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Abstract
Cloud storage is becoming increasingly popular among end
users that outsource their personal data to services such as
Dropbox or Google Drive. For security, uploaded data should
ideally be encrypted under a key that is controlled and only
known by the user. Current solutions that support user-centric
encryption either require the user to manage strong crypto-
graphic keys, or derive keys from weak passwords. While
the former has massive usability issues and requires secure
storage by the user, the latter approach is more convenient
but offers only little security. The recent concept of password-
authenticated secret-sharing (PASS) enables users to securely
derive strong keys from weak passwords by leveraging a dis-
tributed server setup, and has been considered a promising
step towards secure and usable encryption. However, using
PASS for encryption is not as suitable as originally thought:
it only considers the (re)construction of a single, static key –
whereas practical encryption will require the management of
many, object-specific keys. Using a dedicated PASS instance
for every key makes the solution vulnerable against online at-
tacks, inherently leaks access patterns to the servers and poses
the risk of permanent data loss when an incorrect password
is used at encryption. We therefore propose a new protocol
that directly targets the problem of boostrapping encryption
from a single password: distributed password-authenticated
symmetric key encryption (DPaSE).
DPaSE offers strong security and usability, such as protect-

ing the user’s password against online and offline attacks, and
ensuring message privacy and ciphertext integrity as long as
at least one server is honest. We formally define the desired se-
curity properties in the UC framework and propose a provably
secure instantiation. The core of our protocol is a new type of
OPRF that allows to extend a previous partially-blind-query
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with a follow-up request and will be used to blindly carry
over passwords across evaluations and avoid online attacks.
Our (proof-of-concept) implementation of DPaSE uses 10
exponentiations at the user, 4 exponentiations and 2 pairings
at each server, takes 105.58 ms to run with 2 servers and has
a server throughput of 40 encryptions per second.

1 Introduction

Outsourcing storage to cloud providers is not only a common
approach in enterprise settings, but is also widely appreciated
by end users relying on services such as Dropbox, Google
Drive, iCloud or Microsoft OneDrive to manage their per-
sonal data. With data breaches happening on a daily basis,
it is essential that personal data kept in such cloud storage
must be protected accordingly. The prevalent approach is
to trust the cloud with properly encrypting the data, where
the service provider controls access to the respective encryp-
tion keys via standard user authentication, mostly relying on
username-password authentication. Clearly, such a solution
crucially relies on the honesty of the service provider who
can otherwise gain plaintext access to the users’ data.

A different approach is let the user already encrypt the
data before storing it in the cloud, which is offered e.g., by
Tresorit [tre] or Mega [meg]. Therein a user client is lo-
cally encrypting the data and only uploads ciphertexts to
the cloud. The cryptographic keys are either generated and
stored directly by the user client, or (re)-derived from a human-
memorizable password that the user enters into the local client.
The former provides strong security guarantees, but is cum-
bersome to use as it relies on users’ being able to manage
and securely store cryptographic keys. The latter provides
(roughly) the same convenience and usability as standard
cloud provides as it does not require secure storage on the
user side, but is inherently vulnerable to so-called offline at-
tacks: Since encryption keys are derived from a low-entropy
password, a corrupt service provider or an attacker gaining
access to the ciphertexts, can attempt to decrypt the files by
guessing the user’s password.
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Encryption via Password-Authenticated Secret Sharing
While enabling secure yet convenient key management for
end users is still a largely unsolved problem in the real world,
(partial) cryptographic solutions do already exist. A promis-
ing direction is that of password-authenticated secret sharing
(PASS/PPSS) which allows a user to recover a strong secret
that is shared among n servers when she can enter the correct
password [BJSL11, CLLN14, JKK14, JKKX16, JKKX17]. In
contrast to end users, servers can easily maintain strong cryp-
tographic keys which is leveraged by PASS to thwart offline
attacks against the password (and consequently on the shared
secret key) if at least one, or a certain threshold, of the servers
is not compromised. Relying on the assistance of external
servers also allows to limit the impact of online attacks or
password / device compromise, e.g., if a user suspects that
her password might have been compromised, she can alert the
servers to lock her account and disallow any further queries
to recover the shared secret key.

Thus, a seemingly straightforward solution for password-
based encryption is to rely on PASS to derive the required
encryption keys from a user’s password. However, this naïve
approach comes again with a trade-off between security and
usability: Either the same secret-shared key is used to en-
crypt all the user data, or file-specific keys are generated. The
former is clearly better in terms of user convenience but pro-
vides only very limited security, as even a short breach of
the user’s device allows an adversary to recover the secret
key that allows to decrypt all her files. Having dedicated keys
for every file avoids this critical vulnerability but has several
other disadvantages:

Wrong passwords can lead to permanent data loss:
When the user derives a dedicated PASS key for every
file, there is no simple and generic way to ensure that
encryption is actually done with the correct password:
Sharing a secret in PASS does not come with any
password verification, thus any password is valid in
that step. Only when the secret is recovered there is an
implicit check that the entered password was correct.
Thus, if the user uses a “wrong” password (i.e., not
the one she wants to use to protect all her files online)
when encrypting a new file, she ends up implementing
her own cryptolocker, as decryption will fail when she
later uses the “correct” password again. While the risk
of simple typos can be reduced by asking the user to
enter her password twice before encryption, more subtle
mistakes such as entering a password from a different
context, or not noticing that the keyboard layout has
changed are impossible to detect. Unless the user makes
the same mistake at decryption again, the plaintext files
cannot be recovered and might be lost permanently.

Servers cannot recognize online guessing attempts:
Another problem with individual keys is that they
provide a much bigger surface for online guess-

ing attacks. Most PASS schemes do not allow
the servers to check whether the password used
during recovery was correct. An exception is the
Memento-protocol [CLLN14], which however is several
magnitudes slower than the recent line of OPRF-based
PASS protocols [JKK14, JKKX16, JKKX17]. Thus,
when the user has to run a dedicated PASS protocol for
every file it wants to enc- or decrypt, then accessing a
larger chunk of data can easily trigger several thousand
PASS requests. This can be used to camouflage online
guessing attacks against an honest user’s password,
where an adversary is using a different password guess
in each PASS request. Since the servers in efficient
PASS protocols cannot recognize whether the provided
passwords are correct, they cannot distinguish between
legitimate queries and such online attacks.

Leakage of access pattern: If a dedicated PASS-key is used
for every object, the servers will inherently learn which
files the user wants to access with every decrypt query.
Such leakage is known to have devastating effects on the
user’s privacy [IKK12, LMP18].

1.1 Our Contributions
In this work we address the problem of usable yet strongly
secure password-based encryption. Acknowledging the fact
that password-based schemes are inherently insecure in single-
party/server settings, we follow the multi-server approach
of PASS and propose a new type of protocol: distributed
password-authenticated symmetric encryption (DPaSE).

DPaSE allows users to securely and conveniently encrypt
and decrypt their data while relying only on a single pass-
word and the assistance of n servers. We formally define the
desired security and privacy guarantees of DPaSE in the UC-
framework and provide an efficient realization based on a new
type of a partially-oblivious PRF that supports correlated eval-
uations of blind inputs; which we believe to be of independent
interest.

In brief, DPaSE must provide the following functionality
and security.

Correct Encryption: To avoid the aforementioned
cryptolocker-by-accident situations, we start by model-
ing the account setting that is common in cloud-based
storage solutions. That is, the user first creates an
account with the n servers that is protected with a
password pw. If she later wants to encrypt a file, she
again enters a password pw′ and encryption will only
succeed when her password was correct. Likewise, also
decryption requires using the correct password.

Security against Offline Attacks: As long as at least one
server is honest, the encrypted data (or rather the under-
lying password) cannot be offline attacked. And even if
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eventually all servers are corrupted, they cannot decrypt
the data immediately but must still perform an offline
attack on each password – thus when users have chosen
strong passwords, their data remains secure.

Security against Online Attacks: To detect and prevent on-
line guessing attacks, the servers learn which user is
trying to encrypt or decrypt, and whether her entered
password was correct. When an honest server has rec-
ognized suspicious behaviour or was alerted by the user
herself, it will enforce user-specific rate limiting or even
fully block a certain account.

Obliviousness: While we rely on the servers for achieving
strong security guarantees, we do not want them to infer
anything about the user’s behaviour and access patterns
on her data. That is, servers should not learn anything
about the files (plain- or ciphertext) the user wants to
access, i.e., they cannot even tell whether they get decryp-
tion requests for the same or two different ciphertexts.

Authenticated Encryption: We also want to provide secu-
rity against tampering attacks, where an adversary plants
wrong information into the outsourced storage. Thus,
unless the adversary knows the user’s password (and is
assisted by all server) it must be infeasible to create valid
ciphertext.

Security Model in UC Framework. We formally define
these properties in the Universal Composability (UC) frame-
work, which is known to allow for the most realistic model
for how users (mis)handle passwords. In game-based secu-
rity models, users choose their passwords at random from
known distributions and are assumed to behave perfectly, i.e.,
never make a typo when using a password. This clearly does
not reflect reality, where users share or re-use passwords, and
make mistakes when typing them. The UC framework models
that much more naturally as therein the environment provides
the passwords. Thus, a UC security notion guarantees the
desired security properties without making any assumptions
regarding the passwords’ distributions or usages.

Efficient DPaSE Protocol. After formalizing DPaSE as
an ideal functionality FDPaSE we present an efficient pro-
tocol that provably realizes FDPaSE. The high-level idea of
the protocol is very simple: To create an account, the user
derives a signing key (upk,usk)← OPRF(K,uid,pw) from
her username and password, where the OPRF key K is split
among the n servers and the evaluation reveals the username
to the servers to later allow for user-specific rate limiting. The
servers store (uid,upk) upon registration.

To encrypt a file, the user again enters uid,pw′ and starts by
re-running the steps from account creation to recover her sign-
ing key pair (upk,usk). She then signs a fresh nonce with usk
and sends it to the servers who verify it against the stored upk,
thereby verifying that pw = pw′. If the password is correct,

the user and server engage in a follow-up OPRF evaluation
where an object-specific encryption key is derived. The OPRF
evaluation thereby “reuses” the previously entered uid,pw′

to ensure that the actual encryption keys are also bound to
the user’ identity and correct password. This prevents users
from accidentally encrypting data under a wrong password.
To ensure obliviousness, the object (oid) for which the key is
derived is hidden in the evaluation.

Decryption works almost analogously to encryption, veri-
fying the password and – if correct – recovering the object-
specific encryption key via the distributed OPRF. The gener-
ated ciphertexts and decryption proceeds also include checks
to guarantee the desired ciphertext integrity.

Extendable Distributed Partially-Oblivious PRF. The
core of our DPaSE protocol is a new type of OPRF that we be-
lieve to be of independent interest for many password-based
applications. So far, OPRFs have been designed as single-
evaluation primitives1 that can either be fully or partially-
blind. Thus, the user sends a (partially) blind query, and re-
ceives a single output related to that input. What we need
for DPaSE though is an OPRF that “remembers” the blindly
provided password from a previous query and re-uses it in a
follow-up evaluation: we need to perform a dedicated pass-
word check and also want to ensure that encryption is done
with the same password that was verified. We model that as
an extension query, where a second OPRF query re-uses the
blinded input from a previous request. This extension feature
is required on top of partial-blindness (as the uid’s must be
a known input to all parties), verifiability and the distributed
setting. We formalize the desired properties of such an ex-
tendable OPRF in the UC framework and propose a secure
instantiation.

Our OPRF construction is based on the classical double-
hash DH scheme, basically combining all tricks that have
been used in this context into a single scheme. The challenge
thereby is that our second OPRF call which blindly carries
over the input from the first call now has three inputs: the
non-blind part (xpub = uid), and two blinded values, namely
the blinded (xpriv,1 = pw) from the previous evaluation and
the new input (xpriv,2 = oid). Previous partially-blind OPRFs
deal with two inputs only xpub and xpriv which are mostly com-
bined through a pairing, with the final PRF being of the form
HT (e(H1(xpriv),xpub)K ,xpriv) [ECS+15,BFH+20]. In our con-
struction, we will already need both “slots” of the pairing to
combine the two blinded inputs, and therefore must find a
different place to include the public input. We take inspiration
from [JKR19] and replace the direct use of the server’s secret
key K by K′← F(K,uid) where F is a standard PRF. Thus,
overall our new OPRF computes the output for an extended
query as HT (e(H1(xpriv,1),H2(xpriv,2)F(K,xpub),xpriv,1,xpriv,2)).

1With the exception of [Leh19] which proposes OPRF with batch evalua-
tions. There one blinded input can be evaluated under several keys, which
is orthogonal to our problem: we have a single key but want to extend one
blinded input with a follow-up query.
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The first (non-extended) query, just consisting of xpub and
xpriv,1 has the same form and simply sets xpriv,2 = 1.

This construction allows us to combine three values into
a single evaluation, but this extendability feature comes for
a price. First, relying on exponents that are derived from a
standard PRF K′← F(K,uid) only allows for a distributed,
but not threshold protocol. The distributed version simply
considers the additive combination of all K′ as the implicit
overall secret key (per xpub). Second, there are currently no
efficient proofs that allow to check whether the final OPRF
output has been computed correctly – which again stems from
the use of the standard PRF to derive the OPRF secret key
share. As we will need verifiability in our DPaSE protocol,
we must assume that the servers in the OPRF are at most
honest-but-curious.

Implementation and Evaluation. Instantiating DPaSE
with our OPRF, yields an efficient scheme that requires 10
exponentiations at the user, 4 exponentiations and 2 pairings
at each server. We further provide a proof-of-concept imple-
mentation of ΠDPaSE which respectively takes 45.96 ms for
an account creation and 105.58 ms for each encryption and
decryption with 2 servers; currently the implementation has a
server throughput of 40 encryption or decryption requests per
second.

1.2 Other Related Work
Apart from Password-Authenticated Secret Sharing we al-
ready discussed, there are further approaches that share some
similarities but differ considerably in the overall setting:

Password-hardened encryption (PHE) [LER+18] targets a
related setting, where a user outsources the handling of en-
cryption keys to an external server and a rate limiter. The rate
limiter can be implemented in a threshold version [BEL+20]
to further enhance PHE’s security. However, in PHE the fron-
tend server is fully trusted, as it learns the user’s password
and keys. We cannot simply subsume the server in PHE as
being part of the user in our setting, as the server also keeps
secure state: Our goal is to bootstrap secure encryption from
a password alone, without requiring the user to manage secret
keys herself.

The recently proposed protocol for Updatable Oblivious
Key Management [JKR19] also relies on a OPRF to derive
file-specific encryption keys with the help of a (single) ex-
ternal server for increased security. Their work focuses on
an enterprise setting for storage systems though, i.e., it relies
on strong authentication between the client (that wants to
enc/decrypt) and the server that holds the OPRF key. The
challenge in our work was how to achieve such oblivious key
management without strong authentication and relying only
on a weak password.

Likewise, the DiSE protocol [AMMR18] and its more
robust version [WH20] for distributed symmetric encryp-

tion consider strong authentication only. In these protocols,
a group of n parties jointly controls encryption keys under
which ciphertexts for the group get encrypted. The secret key
material is split among the group and any member of the
group can request decryption of ciphertexts which is again
done jointly by all member. DiSE implicitly – yet crucially –
relies on strong authentication to ensure that only valid mem-
bers of the group can make such requests, whereas we want
only a single user to enc/decrypt her files from a password.
The authenticity checks in the enc/decryption process of our
protocol are strongly inspired by DiSE though.

Finally, the PESTO protocol [BFH+20] for distributed sin-
gle sign-on (SSO) relies on a similar idea of first deriving a
strong key pair from a distributed OPRF in order to let a user
authenticate to a number of servers. The overall application
is different though, SSO vs. encryption, and consequently
also the desired functionality and security are different. In
particular, PESTO guarantees no security when all servers
are corrupt, whereas our scheme still falls back to standard
password protection in that case, i.e., the servers must perform
offline attacks on all users passwords.

2 Preliminaries

2.1 Bilinear Groups

Definition 2.1 (Asymmetric Pairing). Let G1,G2,GT be
cyclic groups of order p with generators g1,g2,gT , re-
spectively. Furthermore, let e : G1 ×G2 → GT be an effi-
ciently computable non-degenerate function such that ∀a,b ∈
Zp : e(ga

1,g
b
2) = gab

T . Then e is called an asymmetric pairing.
G= (p,g1,g2,gT ,G1,G2,GT ,e) is called an asymmetric bi-
linear group setting, or bilinear group for short.

We define an assumption on G by the following experiment
with algorithm A :

Experiment ExpGA ,Gapom-BDH(λ):
k $← Zp, qC← 0, X1← /0, X2← /0.
{(xi,yi,zi)}i∈[`]← AOG-1,OG-2,OD-help,OC-help(G,gk

2)
return 0 if

0≤ `−1 < qC or
∃i ∈ [`] : (xi 6∈ X1∨ yi 6∈ X2) or
∃i, j ∈ [`], i < j : (xi = x j ∧ yi = y j)

return 1 if ∀i ∈ [`] : e(xi,yi)
k = zi and 0 otherwise.

where the experiment uses the following oracles

OG-r()

return ⊥ if r 6∈ {1,2}
x $←Gr
Xr← Xr ∪{x}
return x

OC-help(m)

return ⊥ if m 6∈GT .
qC← qC +1
return mk
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OD-help(m,w,m′,w′)
return ⊥ if either m,w,m′,w′ not in GT
return 1 if logm(w) = logm′(w

′) and else 0

To win, A needs to find pairs (x,y,e(x,y)k) without query-
ing e(x,y) to OC-help and where A could not rerandomize
previous such pairs as it does not know the discrete logarithm
of any x,y (enforced by sampling them at random using OG-r).
A is equipped with a DDH oracle OD-help in the group GT .
The game Gapom-BDH follows the definition in [ECS+15].

Definition 2.2 (Gap One-More BDH Assumption). Let λ∈N
be a security parameter and G= (p,g1,g2,gT ,G1,G2,GT ,e)
be a bilinear group with log(p) = poly(λ), then we then say
that the Gap One-More Bilinear Diffie-Hellman (Gapom-
BDH) assumption holds for G if for all PPT adver-
saries A there is a negligible function negl· such that
Pr[ExpGA ,Gapom-BDH(λ) = 1]≤ neglλ.

2.2 Digital Signatures
Definition 2.3 (Signature Schemes). A signature scheme SIG
is a triple of algorithms (Gen,Sign,Verify) with the following
properties. On input the security parameter λ, the randomized
key generation algorithm Gen outputs a key pair (pk,sk). On
a message m ∈ {0,1}∗ and a secret key sk, the randomized
signing algorithm Sign outputs a signature σ. On input a
public key pk, a message m ∈ {0,1}∗, and a signature σ, the
deterministic verification algorithm Verify outputs 1 if the
signature is correct or 0 otherwise.

We require that the scheme satisfies correctness, i.e.,
for all m ∈ {0,1}∗ and (pk,sk) output by Gen it holds
that: Verify(pk,m,Sign(sk,m)) = 1. Additionally, the scheme
needs to satisfy unforgeability under chosen message at-
tacks (UF-CMA-security), i.e., after learning signatures for q
number of adaptively chosen messages {m1, ...,mq} ∈M , it
should be impossible to find a signature/message pair (σ,m)
s.t. Verify(pk,m,σ) = 1 and m 6∈

{
m1, ...,mq

}
.

3 Verifiable Extendable Distributed Partially-
Oblivious PRF

Our DPaSE construction relies on a new type of oblivious
PRF (OPRF) that allows for extension queries and which
we believe to be of interest for password-based protocols in
general. In this section, we define this new type of OPRF and
present a provably secure construction.

An OPRF is an interactive protocol between at least one
user and one server. The server holds the key K of a pseudo-
random function PRF, the user contributes the input x to the
function. After the protocol run, the user holds the PRF eval-
uation at x, PRFK(x). The obliviousness property demands
that, while the server actively participated in the protocol, he

did not learn anything about the value x he helped in eval-
uating the function for. On the other side, the user requires
participation of the server to evaluate PRFK() at any input. In
a distributed OPRF, the key K is split among n servers.

Recently, there has been a flurry of OPRF constructions in
the literature all featuring different (combinations of) prop-
erties on top of the above mentioned [JL09, JKK14, CL17,
JKKX16, ECS+15, JKKX17, CL17, JKX18, BFH+20]. For
constructing DPaSE, we require a new set of properties that
we detail now. Our OPRF is called a verifiable extendable
distributed partially-oblivious PRF (vedpOPRF).

Partial Obliviousness: The obliviousness property guaran-
tees that the servers do not learn on which input (xpriv,1
and xpriv,2) the user wants to evaluate the function on.
Partial obliviousness allows for an additional public part
(xpub) of the input.

Distribution: Obtaining a PRF value requires the active par-
ticipation of all n servers. No subset of n−1 servers can
evaluate the function themselves.

Verifiability: Outputs are guaranteed to be correct.
Extendability: After the user has provided an input

(xpub,xpriv,1) and learned the corresponding output
PRFK(xpub,xpriv,1), he can extend the query with a
second blind input xpriv,2 upon which he receives
PRFK(xpub,xpriv,1,xpriv,2) (in both cases the output is
conditioned on the participation of all servers of course).

While the first three properties exist (individually) already,
the concept of extendability of an OPRF is new. What is
so special about this property that could not be achieved by
simply evaluating the OPRF twice? The crucial difference
is that an extendable OPRF guarantees that certain blinded
inputs are reused in the second evaluation. With separate
evaluation requests this cannot be guaranteed since blindings
information-theoretically hide inputs and thus users can eas-
ily cheat. For DPaSE, we require such an OPRF to allow
for dedicated password verification and ensuring that actual
enc/decryption happens with the same password. We envision
extendable OPRFs to be generally useful in protocols requir-
ing more than one OPRF evaluation and where secret inputs
of these single evaluations need to be correlated.

3.1 Ideal functionality for vedpOPRF
We define a verifiable extendable distributed partially-
oblivious PRF in the Universal Composability framework
[Can01] in terms of an ideal functionality FvedpOPRF in Figure
1. For brevity, we assume the following writing conventions.
• The functionality considers a specific session sid =
(S1, . . . ,Sn,sid′) and only accepts inputs from servers
Si that are contained in the sid.
• When the functionality is supposed to retrieve an internal

record, but no such record can be found, then the query
is ignored.
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The functionality is parametrized by a security parameter λ. It interacts with servers S := {S1, ...,Sn} (specified in the sid),
arbitrary other parties and an adversary A . FvedpOPRF maintains a table T (xpub,xpriv,1,xpriv,2) initially undefined everywhere,
counters ctr[xpub] initially set to 0. FvedpOPRF sends all inputs to the adversary except for xpriv,1,xpriv,2.

Key Generation

• On receiving (KeyGen,sid) from Si:
– Ignore if the sid is marked ready.
– If (KeyGen,sid) was received from all Si, mark sid as ready, and give output (KeyConf,sid) to all Si.

Evaluation

• On receiving (EvalInit,sid,qid,xpub,xpriv,1) from any party U (including A):
– Record (eval,sid,qid,U,xpub,xpriv,1,⊥), and send output (EvalInit,sid,qid,xpub) to every Si.

• On receiving (EvalProceed,R,sid,qid) from Si where R ∈ {1,2}:
– Retrieve record (eval,sid,qid,U,xpub,xpriv,1,xpriv,2), where xpriv,2 =⊥ if R = 1, and xpriv,2 6=⊥ if R = 2.
– If (EvalProceed,R,sid,qid) has been received from all Si, set ctr[xpub]← ctr[xpub]+1.

• On receiving (EvalFollow,sid,qid,xpriv,2) from any party U (including A):
– Retrieve record (eval,sid,qid,U,xpub,xpriv,1,⊥) for (sid,qid,U).
– Update record to (eval,sid,qid,U,xpub,xpriv,1,xpriv,2), and send output (EvalFollow,sid,qid) to every Si.

• On receiving (EvalComplete,sid,qid) from A:
– Retrieve record (eval,sid,qid,U,xpub,xpriv,1,xpriv,2), only proceed if ctr[xpub]> 0, set ctr[xpub]← ctr[xpub]−1.
– If T (xpub,xpriv,1,xpriv,2) is undefined, then pick ρ

$←{0,1}λ and set T (xpub,xpriv,1,xpriv,2)← ρ.
– Output (EvalComplete,sid,qid,xpriv,2,T (xpub,xpriv,1,xpriv,2)) to U .

Figure 1: Ideal functionality FvedpOPRF

• We assume private delayed outputs, meaning that the
adversary can schedule their delivery but not read their
contents beyond session and sub-session identifiers.

The functionality FvedpOPRF is inspired by functionalities
from the literature and introduces extendability as a new
OPRF feature. FvedpOPRF talks to arbitrary users and a fixed
set of servers S1, . . . ,Sn. Initially, all servers are required to
call the KeyGen interface, to activate the functionality. Model-
ing an ideal PRF, FvedpOPRF chooses outputs at random, main-
taining a function table T () to ensure consistency. Implement-
ing a partially-oblivious function, FvedpOPRF tells the servers
public input xpub before they have to decide about their partic-
ipation in the request. Participation is signaled by calling (or
not calling) EvalProceed. The adversary may also evaluate
the function, but crucially requires participation of all servers
as well. If all servers are corrupted, the adversary can freely
evaluate the function by sending EvalProceed on behalf of
all the corrupted servers. In order to allow for efficient pro-
tocols, we employ an “evaluation ticket” counter ctr[] allow-
ing mixing-and-matching evaluations w.r.t the public input,
as common for OPRF functionalities (see, e.g., [BFH+20]).
Also following the literature, we allow overwriting of inputs
in adversarial evaluation requests in order to avoid the need
to use extractable primitives only.

Our FvedpOPRF provides a new feature: it can be extended
to output a second PRF value which is related to the first eval-
uation. This works as follows. A user obtains an evaluation on
inputs xpub,xpriv,1 by calling EvalInit with session identifier
qid. (The output is only generated if all servers participate

and the adversary allows the output by calling EvalComplete,
which is standard procedure for distributed OPRFs and we
thus not elaborate here.) Afterwards, the user can provide a
third input xpriv,2 via interface EvalFollow, using the still
active session qid. FvedpOPRF outputs the function value at
inputs xpub,xpriv,1,xpriv,2, ensuring that inputs xpub,xpriv,1 from
the first evaluation are reused by looking them up using iden-
tifier qid.

3.2 Our vedpOPRF Construction
We now present our construction of a verifiable extendable
distributed partially-oblivious PRF. ΠvedpOPRF computes the
function

PRF(K(xpub),xpriv,1,1) = HT (xpriv,1,e(H1(xpriv,1),H2(1))K(xpub))

PRF(K(xpub),xpriv,1,xpriv,2) =

HT (xpriv,1,xpriv,2,e(H1(xpriv,1),H2(xpriv,2))K(xpub))

with K(xpub) ← ∑
n
i=1F(ki,xpub) for (standard) PRF F :

{0,1}∗ → Zq, and ki from F’s key space is held by server
Si. xpub denotes the public input and xpriv,1,xpriv,2 the private
inputs. The function e() denotes a pairing.
Setup and Key Generation: We require an asymmetric bi-
linear group (g1,g2,gT ,G1,G2, GT ,e) and hash functions
H1 : {0,1}∗ → G1, H2 : {0,1}∗ → G2, HT : {0,1}∗ → GT .
We assume servers to choose keys ki ← Zq, i ∈ [n] at the
beginning of the protocol.
Evaluation: Our PRF is essentially the “2Hash Diffie-
Hellman” function [JKK14, JKKX16] PRF(k,xpriv,1) =
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H(xpriv,1,H′(xpriv,1)k). Let us briefly explain how evaluating
this function would work. A user blinds his input xpriv,1 with
randomness r as H′(xpriv,1)r and sending this value to the
server. The server sends back H′(xpriv,1)rk, from which the
user can compute H′(xpriv,1)k by exponentiation with 1/r.
This is enough for the user to compute H(xpriv,1,H′(xpriv,1)k).

Partial obliviousness is now achieved as in Ev-
erspaugh et al. [ECS+15] by combining blinded pri-
vate inputs as e(H1(xpriv,1)r,H2(xpriv,2)k) using the pair-
ing e(). Due to the bilinear property of e() this is
equal to e(H1(xpriv,1),H2(xpriv,2))rk, which again allows
the user to remove the blinding factor r. One can ad-
ditively share k among all servers and let the client
combine evaluation shares using the group operation in
GT . The function is computed as PRF(k,xpriv,1,xpriv,2) =
HT (xpriv,1,xpriv,2,e(H1(xpriv,1),H2(xpriv,2))k).

For our new extendability property we require a PRF eval-
uated on three inputs. Fortunately, we can efficiently and
securely augment the function given above with another in-
put by “squeezing” it into the function’s key. This technique
is inspired by the work of Jarecki et al. [JKR19]. We set
K(xpub) := k← ∑i∈[n]F(ki,xpub) for a (standard) PRF F and
ki being the servers’ secret keys. One subtlety here occurs in
the first evaluation on xpub and xpriv,1 only. We cannot save the
pairing evaluation and simply use H1(xpriv,1)k as k-dependent
value instead: with this value, a user could compute arbitrary
function evaluations on input xpriv,1 by himself by applying
the pairing. We therefore let servers use a “dummy” value
H2(1) and pair it with the user’s blinded input xpriv,1.

A full formal description of our OPRF construction
ΠvedpOPRF can be found in Figure 2. Its security is stated
in the following theorem, for which a proof sketch can be
found in Appendix A.

Theorem 3.1. Let G = (p,g1,g2,gT ,G1,G2,GT ,e) be a bi-
linear group. If the Gapom-BDH assumption holds for G
then the protocol ΠvedpOPRF given in Figure 2, with H1,H2
and HT modeled as random oracles and F being a (standard)
PRF, UC-emulates FvedpOPRF in the random oracle model
assuming secure and server-side authenticated channels and
honest-but-curious corruption of servers.

On malicious security. As detailed above, our FvedpOPRF

ensures that the PRF is always evaluated w.r.t the same key.
This rules out protocols where servers can freely decide what
key material to use in an evaluation. Let us note that it is
quite common in the literature [JKKX17,JKX18,BFH+20] to
relax this property by letting the OPRF functionality maintain
different lists representing different PRF keys. The adver-
sary can then determine which list is going to be used (in
case of server corruption). And indeed, it turns out that our
FvedpOPRF enforcing such consistency in keys is challenging
to realize in the presence of malicious servers. The reason is
that we cannot use standard techniques such as NIZK proofs
of honest behavior with respect to some public server key

(e.g., [ECS+15]), since our server keys are user-specific. Reli-
able distribution of such keys would involve frequent interac-
tion with a trusted authority. Another inefficient way to obtain
malicious security is to use a 3-linear map instead of a 2-linear
map (pairing), together with a NIZK. The map would allow
us to have (NIZK-compatible) uid-independent key shares
simply by putting uid as third input parameter to the map. We
choose not to give a maliciously secure protocol with such
inefficient techniques, and rather leave the construction of an
efficient maliciously secure verifiable extendable distributed
partially-oblivious PRF as an open problem.

4 Distributed Password Authenticated Sym-
metric Encryption (DPaSE)

In this section we introduce distributed password-
authenticated symmetric encryption (DPaSE). DPaSE
is an interactive protocol between many users and a fixed set
of n servers, where the servers assist users in conveniently
and securely encrypting their data under a single password.
DPaSE operates account-based: First, users register with a
username and a single password at all servers. After account
creation, the servers (blindly) assist users in encryption and
decryption provided that they are using the correct password.

We recall the key security properties of DPaSE as already
explained in more detail in Section 1.

Correct Encryption: DPaSE leverages the account-based
concept to ensure that encryption can only succeed with
the correct password.

Security against Offline Attacks: No message that is
stored or send must allow offline attacks against the
underlying password. This must hold as long as not all
servers are corrupted. Even in such worst case scenario,
messages remain protected by passwords, requiring
servers to run a dictionary attack until they figure out
the user’s password.

Security against Online Attacks: With every enc/ decryp-
tion request, the servers learn the username and whether
her password was correct. Servers can then refuse partic-
ipation to block online attacks.

Obliviousness: Neither in registration nor during password
verification the servers learn the user’s password. Further,
they cannot tell which objects are encrypted or decrypted,
in order to hide access patterns on users’ data.

Authenticated Encryption: Without knowing the correct
password, it must be infeasible for an attacker to pro-
duce a valid ciphertext.

Our concrete scheme will leverage the servers mainly to
(re)construct object-specific encryption keys, whereas the enc-
and decryption happens locally at the user side. This might
pose the question why we are modelling DPaSE as an en-
cryption and not key management protocol. We have opted

7



USER U SERVER Si, holding ki

On input (EvalInit,sid,qid,xpub,xpriv,1)
r1

$← Zp, x1← H1(xpriv,1)r1 -
xpub,x1 Output (EvalInit,sid,qid,xpub)

On input (EvalProceed,1,sid,qid)

Upon receiving y j from all S j ∈ S : �
yi oski← F(ki,uid), yi← e(x1,H2(1))oski

y←∏ j∈[n] y j
r−1
1 , Y1← HT (xpriv,1,y)

Output (EvalComplete,sid,qid,⊥,Y1)

On input (EvalFollow,sid,qid,xpriv,2)
r2

$← Zp, x2← H2(xpriv,2)r2 -
x2 Output (EvalFollow,sid,qid)

On input (EvalProceed,2,sid,qid)
Upon receiving y′j from all S j ∈ S : � y′i y′i← e(x1,x2)

oski

y′←∏ j∈[n] y′j
r1r−1

2 , Y2← HT (xpriv,1,xpriv,2,y′)
Output (EvalComplete,sid,qid,xpriv,2,Y2)

Figure 2: Protocol ΠvedpOPRF. We assume all messages to include sid,qid.

for capturing the full enc/decryption process to avoid similar
misconceptions as with PASS, which was believed to be a
suitable out-of-the-box tool for password-based encryption.
Only with modelling and considering the full process this can
be ensured.

4.1 An ideal functionality for DPaSE

We define DPaSE in terms of an ideal functionality FDPaSE,
which takes inputs of parties and hands them their securely
computed outputs. FDPaSE abstracts away any protocol details
and states only the required functionality and leakage and
influence (i.e., attacks) allowed by an adversary.

We assume the same writing conventions as for FvedpOPRF.
In addition, we assume the adversary gets to acknowledge
all inputs, but not learn their private content. For example, if
the functionality receives input “(Encrypt,sid,qid,x) from a
party P” and “keeps x private”, we assume that the function-
ality sends (Encrypt,sid,qid,P) to the adversary and only
processes the original input after receiving an acknowledge-
ment from the adversary.

Our ideal functionality FDPaSE is depicted in Figure 3, with
labeled instructions to enable easy matching to the explana-
tions in this section. On a high level, FDPaSE is a password-
protected lookup table for message-ciphertext pairs. Users
can create new such pairs by first logging in to their account
stored by FDPaSE with a username and password, and then
encrypt a message of their choice, obtaining back the cipher-
text. Decryption works in a similar fashion. FDPaSE stores a
password for every registered user, and refuses service if a
user does not remember his password correctly when he wants
to encrypt or decrypt. In order to perform any of registration,
encryption or decryption, FDPaSE requires participation of n
distributed servers. We now describe the interfaces of FDPaSE

in more detail. The functionality talks to arbitrary users and a
fixed set of servers S1, . . . ,Sn.

Account Creation: Any user can register with FDPaSE by
calling its Register interface with a username uid and a pass-
word pw. If no account uid exists yet ( R.3 ), FDPaSE informs
all servers about the new registration request and the uid, but
keeps the password private ( R.4 ). Servers can now decide to
participate in the registration by sending ProceedRegister
to FDPaSE. Only if all servers do so ( PR.2 ), FDPaSE stores
the account (uid,pw) and confirms the registration to the user.
ProceedRegister inputs of servers are matched with their
corresponding registration requests via subsession identifiers
qid. Since those identifiers are unique, collecting servers’ par-
ticipation among different requests is prevented by FDPaSE.

Encryption: A message encryption is initiated by a user send-
ing an Encrypt request to FDPaSE which includes uid,pw and
a message m. If account (uid,pw′) exists ( E.3 ), FDPaSE first
informs all servers about an incoming request for uid, keep-
ing the password as well as the message private ( E.4 ). Only
if all server agree to participate in this request for uid by
using the Proceed interface for the corresponding subses-
sion ( P.2 ), FDPaSE continues the encryption request. By not
giving away any information before, FDPaSE prevents offline
attacks. FDPaSE now verifies that the provided password pw
is equal to pw′ stored with uid ( P.2.3 ). All servers and the
user are informed about the outcome of password verifica-
tion by receiving either PwdOK or PwdFail ( P.2.5 ). Being
informed about failed password attempts and requests of uid
in general allows servers to protect accounts against online
guessing attacks: based on this information, they can decide
to throttle requests by refusing to send Proceed, e.g., after 5
failed attempts within 1 minute. Such throttling is however
decided by the application using FDPaSE.

Finally, if verification was successful, the user obtains a
ciphertext c from FDPaSE. While c is adversarially chosen, we
stress that, in an honest encryption procedure, the adversary
only learns the length of the message from FDPaSE ( P.2.2 ).
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Thus, FDPaSE ensures that the ciphertext does not contain
any information about m beyond its length. Further, FDPaSE

ensures that no two encryption requests yield the same cipher-
text by rejecting repeated ciphertexts sent by the adversary
( P.2.2 ). FDPaSE stores the pair (m,c) together with uid, and
sends the ciphertext to the user ( P.2.7 ). Handing out the
(fresh) ciphertext only if the correct password was provided
ensures correct encryption. For this, note that for honestly
registered accounts (which would not have pw =⊥) FDPaSE

prevents the adversary from influencing the “verification bit”
b in encryption procedures in any way.

Decryption: A user initiates a decryption procedure by call-
ing the Decryptinterface of FDPaSE with uid, pw and a cipher-
text c. It is instructive to note that FDPaSE does not give out any
information about ciphertexts it is not explicitly queried for,
and thus cannot be used as a storage for ciphertexts. FDPaSE

informs servers about a request for uid, keeping password
and ciphertext private ( D.2 ). Similar to an encryption pro-
cedure, all servers are required to call Proceed in order for
FDPaSE to continue with password verification ( P.2 ). How-
ever, FDPaSE does not inform servers about which ciphertext
should be decrypted, in order to hide access patterns on user
data. We choose to not even inform servers about the type
of request - encrypt or decrypt - in order to allow also for
protocols where password verification requests do not yet re-
veal what a user wants to do. Coming back to the decryption
procedure, FDPaSE now verifies the password ( P.2.3 ). In case
of success and if FDPaSE finds a record (uid,m,c), the mes-
sage m is given to the requesting user ( P.2.7 ). By storing uid
along with message-ciphertext pairs and revealing m only if
uid’s password was provided in the decryption query, FDPaSE

enforces authenticated encryption.

Adversarial Interfaces: As explained before, we let A de-
termine ciphertexts as common for functionalities modeling
symmetric encryption. However, ciphertexts cannot depend
on the message beyond its length, since FDPaSE ensures that
the adversary is oblivious of messages to be encrypted ( E.2
and P.2.2 ). A may also influence password verification in
the following ways. First, modeling DoS attacks, we allow A
to make individual servers believe that password verification
failed even though the password might have been correct. This
attack is carried out by setting bSi ← 0 for the corresponding
server Si ( P.2.2 and P.2.4 , “otherwise” case). Second, A
may make servers believe that password verification suceeded
even when a wrong password was used, but only for accounts
belonging to the adversary. FDPaSE marks a uid corrupted if
this is the case, i.e., if a corrupted user performed a successful
password verification with respect to username uid ( P.2.1 ).
The adversary then can fake successful password verification
towards Si by setting bSi ← 1 ( P.2.4 , “Else, if” case). The
motivation is that for such corrupted accounts we have to as-
sume that the adversary knows all secrets. It is then plausible
that he can compute whatever proof a protocol requires to

convince servers of knowledge of the correct password.
We further weaken FDPaSE by allowing the adversary to

start, e.g., an encryption request without yet knowing what
message to decrypt, and under which password. Technically,
this is enabled by FDPaSE accepting overwrite requests in
adversarial records ( R.1 , E.1 and D.1 ). While this does
not constitute a meaningful attack for real-world applications
(we stress that the adversary is only allowed to change inputs
for his own requests, not for the ones of honest users), it
allows for efficient realizations of FDPaSE such as ours based
on oblivious pseudo-random functions and random oracles.
A special case: all servers corrupted. We want to highlight
which guarantees FDPaSE gives in this worst case scenario. In
any DPaSE protocol with n servers storing a somehow shared
information about the user’s password, these servers can al-
ways throw their data together, guess a password and run the
password verification procedure of the DPaSE protocol to
learn whether the guess was correct. This is unavoidable un-
less we involve more parties (such as an external password
hardening service), which is not the scope of this work. How-
ever, we require that this is the best possible attack on the
user’s password when all servers are corrupted: they have
to invest some computation to test each of their password
guesses. This way, users with strong passwords will remain
safe even in this worst case scenario. Since FDPaSE enforces
authenticated encryption by revealing messages only if the
correct password was supplied ( P.2.3 and P.2.7 ) - regard-
less of how many servers are corrupted - not only passwords
but also encrypted data of users with strong passwords remain
secure.

4.2 A DPaSE protocol ΠDPaSE

We now present our DPaSE protocol ΠDPaSE. The detailed
formal description can be found in Figure 4. ΠDPaSE uses
hash functions H : {0,1}∗→{0,1}λ and H-PRG : {0,1}λ→
{0,1}∗, a signature scheme SIG and FvedpOPRF as ideal build-
ing block. The main principle of ΠDPaSE is that the servers
assist the user in turning his (low-entropy, but unique) authen-
tication data, i.e., username and password, into various (high-
entropy) cryptographic keys. Those keys are subsequently
used for proving knowledge of the password to servers, and
to encrypt or decrypt the data. We describe the three phases
of ΠDPaSE, account creation, encryption and decryption, in
more detail in the below.

Account Creation: To create an account, a user derives a
signing key pair (usk,upk) from its username uid and pass-
word pw. For this, FvedpOPRF is queried with inputs uid,pw by
the user, yielding Y ← PRF(k,(pw,1,uid)) if all servers par-
ticipate in the evaluation. Partial blindness ensures that servers
learn uid but not pw. The user then computes (usk,upk)←
SIG.Gen(Y ), sends upk to all servers and can afterwards delete
the key pair. Servers are required to store (uid,upk).
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The functionality is parametrized by a security parameter λ. It interacts with servers S := {S1, ...,Sn} (specified in the sid), as well as arbitrary
users and an adversary A .

Account Creation

• On receiving (Register,sid,qid,uid,pw) from U (including A):
R.1 If there already exists a record (register,qid,U,uid,pw′), if U = A then overwrite pw′ with pw and if U 6= A then ignore the

query.
R.2 Keep pw private
R.3 Proceed only if no record (account,uid,∗) exists. Create record (register,qid,U,uid,pw).
R.4 Send a delayed output (Register,sid,qid,uid) to all Si ∈ S .

• On receiving (ProceedRegister,sid,qid,uid) from server Si:
PR.1 Retrieve record (register,qid,U,uid,pw).
PR.2 If (ProceedRegister,sid,qid,uid) has been received from all Si:

∗ Record (account,uid,pw); if U is corrupted mark uid corrupted. Send a delayed output (Registered,sid,qid,uid) to U .

Encryption and Decryption

• On receiving (Encrypt,sid,qid′,uid,m,pw′) from party U or A:
E.1 If there already exists a record (∗,qid′,U,uid,m′,pw), if U = A then overwrite it with (enc,qid′,U,uid,m,pw′) and if U 6= A then

ignore the query.
// A can change mode, password and message in his own requests

E.2 Keep Encrypt, m and pw′ private, instead add Request tag and `(m) in message to A
E.3 Proceed only if a record (account,uid,pw) exists. Create record (enc,qid′,U,uid,m,pw′).
E.4 Send a delayed output (Request,sid,qid′,uid) to all Si ∈ S .

• On receiving (Decrypt,sid,qid′,uid,c,pw′) from party U or A:
D.1 If there already exists a record (∗,qid′,U,uid,pw), if U = A then overwrite it with (dec,qid′,U,uid,c,pw′) and if U 6= A then

ignore the query.
D.2 Keep Decrypt, c and pw′ private, instead add Request tag and `(c) in message to A
D.3 Proceed only if a record (account,uid,pw) exists. Create record (dec,qid′,U,uid,c,pw′).
D.4 Send a delayed output (Request,sid,qid′,uid) to all Si ∈ S .

• On receiving (Proceed,sid,qid′) from server Si:
P.1 Retrieve records (mode,qid′,U,uid,obj,pw′) and (account,uid,pw) with mode ∈ {enc,dec}.
P.2 If (Proceed,sid,qid′) has been received from all Si:

P.2.1 If U corrupted and pw == pw′ then mark uid corrupted.
// DoS attacks: A can prevent or sometimes even fake password confirmation (send bSi = 0 or bSi = 1)

P.2.2 Send (Complete,sid,qid′,pw == pw′) to A and receive back (Complete,sid,qid′,bS1 , . . . ,bSn ,c). Abort if mode = enc
and c has been sent before.

P.2.3 If pw =⊥ then set b←⊥; otherwise set b← (pw = pw′).
P.2.4 For i ∈ [n], if pw =⊥ set b′i← 0. Else, if U and uid corrupted then set b′i← bSi , otherwise set b′i← b∧bSi .
P.2.5 For i ∈ [n], if b′i = 0 output (PwdFail,sid,qid′) and otherwise output (PwdOK,sid,qid′) to all Si.
P.2.6 If b = 0 output (PwdFail,sid,qid′) to U .
P.2.7 If b = 1 then

· If mode= dec and a record (uid,m,obj) exists, output (Plaintext,sid,qid′,m) to U .
· If mode= enc then store (uid,obj,c) and output (Ciphertext,sid,qid′,c) to U .

Figure 3: Ideal functionality FDPaSE for distributed password-authenticated symmetric encryption. For easy access to explanations
we use highlighted numbering in both figure and text.

Encryption: Users are required to provide their correct pass-
word whenever they want to encrypt (or decrypt) any data.
This is now straightforward: as in account creation, the user
calls FvedpOPRF with inputs (uid,pw′), receiving PRF value
Y1 if again all servers participate in the PRF evaluation. The
user now computes a signing key pair from Y1, signs part of
the transcript (we mention that the identifier of this encryp-

tion session, qid′, is globally unique) and sends the resulting
signature σU to each server. Servers will accept (i.e., output
PwdOK) only if σU is a verifying signature under upk stored
with uid, which happens if and only if pw = pw′. Of course,
this verification technique only works if servers reliably learn
uid used in the PRF compuation, which is ensured by the
partial obliviousness of FvedpOPRF.
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Symmetric encryption in ΠDPaSE is simply a one-time
pad, with an object-specific encryption key which is com-
puted again from a PRF value and with the help of all
servers. But now, ΠDPaSE crucially relies on the extendabil-
ity of the PRF to ensure correct and authenticated encryp-
tion of message m under encryption randomness ρ. Namely,
the key is computed from H(m,ρ) and uid,pw that success-
fully verified before. Note that this requires to evaluate the
PRF on three inputs, while the two latter are reused from
the password verification procedure detailed above. The
extendability property of FvedpOPRF allows this by calling
EvalFollow with input H(m,ρ), still using the identifier
qid′ of the ongoing encryption session. The user obtains
Y2← PRF(k,(pw,H(m,ρ),uid)) from FvedpOPRF.

To encrypt, Y2 is XORed with (m,ρ) (applying H-PRG first
to account for differences in lengths). The resulting ciphertext
is augmented with H(m,ρ). The reason for appending this
auxiliary information will become apparent below.
Decryption: In order to compute a decryption key, a user first
has to successfully pass password verification. This is done
in the exact same way as for an encryption request (in fact, in
our protocol, servers cannot distinguish an encryption request
from a decryption request). Computation of the decryption
key is also done the exact same way as in encryption – now
it becomes apparent why com← H(m,ρ) is required to be
part of the ciphertext. The user decrypts m,ρ by XORing
the decryption key with the first part of the ciphertext. Fi-
nally, the user verifies correct decryption by recomputing com
from m,ρ. While PRF computation is verifiable when using
FvedpOPRF, the latter check is still required since otherwise
faulty ciphertexts (where the com contains another message)
would decrypt faithfully and users would recover data that
they never encrypted.

4.3 Security of ΠDPaSE

For analyzing the security of ΠDPaSE we assume that hon-
est users delete all protocol values such as Y1,Y2,usk after
performing an encryption or decryption, i.e., upon closing a
subsession. Further, we assume that within ongoing subses-
sions (the identifier qid indicates one such session) an honest
user does not get corrupted. This seems reasonable given the
fact that, in reality, the time between password verification
and encryption (or decryption) will be only very few seconds.

Theorem 4.1. The protocol ΠDPaSE given in Figure 4
with H,H-PRG modeled as random oracles and SIG =
(Gen,Sign,Verify) an EUF-CMA-secure signature scheme
UC-emulates FDPaSE in the FvedpOPRF-hybrid random oracle
model w.r.t static malicious server corruption and assuming
server-side authenticated and secure channels.

Proof Sketch. A detailed description of simulated cases can
be found in Table 3 in the Appendix. Here, we only give a
brief overview of different simulation aspects and particular

challenges.
Simulation of honest servers. Since servers do not obtain
any secret input that is kept from the adversary, simulating
honest servers is quite trivial: the simulator S just follows the
server’s protocol.
Simulate honest user without password. First note that the
password influences the outputs of the (deterministic) PRF.
To know whether former PRF values have to be reused as
output (i.e., in case of a correct password), it is enough for the
simulator to learn whether password verification was success-
ful. Fortunately, S learns this information from FDPaSE on
time (via (Complete, . . .) message) before having to commit
to any FvedpOPRF output.
Extraction of corrupted user’s secrets. Since any user, even
a corrupted one, needs to use FvedpOPRF in order to obtain a
key, S can extract a corrupted user’s password and message or
ciphertext from his inputs to FvedpOPRF. Another way to see
this is that, while usage of FvedpOPRF simplifies our DPaSE
simulator’s life in this case, the burden is on the protocol
realizing FvedpOPRF. This protocol has to ensure that secrets
can be extracted from adversarial messages.
Three different ways to encrypt or decrypt. The simula-
tion is complicated by the fact that Z can initiate, e.g., an
encryption procedure either via an honest user and then re-
compute the symmetric decryption key via either a corrupted
user or via Z’s adversarial interface at FvedpOPRF. Knowing
only the ciphertext so far, S now needs to produce the sym-
metric key without knowing the plaintext it should decrypt to.
However, all honest servers need to agree to help Z in compu-
tation of the symmetric key. S can use the server’s agreement
to obtain the plaintext message from FDPaSE, compute the key
linking this message with the ciphertext and send it to Z (for
this, S has to program the random oracle H-PRG to point to
the key).

On security against malicious servers. In the previous theo-
rem stating security of ΠDPaSE, we handle malicious server
corruptions. However, since we use as a building block our
ΠvedpOPRF which provides security only against honest-but-
curious servers, our overall construction is only secure against
such mild corruptions. We stress that, by proving the previous
Theorem 4.1 w.r.t malicious corruptions, we do not want to
create a false impression. Rather, by this we attempt to isolate
the difficulty in achieving malicious security: if one manages
to UC-realize FvedpOPRF w.r.t malicious server corruptions,
with Theorem 4.1 one automatically obtains a DPaSE proto-
col secure against such corruptions.

For now, we obtain the following corollary by combining
Theorems 4.1 and 3.1.

Corollary 4.2. Let G= (p,g1,g2,gT ,G1,G2,GT ,e) be a bi-
linear group and H1,H2,HT ,H,H-PRG hash functions as de-
scribed in ΠvedpOPRF and ΠDPaSE, modeled as random or-
acles. If the Gapom-BDH assumption holds for G, SIG =
(Gen,Sign,Verify) is an EUF-CMA-secure signature scheme
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USER U SERVER Si

Upon input (Register,qid,uid,pw) -Register,qid,uid

-(EvalInit,uid,pw) -(EvalInit,uid)

FvedpOPRF

If EvalProceed was Abort if a record for uid already exist.
received from all Si,

compute
Else output (Register,qid,uid).

Y ← PRF(k,(pw,1,uid)) Upon input (ProceedRegister,qid,uid) :

� (EvalComplete,⊥,Y ) � (EvalProceed,1)

(upk,usk)← SIG.Gen(Y ) -upk store (uid,upk)
upon receiving ok from all Si ∈ S , output
(Registered,qid,uid)

� ok

Upon input (Encrypt,qid′,uid,m,pw′) (Decrypt,sid,qid′,uid,c,pw′)

ρ
$←{0,1}λ, com← H(m,ρ) parse c := (e,com)

-(Request,qid′,uid)

-(EvalInit,uid,pw′) -(EvalInit,uid)

FvedpOPRF

If EvalProceed was
received from all Si,

compute
Abort if no record (uid,upk) exist, else output
(Request,qid′,uid).

Y1← PRF(k,(pw′,1,uid)) Upon input (Proceed,qid′):

� (EvalComplete,⊥,Y1) � (EvalProceed,1)

(upk′,usk′)← SIG.Gen(Y1) � upk

if upk 6= upk′ then output (PwdFail,qid′)
σU ← SIG.Sign(usk′,(uid,qid′)) -

σU if SIG.Verify(upk,(uid,qid′),σU ) = 0
then end with output (PwdFail,qid′)
else output (PwdOK,qid′)

-(EvalFollow,com) -(EvalFollow)

FvedpOPRF

compute
Y2← PRF(k,(pw′,com,uid)) � (EvalProceed,2)

� (EvalComplete,com,Y2)

e← H-PRG(Y2, |m|+λ)⊕ (m,ρ), c← (e,com)

output (Ciphertext,qid′,c)

(m′,ρ′)← H-PRG(Y2, |m|+λ)⊕ e, abort if com 6= H(m,ρ)

output (Plaintext,qid′,m′)

Figure 4: Our protocol ΠDPaSE using a signature scheme SIG, ΠvedpOPRF protocol and hash functions H,H-PRG. Top box shows
registration, bottom box shows encryption and decryption. Gray instructions are only executed in encryption, framed ones
only in decryption. Each encryption and decryption query has to use a fresh subsession identifier qid′.

and F a (standard) PRF, then ΠDPaSE with FvedpOPRF instanti-
ated by ΠvedpOPRF UC-emulates FDPaSE in the random oracle
model w.r.t static honest-but-curious server corruption and
assuming server-side authenticated and secure channels.

5 Evaluation & Comparison

In this section we report on the efficiency of our scheme.
We first compare our ΠDPaSE protocol with similar password-
based schemes by counting the number of exponentiations
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Scheme Setting #(Exponentiations + Pairings)
user (in [LER+18] rate limiter) (per) server

PASS-based Enc (Dec) [ECS+15] (t,n) 6 exps (= 2G1 +2G2 +2GT ) +1 pairing 3 exps (= 2G1 +1GT ) +1 pairing
PHE [LER+18] rate limiter and server 7 exps (in G) 10 exps (in G)
DPaSE (Our Work) (n,n) 10 exps (= 2G1 +2G2 +4GT +2Gp-256) 4 exps (= 2GT +2Gp-256) +2 pairings

Table 1: Comparison of ΠDPaSE with other password-based encryption services, where the exponentiations are counted per
group G, G1, G2, GT , the pairing is mapped as G1×G2 : →GT and Gp-256 represents the prime group in the ECDSA signature
scheme secp256r1.

per group and pairings, being the most expensive opera-
tions of such protocols. The related schemes are the PASS
scheme [ECS+15], which gives a partially-oblivious ther-
shold PRF and the password hardened encryption (PHE)
from [LER+18]. We stress that PASS has a number of us-
ability and security drawbacks when used for encryption for
multiple files, and PHE does consider a rather different setting
between a (trusted) server and rate limiter. See Section 1 for
a more detailed discussion. We still believe that comparing
these works helps to evaluate the efficiency of our scheme.

Benchmarks We carried out a proof-of-concept implemen-
tation of our ΠDPaSE protocol and report preliminary bench-
marks on the same. We implement in Java, and use the MIR-
ACL - AMCL library for the pairing computation and ex-
ponentiation operations. We use the Boneh-Lynn-Shacham
pairing with 461 bit curves for the pairing G1×G2 → GT
in ΠvedpOPRF, ECDSA with sec256r1 as the user’s signature
scheme SIG, SHA-512 as the underlying hash function and
the Java’s inbuilt KeyPairGenerator class for user key pair
generation SIG.Gen. The elements in groups G1, G2 and GT
are implemented using single exponentiation operations with
the respective group generators. For implementing the stan-
dard PRF function F in ΠvedpOPRF, we used Java’s inbuilt
HMAC-SHA-256.

We measured our implementation on a machine running
a Intel Core i7-7500U series CPU with 4 virtual CPUs, 16
GiB of RAM. We simulated the behavior of the user and the
servers connected through java’s serializable sockets. We do
not report on the latency of the communication between the
user and the server and rather focus on the local computations.
A ΠDPaSE protocol run between a user and 2 servers took
45.96 milliseconds (ms) and 105.58 ms for account creation
and an encryption request respectively, while using 5 servers
the same took 99.36 ms and 243.86 ms respectively. This
leads to processing 40 encryption or decryption requests per
second for a server. The timing can be further optimized by
supporting multi-threading computations.

6 Conclusion and Open Questions

In this paper, we introduce and construct a distributed
password-authenticated symmetric encryption protocol
(DPaSE), which lets users log in with only a password to

perform symmetric encryption and decryption. DPaSE is use-
ful in “mobile” scenarios where users do not have secure
storage to securely maintain encryption keys. DPaSE is de-
signed to offer strong provable security guarantees, such as
protecting the user’s password against on-line and off-line
attacks, and message privacy and ciphertext integrity even
if all servers are corrupted. Regarding usability, DPaSE pro-
tects users from accidentally encrypting their data with faulty
passwords.

Our construction uses an oblivious pseudo-random func-
tion (OPRF) twice: first, to let the user turn her password
into high-entropy authencation data, and second, to let the
user compute a symmetric key. To ensure the strong guar-
antees mentioned above, we require an OPRF with special
properties (extendable, verifiable, distributed and only par-
tially oblivious). We give a construction for such an OPRF,
which we believe is of independent interest as a new build-
ing block for password-based cryptographic protocols. We
provide proof-of-concept implementations for our DPaSE
construction (including our OPRF construction) and compare
efficiency to related protocols in the literature. Our protocol
provides only little overhead, scales well in the number of
users and servers, and features provable security under stan-
dard bilinear discrete-log based assumptions in the random
oracle model.

An interesting future direction is the construction of a
threshold version of DPaSE, where only an arbitrary subset of
all servers is required to participate in each user request. This
would improve usability of the protocol, since users would
not have to wait for answers of busy servers. However, our
user-specific OPRF keys seem to rule out usage of standard
techniques for threshold protocols.

Finally, security in the presence of malicious servers would
be enabled by constructing a maliciously secure verifiable
extendable distributed partially-oblivious PRF. Alternatively,
for ensuring correct encryption it seems to be sufficient to
have servers use the same keys in both OPRF evaluations.
This flavor of verifiability in our OPRF seems to be achievable
with standard techniques. Although key switching between
different requests of a specific user would not significantly
weaken but clutter the description of FDPaSE, we decide to
present the more secure and cleaner version here, and leave
the slightly weaker but maliciously secure version as future
work.
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A Proof sketch of Theorem 3.1

In this section, we analyze the security of our protocol
ΠvedpOPRF with respect to our new FvedpOPRF. For this, we as-
sume that users delete all protocol values such as r1,r2,y and
y′ after outputting both PRF evaluations. Further, we assume
that within ongoing subsessions (the identifier qid indicates
one subsession) an honest user does not get corrupted.

We further assume static honest-but-curious server corrup-
tions. Essentially, a corrupted server’s inputs and outputs are
handled by the adversary, while its code is still executed as in
the protocol instruction.

Proof sketch. Our proof combines aspects of the OPRF
proofs given in [ECS+15], [CLN15] and [BFH+20], which
all follow initial ideas of [JKKX17].

In Table 2 we provide details of the simulation of our
distributed verifiable partially-oblivious PRF when interacting
with FvedpOPRF. The rows of the table consider all possible
corruption scenarios, while the columns focus on different
tasks of the simulator.

Usage of random oracles The random oracles are used in
different ways: either S choses outputs such that he knows
their discrete logarithms, or he observes queries to the oracle,
or he programs the oracle’s output to match other values from
the simulation. More detailed, S uses discrete logarithms of
H1 and H2 outputs to generate U’s randomness r upon learn-
ing U’s private input xpriv. With all three oracles, observability
is exploited (to learn xpriv,i and xpub values). And finally, HT
is programmed to PRF values generated by FvedpOPRF. Cf.
Table 2 for more details on the simulation of the oracles.

Simulating without secrets First, we note that simulation
of servers is trivial since inputs towards servers do not carry
any secrets. The simulation works by, for all i ∈ [n], simply
running the code of Si on a ki randomly chosen in the begin-
ning.

Contrarily, simulation of honest users must work with-
out knowing secret values xpriv,1,xpriv,2. Observe that, in our
OPRF protocol, a user computes PRF(xpub,xpriv,1,xpriv,2) by
hashing HT (xpriv,1,xpriv,2,y′), where y′ depends on all inputs
and the server’s keys. However, since a PRF is a determinis-
tic function, Z might obtain PRF(xpub,xpriv,1,xpriv,2) via two
ways: computing the Hash on its own through a corrupted
user, or by running evaluation via an honest user. To make
things look consistent, the simulator needs to make sure the
result is the same both ways. For this, he recognizes consis-
tent queries to HT made by Z using knowledge of all ki. If a
consistent query is detected, S programs the result to the same
PRF value that FvedpOPRF would output. We show below that,
if the Gapom-BDH assumption holds in the underlying group,
S will always obtain a PRF value from FvedpOPRF for each
consistent HT query made by Z.

The challenge of simulating extendable evaluation One
technicality that stems from extendable evaluations is the or-
der in which Z computes PRF values through a corrupted user.
Essentially, Z can complete a full run of the protocol without
querying HT for the final PRF values, and then query them in
an arbitrary order. Our simulation has to deal with all possible
orders, where it is crucial that S can match queries belonging
to each other (note that due to the determinstic nature of a
PRF, we cannot simply include subsession identifiers qid in
HT inputs to allow for such matching).

Reduction to the one-more BDH assumption Our simu-
lation relies on FvedpOPRF leaking specific PRF values to S
and we specify in Table 2 an event fail in which S does not
receive this leakage. We show that fail happens only with
negligible probability if the Gapom-BDH assumption holds
in G by constructing a successful attacker B exploiting fail.
On a high level, the idea is as follows. If FvedpOPRF does not
provide a PRF value for inputs xpub,xpriv,1,xpriv,2, then at least
one honest server did not proceed the request. This corre-
sponds to one missing evaluation share. Thus, Z submitting
a hash query HT (xpriv,1,y1) or HT (xpriv,1,xpriv,2,y2) solves a
hard problem by computing a consistent y1 or y2. Namely,
Z provides either a CDH tuple (x,y,e(x,y)k) or a CDH tu-
ple (x,z,e(x,z)k), where x← H1(xpriv,1),y← H2(xpriv,2) and
z← H2(1). B will use its oracles to detect consistency and
to simulate the execution without knowing discrete logs and
server keys.

As a preparatory step, we choose all values F(ki,xpub) for
honest servers Si truly at random, which goes unnoticed by the
environment due to pseudorandomness of F. This is needed
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to ensure that embedding of a Gapom-BDH challenge does
not change any distribution.

Let us now state the reduction in more detail. Since fail
only occurs if at least one server is honest, w.l.o.g we assume
that all but one server eventually get corrupted. B chooses
j ∈ [n] at random and aborts if S j gets corrupted. We show
now how B emulates the ideal execution using the oracles
provided by the Gapom-BDH experiment.

As a warm up, let us first assume that Z always uses
the same xpub in all inputs. B , on input (G,K), where
K = gk

2 for some secret k, stores a “DDH reference tuple”
(ref,g1,g2,e(g1,K)). B chooses random keys ki for i 6= j and
implicitly sets osk j← k−∑i6= j F(ki,xpub). Servers Si 6= S j are
simulated as in the protocol using keys ki. Note that the dis-
tribution of osk j does not change by this embedding since
F(k j,xpub) was chosen uniformly at random in our prepara-
tory step above.

B uses his oracles OG-1,OG-2 to answer Z’s queries
to H1 and H2, respectively. Whenever S j receives input
(EvalProceed,R) with R ∈ {1,2} and corresponding mes-
sages xpub,x1 or x2 with x1 ∈ G1,x2 ∈ G2 sent to S j from
a corrupted user, B proceeds as follows: if R = 1, B ob-
tains z ← OC-help(e(x1,H2(1)), adds (sol,x1,H2(1),z) to
a list of CDH solutions replies to the user with y j ←
z/e(x1,H2(1))∑i6= j F(ki,xpub). The case R = 2 is handled the
same way.

If Z queries HT (xpriv,1,y), B re-
trieves record (ref,g1,g2,Z) and submits
(e(g1,g2),z,e(H1(xpriv,1),H2(1)),y) to OD-help. In case
of receiving 1, y is correctly computed and B submits
EvalInit to FvedpOPRF as described in the simulation. B
adds (sol,H1(xpriv,1),H2(1)),y) to the list of CDH solutions.
Upon FvedpOPRF outputting a PRF value YT , B programs
HT (xpriv,1,y) := YT . B proceeds analogously for queries
HT (xpriv,1,xpriv,2,y′) made by Z.

If even fail occurs, then B submits his list of CDH so-
lutions (sol, ...). In this case, this list contains one more
non-trivial CDH solution that the number of queries to OC-help
and thus B wins the Gapom-BDH experiment.

Now we lift the restriction to one xpub. Let osk
xpub,`
j de-

note the secret key that is used by S j in a session for xpub,`.
The issue with different such xpub,` values is that Z knows
a relation between (the unknown) Gapom-BDH exponent k
and osk

xpub,`
j namely that their difference is ∑i 6= j F(ki,xpub,`).

To make osk
xpub,`
j pseudorandom from Z’ viewpoint again,

B implicitly sets osk
xpub,`
j ← (k−∑i6= j F(ki,xpub,`))α` + β`

for α`,β` ← Zp uniformly at random. B stores extended
DDH reference tuples of the form (ref,g1,g2,e(g1,K)β` ·
e(g1,g

α`
2 ),α`,β`,xpub,`) (one for each xpub,`). B proceeds

as in the simulation with one xpub, with two changes: first,
B adds randomizing factors α`,β` to simulated shares y j

by setting y j ← zα`/e(x1,H2(1))∑i 6= j α`·F(ki,xpub)+β` s.t. y j =

e(x1,H2(1))
osk

xpub,`
j . Second, B checks consistency w.r.t all

ref tuples now using oracle OD-help. Assume the oracle
outputs 1 for tuple (ref,g1,g2,∗,α`,β`,xpub,`) and query
HT (xpriv,1,y). Let e ← e(H1(xpriv,1),H2(1)). Then B adds
(sol,H1(xpriv,1),H2(1),(y/eβ`−∑i 6= j F(ki,xpub,`))α

−1
` ) to the list

of CDH solutions and proceeds with querying FvedpOPRF as
before.

B Additional material on proof of Theorem
4.1

In Table 3 we provide the simulation of our DPaSE protocol
ΠDPaSE for a simulator interacting with FDPaSE. The rows of
the table consider all possible corruption scenarios, while the
columns focus on different tasks of the simulator.
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Transcript Input/output of user U Random oracles
All honest Trivial due to usage

of secure channels
To make sure that U
gets output, S sends
(EvalComplete,sid,qid,hon)
to FvedpOPRF each time all Si
messages are delivered to U .

S perfectly simulates all random oracles, meaning that he chooses fresh and
uniformly random values from the groups G1,G2 and GT for the functions
H1,H2 and HT , respectively. For each function S maintains a list of the form
(H1,x,y) where H1(x) = y.

U and up to
n−1 Si cor-
rupted

Choose k1, . . . ,kn at
random. Simulate
server messages as
in protocol (servers
do not have secret
inputs) using those
key shares.

Input: upon U sending xpub,x1
S chooses xpriv,1 ← G1
at random and inputs
(EvalInit,sid,qid,xpub,xpriv,1)
to FvedpOPRF so that servers
get Eval output for qid (note
that the simulated private input
cannot be recognized by Z
since the output towards Si does
not contain any xpriv value).
Similarly, S chooses a random
xpriv,2← G2 upon U sending x2
to provide input EvalFollow to
FvedpOPRF.

On HT (xpriv,1,y1) of Z (first such query), S only proceeds if y1 =

e(H1(xpriv,1),g2)
∑F(ki,x′pub) for some x′pub used before by some corrupted

U . If there is a record (∗,xpriv,1,∗,x′pub,Y
′′
1 ,∗) (Z already queried second

Hash) then S programs (HT ,(xpriv,1,y1),Y ′′1 ) and answers Z’s HT query
with Y ′′1 . If there is no such record (Z queries 1st Hash first), then S queries
FvedpOPRF with (EvalInit,sid,qid′,x′pub,xpriv,1) with a fresh identifier
qid′. S delays the output (EvalInit, ...) to servers infinitely. Then, S sends
(EvalComplete,sid,qid′,hon) to FvedpOPRF. This will let FvedpOPRF use
the counter increased due to the simulated xpriv,1 and give S one PRF value
(EvalComplete,sid,qid′,⊥,Y1). S then programs (HT ,(xpriv,1,y1),Y ′1) and
answers Z’s HT query with Y ′1. S stores the tuple (qid′,xpriv,1,⊥,x′pub,Y

′
1,⊥).

If S does not receive any Y ′1 from FvedpOPRF, we say that event fail hap-
pens.

On HT (xpriv,1,xpriv,2,y2) of Z (first such query), if y2 =

e(H1(xpriv,1),H2(xpriv,2))∑F(ki,x′′pub) for some x′′pub used before by some cor-
rupted U , then S looks for a recorded tuple (qid′′,xpriv,1,∗,x′′pub,∗,∗)
for some qid′′. If none is found (Z queries 2nd Hash first), S
proceeds as above with inputting (EvalInit,sid,qid′′,x′′pub,xpriv,1)
(for a fresh qid′′) to obtain some Y ′′1 . Afterwards, and also in case
such a record already exists (Z already queried 1st Hash) S sends
(EvalFollow,sid,qid′′,xpriv,2) to FvedpOPRF, infinitely delaying outputs
to servers again. S sends (EvalComplete,sid,qid′′,hon) to FvedpOPRF.
Upon receiving (EvalComplete,sid,qid′′,xpriv,2,Y ′′2 ), then S programs
(HT ,(xpriv,1,xpriv,2,y2),Y ′′2 ) and answers Z’s HT query with Y ′′2 . S stores
the tuple (qid′,xpriv,1,xpriv,2,x′′pub,Y

′′
1 ,Y

′′
2 ). If S does not receive any Y ′′2

from FvedpOPRF, we say that event fail happens.
U honest,
up to n− 1
Si corrupted

S simulates the
user’s messages to-
wards the corrupted
Si by choosing
x1 ← G1, x2 ← G2
at random. Note
that xpub is given to
S by FvedpOPRF.

Input: comes from Z. Output:
since even corrupted servers fol-
low the protocol, the simulation
works as in the first row.

S might learn a honest user’s input xpriv,1 via a HT (xpriv,1,y1) or
HT (xpriv,1,xpriv,2,y2) query by Z for an y1 or y2 that he can compute as
follows: S looks for a record (xpub,v,w) (see leftmost column in this row
how such records are created) such that yv−1

1 = e(H1(xpriv,1),g2)∑F(ki,xpub),
or yw−1

1 = e(H1(xpriv,1),H2(xpriv,2))∑F(ki,xpub). If such a record is found then
S recovers or creates an H1 entry (H1,xpriv,1,gz,z) and sets the client’s ran-
domness to r1 = v/z such that x1 = gv = gzr1 and the simulated x1 (see first
column) is consistent with his simulation of the RO H1. r2 is set analogously.

U hon-
est, all Si
corrupted

Same as above Same as above The simulation is a simpler version of the "U and up to n−1 Si corrupted"
case above, since now S can let corrupted servers proceed requests. Thus, S
can always use fresh qid identifiers to get PRF evaluations from FvedpOPRF

to program them into HT . We let S always send all necessary proceeds such
that event fail never happens.

Table 2: Simulation of ΠvedpOPRF.

17



Transcript Input/output of user U and
server Si

FvedpOPRF and random oracles H,H-PRG

All honest Summary: Simulate random messages due
to secure channels. Discover when client
and server abort using pw == pw′ info
from FDPaSE and the simulated bSi bits. Due
to usage of secure channels, all messages
look random. S however needs to know
if to simulate a message or not. For reg-
istration, S always simulates all messages.
For Encryptand Decrypt, upon receiving
(Complete,qid′,b), S only sends the client’s
last message if b = 1 (since a real world
client aborts if b = 0). In that case, S sim-
ulates Si’s last message only if Si received
PwdOK from FDPaSE. S knows if that is the
case due to knowing b and bSi which he com-
putes himself (see simulation on the right).

Summary: Acknowledge in-
puts/outputs according to
A’s scheduling of messages.
S acknowledges all inputs
and outputs according to the
message scheduling of A .
Choose a random ciphertext
of length ` using uid and `
learned via message Request
from FDPaSE. If A deliv-
ers all n messages qid′,uid
unmodified then S sends
(Complete,sid,qid,1, . . . ,1,c)
to FDPaSE. S delays outputs
PwdOK/PwdFail towards a
server until A delivers the
corresponding message.

If Z sends (EvalInit,qid,uid,pw) to FvedpOPRF via A (we can
assume this is the first EvalInit query with qid), if a corrupted U
already sent (Register,qid,uid) to all Si, then S inputs
(Register,qid,uid,pw) to FDPaSE. In case of Z switching to pw′

by sending (EvalInit,qid′,uid,pw′) to FvedpOPRF via A , S sends
(Register,qid,uid,pw′) to FDPaSE, but this time delays outputs
(Register,qid,uid) towards all Si infinitely. After sending
FvedpOPRF’s output y to Z, if U sends some upk not obtained from
SIG.Gen(y), S sends (Register,qid,uid,⊥) to FDPaSE, infinitely
delaying the Register outputs towards servers (to ensure honest
servers always output PwdFail for this account).
Otherwise, qid does not belong to any registration query, but Z
wants to compute a key for encryption or decryption. S waits for
Z to sent (EvalFollow,com) to FvedpOPRF via A . Let
c := (e,uid,com) denote the ciphertext containing com sent
already by S to FDPaSE, otherwise let c←⊥. S sends
(Decrypt,qid,uid,c,pw) to FDPaSE. If Z now sends
EvalComplete to FvedpOPRF let y2 denote the second FvedpOPRF

output sent to Z by S via EvalComplete. Otherwise, Z possibly
switches to values pw′,com′ (by re-sending EvalInit and
EvalFollow for same uid but fresh qid′′ to FvedpOPRF) before
fetching the PRF evaluations. Then let pw← pw′, com← com′,
y2 the second PRF value sent to Z and c := (e,uid,com) the
already sent ciphertext containing com, or c←⊥ if none was sent.
Now that Z has committed to obtain a key for pw and com, we
distinguish three cases.
Case 1: c was sent by S to FDPaSE in request of honest user. S
sends (Decrypt,qid,uid,c,pw) to FDPaSE and delays outputs
(Request,qid,uid) towards all Si infinitely. Finally, upon FDPaSE

sending (Complete,qid,b), if A delivers all n messages qid,uid
unmodified, S replies with
(Complete,qid,bS1 , . . . ,bSn ,(e,uid,com)), where bSi ← 0 if Z
sends a non-verifying signature to Si and bSi ← 1 otherwise. In
case of receiving a plaintext m from FDPaSE, S chooses ρ at
random and programs H(m,ρ) := com. Before sending FvedpOPRF

output y2 to Z S programs H-PRG(y2, |m|+λ) := e⊕ (m,ρ).
Case 2: c =⊥ (S never sent com to FDPaSE). S looks for record
((m,ρ),com) in H list, creating a random one if none exists. S
sends (Encrypt,qid,uid,m,pw) to FDPaSE and delays outputs
(Request,qid,uid) towards all Si infinitely . Upon sending
FvedpOPRF’s output y2 to Z, S programs
H-PRG(y2, |m|+λ) := e⊕ (m,ρ) for a randomly chosen e.
Finally, upon FDPaSE sending (Complete,qid,b), if A delivers all
n messages qid,uid unmodified, S replies with
(Complete,qid,bS1 , . . . ,bSn ,(e,uid,com)), where bSi ← 0 if Z
sends a non-verifying signature to Si and bSi ← 1 otherwise.
Case 3: c was sent by S to FDPaSE as in case 2 above. S does
not provide any further input to FDPaSE. Since all necessary
records in H,H-PRG and FvedpOPRF already exist, no additional
programming is necessary.

Only U cor-
rupted

Summary: S follows ΠDPaSE with simulated
ki to simulate honest servers’ messages. S
determines which messages to simulate the
same way as above. But now S actually
has to simulate cleartext messages of honest
servers. Upon U sending message upki to Si,
S sends back ok. On (Request,qid′,uid) S
sends back upki from Si. Then, if σU,i sent
by corrupted U to Si verifies w.r.t upki, S sets
bSi ← 1.

In case U sent
(Register,qid,uid) to all
Si and (EvalInit,qid,pw)
to FvedpOPRF S inputs
(Register,qid,uid,pw) to
FDPaSE on behalf of the
corrupted U . After sending
FvedpOPRF’s output y to U ,
if U sends some upk not
obtained from SIG.Gen(y), S
sends (Register,qid,uid,⊥)
to FDPaSE (to ensure hon-
est servers always output
PwdFail), infinitely delaying
the Register output towards
all Si. Otherwise, if U wants
to compute a key and sends
(EvalFollow,qid,com) to
FvedpOPRF, he committed to
obtain the key for pw and com.
S now proceeds as in the case
distinction in the rightmost
column, but replacing every
occurence of Z in the code
with U .

U and up to
n − 1 Si cor-
rupted

Same as above, but only w.r.t all honest Si. Same as above. Addition-
ally, upon a corrupted Si
sending (EvalProceed,qid)
to FvedpOPRF, S sends
(ProceedRegister,qid) to
FDPaSE on behalf of this Si in
case qid is a registration query,
and (Proceed,qid) otherwise.

U honest, up
to n− 1 Si cor-
rupted

Summary: simulate OPRF usage of honest
client without password. When U registers
with uid, S simulates FvedpOPRF without a
password as input, choosing a fresh output y
as response to the simulated U and storing
((·,uid),y) in the list of PRF values. Upon U
encrypting or decrypting with uid, S again
simulates FvedpOPRF without a password,
and postpones giving FvedpOPRF output to
the simulated U unless it receives
(Complete,qid,b) from FDPaSE. If b = 1, S
sets y1← y, else chooses a random fresh y1.
S chooses a fresh y2 and continues
simulation of U with FvedpOPRF output
y1,y2.

Same as in first row, but
only w.r.t honest Si. Addi-
tionally, upon a corrupted Si
sending (EvalProceed,qid)
to FvedpOPRF, S sends
(ProceedRegister,qid) to
FDPaSE on behalf of this Si in
case qid is a registration query,
and (Proceed,qid) otherwise.

Same as above. Additionally, if Z obtains a PRF evalua-
tion on (pw,uid) for an honestly registered uid by sending
(EvalInit,qid,uid,pw) to FvedpOPRF via A , after all servers pro-
ceeded, S obtains (Complete,qid,b) and sets FvedpOPRF’s output
to y1 ← y in case of b = 1. Here, y denotes the PRF value sent
to the simulated honest user who registered uid. S fills the corre-
sponding PRF record with pw (see leftmost column). In case of
b = 0 S chooses a random fresh y1. S sends y1 as FvedpOPRF’s
output to Z.

U honest, all Si
corrupted

Same as above. Additionally,
note that all servers may now
jointly switch to a upk differ-
ent from the simulated honest
user’s verification key. In this
case, S lets U output PwdFail.

Table 3: Simulation of ΠDPaSE
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