
1

ASAP: Algorithm Substitution Attacks on
Cryptographic Protocols

Sebastian Berndt, Jan Wichelmann, Claudius Pott, Tim-Henrik Traving, Thomas Eisenbarth
University of Lübeck

Emails: {s.berndt, j.wichelmann, c.pott, thomas.eisenbarth}@uni-luebeck.de,
timhenrik.traving@student.uni-luebeck.de

Abstract—The security of digital communication relies on
few cryptographic protocols that are used to protect internet
traffic, from web sessions to instant messaging. These proto-
cols and the cryptographic primitives they rely on have been
extensively studied and are considered secure. Yet, sophisti-
cated attackers are often able to bypass rather than break
security mechanisms. Kleptography or algorithm substitution
attacks (ASA) describe techniques to place backdoors right into
cryptographic primitives. While highly relevant as a building
block, we show that the real danger of ASAs is their use in
cryptographic protocols. In fact, we show that highly desirable
security properties of these protocols—forward secrecy and post-
compromise security—imply the applicability of ASAs. We then
analyze the application of ASAs in three widely used protocols:
TLS, WireGuard, and Signal. We show that these protocols can
be easily subverted by carefully placing ASAs. Our analysis
shows that careful design of ASAs makes detection unlikely
while leaking long-term secrets within a few messages in the
case of TLS and WireGuard, allowing impersonation attacks. In
contrast, Signal’s double-ratchet protocol shows higher immunity
to ASAs, as the leakage requires much more messages.

I. INTRODUCTION

In the past few years, the widespread use of cryptography
to protect digital communication has become the norm. More
than 90% of web traffic are now end-to-end encrypted via pro-
tocols such as TLS for synchronous web sessions or the pop-
ular Signal protocol for asynchronous instant messaging [1].
With the widespread use of standardized cryptographic proto-
cols for virtually all digital communication from web traffic to
messengers, these protocols receive increased attention from
intelligence agencies, law enforcement and criminals alike. Be-
sides increased awareness and new privacy laws requiring bet-
ter protection, leaks like the Snowden revelations showed that
government agencies are heavily invested in eavesdropping
and intercepting web traffic. In conformance with Shamir’s
third law of security, that states that cryptographic systems are
circumvented, not broken, these actors do not only apply crypt-
analytic techniques, but also circumvent cryptosystems. More
recently, such capabilities have become available to police
forces and less well-funded governments, which have been re-
ported to bypass highly protected messenger communications
of Telegram [2] and EncroChat [3]. While the latter examples
rely on exploitation of implementation bugs and phishing,
Snowden’s documents also revealed efforts to achieve longer-
term access. One class of attacks tries to manipulate the
algorithms used in implementations. The main idea behind

this manipulation is the injection of a backdoor into otherwise
secure implementations, e.g. via the compiler, as proposed
by Ken Thompson and later observed as XCodeGhost [4].
Another way to introduce backdoors is the exploitation of
ambiguous dependencies which has been done to plant code in
software of major vendors [5]. Even cryptographically secure
algorithms can be subverted in stealthy ways. One prominent
example was the standardization of Dual EC DRBG, where
an attacker knowing certain properties of used parameters can
predict future generated bits based on previously observed
outputs [6]–[8]). In a sense, the standardized version of
Dual EC DRBG is thus a subversion of a version of it with
honestly chosen parameters. This shows that an attacker able
to choose these parameters in widely used implementations
(and thus creating subverted implementations) can use their
knowledge to break cryptographic algorithms based on that
implementation. Another angle for such attacks is targeting
open source projects where everyone can suggest changes to
the code. Here, an attacker can look for existing bugs and
propose according patches, that in the same turn introduce new
vulnerabilities, that are hard to detect and can be exploited by
the attacker. Just recently, this approach has been shown to
work even for the Linux kernel [9], although in a ethically
questionable way.

A formal treatment of these manipulations was first given
by Young and Yung under the name kleptography [10], [11].
The recent developments started by Snowden’s publication
reignited the interest in this kind of attacks, starting with
the work of Bellare, Paterson, and Rogaway [12], that stud-
ied the attacks under the name of algorithm substitution
attacks (ASA).

A. Our Contributions

Algorithm substitution attacks have been widely studied in
the literature and are applicable in the real world. Usually
cryptographic primitives are not used in isolation, but in the
context of cryptographic protocols. Previous works on ASAs
only studied the subversion of a single primitive, but protocols
usually involve multiple different primitives to obtain their
security guarantees.

Due to the widespread usage of cryptographic protocols and
their essential role in modern communication, our goal is to
understand the feasibility of ASAs against these protocols.
To do so, we first formally define an appropriate notion of

2

such attacks and then prove in Sec. II-C that two important,
widespread properties of modern protocols — forward secrecy
and post-compromise security — directly imply the vulnera-
bility against ASAs.

As shown by the controversy around [9], it is very hard to
find real-world vulnerabilities to such substitution attacks in an
ethical way. To understand the possible ways that substitution
attacks can be used in practice, we analyze the attack surfaces
present in modern protocols by taking a closer look at three
different, yet widely used protocols — TLS, WireGuard, and
Signal — and show in Sec. III that all of these protocols
have multiple vulnerabilities against ASAs. In two of these
protocols, TLS and WireGuard, these vulnerabilities can be
used to leak the long-term secret key with at most four
messages. Given that key, the ASA adversary can then perform
Man-in-the-Middle attacks. Leaking the long-term secret key
from Signal takes significantly more messages due to the
ratcheting protocol. Yet, the consequences are still dramatic:
the forward secrecy of the Signal protocol can be circumvented
by using Signal’s multi-device option to register a new device
with the leaked key. That new device is then able to access all
subsequent communication of the subverted identity as shown
by Wichelmann et. al [13].

Our analysis highlights that small differences in the proto-
cols (such as between TLS 1.2 and TLS 1.3) can have large
implications with regard to the vulnerability against ASAs.

In order to show that these vulnerabilities are not only the-
oretical, we modify the implementation of these protocols in
OpenSSL (TLS), the Linux kernel (WireGuard), and the Signal
desktop client in Sec. IV. We experimentally verify that these
modified implementations are able to leak the long-term keys
with minimal computational overhead and only a few changed
lines of code, making the attacks hardly detectable. Finally,
Sec. V contains a discussion about possible countermeasures
against ASAs and general design lessons which developers of
a protocol can apply in order to harden their protocols.

B. Related Work

As described above, the concept of algorithm substitution
attacks was first formalized by Young and Yung under the
name kleptography [10], [11]. The current name of algo-
rithm substitution attacks was proposed by Bellare, Paterson,
and Rogaway, who also presented several attacks on certain
symmetric encryption schemes [12]. Degabriele, Farshim, and
Poettering criticised this model as it relied on the assumption
that all ciphertexts produced by the subverted algorithm must
be valid [14]. The model of Bellare, Paterson, and Rogaway
was extended to signature schemes by Ateniese, Magri, and
Venturi [15]. Bellare, Jaeger, and Kane strengthened the result
of Bellare, Paterson, and Rogaway by showing the proposed
attacks can be made stateless [16]. Berndt and Liśkiewicz
showed that algorithm substitution attacks can be interpreted
as steganographic systems, which allowed them to generalize
the above results and give upper bounds for the amount of
information embeddable in a single message via black-box
attacks [17]. Just recently, Chen et al. showed that this upper
bound can indeed be beaten via non-black-box attacks against

certain key encapsulation mechanisms [18]. As the authors
only focus on algorithms and aim to replace the encapsulation
algorithm, they can only embed the (often short-lived) session
key in their algorithms, as this is the only sensitive information
that the encapsulation algorithm can access. Furthermore,
Chen et al. also introduced asymmetric algorithm substitution
attacks that use asymmetric keys.

Several methods to protect against ASAs have been pro-
posed. We discuss these approaches and our design lessons in
more depth in Section V.

II. PRELIMINARIES

In the following, we fix the notations used in this work,
introduce the notion of algorithm substitution attacks against
protocols, and show that a widely used property of cryp-
tographic protocols — forward secrecy — always leads to
vulnerabilities against such substitution attacks. We often
consider randomized algorithms R, and for fixed randomness
r, we denote their deterministic output on input x as R(x; r).
We also define log(x) := dlog2(x)e.

To distinguish between symmetric keys and asymmetric
keys, we denote symmetric keys with lower case letters and
asymmetric keys with upper case letters. Furthermore, for an
asymmetric key-pair K, we denote the secret key by sec(K)
and the public key by pub(K). We refer to the textbook of
Katz and Lindell [19] for formal definitions of the crypto-
graphic primitives used in our work such as pseudorandom
functions or symmetric encryption schemes.

A. Cryptographic Protocols

Let A and B be two stateful randomized algorithms, called
parties. In a protocol ΠA,B , both of these algorithms exchange
messages msgi back and forth. Each party P ∈ {A,B}
is given the history hi = msg1, . . . ,msgi of the first i
messages, their state stP,i and some input XP . Upon these
inputs, P outputs a message msgi+1, sent to the other party,
and an updated state stP,i+1, which is kept private. For the
sake of simplicity, we set h0 = stP,0 = ε for the empty
string ε. The run run of a protocol ΠA,B on inputs XA and
XB is now produced as follows for i = 0, . . . , n: Obtain
(msgi+1, stP,i+1)← P (XP , hi, stP,i) from party P and send
msgi+1 to the other party. For even i, party P is A and for odd
i, party P is B (see Fig. 1). This naturally gives a probability
distribution on the runs of a protocol ΠA,B with regard to
the inputs XA and XB . The transcript transcript(run) of
such a run run contains the inputs XA, XB , all messages
msg1, . . . ,msgn, and all states stP,i for both parties. For a
party P ∈ {A,B}, we denote their view by viewP (run), which
contains their parts of the transcript transcript(run), i. e. XP ,
all messages msg1, . . . ,msgn, and all states stP,i of themself
(but not the states of the other party).

In this work, we assume that the protocols models the
complete communication between A and B, i. e. there is no
information shared between A and B before.

Throughout the paper, we assume that XA and XB contain
some secret information, called long-term keys that A and
B can use to guarantee different cryptographic properties of

3

A(XA) B(XB)
msg1

msg2

msg3

msg4

· · ·

Fig. 1: A run of ΠA,B on XA and XB .

the protocol such as integrity or authenticity. Usually such
protocols are used to transfer information between A and B in
a secure manner. For example, in a zero-knowledge protocol, A
wants to convince B that f(XA) = 1 for some public function
f without actually revealing the input XA. Protocols play an
essential part in cryptography and are widely used.

Adversaries trying to attack such a cryptographic protocol
are typically characterized by their abilities. A passive adver-
sary or eavesdropper can only listen to the communication
between the parties and thus sees the exchanged information
msg1, . . . ,msgn. In contrast, an active attacker can directly
interact with the parties and e. g. can try to impersonate A
and convince B to share sensitive information.

B. Algorithm Substitution Attacks

In this work, we consider algorithm substitution attacks
against cryptographic protocols. As noted above, all previous
work concentrated on at most the replacement of a single
cryptographic primitive, but not on protocols. In the work of
Chen et al., this led to the problem that they were only able to
leak short-term session keys in this model [18]. But primitives
are usually embedded in protocols and usually, both parties
of a key encapsulation mechanism have some secret. Hence,
in this scenario, an attack against the protocol would allow a
subverted encapsulation algorithm to leak the long-term secret
key of a party instead of only the short-term session key.

Usually, at least one of the inputs XA or XB of a cryp-
tographic protocol contains some value that is to be kept
secret. The goal of an algorithm substitution attack against
ΠA,B is to manipulate one of the parties such that the run of
the protocol leaks this secret to an observer knowing some
attacker key ak. For everyone but this observer, the run of
the manipulated protocol should be indistinguishable from
the original protocol, in contrast to classical backdoors which
could be used by everyone.

a) Subverting Protocols.: For the sake of simplicity, we
only consider algorithm substitution attacks against party A,
but the adaption against party B is straightforward. As the
concrete protocols we are interested in later on have a wide
number of cryptographic properties that they aim to establish,
we will focus on a special kind of subversion attacks, where
the subverted implementation leaks the long-term secret XA

to an extraction algorithm ASA.Ext. Throughout this work,
we make the following assumption for all protocols ΠA,B :

Assumption 1. An attacker ASA that knows the long-term se-
cret XA can impersonate A and thus break the cryptographic
properties of the protocol ΠA,B .

Note that this assumption directly implies that XA needs to
be sufficiently long to avoid brute-force attacks.

Formally, an algorithm substitution attack ASA against
ΠA,B is a tuple of randomized algorithms (ASA.A,ASA.Ext).
Here, the honest implementation of party A is replaced by
ASA.A and ASA.Ext is used to extract the long-term key
XA from the exchanged messages. In addition to the inputs
XA and hi given to A, the algorithm ASA.A is also given a
symmetric attacker key ak of length κ. To separate the input
in the protocol from this key, we write ASA.Aak to denote
that ASA.A has knowledge about ak. The extraction algorithm
ASA.Ext is also given this attacker key and the sequence of
messages msg1,msg2, . . . and tries to extract the secret XA

from these messages (see Fig. 2). We allows both ASA.A and
ASA.Ext to be stateful, but stress that ASA.A now has two
states: one is similar to the state of an honest party A and
denoted by stASA.A and another state used for the observation,
which is not part of transcriptASA.A.

b) Undetectability.: We need to formalize the require-
ment that a successful substitution attack remains undetected.
To do this, Russel, Tang, Yung, and Zhou formalized three dif-
ferent watchdogs that try to detect a possible subversion [20].
In this work, we only focus on the strongest watchdog, called
omniscient online watchdog. Such a watchdog W is a PPTM
which is given an oracle, that is either an honest party A or
the subverted implementation ASA.A. Furthermore, W is also
given the view viewA(run) of A of a run run of ΠA,B to
model the fact such a watchdog observes the behaviour of A
in an online fashion. The detection advantage of a watchdog
W with regard to the inputs XA and XB against a algorithm
substitution attack ASA is defined as

AdvXA,XB

W (κ) =∣∣Pr[WA(viewA(run)) = 1]− Pr[WASA.A(viewA(run′)) = 1]
∣∣.

Here, the attacker key ak used by ASA.A is randomly chosen,
run is a random run of ΠA,B on XA and XB , and run′ is a
random run of ΠASA.A,B on XA and XB . Note that the oracle
(which is either A or ASA.A) can be queried on arbitrary
inputs X , arbitrary histories h, and arbitrary states st. We say
that ASA is undetectable, if for all watchdogs W and all XA

and XB , the advantage AdvXA,XB

W (κ) is negligible in κ.
c) Reliability.: As discussed above, the ASA should also

be able to reliably extract the long-term key XA from the
public communication between ASA.A and B. We say that
ASA is reliable with regard to the inputs XA and XB if
Pr[ASA.Ext(msg1, . . . ,msgn) = XA] ≥ 1 − negl(κ) for
some negligible function negl. Here, the probability is taken
over the random choice of the attacker key ak and the run
run′ = msg1, . . . ,msgn of ΠASA.Aak,B on XA and XB . We
say that ASA is reliable, if it is reliable for all XA and XB .

d) Universal ASA: Bellare et al. showed the existence of
a black-box (or universal) algorithm substitution attack, i. e. an
undetectable algorithm substitution attack, based on rejection
sampling, that works against every randomized symmetric

4

ASA.Aak(XA) B(XB)
msg1

msg2

msg3

msg4

· · ·

ASA.Ext(ak)

XA

Fig. 2: A run of the ASA

encryption scheme [12]. Berndt and Liśkiewicz were able to
show that this substitution attack can be used against every
randomized algorithm with sufficient high min-entropy [17].

The general idea behind this universal ASA is the following:
Suppose that we want to embed λ bits of the secret s in the
output of the randomized algorithm R on input x. Let si be
the i-th block of s of length λ, i. e. s = s1 || s2 || . . . sL with
L = |s|/λ. We assume that we have access to a pseudorandom
function F that — equipped with key ak — on some input
y outputs a pair (b, i), where |b| = λ and |i| = log(L). The
universal ASA now samples random bits r until it finds r? with
Fak(R(x; r?)) = (si, i), i. e. until the pseudorandom function
outputs the i-th block of s and the index i for some i. It can
easily be seen that the probability that we do not find a suitable
candidate after 2λ ·κ samples of random bits is negligible in κ.
Using the analysis of the coupon collector problem, it is easy
to see that O(L · log(L)) received ciphertexts are sufficient
to reconstruct s with high probability. In fact, for sufficiently
large values of L, the probability that more than L ln(L)+βL
samples are needed is at most 1 − exp(− exp(−β)) [21,
Theorem 5.13]. For example, the probability that at most
L ln(L) + 4L samples are needed is at least 0.98.

Clearly, this approach only works if the min-entropy
H∞(R(x)) of R on input x is sufficiently high. To apply this
idea in substitution attacks, ASA.A identifies situations, where
the min-entropy is sufficiently high and embeds parts of the
long-term key XA into the outgoing message. We call this the
universal ASA. A common target for our attack in this work
is the Diffie-Hellman key exchange and we thus illustrate the
attack here for clarity. Given a finite cyclic group G of order
n and some generator g ∈ G, a non-subverted party generates
1 < a < n, keeps a secret and sends ga to the other party.
Our goal is now to embed information about XA into ga.
Hence, to embed a single bit (λ = 1) in the universal attack,
we sample a ← {2, . . . , n − 1} until we obtain a? such that
Fak(g

a?) = (XA[i], i), where XA[i] is the i-th bit of the XA.
For the sake of completeness, we repeat the Theorem

of Berndt and Liśkiewicz [17] adapted to our notation
here. Note that this theorem follows from the leftover hash
lemma [22] as shown by Hopper [23].

Theorem 1 (Theorem 7.1 in [17]). Let ΠA,B be a pro-
tocol. For the universal algorithm substitution attack ASA,
both AdvXA,XB

W (κ) as well as the unreliability of ASA are
bounded by

poly(κ) · (exp(−|XA|) + exp(−H∞)) + InSecprf
F (κ)

for all watchdogs W. Here, |XA| is the length of XA, the
term H∞ describes the smallest min-entropy of the messages
where ASA embeds information, and InSecprf

F (κ) is the max-
imum advantage of any attacker against the pseudorandom
function F .

Optimizing the universal ASA: As the probability that no
fitting block (si, i) is found is negligible in κ, there is no need
to deal with embedding errors on the side of the extractor.
By only trying at most 2λ · γ samples, an embedding error
occurs with probability 2−γ . Adding error correction to the
extractor would thus allow us to reduce the number of samples.
For example, setting γ = 3 yields an error probability of at
most 1/8. The extractor could now use a simple majority rule
whenever they encounter multiple blocks {(s(j), i)}j , where
not all s(j) are identical.

Another optimization that can be used to save bandwidth
is the fact that the secrets s that we want to leak are often
highly structured and contain some redundancy. For example,
if we aim to leak long-term RSA keys, it is sufficient to leak
only half of the bits of one of the prime factors p or q, as the
remaining bits can be reconstructed via the lattice algorithm
of Coppersmith [24], [25].

e) Public-coin-replacement ASA: Another important
non-universal algorithm substitution attack can be applied,
whenever a uniformly random string is transferred. This is
often the case, if both parties communicate via a symmet-
ric encryption scheme that requires a random nonce or IV.
Suppose that we use the counter mode with random IV to
encrypt messages: The first block of the ciphertexts of this
mode consists of uniformly distributed bits. Hence, an ASA
could replace this block by an encryption of the long-term
secret XA using an encryption scheme with pseudorandom
ciphertexts.

This coin-replacement attack is a simple adaption of the
IV-replacement attack described by Bellare et al. in [12].
For the sake of simplicity, we assume in the following that
the complete message msgi is a uniformly random string
(otherwise, we only apply the technique on the random part).
Again, if we want to embed λ bits of the secret s, split
into s1 || s2 || . . . || sL, we first choose a string r of
length |msgi | − λ completely random. This string r encodes
some index j consisting of log(L) bits (e. g. via its most
significant bits or its least significant bits). Then, we compute
msg′i = r || (Fak(r) ⊕ sj) via a pseudorandom function F
and output msg′i. The extractor, knowing λ and ak, can easily
compute both j and sj from msg′i. As described above, about
O(L · log(L)) samples are needed to reconstruct the secret s.
The main advantage of this attack is that no repeated sampling
is necessary, i. e. the running time of the protocol is only
increased by a single call to the pseudorandom function F .
The optimal value for λ here depends on the length of msgi,

5

but must be small enough that the length of r is sufficiently
high to avoid detection. Clearly, this attack can only be used,
if the random part of the message msgi is sufficiently long.

The security of the public-coin-replacement ASA was
shown by Bellare et al. in [12] and, for the sake of com-
pleteness, we repeat their theorem adapted to our notation.

Theorem 2 (Theorem 2 in [12]). Let ΠA,B be a protocol.
For the public-coin-replacement algorithm substitution attack
ASA, both AdvXA,XB

W (κ) as well as the unreliability of ASA
are bounded by

poly(κ) · exp(−m+ log(|XA|)) + InSecprf
F (κ)

for all watchdogs W. Here, |XA| is the length of XA, the term
m describes the shortest random string where ASA embedded
information, and InSecprf

F (κ) is the maximum advantage of any
attacker against the pseudorandom function F .

f) Impossibility Results: As we concentrate on the om-
niscient watchdog scenario, we can also make use of known
impossibility results. It is relatively easy to see that deter-
ministic algorithms cannot be subverted without detection by
an omniscient watchdogs: Such a watchdog knows all of the
relevant inputs (including the secret XA and the states stA,i)
and can thus also do the computation all by itself. More
formally, this is captured by the following theorem of Berndt
and Liśkiewicz [17], adapted to our setting:

Theorem 3 (Theorem 7.2 in [17]). Whenever
A(XA, hi, stA,i) is deterministic, it holds A(XA, hi, stA,i) =
ASA.A(XA, hi, stA,i) for all undetectable algorithm
substitution attacks ASA.

As an example, consider a deterministic padding function-
ality used in many protocols. While the padding is often not
uniform for all implementations of the protocols, it is usually
deterministic (e. g. the padding used in the TLS 1.3 record
layer). A subverted implementation that would try to deviate
from the actual deterministic implementation could easily be
detected by an omniscient watchdog, as the watchdog has all
necessary information to simulate the padding themselves.

g) Passive and Active Attacks: While the deployment of
the modified algorithm (i. e. exchanging A with ASA.A) is an
active attack, the extraction of the information via ASA.Ext is
done in a purely passive way. In this work, we do not consider
how to deploy the modified algorithm ASA.A, but focus on
the possible places where such a substitution attack might be
used in cryptographic protocols. Furthermore, we also study
how the long-term keys can be used after extraction, both by
a passive attacker and an active attacker.

C. ASA and Forward Secrecy

Two important features of modern cryptographic protocols
are called forward secrecy and post-compromise security,
which concern encrypted communication. Informally, these
mean that a breach of the long-term keys is not sufficient for
the decryption of the messages encrypted before the breach
(forward secrecy) or for messages encrypted sufficiently long
after this breach (post-compromise security). In our setting

compromisesecret ki

(a) Forward Secrecy
compromise secret ki?waiting

(b) Post-compromise Security

Fig. 3: Schematic representation of forward secrecy and post-
compromise security.

introduced above, some of the messages msgi are encryptions,
i. e. msgi = Enc(ki, pi) for some plaintext pi, some key ki and
a symmetric encryption scheme Enc. Forward secrecy now
means that an attacker that knows the secret inputs XA and
XB of the parties and all of the msgi (but neither ki nor pi)
cannot distinguish the key ki from a random key, as defined by
Krawczyk [26].1 On the other hand, post-compromise security
means that even if ki, pi, XA, and XB are known to the
attacker, there is some index i? > i such that the attacker
cannot distinguish ki? from a random key as defined by Cohn-
Gordon et. al. [27]. See Fig. 3 for a schematic representation.

A common way to enable these properties is to only use
ephemeral keys for some part of the communication. For
example, in TLS, a handshake starting a session consists of
a key exchange of such an ephemeral key. At the end of the
session these ephemeral keys are completely discarded and the
next communication between the parties starts a new session
with new ephemeral keys.

We will now argue that both of these properties directly lead
to potential subversion attacks. The argument boils down to the
fact that, in order to guarantee these properties, the ephemeral
keys ki need be constructed randomly with a sufficient amount
of entropy. This allows us to use the universal ASA of
Theorem 1. We stress that the lemma depends on the fact
that the run of ΠA,B captures the complete communication
between A and B, i. e. there are no preshared keys.

Lemma 1. If ΠA,B is a cryptographic protocol with forward
secrecy, then there is an ASA against A or B.

Proof. We will make use of the universal algorithm sub-
stitution attack ASA of Theorem 1. To do so, we need to
guarantee two things: First, the long-term secret XA needs to
be sufficiently long. Second, there need to be enough messages
sent by A with high enough min-entropy to guarantee that
H∞ is large enough. As discussed above, the first property is
implied by Assumption 1. We thus only need to argue about
the existence of messages with high min-entropy.

Consider the earliest message msgi = Enc(ki, pi), where
some attacker cannot distinguish ki from a random key. As
the attacker knows both XA and XB , the key ki is not part of
these secrets, but needs to be stored in the states stA,i and stB,i
not known to the attacker. Hence, the communication between
the parties must include some messages msgj ,msgj+1, . . .
where this key ki is exchanged, as ΠA,B contains the complete

1Note that this notion is called weak forward secrecy in [26], as it does not
prevent active attacks.

6

communication between the parties. If all of the messages
msg1,msg2, . . . ,msgi are chosen deterministically, the at-
tacker can simulate this with their knowledge of XA and
XB and can thus also reconstruct the key ki, which would
contradict the forward secrecy of the protocol. Therefore, there
is a message msgi? which is chosen randomly. Furthermore,
as the protocol has forward secrecy, the attacker is not able
to brute-force all possible choices of randomness for the
construction of msgi? . Hence, msgi? has a high enough min-
entropy to embed information about XA via Theorem 1.

We can argue in a similar way for post-compromise security,
as this also requires the exchange of randomized messages.

Lemma 2. If ΠA,B is a cryptographic protocol with post-
compromise security, then there is an ASA against A or B.

III. SUBSTITUTION ATTACKS AGAINST PROTOCOLS

In light of Lemma 1, we looked at multiple widely used
protocols that support forward secrecy and analyzed their
vulnerability with regard to algorithm substitution attacks. In
addition to the attacks on the forward secrecy parts of the
protocols, we also discovered that TLS 1.2 and WireGuard
are vulnerable to public-coin-replacement attacks. To simplify
the presentation, we simply say that an algorithm substitution
attack is undetectable, if the detection advantage of any
watchdog is sufficiently small, e. g. at most 2−128 or 2−64. In
our above formal model, we only modeled the leakage of the
long-term secret XA and used Assumption 1 to guarantee the
breach of some security property this way. In the following,
we focus on concrete protocols and thus also discuss leaking
other secrets and which properties can be broken this way.

A. TLS

The Transport Layer Security (TLS) protocol is arguably
one of the most important protocols for secure communication,
providing encryption, integrity protection and authenticity
confirmation. TLS is located between the application-layer and
transport-layer of the Internet Protocol (IP) Stack. It provides
a transparent way of secure communication to the application-
layer. In general, TLS supports a large number of different
algorithms used for key exchange, signatures, and encryption.

The protocol is split into two (main) layers: The Handshake
layer (composed by the Handshake-, Change Cipher Spec-,
and Alert Protocols), which initiates a connection between the
parties, and the Record layer (formed by the Record Protocol),
which is used to send application data. Usually, TLS is used
for communication between a server S and a client C. The
protocol distinguishes between sessions, which are an associa-
tion between the parties with some state that specifies the used
algorithms, and connections, which are secure streams within
a session. The most current version of TLS is TLS 1.3, but it
is currently only supported by 40% of servers. Its predecessor,
TLS 1.2, is supported by nearly 99% of the servers [28].

We first introduce the two protocol layers of TLS 1.3,
highlight the differences to TLS 1.2, and discuss possible
targets for ASAs afterwards.

a) Handshake layer [29]: To initiate a session, a hand-
shake between the parties is performed (Figure 5 in the ap-
pendix). The server S has a certificate CERTS to authenticate
itself. The client C sends a ”Hello” message to the server
which includes a list of preferred algorithms and a random
string rC of length 32 bytes. It also guesses, which key
exchange algorithm will be chosen by the server, generates an
appropriate ephemeral key EKC and send its public component
pub(EKC) to the server. If C tries to resume a session, it also
send a session ID. The server S chooses the algorithms to
be used from the client’s list, a random string rS of length
32 bytes, and an ephemeral key EKS and sends all of this as
”Hello” message to the client. If the client wanted to resume
a session, S can also send a session ID. Both parties then
derive a handshake secret hs from the ephemeral keys EKC
and EKS and from a hash of both ”Hello” messages via
HKDF [30]. From hs, both parties also derive the handshake
traffic key htk via HKDF. Then, the server computes a hash
of the current communication and signs it using its certificate.
The server S encrypts this signature and the public key of
the certificate via htk and sends it to the client. The client
decrypts these values and verifies the signature. Both parties
then derive several other symmetric secrets/keys from hs via
HKDF: the finished key fk, the master secret ms, the traffic
secret ts, and the traffic key tk. The client now computes a
MAC of the current transcript via fk and encrypts this with
htk and sends this ”Finish” message to the server. The server
then also computes such a MAC in the same way and sends
this encrypted with htk as ”Finish” message to the client. A
more detailed description of the handshake can be found, e. g.,
in the work of Diemert and Jager [31].

In TLS 1.2 [32], the client does not guess the key exchange
algorithm, causing the need for another roundtrip between
the parties. Furthermore, the handshake messages are not
encrypted, i. e. htk is not present in the protocol.

b) Record layer [29]: In the record layer, the applica-
tion data is encrypted via the symmetric traffic key tk. The
encryption is performed via an authenticated encryption with
associated data (AEAD) encryption scheme as defined by
Rogaway et. al [33], [34] chosen during the handshake, which
is either AES GCM, AES CCM, or ChaCha20-Poly1305 [35],
[36]. The nonce needed for this AEAD is produced by XOR-
ing the sequence number (describing how many messages
were already sent) and an initialization vector derived from
the master secret ms.

In contrast, TLS 1.2 allows a much wider range of encryp-
tion schemes, not only AEADs. Also, the nonce used for the
schemes is constructed differently. It consists of an initializa-
tion vector derived from the master secret ms concatenated
with an explicit initialization vector (eIV), which is chosen
randomly and transmitted. In earlier versions of TLS, no eIV
was used, which led to vulnerabilities [37].

1) Security Analysis w.r.t. Substitution Attacks: In the fol-
lowing, we identify possible attack vectors against both ver-
sions of TLS. The first thing to consider is which key-material
we want to leak. By leaking the short-term keys (either
sec(EKS), sec(EKC), or hs and the derived keys), an attacker
is able to decrypt the complete communication within a single

7

connection. Usually, the only long-term key that exists is the
certificate of the server, allowing an attacker to impersonate
the server and perform Man-in-the-Middle attacks. Note that
the short-term keys are only derived from later messages in the
Handshake layer. Attacks on early messages in the Handshake
layer can thus only leak long-term keys.

a) Leaking in the Handshake Layer: The TLS handshake
consists of different messages that may or may not be sent
when initiating a connection. These messages may or may not
be encrypted. These factors vary between the specific setup,
as well as TLS versions. But one message always contains
a nonce, is always unencrypted, and will always be sent:
The ”Hello” message. This nonce can be chosen in a way
that reveals information without compromising the subsequent
calculations. As the ”Hello” messages are unencrypted, they
allow an public-coin-replacement ASA, resulting in a setup
independent attack across all versions of TLS. As the ”Hello”
message consists of 28 bytes, Theorem 2 implies that this is
undetectable.

Furthermore, the key shares pub(EKC) and pub(EKS)
are also transmitted in the clear. As both of these shares
are public keys, we cannot simply replace them by random
strings (as obtaining the corresponding private keys would
be very expensive), but the universal ASA can be used to
repeatedly sample EK until the public key contains some
information. As both public keys need to have a sufficient
amount of randomness, their min-entropy is high enough such
that Theorem 1 implies that the universal ASA is undetectable.

b) Leaking in the Record layer: In TLS 1.3, all com-
munication deterministically depends on the master secret
ms. As deterministic algorithms cannot be used for algorithm
substitution attacks due to Theorem 3, no attack vector exists
against the Record layer of TLS 1.3.

In contrast, the usage of the explicit IV in the Record layer
of TLS 1.2 introduces randomness, which we can use for an
attack. As described above, the nonce used in the encryption
scheme is split in two halves: the implicit IV or static IV (sIV)
and the explicit IV (eIV). The sIV is usually a session number,
which is known to both client and server. As both parties
know the sIV, there is no need to transmit this part. The eIV
is randomly chosen and transmitted with the ciphertext. The
other party does not know this random number and has no
way to derive it from previously shared knowledge. Therefore
it is necessary to transmit the eIV with the ciphertext, but the
eIV is not necessarily transmitted in the clear, but concatenated
with the plaintext and then encrypted via the static IV. We thus
need use the universal substitution attack to find an eIV such
that this ciphertext contains information about the long-term
secret. As AES has block size of 128 bit, the min-entropy of
this ciphertext is sufficiently high that Theorem 1 guarantees
undetectability. We explain the corresponding attack in more
depth in Sec. IV.

B. WireGuard

WireGuard is a Virtual Private Network (VPN) solution
that has recently been added to the Linux kernel [38]. It is
becoming increasingly popular due to its simple design and

implementation, especially compared to other widely used
protocols, and it uses generally acknowledged and fast algo-
rithms. For example, all public-key operations are performed
on Curve25519, all hashes are computed via blake2s, all
keys are derived via HKDF, and the symmetric authenticated
encryption schemes used are either ChaCha20Poly1305 or
XChaCha20Poly1305 [30], [36], [39], [40]. As usual for
VPNs, WireGuard allows peers to communicate with each
other in a secure manner. A central part in the design and one
reason for the simplicity of the protocol is that each peer is
identified only by its static asymmetric key pair. Before they
can create a connection, both peers have to manually share
their static public key via a secure channel, such that they can
prove that each is communicating with the correct party.

Again we give an overview of the protocol and afterwards
discuss potential targets for ASA.

a) Handshake: The WireGuard protocol (Figure 6 in the
appendix) does not distinguish between clients and servers,
however, to distinguish between the two parties one is called
the initiator I and the other one the responder R. Both
parties have an asymmetric static key SKI , resp. SKR. To
communicate, I also needs to know pub(SKR) and R needs
pub(SKI). In addition, I needs an IP address of R in order
to send the initial message. As a first step, I generates an
ephemeral key EKI and computes a symmetric handshake
key hsk by performing a Diffie-Hellman key exchange on
pub(SKR) and sec(EKI) and a second symmetric handshake
key hsk′ by performing a Diffie-Hellman key exchange on
pub(SKR) and sec(SKI). Then, it initiates the connection
via the handshake initiation message. This message contains
among other things the public key pub(EKI), an encryption
of pub(SKI) using hsk, a random string rI consisting of 4
bytes used for the session ID, and a timestamp encrypted
with hsk′. All encryptions are AEADs and the authenticated
data are hashes of the currently computed values that will
be given to R. The responder uses pub(EKI) and sec(SKR)
to also derive the symmetric handshake key hsk and another
key exchange on pub(SKI) and sec(SKR) to derive hsk′.
It then decrypts the encrypted messages and verifies them.
Afterwards, R generates an ephemeral key EKR and derives
another symmetric handshake key hsk′′ from key exchanges on
the pairs (pub(EKI), sec(EKR)) and (pub(SKI), sec(EKR)).
They then send a message containing pub(EKR), a random
string rR of 4 bytes used for the session ID, the string rI ,
and an encryption of the the empty string with hsk′′. When
these messages have been exchanged, both parties derive their
transport data keys tdkI and tdkR (one for sending and one
for receiving) from the ephemeral keys EKI and EKR and the
handshake is complete.

b) Transport Data: In the following, every message sent
between I and R contains a counter used as a nonce and an
encryption of the application data either with tdkI (if I sends
a message to R) or tdkR (if R sends a message to I).

c) Denial-of-Service Protection: To avoid that a mali-
cious party performs a Denial-of-Service (DoS) attack by
abusing the CPU-intensive asymmetric cryptographic opera-
tions of a handshake, WireGuard introduces a special cookie
mechanism: If a peer (initiator or responder) P receives a

8

handshake packet with a valid MAC, but currently cannot
perform the necessary elliptic curve computations due to
being under load, it returns a cookie message. This message
contains a randomly generated nonce rn of 24 bytes, which is
used alongside the peer’s public key pub(SKP) to encrypt a
secret number s, that is randomly generated by P every two
minutes. The other peer P ′ decrypts the cookie, and waits
until the initiator’s internal rekey timeout has passed. During
the ensuing restarted handshake, P ′ sends their handshake
message along with an additional MAC, using the secret
number s as the MAC key. The peer P then checks whether
that MAC is valid, and if it is, continues or completes the
handshake. Note that the random nonce rn is transported in
the clear.

1) Security Analysis w.r.t. Substitution Attacks: As dis-
cussed above, the identity of a peer P is given by an asymmet-
ric key pair SKP . The 256-bit private key sec(SKP) is therefore
the most valuable target for attackers, as it allows stealing the
identity of the victim: An attacker who has obtained sec(SKP)
can perform Man-in-the-Middle attacks or impersonate the
victim, thus gaining access to a formerly secure VPN. The
public keys of other peers are designed to be kept secret within
a VPN, and are only accessible when one is able to decrypt
a handshake initiation packet; if a peer I sends a handshake
initiation packet to the attacker, the attacker can use sec(SKR)
to decrypt the packet and obtain pub(SKI), possibly enabling
other attacks. Since only the handshake initiation message
contains an encryption of the public key of the initiator I ,
leaking the secret key of a responder R allows an attacker to
also collect public keys. If a victim on the other hand only acts
as initiator, no public keys of other peers in the VPN can be
decrypted by an attacker. In this case one could additionally
leak the public key of the responder, thus enabling an attacker
to connect to the VPN as I .

Another possible target are the symmetric short-term trans-
port keys: If, for example, the attacker obtains tdkI , they may
decrypt all messages sent from I to R, until a new handshake
occurs. In order to be able to decrypt the entire communication
between I and R over multiple sessions, the attacker needs a
way to leak both transport keys tdkI and tdkR within one
session. Alternatively this could be achieved by leaking the
private static key sec(SKP) of the victim once and then leaking
the private ephemeral key within each session, thus enabling
the attacker to compute both transport keys.

WireGuard presents three opportunities for embedding
data into randomly generated values: The ephemeral keys
pub(EKP) exchanged during the handshake, the random ses-
sion IDs rP , and the nonce rn of the cookie message.

a) Leaking via Handshake Messages: WireGuard’s hand-
shake messages have two sources of randomness: The session
IDs rI or rR, and the public ephemeral keys EKI or EKR. The
handshake messages are suitable to leak long-term secrets such
as the static private key of the transmitting party. The short-
term secrets are refreshed every few minutes, so leaking them
via handshake messages is not feasible.

The session IDs of both I and R have a length of 4 bytes
and are chosen uniformly at random for each handshake, thus
the attacker could perform a public-coin-replacement ASA.

However, this attack may be easily detectable due to the short
length of the session IDs: If an attacker decides to embed
one byte of secret data, the number of possible session IDs
decreases to 224. Since handshakes are designed to be executed
every few minutes, one can thus expect a collision within a
few days, as opposed to several months. This also matches
the security guarantee of Theorem 2 which only guarantees
security for sufficiently long randomness.

The public ephemeral keys can be used to conduct an
universal ASA, by sampling random private keys until the
resulting public key contains the desired secret. By Theorem 1,
this is undetectable. From a practical point of view, this
approach requires repeated elliptic curve computations, and
it is thus quite expensive to embed more than a few bits per
handshake. Long delays may get noticed by the user, due to
slow connection establishment or frequent connection losses.

b) Leaking via Cookie Messages: The nonce rn used in
the cookie messages is chosen uniformly at random and trans-
mitted in plaintext. Since its length of 24 bytes is quite high,
the nonce is well-suited for a public-coin-replacement attack.
By generating the first 8 bytes (64 bits) randomly, detecting
the attack becomes practically infeasible (see Theorem 2). This
leaves 16 bytes (128 bits) for payload, which means that one
half of a 256-bit key can be leaked in a single message.

This approach allows leaking long-term secrets as well as
previous short-term secrets, since cookie messages are only
sent prior to completing a handshake. Also, cookie messages
are only sent when a peer is under load.

C. Signal

The Signal (formerly Axolotl) protocol [41] provides end-
to-end encryption for text messages and multimedia files. It is
widely used in different communication applications such as
WhatsApp [42], Skype [43], and the Signal messenger itself.
The protocol is based on the Double Ratchet algorithm and
uses a triple Elliptic-curve Diffie–Hellman handshake (X3DH)
to initiate new conversations. The Sesame protocol is used to
enable multi-device support. Signal uses a number of cryp-
tographic primitives including Elliptic Curve Diffie-Hellman
functions (implemented by X25519 or X448 [40]), a signa-
ture scheme called XEdDSA producing EdDSA-compatible
signatures from X25519 or X448 using the hash function
SHA-512 [41], and an authenticated encryption (AEAD)
scheme [33], [34] based on HKDF.

We explain the three protocol parts and discuss possible
targets for ASAs afterwards.

a) X3DH [44]: Every user in the Signal protocol has
an identity key IK. These keys are long-term keys and are
needed to setup the initial communication between two parties.
All of the public keys are stored on the central server.
Furthermore, in order to enable an initial communication even
if one of the parties is offline, all parties store a signed
prekey pub(SPK) along with its signature and a set of one-
time prekeys pub(OPK(1)),pub(OPK(2)), . . . on the server. If
party A now wants to initialize communication with party B,
they obtain the following information from the server: The
public identity key pub(IKB), the signed prekey pub(SPKB)

9

along with its signature, and a one-time prekey pub(OPKB)
(if available). Now, A produces an ephemeral key EKA and
verifies the signature of pub(SPKB). Afterwards, three Diffie-
Hellman key agreements are performed: Between sec(IKA)
and pub(SPKB), between sec(EKA) and pub(IKB), and be-
tween sec(EKA) and pub(SPKB). A symmetric key sk is
then derived from these agreements. If a one-time prekey
pub(OPKB) was available, a fourth key agreement between
sec(EKA) and pub(OPKB) is performed and also taken into
account in the computation of sk. Finally, A sends an initial
message to B that contains pub(IKA), pub(EKA), the index of
pub(OPKB) (if available), and an initial ciphertext encrypted
with key sk. After B got this initial message, B performs the
same computations as A to obtain the symmetric key sk and
then decrypts the initial ciphertext to verify sk.

b) Double Ratchet [45]: The Double Ratchet protocol
(Figure 7 in appendix) tracks the cryptographic state of
communication between two parties A and B. It is designed
to provide forward secrecy and a weak version of post-
compromise security2 even when several keys get leaked.

The protocol state consists of four chains, which are stored
by each party: The asymmetric Diffie-Hellman (DH) chain as
well as the symmetric root, sending, and receiving chains.
Diffie-Hellman Chain: The DH chain is a sequence of Diffie-
Hellman key exchanges on ephemeral keys. Let EK(i)

P denote
the ephemeral key of party P ∈ {A,B} in round i. Each
round is partitioned into two phases. At the start of the first
phase of round i, party A knows pub(EK(i)

B) and generates
an ephemeral key EK(i)

A . First, A performs a Diffie-Hellman
key-exchange between sec(EK(i)

A) and pub(EK(i)
B) to derive

a shared secret ssv(i)1 . Now, A sends pub(EK(i)
A) to B. All

further messages send from A to B are encrypted via a key
derived from ssv(i)1 (see below for details) until B sends
a response. A response of B starts the second phase, in
which B generates a new ephemeral key EK(i+1)

B . Then, B
performs a Diffie-Hellman key-exchange between pub(EK(i)

A)

and sec(EK(i+1)
B) to derive a shared secret value ssv(i)2 . Now,

B sends pub(EK(i+1)
B) to A. All further messages sent from

B to A are encrypted via a key derived from ssv(i)2 , until A
sends a response, which ends round i and starts round i+ 1.
Root Chain: The root chain is a sequence of symmetric-key
derivations. Given the shared secret value ssv(i)j from the
DH chain and the current root chain key rk(i)j , it computes(

rk(i
′)

j′ , ck(i,1)j

)
:= KDF

(
rk(i)j , ssv(i)j

)
, where ck(i)j is the

first chain key of a sending/receiving chain and rk(i
′)

j′ is the
next root chain key, with (i′, j′) := (i, 2) if j = 1, or
(i′, j′) = (i + 1, 1) if j = 2. The root chain is initialized
with rk(1)1 = rk, where rk corresponds to the initial ciphertext
key generated by X3DH.
Sending Chain / Receiving Chain: Like the root chain, the
sending and the receiving chains are sequences of symmetric
key derivations. The receiving chain of A matches the sending
chain of B and vice versa. The first chain key ck(i,1)j is

2This weaker version provides security after the leakage of the short-term
keys, but not if the long-term keys are leaked.

generated by the root chain. In the first phase of round i,
party A sends messages to B. For each message, the chain
is advanced by one step, which yields

(
ck(i,k+1)

1 , sk(i,k)1

)
:=

KDF
(

ck(i,k)1

)
. The k-th message from A to B in round i

(i. e. in the first phase) is encrypted with sk(i,k)1 . Similarly, mes-
sages from B to A in round i (the second phase) are encrypted
with sk(i,k)2 , where

(
ck(i,k+1)

2 , sk(i,k)2

)
:= KDF

(
ck(i,k)2

)
.

c) Sesame [46]: The Sesame protocol [41] enables the
usage of multiple devices for users. In general, the protocol
describes two scenarios: the per-user scenario, where the
identity key of the user is used on all devices of that user
and the per-device scenario, where every device has its own
identity key. Each device has a set of sessions on the server,
which are initialized via the X3DH protocol and maintained by
the double ratchet protocol. Whenever a device of user A sends
a message to user B, it sends this message to every device
associated with A or B either via its current active session
or by initializing a new session via X3DH. The server then
puts the messages in the mailbox of the receiving devices. The
receiving device simply obtains the message from the mailbox
and decrypts it via the corresponding session key.

The registration of new devices in the system is not ex-
plained in the specification and highly depends on whether a
per-device or a per-user scenario is used.

1) Security Analysis w.r.t. Substitution Attacks: In this
section, we investigate whether an attacker is able to conduct
an algorithm substitution attack in order to circumvent/break
end-to-end encryption, allowing them to read messages sent by
the victim and its peers. We discuss the requirements of attacks
against the end-to-end encryption, and identify possible attack
vectors for algorithm substitution attacks in the protocol.

For simplicity, in this analysis, we assume that the protocol
messages are sent via an insecure channel, which can be
accessed by the attacker. In practice, the Signal protocol is
wrapped into a TLS layer, but our discussion above shows
how to leak the long-term key of TLS and thus justifies
the insecure channel assumption. Without loss of generality,
we also assume that we attack A’s side of the protocol, as
illustrated in Figure 7 in the appendix.

a) Prerequisites for decrypting messages: In order to
decrypt a message, the attacker needs to get access to the
respective symmetric key sk(i,k)j . This key directly depends
on the chain key ck(i,k)j , which directly depends on the root
chain key rk(i)j . The root chain key depends on the previous
root chain key, and the shared secret from the DH ratchet.

The attacker can thus choose one of the following:
(1) Leak sk(i,k)j : This allows to decrypt a single message.
(2) Leak ck(i,k)j : This allows to compute an entire send/receive

chain, leading to decryption of one or more messages.
(3) Leak rk(i)1 and the private ephemeral key sec(EK(i)

A): This
informs the attacker about the current state of the root
chain, which they can use to compute the next two states of
the root chain and learn the next send and receive chains.

(4) Leak one or multiple long-term keys and conduct a
Man-in-the-Middle attack against new conversations: If
the identity key sec(IKA) gets leaked, the attacker can

10

register new prekeys SPKA and OPK(i)
A , which allows

them to control the next X3DH key exchange. Also, it
was recently shown by Wichelmann et. al [13] that the
leakage of the identity key is sufficient to register new
devices via Sesame and thereby circumvent Signal’s end-
to-end encryption.

b) Leaking via X3DH: The X3DH handshake fully re-
lies on the presence of several randomly generated inputs,
which are stored on the server: The signed public prekey
pub(SPK), and, most notably, a list of public one-time prekeys
pub(OPK(1)),pub(OPK(2)), Each client device tracks the
available prekeys, and, if necessary, generates new ones.

While the identity key and the signed prekey are long-lived,
the one-time prekeys are replaced on a regular basis, whenever
a new encryption session (conversation) is started. The attacker
may thus choose to use the universal ASA to embed secret
values into these one-time prekeys, and subsequently drain
the pool of available prekeys by conducting a lot of X3DH
handshakes, so the client is forced to generate new ones.
While in theory this straightforward approach is sufficient to
implement the proposed attack strategies (see Theorem 1), it
has a few drawbacks in practice: First, the key generation
is usually triggered whenever the client restarts or receives
a new conversation, which may not be frequent enough to
leak a meaningful amount of short-term secrets. Second, if
this is compensated by modifying the prekey generation job
to generate a large amount of prekeys at once (i.e., a sufficient
amount to leak a short-term secret), the high processor usage
(and energy consumption, on mobile devices) may be noticed
by the user. Last, the server owners (and possibly other peers)
can detect this type of attack, if the affected device uploads
unreasonably large amounts of one-time prekeys, and the
extractor consumes these without starting new conversations.

c) Leaking via Double Ratchet: The only source of ran-
domness in the Double Ratchet is provided by the ephemeral
keys; all other shared secrets, states and keys are derived
deterministically, making the Double Ratchet very resistant
against algorithm substitution attacks, as these deterministic
parts cannot be used for subversion due to Theorem 3.

This property restricts the attacker to leaking information
via the ephemeral keys pub(EK(i)

A), which are re-generated
each time the peers exchange messages. By Theorem 1, this
is undetectable and, as we show in Section IV-C, embedding
secret data into ephemeral keys is computationally cheap and
practically undetectable due to the asynchronous nature of
the protocol. However, this also thwarts attacks that try to
leak an entire conversation: For each ephemeral key EK(i)

A ,
there are two root keys rk(i)1 and rk(i)2 , which in turn lead to
two sending/receiving chains and multiple message encryption
keys sk(i,k)j , where each of them cannot be leaked in a single
step. The attacker thus needs to focus on specific parts of
the conversation, and leak the involved secrets over multiple
rounds. However, this method is sufficient to leak long-term
secrets, as we demonstrate by implementing attack approach
(4) using ephemeral keys in Section IV-C.

λ = 1 λ = 2 λ = 4 λ = 8

1ms
2ms

10ms
20ms

Fig. 4: Logarithmic scale of the running times of Table I
for TLS, WireGuard, and Signal compared with the average
latency of 20ms.

IV. ATTACKS ON IMPLEMENTATIONS

In this section, we show the results of applying ASAs on
implementations of the analyzed protocols. We describe the
changes to the implementations and ASA design decisions.
The two most probable ways to detect the presence of ASAs
is either by observing a widely different runtime behavior
or by detecting modifications to the correct implementation.
For all implementations, the number of lines of code that we
changed is negligible compared to the rest of the code-base
of the implementations. Furthermore, we can easily compare
our patches to other commits in the respective repositories of
OpenSSL3, WireGuard4, and Signal-Desktop5. Our attack on
OpenSSL takes 45 changed lines and 30.52% of all typical
commits to OpenSSL affect more lines. For WireGuard, these
numbers are 43 lines and 21.75% and for Signal, the are
58 lines and 26.71%. We thus believe malicious commits
containing ASAs will not stick out due to the number of
changed lines of code. We remark that the codes of our attacks
are not optimized with regard to this metric6. We thus believe
that an optimized attack would be much smaller.

To verify empirically that the change of the runtime of
the algorithm is sufficiently small, we did an experimental
performance analysis and calculated the corresponding over-
head. Note that the experiments were performed on different
machines (but on the same one for each protocol), as we were
mainly interested in the generated overhead and didn’t want
to compare the different protocols. In all of the attacks, the
parameters can be chosen, such that this overhead becomes
hardly detectable (see Table I and Table II): The overhead
for the public-coin-replacement ASAs is negligible and for
the universal ASA, the time needed to leak λ = 4 bits is
strictly smaller than the average internet latency (which is
at least 20ms even within Europe [47]). See also Figure 4.
Furthermore, our experiments showed a high variance in the
running time of the unmodified code (the ratio between the
maximal time and the minimal time typically exceeded 10).

3https://github.com/openssl/openssl
4https://git.zx2c4.com/WireGuard-linux-compat
5https://github.com/signalapp/Signal-Desktop
6We removed comments and debug commands from our code.

https://github.com/openssl/openssl
https://git.zx2c4.com/WireGuard-linux-compat
https://github.com/signalapp/Signal-Desktop

11

TABLE I: Benchmark results for generating 1000 ephemeral keys while embedding λ bits of the secret via the universal ASA.
The rows correspond to different machines, but each row is generated by the same machine.

Protocol original λ = 1 λ = 2 λ = 4 λ = 8

TLS 0.096ms 0.23ms (2.37x) 0.24ms (2.48x) 0.34ms (3.56x) 2.45ms (25.54x)
WireGuard 0.68ms 0.83ms (1.23x) 1.16ms (1.71x) 2.65ms (3.92x) 11.28ms (16.22x)
Signal 0.29ms 1.55ms (5.35x) 2.46ms (8.48x) 8.07ms (27.83x) 94.85ms (327.08x)

TABLE II: Benchmark results for the leakage of λ bits via the
public-coin-replacement ASA.

Protocol original abs. rel. λ

TLS 0.14ms 0.18ms 1.28x 64
WireGuard 0.014ms 0.016ms 1.16x 128

A. TLS

To evaluate our theoretical attacks in practice, we modified
the widely used OpenSSL7 library, which offers extensive
cryptographic functionality, including an implementation of
the TLS protocol. We focused on leaking the long-term private
key sec(CERTS). We captured the generated data using the
tshark8 command-line utility, and subsequently invoked a
script which did a majority based key material reconstruction
once every captured data block was processed. All measure-
ments were done on a machine with an AMD Ryzen 5 3500u.

a) ”Hello” message: We applied our public-coin-
replacement attack in the ssl_fill_hello_random()
function of the s3lib.c file, which generates the random
string embedded in the ”Hello” message of the server. The
function ssl_fill_hello_random() provides this ran-
domness. As pseudorandom function we picked Fak(x) =
AES-128(x, ak), already available in the given code base.

The runtime of this attack was measured in the state
machine OpenSSL uses to implement the message flow of
the TLS protocol. Therefore, the generation of the complete
”Hello” message was measured. This is based on the as-
sumption that a victim, who wants to monitor the runtime of
their implementation, does monitor the generation of a whole
message, instead of the individual operations used to generate
a message. The corresponding times are given in Table II.

The results show that we are able to leak a significant
amount of key material (64 bit) per session with only a very
moderate overhead of less than 30% in the running time. This
attack works both against TLS 1.2 and against TLS 1.3.

b) Explicit IV: Without loss of generality, we assume that
we use the AES-CBC block cipher in this section.

To securely transmit the eIV, it is concatenated with the
plaintext and then encrypted using the static IV, so we cannot
perform a public-coin-replacement ASA on eIV: Instead, we
need to find an eIV such that Fak(AES-CBC(eIV.plain, sIV))
encodes the desired secret information, which is achieved on
the protocol level by sampling random eIVs.

The data encryption and decryption functionality of TLS is
implemented in tls1_enc() in s3record.c. We adjusted
this function to generate a random eIV, encrypt the entire

7https://www.openssl.org/
8https://www.wireshark.org/

message, and check whether the resulting ciphertext encodes
a part of sec(CERTS). If it does not, we reset the function’s
encryption state and try again with a different eIV.

This trial-and-error approach required us to encrypt the
entire record several times, increasing the computation time.
As an optimization, an attacker may perform this attack at the
algorithm level instead, by encrypting a single block (which
will contain the eIV) and then checking for embedded secrets.
However, this comes with the cost of having to make these
adjustments for each available cipher, instead of doing one
generic attack on the protocol level.

The resulting measurements for different amounts of leaked
bits are shown in Table I. We conclude that even due to the
higher overhead of repeatedly encrypting a record, the required
computation time for embedding 8 bits still resides well below
a common network latency, making this attack hard to notice.

Note that this attack can only be used against TLS 1.2, as
explicit IVs do not exist anymore in TLS 1.3.

B. WireGuard

For WireGuard we implemented a proof-of-concept for
attacks against both the handshake and the cookie messages,
as discussed in Section III-B1. We picked the Linux kernel
module9, which can be installed on systems with older Linux
kernels, where no built-in WireGuard support is available
yet. Both proof-of-concept attacks leak the private component
sec(SKR) of the static identity key, from which the public
component is trivially derived.

1) Implementation:
a) Handshake: The ephemeral key generation for the

handshake is used in two places: One is called whenever
the peer initiates a new handshake, the other when the
peer responds to a handshake message. Both are located
in /src/noise.c, which we modified to implement our
universal ASA: We changed the key generation, such that it
samples a new random private key sec

(
EKcand

)
, tests whether

the associated public key pub
(
EKcand

)
contains a part of

the secret which is designated to be leaked, and repeats if
necessary. Since the code base already offers the blake2s
hash function, we used it in conjunction with an attacker key
ak as the pseudo random function for hiding the leaked secret.

b) Cookie Message: To implement the public-coin-
replacement attack for cookie messages, we modified the
generation of the random nonce rn in /src/cookie.c, such
that it only chooses the first 8 bytes at random. Subsequently,
we inserted code that embeds the private key into the remain-
ing 16 bytes of rn by XOR-ing it with a pseudorandom value
generated with the blake2s hash function. Like described

9https://git.zx2c4.com/WireGuard-linux-compat

https://www.openssl.org/
https://www.wireshark.org/
https://git.zx2c4.com/WireGuard-linux-compat

12

in Section II-B, the first 8 bytes of randomness as well as an
attacker key ak are used for the hashing.

2) Results: We tested the validity of our modifications on
a simple setup consisting of two peers. For both attacks,
WireGuard connections could be established correctly with
both the original and another modified version, meaning that
the attack does not influence the stability of the protocol.
Further, we tested that the desired key is actually leaked by the
modified implementation, by using pyshark10 to trace the
communication between the peers. We were able to reconstruct
the leaked bits correctly in all cases.

To evaluate the impact of our attacks on the computation
time, we benchmarked our proof-of-concept and compared it
to the original implementation of WireGuard on an Intel Core
i5-6260U. We measured the time to create a whole message,
in order to get an impression of the relative overhead that is
introduced by our attacks.

a) Handshake: The results for embedding the private key
sec(SKR) into the handshake response messages can be found
in Table I. We conclude that embedding one or two bits into the
ephemeral key does not produce a significant overhead relative
to the original code. Increasing the number of embedded bits to
four or eight results in a significantly higher relative overhead;
however, in absolute terms the delays introduced by our attack
may still be difficult to notice, since WireGuard operates over
networks, where one can expect latencies in the range of tens
to hundreds of milliseconds.

Embedding eight bits into the ephemeral keys results in a
feasible attack, since 8 · 32 = 256 handshake messages have
to be recorded by an attacker to reconstruct the key with
a 98% chance (see the discussion on the universal ASA in
Section II-B). The default WireGuard configuration swaps the
symmetric key every 2 minutes by initiating a new handshake,
meaning that at most 9 hours of a running session would have
to be recorded in order to leak a victim’s key. This means that
eavesdropping on a victim for a single work day would be
sufficient to obtain their private key and steal their identity.

b) Cookie Message: Table II shows the results for em-
bedding the private static identity key sec(SKR) into cookie
messages. As this attack is not probabilistic, one half of the
private key can be embedded into the random nonce with
nearly no computational overhead, which is almost impossible
to detect when communicating via a network connection.

Here it is also noteworthy, that the victim has to be under
load to send cookie messages, however, an active attacker
can easily cause this load on their victim by sending forged
messages or resending recorded handshake initiations. This
does not ease a detection of the ASA, because such an attack
cannot be distinguished from a DoS attack. Note, that the load
needs to be caused by other handshake messages, whereas the
number of parallel requests needed depends on the WireGuard
configuration (the default is 4096).

C. Signal

For our proof-of-concept attack against the Signal pro-
tocol, we modified the desktop client implementation of

10https://github.com/KimiNewt/pyshark

Signal [48] to leak the long-term identity key IKA of
A. The desktop client is based on Electron and written
in JavaScript and TypeScript. Its core Signal protocol im-
plementation is contained in a single file, which, coin-
cidentally, is a textbook target for an ASA: the source
file /libtextsecure/libsignal-protocol.js has
more than 25.000 lines, where around 20.000 lines are taken
up by an emscripten runtime and corresponding pre-
compiled code, interleaved with manually written logic.

1) Implementation: We modified the mentioned source file
and added an alternative key generation function for ephemeral
keys in the asymmetric ratchet. The original key generation
function is called in two places: When a new chat conver-
sation is started, and whenever a message is received. We
used the universal ASA method: Given an ephemeral key
candidate sec(EK(i),cand

A) and our ASA key ak, we checked
whether the value Fak(pub(EK(i),cand

A)) encoded a part of the
identity key IKA. As a pseudorandom function we picked
Fak(x) = HMAC(x, ak), which was already available in the
code. Finally, we modified the new conversation and message
received event handlers to use our modified key generation.

We tested our implementation by setting up two accounts on
Signal’s staging (development) servers, exchanging messages
between those, and writing the generated keys to the debug
log. Afterwards, we used a small script to verify that the keys
indeed contained parts of the secret identity key.

2) Results: To benchmark our implementation, we gener-
ated 1000 manipulated ephemeral keys and measured the spent
computation time on an Intel Core i3-5010U. The results can
be found in Table I. As the measurements show, even encoding
8 secret bits per ephemeral key leads to a hardly noticeable
overhead of around 95 milliseconds in the average case. Note
that, in contrast to TLS and WireGuard, the generation of the
new ephemeral keys is done in a non-interactive way, after
a message is received. Since the Signal protocol is designed
to be used in such an asynchronous setting, the perceptibility
further diminishes: Peer A cannot be sure whether peer B does
read and answer messages immediately, and A also doesn’t
know the time B needs for typing an answer. We thus conclude
that we can efficiently transmit 1 byte of A’s secret identity
key IKA per round, without risking detection by the user.
If it is known that the users only rarely exchange messages
(i. e. the time between two messages is sufficiently long), we
can increase this payload even more.

V. COUNTERMEASURES AND GENERAL DESIGN LESSONS

In this section, we discuss general lessons learned by our
analysis of TLS, WireGuard, and Signal and look at possible
mitigations against substitution attacks.

A. Design Lessons on High Bandwidth Attacks

As clearly seen in Table I and Table II, the public-coin-
replacement ASAs against TLS and WireGuard allow for a
very high bandwidth for a possible subversion attacker. Hence,
only a few messages modified by these ASAs are needed to
transfer the both long-term or short-term secrets, allowing to
break multiple security guarantees. While Theorem 2 shows

https://github.com/KimiNewt/pyshark

13

that these attacks are not detectable in our formal model,
Table II shows that the computational overhead is minimal,
which makes the attack also hard to detect in practice. To
prevent the public-coin-replacement ASAs, one needs to stay
away from sending high-entropy strings in the clear. Interest-
ingly, in both TLS and WireGuard, these high-entropy strings
are used to prevent replay attacks as described by Malladi
et. al [49], which is especially important for the zero round-
trips of TLS 1.3 (see also Fischlin and ünther [50]). In order
to prevent the high-bandwidth attacks, one thus needs to find
an alternative way to protect against these replay attacks. One
possibility, the use of a timestamp, is already implemented in
TLS 1.3, but is completely optional. By using the timestamp τ
as nonce and checking that the answer comes within the time
interval [τ, τ + ∆] for some ∆, slow replay attacks can be
prevented. A similar approach also reduces the bandwidth of
the public-coin-replacement ASA, as the number of possible
timestamps is now greatly reduced to a value basically defined
by ∆. For WireGuard, a possibility would be to replace the
nonce by something derived from values available to peer P ′,
e. g. a hash of the message causing the cookie to be sent (which
already contains randomness due to the session ID and the
ephemeral key). This way it is possible to remove the nonce
from the cookie message, leaving only the universal ASA on
the encrypted cookie as a potential target.

B. Design Lessons on Low Bandwidth Attacks

As shown in Lemma 1 and Lemma 2, it is impossible
to remove the low-bandwidth attacks based on the universal
ASA, if the protocol wants to support useful features such
as forward secrecy or post-compromise security. But, as is
the case for Signal’s Double Ratchet protocol, if short-term
keys are refreshed frequently enough, these low-bandwidth
attacks cannot be used to leak the short-term, ephemeral keys.
The only remaining attack surface is thus to leak the long-
term keys over several messages. Note that forward secrecy
now implies that the knowledge of these long-term keys does
not allow a purely passive attacker to read the encrypted
messages. If an attacker wants to use these long-term keys,
they need to be active, e. g. by performing a Man-in-the-
Middle attack, or, in case of Signal, by registering a malicious
device [13]. To protect against passive attackers, it is thus
sufficient to prevent high-bandwidth attacks if the protocol
supports forward secrecy.

Another approach to circumvent Lemma 1 and Lemma 2 is
by realising that impersonation attacks with the long-term key
XA are only possible, because the long-term keys are static
and never change. For the case of low-bandwidth attacks, this
also gives the attackers enough time to completely leak these
long-term keys. While the long-term keys are practically static
for all concrete protocols discussed in this work, it is not nec-
essary to achieve forward security, as discussed by Boyd and
Gellert [51]. It is also possible that the long-term keys evolve
over time (e. g. by puncturing operations). One such example
for 0-RTT protocols was described by Günther et. al [52].
One possible approach to prevent substitution attacks is thus
to design protocols that only allow low-bandwidth attacks and

adapt the long-term key with a high enough frequency such
that the current long-term keys can never be leaked completely.

C. General Countermeasures

As algorithm substitution attacks have found wide interest
in the literature, several countermeasures against them were
developed. The two countermeasures that found the most
success are reverse firewalls and the split-program model.

a) Reverse Firewalls: Reverse Firewalls against pas-
sive attackers were introduced by Mironov and Stephens-
Davidowitz [53] and generalized to active attackers by
Dodis et. al [54]. The main idea behind this approach is
that another party F , the reverse firewall, is introduced to the
ASA setting. This party has three main properties: It maintains
the functionality of the protocol or primitive, it preserves the
security of an honest implementation, and it resists exfiltration
by preventing a subverted implementation to leak information.

b) Split-Program Model: The split-program model was
introduced by Russell et. al [20]. The general idea is that an
algorithm can be decomposed into several components, i. e. we
expect the algorithm to follow a certain pattern. While all
of the single components in this pattern could be subverted,
the pattern itself (which combines the components into the
algorithm) is trusted. Note that the decomposition assumption
implies that the split-program model is a non-black-box model.
A very useful consequence of this approach is that one is even
able to dismantle the universal ASA by using a technique
called double splitting [20]. Russell et. al [55] showed that
one can also protect the random oracle from subversion. Just
recently, it was shown that this technique allows for the
design of very efficient offline watchdogs, which can detect the
subversion of public key encryption by Bemmann et. al [56].

To the best of our knowledge, none of these general
countermeasures have been used in actual implementations.
Nevertheless, both approaches seem very promising to pro-
tect the protocols discussed in this work from subversion
attacks, especially the limited-time watchdogs of [56]. There
are also other approaches, which might become feasible,
including the use of purely deterministic primitives [12], self-
guarding mechanisms, which contain an untamperable initial
first phase [57], and backdoored pseudorandom generators that
add a salt to the pseudorandom generator [58].

VI. CONCLUSION

In this work, we introduced algorithm substitution attacks
against cryptographic protocols. We first showed that such
attacks are always possible against any protocol achieving
forward secrecy or post-compromise security. Afterward, we
analyzed the three widely used protocols TLS, WireGuard,
and Signal on their vulnerabilities against such attacks. We
discovered that TLS and WireGuard are especially vulnera-
ble to these attacks, as the secret long-term key could be
leaked using only few messages. For Signal, we found that
the Double Ratchet construction is mostly immune against
ASAs, but still allows to extract long-term secrets, which may
subsequently be used by an active attacker. We experimentally
verified that all of these attacks are indeed practically relevant.

14

Finally, we suggested countermeasures and highlighted general
design lessons for protocols to prevent such attacks.

We believe that many more cryptographic protocols are
indeed vulnerable to ASAs as well. Especially in times where
the majority of users download their software from few
controlled app stores, it is not unlikely that state level players
can apply ASAs on select targets with ease. It is therefore
important to study how countermeasures developed to prevent
ASAs against single algorithms can be applied at the protocol-
level, and how one can protect the integrity of binary software
releases, such that the end user can easily verify whether a
downloaded app does correspond to its public source code.

Code: Our proof of concept code modifications are
available on GitHub: https://github.com/balasdansb/asa-on
-protocols.

REFERENCES

[1] M. Meeker, “ Internet Trends 2019 ,” https://www.bondcap.com/pdf/In
ternet Trends 2019.pdf, accessed 2020-10-08.

[2] R. Bergman and F. Fassihi, “Iranian hackers found way into encrypted
apps, researchers say,” 2020, https://www.nytimes.com/2020/09/18/wor
ld/middleeast/iran-hacking-encryption.html. Accessed 2020-10-13.

[3] J. Cox, “How police secretly took over a global phone network for
organized crime,” Motherboard Tech by VICE, July 2, 2020, https://ww
w.vice.com/en/article/3aza95/how-police-took-over-encrochat-hacked.
Accessed 2020-10-13.

[4] C. Xiao, “Novel malware xcodeghost modifies xcode, infects apple ios
apps and hits app store,” Palo Alto Networks Blog, Sept. 17, 2015,
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-m
odifies-xcode-infects-apple-ios-apps-and-hits-app-store/. Accessed
2020-10-14.

[5] A. Birsan, “Dependency confusion: How i hacked into apple, microsoft
and dozens of other companies,” Medium, February 9, 2021, https:
//medium.com/@alex.birsan/dependency-confusion-4a5d60fec610.
Accessed 2021-04-29.

[6] S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange,
T. Ristenpart, D. J. Bernstein, J. Maskiewicz, H. Shacham, and
M. Fredrikson, “On the practical exploitability of dual EC in TLS
implementations,” in Proc. USENIX. USENIX Association, 2014, pp.
319–335.

[7] B. Schneier, “Did nsa put a secret backdoor in new encryption standard?”
2007, https://www.schneier.com/essays/archives/2007/11/did nsa put a

secret.html.
[8] D. Shumow and N. Ferguson, “On the possibility of a back door in the

nist sp800-90 dual ec prng,” Presentation at the CRYPTO 2007 Rump
Session, 2007.

[9] Q. Wu and K. Lu, “On the feasibility of stealthily introducing vul-
nerabilities in open-source software via hypocrite commits,” 2021,
https://github.com/QiushiWu/QiushiWu.github.io/blob/main/paper
s/OpenSourceInsecurity.pdf (withdrawn from S&P 2021). Accessed
2021-05-05.

[10] A. Young and M. Yung, “The dark side of “black-box” cryptography
or: Should we trust capstone?” in Proc. CRYPTO, ser. Lecture Notes in
Computer Science, vol. 1109. Springer, 1996, pp. 89–103.

[11] ——, “Kleptography: Using cryptography against cryptography,” in
Proc. EUROCRYPT, ser. Lecture Notes in Computer Science, vol. 1233.
Springer, 1997, pp. 62–74.

[12] M. Bellare, K. G. Paterson, and P. Rogaway, “Security of symmetric
encryption against mass surveillance,” in Proc. CRYPTO, ser. Lecture
Notes in Computer Science, vol. 8616. Springer, 2014, pp. 1–19.

[13] J. Wichelmann, S. Berndt, C. Pott, and T. Eisenbarth, “Help, my signal
has bad device! - breaking the signal messenger’s post-compromise
security through a malicious device,” in DIMVA, ser. Lecture Notes in
Computer Science, vol. 12756. Springer, 2021, pp. 88–105.

[14] J. P. Degabriele, P. Farshim, and B. Poettering, “A more cautious
approach to security against mass surveillance,” in Proc. FSE, ser.
Lecture Notes in Computer Science, vol. 9054. Springer, 2015, pp.
579–598.

[15] G. Ateniese, B. Magri, and D. Venturi, “Subversion-resilient signature
schemes,” in Proc. CCS. ACM, 2015, pp. 364–375.

[16] M. Bellare, J. Jaeger, and D. Kane, “Mass-surveillance without the state:
Strongly undetectable algorithm-substitution attacks,” in Proc. CCS.
ACM, 2015, pp. 1431–1440.

[17] S. Berndt and M. Liśkiewicz, “Algorithm substitution attacks from
a steganographic perspective,” in ACM Conference on Computer and
Communications Security. ACM, 2017, pp. 1649–1660.

[18] R. Chen, X. Huang, and M. Yung, “Subvert KEM to break DEM:
practical algorithm-substitution attacks on public-key encryption,” in
ASIACRYPT (accepted), 2020.

[19] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014.

[20] A. Russell, Q. Tang, M. Yung, and H. Zhou, “Cliptography: Clipping the
power of kleptographic attacks,” in ASIACRYPT (2), ser. Lecture Notes
in Computer Science, vol. 10032, 2016, pp. 34–64.

[21] M. Mitzenmacher and E. Upfal, Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis.
Cambridge university press, 2017.

[22] R. Impagliazzo, L. A. Levin, and M. Luby, “Pseudo-random generation
from one-way functions (extended abstracts),” in STOC. ACM, 1989,
pp. 12–24.

[23] N. Hopper, “On steganographic chosen covertext security,” in ICALP,
ser. Lecture Notes in Computer Science, vol. 3580. Springer, 2005, pp.
311–323.

[24] D. Coppersmith, “Finding a small root of a univariate modular equation,”
in EUROCRYPT, ser. Lecture Notes in Computer Science, vol. 1070.
Springer, 1996, pp. 155–165.

[25] N. Howgrave-Graham, “Finding small roots of univariate modular equa-
tions revisited,” in IMACC, ser. Lecture Notes in Computer Science, vol.
1355. Springer, 1997, pp. 131–142.

[26] H. Krawczyk, “HMQV: A high-performance secure diffie-hellman pro-
tocol,” in CRYPTO, ser. Lecture Notes in Computer Science, vol. 3621.
Springer, 2005, pp. 546–566.

[27] K. Cohn-Gordon, C. J. F. Cremers, and L. Garratt, “On post-compromise
security,” in CSF. IEEE Computer Society, 2016, pp. 164–178.

[28] Qualys, Inc, “ SSL Pulse ,” https://www.ssllabs.com/ssl-pulse/, accessed
2020-10-07.

[29] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,”
RFC, vol. 8446, pp. 1–160, 2018.

[30] H. Krawczyk and P. Eronen, “Hmac-based extract-and-expand key
derivation function (HKDF),” RFC, vol. 5869, pp. 1–14, 2010.

[31] D. Diemert and T. Jager, “On the tight security of TLS 1.3:
Theoretically-sound cryptographic parameters for real-world deploy-
ments,” IACR Cryptol. ePrint Arch., vol. 2020, p. 726, 2020.

[32] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol
version 1.2,” RFC, vol. 5246, pp. 1–104, 2008.

[33] P. Rogaway, “Authenticated-encryption with associated-data,” in ACM
Conference on Computer and Communications Security. ACM, 2002,
pp. 98–107.

[34] P. Rogaway and T. Shrimpton, “A provable-security treatment of the
key-wrap problem,” in EUROCRYPT, ser. Lecture Notes in Computer
Science, vol. 4004. Springer, 2006, pp. 373–390.

[35] D. A. McGrew, “An interface and algorithms for authenticated encryp-
tion,” RFC, vol. 5116, pp. 1–22, 2008.

[36] Y. Nir and A. Langley, “Chacha20 and poly1305 for IETF protocols,”
RFC, vol. 8439, pp. 1–46, 2018.

[37] B. Moller, “Security of cbc ciphersuites in ssl/tls: Problems and coun-
termeasures,” http://www. openssl. org/˜ bodo/tls-cbc. txt, 2004.

[38] J. A. Donenfeld, “Wireguard: Next generation kernel network tunnel,”
https://www.wireguard.com/papers/wireguard.pdf, 2020, accessed
2020-10-08.

[39] M. O. Saarinen and J. Aumasson, “The BLAKE2 cryptographic hash
and message authentication code (MAC),” RFC, vol. 7693, pp. 1–30,
2015.

[40] A. Langley, M. Hamburg, and S. Turner, “Elliptic curves for security,”
RFC, vol. 7748, pp. 1–22, 2016.

[41] O. W. Systems, “Signal protocol specifications,” https://signal.org/docs/,
accessed 2020-09-28.

[42] WhatsApp, “Whatsapp encryption overview,” https://www.whatsapp
.com/security/WhatsApp-Security-Whitepaper.pdf, 2017, accessed
2020-09-28.

[43] Microsoft, “Skype private conversation,” https://az705183.vo.msecnd.n
et/onlinesupportmedia/onlinesupport/media/skype/documents/skype-pr
ivate-conversation-white-paper.pdf, 2018, accessed 2020-09-28.

[44] O. W. Systems, “Signal protocol specifications,” https://signal.org/docs/
specifications/x3dh/, accessed 2020-09-28.

[45] ——, “Signal protocol specifications,” https://signal.org/docs/specificat
ions/doubleratchet/, accessed 2020-09-28.

https://github.com/balasdansb/asa-on-protocols
https://github.com/balasdansb/asa-on-protocols
https://www.bondcap.com/pdf/Internet_Trends_2019.pdf
https://www.bondcap.com/pdf/Internet_Trends_2019.pdf
https://www.nytimes.com/2020/09/18/world/middleeast/iran-hacking-encryption.html
https://www.nytimes.com/2020/09/18/world/middleeast/iran-hacking-encryption.html
https://www.vice.com/en/article/3aza95/how-police-took-over-encrochat-hacked
https://www.vice.com/en/article/3aza95/how-police-took-over-encrochat-hacked
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://www.schneier.com/essays/archives/2007/11/did_nsa_put_a_secret.html
https://www.schneier.com/essays/archives/2007/11/did_nsa_put_a_secret.html
https://github.com/QiushiWu/QiushiWu.github.io/blob/main/papers/OpenSourceInsecurity.pdf
https://github.com/QiushiWu/QiushiWu.github.io/blob/main/papers/OpenSourceInsecurity.pdf
https://www.ssllabs.com/ssl-pulse/
https://www.wireguard.com/papers/wireguard.pdf
https://signal.org/docs/
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/

15

[46] ——, “Signal protocol specifications,” https://signal.org/docs/specificat
ions/sesame/, accessed 2020-09-28.

[47] Verizon, “ IP Latency Statistics ,” https://www.verizon.com/business/ter
ms/latency/, accessed 2021-08-19.

[48] “Signal-Desktop (GitHub project),” https://github.com/signalapp/Signa
l-Desktop, accessed 2020-09-28.

[49] S. Malladi, J. Alves-Foss, and R. B. Heckendorn, “On preventing replay
attacks on security protocols,” IDAHO UNIV MOSCOW DEPT OF
COMPUTER SCIENCE, Tech. Rep., 2002.

[50] M. Fischlin and F. Günther, “Replay attacks on zero round-trip time:
The case of the TLS 1.3 handshake candidates,” in EuroS&P. IEEE,
2017, pp. 60–75.

[51] C. Boyd and K. Gellert, “A modern view on forward security,” Comput.
J., vol. 64, no. 4, pp. 639–652, 2021.

[52] F. Günther, B. Hale, T. Jager, and S. Lauer, “0-rtt key exchange with full
forward secrecy,” in EUROCRYPT (3), ser. Lecture Notes in Computer
Science, vol. 10212, 2017, pp. 519–548.

[53] I. Mironov and N. Stephens-Davidowitz, “Cryptographic reverse fire-
walls,” in EUROCRYPT (2), ser. Lecture Notes in Computer Science,
vol. 9057. Springer, 2015, pp. 657–686.

[54] Y. Dodis, I. Mironov, and N. Stephens-Davidowitz, “Message trans-
mission with reverse firewalls - secure communication on corrupted
machines,” in CRYPTO (1), ser. Lecture Notes in Computer Science,
vol. 9814. Springer, 2016, pp. 341–372.

[55] A. Russell, Q. Tang, M. Yung, and H. Zhou, “Correcting subverted
random oracles,” in CRYPTO (2), ser. Lecture Notes in Computer
Science, vol. 10992. Springer, 2018, pp. 241–271.

[56] P. Bemmann, R. Chen, and T. Jager, “Subversion-resilient public key
encryption with practical watchdogs,” in Public Key Cryptography (1),
ser. Lecture Notes in Computer Science, vol. 12710. Springer, 2021,
pp. 627–658.

[57] M. Fischlin and S. Mazaheri, “Self-guarding cryptographic protocols
against algorithm substitution attacks,” in CSF. IEEE Computer Society,
2018, pp. 76–90.

[58] Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Ristenpart, “A formal
treatment of backdoored pseudorandom generators,” in EUROCRYPT
(1), ser. Lecture Notes in Computer Science, vol. 9056. Springer, 2015,
pp. 101–126.

APPENDIX

https://signal.org/docs/specifications/sesame/
https://signal.org/docs/specifications/sesame/
https://www.verizon.com/business/terms/latency/
https://www.verizon.com/business/terms/latency/
https://github.com/signalapp/Signal-Desktop
https://github.com/signalapp/Signal-Desktop

16

Client Server

CERTS

rC |pub(EKC)|[SessionID]

rS |pub(EKS)|[SessionID]

hs← HKDF(sec(EKC), pub(EKS)) hs← HKDF(pub(EKC), sec(EKS))

htk← HKDF(()hs) htk← HKDF(()hs)

sig← signCERTS
(hash(conversation))

enchtk(sig, pub(CERTS))

decrypt and verify sig

derive fk,ms, ts, tk derive fk,ms, ts, tk

enchtk(macfk(transcript))

enchtk(macfk(transcript))

Fig. 5: The handshake protocol of TLS.

Initiator Responder

SKI , pub(SKR) SKR, pub(SKI)

generate EKI

hsk← DHKE(pub(SKR), sec(EKI))

hsk′ ← DHKE(pub(SKR), sec(SKI))

pub(EKI)|enchsk(pub(SKI))|rI |enchsk′(timestamp)

compute hsk, hsk′

generate EKR

hsk′′ ← DHKE((pub(EKI), sec(EKR)), (pub(SKI), sec(EKR)))

pub(EKR)|rR|rI |enchsk′′()

derive tdkI , tdkR derive tdkI , tdkR

Fig. 6: The handshake protocol of WireGuard.

17

Diffie-Hellman Chain Root Chain Sending Chain Receiving Chain

Fig. 7: The Signal Double Ratchet protocol, from A’s perspective. Each step in the DH ratchet leads to a step in the root
chain, which in turn spawns new sending and receiving chains.

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Cryptographic Protocols
	Algorithm Substitution Attacks
	ASA and Forward Secrecy

	Substitution Attacks against Protocols
	TLS
	Security Analysis w.r.t. Substitution Attacks

	WireGuard
	Security Analysis w.r.t. Substitution Attacks

	Signal
	Security Analysis w.r.t. Substitution Attacks

	Attacks on Implementations
	TLS
	WireGuard
	Implementation
	Results

	Signal
	Implementation
	Results

	Countermeasures and General Design Lessons
	Design Lessons on High Bandwidth Attacks
	Design Lessons on Low Bandwidth Attacks
	General Countermeasures

	Conclusion
	References
	Appendix

