
The MAGIC Mode for Simultaneously

Supporting Encryption, Message Authentication

and Error Correction

Michael Kounavis1, David Durham1, Sergej Deutsch1,
Krystian Matusiewicz2 and David Wheeler3

1Intel Labs, Intel Corporation
2Intel Security Architecture and Engineering, Intel Corporation

3Amazon Devices, Digital Security Team

{michael.e.kounavis, david.durham, sergej.deutsch,

krystian.matusiewicz}@intel.com, davewhee@amazon.com

February 15, 2021

Abstract

We present MAGIC, a mode for authenticated encryption that
simultaneously supports encryption, message authentication and er-
ror correction, all with the same code. In MAGIC, the same code
employed for cryptographic integrity is also the parity used for error
correction. To correct errors, MAGIC employs the Galois Hash trans-
formation, which due to its bit linearity can perform corrections in a
similar way as other codes do (e.g., Reed Solomon). To provide a cryp-
tographically strong MAC, MAGIC encrypts the output of the Galois
Hash using a secret key. To analyze the security of this construction
we adapt the definition of the MAC adversary so that it is applicable
to systems that combine message authentication with error correction.
We demonstrate that MAGIC offers security in the order of O(2N/2)
with N being the tag size.

1 Introduction

In the paper, we introduce MAGIC, a mode for authenticated encryption
that simultaneously supports encryption, message authentication and error
correction. In MAGIC, the same message authentication code employed
for cryptographic integrity is also the parity value used for error correction.
Informally, by “error correction” we mean, as in standard ECC, altering a

1

ciphertext-authentication tag pair, which fails a validation test, in such a
way so that the resulting pair passes the same validation test.

To accomplish combined message authentication and error correction,
our mode employs the well known Galois Hash transformation [5]. Galois
Hash is bit linear, provided that the hash key is known. We demonstrate
that due to its bit linearity, Galois Hash can correct errors in a similar
manner as other codes do (e.g., Reed Solomon [8]). A novel element we
introduce in our error correction process is that of using a Hamming weight
test to identify where errors are located. Locating errors via the Hamming
weight test makes forming error locator polynomials or finding their roots
redundant.

In the paper, we also demonstrate that we can construct a cryptograph-
ically strong MAC by encrypting the output of the Galois Hash transfor-
mation using a secret key. We call such encryption operation “blinding”,
and the produced construction “blinded Galois Hash”. The concept of en-
crypting the output of a polynomial transformation is known [25]. In the
paper we analyze the security of such construction and demonstrate that our
MAC provides security against a MAC adversary [23] which is in the order
of O(2N/2) with N being the tag size. For our security analysis, we adapt
the definition of a MAC adversary in order to take into account the fact that
the attacked oracle also performs error correction on its inputs. MAGIC
stands for “Message Authentication, Galois Integrity and Correction”.

1.1 On combining integrity and error correction

Providing data integrity, while at the same time being able to correct errors
is challenging. Much of the challenge is associated with the need to store,
access and process security metadata. Supporting message authentication is
always needed for security, since it is effective in defending against a range
of data corruption attacks. Error correction, on the other hand, is also
needed as computing systems need to be able to recover from crashes or
other inadvertent changes in their data. Traditionally, error correction and
message authentication are two areas that have been researched separately.
Indeed the best known methods for supporting those differ substantially
[1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 23, 24].

In this paper, we investigate a solution that simultaneously support cryp-
tographically strong integrity and error correction, all with the same code,
thus substantially reducing the associated metadata cost. Our work is rooted
in the principles behind the design of the GCM/GMAC mode of operation
[5], as well as the Reed Solomon codes [8, 9, 10]. We believe its impact is
significant, as billions of dollars are required by companies, today, to buy
storage devices or memory chips that separately store ECC and MAC codes.

2

1.2 Related work

One of the earliest proposals for simultaneous support for message authenti-
cation and error correction, all with the same code is in [13]. Reference [13]
proposes cryptographic CRC codes, which are regular CRCs XOR-ed with
a one-time pad. This work suffers from the complexity associated with gen-
erating, transmitting and keeping secret a one-time pad. A similar proposal
that uses a one-time pad is analyzed in [17].

Next, the NTMAC [14], CRC-NTMAC [15] and BCH-NTMAC [16] pro-
posals support message authentication with some error correcting capability
at the expense of the code length. To effectively locate and correct errors,
these proposals employ arrays of short MACs, each authenticating a differ-
ent permutation of some bits of the message. The authors demonstrate that
the more the arrays of the employed MACs are, the stronger the resulting
error correcting capability is. In contrast, MAGIC employs a single code
only, which also serves as error correction parity.

A proposal, which is closer to MAGIC, is in reference [18]. In this pro-
posal, error correction is supported by a class of codes called “additive cel-
lular automata”. Additive cellular automata are bit-linear codes like Galois
Hash, but are more expensive when used for locating and correcting errors.
In the approach of reference [18], multiple blocks of redundancy are required
in order to locate and correct errors in a single message block. In contrast,
MAGIC adds redundancy of a single block only, which acts as both MAC
and ECC parity. To accomplish this, MAGIC employs a Hamming weight
test, which is a unique feature of its design. MAGIC also differs from [18]
with respect to the way cryptographic integrity is supported. The authors
of [18] propose to pass the error correcting code output through a custom
non-linear permutation called Nmix(). In this paper, we propose to pass the
error correcting code output through a pseudo-random permutation which
stands for any well designed block cipher.

Other references [19, 20, 26, 27, 28, 29, 30, 31, 32] address similar prob-
lems as this work, but not exactly the same. References [19, 20] address the
problem of efficiently co-locating MACs and ECC parity values in the same
storage area, without necessarily making them the same code. Reference
[19] presents a scheme where ECC bits are efficiently interleaved with MAC
bits, whereas reference [20] presents a scheme where MAC and ECC bits
are efficiently co-located on the same ECC-DIMMs. Furthermore, a large
body of work [26, 27, 28, 29, 30, 31, 32] studies the related problem of de-
signing authentication codes using error correcting codes as mathematical
primitives. Typically, these references do not address the simultaneous use
of codes for both authentication and error correction. Their goal is to pri-
marily support authentication, but do it in such a way, so that the primitives
used for constructing codes are ECC primitives. Many systems have been
proposed, the oldest and best known perhaps being McEliece [26].

3

1.3 Security definitions when introducing error correction

For a classic MAC construction the usual security model is as follows. A
MAC scheme Σ is a pair of algorithm families Σ = {MAC,Verify} parame-
terized by a key K ∈ K.

The adversary A is given query access to a randomized MAC signing
algorithm MACK(M) that, for a secret fixed key K, accepts a message M
and returns an authentication tag T = MACK(M). It also has access to
verification oracle queries VerifyK(M,T) that return either accept or reject.

We refer to the set of queries asked to the signing oracle as Qs = {Mi :
i = 1, . . . , |Qs|}. We allow the adversary to submit |Qv| verification oracle
queries Qv = {(Mi, Ti) : i = 1, . . . , |Qv|}. We refer to the set of all queries
as Q = Qs ∪Qv and the total number of queries as |Q| = |Qs|+ |Qv|.

We say that the adversary algorithm A wins the forgery game if it
can come up with a pair M,T such that the pair has not been queried
to the signing oracle before, i.e, M /∈ Qs, and the verification query returns
VerifyK(M,T) = accept.

We define the advantage of the adversary as the probability that the
adversary successfully creates such a message:

Adv[A,Σ] = Prob[K
$← K : (M,T)← A,M /∈ Qs,

VerifyK(M,T) = accept]
(1)

We further say that a MAC scheme Σ is secure if the maximum advan-
tage Adv[A,Σ] taken over efficient adversaries A is negligible, where the
term “negligible” is defined with respect to some specific asymptotic behav-
ior. Now, let us consider what happens when the verification algorithm is
preceded by an error correction algorithm ECC() that corrects up to d single
bit errors in the (M,T) pair passed to the verification algorithm.

In the classic model described above, definition (1) immediately yields
trivial forgeries. For example, if (M,T) is a pair, where T is obtained from
the signing oracle on input M , and δ is a bit pattern of Hamming weight
not exceeding d, T will also be a valid authentication tag for M + δ. In this
case, an adversary can trivially construct forgeries of the form (M +δ, T) by
simply adding error patterns of bounded Hamming weight to message M .

To avoid such forgeries, we modify the security definition for the MAC
adversary. For each message tag pair (M,T), we define the set θECC() of all
message tag pairs which, after error correction performed by ECC(), become
(M,T):

θECC()(M,T) = {(M ′, T ′) : ECC(M ′, T ′) = (M,T)} (2)

We further define a set of “excluded values” ΘECC()(Qs), associated with
a set of sign queries Qs, as the of all message-tag pairs which are “cor-
rectable” to one of the signing queries that has been issued:

4

ΘECC()(Qs) =
⋃

M∈Qs

θECC()(M,MACK(M)) (3)

Now, the advantage of the adversary can be defined as:

Adv[A,ΣECC()] = Prob[K
$← K; (M,T)← A; (M,T) /∈ ΘECC()(Qs),

VerifyK(M,T) = accept]
(4)

Definition (4) requires from the adversary to produce a forgery which
is, not only a valid message-tag pair, but also not correctable to any known
past query. In this way, definition (4) resolves the trivial forgery issue of def-
inition (1). We note that this is a straightforward extension of the standard
definition. If ECC() is the identity error correction function (i.e., it corrects
no errors), we get that ΘECC()(Qs) = Qs and the above definition reduces
to the standard one.

2 Description of MAGIC

MAGIC is a MAC construction based on universal hashing with additional
encryption of the tag, similar to Encrypted Carter-Wegman hash [21, 22].
We denote its block size by N . Both multiplication and addition of bit
strings from {0, 1}N are defined as finite field operations in F2N .

The construction operates on an N -bit long hash key value H, which is
random uniformly distributed in a set H, H ⊆ {0, 1}N . It also employs a
plaintext encrypting cipher associated with mode Me (e.g., Me could be
the CBC or XTS mode), key Ke of length lKe , Ke ∈ {0, 1}lKe , initialization
vector ie of length lie , ie ∈ {0, 1}lie and block size N , which is denoted
by EKe,Me,ie,N (), or, for the sake of simplicity just EKe(). The purpose of
this block cipher is to encrypt the input message blocks, so as to provide
confidentiality.

The construction further employs a blinding block cipher associated with
mode MB, key KB of length lKB , where KB ∈ {0, 1}lKB , KB 6= Ke, ini-
tialization vector iB of length liB , where iB ∈ {0, 1}liB , iB 6= ie and block
size N , which is denoted by EKB ,MB ,iB ,N (), or just EKB (). The second ci-
pher is used for encrypting a single block only. It encrypts the output of
MAGIC’s Galois Hash transformation, so as to prevent adversaries from
trivially computing its Galois Hash key value H.

Both the encryption and blinding ciphers are considered to be pseudo-
random permutations (PRPs). For the blinding cipher, we use the notation
AdvEKB () to refer to the advantage of distinguishing EKB () from a per-
mutation sampled uniformly from the space P of all (2N)! permutations
π : {0, 1}N → {0, 1}N .

5

A concrete instance is defined for N = 128, with the finite field defined
by the irreducible polynomial x128 + x7 + x2 + x + 1, and the two block
ciphers being AES-128 [6] in the XTS mode [7], using different keys and
initialization vectors though. We also note that the analysis that follows
is applicable to every possible binary representation of the elements of the
finite field F2N , with respect to the order of bits and bytes.

2.1 Tag generation

MAGIC operates on a fixed number n of full message blocks. For the
generation of the tag, the message M to be authenticated is first split into
blocks M1, . . . , Mn. Let D denote a single block of additional authenticated
data, which are not encrypted. The tag generation proceeds by computing:

(C1, C2, . . . , Cn)← EKe(M1,M2, . . . ,Mn) (5)

and

T = MAC
EKe (),EKB ()

H ← EKB (D + C1 ·H + . . .+ Cn ·Hn) (6)

Finally, the output of the authenticated encryption of message (M1,M2, . . . ,
Mn), when combined with an authenticated data block D is defined by:

MAGIC
EKe (),EKB ()

H (D,M1,M2, . . . ,Mn)← (D,C1, C2, . . . , Cn, T) (7)

The additional authenticated data D carry information specific to par-
ticular instantiations of MAGIC. For example, in one instantiation, D may
represent a memory address where ciphertext blocks C1, . . . , Cn are stored.
In another instantiation, D may represent an anti-replay invocation counter
protected by a Merkle hash tree. In the analysis that follows it is assumed
that D can take any value in the set {0, 1}N , and the analysis does not
depend on the way D is defined by a MAGIC instantiation.

2.2 Error correction and tag verification

The error correction and tag verification functionality of MAGIC is given
by procedures LocateError(), CanCorrectParity() and Verify() below. In the
code below, the binary representation of a set of concatenated elements is
denoted by the Str() operator. Procedure Verify() is the verification oracle
of MAGIC. MAGIC can correct errors which are present in a single block.
Such block can either be a ciphertext block from among C1, . . . , Cn or the
tag block T . In order for the correction to be successful, the error vector
should have Hamming weight less than or equal to a threshold value Tth. In
the pseudocode below, HW() is the Hamming weight function.

6

Procedure Verify() returns not only an accept/reject boolean but also
two strings. When no error correction takes place, these strings are empty.
When error correction takes place, the returned strings are equal to the
corrected values of the ciphertext and tag respectively.

These are the steps followed by Verify(). Initially, procedure Verify()
checks whether the supplied tag value T is the correct MAC computed from
the supplied ciphtertext blocks C1, . . . , Cn and authenticated data D. If this
is the case it returns (accept, ⊥, ⊥).

If this is not the case, procedure Verify() attempts to correct errors in
one of the supplied ciphertext blocks. This is done in lines 4-10 of the pseu-
docode. It first computes a syndrome value S. The syndrome is equal to the
Galois Hash output computed from the ciphertext blocks and authenticated
data, plus the result of the decryption of the supplied tag T . The decryption
is done using the blinding cipher.

LocateError(S1, S2, . . . , Sn, Tth)
1. if ∃ ierr ∈ [1, n] : HW(Sierr) ≤ Tth
2. if ∀i 6= ierr, i ∈ [1, n] : HW(Si) > Tth
3. return ierr
4. else
5. return ⊥

CanCorrectParity(T, T ′, Tth)
1. if HW(T + T ′) ≤ Tth
2. return true
3. else
4. return false

Verify
EKe (),EKB

()

H (D,C1, . . . , Cn, T, Tth)

1. if T = MAC
EKe (),EKB

()

H (D,C1, . . . , Cn)
2. return (accept, ⊥, ⊥)
3. else

4. S ← D + C1 ·H + . . .+ Cn ·Hn + E−1KB
(T)

5. for i← 1 to n
6. do Si ← S ·H−i
7. ierr ← LocateError(S1, S2, . . . , Sn, Tth)
8. if ierr 6= ⊥
9. return (accept, Str(C1, . . . , Cierr + Sierr , . . . , Cn), T)
10. else
11. T ′ ← EKB

(D + C1 ·H + . . .+ Cn ·Hn)
12. if CanCorrectParity(T, T ′, Tth) = true
13. return (accept, Str(C1, . . . , Cn), T ′)
14. else
15. return (reject, ⊥, ⊥)

Procedure Verify() also computes error location indicator values Si, one

7

for each input block Ci, i ∈ [1, n]. The computation, done in lines 5-6 of the
pseudocode, involves multiplying the syndrome S with the inverse of power
H i of the hash key value H. The error location indicators are computed in
such a way, so that, if there is a single error vector e of length N corrupting
block Cierr , ierr ∈ [1, n], then for this location the indicator Sierr should be
equal to e. For all other locations, the indicators Si, i 6= ierr should be equal
to e·H ierr−i. This property of the indicator values Si helps with establishing
the error correcting capability of MAGIC, as discussed in Section 2.4.

To determine the index of a block which may be corrupted, procedure
Verify() invokes procedure LocateError(). Procedure LocateError() employs
a Hamming weight test. LocateError() operates on the assumption that the
Hamming weight of indicator Si is lower than a given threshold Tth only if
index i is the location where the error occurs, i.e., i = ierr. The location
of a corrupted block is identified by computing the Hamming weight of
all error location indicators, and by checking whether bounded Hamming
weight appears at a single location only. Once an error is located, the error
is corrected by setting Cierr ← Cierr + Sierr .

If the location of a single corrupted block cannot be identified, procedure
Verify() checks whether correctable errors are present in the supplied tag T .
This is done by invoking procedure CanCorrectParity(). If errors can be
corrected in the supplied tag, then Verify() returns accept and a pair of
strings consisting of the supplied ciphertext blocks and the corrected tag.

If the location of a single corrupted block cannot be identified neither in
the ciphertext blocks nor in the tag, Verify() returns reject and the empty
strings. This may happen, for instance, if multiple blocks are corrupted.

2.3 The sets of hash keys H and excluded hash keys HE
The intuition behind the Hamming weight test of LocateError() is that all
error vectors, which can be corrected, have by definition Hamming weight
bounded by Tth. If only a single block is corrupted, then Sierr = e, as we
establish in Section (2.4).

To locate errors without ambiguity, we specify the set of Galois Hash
key values H to include only those hash keys, the powers of which if multi-
plied with bounded Hamming weight values return products with Hamming
weight greater than Tth.

Definition 1: The set H ⊆ {0, 1}N from which the hash keys values H of
MAGIC are drawn is defined by:

H = {H ∈ {0, 1}N ,
(
∀e : e 6= 0, HW(e) ≤ Tth

)
∧
(
∀i ∈ [1, n− 1]

)
:

HW(e ·H−i) > Tth, HW(e ·H i) > Tth }
(8)

where Tth ∈ [1, N] is the Hamming weight threshold value passed as input

8

to procedure Verify().

The set HE ⊆ {0, 1}N of excluded hash key values is defined as the set of
all values in {0, 1}N which are not in H. These are the values which should
never be assigned to hash keys of the MAGIC mode:

HE = {0, 1}N −H (9)

Lemma 1: The cardinality of the set HE is bounded by:

|HE | ≤
n(n− 1)

2
·

(
Tth∑
t=1

(
N

t

))2

(10)

Proof of Lemma 1: Let’s first consider the set ET of all non-zero values
e ∈ {0, 1}N with Hamming weight bounded by Tth:

ET = {e ∈ {0, 1}N , e 6= 0, HW(e) ≤ Tth} (11)

By definition (11) |ET | =
∑Tth

t=1

(
N
t

)
. One subset of hash key values, which

set HE contains, is the set of all solutions to equation (12) below:

e1 = H · e2 (12)

Equation (12) is defined for all pairs (e1, e2) ∈ E2T . Since there can be at

most
∑Tth

t=1

(
N
t

)
values for both e1 and e2, the number of hash keys values

which are solutions to equation (12) is bounded by (
∑Tth

t=1

(
N
t

)
)2.

Set HE also contains those hash key values, which are solutions to equa-
tion (13) below. This is similar to (12) but H appears in its inverse form:

e1 = H−1 · e2, (e1, e2) ∈ E2T (13)

Due to the symmetry between (12) and (13), the solutions to (13) are also
solutions to (12) for e1 ← e−11 and e2 ← e−12 . The remaining elements of
set HE are solutions to equation (14) in which an exponent value u appears,
where u ∈ [−n+ 1,−2] ∪ [2, n− 1]:

e1 = Hu · e2, (e1, e2) ∈ E2T (14)

With e1, e2 and u considered constant, equation (14) is a polynomial equa-
tion satisfied by at most |u| roots. Therefore, the number of hash key values
satisfying (14) is bounded by |u| · (

∑Tth
t=1

(
N
t

)
)2, for fixed u. These are also

the roots of an equation of the form of (14), defined for e1 ← e−11 , e2 ← e−12

and u ← −u. We conclude the proof by summing up the bounds for the
cardinalities of the sets of all values satisfying equations (12)-(14):

9

|HE | ≤
n−1∑
|u|=1

|u| ·

(
Tth∑
t=1

(
N

t

))2

=
n(n− 1)

2
·

(
Tth∑
t=1

(
N

t

))2

(15)

Corollary 1: The cardinality of the set of hash keys H satisfies:

|H| ≥ 2N − n(n− 1)

2
·
(Tth∑
t=1

(
N

t

))2

(16)

The number of hash keys which are excluded typically corresponds to
a small fraction of the total number of N -bit values. For example, for
N = 128, n = 4 and Tth = 10, |HE | ≤ 298.213. This is out of 2128 hash
keys. On the other hand, for the same parameters, |H| > 2128−δ, where
δ = 0.00000000156.

2.4 Establishing the error correcting capability of MAGIC

We are now in a position where we can establish the error correcting ca-
pability of MAGIC. First, we specify which sets of input ciphertext blocks
and tag values are considered “correctable” by the MAGIC mode.

Definition 2: Let C1, . . . , Cn be a set of n N -bit values, Ci ∈ {0, 1}N ,
i ∈ [1, n], which we refer to as “ciphertext blocks”. We define the set
of “correctable ciphertext blocks” θcipher(C1, . . . , Cn, Tth) associated with
C1, . . . , Cn and threshold value Tth ∈ [1, N] as the set:

θcipher(C1, . . . Cn, Tth) = {(C ′1, . . . , C ′n) ∈ {0, 1}n·N ,(
∃ e, HW(e) ≤ Tth ∧ ∃ ierr ∈ [1, n]

)
:(

C ′ierr = Cierr + e
)
∧
(
∀ i ∈ [1, n], i 6= ierr : C ′i = Ci

)
}

(17)

The set of correctable ciphertext blocks θcipher(C1, . . . Cn, Tth) is formed from
all sets of ciphertext blocks that differ from (C1, . . . , Cn) by at most one block
value, at location ierr. Furthermore, that block value is formed by adding
an error vector e to Cierr, where the Hamming weight of e does not exceed
Tth.

Corollary 2: For every set of ciphertext blocks (C1, . . . , Cn) ∈ {0, 1}n·N
and Tth ∈ [1, n] it holds that:

(C1, . . . , Cn) ∈ θcipher(C1, . . . Cn, Tth) (18)

Next, we specify which input tags are considered “correctable” by MAGIC:

10

Definition 3: Let T be an N -bit value, T ∈ {0, 1}N , which we refer to as
“tag”. We define the set of “correctable tags” θtag(T, Tth) associated with
T and threshold value Tth ∈ [1, N] as the set:

θtag(T, Tth) = {T ′ ∈ {0, 1}N , T ′ = T + e, HW(e) ≤ Tth} (19)

The following two Lemmas establish the fact that it is not possible to
corrupt ciphertext blocks or tags within the sets θcipher() and θtag(), defined
above, and still be able to produce ciphertext-tag pairs that pass the veri-
fication test of MAGIC without error correction. In other words, it is not
possible for non-zero corruptions from θcipher() and θtag() to return (accept,
⊥, ⊥) when passed into procedure Verify() above.

Lemma 2: For every set ofN -bit ciphertext blocks (C1, . . . , Cn) ∈ {0, 1}n·N ,
every threshold value Tth ∈ [1, N], every set of correctable ciphertext blocks
(C ′1, . . . , C

′
n) ∈ θcipher(C1, . . . Cn, Tth) such that (C ′1, . . . , C

′
n) 6= (C1, . . . Cn),

and every block of authenticated data D ∈ {0, 1}N , it holds that:

Verify
EKe (),EKB ()

H (D,C ′1, . . . , C
′
n, T, Tth) 6= (accept,⊥,⊥) (20)

where T = MAC
EKe (),EKB ()

H (D,C1, . . . , Cn).

Proof of Lemma 2: In order for procedure Verify
EKe (),EKB ()

H (D,C ′1, . . ., C
′
n,

T, Tth) to return (accept, ⊥, ⊥), the condition T = MAC
EKe (),EKB ()

H (D,C ′1,
. . . , C ′n), which is checked in line 1 of the pseudocode, must be found to be
true. Such condition can be written as:

EKB (D + C1 ·H + . . .+ Cn ·Hn) = EKB (D + C ′1 ·H + . . .+ C ′n ·Hn)

(21)

By applying the decryption operator E−1KB () to both sides of the equation
and eliminating the term D, we rewrite (21) as:

(C1 + C ′1) ·H + . . .+ (Cn + C ′n) ·Hn = 0 (22)

Since (C ′1, . . . , C
′
n) belongs to the set θcipher(C1, . . . Cn, Tth), all ciphertext

blocks from (C ′1, . . . , C
′
n) but one are equal to their corresponding blocks

from (C1, . . . , Cn). Therefore equation (22) can be written as:

(Cierr + C ′ierr) ·H
ierr = 0 (23)

for some ierr ∈ [1, n].
Since, according to Definition 2, Cierr + C ′ierr = e, equation (23) can be

further simplified as e ·H ierr = 0, where e ∈ {0, 1}N is the error vector with

11

Hamming weight HW(e) ≤ Tth. The latter is only satisfied for e = 0. How-
ever, this is not possible, as it is assumed that (C ′1, . . . , C

′
n) 6= (C1, . . . , Cn).

Therefore, the condition in line 1 of procedure Verify
EKe (),EKB ()

H () is never
true and Lemma 2 holds.

Lemma 3: For every block of authenticated data D ∈ {0, 1}N , every
tag value T ∈ {0, 1}N for which there exists a set of ciphertext blocks

(C1, . . . , Cn) ∈ {0, 1}n·N such that T = MAC
EKe (),EKB ()

H (D,C1, . . . , Cn),
every threshold value Tth ∈ [1, N] and every correctable tag value T ′ ∈
θtag(T, Tth) such that T ′ 6= T , it holds that:

Verify
EKe (),EKB ()

H (D,C1, . . . , Cn, T
′, Tth) 6= (accept,⊥,⊥) (24)

Proof of Lemma 3: To return (accept, ⊥, ⊥), procedure Verify
EKe (),EKB ()

H ()

must determine that the truth value of condition T ′ = MAC
EKe (),EKB ()

H (D,C1,
. . . , Cn) checked in line 1 of the pseudocode is true. This condition is written
as:

EKB (D + C1 ·H + . . .+ Cn ·Hn) + e = EKB (D + C1 ·H + . . .+ Cn ·Hn)

(25)

where e ∈ {0, 1}N is an error vector with Hamming weight HW(e) ≤ Tth.
Equation (25) is only satisfied for e = 0, which is not possible, as T ′ 6= T .
Hence Lemma 3 holds.

Now that we established that corruptions within the sets θcipher() and
θtag() never pass the verification test of MAGIC without any error correc-
tion, we show that, for such corruptions, the verification oracle of MAGIC
returns the error-free versions of the corresponding inputs. This is done
by applying the error correction steps of lines 4-15 in the pseudocode. For
such corruptions the verification oracle returns accept and some non-empty
strings indicating that error correction took place.

The next Lemma is about a property of the error location indicators Si of
the pseudocode, which is used for establishing the error correcting capability
of MAGIC.

Lemma 4: For every set ofN -bit ciphertext blocks (C1, . . . , Cn) ∈ {0, 1}n·N ,
every threshold value Tth ∈ [1, N], every set of correctable ciphertext blocks
(C ′1, . . . , C

′
n) ∈ θcipher(C1, . . . Cn, Tth) such that (C ′1, . . . , C

′
n) 6= (C1, . . . Cn),

and every block of authenticated data D ∈ {0, 1}N , there exists an error
vector e ∈ {0, 1}N with Hamming weight HW(e) ≤ Tth, and an index value
ierr ∈ [1, n] such that:

12

Si(D,C
′
1, . . . , C

′
n, T, Tth) = e if i = ierr

Si(D,C
′
1, . . . , C

′
n, T, Tth) = e ·H ierr−i if i 6= ierr

(26)

where T = MAC
EKe (),EKB ()

H (D,C1, . . . , Cn) and Si(D,C
′
1, . . . , C

′
n, T, Tth), i ∈

[1, n], are the values of the error location indicators computed in line 6 of

procedure Verify
EKe (),EKB ()

H (), when the procedure accepts as input authenti-
cated data D, ciphertext blocks C ′1, . . . , C

′
n, tag T , and threshold value Tth.

Moreover, ierr is the index that identifies the block by which (C ′1, . . . , C
′
n)

differ from (C1, . . . , Cn) and e is the error vector which is added to Cierr to
produce C ′ierr .

Proof of Lemma 4: The syndrome value S computed in line 4 of the pseu-

docode of procedure Verify
EKe (),EKB ()

H (D,C ′1, . . . , C
′
n, T, Tth) is given by:

S = D + C ′1 ·H + . . .+ C ′n ·Hn + E−1KB (T)

= (C1 + C ′1) ·H + . . .+ (Cn + C ′n) ·Hn

= (Cierr + C ′ierr) ·H
ierr = e ·H ierr

(27)

where ierr is the index that identifies the location where (C ′1, . . . , C
′
n) differ

from (C1, . . . , Cn) and e is the error vector added to Cierr . Lemma 4 follows
from equation (27) and the fact that each error location indicator Si results
by multiplying syndrome S with the power H−i.

We conclude the section with the following two theorems, which establish
the error correcting capability of MAGIC:

Theorem 1: On the ability of MAGIC to deterministically correct errors
of bounded Hamming weight on a single corrupted ciphertext block. For
every set ofN -bit ciphertext blocks (C1, . . . , Cn) ∈ {0, 1}n·N , every threshold
value Tth ∈ [1, N], every set of correctable ciphertext blocks (C ′1, . . . , C

′
n) ∈

θcipher(C1, . . . Cn, Tth) such that (C ′1, . . . , C
′
n) 6= (C1, . . . Cn), and every block

of authenticated data D ∈ {0, 1}N , it holds that:

Verify
EKe (),EKB ()

H (D,C ′1, . . . , C
′
n, T, Tth) = (accept, Str(C1, . . . , Cn), T)

(28)

where T = MAC
EKe (),EKB ()

H (D,C1, . . . , Cn) and the hash key value H is
random uniformly distributed from the set H, defined by (8).

Proof of Theorem 1: Let ierr ∈ [1, n] be the index of the location where
(C ′1, . . . , C

′
n) differ from (C1, . . . , Cn) and e ∈ {0, 1}N , with HW(e) ≤ Tth,

13

the error vector corrupting Cierr . Lemma 2 establishes that the flow of

execution of procedure Verify
EKe (),EKB ()

H (D,C ′1, . . . , C
′
n, T, Tth) does not exit

in line 2 but moves onto line 4. This is done, in order for the procedure to
check whether errors on the supplied ciphertext blocks can be corrected.

From line 4, the execution flow moves onto repeating the loop of lines 5-6
n times. These lines compute error location indicator values Si, i ∈ [1, n],
which satisfy the relation (26). Next, procedure LocateError(S1, . . . , Sn, Tth)
is invoked. Since the Hamming weight of e = Sierr is bounded by Tth, the
condition in line 1 of LocateError() is found to be true and the flow moves
onto line 2. Since the hash key H is drawn from the set H, any product
between any non-zero power of H and any non-zero value with Hamming
weight bounded by Tth, has Hamming weight that exceeds Tth. Because of
this reason and (26), the condition in line 2 of LocateError() is found to be
true as well. Hence, the flow of LocateError() proceeds to line 3, where the
procedure returns the correct location of the block in error ierr.

We conclude the proof by observing that once LocateError() returns, the

flow of execution of procedure Verify
EKe (),EKB ()

H () moves onto line 9, where
it corrects the existing error e = Sierr , by adding this error value to block
C ′ierr .

Theorem 2: On the ability of MAGIC to probabilistically correct er-
rors of bounded Hamming weight on the tag value. For every block of
authenticated data D ∈ {0, 1}N , every tag value T ∈ {0, 1}N for which
there exists a set of ciphertext blocks (C1, . . . , Cn) ∈ {0, 1}n·N such that

T = MAC
EKe (),EKB ()

H (D,C1, . . . , Cn), and every threshold value Tth ∈ [1, N],

there exists a subset ϑ
EKB ()

H (T, Tth) ⊆ θtag(T, Tth), which depends on the
choice of the blinding cipher EKB () and hash key value H ∈ H, such that

for every T ′ ∈ ϑEKB ()

H (T, Tth), T ′ 6= T :

Verify
EKe (),EKB ()

H (D,C1, . . . , Cn, T
′, Tth) = (accept, Str(C1, . . . , Cn), T)

(29)

Moreover for fixed T , H drawn uniformly from the set H, key KB drawn
uniformly from {0, 1}lKB and initialization vector iB drawn uniformly from
{0, 1}liB , the probability that some tag value T ′ ∈ θtag(T, Tth) also belongs

to the set ϑ
EKB ()

H (T, Tth) satisfies:

Prob[T ′ ∈ ϑEKB ()

H (T, Tth) | Cond] ≥ 1− (n2 + n) · |ET |
2N+1 − n2 · |ET |2

−AdvEKB ()

(30)

14

where Cond is the set of conditions Cond = (T ∈ {0, 1}N , Tth ∈ {0, 1}N ,

T ′ ∈ θtag(T, Tth), H
$← H, KB

$← {0, 1}lKB , iB
$← {0, 1}liB) and |ET | =∑Tth

t=1

(
N
t

)
.

Proof of Theorem 2: Lemma 2 establishes that the flow of execution of

procedure Verify
EKe (),EKB ()

H (D,C1, . . . , Cn, T
′, Tth) does not exit in line 2 but

moves onto line 4, where error correction is done. We define ϑ
EKB ()

H (T, Tth)
to be the set of all tag values T ′ ∈ θtag(T, Tth), which, if passed as in-

put to Verify
EKe (),EKB ()

H () together with authenticated data D, ciphertext
blocks C1, . . . , Cn and threshold Tth, cause procedure LocateError() invoked

by Verify() to return ⊥. In other words, set ϑ
EKB ()

H (T, Tth) contains all
those tags from θtag(T, Tth), for which procedure Verify() correctly deter-
mines that a correctable error, if present, is not in one of the ciphertext
blocks C1, . . . , Cn.

With inputs T ′ from the set ϑ
EKB ()

H (T, Tth), the flow of execution of pro-

cedure Verify
EKe (),EKB ()

H (D,C1, . . . , Cn, T
′, Tth) moves onto line 11 of the

pseudocode. In that line, a new tag value is computed, directly from the
authenticated data D and ciphertext blocks C1, . . . , Cn. Since, these are
without error, the tag value T computed in line 11 is the correct tag as-
sociated input blocks C1, . . . , Cn and authenticated data D. Tag T ′ is the
corrupted version of T . Furthermore, since the error vector added to T has
Hamming weight bounded by Tth, procedure CanCorrectParity(), invoked in
line 12 of the pseudocode, returns true. In the next line, procedure VerifyH()
exits returning accept, as well as non-empty strings containing the correct
tag value T .

To prove the second part of the theorem, we first write the syndrome
value S computed in line 4 of the pseudocode as:

S = E−1KB (T) + E−1KB (T ′) (31)

For a given syndrome value S ← S′, threshold Tth ∈ {0, 1}N and hash key
H drawn uniformly from the set H, we compute a bound for probability
PS′ that procedure LocateError() returns a non-empty response, when ac-
cepting as input indicators S′H−1, . . . , S′H−n, and threshold Tth. This is
the probability that for some given syndrome value S′, the flow of execution
of procedure Verify(), which calls LocateError(), moves onto executing line
9 of the pseudocode correcting a single block error on its input ciphertext
blocks:

PS′ ← Prob[LocateError(S′H−1, . . . , S′H−n, Tth) 6= ⊥ | Cond2] (32)

where Cond2 = (S′ ∈ {0, 1}N , Tth ∈ {0, 1}N , H
$← H).

15

For a given S′ and H drawn uniformly from H, procedure LocateError()
returns some response other than ⊥, if and only if there exists exponent
value u ∈ [1, n] such that HW(S′ · H−u) ≤ Tth. Indeed, if such exponent
value exists, and since H ∈ H, then for every exponent v ∈ [1, n], v 6= u, it
must hold that HW(S′ ·H−v) > Tth. In this case, the flow of LocateError()
executes lines 1-3 of the pseudocode, returning some value ierr 6= ⊥.

PS′ = Prob[
n∑
u=1

HW(S′ ·H−u) ≤ Tth | Cond2]

≤
n∑
u=1

u ·

Tth∑
t=1

(
N

t

)
|H|

=
n(n+ 1)

2
· |ET |
|H|

(33)

We note that the converse is also true. If LocateError() returns ierr 6= ⊥,
then its flow must be executing lines 1-3.

We proceed with the proof observing that, if in equation (31) the inverse
blinding cipher E−1KB () is replaced by a randomly chosen permutation π∗ from

the set P of all permutations π : {0, 1}N → {0, 1}N , the returned syndrome
value would be non-zero with uniformly bounded probability. Specifically:

Prob[S = π∗(T) + π∗(T ′) | Cond3] ≤ 1

2N − 1
(34)

where Cond3 = (T ∈ {0, 1}N , T ′ ∈ θtag(T, Tth), Tth ∈ {0, 1}N , T 6= T ′,

π∗
$← P).
Indeed, for fixed discrete mappings T → v0 and T ′ → v1, defined between

tag values T , T ′ and values v0, v1 ∈ {0, 1}N , there are (2N−2)! permutations
supporting these mappings. On the other hand, there can be no more than
2N different pairs of values (v0, v1) ∈ {0, 1}2N such that v0+v1 = S, for some
syndrome value S ∈ {0, 1}N . Hence, if the inverse blinding cipher E−1KB ()

were replaced by a randomly chosen permutation π∗ : {0, 1}N → {0, 1}N
and T, T ′ satisfy Cond3, the probability that S = π∗(T) + π∗(T ′) would be

bounded by 2N ·(2N−2)!
(2N)!

= 1
2N−1 .

Next, we express the probability that the error in tag T ′ is not corrected

by MAGIC , i.e., T ′ /∈ ϑEKB ()

H (T, Tth) given Cond as the probability of proce-
dure LocateError() returning a non-empty response, when syndrome S takes
all possible values S′:

16

Prob[T ′ /∈ ϑEKB ()

H (T, Tth) | Cond]

=
∑

S′∈{0,1}N ,
S′ 6= 0

PS′Prob[S′ = E−1KB (T) + E−1KB (T ′) | Cond4] (35)

where Cond4 = (T ∈ {0, 1}N , T ′ ∈ θtag(T, Tth), Tth ∈ {0, 1}N , T 6= T ′,

KB
$← {0, 1}lKB , iB

$← {0, 1}liB).
To rewrite equation (35), we revisit the definition of the distinguish-

ing advantage AdvEKB (). Let’s consider as distinguisher a binary output
algorithm ALocateError(), which invokes procedure LocateError() and returns
1 if the response is non-empty. This distinguisher passes into procedure
LocateError() indicator values computed from a syndrome value S that sat-
isfies (31) which, in turn, is computed by invoking either E−1KB () or π∗(), on
some given T, T ′. The distinguisher attempts to identify whether the oracle
invoked is E−1KB () or π∗(). We assume that T, T ′ and oracle E−1KB () satisfy
Cond4. By the definition of this distinguisher:

Prob[ALocateError()
E−1
KB

()

⇒ 1 | Cond4, H
$← H]

=
∑

S′∈{0,1}N ,
S′ 6= 0

PS′Prob[S′ = E−1KB (T) + E−1KB (T ′) | Cond4]

= Prob[T ′ /∈ ϑEKB ()

H (T, Tth) | Cond]

(36)

Moreover, by the definition of AdvEKB (), and assuming that Adv
E−1
KB () =

AdvEKB (), the probability that the algorithm ALocateError()
E−1
KB

()

outputs 1 is

bounded by the probability of the same event, if E−1KB is replaced by random

permutation π∗ : {0, 1}N → {0, 1}N , and term AdvEKB () is added to this
bound:

Prob[ALocateError()
E−1
KB

()

⇒ 1|Cond4, H
$← H]

≤ ALocateError()π
∗() ⇒ 1|Cond3, H

$← H] + AdvEKB ()

=
∑

S′∈{0,1}N ,
S′ 6= 0

PS′Prob[S′ = π∗(T) + π∗(T ′) | Cond3] + AdvEKB ()

(37)

17

Combining (33), (34), (35), (36) and (37) we get:

Prob[T ′ /∈ ϑEKB ()

H (T, Tth) | Cond]

≤
∑

S′∈{0,1}N ,
S′ 6= 0

PS′Prob[S′ = π∗(T) + π∗(T ′) | Cond3] + AdvEKB ()

≤ n(n+ 1) · |ET |
2|H|

+ AdvEKB () ≤ (n2 + n) · |ET |
2N+1 − n2 · |ET |2

+ AdvEKB ()

(38)

We conclude with computing a lower bound for the complement of the

event {T ′ /∈ ϑEKB ()

H (T, Tth) | Cond}, using relation (38).

Prob[T ′ ∈ ϑEKB ()

H (T, Tth) | Cond] ≥ 1− (n2 + n) · |ET |
2N+1 − n2 · |ET |2

−AdvEKB ()

= 1−
(n2 + n) ·

∑Tth
t=1

(
N
t

)
2N+1 − n2 ·

(∑Tth
t=1

(
N
t

))2 −AdvEKB ()

(39)

From inequality (39), it follows that the fraction of corrupted tag values
T ′ ∈ θtag(T, T

′, Tth) which are not correctable is small for typical values
of N , n and Tth. For example, for N = 128, n = 4 and Tth = 10, the

probability Prob[T ′ ∈ ϑEKB ()

H (T, Tth) | Cond] is greater than 1− 2−76.864.

3 Security proofs

3.1 MAC forgery game

We consider a MAC adversary as defined in Section 1.3. The adversary is
an algorithm A who is given query access to MAGIC’s signing algorithm

MAC
EKe (),EKB ()

H () and to MAGIC’s verification oracle Verify
EKe (),EKB ()

H ().
We assume that A can perform both chosen plaintext as well as chosen ci-
phertext attacks. Furthermore, the adversary can observe the ciphertext
blocks C1, C2, . . . , Cn that are produced from a sequence of submitted in-
put plaintext blocks P1, P2, . . . , Pn. These two assumptions are equivalent
to considering that A can always submit a sequence of ciphertext blocks

C1, C2, . . . , Cn of his choice either to MAC
EKe (),EKB ()

H () or Verify
EKe (),EKB ()

H ().

18

In such game, the encryption of the input plaintext is bypassed and the
adversary directly submits ciphertext blocks. For this reason, we will be de-

noting the signing and verification oracles of MAGIC as just MAC
EKB ()

H ()

and Verify
EKB ()

H () respectively, omitting the term EKe() from the notation.
We recall from Section 2 that the encryption function of MAGIC is per-

formed independently from the message authentication and error correction
functions and does not share secrets with them. Moreover, MAGIC does
not introduce any new block cipher or mode. Instead, it uses some unspeci-
fied cipher denoted by EKe() and modeMe for data confidentiality, both of
which are assumed to be well designed. Therefore, for the purpose of this
analysis it is sufficient to focus only on MAGIC’s message authentication
and error correction functions.

For this analysis, we consider that the adversary A submits |Qs| non-

repeating queries to the signing oracle MAC
EKB ()

H () and |Qv| non-repeating

queries to the verification oracle Verify
EKB ()

H (). The signing queries are from
a set Qs, where each element of Qs comprises a single block of authentication
data and a sequence of ciphertext blocks:

Qs = {(D(i), C
(i)
1 , . . . , C

(i)
n) : i = 1, . . . , |Qs|} (40)

On accepting signing query q
(i)
s = (D(i), C

(i)
1 , . . . , C

(i)
n), the signing oracle

returns a tag value T (i) which is computed using relation (6) on inputs D(i)

and C
(i)
1 , . . . , C

(i)
n .

The verification queries are from a set Qv, where each element of Qv
comprises a single block of authentication data, a sequence of ciphertext
blocks and a tag value:

Qv = {(D(i), C
(i)
1 , . . . , C

(i)
n , T (i)) : i = 1, . . . , |Qv|} (41)

For all verification operations performed by Verify
EKB ()

H (), the threshold
value Tth ∈ {0, 1}N used is assumed to be a constant. On accepting verifica-

tion query q
(i)
v = (D(i), C

(i)
1 , . . . , C

(i)
n , T (i)), the verification oracle executes

lines 1-15 of the pseudocode presented in Section 2.2, returning a response

(b(i), s
(i)
1 , s

(i)
2), where b(i) ∈ {accept, reject} is a boolean and the two strings

s
(i)
1 , s

(i)
2 indicate whether error correction took place, and what the corrected

inputs are. We also assume that A does not submit straightforward replays
of sign queries to the verification oracle.

The adversary succeeds if, after submitting |Q| = |Qs| + |Qv| queries,

it successfully computes an input-tag set (D(r), C
(r)
1 , . . . , C

(r)
n , T (r)) which

should not be “correctable” to any of the queries that have been issued.
Considering the definition of Section 1.3 in the context of the MAGIC
mode, it should hold that either:

19

(C
(r)
1 , . . . , C

(r)
n) /∈

|Qs|⋃
i=1

θcipher(C
(i)
1 , . . . , C(i)

n , Tth) (42)

or:

∃ j ∈ [1, |Qs|], (D(j), C
(j)
1 , . . . , C

(j)
n) ∈ Qs :

(D(r), C
(r)
1 , . . . , C

(r)
n) = (D(j), C

(j)
1 , . . . , C

(j)
n) ,(

T (r) /∈ ϑ
EKB ()

H (MAC
EKB ()

H (D(j), C
(j)
1 , . . . , C

(j)
n), Tth)

) (43)

Condition (43) is required in the definition of success, as an alternative
to (42), because there exist corruptions in the tag within Hamming weight
distance of Tth, which are not correctable, as discussed in Section 2.4. These
corruptions cause the pseudocode of procedure Verify() to incorrectly execute
lines 8-9, further corrupting the ciphertext blocks instead of correcting the
error in the tag. This is one of the situations where the error correction
functionality of MAGIC is exploited for creating forgeries. These situations
are captured in the analysis that follows.

Definition 4: Let MAC
EKB ()

H () and Verify
EKB ()

H () be sign and verification

oracles of a MAGIC mode that uses a uniformly drawn hash key H
$← H

and blinding cipher EKB () associated with mode MB, encryption key KB

of length lKB , KB
$← {0, 1}lKB , and initialization vector iB of length liB ,

iB
$← {0, 1}liB . Let A be a polynomial time algorithm that submits |Qs|

queries to the signing oracle and |Qv| queries to the verification oracle, also
referred to as adversary. The event WA that adversary A wins a MAC
forgery game played on the sign and verification oracles is defined as the
event:

WA = H
$← H; KB

$← {0, 1}lKB ; iB
$← {0, 1}liB ;

(D(r), C
(r)
1 , . . . , C

(r)
n , T (r))← A; Cond5 ∨ Cond6;

Verify
EKB ()

H (D(r), C
(r)
1 , . . . , C

(r)
n , T (r)) = (accept, s1, s2)

(44)

for some strings s1, s2. Cond5 refers to the condition of (42) and Cond6 refers
to the condition of (43).

Corollary 3: The advantage of adversary A is given by:

AdvA = Prob[WA] (45)

20

The sign and verification queries are not issued sequentially, one set after
the other, but are mixed. This happens because adversary A issues queries
in an arbitrary order specific to the way A plays the MAC forgery game. In
the analysis that follows, we refer to queries with respect to both their order
of issue inside the signing and verification query sets Qs, Qv, and inside the
union set Q = Qs ∪Qv.

We adopt the following notation: A sign query qs of index is indicating

order of issue inside set Qs is denoted by q
(is)
s . A verification query qv

of index iv indicating order of issue inside set Qv is denoted by q
(iv)
v . This

notation for qs, qv has been used in relations (40) and (41). A query q that is
either a sign query or a verification query of index i indicating order of issue
inside the union set Q = Qs ∪Qv is denoted by q[i]. For example, for a sign
query qs = q, there exist two indexes is ∈ [1, |Q− s|] and i ∈ [1, |Qs|+ |Qv|]
such that q

(is)
s = q[i].

Responses coming from oracles MAC() and Verify() are referred to us-

ing the symbol O(). Specifically, a response coming from MAC
EKB ()

H () or

Verify
EKB ()

H () on accepting input q[i] ∈ Q, i ∈ [1, |Qs| + |Qv|], is denoted by

OEKB ()

H (q[i]) or just O(q[i]). It holds that either O(q[i]) = MAC
EKB ()

H (q[i]), if

q[i] ∈ Qs, or O(q[i]) = Verify
EKB ()

H (q[i], Tth), if q[i] ∈ Qv.
Finally, in the analysis that follows we consider adversaries that are

identical to A, but act based on information coming only from queries of
the {q[1], q[2], . . . , q[i]} ∈ Q for some index i ∈ [1, |Qs| + |Qv|]. We refer to
such adversaries as A[i].

3.2 Query budget constraint for adversary A

Our analysis introduces a query budget constraint for adversary A. The
constraint is used in the proof of Proposition 2 below. The constraint is
that the number of queries |Q| issued by adversary A needs to satisfy the
condition:

|Q| < 2N+1

n(n+ 1)|ET |+ 4
(46)

where |ET | =
∑Tth

t=1

(
N
t

)
.

For typical values of n,N and Tth, the query budget constraint does not
impact the security of MAGIC. As we establish in this section, MAGIC
offers security in the order of O(2N/2). On the other hand, for typical values
of n,N and Tth, the bound of condition (46) is significantly larger than 2N/2.
Hence, for typical values of n,N and Tth, adversary A succeeds before the
query budget of (46) is exhausted. For example, for N = 128, n = 4 and
Tth = 10, the bound of condition (46) is equal to 276.864, which is greater
than 264.

21

3.3 Attacking MAGIC when blinding is performed by a ran-
dom permutation

We proceed with considering the MAC forgery game played on sign and
verification oracles MAC() and Verify(), for which the blinding cipher EKB ()

is replaced by a randomly chosen permutation π∗
$← P from the set P of all

permutations π : {0, 1}N → {0, 1}N . We refer to these attacked oracles as

MAC
π∗()
H () and Verify

π∗()
H respectively, and the adversary playing such game

as A∗.
Adversary A∗ is identical to A in terms of behavior, but attacks a version

of the MAGIC mode for which blinding is not performed by cipher EKB ()
but by the random permutation π∗(). For reasons that will be made clear

in the paper, it is easier to analyze the security of oracles MAC
π∗()
H () and

Verify
π∗()
H when attacked by A∗, than the security of oracles MAC

EKB ()

H () and

Verify
EKB ()

H attacked by A.
We can associate the advantage of A∗ with the advantage of A. An

adversary who plays a MAC forgery game, the success of which is defined by
(44) is also a distinguisher. Such algorithm attempts to distinguish between

interacting with the pair of oracles (MAC
π∗()
H (), Verify

π∗()
H) and the pair of

oracles (MAC
EKB ()

H (), Verify
EKB ()

H). The distinguisher plays the MAC forgery
game of relations (44) and (45) in two different ways. In a first way, the
blinding cipher queried by MAC() and Verify() is EKB (). In a second way,
the blinding cipher queried is π∗(). In the end of each of both games the
distinguisher presents output equal to “1”, if the MAC forgery game is won,
and “0” otherwise. By the definition of this distinguisher and the definition
of AdvEKB (), it holds that:

AdvA ≤ AdvA
∗

+ AdvEKB () (47)

Let WA∗ be the event defined by (44) when blinding is performed by π∗().
Then equation (47) can be written as:

Prob[WA∗] ≤ Prob[WA] + AdvEKB () (48)

The analysis that follows focuses on adversary A∗. Once we compute a
bound for the advantage of A∗, we add the term AdvEKB () to this bound
to compute a bound for A. We also note that the query index notation, the
definition of the symbol O(), and query budget constraint introduced above,
all apply to A∗ as well.

22

3.4 Security critical events during the MAC forgery game

We begin our security analysis by observing that there is a number of security
critical events associated with the specification of the MAGIC mode which,
if occurring, make adversary A∗ win the game. One such event is a “MAC
collision event”.

Definition 5: The MAC collision event. Let MAC
π∗()
H () and Verify

π∗()
H ()

be sign and verification oracles of a MAGIC mode for which blinding is
performed by a random permutation π∗. Let A∗ be a polynomial time
algorithm playing a game the success of which is defined by relation (44),

and where EKB () ← π∗(). A MAC collision event EH,π
∗

C (iC), or just EC(iC),
associated with query of index iC , is defined as the event that the MAC()
signing algorithm output for some query q[iC] ∈ Qs, iC ∈ [1, |Qs| + |Qv|] is
identical to the MAC() signing algorithm output of a different query q[jC] ∈
QS , jC ∈ [1, |Qs|+ |Qv|], jC < iC .

EC(iC) = q[iC] ∈ Qs; ∃ jC : q[jC] ∈ Qs, jC < iC :

MAC
π∗()
H (D[iC], C

[iC]
1 , . . . , C

[iC]
n) = MAC

π∗()
H (D[jC], C

[jC]
1 , . . . , C

[jC]
n)

(49)

If such event occurs, adversaryA∗ deterministically wins the game. Since
the blinding cipher π∗() is a random permutation, equality of the outputs
of the MAC() signing algorithm for queries q[iC] and q[jC] means equality
of the outputs of the Galois Hash transformation for the same queries. By
equating the Galois hash transformation outputs for these queries, adversary
A∗ forms a polynomial equation of degree n, where the unknown is the hash
key value H. As the roots of this polynomial equation can be trivially found,
adversary A∗ can create forgeries at will. We note that a similar event can
be defined for the adversary A.

The next definition covers another type of event which is security critical,
the “Galois Hash computation event”:

Definition 6: The Galois Hash computation event. Let MAC
π∗()
H () and

Verify
π∗()
H () be sign and verification oracles of a MAGIC mode and A∗

an adversary attacking these oracles, as in Definition 5. A Galois Hash
computation event EH,π

∗

G (iG), or just EG(iG), associated with query of index

iG , is defined as the event that for some query q[jG] ∈ Qs, jG ∈ [1, |Qs|+|Qv|],
jG ≤ iG , for which (C

[jG]
1 , . . . , C

[jG]
n) 6= (0, . . . , 0), the adversary A∗[iG] can

successfully compute the Galois Hash transformation output for this query’s
input.

23

EG(iG) = q[jG] ∈ Qs; q[iG] ∈ Q; jG ≤ iG ; (C
[jG]
1 , . . . , C

[jG]
n) 6= (0, . . . , 0)

GjG ← A∗[iG]; D[jG] + C
[jG]
1 ·H + . . .+ C

[jG]
n ·Hn = GjG

(50)

If EG(iG) is true, then for query q[jG], the adversary can successfully
decrypt the output of the MAC() signing algorithm. As in the case of the
MAC collision event, the polynomial equation formed from equating the
Galois Hash output to GiG can be trivially solved. One of the n roots of the
equation must be equal to the hash key value H. Knowledge of hash key
value H enables adversary A∗[iG], and thus A∗ also, to create forgeries.

A third security critical event is an “ECC function exploitation event”.
We use the term “ECC function exploitation event” to refer to a group of
situations where the adversary successfully exploits the ECC functionality
of the MAGIC mode in order to create forgeries. In these situations, it
is not algorithm A∗ which crafts forgeries, but instead, procedure Verify()
invoked by the verification oracle of MAGIC.

Specifically, there are situations where procedure Verify() may incorrectly
execute lines 8-9 of its pseudocode attempting to correct a single block in
error, whereas in reality there may be more than one ciphertext blocks cor-
rupted. There are also situations where a single block may be in error, but
the error demonstrates Hamming weight larger than Tth. All these corrup-
tions may cause procedure LocateError(), invoked in line 7 of the Verify()
pseudocode, to incorrectly return a non-empty response. Such non-empty
response makes procedure Verify() execute lines 8-9. In this way, procedure
Verify(), instead of correcting any errors present, creates a forgery.

There is a third group of situations where procedure Verify() may create
a forgery. This is when it incorrectly execute lines 12-13 of its pseudocode
attempting to correct an error in the tag value. In reality there may be
errors in one or more ciphertext blocks.

Definition 7: The ECC function exploitation event. Let MAC
π∗()
H () and

Verify
π∗()
H () be sign and verification oracles of a MAGIC mode and A∗ an

adversary attacking these oracles, as in Definition 5. An ECC function ex-
ploitation event EH,π

∗

X (iX), or just EX (iX), associated with query of index iX ,

is defined as the event that some query q[iX] = (D[iX], C
[iX]
1 , . . ., C

[iX]
n , T [iX])

∈ Qv passed to the verification oracle of MAGIC , which satisfies either (42)

or (43) for (D(r), C
(r)
1 , . . . , C

(r)
n , T (r)) ← q[iX] and EKB ()← π∗(), causes the

verification oracle to return response (b[iX], s
[iX]
1 , s

[iX]
2), where b[iX] = accept,

s
[iX]
1 6= ⊥ and s

[iX]
2 6= ⊥.

24

EX (iX) = q[iX] ← A∗[iX−1]; q[iX] ∈ Qv; Cond5 ∨ Cond6;

Verify
π∗()
H (q[iX]) = (accept, s

[iX]
1 , s

[iX]
2); s

[iX]
1 6= ⊥, s[iX]2 6= ⊥

(51)

where Cond5 and Cond6 refer to the conditions of (42) and (43) evaluated

on (D(r), C
(r)
1 , . . . , C

(r)
n , T (r)) ← q[iX], and for which EKB ()← π∗().

Again, we can see why the ECC function exploitation event as defined
above is security critical. Query q[iX] is not correctable to any of the other
queries issued by adversary A∗, according to one of conditions Cond5, Cond6.

On other hand the verification oracle Verify
π∗()
H (), on accepting input q[iX],

returns non-empty strings s
[iX]
1 and s

[iX]
2 . This is an indication that the

procedure either executes lines 8-9 of its pseudocode or lines 12-13. In both
cases it attempts to perform error correction.

Proposition 1: Let’s consider an ECC function expolitation event as in

Definition 7. Let query q[iX] be equal to (D[iX], C
[iX]
1 , . . . , C

[iX]
n , T [iX]). Let

C+
1 , . . . , C

+
n be the ciphertext blocks, the binary representation of which is

the string s
[iX]
1 returned from query q[iX]. Let T+ be the tag value, the

binary representation of which is the string s
[iX]
2 , also returned from query

q[iX]. Then, one of the following three statements must be true:

i. The ECC function is not exploited, but the ECC output is a forgery.

In this case (C
[iX]
1 , . . . , C

[iX]
n) ∈ θcipher(C

+
1 , . . . , C

+
n , Tth), but (D[iX],

C+
1 , . . . , C

+
n) /∈ QS .

ii. The ECC function is exploited, and the ECC output is a forgery. In

this case (C
[iX]
1 , . . . , C

[iX]
n) /∈ θcipher(C+

1 , . . . , C
+
n , Tth), and also (D[iX],

C+
1 , . . . , C

+
n) /∈ QS .

iii. The ECC function is exploited, and the ECC output is a replay. In this

case (C
[iX]
1 , . . . , C

[iX]
n) /∈ θcipher(C

+
1 , . . . , C

+
n , Tth), but (D[iX], C+

1 , . . .,
C+
n) ∈ QS .

Proof of Proposition 1: From lines 8-9 and 12-13 of the pseudocode of
Verify(), it is deduced that the returned tag value T+ is the valid tag com-
puted from authenticated data D[iX] and the returned ciphertext blocks

C+
1 , . . . , C

+
n . Specifically, T+ = MAC

π∗()
H (D[iX], C+

1 , . . . , C
+
n). Because of

this fact, and the fact that query q[iX] satisfies conditions Cond5 and Cond6
as defined in Definition 7, it is not possible for the following two relations to

be simultaneously true: (a) (C
[iX]
1 , . . . , C

[iX]
n) ∈ θcipher(C+

1 , . . . , C
+
n , Tth) and

(b) (D[iX], C+
1 , . . ., C

+
n) ∈ QS . If this was the case, then q[iX] would have

been correctable to one of the sign queries. Given this fact, the correctness

25

of Proposition 1 follows from the observation that statements i-iii cover the
space of all remaining possible events and are mutually exclusive.

In the case of statement i, the ciphertext-tag pair contained in q[iX] is
corrected, and a single block error is removed. The corrected ciphertext,
however, has never been passed as a query to the signing oracle. In this case
the adversary wins the game. A forgery has been produced.

In the case of statement ii, the ciphertext-tag pair contained in q[iX]

becomes further corrupted by procedure Verify(). The ECC functionality of
the MAGIC mode is abused. Procedure Verify() produces some ciphertext-
tag pair which, one the one hand is valid, and one the other hand has never
been passed as a query to the signing oracle. This is another forgery case.

In the case of statement iii, as in the previous one, the ciphertext-tag pair
contained in q[iX] becomes further corrupted by procedure Verify(). However,
the ciphtertext produced by Verify() has been passed as query to the signing
oracle MAC() before. According to our definition of success for the MAC
adversary, this is a forgery too. In fact, it is also a replay. The adversary
starts with a query which is not correctable to any other known query, but
successfully abuses the ECC functionality to craft a known ciphertext-tag
pair.

A last type of security critical event studied is a “blind forgery event”.
This is the simplest case of forgery. We use the term to refer to the situ-
ation where adversary A∗ presents to the verification oracle Verify() of the
MAGIC mode a valid ciphertext-tag pair never queried before:

Definition 8: The blind forgery event. Let MAC
π∗()
H () and Verify

π∗()
H () be

sign and verification oracles of a MAGIC mode and A∗ an adversary attack-
ing these oracles, as in Definition 5. A blind forgery event EH,π

∗

B (iB), or just
EB(iB), associated with query of index iB, is defined as the event that some
query q[iB] ∈ Qv passed to the verification oracle of MAGIC , which satisfies

either (42) or (43) for (D(r), C
(r)
1 , . . . , C

(r)
n , T (r)) ← q[iB] and EKB ()← π∗(),

causes the verification oracle to return response (accept,⊥,⊥).

EB(iB) = q[iB] ← A∗[iB−1]; q[iB] ∈ Qv; Cond5 ∨ Cond6;

Verify
π∗()
H (q[iB]) = (accept,⊥,⊥)

(52)

where Cond5 and Cond6 refer to the conditions of (42) and (43) evaluated

on (D(r), C
(r)
1 , . . . , C

(r)
n , T (r)) ← q[iX], and for which EKB ()← π∗().

The fact that the strings returned by the verification oracle are empty
is an indication that no error correction took place. By the definition of
this event, the input ciphertext-tag pair is valid, it has never been queried
before, and is thus a forgery. Adversary A∗ wins the game in this case as
well.

26

3.5 Complementary events and probabilities of first occur-
rence

For the MAC collision, Galois Hash computation, ECC function exploitation
and blind forgery events, we refer to their complements as:

NC(i) = ¬ EC(i), NG(i) = ¬ EG(i),

NX (i) = ¬ EX (i), NB(i) = ¬ EB(i)
(53)

where (53) applies to every query index i ∈ [1, |Qs|+ |Qv|], q[i] ∈ Q.
We also refer to the event of no security critical events occurring at query

of index i, N (i), as:

N (i) = NC(i) ∧ NG(i) ∧ NX (i) ∧ NB(i) (54)

where, again, (54) applies to every query index i ∈ [1, |Qs|+ |Qv|], q[i] ∈ Q.
Next, we refer to the event of no security critical events occurring during

the entire MAC forgery game played by A∗, NA∗ , as:

NA∗ =
∧ |Qs|+|Qv |

i=1 N (i) (55)

It’s complement SA∗ is the event that at least one security critical event
occurs during the MAC forgery game, at the completion of at least one
query:

SA∗ = ¬NA∗ (56)

The next definition is about the probability that a security critical event
occurs, if it is known that no other security critical events occur at previous
queries. We refer to this probability as a “probability of first occurrence” of
a security critical event.

Definition 9: Probability of first occurrence of a security critical event. Let
E(i), E(i) ∈ {EC(i), EG(i), EX (i), EB(i)} be a security critical event associated
with query q[i] of index i ∈ [1, |Qs|+ |Qv|], and defined by one of Definitions
5, 6, 7 or 8. A probability of first occurrence F (i) ∈ {FC(i), FG(i), FX (i),
FB(i)} of E(i) is defined as the probability of event E(i) occurring at query
q[i], given the events N (1), N (2), . . ., N (i− 1):

F (i) = Prob [E(i) | N (1), . . . ,N (i− 1)] (57)

In what follows we use the notation F (i) to refer to one of FC(i), FG(i),
FX (i) or FB(i), depending on whether E(i) is a MAC collision, Galois Hash
computation, ECC function exploitation, or blind forgery event respectively.

27

3.6 Structure of the proof

The first of our auxiliary results is about the structure of our proof. Our
strategy to bound AdvA

∗
is to consider the event WA∗ of adversary A∗

succeeding in conjunction with the events NA∗ and SA∗ , which are comple-
mentary. Computing a bound forWA∗ is much easier, if it known that no se-
curity critical events occur during adversary A∗’s game. On the other hand,
the probability Prob[WA∗ ∧ SA∗] can be bounded by a sum of probabilities
of first occurrence F (i) ∈ {FC(i), FG(i), FX (i), FB(i)}, i ∈ [1, |Qs| + |Qv|].
Bounds for such probabilities are also computed.

Lemma 5: Let MAC
π∗()
H () and Verify

π∗()
H () be sign and verification oracles of

a MAGIC mode, for which blinding is performed by a random permutation
π∗. Let A∗ be a polynomial time algorithm playing a game, the success
WA∗ of which is defined by (44) for EKB ()← π∗() and A ← A∗. Let EC(i),
EG(i), EX (i) and EB(i) be security critical events defined by Definitions 5,

6, 7 and 8, associated with the attacked oracles MAC
π∗()
H () and Verify

π∗()
H (),

and the game played by adversary A∗. Finally, let FC(i), FG(i), FX (i) and
FB(i) be probabilities of first time occurrence associated with each of EC(i),
EG(i), EX (i) and EB(i) respectively, and which are defined by Definition 9.
Then, the probability of adversary A∗ succeeding Prob[WA∗] is bounded by:

Prob[WA∗] ≤ Prob[WA∗ |NA∗] +

|Q|∑
i=1

(FC(i) + FG(i) + FX (i) + FB(i))
(58)

where NA∗ is the event of no security critical events occurring during ad-
versary A∗’s game and |Q| is the total number of queries issued by the
adversary.

Proof of Lemma 5: The probability of the event WA∗ can be computed
when the event is considered in conjunction with the complementary events
NA∗ and SA∗ .

Prob[WA∗] = Prob[WA∗ ∧ NA∗] + Prob[WA∗ ∧ SA∗]

≤ Prob[WA∗ | NA∗] + Prob[SA∗]
(59)

We recall from the previous section that SA∗ is the event that at least
one security critical event occurs during the MAC forgery game of A∗, at
the completion of at least one query. By the definition of SA∗ :

28

Prob[SA∗] =

|Q|∑
i=1

Prob[
(
EC(i) ∨ EG(i) ∨ EX (i) ∨ EB(i)

)
∧

(
N (1) ∧ . . . ∧N (i− 1)

)
]

(60)

From equality (60), we bound the probability Prob[SA∗] as shown below:

Prob[SA∗] ≤
|Q|∑
i=1

(
Prob[EC(i) | N (1), . . . ,N (i− 1)] + Prob[EG(i) | N (1), . . . ,N (i− 1)]+

Prob[EX (i) | N (1), . . . ,N (i− 1)] + Prob[EB(i) | N (1), . . . ,N (i− 1)]
)

(61)

By definition (57), the right side of inequality (61) is equal to
∑|Q|

i=1(FC(i)
+ FG(i) + FX (i) + FB(i)). The correctness of inequality (58) and Lemma
5 follow directly by combining relations (59) and (61).

3.7 Impossible Galois Hash key values

The next three lemmas and proposition are about the statistical properties
of the internal secrets of the MAGIC mode, specifically the Galois Hash
key value H ∈ H, and the random permutation π∗ ∈ P. The lemmas and
proposition show how the statistical properties of H, π∗ change as adversary
A∗ issues queries to the sign and verification oracles of the mode. The
lemmas also establish probability distributions for H, π∗, which characterize
the secrets at the time of completion of query q[i] ∈ Q, i ∈ [1, {|Qs|+ |Qv|]}.
For the computation of the distributions, it is assumed that responses from
queries q[1], . . . , q[i] are available. It is also assumed that no security critical
events occur up to, and including, query q[i].

Initially H and π∗ are random uniformly distributed in the sets H and
P respectively. Then, adversary A∗ issues queries. The responses coming
from oracles MAC() and Verify() leak information about H and π∗. As we
show below, information is leaked even if no security critical events occur
up to query q[i].

Indeed, if no MAC collisions are observed at the completion of sign
queries up to q[i], and since blinding is performed by permutation π∗, all
sign queries up to q[i] result in unique Galois Hash outputs. Such knowledge
makes a subset of Galois Hash key values impossible. Impossible hash keys
are all those which are roots of polynomial equations formed by equating
Galois Hash outputs coming from every pair of issued sign queries.

29

Second, if no ECC function exploitation events are observed at the com-
pletion of verification queries up to q[i], then such knowledge leaks infor-
mation about permutation π∗. Permutation π∗ must be in a subset of P
that includes only those permutations that do not cause procedure Verify()
to abuse its error correcting capability. Specifically, the input-output map-
pings specified by π∗ must be such that procedure Verify() does not abuse
lines 8-9 or 12-13 of its pseudocode.

The existence of impossible hash keys is established by Lemma 6. Then,
Proposition 2 shows that for every hash key value HP which is not impos-
sible, there exists a set of blinding permutations ρ(), which, together with
the hash key HP , respond to adversary A∗’s queries in the same way as
the combination H, π∗, if no security critical events occur up to query q[i].
Based on these two results, Lemmas 7 and 8 establish that after i queries
complete, and if no security critical events occur up to q[i], secrets H and
π∗ remain uniformly distributed, taking values from subsets of H, P. Such
subsets are computed based on knowledge of queries up to q[i].

Lemma 6: On the existence of impossible Galois Hash key values, if no

security critical events occur up to query q[i]. Let MAC
π∗()
H () and Verify

π∗()
H ()

be sign and verification oracles of a MAGIC mode and A∗ an adversary
attacking these oracles, as in Lemma 5. Let i ∈ |Qs|+ |Qv| be a query index,
for which q[1], . . . , q[i] ∈ Q. Let’s also consider that no security critical events
occur up to query q[i], and knowledge about queries q[1], . . . , q[i] and their
associated responses O(q[1]), . . . ,O(q[i]) is available. Then, there exists a

subset H[i]
I ⊆ H, which we refer to as the subset of “impossible” hash key

values, associated with query index i and set H, such that for every hash

key value HI ∈ H[i]
I , the probability that the secret hash key H of the mode

is equal to HI is 0:

∃ H[i]
I ⊆ H : ∀HI ∈ H[i]

I :

Prob[HI = H | q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)] = 0

(62)

where i ∈ |Qs| + |Qv|. Furthermore the cardinality |H[i]
I | of the set H[i]

I
satisfies:

|H[i]
I | ≤ n ·

(
|Q[i]

s |
2

)
+
n(n+ 1)

2
· |Q[i]

v | · |ET | (63)

where |Q[i]
s | is the number of sign queries issued by adversary A∗ up to query

q[i], |Q[i]
v | is the number of verification queries issued by A∗ up to query q[i],

and |ET | =
∑Tth

t=1

(
N
t

)
.

30

Proof of Lemma 6: For every pair of sign queries q
(j)
s , q

(j′)
s ∈ Q[i]

s , where

indexes j and j′, j, j′ ∈ [1, |Q[i]
s |], indicate order of issue inside the set Q

[i]
s ,

it must hold that:

Prob[MAC
π∗()
H (q

(j)
s) = MAC

π∗()
H (q

(j′)
s) | q(j)s , q

(j′)
s ,N (1), . . . ,N (i)] = 0

(64)

This is because condition N (1), . . . ,N (i) indicates that no MAC collisions
occur up to query q[i].

We proceed by denoting query q
(j)
s as (D(j), C

(j)
1 , . . . , C

(j)
n) and query

q
(j′)
s as (D(j′), C

(j′)
1 , . . . , C

(j′)
n). Using such notation, equation (64) can be

written as:

Prob[π∗(D(j) + C
(j)
1 H + . . .+ C

(j)
n Hn) =

π∗(D(j′) + C
(j′)
1 H + . . .+ C

(j′)
n Hn) | q(j)s , q

(j′)
s ,N (1), . . . ,N (i)] = 0

(65)

Next, we apply operator π∗
−1

() to both sides of the internal equation of (65)
to obtain:

Prob[(D(j) +D(j′)) + (C
(j)
1 + C

(j′)
1)H + . . .+

(C
(j)
n + C

(j′)
1)Hn = 0 | q(j)s , q

(j′)
s ,N (1), . . . ,N (i)] = 0

(66)

The internal polynomial equation of (66) has r distinct roots, where r ≥ 0

and r ≤ n. We refer to such roots as H
(j,j′)
1 , . . . , H

(j,j′)
r . Then equation (66)

can be written as:

Prob[H = H
(j,j′)
1 ∨ . . . ∨ H = H

(j,j′)
r | q(j)s , q

(j′)
s ,N (1), . . . ,N (i)] = 0

(67)

We define H[i]
I,COL to be the set that includes all roots H

(j,j′)
1 , . . . , H

(j,j′)
r

of all internal polynomial equations of the form of (66), where the equations

are formed for every pair of sign queries q
(j)
s , q

(j′)
s ∈ Q[i]

s .

From the definition of the set H[i]
I,COL, it holds that H[i]

I,COL ⊆ H
[i]
I . The

cardinality of the set H[i]
I,COL satisfies |H[i]

I,COL| ≤ n ·
(|Q[i]

s |
2

)
. This is because

there are
(|Q[i]

s |
2

)
pairs of sign queries q

(j)
s , q

(j′)
s ∈ Q[i]

s and the number of roots
r of all internal polynomial equations of the form of (66), computed for every
pair of sign queries does not exceed n.

31

Another security critical event, the absence of which indicates that some
hash keys are impossible is the ECC function exploitation event. Indeed,

let’s consider a verification query q
(j)
v = (D(j), C

(j)
1 , . . . , C

(j)
n , T (j)) ∈ Q

[i]
v ,

with index j ∈ [1, |Q[i]
v |] denoting order of issue inside the set Q

[i]
v , and a

sign query q
(j′)
s = (D(j′), C

(j′)
1 , . . . , C

(j′)
n) ∈ Q

[i]
s such that the sign oracle

response O(q
(j′)
s) to query q

(j′)
s is identical to the tag value T (j) contained

in the verification query q
(j)
v , i.e., O(q

(j′)
s) = T (j).

As it is assumed that no ECC function exploitation event occurs at the
completion of queries up to q[i], this assumption holds for query q(j) as well.
We further assume that, at the completion of query q(j), no correction of
ciphertext blocks takes place. As such, query q(j) is one for which, either pro-

cedure Verify
π∗()
H () corrects the tag value T (j), or just returns (reject,⊥,⊥).

This further means that procedure LocateError() invoked by Verify
π∗()
H () on

input q(j) returns the empty string “⊥”. Under these assumptions, and

given O(q
(j′)
s) = T (j), the following equation must hold:

Prob[
(
D(j) + C

(j)
1 H + . . .+ C

(j)
n Hn + π∗

−1
(O(q

(j′)
s))

)
·H−k = e

| q(j)v , q
(j′)
s ,O(q

(j′)
s) = T (j), N (1), . . . ,N (i)] = 0

(68)

for every k ∈ [i, n] and e ∈ ET . Substituting π∗
−1

(O(q
(j′)
s)) with its equal

D(j′) + C
(j′)
1 H + . . .+ C

(j′)
n Hn, we obtain:

Prob[(D(j) +D(j′)) + (C
(j)
1 + C

(j′)
1)H + . . .+ (C

(j)
n + C

(j′)
1)Hn = e ·Hk

| q(j)v , q
(j′)
s ,O(q

(j′)
s) = T (j),N (1), . . . ,N (i)] = 0

(69)

The internal polynomial equation of (69) has degree n, and r distinct

roots, r ∈ [0, n]. We define H[i]
I,EXPL to be the set that includes all roots

of the internal polynomial equation of (69), where the equation applies to

every pair consisting of a sign query q
(j′)
s and a verification query q

(j)
v such

that O(q
(j′)
s) = T (j), every k ∈ [1, n], and every e ∈ ET . The cardinality of

the set H[i]
I,EXPL satisfies |H[i]

I,EXPL| ≤
n(n+1)

2 · |Q[i]
v ||ET |. This is because there

can be at most |Q(i)
v | such pairs and the number of roots of the internal

polynomial equation of (69) computed for a specific pair does not exceed
n(n+1)

2 · |ET |.
We also note that the set H[i]

I,EXPL may be empty, specifically if the

condition O(q
(j′)
s) = T (j) is never satisfied for any pair q

(j′)
s , q

(j)
v . The proof

of the first part of Lemma 6 follows by setting:

32

H[i]
I ← H

[i]
I,COL ∪ H

[i]
I,EXPL (70)

The proof of the second part of Lemma 6 follows by adding the cardinality

bounds for the sets H[i]
I,COL and H[i]

I,EXPL.

Corollary 4: The cardinality |H[i]
I | of set H[i]

I defined in Lemma 6 satisfies:

|H[i]
I | ≤ n ·

(
|Q|
2

)
+
n(n+ 1)

2
· |Q| · |ET | (71)

Corollary 5: Let’s define as H[i]
P the set of all hash key values which are in

H but not in H[i]
I , i.e., H[i]

P = H −H[i]
I . The sets H and H[i]

I are defined as
in Lemma 6. We refer to such set as the set of “possible” hash key values

associated with query index i and set H. Then, the cardinality |H[i]
P | of set

H[i]
P satisfies:

|H[i]
P | ≥ 2N − ζ − η|Q| − n

(
|Q|
2

)
(72)

where ζ = n(n−1)
2 · |ET |2, η = n(n+1)

2 · |ET | and |ET | =
∑Tth

t=1

(
N
t

)
. Corollary

5 follows from Corollary 1 and Lemma 6.

3.8 On the statistical properties of the secrets and internal
state of the MAGIC mode

We proceed with our proof establishing that every element H
[i]
P ∈ H

[i]
P is

equal to the secret hash key value H with non-zero, uniformly bounded
probability, given the queries q[1], . . . , q[i], the responses O(q[1]), . . . , O(q[i]),
and N (1), . . . ,N (i). To do this, we view the queries, the responses and
the knowledge that no security critical events occur up to q[i] as constraints
imposed on a family of MAGIC oracles and investigate which combinations
of hash key values and blinding permutations satisfy the constraints.

Definition 10: Set of constraint satisfying permutations associated with a

hash key value H
[i]
P . Let MAC

π∗()
H () and Verify

π∗()
H () be sign and verification

oracles of a MAGIC mode and A∗ an adversary attacking these oracles,
as in Lemma 5. Let q[1], . . . , q[i] and O(q[1]), . . . ,O(q[i]) be a set of queries

and their responses satisfying the constraints N (1), . . . ,N (i). Let H[i]
P be

the set of possible hash key values associated with query index i, set H, and

the constraints, as defined in Corollary 5. Finally, let H
[i]
P be an element of

H[i]
P . The set of “constraint satisfying permutations” C

H
[i]
P
∈ P, associated

with the constraints and element H
[i]
P is defined as:

33

C
H

[i]
P

= { ρ ∈ P, ρ : {0, 1}N → {0, 1}N :(
∀ q(is)s ∈ Q[i]

s : MAC
ρ()

H
[i]
P

(q
(is)
s) = MAC

π∗()
H (q

(is)
s)

)
∧
(
∀ q(iv)v = (D(iv), C

(iv)
1 , . . . , C

(iv)
n , T (iv)) ∈ Q[i]

v :

Verify
ρ()

H
[i]
P

(q
(iv)
v , Tth) =

(accept, Str(C+
1 , . . . , C

+
n), T (iv)), if

(C
(iv)
1 , . . . , C

(iv)
n) ∈ θcipher(C+

1 , . . . , C
+
n)

∧ T (iv) = MAC
π∗()
H (D(iv), C+

1 , . . . , C
+
n)

(accept, Str(C
(iv)
1 , . . . , C

(iv)
n), T+), if

T (iv) = ϑ
π∗()
H (T+, Tth)

∧ T+ = MAC
π∗()
H (D(iv), C

(iv)
1 , . . . , C

(iv)
n)

(reject,⊥,⊥), otherwise)
}

(73)

where Q
[i]
s and Q

[i]
v are the sets of sign and verification queries issued by

adversary A∗ up to query q[i], respectively.

The three cases for the responses coming from Verify
ρ()

H
[i]
P

(), in the defi-

nition above, correspond to the events that the ciphertext blocks of query

q
(iv)
v are corrected, that the tag value of q

(iv)
v is corrected, and that no error

correction is performed on q
(iv)
v . In none of the cases the ECC functionality

of MAGIC is exploited.
Our proof strategy is to demonstrate that for every possible Galois Hash

key value H
[i]
P ∈ H

[i]
P , which may be different than the hash key H, there

exists an associated non-empty set C
H

[i]
P

of equally probable permutations

ρ() ∈ C
H

[i]
P

, any of which, if combined with the hash key value H
[i]
P forms a

pair of “alternative” MAGIC mode oracles MAC
ρ()

H
[i]
P

() and Verify
ρ()

H
[i]
P

(), where

these oracles provide identical responses to adversary A∗’s queries q[1], . . . q[i]

as the attacked oracles, given that no security critical events occur up to
query q[i]. Once this is demonstrated, the security bounds of the MAGIC
mode follow from the computed cardinalities of the set of possible Galois

hash keys H[i]
P , and of the sets C

H
[i]
P

of the blinding permutations associated

with every possible hash key H
[i]
P ∈ H

[i]
P .

Proposition 2: The set C
H

[i]
P
∈ P defined in Definition 10 is non-empty:

34

C
H

[i]
P
6= Ø (74)

The implication Proposition 2 has on the security of the MAGIC mode
is that, at the time query q[i] completes, and if no security critical events
occur up to this query, then there is a plurality of combinations of hash
key values and blinding permutations, any of which may be the pair (H,π∗)
from adversary A∗’s point of view.

Proof of Proposition 2: To prove Proposition 2, we suggest a procedure
for selecting permutations from the set P, so that the selected permutations
form the non-empty set C

H
[i]
P

of Definition 10 above.

Preliminaries

To do this, we first consider the set Q
[i]
s of sign queries issued up to q[i]. We

denote a sign query q
(j)
s ∈ Q[i]

s by (D(j), C
(j)
1 , . . . , C

(j)
n). Index j ∈ [1, |Q[i]

s |]
indicates the order of issue of q

(j)
s inside the set Q

[i]
s . For this query, and for

a Galois Hash key value H
[i]
P ∈ H

[i]
P , we also consider the output g

(j)

H
[i]
P

of the

Galois Hash transformation computed using key H
[i]
P :

g
(j)

H
[i]
P

= D(j) + C
(j)
1 ·H

[i]
P + . . .+ C(j)

n ·H
[i]n

P (75)

Next, we consider the set S
H

[i]
P

of mappings from Galois Hash transformation

outputs g
(j)

H
[i]
P

to sign query responses MAC
π∗()
H ← O(q

(j)
s) defined for every

index j ∈ [1, |Q[i]
s |]:

S
H

[i]
P

= {g(j)
H

[i]
P
→ O(q(j)s) : q(j)s ∈ Q[i]

s , j ∈ [1, |Q[i]
s |] } (76)

As there are |Q[i]
s | elements in S

H
[i]
P

, there are (2N −|Q[i]
s |)! permutations

in P which specify the mappings of the set S
H

[i]
P

. However, we cannot

conclusively say that all (2N − |Q[i]
s |)! permutations are elements of the set

C
H

[i]
P

, because we have not yet taken into account the constraints imposed

on the verification query responses in Definition 10.

On compatible decrypted tag values

To take these constraints into account, we consider the set Q
[i]
v of verification

queries issued up to q[i]. We refer to a verification query q
(j)
v ∈ Q

[i]
v as

(D(j), C
(j)
1 , . . . , C

(j)
n , T (j)). Index j ∈ [1, |Q[i]

v |] indicates the order of issue of

q
(j)
v inside the set Q

[i]
v . We also use the notation g

(j)

H
[i]
P

to refer to the Galois

35

Hash transformation output computed from authenticated data D(j) and

ciphertext blocks C
(j)
1 , . . . , C

(j)
n , using the hash key value H

[i]
P .

If query q
(j)
v satisfies Definition 10, and if the query cannot be corrected

by the MAGIC mode, then the response O(q
(j)
v), coming from the verifi-

cation oracle, should be equal to (reject,⊥,⊥). We investigate which de-
crypted tag values support this property, i.e., cause procedure Verify() to

return (reject,⊥,⊥). For this purpose, we define set V(j)
H

[i]
P

as the set of the

decrypted tag values, which are “compatible” with query q
(j)
v ∈ Q[i]

v and the

hash key value H
[i]
P , given that query q

(j)
v is a reject query, or does not abuse

the ECC functionality of MAGIC:

V(j)
H

[i]
P

= {v ∈ {0, 1}N : HW((g
(j)

H
[i]
P

+ v) ·H [i]−k

P) > Tth, k ∈ [1, n]} (77)

Set V(j)
H

[i]
P

contains all those values v which, if considered as results of the

decryption of the tag value T (j), lead to the computation of syndrome values

(g
(j)

H
[i]
P

+ v) and error location indicators (g
(j)

H
[i]
P

+ v) · H [i]−k

P , k ∈ [1, n], that

cause procedure LocateError() to return ⊥. Thus, if a blinding permutation

maps any of the elements of V(j)
H

[i]
P

to the tag value T (j), it never causes

procedure Verify() to execute lines 8-9 of its pseudocode, thus abusing the

ECC functionality of the MAGIC mode. By the definition of V(j)
H

[i]
P

, the

cardinality of this set satisfies:

|V(j)
H

[i]
P
| ≥ 2N − n(n+ 1)

2
· |ET | (78)

We also refer to sets of decrypted tag values that are compatible with a

plurality of verification queries. We consider a subset of verification queries

Q
[i]
v,EQTj ⊆ Q

[i]
v , which contains all those queries from the set Q

[i]
v , the tag

values of which are equal to the tag value of query q
(j)
v :

Q
[i]
v,EQTj = { q(j

′)
v = (D(j′), C

(j′)
1 , . . . , C

(j′)
n , T (j′)), q

(j′)
v ∈ Q[i]

v : T (j′) = T (j) }

(79)

We define the set V
(j)

H
[i]
P

of decrypted tag values that are compatible with the

subset Q
[i]
v,EQTj of Q

[i]
v , and with the hash key value H

[i]
P ∈ H

[i]
P , as the set:

V
(j)

H
[i]
P

=
⋂

j′: q
(j′)
v ∈Q[i]

v,EQTj

V(j
′)

H
[i]
P

(80)

36

By the definitions of sets V
(j)

H
[i]
P

and V(j)
H

[i]
P

, the cardinality of set V
(j)

H
[i]
P

satisfies:

|V(j)

H
[i]
P
| ≥ 2N − n(n+ 1)

2
· |Q[i]

v | · |ET | (81)

Furthermore, from the query budget constraint |Q| < 2N+1

n(n+1)|ET |+4 discussed

in Section 3.2 and from inequality (81), it is deduced that any set V
(j)

H
[i]
P

defined in (80) for q
(j)
v ∈ Q[i]

v and H
[i]
P ∈ H

[i]
P is non-empty.

Set V
(j)

H
[i]
P

contains all those values v which, if considered as results of

the decryption of the tag value T (j), lead to the computation of syndromes

(g
(j)

H
[i]
P

+ v) and error location indicators (g
(j)

H
[i]
P

+ v) · H [i]−k

P , k ∈ [1, n] that

cause procedure LocateError() to return ⊥, in the event there is a set Q
[i]
v,EQTj

of verification queries which include the same tag T (j). Thus, a blinding

permutation needs to only map an element of V
(j)

H
[i]
P

to the tag value T (j) to

ensure that lines 8-9 of the Verify() pseudocode are never executed during

the completion of the queries of the set Q
[i]
v,EQTj .

On compatible encrypted Galois Hash values

Next, we define the set U (j)

H
[i]
P

of encrypted Galois Hash values, which are

“compatible” with the hash key value H
[i]
P and query q

(j)
v ∈ Q[i]

v :

U (j)

H
[i]
P

= {u ∈ {0, 1}N : HW(u+ T (j)) > Tth} (82)

Set U (j)

H
[i]
P

contains all those values u which, if considered as results of the

encryption of the Galois Hash transformation output computed from au-

thenticated data D(j) and ciphertext blocks C
(j)
1 , . . . , C

(j)
n , cause procedure

CanCorrectParity() to return false. Thus, if a blinding permutation maps the

Galois Hash transformation output g
(j)

H
[i]
P

computed from query q
(j)
v to any

of the elements of the set U (j)

H
[i]
P

, it never causes procedure Verify() to re-

turn (accept, s1, s2), for any pair of strings s1, s2. This is because procedure
Verify() never executes lines 12-13 of its pseudocode. By the definition of

U (j)

H
[i]
P

, the cardinality of this set satisfies:

|U (j)

H
[i]
P
| = 2N − |ET | (83)

We further refer to sets of encrypted Galois Hash values that are com-

patible with a plurality of verification queries. We consider a subset of veri-

fication queries Q
[i]

v,H
[i]
P ,EQGj

⊆ Q[i]
v , which contains all those queries from the

37

set Q
[i]
v , the Galois Hash transformation outputs of which are equal to the

Galois Hash transformation output of query q
(j)
v , provided that this output

is computed using key H
[i]
P :

Q
[i]

v,H
[i]
P ,EQGj

= { q(j
′)

v ∈ Q[i]
v : g

(j′)

H
[i]
P

= g
(j)

H
[i]
P
} (84)

We define the set U
(j)

H
[i]
P

of decrypted tag values that are compatible with the

subset Q
[i]

v,H
[i]
P ,EQGj

of Q
[i]
v , and with the hash key value H

[i]
P ∈ H

[i]
P , as the

set:

U
(j)

H
[i]
P

=
⋂

j′: q
(j′)
v ∈Q[i]

v,H
[i]
P ,EQGj

U (j′)

H
[i]
P

(85)

By the definitions of sets U
(j)

H
[i]
P

and U (j)

H
[i]
P

, the cardinality of set U
(j)

H
[i]
P

satisfies:

|U(j)

H
[i]
P
| ≥ 2N − |Q[i]

v | · |ET | (86)

Furthermore, from the query budget constraint |Q| < 2N+1

n(n+1)|ET |+4 discussed

in Section 3.2 and from inequality (86), it is deduced that any set U
(j)

H
[i]
P

defined by (85) is non-empty.

The procedure SelectPermutations()

Now that we defined the sets V
(j)

H
[i]
P

and U
(j)

H
[i]
P

, associated with the verifica-

tion query q
(j)
v ∈ Qv, we propose a method for computing the elements of a

non-empty set C
H

[i]
P

satisfying Definition 10. This is procedure SelectPermu-

tations() below. Procedure SelectPermutations() invokes procedures Obtain-
VMappings(), ObtainUMappings(), CombineMappings() and MappingsToPer-
mutations(). Procedures ObtainVMappings()and ObtainUMappings() in turn,
invoke procedures IsCiphertextCorrectable() and IsCiphertagCorrectable().

Procedures ObtainVMappings() and ObtainUMappings() support the core
of the functionality of SelectPermutations(). Procedures ObtainVMappings()

and ObtainUMappings() accept as input a verification query q
(j)
v , a hash key

value H
[i]
P , the sets of sign and verification queries Q

[i]
s and Q

[i]
v , the secrets

of the MAGIC mode H and π∗(), the attacked sign oracle MAC
π∗()
H (), and

a set of tag values Ttaken or Galois Hash outputs gtaken for which mappings
have already been defined.

38

IsCiphertextCorrectable(q
(j)
v ,MAC

π∗()
H ())

1. (D(j), C
(j)
1 , . . . , C

(j)
n , T (j))← q

(j)
v

2. if exists (C+
1 , . . . , C

+
n) ∈ {0, 1}n·N such that

3. (C
(j)
1 , . . . , C

(j)
n) ∈ θcipher(C+

1 , . . . , C
+
n)

4. and T (j) = MAC
π∗()
H (D(iv), C+

1 , . . . , C
+
n)

5. then
6. return (true,Str(C+

1 , . . . , C
+
n))

7. else
8. return (false,⊥)

IsTagCorrectable(q
(j)
v , H, π∗(),MAC

π∗()
H ())

1. (D(j), C
(j)
1 , . . . , C

(j)
n , T (j))← q

(j)
v

2. if exists T+ ∈ {0, 1}N such that

3. T (j) = ϑ
π∗()
H (T+, Tth)

4. and T+ = MAC
π∗()
H (D(j), C

(j)
1 , . . . , C

(j)
n)

5. then
6. return (true,Str(T+))
7. else
8. return (false,⊥)

ObtainVMappings(q
(j)
v , H

[i]
P , Q

[i]
s , Q

[i]
v , H, π∗(),MAC

π∗()
H (), Ttaken)

1. G
H

[i]
P
← {g(j

′)

H
[i]
P

, q
(j′)
s ∈ Q[i]

s , j′ ∈ [1, |Q(i)
s |]}

2. V
(j)

H
[i]
P
← set computed from (80) on q

(j)
v , Q

[i]
v , H

[i]
P

3. (b, s)← IsCiphertextCorrectable(q
(j)
v ,MAC

π∗()
H ())

4. if b = true
5. return Ø
6. if T (j) ∈ Ttaken
7. return Ø
8. else
9. Ttaken ← Ttaken ∪ {T (j)}
10. return {v → T (j) : v ∈ (V

(j)

H
[i]
P
− G

H
[i]
P

)}

ObtainUMappings(q
(j)
v , H

[i]
P , Q

[i]
s , Q

[i]
v , H, π∗(),MAC

π∗()
H (), gtaken)

1. (D(j), C
(j)
1 , . . . , C

(j)
n , T (j)) ← q

(j)
v

2. g
(j)

H
[i]
P
← D(j) + C

(j)
1 ·H [i]

P + . . .+ C
(j)
n ·H [i]n

P

3. T [i] ← {t = MAC
π∗()
H (q

(j′)
s), q

(j′)
s ∈ Q[i]

s , j′ ∈ [1, |Q[i]
s |]}

4. U
(j)

H
[i]
P
← set computed from (85) on q

(j)
v , Q

[i]
v , H

[i]
P

5. (b, s)← IsCiphertextCorrectable(q
(j)
v ,MAC

π∗()
H ())

6. if b = true
7. return Ø

8. (b, s)← IsTagCorrectable(q
(j)
v , H, π∗(),MAC

π∗()
H ())

9. if b = true
10. return Ø

11. if g
(j)

H
[i]
P
∈ gtaken

39

12. return Ø
13. else

14. gtaken ← gtaken ∪ {g(j)
H

[i]
P
}

15. return {g(j)
H

[i]
P
→ u : u ∈ (U

(j)

H
[i]
P
− T [i])}

CombineMappings({m1, . . . ,mnm
}, nm)

1. MC ← {{µ1, . . . , µnm
} : µ1 ∈ m1, µ2 ∈ m2, . . . , µnm

∈ mnm
,

∀ ν, ξ ∈MC , ν 6= ξ,
∀ {(v1 → u1), . . . , (vnm

→ unm
)} ∈MC ,

@ (im, i
′
m) : vim = vi′m ∨ uim = ui′m}

2. return MC

MappingsToPermutations(m)
1. MP ← {π ∈ P: ∀(u, v) ∈ m : π(u) = v}
2. return MP

SelectPermutations(H
[i]
P , H, π∗(), MAC

π∗()
H (),Verify

π∗()
H (), Q

[i]
s , Q

[i]
v)

1. C
H

[i]
P
← Ø

2. S
H

[i]
P
← set computed from (76) on H

[i]
P , MAC

π∗()
H (), and Q

[i]
s

3. gtaken ← {g(j
′)

H
[i]
P

, q
(j′)
s ∈ Q[i]

s , j′ ∈ [1, |Q(i)
s |]}

4. Ttaken ← {t = MAC
π∗()
H (q

(j′)
s), q

(j′)
s ∈ Q[i]

s , j′ ∈ [1, |Q[i]
s |]}

5. MCOMPAT ← Ø
6. nCOMPAT ← 0

7. for j ← 1 to |Q[i]
v |

8. do q
(j)
v ← j-th element of Q

[i]
v

9. µj ← ObtainVMappings(q
(j)
v , H

[i]
P , Q

[i]
s , Q

[i]
v , H, π∗(),MAC

π∗()
H (), Ttaken)

10. if µj 6= Ø
11. MCOMPAT ← MCOMPAT ∪ {µj}
12. nCOMPAT ← nCOMPAT + 1

13. µj ← ObtainUMappings(q
(j)
v , H

[i]
P , Q

[i]
s , Q

[i]
v , H, π∗(),MAC

π∗()
H (), gtaken)

14. if µj 6= Ø
15. MCOMPAT ← MCOMPAT ∪ {µj}
16. nCOMPAT ← nCOMPAT + 1
17. MDISTINCT ← CombineMappings(MCOMPAT, nCOMPAT)
18. for j ← 1 to |MDISTINCT|
19. do ξj ← j-th element of MDISTINCT

20. MPERM,j ← MappingsToPermutations(S
H

[i]
P
∪ ξj)

21. C
H

[i]
P
← C

H
[i]
P
∪MPERM,j

22. if MDISTINCT = Ø
23. C

H
[i]
P
← MappingsToPermutations(S

H
[i]
P

)

24. return C
H

[i]
P

This is how procedure ObtainVMappings() works. First, in lines 1-2 it
performs variable initializations. Then, in line 3 it invokes procedure Is-

40

CiphertextCorrectable(). Procedure IsCiphertextCorrectable() checks whether
the ciphertext blocks of query q(j) are correctable by the MAGIC mode.
If this is the case, ObtainVMappings() exits in line 5, returning Ø. This
is because, if no ECC function exploitation event occurs up to q[i], and if

IsCiphertextCorrectable() returns true, then the input query q
[j]
v to Obtain-

VMappings() is a corrupted replay of a sign query q
(j′)
s . The mappings asso-

ciated with all sign queries are separately taken into account by procedure
SelectPermutations(), which invokes ObtainVMappings().

Next, procedure ObtainVMappings() checks whether the input tag T (j) is
in the set Ttaken. If this is the case, the mappings associated with tag value
T (j) have already been taken into account. Such mappings have either been

computed for a different verification query q
(j′)
v ∈ Q

[i]
v,EQTj that includes

tag T (j), or for a different sign query q
(j′)
s , the response of which is T (j).

In either of the cases, ObtainVMappings() returns Ø in line 7. If T (j) is

not in the set Ttaken, procedure ObtainVMappings() updates Ttaken in line 9,

and subsequently, forms mappings between elements of the set V
(j)

H
[i]
P

and

the tag T (j). All elements of V
(j)

H
[i]
P

are considered in the mappings, apart

from those of set G
H

[i]
P

computed in line 1. This is the set of the Galois

Hash outputs associated with the sign queries. These values do not map
to T (j), because every sign query returns an element of Ttaken, the flow of

procedure ObtainVMappings() has determined that T (j) /∈ Ttaken, and the
blinding permutation is a bijective function.

Procedure ObtainUMappings() is similar to ObtainVMappings(). In lines
1-4 it performs variable initializations. Then, in lines 5 and 8 it invokes
procedures IsCiphertextCorrectable() and IsTagCorrectable() to check whether

q
(j)
v is a corrupted replay of a sign query q

(j′)
s ∈ Q

[i]
s . If this is the case,

ObtainUMappings() exits returning Ø, for the same reasons procedure Ob-
tainVMappings() exits. This is done in lines 7 and 10 respectively. The rea-
son why procedure ObtainUMappings() invokes IsTagCorrectable() and Ob-

tainVMappings() doesn’t is because, if a verification query q
(j)
v contains a

correctable tag and if such tag is corrected, then for this query procedure
LocateError() of the MAGIC verification oracle must return ⊥. The per-
mutations that cause procedure LocateError() to return ⊥ are those that

map elements of V
(j)

H
[i]
P

to tag T (j). So, in order to support such queries,

procedure ObtainVMappings() must return a non-empty set of mappings

originating from elements of V
(j)

H
[i]
P

. In this case, a check on the output of

IsTagCorrectable() would cause procedure ObtainVMappings() to incorrectly
return Ø, and is thus omitted.

Next, ObtainUMappings() checks whether the Galois Hash output g
(j)

H
[i]
P

computed from the input ciphertext is in the set gtaken. If this is the case,

41

this means that the mappings associated with this Galois Hash output have
already been computed as part of responding to a different sign or verifica-

tion query. In this case, ObtainUMappings() returns Ø in line 12. If g
(j)

H
[i]
P

is not in the set gtaken, procedure ObtainUMappings() updates gtaken in line

14, and subsequently, forms mappings between g
(j)

H
[i]
P

and elements of the

set U
(j)

H
[i]
P

. Set U
(j)

H
[i]
P

contains the encrypted Galois Hash outputs that are

compatible with query q(j) and g
(j)

H
[i]
P

. As in the execution of procedure Ob-

tainVMappings(), there are some mappings which are excluded. These are

mappings between the Galois Hash output g
(j)

H
[i]
P

and the tags returned by

sign queries. The tags returned by sign queries are elements of the set T [i]

computed in line 3. These mappings are excluded, because each sign query

is associated with a mapping between an element of gtaken and an element

of T [i], g
(j)

H
[i]
P
/∈ gtaken, and the blinding permutation is a bijective function.

Another procedure invoked by SelectPermutations() is CombineMappings().
Procedure CombineMappings() accepts as input a set {m1, . . . ,mnm} of nm
sets of mappings m1, . . . ,mnm . Each element mj , j ∈ [1, nm], is a set of
alternative mappings either from the same origin or to the same destina-
tion. The elements of each set mj are returned via either invocations to
ObtainVMappings() or invocations to ObtainUMappings(). Procedure Com-
bineMappings() returns a new set MC . Each element {µ1, . . . , µnm} of MC

is a set containing nm mappings, where each mapping µj , j ∈ [1, nm], is
obtained from its corresponding set mj .

The elements of the set MC are all possible sets of mappings produced
this way that satisfy two conditions. First, no two elements of MC are iden-
tical. Second, the mappings of each element {µ1, . . . , µnm} are supported by
bijective functions, i.e., no two mappings of {µ1, . . . , µnm} are from the same
origin or to the same destination. Essentially, procedure CombineMappings
rearranges the sets of mappings computed via invocations to ObtainVMap-
pings() and ObtainUMappings(), so that each returned set {µ1, . . . , µnm} con-

tains at most two mappings associated with every verification query of Q
[i]
v .

A first mapping is obtained via an invocation to ObtainVMappings() and a
second mapping is obtained via an invocation to ObtainUMappings(). Fur-
thermore, as we establish below, the mappings of each set {µ1, . . . , µnm} cor-
respond to bijective functions which, if employed as blinding permutations,
never cause ECC function exploitation or blind forgery events to occur.

We proceed with the flow of procedure SelectPermutations(). Initially,
procedure SelectPermutations() performs variable initializations, in lines 1-
6. Then, in lines 7-16, it executes a for-loop, iterating over every verification

query of the set Q
[i]
v . For every verification query of the set Q

[i]
v , it invokes

ObtainVMappings(), in line 9, and ObtainUMappings(), in line 13. The non-
empty responses are included into set MCOMPAT, in lines 11 and 15. When

42

the for-loop finishes in line 17, set MCOMPAT and its cardinality nCOMPAT are
passed into procedure CombineMappings().

The last part of procedure SelectPermutations() is the for-loop of lines
18-21. In this loop, each set of mappings ξj returned by procedure Com-
bineMappings() is augmented with the elements of the set S

H
[i]
P

computed in

line 2. This is the set of mappings between Galois Hash outputs and sign
query responses computed from (76), and associated with the sign queries of

Q
[i]
s . Each augmented set S

H
[i]
P
∪ ξj is passed into procedure MappingsToP-

ermutations(). No two sets passed into MappingsToPermutations() are the
same. Procedure MappingsToPermutations() returns the permutations of the
set MPERM,j ⊆ P that support the mappings S

H
[i]
P
∪ ξj passed as input. The

union of all sets of permutations returned by MappingsToPermutations() is
the set C

H
[i]
P

returned by procedure SelectPermutations(). Additionally, lines

22-23 cover the corner case where no mappings are obtained via invocations
to ObtainVMappings() and ObtainUMappings(). This may happen, for in-
stance, if all queries are sign queries.

Establishing that SelectPermutations() returns a non-empty response

The correctness of Proposition 2 follows from the description of procedure
SelectPermutations(). In what follows, we show that the set C

H
[i]
P

returned

by SelectPermutations() is non-empty if at least one of Q
[i]
s and Q

[i]
v is non-

empty, and the query budget constraint of section 3.2 are satisfied. If Q
[i]
s

is non-empty, then procedure MappingsToPermutations() is always invoked
either in line 20 or in line 23 of procedure SelectPermutations() returning
some non-empty set of permutations.

On the other hand, if Q
[i]
s is empty and Q

[i]
v is non-empty then all verifi-

cation queries must be reject queries, according to the assumption that no
security critical events occur up to q[i]. For all reject queries that include the
same tag value T (j), there is one for which the invocation to procedure Ob-
tainVMappings() returns a non-empty set. This is the invocation for which
the tag value T (j) passed is not in the set Ttaken. The check is performed
in line 6 of ObtainVMappings(). Similarly, for reject queries that include

ciphertext blocks of the same Galois Hash combination g
(j)

H
[i]
P

, there is one

for which the invocation to procedure ObtainUMappings() returns a non-

empty set. This is the invocation for which the value g
(j)

H
[i]
P

is not in the set

gtaken. The check is performed in line 11 of procedure ObtainUMappings().

Based on these observations, we establish that SelectPermutations() returns

a non-empty response, if Q
[i]
s is empty and Q

[i]
v is non-empty, by showing

that procedure CombineMappings(), invoked by SelectPermutations() in line
17 indeed forms a non-empty response MC , as defined in line 1 of its pseu-
docode. This is when accepting as input a non-empty set {m1, . . . ,mnm}

43

of cardinality nm. Set {m1, . . . ,mnm} contains the non-empty responses
from the invocations to ObtainVMappings() and ObtainUMappings() made
by SelectPermutations() in lines 9 and 13 respectively.

For this purpose, we make use of the budget constraint of Section 3.2.
The budget constraint (46) of 3.2 can be written as:

2N − n(n+ 1)

2
· |Q| · |ET | > 2|Q| (87)

Inequality (87), when combined with inequalities (81) and (86) results in

the relations |V(j)

H
[i]
P
| ≥ 2|Q| and |U(j)

H
[i]
P
| ≥ 2|Q|, which hold for every q

(j)
v ∈

Q
[i]
v . From the relations, it follows that the responses returned from the

invocations to ObtainVMappings() and ObtainUMappings(), are not only non-

empty, but have cardinality greater than 2|Qv|+ |Qs|, or when Q
[i]
s is empty,

greater than 2|Q|.
Since these responses form the non-empty sets m1, . . . ,mnm passed as

input to CombineMappings(), and nm ≤ 2|Q|, it can be deduced that proce-
dure CombineMappings() succeeds in forming at least one set that satisfies
the two conditions of its pseudocode. Indeed, the first condition, which
dictates that every two returned sets of mappings should be different, is
trivially satisfied if procedure CombineMappings() returns only the unique
sets that satisfy its second condition. The second condition, which dictates
that the mappings in each returned set should be the mappings of a bijective
function, is also satisfied given the query budget constraint discussed.

The mappings of each set mi, i ∈ [1, nm] from {m1, . . . ,mnm}, which
are obtained via invocations to ObtainVMappings(), are from origins which
may be possibly overlapping with the origins of mappings of another set
mj , j ∈ [1, nm], j 6= i, also obtained via invocations to ObtainVMappings().
The mappings of sets mi, mj , however, should have different destinations.
Similarly, the mappings of each set mk, k ∈ [1, nm] from {m1, . . . ,mnm},
obtained via invocations to ObtainUMappings() map origins to destinations
which may be possibly overlapping with the destinations of mappings of an-
other set ml, l ∈ [1, nm], k 6= l, also obtained via invocations to ObtainUMap-
pings(). The mappings of sets mk, ml should have different origins. Because
of the possibility of these origin and destination overlaps, we need condition
|mim | > 2|Q| ≥ nm to hold. It is easy to see that this condition guarantees
that, for every im ∈ [1, nm], there is always a different source or destination
to select from, when forming the mappings of at least one set {µ1, . . . , µnm}
included in the response of CombineMappings(). This is true even if all sets
of {m1, . . . ,mnm} contain mappings with origins or destinations which are
in common between sets. Therefore, the response from SelectPermutations()
is always non-empty.

44

Completing the proof

We complete the proof of Proposition 2, showing that all permutations re-
turned by procedure SelectPermutations() satisfy Definition 10. First, all
permutations returned by SelectPermutations() support the mappings of the

set S
H

[i]
P

. This is the set that maps the Galois hash outputs computed from

the ciphertext blocks of the queries of Q
[i]
s to their corresponding responses

coming from the oracle MAC
π∗()
H (). The Galois hash outputs are computed

using keyH
[i]
P . The permutations support the mappings of S

H
[i]
P

because such

mappings are included in every invocation to procedure MappingsToPermu-
tations(), in lines 20 and 23 of the pseudocode. Therefore, any permutation
ρ() in the set C

H
[i]
P

returned by SelectPermutations(), if combined with the

hash key H
[i]
P , forms an oracle MAC

ρ()

H
[i]
P

() that responds to the sign queries

of the set Q
[i]
s in an identical manner as the attacked oracle MAC

π∗()
H ().

Next, we consider the verification queries of the set Q
[i]
v . As no security

critical events occur up to query q[i], the queries of Q
[i]
v are one of queries

that include correctable ciphertext blocks, queries that include correctable
tags, or reject queries.

If a verification query q
(j)
v = (D(j), C

(j)
1 , . . . , C

(j)
n , T (j)) ∈ Q[i]

v includes ci-

phertext blocks C
(j)
1 , . . . , C

(j)
n that are correctable, then such query is a cor-

rupted replay of a sign query q
(j′)
s = (D(j), C

(j′)
1 , . . . , C

(j′)
n) ∈ Q[i]

s . As the tag

returned by MAC
π∗()
H () on input (D(j), C

(j′)
1 , . . . , C

(j′)
n) is T (j), every permu-

tation ρ() ∈ C
H

[i]
P

maps the Galois Hash transformation of (D(j), C
(j′)
1 , . . .,

C
(j′)
n) to T (j). Similarly, every verification oracle Verify

ρ()

H
[i]
P

(), formed by com-

bining ρ() with the hash key H
[i]
P , decrypts the supplied tag value T (j) to the

Galois Hash of (D(j), C
(j′)
1 , . . . , C

(j′)
n). As only one block from C

(j′)
1 , . . . , C

(j′)
n

differs from a corresponding block from C
(j)
1 , . . . , C

(j)
n by at most Tth bits, the

flow of every procedure Verify
ρ()

H
[i]
P

() proceeds exactly as the flow of Verify
π∗()
H ()

successfully correcting blocks C
(j)
1 , . . . , C

(j)
n .

If a verification query q
(j)
v = (D(j), C

(j)
1 , . . . , C

(j)
n , T (j)) ∈ Q

[i]
v includes

a tag value T (j) which is correctable, then such query is also a corrupted

replay of a sign query q
(j′)
s ∈ Q[i]

s . In this case, the sign query q
(j′)
s includes

the same authenticated data and ciphertext blocks (D(j), C
(j)
1 , . . . , C

(j)
n) as

query q
(j)
v . The response coming from MAC

π∗()
H () on input q

(j′)
s is denoted by

T (j′). On input q
(j)
v , the verification oracle Verify

ρ()

H
[i]
P

() decrypts the supplied

tag value T (j) to an element from the set V
(j)

H
[i]
P

. Such decrypted tag value

causes procedure LocateError() invoked by Verify
ρ()

H
[i]
P

() to return ⊥. Thus,

the flow of procedure Verify
ρ()

H
[i]
P

() reaches line 11. As the mapping between

45

the Galois Hash value computed from (D(j), C
(j)
1 , . . . , C

(j)
n) and T (j′) is sup-

ported by ρ(), being a mapping associated with a sign query, procedure

Verify
ρ()

H
[i]
P

() invokes CanCorrectParity() with inputs T (j), T (j′) and Tth in line

12. Since T (j′) is the corrected version of tag T (j), the Hamming weight dis-

tance between T (j) and T (j′) is bounded by Tth. Thus, procedure Verify
ρ()

H
[i]
P

()

corrects the tag value T (j) in the same way as procedure Verify
π∗()
H () does.

If a verification query q
(j)
v ∈ Q[i]

v is rejected by oracle Verify
π∗()
H (), it is

also rejected by oracle Verify
ρ()

H
[i]
P

(). On input q
(j)
v , the verification oracle

Verify
ρ()

H
[i]
P

() decrypts the supplied tag value T (j) to an element from the set

V
(j)

H
[i]
P

. Such decrypted tag value causes procedure LocateError() invoked by

Verify
ρ()

H
[i]
P

() to return ⊥. Thus, the flow of procedure Verify
ρ()

H
[i]
P

() reaches

line 11. In this line, oracle Verify
ρ()

H
[i]
P

() encrypts the Galois Hash output,

computed from the authenticated data and ciphertext blocks of q
(j)
v , to an

element of the set U
(j)

H
[i]
P

. Such encrypted Galois Hash value causes pro-

cedure CanCorrectParity() to return false. Thus oracle Verify
ρ()

H
[i]
P

() returns

(reject,⊥,⊥). We conclude that all permutations returned by SelectPermu-

tations() satisfy Definition 10. Hence:

C
H

[i]
P
⊆ C

H
[i]
P

(88)

Since C
H

[i]
P
6= Ø, it must also hold that C

H
[i]
P
6= Ø. This completes the proof

of Propositon 2.

Corollary 6: Let MAC
π∗()
H () and Verify

π∗()
H () be sign and verification oracles

of a MAGIC mode and A∗ an adversary attacking these oracles, as in
Lemma 5. Let q[1], . . . , q[i] and O(q[1]), . . . ,O(q[i]) be a set of queries and

their responses satisfying the constraints N (1), . . . ,N (i). Let H[i]
P be a set

of possible hash key values associated with query index i, set H, and the

constraints, as defined in Corollary 5. Let H
[i]
P an element of H[i]

P . Finally
let C

H
[i]
P
∈ P be the set of constraint satisfying permutations associated

with the constraints and element H
[i]
P , as defined by Definition 10. Then

the response C
H

[i]
P

of procedure SelectPermutations() on inputs H
[i]
P , H, π∗(),

MAC
π∗()
H (),Verify

π∗()
H (), Q

[i]
s and Q

[i]
v is equal to the set of constraint satisfying

permutations C
H

[i]
P

:

C
H

[i]
P

= C
H

[i]
P

(89)

46

where Q
[i]
s and Q

[i]
v are the sets of sign and verification queries issued by

adversary A∗ up to query q[i].

Proof of Corollary 6: It is sufficient to show that there are no permu-
tations that are not returned by procedure SelectPermutations(), and which
satisfy Definition 10. Permutations that do not support the mappings of the
set S

H
[i]
P

, defined by (76), are not in the set C
H

[i]
P

and are not returned by Se-

lectPermutations() either. So the discussion will focus only on permutations
that support the mappings of the S

H
[i]
P

.

Suppose some permutation ρ() satisfies ρ() ∈ C
H

[i]
P

and ρ() /∈ C
H

[i]
P

. If

all queries are sign queries or verification queries that include correctable
ciphertext blocks, then it is not possible for ρ() to simultaneously satisfy
ρ() ∈ C

H
[i]
P

and ρ() /∈ C
H

[i]
P

, as ρ() supports the mappings of the set S
H

[i]
P

and, as such, is a member of both sets C
H

[i]
P

and C
H

[i]
P

.

Now, let’s suppose that, in addition to the above assumption, at least

one verification query q
(j)
v ∈ Q

[i]
v includes a tag T (j) which is correctable.

Let’s also assume that T (j) is not the response coming from a sign query

to oracle MAC
π∗()
H (). For this query, permutation ρ() maps an element from

the set V
(j)

H
[i]
P

to T (j). The only elements from V
(j)

H
[i]
P

which are excluded

by procedure SelectPermutations() when forming mappings, are those values

which are members of set G
H

[i]
P

, containing the Galois Hash values computed

from the ciphertext blocks of the sign queries. If ρ() is not in the set C
H

[i]
P

,

then ρ() must be necessarily mapping an element g ∈ G
H

[i]
P

to T (j). In this

case, ρ() is not a bijective function, as element g maps to some value other

than T (j), according to the hypothesis that T (j) is not a response coming

from a sign query, and to T (j) simultaneously. On the other hand, if T (j) is

a response coming from a sign query to oracle MAC
π∗()
H (), then the mapping

to T (j) is included in the set S
H

[i]
P

. Since ρ() supports all mappings of S
H

[i]
P

,

ρ() must be in the set C
H

[i]
P

as well as C
H

[i]
P

.

Next, we assume that, in addition to all above assumptions, at least

one verification query q
(j)
v ∈ Q[i]

v is a query rejected by oracle Verify
π∗()
H ().

We also assume that neither the Galois Hash value g
(j)

H
[i]
P

computed using

key H
[i]
P on the authenticated data and ciphertext blocks of q

(j)
v , nor the

tag value T (j) of q
(j)
v collide with any sign query. Permutation ρ() must

be mapping an element from the set (V
(j)

H
[i]
P
− G

H
[i]
P

) to T (j) for the reasons

discussed above. Such mapping is also supported by every permutation

in C
H

[i]
P

. Additionally, it must be mapping the Galois Hash value g
(j)

H
[i]
P

,

associated with q
(j)
v , to an element from the set of compatible encrypted

47

Galois Hash values U
(j)

H
[i]
P

. The only elements from U
(j)

H
[i]
P

which are excluded

by procedure SelectPermutations() are those values of set T [i], which includes

the tags returned by oracle MAC
π∗()
H (), when processing the sign queries of

set Q
[i]
s . If ρ() is not in the set C

H
[i]
P

, then ρ() must be necessarily mapping

g
(j)

H
[i]
P

to an element of T [i]. In this case g
(j)

H
[i]
P

would map to two different values

simultaneously, on in T [i] and one not in T [i], according to the hypothesis

that g
(j)

H
[i]
P

is not the Galois hash output of any sign query. If on the other

hand, either the Galois Hash value g
(j)

H
[i]
P

, or the tag value T (j) of q
(j)
v collide

with a sign query, then the corresponding mappings must be included in the

set S
H

[i]
P

. In these cases, ρ() must be in the set C
H

[i]
P

as well as C
H

[i]
P

, since

ρ() supports the mappings of the S
H

[i]
P

.

Corollary 7: The cardinality of the set C
H

[i]
P
∈ P of Corollary 6 satisfies:

(2N − |Q[i]
s | − 2|Q[i]

v |)! ≤ |CH[i]
P
| ≤ (2N − |Q[i]

s |)! (90)

Proof of Corollary 7: A superset of C
H

[i]
P

is the set of all permutations

that support the mappings of the set S
H

[i]
P

. As there are (2N − |Q[i]
s |)! such

permutations, it must hold that |C
H

[i]
P
| ≤ (2N − |Q[i]

s |)!
The lower bound is established by observing the flow of procedure Se-

lectPermutations(). The cardinality |C
H

[i]
P
| of the response of SelectPermu-

tations() is minimized when procedure CombineMappings() invoked by Se-
lectPermutations() returns set MC containing a single set of mappings. Fur-
thermore, the cardinality |C

H
[i]
P
| is minimized when such set of mappings

has the highest possible number of elements, which is 2|Q[i]
v |. The num-

ber of permutations which support the |Q[i]
s | mappings of the set S

H
[i]
P

and

the 2|Q[i]
v | of the response coming from procedure CombineMappings() is

(2N−|Q[i]
s |−2|Q[i]

v |)! Hence, it must hold that |C
H

[i]
P
| ≥ (2N−|Q[i]

s |−2|Q[i]
v |)!

This concludes the proof of Corollary 7.

Corollary 8: Let MAC
π∗()
H () and Verify

π∗()
H () be sign and verification oracles

of a MAGIC mode and A∗ an adversary attacking these oracles, as in
Lemma 5. Let q[1], . . . , q[i] and O(q[1]), . . . ,O(q[i]) be a set of queries and

their responses satisfying the constraints N (1), . . . ,N (i). Let H[i]
P be a set

of possible hash key values associated with query index i, set H, and the
constraints, as defined in Corollary 5. Finally let C

H
[i]
P
∈ P be the set

of constraint satisfying permutations associated with the constraints and

48

every element H
[i]
P ∈ H

[i]
P , as defined by Definition 10. Then the following

two events are identical:∨
H

[i]
P ∈H

[i]
P

(
H = H

[i]
P ∧ π∗() ∈ C

H
[i]
P

)
=

= q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)
(91)

Corollary 8 follows directly from Definition 10 and Proposition 2.

Based on Proposition 2 and Corollaries 6, 7 and 8, Lemma 7 below estab-
lishes that the secret hash key H of the MAGIC mode can take any value

in the set H[i]
P with non-zero probability and, furthermore, the probability

that H is equal to some element H
[i]
P ∈ H

[i]
P is uniformly bounded.

Lemma 7: On the probability distribution of the hash key value H at the
time query q[i] completes, if no security critical events occur up to this query.

Let MAC
π∗()
H () and Verify

π∗()
H () be sign and verification oracles of a MAGIC

mode and A∗ an adversary attacking these oracles, as in Lemma 5. Let
i ∈ |Qs|+|Qv| be a query index such that no security critical events occur up
to query q[i], and knowledge about queries q[1], . . . , q[i] and their associated

responses O(q[1]), . . . ,O(q[i]) is available. Let also H[i]
P be a set of possible

hash key values associated with query index i and set H, as defined in
Corollary 5. Then, the probability that the secret hash keyH of the MAGIC

mode is equal to some element H
[i]
P ∈ H

[i]
P is uniformly bounded across all

elements of H[i]
P :

Prob[H = H
[i]
P | q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)]

≤ 1

2N − ζ − η|Q| − n
(|Q|

2

) , ∀H [i]
P ∈ H

[i]
P

(92)

where ζ = n(n−1)
2 · |ET |2, η = n(n+1)

2 · |ET | and |ET | =
∑Tth

t=1

(
N
t

)
.

Proof of Lemma 7: To prove Lemma 7, we make use Corollaries 7 and 8
which, in turn, are based on Proposition 2. We begin the proof by consider-

ing the event H = H
[i]
P happening in conjunction with all possible mutually

exclusive events π∗() = ρ(), ρ ∈ C
H

[i]
P

:

49

Prob[H = H
[i]
P | q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)]

=
∑

ρ() ∈ C
H

[i]
P

Prob[H = H
[i]
P ∧ π∗() = ρ() | q[1], . . . ,N (i)] =

=
∑

ρ() ∈ C
H

[i]
P

Prob[H = H
[i]
P ∧ π∗() = ρ() |

∨
h ∈H[i]

P

(H = h ∧ π∗() ∈ Ch)]

(93)

where in the last step we made use of Corollary 8. We proceed by taking
into account the fact that H and π∗() are independently drawn.

∑
ρ() ∈ C

H
[i]
P

Prob[H = H
[i]
P ∧ π∗() = ρ() |

∨
h ∈H[i]

P

(H = h ∧ π∗() ∈ Ch)]

=
∑

ρ() ∈ C
H

[i]
P

Prob[H = H
[i]
P |

∨
h ∈H[i]

P

(H = h ∧ π∗() ∈ Ch)] ·

Prob[π∗() = ρ() |H = H
[i]
P ∧ (

∨
h ∈H[i]

P
(H = h ∧ π∗() ∈ Ch))]

=
∑

ρ() ∈ C
H

[i]
P

Prob[H = H
[i]
P | H ∈ H

[i]
P] ·

Prob[π∗() = ρ() |H = H
[i]
P ∧ π∗() ∈ C

H
[i]
P

]

=
∑

ρ() ∈ C
H

[i]
P

Prob[H = H
[i]
P | H ∈ H

[i]
P] · Prob[π∗() = ρ() | π∗() ∈ C

H
[i]
P

]

= Prob[H = H
[i]
P | H ∈ H

[i]
P]

(94)

Next, we make use of the fact that H is uniformly drawn.

Prob[H = H
[i]
P | H ∈ H

[i]
P] =

1

|H[i]
P |

(95)

The correctness of Lemma 7 follows directly from (93), (94), (95) and Corol-
lary 5.

50

Lemma 8: On the probability distribution of the blinding permutation π∗()
at the time query q[i] completes, if no security critical events occur up to this

query. Let MAC
π∗()
H () and Verify

π∗()
H () be sign and verification oracles of a

MAGIC mode and A∗ an adversary attacking these oracles, as in Lemma
5. Let i ∈ |Qs|+ |Qv| be a query index such that no security critical events
occur up to query q[i], and knowledge about queries q[1], . . . , q[i] and their
associated responses O(q[1]), . . . ,O(q[i]) is available. Then, the probability
that the blinding permutation π∗() of the MAGIC mode is equal to some
permutation ρ() ∈ P is uniformly bounded across all elements of P:

Prob[π∗() = ρ() | q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)]

≤ 1

(2N − 2|Q|)!
, ∀ ρ() ∈ P

(96)

Proof of Lemma 8: LetH[i]
P be a set of possible hash key values associated

with query index i and set H, as defined in Corollary 5. We consider the
event π∗() = ρ() happening in conjunction with all mutually exclusive events

H = H
[i]
P , H

[i]
P ∈ H

[i]
P . We also make use of Corollary 8:

Prob[π∗() = ρ() | q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)]

=
∑

H
[i]
P ∈H

[i]
P

Prob[H = H
[i]
P ∧ π∗() = ρ() |

∨
h ∈H[i]

P

(H = h ∧ π∗() ∈ Ch)]

(97)

Next, we make use of the fact that H and π∗() are independently drawn:

∑
H

[i]
P ∈H

[i]
P

Prob[H = H
[i]
P ∧ π∗() = ρ() |

∨
h ∈H[i]

P

(H = h ∧ π∗() ∈ Ch)]

=
∑

H
[i]
P ∈H

[i]
P

Prob[H = H
[i]
P | H ∈ H

[i]
P] · Prob[π∗() = ρ() | π∗() ∈ C

H
[i]
P

]

(98)

Since π∗() is uniformly drawn and the cardinality of set C
H

[i]
P

, i ∈ [1, |Q|]
satisfies the bounds of Corollary 7, it must hold that:

51

∑
H

[i]
P ∈H

[i]
P

Prob[H = H
[i]
P | H ∈ H

[i]
P] · Prob[π∗() = ρ() | π∗() ∈ C

H
[i]
P

]

≤
∑

H
[i]
P ∈H

[i]
P

Prob[H = H
[i]
P | H ∈ H

[i]
P] · 1

(2N − |Q[i]
s | − 2|Q[i]

v |)!

≤ 1

(2N − 2|Q|)!
(99)

where Q
[i]
s and Q

[i]
v are the sign and verification queries issued by adversary

A∗ up to query q[i]. The correctness of Lemma 8 follows directly from
relations (97), (98) and (99).

The next lemmas demonstrate that the internal state of the MAGIC
mode is uniformly bounded as well.

Lemma 9: On the probability distribution of a decrypted tag value π∗
−1

(t),
associated with a tag value t that has never been queried before, given that no

security critical events occur up to query q[i]. Let MAC
π∗()
H () and Verify

π∗()
H ()

be sign and verification oracles of a MAGIC mode and A∗ an adversary
attacking these oracles, as in Lemma 5. Let i ∈ |Qs|+ |Qv| be a query index
such that no security critical events occur up to query q[i], and knowledge
about queries q[1], . . . , q[i] and their associated responses O(q[1]), . . . ,O(q[i])

is available. Let Q
[i]
s and Q

[i]
v be the sets of sign and verification queries

issued by A∗ up to query q[i]. Finally, let t be a response from the sign

oracle MAC
π∗()
H (), such that there is no sign query q

(j)
s ∈ Q

[i]
s for which

O(q
(j)
s) = t and no verification query q

(j)
v = (D(j), C

(j)
1 , . . . , C

(j)
n , T (j)) ∈ Q[i]

v

for which T (j) = t. Then, the probability that the decrypted tag value
π∗
−1

(t) is equal to some value g is uniformly bounded across all g ∈ {0, 1}N :

Prob[π∗
−1

(t) = g | q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)]

≤ 1

2N − 2|Q|
, ∀ g ∈ {0, 1}N

(100)

Proof of Lemma 9: Let H[i]
P be a set of possible hash key values associ-

ated with query index i and set H, as defined in Corollary 5. For the proof

of Lemma 9, we consider the event π∗() ∈ C
H

[i]
P

, H
[i]
P ∈ H

[i]
P , happening in

52

conjunction with all possible mutually exclusive events π∗() ∈ F
H

[i]
P ,j

, where

j ∈ [1, |P
H

[i]
P
|]. By F

H
[i]
P ,j

we mean the j-th set of permutations returned

by procedure MappingsToPermutations(), when the permutations of the set
C
H

[i]
P

are computed. The total number of sets of permutations returned by

procedure MappingsToPermutations() is denoted by |P
H

[i]
P
|. When the set

Q
[i]
v of verification queries is non-empty, F

H
[i]
P ,j

is equal to the set MPERM,j

returned in line 20 of the pseudocode of procedure SelectPermutations(). Fur-
thermore, |P

H
[i]
P
| is equal to the cardinality of the set MDISTINCT returned by

procedure CombineMappings() in line 17 of SelectPermutations(). When Q
[i]
v

is empty, F
H

[i]
P ,j

is equal to the set returned by MappingsToPermutations()

in line 23 of the pseudocode of SelectPermutations(), and |P
H

[i]
P
| = 1.

From the flow of procedure SelectPermutations(), it follows that each set
F
H

[i]
P ,j

includes all permutations that support, either the set of mappings

denoted by S
H

[i]
P
∪ ξj in line 20 of the pseudocode of SelectPermutations(),

or the set of mappings S
H

[i]
P

. We refer to such mappings as f
H

[i]
P ,j

. It holds

that |f
H

[i]
P ,j
| ≤ |Q[i]

s |+ 2|Q[i]
v |. We proceed with the proof by introducing the

events π∗() ∈ F
H

[i]
P ,j

, j ∈ [1, |P
H

[i]
P
|] in the expression we need to bound.

Prob[π∗
−1

(t) = g | q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)] =

∑
H

[i]
P ∈H

[i]
P

|P
H

[i]
P
|∑

j=1

Prob[π∗(g) = t ∧ H = H
[i]
P ∧ π∗() ∈ F

H
[i]
P ,j
| q[1], . . . ,N (i)]

(101)

Next, we apply Corollary 8 and the fact that H, π∗ are independently drawn:

∑
H

[i]
P ∈H

[i]
P

|P
H

[i]
P
|∑

j=1

Prob[π∗(g) = t ∧ H = H
[i]
P ∧ π∗() ∈ F

H
[i]
P ,j
| q[1], . . . ,N (i)]

=
∑

H
[i]
P ∈H

[i]
P

|P
H

[i]
P
|∑

j=1

Prob[π∗(g) = t |H = H
[i]
P ∧ π∗() ∈ F

H
[i]
P ,j

] ·

Prob[H = H
[i]
P | H ∈ H

[i]
P] · Prob[π∗() ∈ F

H
[i]
P ,j
| π∗() ∈ C

H
[i]
P

]

(102)

The right side of equality (102) can be bounded by a simpler expression

53

that involves the maximum of Prob[π∗(g) = t |H = H
[i]
P ∧ π∗() ∈ F

H
[i]
P ,j

],

computed over all H
[i]
P ∈ H

[i]
P and F

H
[i]
P ,j
⊆ C

H
[i]
P

:

∑
H

[i]
P ∈H

[i]
P

|P
H

[i]
P
|∑

j=1

Prob[π∗(g) = t ∧ H = H
[i]
P ∧ π∗() ∈ F

H
[i]
P ,j
| q[1], . . . ,N (i)]

≤
∑

H
[i]
P ∈H

[i]
P

|P
H

[i]
P
|∑

j=1

(
max
H

[i]
P ,j

Prob[π∗(g) = t |H = H
[i]
P ∧ π∗() ∈ F

H
[i]
P ,j

]
)
·

Prob[H = H
[i]
P | H ∈ H

[i]
P] · Prob[π∗() ∈ F

H
[i]
P ,j
| π∗() ∈ C

H
[i]
P

]

≤ max
H

[i]
P ,j

Prob[π∗(g) = t |H = H
[i]
P ∧ π∗() ∈ F

H
[i]
P ,j

]

(103)

Since t is neither a tag returned on any sign query of the set Q
[i]
s , nor a

tag included in any verification query of the set Q
[i]
s , there is no mapping in

any set f
H

[i]
P ,j

, j ∈ [1, |P
H

[i]
P
|] that has t as its destination. Therefore, from

among the (2N − |f
H

[i]
P ,j
|)! permutations of any set F

H
[i]
P ,j

, the number of

permutations that support both the mappings of f
H

[i]
P ,j

and the mapping

g → t is (2N − |f
H

[i]
P ,j
| − 1)! Hence:

max
H

[i]
P ,j

Prob[π∗(g) = t |H = H
[i]
P ∧ π∗() ∈ F

H
[i]
P ,j

]

= max
H

[i]
P ,j

(2N − |f
H

[i]
P ,j
| − 1)!

(2N − |f
H

[i]
P ,j
|)!

= max
H

[i]
P ,j

1

2N − |f
H

[i]
P ,j
|

≤ 1

2N − |Q[i]
s | − 2|Q[i]

v |
≤ 1

2N − 2|Q|

(104)

The correctness of Lemma 9 follows from relations (102), (103) and (104).

A next lemma establishes that the decrypted tag value π∗
−1

(t) is asso-
ciated with probability that is also uniformly bounded, in the case that the
tag t is included in at least one verification query.

Lemma 10: On the probability distribution of a decrypted tag value π∗
−1

(t),
where t that has been queried before as part of a verification query, given that

no security critical events occur up to q[i]. Let MAC
π∗()
H () and Verify

π∗()
H ()

54

be sign and verification oracles of a MAGIC mode and A∗ an adversary
attacking these oracles, as in Lemma 5. Let i ∈ |Qs|+ |Qv| be a query index
such that no security critical events occur up to query q[i], and knowledge
about queries q[1], . . . , q[i] and their associated responses O(q[1]), . . . ,O(q[i])

is available. Let Q
[i]
s and Q

[i]
v be the sets of sign and verification queries

issued by A∗ up to query q[i]. Let also t be a response from the sign oracle

MAC
π∗()
H (), such that there is no sign query q

(j)
s ∈ Q[i]

s for which O(q
(j)
s) = t,

and there is at least one verification query q
(j)
v = (D(j), C

(j)
1 , . . . , C

(j)
n , T (j)) ∈

Q
[i]
v for which T (j) = t. Then, the probability that the decrypted tag value

π∗
−1

(t) is equal to some value g is uniformly bounded across all g ∈ {0, 1}N :

Prob[π∗
−1

(t) = g | q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)]

≤ 1

2N − (η + 1)|Q|
·
(

1 +
4 · |Q|

2N − (η + 5)|Q|

)2|Q|
∀ g ∈ {0, 1}N

(105)

where η = n(n+1)
2 · |ET | and |ET | =

∑Tth
t=1

(
N
t

)
.

Proof of Lemma 10: We assume that H = H
[i]
P , for some H

[i]
P ∈ H

[i]
P .

For this hash key value, we consider procedure SelectPermutations(), which
computes the set of blinding permutations C

H
[i]
P

that satisfy the constraints

of the hypothesis. Since t is a tag included in a verification query, and
since there is no sign query the response of which is t, then, the verification
query which includes t is either a query, the tag of which is correctable,
or a reject query. In both cases, there exists exactly one non-empty set of
mappings mit of index it ∈ [1, nm] from the set {m1,m2, . . . ,mnm} passed
as input to CombineMappings(), which includes mappings the destination

of which is t. Let’s use the notation q
(j)
v to refer to the verification query,

the tag of which is t. The mappings of the set mit originate from elements
of the set V

(j)

H
[i]
P
− G

H
[i]
P

returned from procedure ObtainVMappings(). The

set G
H

[i]
P

is associated with the sign queries and is computed in line 1 of

ObtainVMappings(). The set V
(j)

H
[i]
P

is associated with the verification query

q
(j)
v and is computed in line 2 of ObtainVMappings().

The probability of the event π∗
−1

(t) = g and its equivalent p∗(g) = t

depends on whether g ∈ V
(j)

H
[i]
P
−G

H
[i]
P

. If g /∈ V
(j)

H
[i]
P
−G

H
[i]
P

, then the probability

that π∗
−1

(t) = g or p∗(g) = t is zero, since the mapping g → t is not in mit ,

and is thus not supported by any permutation of the set C
H

[i]
P

. If, however,

g ∈ V
(j)

H
[i]
P
− G

H
[i]
P

, then the probability that π∗
−1

(t) = g or p∗(g) = t is

non-zero. For this probability we can compute a bound.

55

On input {m1,m2, . . . ,mnm}, procedure CombineMappings() returns

|P
H

[i]
P
| sets of mappings, where each returned set, after merging with S

H
[i]
P

,

forms a set f
H

[i]
P ,I

, I ∈ [1, |P
H

[i]
P
|]. Such set has cardinality |f

H
[i]
P ,I
| =

|Q[i]
s | + nm ≤ |Q[i]

s | + 2|Q[i]
v |. The cardinality |P

H
[i]
P
| and the sets f

H
[i]
P ,I

,

I ∈ [1, |P
H

[i]
P
|] are defined in the proof of Lemma 9. Q

[i]
s and Q

[i]
v are

the sign and verification queries issued by adversary A∗ up to query q[i].
Each set f

H
[i]
P ,I

if passed into procedure MappingsToPermutations() produces

(2N−|Q[i]
s |−nm)! permutations, all of which support the mappings of f

H
[i]
P ,I

.

The probability of the events π∗
−1

(t) = g and p∗(g) = t is determined
by the ratio of the number of permutations returned by prodecure Map-
pingsToPermutations() that support the mapping g → t, over the total num-
ber of permutations returned by procedure MappingsToPermutations(). This
is also the ratio of the number of sets f

H
[i]
P ,I

, I ∈ [1, |P
H

[i]
P
|] that include the

mapping g → t, returned by procedure CombineMappings(), over the total
number of sets returned by procedure CombineMappings().

To prove Lemma 10, we compute an upper bound for the number of sets
f
H

[i]
P ,I

, I ∈ [1, |P
H

[i]
P
|] that include the mapping g → t, and a lower bound for

the total number of sets returned by procedure CombineMappings(). From
the definition of CombineMappings(), it follows that the number of sets f

H
[i]
P ,I

that include the mapping g → t is at most |m1|·. . .·|mit−1|·|mit+1|·. . .·|mnm |.
This is because such sets are formed by selecting one mapping from each set
in {m1,m2, . . . ,mnm}, in every possible way, such that the two conditions
of CombineMappings() are satisfied, and the mapping selected from mit is
always g → t.

A lower bound for the total number of sets returned by procedure Com-
bineMappings() is obtained as follows: Let’s assume that a mapping u1 → v1
is selected from set m1. In each of the sets m2, . . . ,mnm there may be at
most one mapping with origin u1 and at most one mapping with destina-
tion v1. Such mappings cannot be in the same set f

H
[i]
P ,I

, I ∈ [1, |P
H

[i]
P
|]

as mapping u1 → v1, according to the second condition of CombineMap-
pings(). Therefore, the number of mappings from m2, . . . ,mnm , which can
form sets f

H
[i]
P ,I

, I ∈ [1, |P
H

[i]
P
|] together with the mapping u1 → v1 of m1,

is at least |m2| − 2, . . . , |mnm | − 2, respectively. Similarly, for each of the
|m2|− 2 mappings of m2 and there are at least |m3|− 4, . . . , |mnm |− 4 map-
pings from m3, . . . ,mnm , which together with the mapping from m2 and
u1 → v1 form sets f

H
[i]
P ,I

, I ∈ [1, |P
H

[i]
P
|]. Using the same reasoning for sets

m3, . . . ,mnm , it follows that the number of sets f
H

[i]
P ,I

, I ∈ [1, |P
H

[i]
P
|] which

include the mapping u1 → v1 is at least (|m2| − 2) · . . . · (|mnm | − 2nm + 2).
Since the bound holds for every mapping of m1, the total number of sets

56

f
H

[i]
P ,I

, I ∈ [1, |P
H

[i]
P
|] returned by procedure CombineMappings() is at least

|m1| · (|m2| − 2) · . . . · (|mnm | − 2 · nm + 2), which, in turn, is greater than
|m1| · (|m2| − 2 · nm) · . . . · (|mnm | − 2 · nm). Furthermore, such lower bound
can be computed using a different order for m1,m2, . . . ,mnm . Therefore,
an alternative bound for the total number of sets returned by procedure
CombineMappings(), which we can also use in the proof, is (|m1| − 2 · nm) ·
. . . · (|mit−1| − 2 · nm) · |mit | · (|mit+1| − 2 · nm) · . . . · (|mnm | − 2 · nm).

We proceed with the proof considering that the event π∗(g) = t happens

in conjunction with all mutually exclusive events H = H
[i]
P , H

[i]
P ∈ H

[i]
P . We

also make use of Corollary 8:

Prob[π∗(g) = t | q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)]

=
∑

H
[i]
P ∈H

[i]
P

Prob[π∗(g) = t |H = H
[i]
P ∧ π∗() ∈ C

H
[i]
P

] ·

Prob[H = H
[i]
P | H ∈ H

[i]
P]

≤ max
H

[i]
P

Prob[π∗(g) = t |H = H
[i]
P ∧ π∗() ∈ C

H
[i]
P

]

(106)

Inequality (106) can lead to the desired bound by introducing the cardi-
nalities of the sets f

H
[i]
P ,I

, I ∈ [1, |P
H

[i]
P
|], which are returned by procedure

CombineMappings() when the permutations of C
H

[i]
P

are computed:

max
H

[i]
P

Prob[π∗(g) = t |H = H
[i]
P ∧ π∗() ∈ C

H
[i]
P

]

= max
H

[i]
P

∑
I∈[1,|P

H
[i]
P
|], g→t ∈ f

H
[i]
P ,I
|f
H

[i]
P ,I
|∑

I∈[1,|P
H

[i]
P
|] |fH[i]

P ,I
|

(107)

To further bound the right side of equation (107) we introduce the bounds
for the enumerator and denominator discussed above:

max
H

[i]
P

∑
I∈[1,|P

H
[i]
P
|], g→t ∈ f

H
[i]
P ,I
|f
H

[i]
P ,I
|∑

I∈[1,|P
H

[i]
P
|] |fH[i]

P ,I
|

≤ max
H

[i]
P

|m1| · . . . · |mit−1| · |mit+1| · . . . · |mnm |
(|m1| − 2 · nm) · . . . · |mit | · . . . · (|mnm | − 2 · nm)

= max
H

[i]
P

1

|mit |
·

∏
J∈[1,nm]
J 6=it

(
1 +

2 · nm
|mJ | − 2 · nm

)
(108)

57

where m1,m2, . . . ,mnm are the sets passed as input to procedure Com-
bineMappings(), when the permutations of C

H
[i]
P

are computed, and mit is

the set that contains mappings to the tag value t. As each of the sets
m1,m2, . . . ,mnm is returned either by procedure ObtainVMappings(), or
procedure ObtainUMappings(), and relations (81) and (86) hold, each of
the cardinalities |mJ |, J ∈ [1, nm] satisfies |mJ | ≥ 2N − (η + 1)|Q|, where

η = n(n+1)
2 · |ET | and |ET | =

∑Tth
t=1

(
N
t

)
. Taking into account that nm ≤ 2|Q|,

we complete the proof of Lemma 10:

max
H

[i]
P

1

|mit |
·

∏
J∈[1,nm]
J 6=it

(
1 +

2 · nm
|mJ | − 2 · nm

)

≤ 1

2N − (η + 1)|Q|
·
(

1 +
4 · |Q|

2N − (η + 5)|Q|

)2|Q| (109)

Lemma 10 follows directly from relations (106), (107), (108) and (109).

Corollary 9: If |Q| ≤ 2N/2√
8

and 2N

|Q| � η+5 the probability bound of Lemma

10 becomes:

Prob[π∗
−1

(t) = g | q[1], . . . , q[i], O(q[1]), . . . ,O(q[i]), N (1), . . . ,N (i)]

≤ e

2N − (η + 1)|Q|
+

1

2N − (η + 1)|Q|
· O
(4 · |Q|

2N − (η + 5)|Q|

)
=

e

2N − (η + 1)|Q|
+O(

1

2
3N
2

), ∀ g ∈ {0, 1}N

(110)

where e is the base of the natural logarithm. Corollary 9 follows from the
identity (1 + 1

x)x = e + O(1x), which is applied to the bound of Lemma 10

for x← 2N−(η+5)|Q|
4|Q| .

3.9 Main results

The theorems of this section provide bounds for the probabilities of first
occurrence of the four types of security critical events of the MAGIC mode,
and for the advantage of adversary A∗.

Theorem 3: On the probability of first occurrence of a MAC collision event.

Let MAC
π∗()
H () and Verify

π∗()
H () be sign and verification oracles of a MAGIC

mode for which blinding is performed by a random permutation π∗. Let

58

A∗ be a polynomial time algorithm playing a game the success of which is
defined by relation (44), and where EKB () ← π∗(). Then, the probability
FC(i) of the first occurrence of a MAC collision event EC(i), associated with
query q[i] ∈ Q of index i ∈ [1, |Q|] is bounded by:

FC(i) ≤
n · |Q|

2N − ζ − η|Q| − n
(|Q|

2

) (111)

where ζ = n(n−1)
2 · |ET |2, η = n(n+1)

2 · |ET | and |ET | =
∑Tth

t=1

(
N
t

)
.

Proof of Theorem 3: From the definition of the MAC collision event, it
holds that:

FC(i) =

|Q[i−1]
s |∑
j=1

Prob[MAC
π∗()
H (q(j)s) = MAC

π∗()
H (q[i]) | N (1), . . . ,N (i− 1)]

(112)

where Q
[i−1]
s is the set of sign queries issued by adversary A∗ up to query

q[i−1]. We proceed by denoting any query q
(j)
s ∈ Q

[i−1]
s as (D(j), C

(j)
1 ,

. . . , C
(j)
n) and any query q[i] ∈ Q as (D[i], C

[i]
1 , . . . , C

[i]
n). Using such no-

tation, equation (112) can be written as:

FC(i) =

|Q[i−1]
s |∑
j=1

Prob[π∗(D(j) + C
(j)
1 H + . . .+ C(j)

n Hn) =

π∗(D[i] + C
[i]
1 H + . . .+ C

[i]
n Hn) | N (1), . . . ,N (i− 1)]

(113)

As in the proof of Lemma 7, we apply operator π∗
−1

() to both sides of the
internal equation of (113) to obtain:

FC(i) =

|Q[i−1]
s |∑
j=1

= Prob[(D(j) +D[i]) + (C
(j)
1 + C

[i]
1)H + . . .+

(C
(j)
n + C

[i]
1)Hn = 0 | N (1), . . . ,N (i− 1)]

(114)

The internal polynomial equation of (114) associated with any pair of queries

(q
(j)
s , qi) has ri,j distinct roots, where ri,j ∈ [0, n]. We refer to such roots as

H
(i,j)
1 , . . . , H

(i,j)
ri,j . Then equation (114) becomes:

59

FC(i) =

|Q[i−1]
s |∑
j=1

Prob[H = H
(i,j)
1 ∨ . . . ∨ H = H(i,j)

ri,j | N (1), . . . ,N (i− 1)]

(115)

We complete the proof of Theorem 3 applying Lemma 7 to equation (115):

FC(i) ≤
|Q[i−1]
s |∑
j=1

ri,j

2N − ζ − η|Q| − n
(|Q|

2

)
≤ n · |Q|

2N − ζ − η|Q| − n
(|Q|

2

) (116)

Theorem 4: On the probability of first occurrence of a Galois Hash compu-

tation event. Let MAC
π∗()
H () and Verify

π∗()
H () be sign and verification oracles

of a MAGIC mode for which blinding is performed by a random permuta-
tion π∗. Let A∗ be a polynomial time algorithm playing a game the success
of which is defined by relation (44), and where EKB () ← π∗(). Then, the
probability FG(i) of the first occurrence of a Galois Hash computation event
EG(i), associated with query q[i] ∈ Q of index i ∈ [1, |Q|] is bounded by:

FG(i) ≤ n

2N − ζ − η|Q| − n
(|Q|

2

) (117)

where ζ = n(n−1)
2 · |ET |2, η = n(n+1)

2 · |ET | and |ET | =
∑Tth

t=1

(
N
t

)
.

Proof of Theorem 4: We refer to query q[J] ∈ Qs, for which a Galois Hash

output is computed, as (D[J], C
[J]
1 , . . . , C

[J]
n). Query q[J] includes at least

one non-zero ciphertext block. From the event definition, it holds that:

FG(i) = Prob[q[J] ∈ Qs; GJ ← A∗[i]; D[J] + C
[J]
1 ·H + . . .+

C
[J]
n ·Hn = GJ | N (1), . . . ,N (i− 1)]

≤ Prob[GJ ← A∗[i]; D[J] + C
[J]
1 ·H + . . .+ C

[J]
n ·Hn = GJ

| q[J] ∈ Qs, N (1), . . . ,N (i− 1)]

≤ Prob[D[J] +GJ + C
[J]
1 ·H + . . .+ C

[J]
n ·Hn = 0

| q[J] ∈ Qs, N (1), . . . ,N (i− 1)]
(118)

60

As coefficients C
[J]
1 , . . . , C

[J]
n are not all simultaneously zero, the internal

polynomial equation of (118) has rJ,GJ ∈ [0, n] distinct roots, which we refer

to as H
[J]
1 , . . . , H

[J]
rJ,GJ

. By introducing these roots into inequality (118) and
by using Lemma 7, the inequality becomes:

FG(i) ≤ Prob[H = H
[J]
1 ∨ . . . ∨ H = H

[J]
rJ,GJ

| q[J] ∈ Qs, N (1), . . . ,N (i)]

≤ max
q[J], GJ

rJ,GJ

2N − ζ − η|Q| − n
(|Q|

2

)
≤ n

2N − ζ − η|Q| − n
(|Q|

2

)
(119)

This completes the proof.

Theorem 5: On the probability of first occurrence of an ECC function

exploitation event. Let MAC
π∗()
H () and Verify

π∗()
H () be sign and verification

oracles of a MAGIC mode for which blinding is performed by a random
permutation π∗. Let A∗ be a polynomial time algorithm playing a game the
success of which is defined by relation (44), and where EKB ()← π∗(). Then,
the probability FX (i) of the first occurrence of an ECC function exploitation
event EX (i), associated with query q[i] ∈ Q of index i ∈ [1, |Q|] is bounded
by:

FX (i) ≤ max
(n · Z · |ET |

2N − (η + 1)|Q|
,

n2 · |ET |
2N − ζ − η|Q| − n

(|Q|
2

)) (120)

where Z = (1 + 4·|Q|
2N−(η+5)|Q|)

2|Q|, ζ = n(n−1)
2 · |ET |2, η = n(n+1)

2 · |ET | and

|ET | =
∑Tth

t=1

(
N
t

)
. Furthermore, when 2 ≤ |Q| ≤ 2N/2√

8
, 2N

|Q| � η+5 and n ≥ 3

the bound for the probability of first occurrence FX (i) becomes:

FX (i) ≤ n2 · |ET |
2N − ζ − η|Q| − n

(|Q|
2

) (121)

Proof of Theorem 5: We refer to query q[i] ∈ Q, which is a verification

query, as (D[i], C
[i]
1 , . . . , C

[i]
n , T [i]). From the definition of the ECC function

exploitation event, it holds that:

61

FX (i) = Prob[q[i] ← A∗[i−1]; q[i] ∈ Qv; Cond5 ∨ Cond6;

Verify
π∗()
H (q[i]) = (accept, s

[i]
1 , s

[i]
2); s

[i]
1 6= ⊥, s

[i]
2 6= ⊥

| N (1), . . . ,N (i− 1)]

(122)

where Cond5 and Cond6 refer to the conditions of (42) and (43) evaluated on

(D(r), C
(r)
1 , . . . , C

(r)
n , T (r)) ← q[i], and for which EKB ()← π∗(). We proceed

with the proof, removing some of the conditions in EX (i) in order to bound
FX (i):

FX (i) ≤ Prob[Verify
π∗()
H (q[i]) = (accept, s

[i]
1 , s

[i]
2); s

[i]
1 6= ⊥, s

[i]
2 6= ⊥

| q[i] ∈ Qv, Cond5 ∨ Cond6, N (1), . . . ,N (i− 1)]

(123)

From the flow of procedure Verify
π∗()
H (), it holds that:

FX (i) ≤
n∑
k=1

∑
e1 ∈ ET

Prob[(D[i] + C
[i]
1 ·H + . . .+ C [i]

n ·Hn

+ π∗
−1

(T [i])) ·H−k = e1

| q[i] ∈ Qv, Cond5 ∨ Cond6, N (1), . . . ,N (i− 1)]

≤
n∑
k=1

∑
e1 ∈ ET

Prob[π∗
−1

(T [i]) = D[i] + C
[i]
1 ·H

+ . . .+ C
[i]
n ·Hn + e1 ·Hk

| q[i] ∈ Qv, Cond5 ∨ Cond6, N (1), . . . ,N (i− 1)]

(124)

If T [i] is not a tag returned by any sign query, the probability that
π∗
−1

(T [i]) takes some value in {0, 1}N , is bounded according to either Lemma
9 or Lemma 10, given a set of adversary queries q[1], . . . , q[i−1], and the fact
that no security critical event occurs up to query q[i−1]. The bound depends
on whether T [i] is a tag included in a verification query issued before q[−1],
or whether T [i] is not included in any verification query. Since the bound
of Lemma 9 is always tighter than the bound of Lemma 10, we can use the
bound of Lemma 10 to simplify (124) in this case. If there is a sign query,
the response of which is T [i], the probability that π∗

−1
(T [i]) takes some

value in {0, 1}N is the probability of the first occurrence of a Galois Hash

62

computation event. Such probability is bounded by (117). Therefore we can
use the maximum of the bounds of (105) and (117) to simplify inequality
(124):

FX (i) ≤
n∑
k=1

∑
e1 ∈ ET

max
(Z

2N − (η + 1)|Q|
,

n

2N − ζ − η|Q| − n
(|Q|

2

))

≤ max
(n · Z · |ET |

2N − (η + 1)|Q|
,

n2 · |ET |
2N − ζ − η|Q| − n

(|Q|
2

))
(125)

where to simplify the expression for the bound of (105), we substituted

(1 + 4·|Q|
2N−(η+5)|Q|)

2|Q| with Z. The second part of Theorem 5 directly follows

from combining (125) with Corollary 9.

Theorem 6: On the probability of first occurrence of a blind forgery event.

Let MAC
π∗()
H () and Verify

π∗()
H () be sign and verification oracles of a MAGIC

mode for which blinding is performed by a random permutation π∗. Let
A∗ be a polynomial time algorithm playing a game the success of which is
defined by relation (44), and where EKB () ← π∗(). Then, the probability
FB(i) of the first occurrence of a blind forgery event EB(i), associated with
query q[i] ∈ Q of index i ∈ [1, |Q|] is bounded by the bound of Lemma 10:

FB(i) ≤ 1

2N − (η + 1)|Q|
·
(

1 +
4 · |Q|

2N − (η + 5)|Q|

)2|Q|
(126)

Furthermore, if |Q| ≤ 2N/2√
8

and 2N

|Q| � η+5, the probability FB(i) is bounded

by the bound of Corollary 9:

FB(i) ≤ e

2N − (η + 1)|Q|
+O(

1

2
3N
2

) (127)

where e is the base of the natural logarithm and the term η is defined as in
Theorem 5.

Proof of Theorem 6: We refer to verification query q[i] ∈ Q as (D[i], C
[i]
1 ,

. . . , C
[i]
n , T [i]). Theorem 6 follows from the definition of the blind forgery

event:

63

FB(i) = Prob[q[i] ← A∗[i−1]; q[i] ∈ Qv; Cond5 ∨ Cond6;

Verify
π∗()
H (q[i]) = (accept,⊥,⊥) | N (1), . . . ,N (i− 1)]

≤ Prob[Verify
π∗()
H (q[i]) = (accept,⊥,⊥)

| q[i] ∈ Qv, Cond5 ∨ Cond6, N (1), . . . ,N (i− 1)]

= Prob[π∗
−1

(T [i]) = D[i] + C
[i]
1 ·H + . . .+ C

[i]
n ·Hn

| q[i] ∈ Qv, Cond5 ∨ Cond6, N (1), . . . ,N (i− 1)]

(128)

where Cond5 and Cond6 refer to the conditions of (42) and (43) evaluated

on (D(r), C
(r)
1 , . . . , C

(r)
n , T (r)) ← q[i], and for which EKB ()← π∗().

Since query q[i] satisfies at least one of these two conditions, T [i] cannot
be a tag returned by a sign query issued before q[i]. Hence, the probability

of the event π∗
−1

(T [i]) = D[i] + C
[i]
1 · H + . . . + C

[i]
n , given the conditions

of (128), is bounded by one of the bounds of Lemma 9 or Lemma 10. The
first part of Theorem 6 follows from the observation that, between the two
bounds, the bound of Lemma 9 is always tighter, so the bound of Lemma
10 is applicable in all cases of the conditions of (128). The second part of
Theorem 6 directly follows from combining (128) with Corollary 9.

A next theorem establishes the security of the MAGIC mode against an
adversary who plays the MAC forgery game, the success of which is defined
by relation (44). This is the main result from our analysis.

Theorem 7: On the security of the MAGIC mode against adversary A. Let

MAC
EKB ()

H () and Verify
EKB ()

H () be sign and verification oracles of a MAGIC
mode. Let A be a polynomial time algorithm playing a game the success of
which is defined by relation (44), and which is characterized by the query
budget constraint of (46). Then, the advantage of adversary A is bounded
by:

AdvA ≤ n · (|Q|2 + |Q|)
2N − ζ − η|Q| − n

(|Q|
2

)
+ max

(n · Z · |ET | · |Q|
2N − (η + 1)|Q|

,
n2 · |ET | · |Q|

2N − ζ − η|Q| − n
(|Q|

2

))
+

Z · (|Q|+ 1)

2N − (η + 1)|Q|
+ AdvEKB ()

(129)

64

Table 1: AdvA, computed from inequality (130), when N = 128, n = 4 and
Tth = 10

|Q| AdvA |Q| AdvA

2 2−75 232 2−44

8 2−73 240 2−36

16 2−72 248 2−27

64 2−70 256 2−14

256 2−68 262.34 0.5

where Z = (1 + 4·|Q|
2N−(η+5)|Q|)

2|Q|, ζ = n(n−1)
2 · |ET |2, η = n(n+1)

2 · |ET | and

|ET | =
∑Tth

t=1

(
N
t

)
. Furthermore, when 2 ≤ |Q| ≤ 2N/2√

8
, 2N

|Q| � η+5 and n ≥ 3

the bound for the advantage of adversary A becomes:

AdvA ≤ n · (|Q|2 + |Q|) + n2 · |ET | · |Q|
2N − ζ − η|Q| − n

(|Q|
2

) +
e · (|Q|+ 1)

2N − (η + 1)|Q|

+O
(|Q|

2
3N
2

)
+ AdvEKB ()

(130)

where e is the base of the natural logarithm.

Proof of Theorem 7: Theorem 7 follows by directly combining the results
from Lemma 5, Theorems 3, 4, 5 and 6, and relation (47). When combining
Lemma 5 with the theorems, we take into account the fact that the proba-
bility term Prob[WA∗ |NA∗], which is present in Lemma 5, is the probability
of the first occurrence of a blind forgery event. This is the probability of
A∗ winning, if no security critical events occur at the completion of all his
queries. This probability term is also bounded according to Theorem 6.

3.10 Discussion

The recommended uses of the MAGIC mode are those for which the pa-
rameters n, N and Tth satisfy the conditions of inequality (130). If the
advantage of adversary A is bounded according to inequality (130), then
the MAGIC mode offers security in the order of O(2N/2), with N being

the tag size. Indeed, if the number of queries is close to the limit 2N/2√
8

,

and the conditions of (130) are satisfied, then n · |Q|2 becomes the dom-

65

Table 2: AdvA, computed from inequality (130), when N = 256, n = 8 and
Tth = 20

|Q| AdvA |Q| AdvA

2 2−151 232 2−120

8 2−149 264 2−88

16 2−148 280 2−72

64 2−146 296 2−56

256 2−144 2125.84 0.5

Table 3: AdvA, computed from inequality (130), when N = 512, n = 16
and Tth = 40

|Q| AdvA |Q| AdvA

2 2−304 264 2−241

8 2−302 2128 2−177

16 2−301 2160 2−145

64 2−299 2192 2−113

256 2−295 2253.34 0.5

inant term in the enumerator of n·(|Q|2+|Q|)+n2·|ET |·|Q|
2N−ζ−η|Q|−n(|Q|2)

. Similarly, n ·
(|Q|

2

)
becomes the dominant term which is subtracted from 2N in the denomina-

tor of n·(|Q|
2+|Q|)+n2·|ET |·|Q|

2N−ζ−η|Q|−n(|Q|2)
. This means that the number of queries required

in order for the bound of the advantage of adversary A to become 0.5, is

O(2N/2). For the same number of queries the remaining terms of the bound

of (130) are negligible.
Table 1 shows values for the bound of inequality (130), when N = 128,

n = 4 and Tth = 10, as the number of queries |Q| varies. The number of
queries for which the advantage of adversary A is bounded by 0.5 is 262.34,
which is close to 264 as expected. Furthermore, the advantage bound ranges
between 2−75 and 2−68, when the number of queries ranges between 2 and
256. Such tight query budgets characterize online attacks. In online attacks,
attacked systems usually monitor oracle responses to verification queries.
Increasing numbers of reject verification queries are perceived as indications
of abnormal behavior, thus exposing the adversary and the attack.

Table 2 and 3 show values for the bound of inequality (130), when N =
256, n = 8 and Tth = 20, and when N = 512, n = 16 and Tth = 40. The
number of queries for which the advantage of adversary A is bounded by
0.5 is 2125.84, and 2253.34 in the two tables, respectively. As in Table 1, these

66

numbers are close to 2N/2 as expected. Furthermore, the advantage bound
ranges between 2−151 and 2−144, and between 2−151 and 2−144, in the two
tables, when the number of queries is small, ranging between 2 and 256. All
numbers of queries in Tables 2 and 3, for which the advantage bound for A
is computed, are lower than the query budget constraint of (46).

4 Implementation considerations and future work

The MAGIC mode as described in the paper can be efficiently implemented
in hardware or software for several combinations of parameter values N , n
and Tth. The main components of hardware implementations of procedures
MAC() and Verify() of the mode are: (i) multipliers and adders in the field
F2N , (ii) bit counters, used in the Hamming weight test performed by pro-
cedure Verify(), and (iii) block ciphers.

The implementation of such components is known and their cost reason-
able. For example, we have built multipliers in the field F2128 , defined by the
irreducible polynomial of the GCM mode [5], using Intel’s ® 14 nm process
technology, and found that each multiplier is associated with an area cost
of 3,400 µm2 and 46,575 logic gates. Similarly the area cost of a procedure
performing a Hamming weight test over 128-bit values is 131.4 µm2 and
1,800 logic gates, using the same process technology. Plaintext encryption
and blinding can be performed by standard ciphers and modes such as AES
[6], XTS [7] or GCM [5]. The choice of cipher and mode may depend on
additional security requirements imposed by the application that uses the
MAGIC mode.

Finally, we note that the test which decides whether a hash key value H,
drawn uniformly from {0, 1}N , is also in the set H, can run in reasonable
amount of time and be implemented with reasonable cost. This is a one time
test performed when the secret H of the mode is initialized. The complexity
of such test is O(n · |ET |). This is because, there are 2n− 2 powers of H to
be tested, and each of those powers needs to be multiplied with |ET | error
values e. The test is successful if the Hamming weight of all products is
higher than the threshold Tth. Even a naive implementation of this test,
using a circuit that iterates over all possible powers and values for e, can
execute in reasonable time. For example, if N = 128, n = 4 and Tth = 5, the
number of such iterations is 230, which can complete in the order of seconds
by an efficient hardware implementation. Furthermore, future work on more
efficient algorithms for this test may allow for higher values of the threshold
Tth to be applicable, when the MAGIC mode is in use.

A different research direction for future work is to consider instantiations
of the MAGIC mode, where the message authentication code consists of
a plurality of independent MAGIC tags. In these instantiations, tags are
computed on the same message blocks independently, and each tag is derived

67

from a different pair of secrets H and EKB (). These instantiations may be
both secure and support improved error correcting capability. Indeed, it
may be possible to perform error correction in more than one input block
using such variants of MAGIC. Due to their bit linearity, multiple Galois
Hash values, produced using different hash keys, may be able to correct
errors in as many input blocks as the number of such hash values.

A last direction for future work is to consider MAGIC in the presence
of errors, the distribution of which is biased toward values associated with
specific patterns. In this case, the more generic Hamming weight test, dis-
cussed in this paper, may need to be replaced by other entropy tests which
are specific to the distribution of the errors corrected by the MAGIC mode.
The design and security analysis of such variants is yet to be done.

References

[1] Secure Hash Standard, Federal Information Processing Standards Pub-
lication FIPS PUB 180-4.

[2] SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions, Federal Information Processing Standards Publication FIPS
PUB 202.

[3] The Keyed-Hash Message Authentication Code (HMAC), Federal In-
formation Processing Standards Publication FIPS PUB 198-1.

[4] SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and Parallel-
Hash, NIST Special Publication 800-185.

[5] M. Dworkin, Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC, NIST Special Publication
800-38D.

[6] Advanced Encryption Standard (AES), Federal Information Processing
Standards Publication FIPS PUB 197.

[7] Recommendation for Block Cipher Modes of Operation: The XTS-AES
Mode for Confidentiality on Storage Devices, NIST Special Publication
800-38E.

[8] I. S. Reed, and G. Solomon, Polynomial Codes over Certain Finite
Fields, Journal of the Society for Industrial and Applied Mathematics,
vol. 8(2), pp. 300–304,1980.

[9] J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Transac-
tions on Information Theory, vol. 15(1): pp. 122–127, 1969.

68

[10] E. R. Berlekamp, Algebraic Coding Theory (Revised ed.), Laguna Hills,
CA, Aegean Park Press, 1984.

[11] V. Guruswami and M. Sudan, Improved decoding of Reed–Solomon
codes and algebraic geometry codes, IEEE Transactions on Information
Theory, vol. 45(6): pp. 1757–1767, 1999.

[12] R. Koetter and A. Vardy, Algebraic soft-decision decoding of
Reed–Solomon codes, IEEE Transactions on Information Theory, vol.
49(11): pp. 2809–2825, 2003.

[13] H. Krawczyk, LFSR-based Hashing and Authentication, Proceedings of
CRYPTO 1994, LNCS vol. 839, Springer Heidelberg (1994).

[14] C. G. Boncelet, The NTMAC for Authentication of Noisy Messages,
IEEE Transactions on Information Forensics and Security vol. 1(1), pp.
35-42, 2006.

[15] Y Liu and C. G. Boncelet, The CRC-NTMAC for Authentication of
Noisy Messages, IEEE Transactions on Information Forensics and Secu-
rity vol. 1(4), pp. 517-523, 2006.

[16] Y. Liu and C. G. Boncelet, The BCH-NTMAC for Authentication of
Noisy Messages, Proceedings of the 40th Annual Conference on Infor-
mation Sciences and Systems, pp. 246-251, 2006.

[17] C. C. Y. Lam, G. Gong and S. A. Vanstone, Message Authentication
Codes with Error Correcting Capabilities, Proceedings of ICICS 2002,
LNCS vol. 2513, pp. 354-366, 2002.

[18] A. Sengupta, D. Saha, S. Ghosh, D. Mehta and D. R. Chowdhury, AEC:
A Practical Scheme for Authentication with Error Correction, Proceed-
ings of SPACE 2014, LNCS vol. 8804, pp. 155-170, 2014.

[19] M. Ayoob and W. Adi, Improving System Reliability by Joint Usage
of Hash Function Bits and Error Correction Coding, Proceedings of the
Sixth International Conference on Emerging Security Technologies, 2015.

[20] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser and M.
K. Qureshi, SYNERGY: Rethinking Secure-Memory Design for Error-
Correcting Memories, Proceedings of the Sixth International Conference
on Emerging Security Technologies, 2015.

[21] L. Carter and M. Wegman, Universal classes of hash functions, Journal
of Computer and System Sciences, vol. 18, no. 2, pp. 143–154, 1979.

[22] B. Cogliati and Y. Seurin, EWCDM: An Efficient, Beyond-Birthday
Secure, Nonce-Misuse Resistant MAC, Proceedings of CRYPTO 2016,
pp.121-149, 2016.

69

[23] M. Bellare, O. Goldreich and A. Mityagin, The power of verification
queries in message authentication and authenticated encryption, Cryp-
tology ePrint Archive: Report 2004/309, 2004.

[24] M. Bellare, New Proofs for NMAC and HMAC: Security without
Collision-Resistance, Proceedings of CRYPTO 2006, LNCS vol. 4117,
Springer-Verlag, 2006.

[25] D. J. Bernstein, The Poly1305-AES Message-Authentication Code, Pro-
ceedgins of Fast Software Encryption, LNCS vol. 3557, Springer Verlag,
pp. 32–49, 2005.

[26] R. J. McEliece, A Public-Key Cryptosystem Based On Algebraic Coding
Theory, DSN Progress Report 42-44, pp. 114–116, 1978.

[27] T. Johansson, Contributions to unconditionally secure authentication,
Ph.D Thesis, KF-Sigma Publishers, Lund Technical University, 1994.

[28] T. Johansson, G. Kabatianskii and B. Smeets, On the relation between
A-codes and codes correcting independent errors, Proceedings of Euro-
crypt 1993, 1993.

[29] C. S. Ding and X. S. Wang, A coding theory construction of new sys-
tematic authentication codes, Theoretical Computer Science, vol. 330,
pp. 81-99, 2005.

[30] C. Carlet, C. S. Ding and H. Niederreiter, Authentication Schemes from
Highly Nonlinear Functions, Design Codes and Cryptography, vol. 40,
pp. 71-79, 2006.

[31] C. S. Ding, T. Helleseth, T. Kløve and X. S. Wang, A generic construc-
tion of Carthesian authentication codes, IEEE Transactions on Informa-
tion Theory, vol. 53(6): pp. 2229–2235, 2007.

[32] H. Tilborg, Authentication Codes from Error-Correcting Codes; An
Overview, Enhancing Cryptographic Primitives with Techniques from
Error Correcting Codes, B. Preneel et al. (Eds), IOS Press, 2009.

70

Appendix: Glossary of Terms

A.1 Terms introduced in Section 1

blinding: The process of concealing the Galois Hash output of the MAGIC
mode by means of encryption.

MACK(): A sign oracle that uses key K.

T : The tag produced by sign oracle MACK().

Qs: A set of sign queries.

Qv: A set of verification queries.

A: A MAC adversary.

θECC()(M,T): The set of message-tag pairs which, after error correction
performed by ECC() become (M,T).

ΘECC()(Qs): The set of message-tag pairs which are correctable to one of
the sign queries of set Qs.

MAGIC: Message Authentication, Galois Integrity and Correction.

A.2 Terms introduced in Section 2

n: The number of input blocks which are encrypted. It is considered fixed.

N : The block size in bits.

H: The hash key of the MAGIC mode.

F2N : The finite field over which the Galois Hash computations of the mode
are defined.

H: The set of hash key values from which H is uniformly drawn.

EKe,Me,ie,N (): The cipher which encrypts the mode’s input plaintext blocks.
This cipher is also denoted by EKe().

Ke: The key used by the cipher EKe(). This is a bit string of length lKe .

Me: The mode of the cipher EKe().

71

ie: The initialization vector used by the cipher EKe(). This is a bit string of
length lie .

EKB ,MB ,iB ,N (): The cipher which performs blinding. This cipher encrypts
the tag of the mode. It is also denoted by EKB ().

KB: The key used by the cipher EKB (). This is a bit string of length lKB .

MB: The mode of the cipher EKB ().

iB: The initialization vector used by the cipher EKB (). This is a bit string
of length liB .

P: The set of all bijective functions from the set {0, 1}N to the set {0, 1}N .

AdvEKB (): The advantage of distinguishing the blinding cipher from a per-
mutation randomly chosen from P.

Str(C1, C2, . . .): Operator returning the binary representation of the con-
catenated strings C1, C2, If the input is a single string, the operator is
omitted.

MAC
EKe (),EKB ()

H : Sign oracle of the MAGIC mode. It uses a Galois Hash
key value H, plaintext encrypting cipher EKe() and blinding cipher EKB ().

This oracle is also denoted by MAC
EKB ()

H .

Verify
EKe (),EKB ()

H : Verification oracle of the MAGIC mode. It uses a Galois
Hash key value H, plaintext encrypting cipher EKe() and blinding cipher

EKB (). This oracle is also denoted by Verify
EKB ()

H .

M1,M2, . . . ,Mn: Input plaintext blocks

C1, C2, . . . , Cn: Ciphertext blocks that result from encryptingM1,M2, . . . ,Mn

using cipher EKe().

Tth: Hamming weight threshold.

S: A syndrome value.

Si: An error location indicator, associated with index i ∈ [1, n].

HE : The set of excluded Galois Hash key values.

ET : The set of values in {0, 1}N the Hamming weight of which is at most
Tth.

72

θcipher(C1, C2, . . . , Cn, Tth): The set of ciphertext blocks which are correctable
to C1, C2, . . . , Cn by the MAGIC mode.

θtag(T, Tth): The set of tag values which are probabilistically correctable to
T by the MAGIC mode.

ϑ
EKB ()

H (T, Tth): Subset of θtag(T, Tth) that includes tag values which are
deterministically correctable to T by the MAGIC mode. It depends on the
Galois Hash key value H and the blinding cipher EKB ().

| |: Cardinality of a set

$←: sampling from a uniform distribution

¬: Logical complement

∨: Logical OR between conditions

∧, “ , ”, “ ; ”: Alternatives for logical AND between conditions

A.3 Terms introduced in Section 3

q
(i)
s : Sign query of index i. Index i indicates order of issue inside the set Qs.

q
(i)
v : Verification query of index i. Index i indicates order of issue inside the

set Qv.

q[i]: Sign or verification query of index i. Index i indicates order of issue
inside the set Q = Qs ∪Qv.

(D(i), C
(i)
1 , . . . , C

(i)
n): The authenticated data and ciphertext blocks of a sign

query. Index i indicates order of issue inside the set Qs.

(D[i], C
[i]
1 , . . . , C

[i]
n): The authenticated data and ciphertext blocks of a sign

query. Index i indicates order of issue inside the set Q = Qs ∪Qv.

(D(i), C
(i)
1 , . . . , C

(i)
n , T (i)): The authenticated data, ciphertext blocks and tag

of a verification query. Index i indicates order of issue inside the set Qv.

(D[i], C
[i]
1 , . . . , C

[i]
n , T [i]): The authenticated data, ciphertext blocks and tag

of a verification query. Index i indicates order of issue inside the set Q =
Qs ∪Qv.

up to query q[i]: Reference to all queries of a set from 1 ro i, including query

73

q[i]. The term “up until query q[i]” has the same meaning.

Q
[i]
s : Set of all sign queries issued up to query q[i].

Q
[i]
v : Set of all verification queries issued up to query q[i].

A[i]: Same as adversary A, but acts upon information coming only from
queries q[1], . . . , q[i] and their responses.

O(): Oracle response coming from the attacked sign and verification oracles
of the MAGIC mode.

WA: The event of adversary A winning the MAC forgery game.

A∗: Adversary attacking a MAGIC mode for which blinding is performed
by a random permutation.

AdvA
∗
: The advantage of adversary A∗.

WA∗ : The event of adversary A∗ winning the MAC forgery game.

π∗: A permutation randomly chosen from the set P.

MAC
π∗()
H : Sign oracle of the MAGIC mode, for which blinding is performed

by random permutation π∗().

Verify
π∗()
H : Verification oracle of the MAGIC mode, for which blinding is

performed by random permutation π∗().

EC(iC): A MAC collision event associated with a query of index iC . Index iC
indicates order of issue inside the set Q.

EG(iG): A Galois Hash computation event associated with a query of index
iG . Index iG indicates order of issue inside the set Q.

EX (iX): An ECC function exploitation event associated with a query of
index iX . Index iX indicates order of issue inside the set Q.

EB(iB): A blind forgery event associated with a query of index iB. Index iB
indicates order of issue inside the set Q.

FC(iC): Probability of the first occurrence of a MAC collision event associ-
ated with a query of index iC . Index iC indicates order of issue inside the
set Q.

74

FG(iG): Probability of the first occurrence of a Galois Hash computation
event associated with a query of index iG . Index iG indicates order of issue
inside the set Q.

FX (iX): Probability of the first occurrence of an ECC function exploitation
event associated with a query of index iX . Index iX indicates order of issue
inside the set Q.

FB(iB): Probability of the first occurrence of a blind forgery event associated
with a query of index iB. Index iB indicates order of issue inside the set Q.

N (i): The event that no security critical events occur up to query q[i].

NA∗ : The event that no security critical events occur during the MAC
forgery game played by A∗.

SA∗ : The event that at least one security critical event occurs during the
MAC forgery game played by A∗. This is the complementary of the event
NA∗ .

H[i]
I : Set of impossible Galois Hash keys, determined from queries and oracle

responses up to query q[i], and the knowledge that no security critical events
occur up to q[i].

H[i]
I,COL: Set of impossible Galois Hash keys, determined from queries and

oracle responses up to query q[i], and the knowledge that no MAC collisions
occur up to q[i].

H[i]
I,EXPL: Set of impossible Galois Hash keys, determined from queries and

oracle responses up to query q[i], and the knowledge that no ECC function
exploitation events occur up to q[i].

ζ: Entity equal to n(n−1)
2 · |ET |2.

η: Entity equal to n(n+1)
2 · |ET |.

H[i]
P : Set of possible Galois Hash keys, determined from queries and oracle

responses up to query q[i], and the knowledge that no security critical events

occur up to q[i]. This set is equal to H−H[i]
I .

H
[i]
P : An element of H[i]

P .

C
H

[i]
P

: The set of constraint satisfying permutations associated with the Ga-

75

lois hash key value H[i]
P .

ρ(): A blinding permutation of the set C
H

[i]
P

.

MAC
ρ()

H
[i]
P

: An alternative sign oracle, different from the attacked one MAC
π∗()
H .

This oracle uses the Galois Hash key H
[i]
P and the blinding permutation ρ()

from the set C
H

[i]
P

. It provides the same responses as oracle MAC
π∗()
H to

adversary A∗’s sign queries from q[1], . . . , q[i].

Verify
ρ()

H
[i]
P

: An alternative verification oracle, different from Verify
π∗()
H . This

oracle uses the Galois Hash key H
[i]
P and the blinding permutation ρ() from

the set C
H

[i]
P

. It provides the same responses as oracle Verify
π∗()
H to adversary

A∗’s verification queries from q[1], . . . , q[i].

g
(j)

H
[i]
P

: Galois Hash output computed on the authenticated data and cipher-

text blocks of sign query q
(j)
s or verification query q

(j)
v . The key used is

H
[i]
P .

G(j)
H

[i]
P

: The set of Galois Hash outputs computed on the authenticated data

and ciphertext blocks of the sign queries of Q
[i]
s . The key used is H

[i]
P .

T [i]: The set of responses coming from the attacked oracle MAC
π∗()
H to the

sign queries of Q
[i]
s . The responses coming from the attacked oracle are

referred to using the O() operator.

S
H

[i]
P

: Set of mappings between the Galois Hash outputs computed on the

authenticated data and ciphertext blocks of the sign queries of Q
[i]
s , and

their corresponding responses coming from the attacked oracle MAC
π∗()
H .

The hash key used for producing the mappings is not H but H
[i]
P .

V(j)
H

[i]
P

: Set of decrypted tag values compatible with query q
(j)
v and the hash

key value H
[i]
P .

Q
[i]
v,EQTj : Set of verification queries from the set Q

[i]
v that include the same

tag T (j) as query q
(j)
v ∈ Q[i]

v .

V
(j)

H
[i]
P

: Set of decrypted tag values compatible with all queries of set Q
[i]
v,EQTj

and with the hash key value H
[i]
P .

76

U (j)

H
[i]
P

: Set of encrypted Galois Hash outputs compatible with query q
(j)
v and

the hash key value H
[i]
P .

Q
[i]

v,H
[i]
P ,EQGj

: Set of verification queries from the set Q
[i]
v that include authen-

ticated data and ciphertext blocks producing the same Galois Hash output

as query q
(j)
v ∈ Q[i]

v . The hash key considered in the formation of the set is

not H but H
[i]
P .

U
(j)

H
[i]
P

: Set of encrypted Galois Hash outputs compatible with all queries of

the set Q
[i]

v,H
[i]
P ,EQGj

and with the hash key value H
[i]
P .

{m1,m2, . . . ,mnm}: Set passed as input to procedure CombineMappings().
Each element mim , im ∈ [1, nm] is a set of mappings itself.

nm: The cardinality of the set {m1,m2, . . . ,mnm} passed as input to proce-
dure CombineMappings().

{µ1, µ2, . . . , µnm}: A single element of the set returned by procedure Com-
bineMappings(). This element is a set itself containing the mappings µ1, µ2,
. . ., µnm . Mapping µ1 is taken from set m1. Mapping µ2 is taken from set
m2, and so on.

MDISTINCT: The set returned by procedure CombineMappings() in line 17 of
the pseudocode of SelectPermutations().

ξj : The j-th element of set MDISTINCT.

f
H

[i]
P ,j

: The j-th set passed as input to procedure MappingsToPermutations().

This happens either in line 20 of procedure SelectPermutations(), in which
case f

H
[i]
P ,j

is equal to S
H

[i]
P
∪ ξj , or in line 23 of the same procedure, in

which case, f
H

[i]
P ,j

is equal to S
H

[i]
P

. The computations of procedure Select-

Permutations() are performed for the hash key value H
[i]
P .

|P
H

[i]
P
|: The number of sets of permutations returned by procedure Map-

pingsToPermutations(). If the set of sign queries Q
[i]
s is non-empty, this num-

ber is equal to the cardinality of MDISTINCT. If Q
[i]
s is empty this number is

equal to 1. The computations of the calling procedure SelectPermutations()

are performed for the hash key value H
[i]
P .

F
H

[i]
P ,j

: The j-th set returned by procedure MappingsToPermutations(). This

set is either returned in line 20 of procedure SelectPermutations(), in which

77

case, it is also denoted by MPERM,j , or in line 23 of the same procedure, in
which case it is exactly equal to the set C

H
[i]
P

returned by SelectPermuta-

tions(). The computations of procedure SelectPermutations() are performed

for the hash key value H
[i]
P .

MPERM,j : Alternative notation for the set F
H

[i]
P ,j

, which is used in line 20 of

the pseudocode of procedure SelectPermutations().

C
H

[i]
P

: The set returned by procedure SelectPermutations(). Corollary 6 es-

tablishes that this set is equal to the set C
H

[i]
P

of the constraint satisfying

permutations associated with the hash key H
[i]
P , i.e., C

H
[i]
P

= C
H

[i]
P

.

Z: Entity equal to (1 + 4·|Q|
2N−(η+5)|Q|)

2|Q|.

e: The base of the natural logarithm.

78

