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Abstract. We propose a practical zero-knowledge proof system for proving knowledge of short so-
lutions s, e to linear relations As + e = u (mod q) which gives the most efficient solution for two
naturally-occurring classes of problems. The first is when A is very “tall”, which corresponds to a
large number of LWE instances that use the same secret s. In this case, we show that the proof size
is independent of the height of the matrix (and thus the length of the error vector e) and rather only
linearly depends on the length of s. The second case is when A is of the form A′⊗I, which corresponds
to proving many LWE instances (with different secrets) that use the same samples A′. The length of
this second proof is square root in the length of s, which corresponds to square root of the length of all
the secrets. Our constructions combine recent advances in “purely” lattice-based zero-knowledge proofs
with the Reed-Solomon proximity testing ideas present in some generic zero-knowledge proof systems
– with the main difference is that the latter are applied directly to the lattice instances without going
through intermediate problems.
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1 Introduction

Zero-knowledge proofs, in which a prover convinces a verifier of knowledge of a witness to the fact that an
instance belongs to a language, are an integral cryptographic building block. For relations among values (e.g.
public keys, ciphertexts, commitments, etc.) stemming from classical cryptography based on the hardness
of discrete logarithm and factoring, there exist many very efficient (even succinct) zero-knowledge proofs.
When it comes to proving relations between public and secret information for lattice primitives, however, the
landscape of efficient zero-knowledge proofs is significantly less advanced. The fundamental lattice problem
upon which most of lattice cryptography rests is the LWE problem, which states that it is hard to distinguish
a uniformly random tuple (A,u) and (A,u = As + e), where the coefficients of s and e are small. The main
techniques of this paper will prove knowledge of s and e with small coefficients that satisfy

As + e = u. (1)

As is typical with zero-knowledge proofs, there is no one technique that is best for all scenarios. Simi-
larly, our proofs in this paper will not be the shortest for all the parametrizations of the above equation,
but they will be the most compact for some important parameter settings which intuitively correspond to
simultaneously proving many LWE instances at the same time.

1.1 Prior Work

Relaxed Proofs. The most efficient proofs of equations of the form as in (1) work over some polynomial ring
Rq = Zq[X]/(Xd+1) rather than over Zq, and are able to prove knowledge of vectors of polynomials s̄, ē with
small coefficients (but larger than the ones in s and e) and a polynomial c̄ with −1/0/1 coefficients satisfying
As̄ + ē = c̄t. While not exactly proving (1), this zero-knowledge proof is enough to obtain very efficient
lattice-based digital signatures (e.g. [DKL+18]) and rather efficient commitment schemes with zero-knowledge
openings [BDL+18]. Another variation of the proof is just like above except there is no multiplicative factor



c̄. Such proofs are particularly efficient in the amortized setting [BBC+18] and are useful as a preprocessing
step in certain multi-party protocols [BCS19] or in voting protocols where the authorities perform many
simultaneous proofs [dPLNS17].

While the above relaxations of the relation in (1) have found some useful applications, especially when
they are used in standalone protocols (e.g. [EZS+19,EKS+20]), they are not very useful for proving relations
in schemes for which the parameters have been optimally set according to some external constraints. Because
the proofs only show knowledge of larger s̄ and ē than the ones used by an honest prover, it necessitates
increasing the sizes of other parameters (like q and n,m) in order to obtain the same security level. Using
relaxed proofs would require us to increase the parameters in these schemes solely for the purpose of being
compatible with the (possibly seldom-used) zero-knowledge proofs. In order to avoid this inefficiency, it is
necessary to have a proof which proves that the secrets are in exactly the same range as is used by the honest
prover.

Exact proofs. One technique for getting short and exact proofs of (1) was given in [dPLS19] where the
idea is to first convert (1) to an equivalent (statistically-hiding) discrete-logarithm relation, and then prove
knowledge of exponents corresponding to the coefficients of s, e using Bulletproofs [BCC+16,BBB+18]. The
resulting proof is just a few kilobytes, but has the shortcomings of being (very) slow and not fully quantum-
safe. In particular, both the prover and the verifier are required to perform on the order of hundreds of
thousands of exponentiations, even for fairly modest sizes of the parameters in (1), which requires a few
dozen seconds and does not scale well for larger instances. In terms of quantum-security, while the proof is
statistical zero-knowledge, soundness is only based on the hardness of the discrete logarithm problem.

Another strategy uses information-theoretic proof systems such as PCPs, interactive PCPs [KR08,BCS16],
or interactive oracle proofs (IOPs) [BCS16,RRR16]. In these proof systems, the verifier does not read the
prover’s messages in their entirety, but rather makes a sublinear number of queries to individual message
positions for verification. Given a suitable PCP or IOP, one can convert it into a sublinear-sized crypto-
graphic argument by following the approach of Kilian [Kil92] and Micali [Mic00]. In the resulting argument,
the prover commits to each of their proof messages using a Merkle tree, and opens individual message po-
sitions using Merkle paths. Thus, security is based solely on collision resistant hash functions, which are
quantum-safe.

Various prior works (e.g. [BCR+19,AHIV17,BCG+17]) produce such arguments by designing IOPs for
the R1CS or circuit satisfiability problems, which are NP complete. To prove other relations, one must first
convert them into suitable problem instances. Unfortunately, directly applying these arguments to lattice
relations (e.g. via conversion to R1CS) can be extremely resource-intensive. For example, [BCOS20] reported
that constructing a group signature using the arguments from [BCR+19] resulted in rather short outputs
(of about 100KB), but they were not able to sign due to the (cloud) PC running out of memory. Thus, to
better use this strategy, one should design PCPs and IOPs which target (1) directly. The work of [BCG+17]
gives one way of doing this, by giving IOPs which simulate the behaviour of zero-knowledge arguments
that use homomorphic commitments. More precisely, [BCG+17] shows how to compile ‘ideal linear commit-
ment’ (ILC) protocols, a type of information-theoretic protocol, into IOP protocols, by encoding each of the
prover’s messages using an error-correcting code. Taking the ILC-to-IOP and IOP-to-argument transforma-
tions together, gives an ’encode-then-hash’ method for committing to messages which acts essentially like a
homomorphic commitment scheme.

Our approach can be seen as a combination of algebraic techniques from previous lattice-based works,
which design zero-knowledge arguments for (1) directly based on homomorphic, lattice-based commitments,
but replacing the lattice-based commitments with the ‘encode-then-hash’ commitment scheme implicit in
[BCG+17]. The main difference between our work and IOP constructions such as [BCG+17,BCR+19,AHIV17,BCG+17]
is that we do not require a (possibly costly) reduction to the intermediate R1CS problem, instead taking
inspiration from lattice-based protocols (e.g. [BLS19]) which handle (1) with only a small number of com-
mitments.

Until recently, the shortest fully quantum-safe proofs for proving the exact version of (1) have been direct
adaptations [KTX08,LNSW13] of Stern’s original protocol [Ste93] for proving knowledge of low-weight code-
words over Z2. The work of [Beu20] used a cut-and-choose approach to leverage the larger field size in (1)
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Size of Secret Set Proof Size (KB) Prover Time (sec) Verifier Time (sec)

4 209 0.78 0.06

8 224 1.12 0.06

16 254 1.77 0.06

32 314 3.13 0.07

64 434 6.03 0.08

128 674 12.97 0.10

256 1154 31.27 0.15

Table 1. Proof sizes and single-core running times (implemented in C++ using NTL [Sho], running on a Skylake
processor) for the proof system in Figure 1 when A ∈ R64×1

q (i.e. 64 Ring-LWE instances) whereRq = Zq[X]/(Xd+1)
for q ≈ 260 and d = 2048. The secret vectors (over Rq) s, e each have coefficients coming from a set of a size specified
in the first column rather than coming from the set {−1, 0, 1} as specified in Figure 1, so the protocol has to be
adjusted as described in the caption of that Figure. The soundness error is around 2−57, so one may need to repeat
the proof twice to achieve cryptographic soundness. This will roughly double the proof size and running time. The
size of the commitment/ciphertext u is 960 KB. The proof sizes would be the same if A were an unstructured matrix
in Zn×mq where n = 64 · 2048 and m = 2048. The running times, however, would be higher because one can no longer
use NTT for performing fast multiplications As. For the same parameters, the proof size per 2048×2048 dimensional
instance (of which there are 64 in our example proof) from [ENS20] is 45 KB when the size of the secret set is 3.

to obtain a more efficient generalization of Stern’s protocol. Using very different techniques, the works of
[BLS19,YAZ+19] achieved a slightly shorter proof for (1) when the secret coefficients are chosen from the
set {−1, 0, 1}. For n = m = 1024, and q = 232, the proofs (with 2−128 soundness error) are around 400
KB long. Further building on these results, the currently shortest proof is a little under 50KB [ENS20]. For
direct comparisons with the results in this paper, we also computed the parameter sizes using the techniques
in [ENS20] for n = m = 2048, q ≈ 260, and 2−57 soundness. The proof size for these parameters is around
45KB.

1.2 Our results.

In this work we give exact proofs for several scenarios in which one needs to prove many LWE instances. The
first case is proving (1) for the case where A is a tall matrix. In our running example, we’ll have A ∈ Zn×mq

where m = 2048 and n = 64 · 2048. This can be seen as 64 LWE instances where the dimensions of A are a
square 2048× 2048. A simple example where this comes up in practice is when one encrypts a long message
using a symmetric LWE encryption scheme (e.g. for FHE applications) or if encrypting a message to different
public keys using the same randomness (as in e.g. [PVW08,KKPP20])3.

In Table 1.2, we give the proof size and running time for our problem instance, where the dependence
is on the size of the set from which the coefficients of s and e are chosen. In the example from [ENS20]
mentioned at the end of the last section, these were chosen from the set {−1, 0, 1} of size 3. Thus from the
first line of Table 1.2, we see that the amortized proof is about 3 KB per instance, which is more than an
order of magnitude improvement in size.

The second scenario for which we provide improved proofs is for the case when we have many equations
as in (1) with the same public randomness A but different s and e. In a way, it complements our first result
in which the LWE instances had the same secret, but different public randomness. In this scenario, we give a
proof that is square root in the size of the secret, and it produces proofs that are several times smaller than
the non-amortized version. We did not implement this scheme, but as it uses essentially the same operations
as the one in our first scenario, the running times should be comparable in practice.

3 Incorporating a message vector m in (1) simply involves rewriting e = e′ + [q/2] ·m where e′ is the LWE error
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1.3 Technical Overview

As mentioned previously, the strategy employed in our basic protocol uses ideas from the lattice-based
schemes of [BLS19,YAZ+19] in combination with the ‘encode-then-hash’ commitment scheme implicit in
[BCG+17]. This latter building block of the proof is an additively-homomorphic commitment scheme Com

committing to vectors in Zmq and possessing an efficient ZKPoK of the committed value. That is, if S = Com(s)
and T = Com(t), then for any c ∈ Zq, s + tc = Open(S + Tc). Let us, for now, just take this scheme as a
black box. As an additional piece of notation, we define 1 to be a vector all of whose coefficients are 1 and
for two vectors v,w ∈ Zmq , we define v ◦ w to be the component-wise product of v and w. We will now
give a simplified version of the protocol in Figure 1 where the prover is trying to convince the verifier that
s, e ∈ {0, 1}m.

The prover starts out by choosing a uniformly-random masking vector t ∈ Zmq and creating a commitment
T = Com(t) and S = Com(s). At the end of the protocol, the prover will eventually send the polynomial tX+s
evaluated at the challenge X = x ∈ Zq. If we write f = tX + s, then

f ◦ (f − 1) = (t ◦ t)X2 + t ◦ (2s− 1)X + s ◦ (s− 1) (2)

If all the coefficients in s are 0/1, then the constant term will be 0; and so the equation 1
X · f ◦ (f − 1) will

be the linear equation v1X + v0 where v1 = t ◦ t and v0 = t ◦ (2s − 1). The prover creates commitments
V1 = Com(v1) and V0 = Com(v0).

The prover also defines
d = u−Af = u−As−AtX = e−AtX (3)

and similarly observes that

d ◦ (d− 1) = (At) ◦ (At)X2 + (At) ◦ (2e + 1)X + e ◦ (e− 1), (4)

and therefore 1
X ·d ◦ (d− 1) will also be a linear equation if and only if all the coefficients of e are 0/1. The

prover similarly creates commitments W1 = Com((At) ◦ (At)) and W0 = Com((At) ◦ (2e + 1)).
We now begin the description of the interactive protocol. The prover sends the commitments S, T, V0, V1,W0,W1,

and the verifier picks a uniformly-random challenge x ∈ Zq \ {0}. The prover responds with f = tx+ s and
zero-knowledge proofs of knowledge of the committed values in S, T, V0, V1,W0,W1, and zero-knowledge
proofs that

f = Open(Tx+ S) (5)

1

x
· (f) ◦ (f − 1) = Open(V1x+ V0) (6)

1

x
· (u−Af) ◦ (u−Af − 1) = Open(W1x+W0) (7)

The first proof implies knowledge of some s, t satisfying f = tx + s. Via a Schwartz-Zippel argument, the
second proof, together with (2), implies that s has 0/1 coefficients. Similarly, the third proof and (3) imply
that u−As has 0/1 coefficients. Since the verifier has f and u, he can verify all three proofs (as well as the
proofs of knowledge of the committed values) and conclude that the prover knows s, e with 0/1 coefficients
such that As + e = u. The soundness error of this proof is approximately 1/q, and so if q is not very large,
the proof needs to be repeated several times for soundness amplification.

The Commitment Scheme. We will use the ‘encode-then-hash’ commitment scheme resulting from combining
the two transformations from ILC-to-IOP and from IOP-to-arguments given in [BCG+17]. This can be viewed
as an interactive commitment scheme (which can be made non-interactive using the Fiat-Shamir transform)
in which the vectors to which we would like to commit, appended with some randomness, are first encoded
using a linear error-correcting code (a Reed-Solomon code). If the length of the codeword is L, then the prover
creates L hashes where the input to the ith hash are all the elements in the ith position of all codewords.
These hashes are then put into a Merkle tree and the root is transmitted as the commitment. Proving the
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knowledge of committed values is done via a “cut-and-choose” approach where the verifier sends a random set
of size τ and asks the prover to open L in those τ positions. If τ is smaller than the number of randomness
positions, then revealing τ positions information-theoretically hides the message and so the commitment
scheme is statistically-hiding.

The verifier can then check whether (5) is satisfied restricted to the τ positions opened by the prover,
and due to the fact that f is given in the clear, one can conclude using a cut-and-choose argument and some
properties of Reed-Solomon codes that the values committed in T and S are indeed close to valid codewords
(and thus can be decoded to some s and t), and f is really the linear combination tx+s. The same arguments
are used to show that (6) and (7) are satisfied.

Amortizing when the public randomness is fixed. An expensive part of our protocol is proving that the
correct positions in the Merkle tree have been opened. Each of the τ positions that are opened require the
prover to give a path to the root of the tree, which consists of logL hash function outputs – if one uses
SHA-256, then one needs to 32τ logL bytes for this part of the proof. In general, τ is a small multiple of
the security parameter (in practice, ≈ 512) while L is a small multiple of the length of the vectors that are
being committed to. In the scheme implemented in Table 1.2, L ≈ 219, and therefore just the tree opening
would require close to 300kB. One can optimize this by having multiple roots, (which lowers the number of
levels), but this is still the most expensive part of the proof when the size of the secret set is not too large.

A significant saving can be achieved when the matrix A is the same for all the equations Asj + ej = uj
for j = 1, . . . , r. Then all the secret vectors sj can be packed into only one masked opening f = x0t+

∑
j xjsj

where the secret vectors are separated by different challenges xj . The verifier can then still compute d =∑
j xjuj −Af = −x0At +

∑
j xjej , which is a masked opening of all the error vectors ej in the same form

as f . The masked opening f is the second biggest part of our basic protocol after the Merkle tree paths and
so amortizing its size over many equations gives a further saving of about a factor of 2 in the per-equation
cost. Now, if one computes a quadratic expression of the form f ◦ (f −

∑
j xj1) then the terms x2j vanish

if and only if the sj have binary coefficients. We take the challenges xj to be evaluations xj = `j(x) of
Lagrange interpolation polynomials at the same evaluation point x. This has the advantage that the number
of non-vanishing garbage terms that appear in the quadratic expression (i.e. the terms to which we need
to commit and transmit the commitments) for proving 0/1 scales only linearly in r, as will be explained
in Section 4. If one has m2 secret coefficients distributed over m vectors, each of length m, then our final
amortized protocol has communication cost of order m, i.e. of order square root in the number of secret
coefficients. This is because there is only one masked opening f of length m for all m2 secret coefficients.

2 Preliminaries

Notation. Let q be a prime. We write Zq for the ring of integers modulo q. Bold letters as in v ∈ Zlq will
denote vectors over Zq and matrices will be written as regular capital letters M .

Reed-Solomon Codes. Let l, k′ be positive integers. Let a1, . . . , al be distinct elements of Zq. The subspace
C ⊂ Zlq of Zlq of degree k′ consisting of all l-tuples Enc (f) = (f(a1), . . . , f(al)) where f is a polynomial
of degree less than k′ with coefficients in Zq is a so-called Reed-Solomon code. We write d(V,W) for the
Hamming distance between two elements of Zlq. Since a polynomial of degree less than k′ can have at most
k′− 1 roots, it is clear that the minimum distance between codewords in C is d = l− k′+ 1. This means that
if V is a vector in Zlq that we know has distance at most (d− 1)/2 from C, then the vector can be uniquely
decoded to the closest codeword in C.

The usefulness of Reed-Solomon codes for zero-knowledge proofs stems from the following facts.
Firstly, the encoding function is homomorphic. More precisely, polynomial addition and multiplication

translate to coefficient-wise addition and multiplication on the codewords.
Secondly, assume that the prover has committed to several codewords. Then, let the verifier only get to

see a small number, say τ , of openings of random positions of his choice from all of the committed codewords.
If he now checks that a random linear combination of these positions coincide with the positions of a fixed
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known codeword, then he will be convinced that the prover has honestly committed to codewords with
sufficiently few errors that they decode to polynomials whose linear combination is the same as the decoding
of the known codeword.

Moreover, if the k′ coefficients of the input polynomials consist ofmmessage coefficients and τ randomness
coefficients, then the random τ openings do not reveal any information about the message coefficients.

We will write Enc (m, r) to denote the Reed-Solomon codeword corresponding to the input polynomial

f =
∑m−1
i=0 miX

i +Xm
∑τ−1
i=0 riX

i with message coefficients m and randomness coefficients r. We will also
extend this notation in the straight-forward way to split the input polynomial into even more coefficient
vectors.

So, in summary, Reed-Solomon codes offer a way to commit to message vectors with the ability to prove
linear relations between these vectors in zero-knowledge. We perform hash-based commitments to codewords
with the technique from [BCG+17] that we recall in the next paragraphs.

Commitments. Let M =
(
m1 m2 . . . ml

)
be a matrix made up of column vectors mi ∈ Zrq. Let Commit be

any binding (but not necessarily hiding) commitment scheme, with message space Zrq. Define CommitCols to
be the function which takes M as input and returns the list of commitments Commit(mi).

Merkle Trees. We will commit to many Reed-Solomon codewords Hi ∈ C, i = 1, . . . , r, in the following way.
Firstly, take the codewords to be the rows of the matrix M = (Vi) ∈ Zr×lq . Secondly, apply CommitCols to
commit to the columns of M . Finally, produce a Merkle tree with all these column commitments as leafs. This
means that the commitments CommitCols(M) are taken to be the leafs of a binary tree of height log l where
each inner node is the hash of its two children. This results is a single hash M = Merkle(CommitCols(M))
in the root of the tree. This gives a commitment to all codewords Vi and allows to simultaneously open
all codewords at an arbitrary position j ∈ [l] by revealing the position j of every codeword and the nodes
in the Merkle tree that are needed to compute the path to the root node M. For I ⊂ [l]τ we will later
write MerklePaths|I for the set of all nodes in the Merkle tree needed to compute the paths for all codeword
position in I. This construction is binding because if it would be possible to produce to differing openings at
the same position then there must be a hash collision somewhere in the path to the root of the Merkle tree.

3 Basic Protocol

In this section, we present our basic protocol tailored towards single SIS instances, where the solution has
entries lying in {−1, 0, 1}. The protocol can incorporate larger sets in the obvious way, as explained in
the caption of Figure 1. At a high level, it implements the strategy used in [BLS19] and explained in the
introduction. But it uses Reed-Solomon codes to instantiate the commitment scheme and their associated
zero-knowledge proofs, rather than lattice-based commitments.

Proof systems using code-based commitment schemes often require a proximity test, to prove that the
(possibly malicious) values hashed by the prover are close to codewords, and therefore represent valid en-
codings of messages. Following [RVW13], this is often done by checking that an auxiliary random linear
combination of the committed and possibly noisy codewords is itself close to the code. Recently, [BCI+20]
investigated the use of a more structured linear combination, with coefficients xi for some random x, in
proximity testing. We will use the same strategy for proximity testing with powers of x as part of our
scheme.4

We cannot use a structured linear combination in the amortised case since with this strategy, the prob-
ability that the verifier can catch a cheating prover decreases as the number of committed secrets increases.
Our amortised result thus uses a random linear combination of all of the hashed vectors to prove that each
hashed vector is close to a codeword.

The complete protocol is given in Figure 1.

4 From a technical perspective, [BCI+20] proves that except with small probability, these structured linear combina-
tions have the same distance from the code as the maximum distance of all the codewords in the linear combination.
This involves a deep and technical proof. Here, we can tolerate some decrease in the distance, and prove a weaker
result (3.4) as part of our soundness proof. We find this interesting as the proof is significantly simpler.
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Prover P Verifier V

Inputs:

A ∈ Zn×mq ,u ∈ Znq , s ∈ {−1, 0, 1}m A,u

u = As + e, e ∈ {−1, 0, 1}n

t← Zmq
f(X) = tX + s

1

X
f(X) ◦ [f(X)− 1m] ◦ [f(X) + 1m]

= v2X
2 + v1X + v0

d(X) = u−Af(X)

1

X
d(X) ◦ [d(X)− 1n] ◦ [d(X) + 1n]

= w2X
2 + w1X + w0

r0, r1, r2 ← Zτq
H2 = Enc (0m,v2,w2, r2)

H1 = Enc (t,v1,w1, r1)

H0 = Enc (s,v0,w0, r0)

E =

H2

H1

H0


M = Merkle(CommitCols(E))

M -

x� x
$← Z×q

f̄ = f(x)

r̄ = r2x
2 + r1x+ r0 f̄ , r̄ -

I� I
$← [l](τ), |I| = τ

E|I ,MerklePathsI-

Check E|I against M and MerklePathsI

Compute d̄ = u−Af̄

Enc

(
f̄ ,

1

x
f̄ ◦
[
f̄ − 1m

]
◦
[
f̄ + 1m

]
,

1

x
d̄ ◦

[
d̄− 1n

]
◦
[
d̄ + 1n

]
, r̄

)∣∣∣∣
I

?
= H2|Ix2 + H1|Ix+ H0|I

Fig. 1. Simple hash-based proof of knowledge of a ternary solution to a linear equation over Zq. To use a secret set S of
size σ different from {−1, 0, 1}, one would change 1

X
f(X)◦[f(X)− 1m]◦[f(X) + 1m] to 1

X
©i∈S [f(X)−im] =

∑
wjX

j .
The analogous this is done for the line 1

X
d(X) ◦ [d(X)− 1n] ◦ [d(X) + 1n]. One would also accordingly increase the

number of terms ri and the number of rows Hj = Enc (0m,vj ,wj , rj)
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Theorem 3.1 (Completeness). The protocol in Figure 1 is perfectly complete.

Proof. As usual this easily follows from careful inspection of the protocol. ut

Theorem 3.2 (Special Honest Verifier Zero Knowledge). There exists an efficient simulator S which,
given values for the random challenges x and I from the protocol in Figure 1, outputs a protocol transcript
distributed identically to a real transcript from the interaction between an honest prover and an honest
verifier.

Proof. Firstly, the simulator S picks f̄ and r̄ uniformly at random from Zmq and Zτq respectively. At that

point, d̄ is fully determined. Next, the simulator chooses H2|I ,H1|I uniformly at random from Zτq . As a
result, H0|I is determined completely by the last verification equation. Thus, S has simulated all of E|I .
Finally, the simulator S sets E|Ic to be all zeroes, and computes M as well as MerklePathsI . ut

Theorem 3.3 (Knowledge Soundness). Let C ⊂ Zlq be a Reed-Solomon code of dimension k′ = 2m+n+τ
and length l with encoding function Enc (). Let k′ ≤ k ≤ l. Suppose that there is an efficient deterministic
prover P∗ that convinces the honest verifier V on input A,u to accept with probability

ε > max

{
2

(
k

l − τ

)τ
,

2

q − 1
+

(
1− k − k′

9l

)τ
, 2

(
1− 2(k − k′)

3l

)τ
,

12

q − 1

}
.

Then, there exists an efficient probabilistic extraction algorithm E which, given rewindable black-box access
to P∗, produces a witness s ∈ {−1, . . . , 1}m such that u−As ∈ {−1, 0, 1}n.

Proof. We define an extractor E which runs as follows. The extractor runs the prover P∗ until an accepting
transcript is produced. Since each transcript is accepting with probability ε, this is expected to take 1/ε
attempts.

Let I1 be the set of indices that the prover opened in the first accepting transcript. The extractor E now
replays the prover and verifier using the same x but different challenge sets I, as follows.

– Suppose that r accepting transcripts have been collected so far.
– Let J =

⋃r
i=1 Ir be the set of indices for which the prover has provided openings so far.

– The extractor repeatedly replays the prover and verifier using the same x until an accepting transcript
with Ir+1 6⊂ J is obtained.

– The extractor stops when J contains at least k indices.

Now, we analyse the number of attempts that it takes the extractor to obtain all of these transcripts.
Suppose that J does not yet contain k indices. We compute an upper bound on the probability that I ⊂ J
for a random I. The probability that I ⊂ J is

(|J|
τ

)
/
(
l
τ

)
, which is bounded above by

(
k
τ

)
/
(
l
τ

)
since |J | < k.

This in turn is bounded above by
(

k
l−τ

)τ
.

By a standard ‘heavy rows’ argument, there is probability at least 1/2 that x is such that, on replaying
the proof with the same x and new random I, the prover’s success probability is at least ε/2. If so, then
the probability that every subsequent transcript is accepting but uses a challenge set I 6⊂ J is at least
ε/2 − (k/(l − τ))τ . Therefore, in this case, the expected number of further attempts that the extractor has
to make to obtain openings at k indices is bounded above by (k − τ)/(ε/2− (k/(l − τ))τ ).

Let T be the total expected running time for this process of gathering transcripts. By the Markov
inequality, the probability that the extractor’s running time for this process exceeds 4T is at most 1/4. This
means that with probability at least 3/4, the extractor terminates within time 4T . With probability at least
1/2, then the extractor succeeds in gathering enough accepting transcripts. Therefore, there is some overlap
between these two events, and the probability that the extractor terminates within time 4T and manages to
gather k transcripts is at least 1/4.

Now we argue that if these extracted openings cannot be decoded to give a valid witness, then the prover’s
success probability must be lower than the bound given in the statement of the theorem.
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Firstly, note that the indices from the challenge sets I1, I2, . . . , Ir which make up J may overlap. If the
prover’s commitment openings at the same index are not consistent, then since the check on the values of
E|I and the Merkle tree rootM and Merkle paths was satisfied in each case, the extractor has found a hash
collision. Further, if the prover could produce another accepting proof, using Merkle tree openings on any
element of J that are different from the extracted ones, with good probability, then the extractor could run
the prover once more and obtain a hash collision, with the same probability.

Otherwise, let

E∗ =

H∗2
H∗1
H∗0

 ∈ Z3×k
q

be the matrix of openings that the verifier sees. We can assume J contains only k indices, by ignoring any
extra ones. Let C′ be the code C restricted to the indices of J . Then C′ is a code of length k with minimum
distance d′ = k − k′ + 1.

One way that the prover could attempt to cheat is by committing to vectors that are not codewords.
We will prove a stronger statement than necessary to prevent this type of cheating, and show that if there
exists some linear combination c∗E∗ such that d′(C′, c∗E∗) ≥ d′/3, then the prover’s success probability is
bounded above.

Lemma 3.4. If there exists some c∗ ∈ Z3
q such that d′(C′, c∗E∗) ≥ d′/3, then

Pr
x

$←Z×q

[
d′(C′, (x2, x, 1)E∗) <

d′

9

]
<

3

q − 1
.

Proof. If the probability in the statement of the lemma is at least 3/(q − 1), then there exist three distinct
x1, x2, x3 ∈ Z×q such that

d′(C′, (x2i , xi, 1)E∗) <
d′

9
.

Let B ∈ (Z×q )3×3 be the square matrix with entries Bi,j = x3−ji . Set BE∗ = M , so that the ith row of
M is equal to mi = (x2i , xi, 1)E∗. Since B is invertible, we also get E∗ = B−1M and so c∗E∗ = c∗B−1M .
Consequently, c∗E∗ can be written as a Zq-linear combination of the vectors mi = (x2i , xi, 1)E∗, say c∗E∗ =∑3
i=1 µimi for some µ1, µ2, µ3 ∈ Zq. Then, by the properties of linear codes and the triangle inequality we

get

d′

3
≤ d′(C′, c∗E∗) = d′

(
C′,

3∑
i=1

µimi

)
≤

3∑
i=1

d′(C′, µimi) =

3∑
i=1

d′(C′,mi) <
d′

3

which is a contradiction. Hence, if x is chosen uniformly at random from Z×q , there is at most a 2/(q − 1)
fraction of x for which d′(C′, (x2, x, 1)E∗) < d′/9. ut

Corollary 3.5. If there exists some c∗ ∈ Z3
q such that d′(C′, c∗E∗) ≥ d′/3, then the prover’s success proba-

bility is bounded above by

2

q − 1
+

(
1− d′

9l

)τ
<

2

q − 1
+

(
1− k − k′

9l

)τ
.

Proof. If such a c∗ exists, then for random x, the previous lemma shows that d′(C′, (x2, x, 1)E∗) ≥ d′/9
except with probability at most 2/(q − 1).

If d′(C′, (x2, x, 1)E∗) ≥ d′/9, then since

Enc
(
f̄ , x−1f̄ ◦

[
f̄ − 1m

]
◦
[
f̄ + 1m

]
, x−1d̄ ◦

[
d̄− 1n

]
◦
[
d̄ + 1n

]
, r̄
)

is a codeword, we know that it differs from (x2, x, 1)E∗ = H∗2x
2 + H∗1x+ H∗0 in at least d′/9 positions.
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Now, the verifier will choose a random set I of τ indices, independent of the codeword, on which to check
the verification equation given by

Enc
(
f̄ , x−1f̄ ◦

[
f̄ − 1m

]
◦
[
f̄ + 1m

]
, x−1d̄ ◦

[
d̄− 1n

]
◦
[
d̄ + 1n

]
, r̄
)
|I

?
= H2|Ix2 + H1|Ix+ H0|I .

What is the probability that the verification equation, which is restricted to codeword positions in I, is
satisfied, given that there are at least d′/9 positions for which that equation does not hold? The probability
that the first index in I is outside the set of bad indices is 1− d′/(9l). Given that the first index is outside
the set of bad positions, the probability that the second index in I is also outside the set of bad positions
is 1− d′/(9(l − 1)) which is bounded above by 1− d′/(9l). Continuing in a similar fashion, we see that the

probability of acceptance in this case is at most
(

1− d′

9l

)τ
. The result follows by a union bound. ut

We have bounded the prover’s success probability in the case that there exists some linear combination
of the rows of E∗ which has distance at least d′/3 from the code. From now on, we focus on the case where
such a linear combination does not exist, and bound the prover’s success probability in this case.

This means that from now on, we can assume that for all c ∈ Z3
q, d

′(C′, c∗E∗) < d′/3. Then, for each

j = 0, 1, 2, there exist unique s∗j ,v
∗
j ,w

∗
j , r
∗
j such that H∗j is within distance d′/3 from EncJ

(
s∗j ,v

∗
j ,w

∗
j , r
∗
j

)
.

This defines matrices V ∗ and R∗ of messages and randomness. Reed-Solomon codes are efficiently decodable,
so we can compute V ∗ and R∗ efficiently from E∗.

We actually need to be convinced of more than what is implied by Lemma 3.4, and show that when we
take a linear combination of the prover’s committed vectors, which are close to codewords, then that linear
combination decodes to the value that we would expect. That is, we want to be sure that a linear combination
of vectors close to codewords, when decoded, gives the same linear combination of the decodings of those
vectors. This is the statement of the following lemma, which is taken from the second claim in Appendix B
of [BCG+17].

Lemma 3.6. If d′(C′, cE∗) < d′/3 for all c ∈ Z3
q, then for any y ∈ Z3

q, we have that

d′ (EncJ (yV ∗,yR∗) ,yE∗) < d′/3.

Corollary 3.7. Suppose that d′(C′, cE∗) < d′/3 for all c ∈ Z3
q. If there exist less than (ε/2)(q−1) accepting

transcripts with pairwise different first challenges x ∈ Z×q such that for the response f̄ the following conditions
are true

f̄ = s∗2x
2 + s∗1x+ s∗0, (8)

x−1f̄ ◦
(
f̄ − 1m

)
◦
(
f̄ + 1m

)
= v∗2x

2 + v∗1x+ v∗0, (9)

x−1d̄ ◦
(
d̄− 1n

)
◦
(
d̄ + 1n

)
= w∗2x

2 + w∗2x+ w∗0, (10)

then the prover’s success probability ε is bounded above by

2

(
1− 2d′

3l

)τ
< 2

(
1− 2(k − k′)

3l

)τ
.

Proof. Recall that a challenge x ∈ Z×q defines a “heavy row” if interacting with P∗ and sending x as the first
challenge and a uniformly random second challenge set I results in an accepting transcript with probability
at least ε/2. From the heavy rows lemma we know that a completely randomly sampled accepting transcript
lies in a heavy row with probability at least 1/2. Moreover, by a simple extension of the lemma, there are at
least (ε/2)(q − 1) heavy rows.

Now assume that there is a heavy row with challenge x ∈ Z×q and corresponding prover’s response f̄ such
that one of the conditions in the statement is not true. From Lemma 3.6 we know that

d′
(
EncJ

(
(x2, x, 1)V ∗, (x2, x, 1)R∗

)
, (x2, x, 1)E∗

)
<
d′

3
.
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Note that the conditions mean that the vectors (x2, x, 1)(V ∗, R∗) and (f̄ , x−1f̄ ◦
(
f̄ − 1m

)
◦
(
f̄ + 1m

)
, x−1d̄ ◦(

d̄− 1n
)
◦
(
d̄ + 1n

)
, r̄) are equal. Since one of the conditions is not true, the distance between the corre-

sponding codewords must be at least d′. It then follows from the reverse triangle inequality that

d′
(
EncJ

(
f̄ , x−1f̄ ◦

(
f̄ − 1m

)
◦
(
f̄ + 1m

)
, x−1d̄ ◦

(
d̄− 1n

)
◦
(
d̄ + 1n

)
, r̄
)
, (x2, x, 1)E∗

)
>

2d′

3
.

But the verifier checks the equality of these codewords on the τ coefficients in the second challenge I. By
similar reasoning as in the proof of Corollary 3.5, the probability that I does not contain one of the 2d′/3
bad coefficients is at most (1− 2d′/(3l))

τ
. So we must have

ε

2
≤
(

1− 2d′

3l

)τ
.

ut

Finally, if we substitute Equation (8) into Equation (9) and multiply by x we find a polynomial over Zmq
in indeterminate X of degree at most 6 that we know has at least (ε/2)(q − 1) roots x. If the polynomial is
not the zero polynomial then it must be that ε ≤ 12/(q − 1). Otherwise, the constant coefficient shows

s∗0 ◦ (s∗0 − 1m) ◦ (s∗0 + 1m) = 0

which implies s∗0 ∈ {−1, 0, 1}m. If we further substitute

d̄ = u−Af̄ = −As∗2x
2 −As∗1x+ (u−As∗0)

into Equation (10) then we similarly find u−As∗0 ∈ {−1, 0, 1}n. ut

3.1 Proof Size and Concrete Parameter Choices

For one iteration of the proof in Figure 1 the prover has to send the linear masked secrets f̄ ∈ Zmq and
r̄ ∈ Zτq , and open the 3 codewords Hi at τ positions. Together these are m + 4τ elements of Zq. Moreover,
the prover has to send the initial commitmentM and τ Merkle paths. As specified in the protocol this needs
1 + τdlog le 32-byte hashes per iteration. It is obvious that the latter can be optimized by splitting the tree
with l leafs into h trees with l/h leafs each. This results in shorter Merkle paths at the costs of h root hashes
in the commitment M. Concretely, with this optimization in one iteration of the protocol h + τdlog(l/h)e
hashes need to be send. In total we see that one iteration of the protocol has a bandwidth requirement of(

(m+ 4τ) dlog(q)e+ 256

(
h+ τ

⌈
log

(
l

h

)⌉))/
8192

kilobytes.

4 Amortized Protocol For a Fixed Public Randomness

A closer look at the communication cost of the protocol from the previous section shows that the initial
commitment and the Merkle paths are actually responsible for the majority of the proof size.

Now, the size of the Merkle trees does not depend on the number of Reed-Solomon codewords that the
prover commits to, since each leaf can be the hash of codeword positions from arbitrarily many codewords.
It is therefore clear that when one has to prove many (different) equations

uj = Ajsj + ej

11



for j = 1, . . . , r at once, then one can commit to all of the codewords in the corresponding proofs using only
one set of Merkle trees. Moreover, when the individual proofs are executed in a parallel fashion where the
same challenges are used in all parallel proofs, then one also only needs one set of τ Merkle paths for all
the proofs. So we see that the protocol in Figure 1 can be operated in a simple amortized mode which has
a total size of (

r (m+ 4τ) dlog(q)e+ 256

(
h+ τ

⌈
log

(
l

h

)⌉))/
8192

kilobytes for r equations.

In this section we improve on this result by giving a sublinear amortized proof protocol that allows to
prove r = m equations uj = Asj + ej with the same matrix A and a total number of m2 secret coefficients
in size that scales only with the square root m of the number of secret coefficients. As an independent
generalization, the protocol of this section allows to directly prove the secret coefficient to lie in an arbitrary
interval {0, . . . , b − 1}. We chose not do this in the basic protocol from Section 3 to keep that protocol as
simple as possible.

The key technique for the sublinearity is to replace the r masked secrets f̄j = xtj + sj of total length
rm by a single length-m packed vector that masks all secrets sj at once. After the Merkle tree roots for
the commitment and the Merkle tree paths, the masked secret f̄ is the next largest element of the basic
proof protocol. So by being able to amortize its size over many equations we can also significantly improve
the concrete per-equation cost. One way of doing this is to separate the secret vectors with independent
challenges xj ∈ Zq and use

f̄ =

r∑
j=0

xjsj

where s0 now is the single masking vector. So then f̄ is the evaluation of a multivariate polynomial in r
indeterminates. This is compatible with the lattice equations because we assume that they use the same
matrix A. The verifier can compute

r∑
j=0

xjuj −Af̄ = −x0As0 −
r∑
j=1

xjej

which is a masking of the error vectors with masking vector e0 = −As0. The problem with this approach
is that when we work with equations of degree b in these polynomials to prove that all sj and ej have
coefficients in {0, . . . , b− 1}, we arrive at multivariate polynomials of total degree b that contain in the order
of rb monomials. So this means we need to commit to that many garbage terms and prove openings of
these commitments which has communication cost in the order of rb. On the other hand, the multivariate
Schwartz-Zippel lemma still only gives that a multivariate polynomial of total degree b vanishes at a random
point with probability b/q so we do not profit from the large challenge space of size qr in the soundness error.

Therefore a better approach is to not use independent challenges xj but instead choose them to be
evaluations of Lagrange interpolation polynomials at the same evaluation point as in [GGPR13].

So let a1, . . . , ar be distinct interpolation points in Zq. Then, for j ∈ {1, . . . , r}, let

`j(X) =
∏
i6=j

X − ai
aj − ai

be the jth Lagrange interpolation polynomial and let `0(X) =
∏k
j=1(X − aj).

By polynomial interpolation every polynomial f ∈ Zq[X]/(`0(X)) can be written uniquely as

f(X) =

r∑
j=1

aj`j(X)

12



with aj ∈ Zq. Since `j(X)2 ≡ `j(X) (mod `0(X)) and `i(X)`j(X) ≡ 0 (mod `0(X)) for all i, j ∈ {1, . . . , r},
i 6= j, multiplication is coefficient-wise in this representation. That is, for instance,

f(X)2 =

r∑
j=1

a2j`j(X).

Now, higher-degree polynomials f ∈ Zq[X]/(`0(X)b) can be written uniquely as

f(X) =

b−1∑
i=0

r∑
j=1

`j(X)`0(X)i.

For our application this means that when we separate the secret vectors using Lagrange polynomials, i.e.

f̄ =

r∑
j=0

`j(x)sj ,

then equations of degree b in f̄ will only contain br terms vi,j`j(x)`0(x)i for j ∈ {1, . . . , r}, i ∈ {0, . . . , b−1}.
So this is again linear in r and suffices for our sublinearity result.

After we have replaced the individual masked secrets f̄j by just one, note that we need r+1 commitments
to the secret vectors in order to prove that f̄ is correctly formed whereas the range proofs for the secret
coefficients need br commitments to the garbage terms in the equations of degree b in f̄ or d̄. So we don’t
want to put the secret vectors and the garbage terms in the same Reed-Solomon codewords as we have done
in the basic protocol in Section 3. This would only prove that f̄ is the evaluation of a polynomial of degree
br − 1 instead of a polynomial of degree r, which is bad for large b as it results in a higher soundness error.
Splitting the codewords into several smaller ones has the downside that more openings need to be send.
Therefore for small b it would actually be better not to do this.

The last difference to the basic protocol is that for technical reasons already explained in Section 3, the
prover sends an auxiliary masking of a random linear combination with independent coefficients of all of
the messages in the codewords. This is necessary since the prover commits to much more codewords and he
must prove that they are really close to codewords. Using a variant of the technique of the basic protocol
and leverage the linear combination of the codewords with `j(x) as coefficients would result in a much larger
soundness error.

The complete sublinear protocol is given in Figure 2. We only use one Reed-Solomon code of dimension
k′ = m + τ and length l and also use it for the shorter message vectors of length n ≤ m by zero padding
these vectors. We analyze the protocol in the coming Theorems.

Theorem 4.1 (Completeness). The protocol in Figure 2 is perfectly complete.

Proof. Follows by inspection of the protocol. ut

Theorem 4.2 (Special Honest Verifier Zero Knowledge). There exists an efficient simulator S which
given values for the random challenges x, α, β, γ, δ, and I from the protocol in Figure 2, outputs a protocol
transcript distributed identically to a real transcript from the interaction between an honest prover and an
honest verifier.

Proof. Firstly, the simulator S picks f̄ and r̄ uniformly at random from Zmq and Zτq respectively. At that

point, d̄ is fully determined. Next, the simulator chooses F1|I , . . . ,Fr|I , Vi,j |I , and Wi,j |I for (i, j) 6= (0, 1)
uniformly at random from Zτq . As a result, F0|I , V0,1|I , W0,1|I , and Y|I are determined completely by the
verification equations. Thus, S has simulated all of E|I . Finally, the simulator S sets E|Ic to be all zeroes,
and computes M as well as MerklePathsI . ut
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Prover P Verifier V

Inputs:

A ∈ Zn×mq ,uj ∈ Znq , sj ∈ {0, . . . , b− 1}m, j ∈ [r] A,uj

uj = Asj + ej , ej ∈ {0, . . . , b− 1}n

s0 ← Zmq

f(X) =

r∑
j=0

sj`j(X)

1

`0(X)
©b−1
i=0 [f(X)− i1] =

b−1∑
i=0

r∑
j=1

vi,j`j(X)`0(X)i

d(X) =

r∑
j=1

uj`j(X)−Af(X)

1

`0(X)
©b−1
i=0 [d(X)− i1] =

b−1∑
i=0

r∑
j=1

wi,j`j(X)`0(X)i

y← Zmq , ry ← Zτq
Y = Enc (y, ry)

For 0 ≤ j ≤ r :

rsj ← Zτq
Sj = Enc

(
sj , r

s
j

)
For 0 ≤ i ≤ b− 1 and j ∈ [r] :

rvi,j , rwi,j ← Zτq
Vi,j = Enc

(
vi,j , r

v
i,j

)
Wi,j = Enc

(
wi,j , r

w
i,j

)
S =

S0

...
Sr

 , V =

 V0,1

...
Vb−1,r

 , W =

 W0,1

...
Wb−1,r



M = Merkle

CommitCols



Y
S
V
W





M -

x, α, β, γ, δ� x, α
$← Zq, β

$← Zr+1
q , γ, δ

$← Zrbq
f̄ = f(x)

r̄f =

r∑
j=0

rsj`j(x)

r̄v =

b−1∑
i=0

r∑
j=1

rvi,j`j(x)`0(x)i+1

r̄w =

b−1∑
i=0

r∑
j=1

rwi,j`j(x)`0(x)i+1

z̄ = αy +

r∑
j=0

βjsj +

b−1∑
i=0

r∑
j=1

(γi,jvi,j + δi,jwi,j)

r̄z = αry +

r∑
j=0

βjr
f
j +

b−1∑
i=0

r∑
j=1

(γi,jr
v
i,j + δi,jr

w
i,j)

f̄ , r̄f , r̄v, r̄w, z̄, r̄z-

I� I
$← [l](τ), |I| = τ

Y|I ,S|I ,V |I ,W |I ,
MerklePathsI -

Check Y|I , S|I , V |I ,W |I against M and MerklePathsI

Compute d̄ =

r∑
j=1

uj`j(x)−Af

Enc
(
f̄ , r̄f

)∣∣∣
I

?
=

r∑
j=0

`j(x)Sj |I

Enc
(
©b−1
i=0

[
f̄ − i1m

]
, r̄v
)∣∣∣
I

?
=

b−1∑
i=0

r∑
j=1

`j(x)`0(x)i+1Vi,j |I

Enc
(
©b−1
i=0

[
d̄− i1n

]
, r̄w
)∣∣∣
I

?
=

b−1∑
i=0

r∑
j=1

`j(x)`0(x)i+1Wi,j |I

Enc (z̄, r̄z)|I
?
= αY|I +

r∑
j=0

βjSj |I +

b−1∑
i=0

r∑
j=1

(γi,jVi,j |I + δi,jWi,j |I)

Fig. 2. Sublinear hash-based proof of knowledge of short solutions to many linear equations over Zq.
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Theorem 4.3 (Knowledge Soundness). Let C ⊂ Zlq be a Reed-Solomon code of dimension k′ = m + τ
and length l with encoding function Enc (). Let k′ ≤ k ≤ l. Suppose that there is an efficient deterministic
prover P∗ that convinces the honest verifier V on input A,uj to accept with probability

ε > max

{
2

(
k

l − τ

)τ
,

1

q
+

(
1− k − k′

6l

)τ
, 2

(
1− 2(k − k′)

3l

)τ
,

2(b+ 1)r

q

}
.

Then, there exists an efficient probabilistic extraction algorithm E which, given rewindable black-box access
to P∗, produces vectors sj ∈ {0, . . . , b− 1}m such that uj −Asj ∈ {0, . . . , b− 1}n for all j = 1, . . . , r.

Proof. The extractor wants to obtain openings at k positions of all of the codewords Y, Sj , Vi,j , Wi,j ,
which might have errors. Exactly as in the proof of Theorem 3.3, this is possible in expected time at most

1

ε
+ 4

k − τ
ε/2− (k/(l − τ))τ

.

Let the code C′ be the restriction of C to the k positions at which the extractor succeeded to obtain codeword
openings. Then the openings can be regarded as noisy codewords of the punctured code C′ and we write
them as

Y∗,S∗0, . . . ,S
∗
r ,V

∗
0,1, . . . ,V

∗
b−1,r,W

∗
0,1, . . . ,W

∗
b−1,r.

Note that the punctured code has minimum distance d′ = k − k′ + 1.
For what follows it is important that for each new run of P∗ that produces an accepting transcript,

codeword openings at positions among those already obtained by the extractor must coincide with the
previous openings. Otherwise there would be a hash collision in the Merkle paths.

Next we argue that it follows from the bound on the success probability ε of the prover P∗ that there
is no linear combination of the noisy codewords which has distance to C′ greater or equal than d′/3. The
strategy is essentially again that there can not be a larger distance since the verifier checks random linear
combinations to be equal to a proper codeword at τ random positions, where the codeword is independent
of the positions. So the verifier would catch the prover with probability bigger than 1 − ε if there were
more errors. We can not use (a variant) of Lemma 3.4 because the number of errors that this lemma says
exist, with high probability, decreases with the length of the linear combinations. For this reason, unlike
in Protocol 1, the verifier checks a uniformly random linear combination of all of the codewords the last
verification equation. Then we can use the first claim in Appendix B of [BCG+17]. It states that if there
was some linear combination of all of the codewords that had distance greater or equal than d′/3 from C′,
then a uniformly random linear combination would have distance at least d′/6, with probability bigger than
1− 1/q. Therefore, as in the proof of Theorem 3.3, the verifier would accept with probability at most

1

q
+

(
1− d′

6l

)τ
<

1

q
+

(
1− k − k′

6l

)τ
< ε.

This is in contradiction to the assumption that the verifier accepts with probability ε.
Now, since in particular every noisy codeword individually has distance less than d′/3 to the code C′, the

extractor can efficiently decode all of them. Let

y∗, s∗0, . . . , s
∗
r ,v
∗
0,1, . . . ,v

∗
b−1,r,w

∗
0,1, . . . ,w

∗
b−1,r

be the decoded messages (without the randomness vectors).
By Lemma 3.6, a linear combination of the noisy codewords is not just close to some codeword but

actually has distance less than d′/3 to the encoding of the corresponding linear combination of the above
decoded messages. For example we have

d′

EncJ

 r∑
j=0

`j(x)s∗j , r

 ,

r∑
j=0

`j(x)S∗j

 <
d′

3
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for some randomness vector r ∈ Zτq . Furthermore, if the vector f̄ in some accepting transcript is not equal
to
∑r
j=0 `j(x)s∗j , then encodings of the two vectors have distance at least d′. It then follows from the reverse

triangle inequality that

d′

EncJ
(
f̄ , r̄f

)
,

r∑
j=0

`j(x)S∗j

 >
2d′

3
.

But the verifier checks the equality of these two (noisy) codewords at τ random positions. Hence, he does
not requests one of 2d′/3 differing positions with probability only at most(

1− 2d′

3l

)τ
<

(
1− 2(k − k′)

3l

)τ
<
ε

2
.

For a random accepting transcript the remaining success probability when fixing the first challenges and
hence f̄ is at least ε/2 with probability at least 1/2. That is, f̄ lies on a “heavy row” with probability at least
1/2 and in this case f̄ must be such that

f̄ =

r∑
j=0

`j(x)s∗j .

With the same reasoning we get that at the same time

©b−1
i=0

(
f̄ − i1

)
=

b−1∑
i=0

r∑
j=1

`j(x)`0(x)i+1v∗i,j , (11)

©b−1
i=0

(
d̄− i1

)
=

b−1∑
i=0

r∑
j=1

`j(x)`0(x)i+1w∗i,j . (12)

Finally, substituting the expression for f̄ into the second-to-last equation (11) shows that the polynomial

©b−1
i=0

 r∑
j=0

`j(X)s∗j − i1

− b−1∑
i=0

k∑
j=1

`j(X)`0(X)i+1v∗i,j

of degree less than (b + 1)r has a root at x. As a further consequence of the heavy rows argument above
we know that there are at least ε/2 · q heavy rows with distinct challenges x. So, since ε > 2(b+ 1)r/q, the
polynomial has more roots than its maximum degree and hence must be the zero polynomial.

Reducing modulo `0(X) then shows that in particular

r∑
j=1

`j(X)©b−1
i=0

(
s∗j − i1

)
= 0.

Since the Lagrange polynomials are linear independent we also get ©b−1
i=0 (s∗j − i1) = 0. This implies s∗j ,

j = 1, . . . , r, has coefficients in {0, . . . , b− 1}.
Moreover, when we define e∗j = uj − As∗j for j = 1, . . . , r and e∗0 = −As∗0, then d̄ =

∑r
j=1 `j(x)uj −

Af̄ =
∑r
j=0 `0(x)e∗j . This can be substituted into Equation (12). Then the same reasoning as above yields

e∗j ∈ {0, . . . , b− 1}n, j = 1, . . . , r. So we have found the small solutions we were looking for. ut

4.1 Proof Size

In one execution of the protocol in Figure 2 the prover sends only 6 masked secret vectors f̄ ∈ Zmq , z̄, and
r̄ι ∈ Zτq for ι = f, v, w, z for all r equations with a total of 2m + 4τ Zq-coefficients. Then he also sends τ
codeword positions from all of the (2b + 1)r + 1 codewords in the protocol. Note that from the soundness
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error in Theorem 4.3 it is clear that τ does not need to increase with the number of equations. So this part
only scales linearly in r. Finally, the number of hashes sent is exactly the same as in the single-equation
protocol from Section 3. That is, the prover sends h+ τdlog(l/h)e 32-byte hashes. In summary, we see that
the protocol has a bandwidth requirement of(

(2m+ ((2b+ 1)r + 5)τ)dlog qe+ 256

(
h+ τ

⌈
log

(
l

h

)⌉))/
8192

kilobytes. When we have r = m equations with m secret coefficients each, so m2 secret coefficient in total, we
see that the communication cost is of order m, which is the square root of the number of secret coefficients.

Example. Since this proof system is essentially many instances of the example from [BLS19,ENS20] (using
the same public randomness A), we compare the amortized output size to those papers. In particular, we
consider the case where one wants to prove r = m = 1024 equations simultaneously. The last term in the
expression for the soundness error in Theorem 4.3 limits it to at least 2−19. So we search for parameters k,
l and τ under the constraint that the soundness error stays below 2−18. Then 7 iterations of the protocol
give a negligible soundness error of less than 2−126. Our search for such parameters minimizing the proof
size resulted in

k = 37376, l = 43521, and τ = 88.

With these parameters and the same h = 2τ as before, the total proof size for all 7 iterations is 17509
kilobytes. So this translates to an amortized cost of 17.1 kilobytes per equation. We mention that, as we
have explained above, for the small secret interval with b = 3 it would in fact be better to only have one set
of codewords for all verification equations. Concretely, this would give a protocol with per-equation size of
only about 8 kilobytes, which is a noticeable improvement over the 45KB proof size in [ENS20].
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dPLS19. Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Short discrete log proofs for FHE and ring-lwe
ciphertexts. In Public Key Cryptography (1), volume 11442 of Lecture Notes in Computer Science, pages
344–373. Springer, 2019.

EKS+20. Muhammed F. Esgin, Veronika Kuchta, Amin Sakzad, Ron Steinfeld, Zhenfei Zhang, Shifeng Sun, and
Shumo Chu. Practical post-quantum few-time verifiable random function with applications to algorand.
IACR Cryptol. ePrint Arch., 2020:1222, 2020.

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical exact proofs from lattices: New
techniques to exploit fully-splitting rings. IACR Cryptol. ePrint Arch., 2020:518, 2020. To appear in
Asiacrypt 2020.

EZS+19. Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Matrict: Effi-
cient, scalable and post-quantum blockchain confidential transactions protocol. In ACM Conference on
Computer and Communications Security, pages 567–584. ACM, 2019.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct nizks without pcps. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings, pages 626–645, 2013.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In STOC, pages
723–732. ACM, 1992.

KKPP20. Shuichi Katsumata, Kris Kwiatkowski, Federico Pintore, and Thomas Prest. Scalable ciphertext compres-
sion techniques for post-quantum kems and their applications. IACR Cryptol. ePrint Arch., 2020:1107,
2020. To appear in Asiacrypt 2020.

KR08. Yael Tauman Kalai and Ran Raz. Interactive PCP. In ICALP (2), volume 5126 of Lecture Notes in
Computer Science, pages 536–547. Springer, 2008.

KTX08. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure identification schemes based
on the worst-case hardness of lattice problems. In ASIACRYPT, pages 372–389, 2008.
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