output the keys pki and the ciphertext cti received from the challenger C.
(b) For every query (xj , ctj ,Kj , skj , rSetup

j , rEnc
j)j∈I asked by the simulator ΠM.S, check

that (pkjj , sk
j
j) := Setup(1λ; rSetup

j), ctjj := Enc(pkj , xj ; rEnc
j) for all j ∈ I with Kj =

(pkjl , ctjl)l∈[n] and check that (pkil, ctil) = (pkjl , ctjl) for all j ∈ I, l ∈ [n]. Compute ct :=
Eval(C, (pki1, cti1), . . . , (pkin, ctin)), y := Dec(sk1, . . . , skn, ct), yj := Dec(sk1, . . . , skn, ctj)
and check that y = yj for all j ∈ I. If one of these checks fails, Abort. In the case that
these tests pass, query the ideal functionality C using {xj}j∈I , receive y := C(x1, . . . , xn)
as an output and send y to ΠM.S.

(c) Output what A outputs.
To ensure that the adversary A does not have a distinguishing advantage between the hybrids

H1 and H2, we need to show that the output of the protocol in H1 and H2 is the same. This
means we need to show that C(x1, . . . , xn) 6= Dec(sk1, . . . , skn,Eval(C, (pki1, cti1), . . . , (pkin, ctin))
for all possible inputs (xi, cti,Ki := (pkij , ctij)j∈[n], ski, rSetup

i , rEnc
i)i∈[n] to the protocol ΠM that

39

pass all the checks. Now, we assume that this is not the case and that there exists an input
(xi, cti,Ki := (pkij , ctij)j∈[n], ski, rSetup

i , rEnc
i)i∈[n] to the protocol ΠM that pass all the checks, such

that C(x1, . . . , xn) 6= Dec(sk1, . . . , skn,Eval(C, (pki1, cti1), . . . , (pkin, ctin)), but this would yield a
contradiction to the perfect correctness of the multi-key FHE scheme (Definition 8) as described
in the proof of Claim 5. This results in the fact that the output of the protocol in H1 and H2 is
the same for every possible correct input. This also results in the correctness of the outputs in
both hybrids as in Claim 6

The proof ends with the observation that the output of A′′ in the case where C has encrypted
xi corresponds to the output of H1, and to the output of H2 otherwise. ut

ΠFHE

Initialization: Each i ∈ [n] party Pi has input xi ∈ {0, 1}∗ as its secret input. We initialize τ0 to 1λ.

Round 1.
1. Compute msg1,i ← ΠM.Round1(1λ).
2. Sample rSetup

i ← {0, 1}λ and compute (pki, ski) := Setup(1λ; rSetup
i).

3. Sample rEnc
i ← {0, 1}λ and compute cti := Enc(pki, xi; rEnc

i).
4. Send (msg1,i, pki, cti).

Round 2.
1. Let τ1 denote the transcript of the protocol ΠM up to round 1.
2. Compute cti := Eval(C, (pk1, ct1), . . . , (pkn, ctn)).
3. Compute msg2,i ← ΠM.Round2(yi, τ1), where yi := (xi, cti,Ki, ski, rSetup

i , rEnc
i) and Ki :=

(pkj , ctj)j∈[n].
4. Send msg2,i.

For each round k ∈ {3, . . . , `}.
1. Let τk−1 denote the transcript of the protocol ΠM up to round k − 1.
2. Compute the k-th round message msgk,i ← ΠM.Roundk(τk−1).
3. Send msgk,i.

Output Computation.
1. Let τ` denote the transcript of the protocol ΠM up to round `.
2. Compute the output of ΠM as y ← ΠM.Out(τ`).
3. Output y.

Fig. 24: Description of the protocol ΠFHE that securely realizes any functionality with knowledge
of outputs.

Input: (xi, cti,Ki, ski, rSetup
i , rEnc

i)i∈[n].
• For all i ∈ [n], parse Ki as (pkij , ctij)j∈[n].
• For all i, j ∈ [n] check that (pkii, ctii) = (pkji , ctji).
• For all i ∈ [n] check that (pki, ski) := Setup(1λ; rSetup

i) and ctii := Enc(pki, xi; rEnc
i).

• Compute yi := Dec(sk1, . . . , skn, cti) and check that yi = yj for all i, j ∈ [n].
If one of the above checks fails then output ⊥, continue as follows otherwise.
Set y to yi for a random i ∈ [n].

Output: y to Pi.

Fig. 25: Circuit CDec

The following theorem follows immediately from Theorem 5 and the definition of a compact
multi key FHE scheme.

40

Theorem 6. Let MFHE be a compact multi key FHE scheme, then ΠFHE is a circuit independent
secure MPC protocol that realizes any single-output functionality.

Additionally, we can easily modify ΠFHE and obtain a protocol ΠFHE′ which has commu-
nication complexity O(Lin) + poly(λ, n, Lout). ΠFHE′ works exactly as ΠFHE with the following
differences. Every party Pi encrypts a short seed si of a PRG PRG using the FHE scheme, i.e.
Enc(pki, si; rsi), and sends it together with the value wi = PRG(si)⊕xi to all the other parties Pj
with j ∈ [n] \ {i}. The party Pi, upon receiving (Enc(pkj , s; rsj), wj) from all the other parties Pj
with j ∈ [n] \ {i}, computes Enc(pkj ,PRG(sj)), using homomorphic operations, Enc(pkj , wj) by
encrypting wj using pkj , and then homomorphically XORs the resulting ciphertexts to receive
Enc(pkj , xj). This ciphertext can now be used to run the evaluation algorithm and compute
Enc({pkj}, f(x1, . . . , xn)). The parties now check that the ciphertexts {wj}j∈[n] are well formed
by running the MPC protocol as described in Fig. 25.

Theorem 7. Let MFHE be a compact multi key FHE scheme, then ΠFHE′ is a secure MPC
protocol with communication complexity O(Lin) + poly(λ, n, Lout) that realizes any single-output
functionality.

Instantiations. To instantiate the underlying multi key FHE scheme, we can rely on the work
of López-Alt et al. [LTV12]. In their work, they present several schemes. The first scheme is a
multi key fully homomorphic encryption scheme for a constant number of party that allows for
the evaluation of any circuit based on a perfectly correct FHE scheme. As an instantiation for
the perfectly correct FHE scheme we could for example use [BGV12] which can be either based
on LWE or ring-LWE. Additionally, López-Alt et al. present a multi key FHE scheme for any
number of parties based on the Decisional Small Polynomial Ratio (DSPR) and the ring-LWE
assumption.

By relying on the compiler that amplifies security from privacy with knowledge of outputs to
full security, based on signatures (Section 6), the compiler that realizes any functionality from
single-output functionalities, based on symmetric encryption (Section 7), and the facts that a
signature scheme can be obtained from one way functions [Rom90] and that a one-time symmetric
encryption scheme can be instantiate information-theoretically, we obtain the following corollary.

Corollary 2. If the LWE and DSPR assumptions hold and any of the DDH, QR, Nth Residuosity
holds, or there exists a malicious-secure OT, then there exists a round optimal (4-round) circuit-
independent MPC protocol that realizes any functionality.

6 From Privacy with Knowledge of Outputs to Standard Security

We recall that a protocol that realizes a functionality f without knowledge of outputs allows
the adversary to see the output of the computation y, and then lets the adversary decide what
the output of the honest parties should be. We can rely on the results of [IKP10] and [PC12]
where the authors present a compiler that turns a protocol ΠPKO that realizes any single-output
function under security with knowledge of outputs, into a protocol ΠCorr that securely realizes
any single-output function in the standard simulation based sense. In this section, we recap
the compiler of [IKP10] and [PC12] as well as their security proof. Since Ishai et al. already
have shown that the compiler preserves the round complexity, we only need to argue that it also
preserves the commmunication complexity to the underlying protocol.

Before we formally define the compiler, we present an informal description and a proof
intuition of the protocol.

41

6.1 Informal Description

To turn a protocol with knowledge of outputs ΠPKO that realizes the circuit C into a protocol
ΠCorr that achieves standard simulation based security for the same circuit, we make use of a
signature scheme DS. In more detail, every party Pi will sample a verification and signing key
(vki, ski)← Setup(1λ) and use the key ski together with a random value ri and the inputs xi as
the input to the MPC protocol ΠPKO. In addition, each party sends its verification key vki. The
circuit that the MPC protocol ΠPKO evaluates consists of two steps. In the first step, it computes
the circuit C on the inputs (x1, . . . , xn) and generates y := C(x1, . . . , xn). In the last step, the
output y is signed under the different signing keys, i.e. the signatures σi ← Sign(ski, y; ri) are
generated for all i ∈ [n]. The output of the MPC protocol ΠPKO then corresponds to the output
y and all the signatures {σi}i∈[n] generated under the signing keys {ski}i∈[n] of all the parties Pi.
Finally, every party Pi uses the received verification keys {vki}i∈[n] to verify all the signatures,
i.e. it computes bi ← Verify(vki, y, σi) for all i ∈ [n]. If one of the values bi is equal to 0, then the
honest parties would abort. The unforgeability of the digital signature scheme DS makes sure
that no party is able to create signatures for the verification keys of an honest party. Intuitively,
this means that an adversary that receives the output cannot tamper with it unless it can break
the security of the signature scheme.

6.2 Formal Description

Now, we describe the protocol ΠCorr formally. We start by describing the building blocks used
for the construction of ΠCorr.

Bulding Blocks. Let C be the single-input function that we want to securely evaluate. The
tools that we use to construct our protocol, which we denote with ΠCorr, are the following.
– A signature scheme DS = (Setup,Sign,Verify)
– A protocol ΠPKO that realizes the function Cσ with knowledge of outputs described in

Fig. 27.
We refer to Fig. 26 for the formal description of ΠCorr.

ΠCorr

Each party Pi, on input xi does the following steps:
1. Compute (vki, ski)← Setup(1λ).
2. Run the protocol ΠPKO using as input (xi, ski, ri) for a random ri. In addition, send vki in the first

round.
3. Upon receiving the output (y, σk)k∈[n] of ΠPKO do the following

(a) Let (vkj)j∈[n]\{i} be the public keys received in the first round from the parties (Pj)j∈[n]\{i}
respectively.

(b) If for each j ∈ [n] Verify(vkj , y, σj) = 1 then output c, otherwise output ⊥.

Fig. 26: Our compiler: from MPC with knowledge of outputs to MPC with correctness.

Input: (xi, ski, ri)i∈[n]
Compute y := C(x1, . . . , xn) and

σi ← Sign(ski, y; ri) for all i ∈ [n]
Output: (y, (σi)i∈[n]).

Fig. 27: Circuit Cσ

42

Theorem 8. Let C be an n-party single-output randomized functionality, if DS is a signature
scheme and ΠPKO realizes the function Cσ with knowledge of outputs then ΠCorr securely realizes
C.

Proof. To prove our lemma we need to show that for every PPT adversary A there exists a PPT
adversary S such that for any I ⊂ [n] the following quantity is negligible:

|Pr[RealΠCorr,A(z),I(k,x) = 1]− Pr[IdealC,S(z),I(k,x) = 1]| ,

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗ and I denotes the set that contains the indices of
all the corrupted parties, i.e. |I| = n− 1. Also in this case, for simplicity, we assume that all but
one of the parties is corrupted. Before describing how S works, we define an algorithmM. The
augmented machine internally runs the adversary A (we refer to this interaction as the right
session), and acts as a proxy between A and its external interface with respect to the messages of
ΠPKO (that we call left session). To describe our simulator we need to described the augmented
machineM and its interaction with S (i.e., how the messages of ΠPKO are computed).

The reason why we describe our simulator using the augmented machineM is to deal with
the unknown actions that the simulator of ΠPKO might execute (e.g., rewinds). More precisely,
the augmented machineM acts as an adversary for the protocol ΠPKO.

By assumption, we know that for every PPT adversary A′ there exists a PPT adversary S ′
such that for any I ⊂ [n] the following quantity is negligible:

|Pr[RealΠPKO,A(z),I(λ,x) = 1]− Pr[IdealPKO
Cσ ,S′(z),I(λ,x) = 1]|

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.
Therefore, we can run the simulator S ′ for the adversaryM. For the formal description of

M we refer to Fig. 28 and for the formal description of S we refer to Fig. 29.

M(rA) :
For round 1.

1. Compute (vki, ski)← Setup(1λ).
2. Upon receiving the message msg1,i from the left session send (msgi,1, vki) to A.
3. Receive the messages (msg1,j , vkj)j∈I and forward {msg1,j}j∈I in the left session.

For each Round k ∈ {2, . . . , `}.
1. Upon receiving the message msgk,i from the left session forward it to A.
2. Receive the messages {msgk,j}j∈I and forward them in the left session.

Fig. 28: The augmented machineM which emulates the adversary for ΠPKO.

S
– Sample a sufficiently long random R and run the simulator ΠPKO.S for the adversaryM.
– For every query (xj , skj , rj)j∈I issued by ΠM.PKO do the following:

1. Query the ideal functionality using {xj}j∈I and receive (y1, . . . , yn) = C(x1, . . . , xn) as an output.
2. Sample a random value ri ← {0, 1}λ.
3. Compute σk ← Sign(skk, xk; rk) for all k ∈ [n] and output {yi, σk}k∈[n].

– When Πone.S stops, output what Πone.S outputs.

Fig. 29: The simulator S for our protocol ΠCorr.

43

Hybrid H0: Hybrid H0 is identical to the real world experiment
Hybrid H1: . By assumption, we know that for every PPT adversary A′ there exists a PPT

adversary S ′ such that for any I ⊂ [n] the following quantity is negligible:

|Pr[RealΠPKO,A′(z),I(λ,x) = 1]− Pr[IdealPKO
Cσ ,S′(z),I(λ,x) = 1]|

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗. In hybrid H1 the messages of ΠPKO are
simulated using S ′. In more details, H1 runs S ′ and the adversary A, and acts exactly as in
H0 with the following differences.
1. All the messages of ΠPKO are replaced with the messages of S ′.
2. Upon receiving the query (xj , skj , rj)j∈I from S ′ (who wants to query the ideal world

functionality to evaluate Cσ), compute c := C(x1, . . . , xn).
3. For each k ∈ [n] compute σk ← Sign(skk, c; rk) and send (c, (σk)k∈[n]) to S ′.
4. Let {vkk}k∈n be the verification keys sent in the first round respectively by P1, . . . , Pn

and (c′, (σ′k)k∈[n]) be the output computed by S ′ for the honest parties. If for all k ∈ [n]
Verify(vkk, c′, σ′k) = 1 then output c′, otherwise output ⊥.

We show that the output distributions of the two hybrids is indistinguishable, and then prove
that the output received by the honest parties in both hybrids is correct.

Lemma 5 (Transition from H0 to H1). Let ΠPKO be a maliciously secure MPC protocol,
then the output distributions of the hybrids H0 and H1 are computationally indistinguishable.

Proof. By contradiction, we assume that the output distributions of H0 and H1 are distinguishable
by a non-negligible quantity p. If this is the case, then we can construct an adversary A′ that
breaks the security of ΠPKO. The adversary A′ works exactly as in H0 (and H1) with the difference
that it acts as a proxy with respect to all the messages of ΠPKO between A and an external
challenger. The external challenger tosses a coin b′, and if b′ = 0 then the messages of ΠPKO

are computed accordingly to the honest procedure, otherwise those messages are computed
accordingly to S ′. The output of A′ corresponds to the output of A. We note that in the case
where b′ = 0 the output of A′ corresponds to the output of A in H0, and to the output of A in
H1 otherwise. ut

We define the event WrongOutputHb as the event in which the output computed by the
honest party is incorrect (i.e., Pi accepts c 6= c′ := C(x1, . . . xn) as a valid output) in the hybrid
b ∈ {0, 1}.

We now prove the following lemma.

Lemma 6. |Pr[WrongOutputH0]− Pr[WrongOutputH1]| ≤ negl(λ).

The proof of this lemma follows immediately from Lemma 5
What it remains to is the following lemma.

Lemma 7. Pr[WrongOutputH1] ≤ negl(λ).

Proof. Assume by contradiction that Pr[WrongOutputH1] is equal to a non-negligible quantity
p, then we can construct an adversary ADS that breaks the security of the digital signature
scheme DS. The adversary ADS receives the a verification key pk from the challenger of the
unforgeability security game, and on input xi acts as follows.
1. Run accordingly to H1 and upon receiving the query (xj , skj , rj)j∈I from S ′ (who wants to

query the ideal world functionality to evaluate Cσ), compute c := C(x1, . . . , xn).
2. For each j ∈ [n] \ {i} compute σj ← Sign(skj , c), query the signing oracle Sign(ski, ·) on input
c thus obtaining the signature σi.

44

3. Send (c, (σj)j∈[n]) to S ′.
4. Let pk1, . . . , pkn be the verification keys sent in the first round respectively by P1, . . . , Pn

and c′, σ′i be the output computed by S ′ for the honest party Pi. If Verify(pki, c′, σ′i) = 1 with
c 6= c′ then output (σ′i, c′) as the forgery and stop, otherwise output ⊥ and stop.

Having assumed by contradiction that Pr[WrongOutputH1] is equal to a non-negligible quantity
p, then ADS is able to forge the signature scheme DS with non-negligible probability p. ut

The proof ends with the observation that the output distribution of H1 is identical to the
one of S (which is described in Fig. 29) and that S never uses the input of the honest party Pi.

ut

To analyze the communication complexity of the resulting protocol ΠPKO, we define the
input and output size of C with Lin and Lout and the communication complexity of ΠPKO with
CP when the circuit being evaluated is Cσ. We can immediately conclude that the input size
of Cσ is L′in := poly(λ, n, Lin) and the outputs size is L′out := poly(λ, n, Lout). Now we can state
our theorem.

Theorem 9. If ΠPKO has communication complexity CP when evaluating the circuit Cσ, then
ΠCorr has communication complexity poly(λ, n,CP, L′in, L′out) = poly(λ, n,CP, Lin, Lout) when
evaluating C.

7 Individual Outputs for each party

Besides achieving security with correctness from a protocol with knowledge of output security,
we need to show how to turn a protocol for single output functionalities Πone (i.e., a protocol
that provides the same output to all the parties), into a protocol that realizes any functionality
Πmany. Here, we can rely on the compiler presented in [LP09, Section 2]. As in the previous
section, we recap here the compiler of [LP09] and their security proof. Additionally, we show that
also this compiler preserves the round and the communication complexity of the input protocol.

Before we formally define the compiler, we present an informal description and a proof
intuition of the protocol.

7.1 Informal Description

Let P1, . . . , Pn be the set of parties and x1, . . . , xn their respective inputs. Let (y1, . . . , yn) :=
C(x1, . . . , xn) be the function that these parties want to compute in such a way that each party
Pi learns only yi and nothing beyond that. Our compiler makes use of Πone and of a symmetric
encryption scheme SE.

Pi samples a random value ri, generates a symmetric encryption key ki ← Setup(1λ) and
uses (ki, ri, xi) as the input to the MPC protocol Πone. Πone evaluates the circuit Cmany that 1)
computes the circuit C on the inputs (x1, . . . , xn) and generates (y1, . . . , yn) := C(x1, . . . , xn). In
the last step, the outputs (y1, . . . , yn) are encrypted using the different keys, i.e., the ciphertexts
ci ← Enc(ki, yi; ri) are generated for all i ∈ [n]. The output of the MPC protocol Πone then
consists of all the ciphertexts {ci}i∈[n] (we recall that the same set of cipthertexts is sent to all
parties). Finally, every party Pi uses its secret key ki to decrypt the ciphertext ci thus obtaining
yi. The security of the symmetric encryption scheme ensures that no party learns anything about
the outputs of the other parties. We also note that if the communication complexity of Πone is
CT then the communication complexity of Πmany is poly(λ, n,CT).

This concludes the description of the protocol Πmany.

45

7.2 Formal Description

Now, we describe the protocol Πmany formally. We start by describing the building blocks used
for the construction of Πmany.

Building Blocks. Our Construction makes use of the following cryptographic tools:

– A secret key encryption scheme SE := (Setup,Enc,Dec)
– A protocol Πone that realizes the circuit Cmany described in Fig. 31.

A formal description of the protocol Πmany is presented below.

Πmany

Each party Pi, on input xi executes the following steps:
1. Compute ki ← Setup(1λ).
2. Run the protocol Πone using input (xi, ki, ri) for a random value ri.
3. Upon receiving the output {cj}j∈[n] of Πone, compute yi = Dec(ki, ci) and output yi.

Fig. 30: Description of the protocol Πmany.

Input: (xi, ki.ri)i∈[n]
Compute (y1, . . . , yn) := C(x1, . . . , xn) and

ci ← Enc(ki, yi; ri) for all i ∈ [n]
Output: {ci}i∈[n].

Fig. 31: Circuit Cmany

Theorem 10. Let C be an n party many-output randomized functionality, if SE = (Setup,Enc,Dec)
is an IND-CPA secure secret key encryption scheme and Πone realizes the function Cmany, which
is a single-output functionality, then Πmany securely realizes C.

Proof. To prove our lemma we need to show that for every PPT adversary A there exists a PPT
adversary S such that for any I ⊂ [n] the following quantity is negligible:

|Pr[RealΠmany,A(z),I(k,x) = 1]− Pr[IdealC,S(z),I(k,x) = 1]| ,

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.
Before describing how S works, we define an algorithmM. The augmented machine internally

runs the adversary A (we refer to this interaction the right session), and acts as a proxy between
A and its external interface with respect to the messages of Πone (to which we refer to in the
left session). To describe our simulator we need to described the augmented machineM and its
interaction with S (i.e., how the messages of Πone are computed). More precisely, the augmented
machineM acts as an adversary for the protocol Πone. Hence, we can consider the simulator
Πone.S for Πone for the adversaryM. Our simulator S will then simply run Πone.S. For the
formal description ofM we refer to Fig. 32 and for the formal description of S we refer to Fig. 33.

46

M(rA) :
For each Round k ∈ {1, . . . , `}.

1. Upon receiving the message msgk,i from the left session forward it to A.
2. Receive the messages {msgk,j}j∈I and forward them in the left session.

Fig. 32: The augmented machineM which emulates the adversary for Πone.

S
– Sample a sufficiently long random R and run the simulator Πone.S for the adversaryM.
– For every query (xj , kj , rj)j∈I issued by ΠM.one do the following:

1. Compute ki ← Setup(1λ) and sample a random value ri ← {0, 1}λ.
2. Query the ideal functionality using {xj}j∈I and receive (y1, . . . , yn) = C(x1, . . . , xn) as an output.
3. Compute ck ← Enc(kk, xk; rk) for all k ∈ [n] and output {ck}k∈[n].

– When Πone.S stops, output what Πone.S outputs.

Fig. 33: The simulator S for our protocol Πmany.

We propose the description of a simulator S (Fig. 33), and consider the following sequence
of hybrids to show that the real world is indistinguishable from the ideal world.

Hybrid H0: Hybrid H0 is identical to the real world experiment.
Hybrid H1: In hybrid H1, the inner MPC protocolΠM is simulated instead of honestly generated.

The transition between hybrid H0 and H1 is justified by the malicious security of the MPC
protocol ΠM and formally proven in Lemma 8.

Hybrid H2 This hybrid is identical to the ideal world. In this hybrid, the ciphertext that is an
encryption of the output yi for party Pi is exchanged with an encryption of a random value.
The transition between hybrid H1 and H2 is justified by the IND-CPA security of the single
key encryption scheme SE and formally proven in Lemma 9.

Putting everything together, we obtain the theorem. ut

Lemma 8 (Transition from H0 to H1). Let Πone be a maliciously secure MPC protocol,
then the hybrids H0 and H1 are computationally indistinguishable.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with
non-negligible probability. We use A to construct an augmented machineM that breaks the
security of the underlying MPC protocol ΠM.

We describe the interactive machineM that interacts with the MPC protocol ΠM as all the
corrupted parties in the left session and with an adversary A using randomness rA in the right
session. Afterwards we describe how to reply to ideal functionality queries asked by the simulator
ΠM.S. We stress that whenever the augmented machine is rewound by the inner MPC protocol
it rewinds the adversary A it is interacting with accordingly and continues the execution with A
using the randomness rA afterwards.

The augmented machineM acts as an intermediator between the left and the right session.
It forwards the messages it receives in the left session, which represent the messages of the party
Pi, to the adversary A in the right session and it also forwards the messages that it receives in
the right session, representing the messages of the corrupted parties Pj , to the left session.

47

To finish the description of the reduction, and to achieve consistency between the output of
the inner MPC protocol Πone and the interactions of the parties, we need to adjust the answers
given to the ideal functionality queries by the simulator Πone.S.

For every query (xj , kj , rj)j∈I generate a secret key ki ← Setup(1λ) and sample a random
value ri ← {0, 1}λ and compute (y1, . . . , yn) = C(x1, . . . , xn). In the next step, the outputs
are encrypted under the different secret keys, i.e. compute ck ← Enc(kk, yk; rk) for all k ∈ [n].
Finally, send {ck}k∈[n] as a reply to the simulator Πone.S. This concludes the description of the
simulator.

Since we assume that the adversary A is able to distinguish between the two hybrids H0 and
H1 with non-negligible probability, it would be able to detect if the messages msg1,i, . . . ,msg4,i of
the underlying MPC are simulated or honestly generated. This would also allow the machineM
to distinguish if the inner MPC ΠM has been simulated or honestly generated which contradicts
the malicious security of the inner MPC ΠM. Therefore, the claim follows. ut

Lemma 9 (Transition from H1 to H2). Let SE = (Setup,Enc,Dec) be an IND-CPA secure
secret key encryption scheme, then the hybrids H1 and H2 are computationally indistinguishable.

Proof. In the transition from hybrid H1 to hybrid H2 the ciphertext ci that is an encryption the
output yi for the party Pi is changed to an encryption of a random value r.

To describe the transition from H1 to H2, we need to define the answers to the simulator
ΠM when it queries its ideal functionality. We do not need to change anything in the description
of the augmented machineM since it behaves in both hybrids in the same way, with the only
difference that the augmented machine does not need to send any input (xi, ki) since the protocol
execution is simulated. We prove the indistinguishability of H1 and H2 with a reduction to the
IND-CPA security of the symmetric encryption scheme SE. In more detail, we suppose that
there exists an adversary A that can distinguish between the two hybrids with non-negligible
probability and we use this adversary A together with the augmented machine M to break
the IND-CPA security of the underlying secret key encryption scheme SE in a game with the
challenger C.

To finish the description of the reduction, and to achieve consistency between the output of
the inner MPC protocol and the interactions of the parties, we need to adjust the answers given
to the ideal functionality queries by the simulator ΠM.S.

For any ideal functionality query (xj , kj)j∈I asked by the simulator Πone, query the ideal
functionality to receive (y1, . . . , yn) = C(x1, . . . , xn) and encrypt the outputs for the corrupted
parties Pj under the different secret keys, i.e. compute cj ← Enc(kj , yj) for all j ∈ I. For the
output yi belonging to the honest party Pi send the tuple (yi, r) with a random value r to the
underlying challenger C. The challenger replies with the ciphertext ci. Finally, send {ck}k∈[n] as
a reply to the simulator Πone.S. This concludes the description of the reduction.

In the case that the challenger replies with an encryption of yi, the experiment betweenM
and A corresponds exactly to H1 and when the challenger replies toM with an encryption of the
random value r, the experiment corresponds exactly to H3. Since we assume that the adversary
A is able to distinguish between the two hybrids H1 and H2 with non-negligible probability, it
would be able to detect if the encryption ci output in the second round corresponds to the value
yi or r. This would also allow the machineM to distinguish between the values its underlying
challenger has encrypted which contradicts the IND-CPA of the secret encryption scheme SE.
This leads to a contradiction and therefore the claim follows. ut

To analyze the communication complexity of the resulting protocol ΠPKO, we define the
input and output size of C with Lin and Lout and the communication complexity of Πone with
CP′ when the circuit being evaluated is Cmany. We can immediately conclude that the input size
of Cmany is L′in := poly(λ, n, Lin) and the outputs size is L′out := poly(λ, n, Lout).

48

We state the theorem regarding the communication complexity of Πmany formally.

Theorem 11. If Πone has communication complexity CP′ when evaluating the circuit Cmany,
then Πmany has communication complexity poly(λ, n,CP′, L′in, L′out) = poly(λ, n,CP′, Lin, Lout)
when evaluating C.

Acknowledgments. The first author is supported in party by the European Union’s Horizon
2020 Research and Innovation Programme under grant agreement 780477 (PRIVILEDGE). The
second author is supported in part by DARPA under Cooperative Agreement No: HR0011-20-
2-0025, NSF Grant CNS-2001096, US-Israel BSF grant 2015782, Google Faculty Award, JP
Morgan Faculty Award, IBM Faculty Research Award, Xerox Faculty Research Award, OKAWA
Foundation Research Award, B. John Garrick Foundation Award, Teradata Research Award,
and Lockheed-Martin Corporation Research Award. The third author is supported in part by
the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement
780108 (FENTEC). The fourth author is supported in part by Sunday Group, Inc.

The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of DARPA,
the Department of Defense, or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes not withstanding any copyright
annotation therein.

References

ABJ+19. P. Ananth, S. Badrinarayanan, A. Jain, N. Manohar, and A. Sahai. From FE combiners to secure
MPC and back. In TCC 2019, Part I, LNCS 11891, pages 199–228. Springer, Heidelberg, December
2019. (Pages 1, 2, 4, 5, 11, 12, 13, and 34.)

AJJM20. P. Ananth, A. Jain, Z. Jin, and G. Malavolta. Multikey fhe in the plain model. Cryptology ePrint
Archive, Report 2020/180, 2020. https://eprint.iacr.org/2020/180. (Pages 3 and 5.)

AJW11. G. Asharov, A. Jain, and D. Wichs. Multiparty computation with low communication, computation
and interaction via threshold FHE. Cryptology ePrint Archive, Report 2011/613, 2011. http:
//eprint.iacr.org/2011/613. (Page 7.)

BGG+14. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and
D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled
circuits. In EUROCRYPT 2014, LNCS 8441, pages 533–556. Springer, Heidelberg, May 2014. (Page 34.)

BGJ+18. S. Badrinarayanan, V. Goyal, A. Jain, Y. T. Kalai, D. Khurana, and A. Sahai. Promise zero knowledge
and its applications to round optimal MPC. In CRYPTO 2018, Part II, LNCS 10992, pages 459–487.
Springer, Heidelberg, August 2018. (Pages 1, 3, 5, 7, and 34.)

BGV12. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. In ITCS 2012, pages 309–325. ACM, January 2012. (Pages 2, 34, and 41.)

BL18. F. Benhamouda and H. Lin. k-round multiparty computation from k-round oblivious transfer via
garbled interactive circuits. In EUROCRYPT 2018, Part II, LNCS 10821, pages 500–532. Springer,
Heidelberg, April / May 2018. (Pages 1, 5, and 7.)

BMR90. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended abstract).
In 22nd ACM STOC, pages 503–513. ACM Press, May 1990. (Page 1.)

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In TCC 2011,
LNCS 6597, pages 253–273. Springer, Heidelberg, March 2011. (Pages 2 and 10.)

Can03. R. Canetti. Universally composable signatures, certification and authentication. Cryptology ePrint
Archive, Report 2003/239, 2003. http://eprint.iacr.org/2003/239. (Page 16.)

CCG+19. A. R. Choudhuri, M. Ciampi, V. Goyal, A. Jain, and R. Ostrovsky. Round optimal secure multiparty
computation from minimal assumptions. Cryptology ePrint Archive, Report 2019/216, 2019. https:
//eprint.iacr.org/2019/216. (Pages 1, 3, 5, 7, and 34.)

DHRW16. Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. Spooky encryption and its applications. In
CRYPTO 2016, Part III, LNCS 9816, pages 93–122. Springer, Heidelberg, August 2016. (Page 5.)

GB96. S. Goldwasser and M. Bellare. Lecture notes on cryptography. Summer course “Cryptography and
computer security” at MIT, 1999:1999, 1996. (Page 14.)

49

https://eprint.iacr.org/2020/180
http://eprint.iacr.org/2011/613
http://eprint.iacr.org/2011/613
http://eprint.iacr.org/2003/239
https://eprint.iacr.org/2019/216
https://eprint.iacr.org/2019/216

GKP+13. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable garbled
circuits and succinct functional encryption. In 45th ACM STOC, pages 555–564. ACM Press, June
2013. (Page 34.)

GMPP16. S. Garg, P. Mukherjee, O. Pandey, and A. Polychroniadou. The exact round complexity of secure
computation. In EUROCRYPT 2016, Part II, LNCS 9666, pages 448–476. Springer, Heidelberg, May
2016. (Page 1.)

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem
for protocols with honest majority. In 19th ACM STOC, pages 218–229. ACM Press, May 1987.
(Page 1.)

Gol04. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University
Press, 2004. (Pages 15, 17, and 18.)

Goy11. V. Goyal. Constant round non-malleable protocols using one way functions. In 43rd ACM STOC,
pages 695–704. ACM Press, June 2011. (Page 1.)

GS17. S. Garg and A. Srinivasan. Garbled protocols and two-round MPC from bilinear maps. In 58th FOCS,
pages 588–599. IEEE Computer Society Press, October 2017. (Page 5.)

GS18. S. Garg and A. Srinivasan. Two-round multiparty secure computation from minimal assumptions. In
EUROCRYPT 2018, Part II, LNCS 10821, pages 468–499. Springer, Heidelberg, April / May 2018.
(Pages 1 and 5.)

GSW13. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In CRYPTO 2013, Part I, LNCS 8042, pages 75–92.
Springer, Heidelberg, August 2013. (Page 34.)

GVW15. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits from LWE. In
CRYPTO 2015, Part II, LNCS 9216, pages 503–523. Springer, Heidelberg, August 2015. (Page 34.)

HHPV18. S. Halevi, C. Hazay, A. Polychroniadou, and M. Venkitasubramaniam. Round-optimal secure multi-
party computation. In CRYPTO 2018, Part II, LNCS 10992, pages 488–520. Springer, Heidelberg,
August 2018. (Pages 1 and 5.)

IKP10. Y. Ishai, E. Kushilevitz, and A. Paskin. Secure multiparty computation with minimal interaction.
In CRYPTO 2010, LNCS 6223, pages 577–594. Springer, Heidelberg, August 2010. (Pages 6, 7, 19,
and 41.)

IPS08. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently. In
CRYPTO 2008, LNCS 5157, pages 572–591. Springer, Heidelberg, August 2008. (Page 1.)

Kil88. J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM Press,
May 1988. (Page 1.)

KO04. J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In CRYPTO 2004, LNCS
3152, pages 335–354. Springer, Heidelberg, August 2004. (Page 1.)

KOS03. J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation with a dishonest
majority. In EUROCRYPT 2003, LNCS 2656, pages 578–595. Springer, Heidelberg, May 2003.
(Page 1.)

Lin10. Y. Lindell. Foundations of cryptography 89-856. http://u.cs.biu.ac.il/~lindell/89-856/
complete-89-856.pdf, 2010. (Page 16.)

LP09. Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal of
Cryptology, 22(2):161–188, April 2009. (Pages 7 and 45.)

LTV12. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption. In 44th ACM STOC, pages 1219–1234. ACM Press, May
2012. (Pages 2, 4, 13, 14, and 41.)

MPP20. A. Morgan, R. Pass, and A. Polychroniadou. Succinct non-interactive secure computation. In
EUROCRYPT 2020, Part II, LNCS 12106, pages 216–245. Springer, Heidelberg, May 2020. (Page 1.)

O’N10. A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556,
2010. http://eprint.iacr.org/2010/556. (Pages 2 and 10.)

Pas04. R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In 36th ACM
STOC, pages 232–241. ACM Press, June 2004. (Page 1.)

PC12. A. Paskin-Cherniavsky. Secure computation with minimal interaction. PhD thesis, Computer Science
Department, Technion, 2012. (Pages 6, 19, and 41.)

PW10. R. Pass and H. Wee. Constant-round non-malleable commitments from sub-exponential one-way
functions. In EUROCRYPT 2010, LNCS 6110, pages 638–655. Springer, Heidelberg, May / June 2010.
(Page 1.)

QWW18. W. Quach, H. Wee, and D. Wichs. Laconic function evaluation and applications. In 59th FOCS, pages
859–870. IEEE Computer Society Press, October 2018. (Pages 1 and 5.)

Rom90. J. Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM STOC,
pages 387–394. ACM Press, May 1990. (Pages 34 and 41.)

50

http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://eprint.iacr.org/2010/556

SW05. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, LNCS 3494,
pages 457–473. Springer, Heidelberg, May 2005. (Pages 2 and 10.)

Wee10. H. Wee. Black-box, round-efficient secure computation via non-malleability amplification. In 51st
FOCS, pages 531–540. IEEE Computer Society Press, October 2010. (Page 1.)

Yao86. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, October 1986. (Page 1.)

51

	Introduction
	Related Work
	Overview of our Results

	Technical overview
	Preliminaries
	Functional Encryption
	Decomposable Functional Encryption Combiner
	Multi Key Fully Homomorphic Encryption
	Symmetric Encryption, Authentication and Commitments
	Secure Multiparty Computation
	Privacy with Knowledge of Outputs
	k-Signaling MPC

	Our Compiler: Circuit-Scalable MPC
	Our Compiler: Circuit-Independent Efficient MPC
	From Privacy with Knowledge of Outputs to Standard Security
	Informal Description
	Formal Description

	Individual Outputs for each party
	Informal Description
	Formal Description

