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Abstract. The advent of quantum computers is a threat to most cur-
rently deployed cryptographic primitives. Among these, zero-knowledge
proofs play an important role, due to their numerous applications. The
primitives and protocols presented in this work base their security on
the difficulty of solving the Rank Syndrome Decoding (RSD) problem.
This problem is believed to be hard even in the quantum model. We first
present a perfectly binding commitment scheme. Using this scheme, we
are able to build an interactive zero-knowledge proof to prove: the knowl-
edge of a valid opening of a committed value, and that the valid openings
of three committed values satisfy a given linear relation, and, more gener-
ally, any bitwise relation. With the above protocols it becomes possible to
prove the relation of two committed values for an arbitrary circuit, with
quasi-linear communication complexity and a soundness error of 2/3. To
our knowledge, this is the first quantum resistant zero-knowledge pro-
tocol for arbitrary circuits based on the RSD problem. An important
contribution of this work is the selection of a set of parameters, and an a
full implementation, both for our proposal in the rank metric and for the
original LPN based one by Jain et. al in the Hamming metric, from which
we took the inspiration. Beside demonstrating the practicality of both
constructions, we provide evidence of the convenience of rank metric, by
reporting performance benchmarks and a detailed comparison.

Keywords: Post Quantum · Code-based cryptography · Rank metric ·
Zero-knowledge proof · Identification protocol · Commitment scheme

1 Introduction

Due to the results of Grover [21] (1996) and Shor [33] (1997), the advance-
ments in quantum information theory, and the discovery of new technologies,
quantum computers are becoming more and more of a threat to the currently
deployed cryptosystems, especially to those based on public key cryptography.
Among these, zero-knowledge proofs (ZKP) are gaining particular attention due
to their numerous applications. They can be used to obtain identification and
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login mechanisms, cryptographic signature schemes, systems to enforce honest
behaviour of the users, and to prove statements in public transaction systems
such as blockchains. The growing interest from both academia and industry on
the ZKP topic, has led to a series of results that improve upon previous theory
and allow for the development of practical applications, and a standardization
effort for zero-knowledge systems is also being carried on by the cryptographic
community [34,37]. On the other hand, most of ZKP schemes are not quantum
resistant.

Zero-knowledge proofs were first introduced by Goldwasser, Micali and Rack-
off in 1989 [20]. In their work, they created a new proving procedure for com-
municating a proof, or in modern terms, an efficient interactive proof system.
An interactive proof is a process in which a prover probabilistically convinces a
verifier of the correctness of a mathematical proposition, also called statement.
If the proof does not reveal to the verifier any additional information about the
mathematical proposition, except if it is true or not, then it is called a zero-
knowledge proof. A zero-knowledge proof of knowledge of a secret information
is a special case of zero-knowledge proof, in which the statement consists only
of the fact that the prover knows the secret information. Goldreich, Micali and
Wigderson [19] showed how to make any proving system in NP (i.e. where the
verifier is a deterministic, polynomial-time machine) zero knowledge, meaning
that the verifier learns nothing but the correctness of the proposition. Further-
more, Impagliazzo and Yung in 1987 [22], and Ben-Or et al. in 1990 [8], showed
that anything that can be proved by an interactive proof system can be proved
with zero knowledge. Zero-knowledge proofs therefore provide complete privacy
to the prover while convincing the verifier. Further research resulted in the study
of non-interactive zero-knowledge proofs (NIZKs), a variant that does not require
interaction between the prover and the verifier. Building on top of these, modern
NIZK systems have become more efficient, including succinct proofs, sub-linear
verifiers and highly efficient provers.

In this work, we will focus on quantum resistant interactive zero-knowledge
proofs, with the property of public-coin, i.e. verifier’s random coins are made
public throughout the proof protocol. Notice that, a public-coin interactive proof
of knowledge can always be converted into a non-interactive proof of knowledge
by means of the Fiat-Shamir heuristic [14]. Furthermore, if the interactive proof
is used as an identification tool, then the non-interactive version can be used
directly as a digital signature.

1.1 Our contribution

A commitment scheme is a cryptographic primitive that allows one to commit to
a chosen value (or chosen statement) while keeping it hidden to others, with the
ability to reveal (or to open) the committed value later. Commitment schemes
are designed so that a party cannot change the value or statement after they
have committed to it: that is, commitment schemes are binding.

In this work, we design and implement a perfectly binding and computation-
ally hiding commitment scheme whose security relies on the hardness of solving
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the Rank Syndrome Decoding (RSD) problem, i.e. on the hardness of decoding
random linear codes in the rank metric. This problem is believed to be hard even
in the quantum model. Using this scheme, we are able to build an interactive
zero-knowledge proof to prove: the knowledge of a valid opening of a commit-
ted value, and that the valid openings of three committed values satisfy a given
linear relation, and, more generally, any bitwise relation.

With the above protocols it becomes possible to prove that the committed
values c0, c1 satisfy c0 = C(c1) for an arbitrary circuit C. As proved in [23], the
total communication complexity of this protocol is O(|C|µ logµ) where µ is the
length of the committed messages. The soundness error is 2/3, and thus for most
applications must be lowered by (parallel) repetition.

Moreover, we also compute secure parameters, and implement4 both schemes
in the rank and Hamming metric, and compare their performances. Notice that,
in [23], no parameters, nor an implementation was provided. Our proposal gen-
erates proofs that are 60% smaller and the size of the public parameters required
is only a 1% with respect to the public parameters for the Hamming metric.

To our knowledge, this is the first zero-knowledge protocol for arbitrary cir-
cuits whose security relies on the difficulty of solving the Rank Syndrome De-
coding problem, and the collision resistance of a hash function.

In subsection 1.2, we give an overview of the works related to our result.
In section 2, we introduce the basic notions needed to understand our scheme.
In section 3, we define a commitment scheme, and below it, in section 4, we
build our zero-knowledge protocols. In section 5, we select a set of parameters
both for our scheme and for its analogue in the Hamming metric, and we provide
benchmarks of our implementations of the corresponding ZKP protocols. Finally,
in section 6, we draw the conclusions.

1.2 Related works

This work is an adaptation of the protocols presented by Jain et al. in [23], where
they show how to build a zero-knowledge protocol for arbitrary circuits reducing
the security of their system to the difficulty of solving the Learning Parity with
Noise problem, or, equivalently, to the difficulty of decoding a random linear
code in the Hamming metric.

In turn, Jain’s work is based on the preliminary identification protocol pro-
posed by Stern in 1993 [35,36], which inspired a long sequence of works improving
either the scheme parameter size, or the communication cost. All the subsequent
schemes derived from Stern’s can be divided in four categories:

– Type 1: 3-pass protocols using the parity-check matrix of a code,
– Type 2: 3-pass protocols using the generator matrix of a code,
– Type 3: 5-pass protocols using the parity-check matrix of a code,
– Type 4: 5-pass protocols using the generator matrix of a code.

4 A C++ implementation of the schemes described in this work can be found at
https://github.com/ahasikos/rank_commitments.

https://github.com/ahasikos/rank_commitments
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Type 1 protocols can be seen as Zero-Knowledge Proof of Knowledge (ZKPoK)
of a solution of an instance of the Syndrome Decoding problem for some spe-
cific code, where the syndrome is the public key and the corresponding error
the private secret. As the original Stern proposal, they are 3-move Σ-protocols
with a soundness error of 2/3, and perfect completeness. The original Stern pro-
posal used binary linear codes over the Hamming metric. Also, a second variant
minimizing the computing load was presented, but its longer proof renders it
unpractical. Double circulant codes, again in the Hamming metric, were pro-
posed in 2007 by Gaborit and Girault in [16]. In 2011, Gaborit et al. adapted
their proposal with double circulant codes to rank metric, obtaining the most
compact code based identification scheme of Type 1. In 2008, Stern scheme was
also adapted to the lattice setting by Kawachi et. al [24], who also extended the
initial identification scheme to an anonymous identification scheme.

Using a generator matrix rather than the parity-check matrix, allows to re-
duce the communication cost, at expense of a slightly larger private key. This is
why Type 2 protocols were introduced, in 1997, by Veron, in [38]. Type 2 proto-
cols use a secret message and a secret error as the private key, and their encoding
under a public generator matrix as the public key. Initially, the advantage in the
communication cost was due to the fact that the committed value, which needs
to be revealed in the response phase, was in the code plain message space rather
than in the encoded message space. In 2012, Jain et al. [23] pointed out that
Veron scheme did not reach perfect zero-knowledge, and proposed a variation of
it, which they then used to construct zero-knowledge proof of knowledge of linear
and multiplicative relations between committed messages. Jain version, though,
lost the feature that was reducing the communication cost, as their commitment
value was in the error space, which had the same size as the encoded message
space. In 2018, Bellini et al. proposed the rank metric version of Veron scheme,
thought without providing a security proof, and their scheme was attacked in
2019 in [25]. This is, so far, the only Stern-based scheme that has been attacked.

Notice that Type 1 and Type 2 protocols are 3-pass Σ-protocols, with perfect
completeness and a soundness error (often referred to as cheating probability)
of 2/3. Type 3 and Type 4 protocols were introduced to reduce the soundness
error from 2/3 to almost 1/2, by performing 5 steps instead of 3. This allows to
run less parallel execution of the protocol to reach a smaller desired soundness
error, and, sometimes, a smaller communication cost at expense of some extra
computation.

The first Type 3 protocol was presented in the second variant of Stern’s
original proposal. However, also this alternative had a larger proof and was
not practical. In 2010, Cayrel-Veron-El Yousfi Alaoui (CVE) [12] presented a
5-pass identification protocol with soundness error of q/(2q − 2), using codes
over Fqm , this time improving significantly the communication cost compared
to the initial 5-pass proposal by Stern. A version of CVE scheme in the rank
metric is presented in [7], though lacking a security proof. It is worth noting that
the parameters proposed for this particular rank version of CVE scheme do not
improve key size nor communication cost with respect to the Hamming metric
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version. A lattice based version of CVE was presented in 2012 by Cayrel et al.
[11], reaching a smaller public key, but larger private key and communication cost
than CVE. This scheme also improves under all aspects the Type 1 lattice-based
scheme of Kawachi et al. [24]

The first Type 4 protocol was presented in 2011 in [2] by Aguilar et al., where
double circulant codes were used. The key size, the communication cost and the
soundness error of this protocol were later significantly improved in 2019, by
Bellini et al. in [6], by replacing the Hamming metric with the rank metric.
A lattice based version of the Jain et al. protocol was presented by Mart́ınez
and Morillo in 2019 [29], where they also use some ideas from [26] and [40].
The authors do not propose a set of parameters and leave as future work an
implementation of their scheme.

All the above mentioned protocols are believed to be secure even against
quantum adversaries, thought the situation is more uncertain as far as it concern
the analogue of the Fiat-Shamir transform for 5-pass protocols.

In the case of lattices, it is possible to construct zero-knowledge proofs using
approaches different from Stern, as it was done, for example, in [31,28,26].

A summary of the above described Stern-like protocols can be found in Ta-
ble 1.

Name Ref. Year Metric Setting Aim Notes

3-pass, with parity-check matrix

Stern(1) [35,36] 1993 Hamm. Linear codes Identification -
Stern(2) [35,36] 1993 Hamm. Linear codes Identification Minimize computing load, proof not practical

GG [16] 2007 Hamm. Double Circulant codes Identification -
KTX [24] 2008 Euclidean Lattices Anonymous Identification -
GSZ [18] 2011 Rank Double Circulant codes Identification -

3-pass, with generator matrix

Veron [38] 1997 Hamm. Linear codes Identification Not perfect ZK
JKPT [23] 2012 Hamm. Linear codes ZKPoK of relations -
BKLP [9] 2015 Euclidean Lattices ZKPoK of relations -

BCHMM [7] 2018 Rank Linear Codes Signature Attacked in [25]
This work - - Rank Linear codes ZKPoK of relations -

5-pass, with parity-check matrix

Stern(3) [35,36] 1993 Hamm. Linear codes Identification Proof not practical
CVE [12] 2010 Hamm. q-ary Linear Code Identification -
CLRS [11] 2012 Euclidean Lattices Identification -

BCHMM [7] 2018 Rank Linear Codes Signature -

5-pass, with generator matrix

AGS [2] 2011 Hamm. Double Circulant codes Identification -
BCGMM [6] 2019 Rank Double Circulant codes Signature -

MM [29] 2019 Euclidean Ideal Lattices ZKPoK of relations -

Table 1. Summary of Stern-like protocols.

2 Preliminaries and notations

2.1 Codes in the rank metric

We useMr,c(R) andM∗r,c(R) to denote, respectively, the set of all matrices and
the set of all full rank matrices with r rows and c columns with entries over the
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ring R. Given M1 ∈ Mr,c1(R) and M2 ∈ Mr,c2(R), we indicate with M1‖M2

the concatenation of the two matrices.

A linear (n, k)q-code C is a vector subspace of (Fq)n of dimension k, where
k and n are positive integers such that k < n, q is a prime power, and Fq is the
finite field with q elements. Elements of the vector space are called vectors or
words, while elements of the code are called codewords. A matrix G ∈M∗k,n(Fq)
is called a generator matrix of C if its rows form a basis of C, i.e. C = {x ·G :
x ∈ (Fq)k}. A matrix H ∈ M∗n−k,n(Fq) is called a parity-check matrix of C if

C = {x ∈ (Fq)n : H · xT = 0}.
In this paper, we work with codes in the rank metric. Given a fixed basis

β = {β1, . . . , βm} of (Fq)m, a vector a ∈ (Fqm)n can be represented as a matrix
with entries in Fq, by expanding each component of ai with respect to β in a
column (a1,i, . . . , am,i)

T , where ai =
∑m
j=1 aj,iβj , i = 1, . . . , n. We define the

rank wR(v) of a vector v as the rank of its matrix representation, with respect
to β. We denote the previous matrix representation as φβ(a), and by φ−1β the
inverse map. In what follows, we will omit β as we consider it fixed.

To send a binary vector of a certain Hamming weight to any other vector
of the same Hamming weight, it is sufficient to apply a random permutation to
vector components. The map with the analogue property in the rank metric, i.e.
sending a vector of a certain rank to any other vector of the same rank, can be
defined as follows (see [18]).

Definition 1. Let Q ∈ M∗m,m(Fq) be a q-ary matrix of size m × m, P ∈
M∗n,n(Fq) be a q-ary matrix of size n × n, and v = (v1, . . . , vn) ∈ (Fqm)n.
We define the function ΠP,Q such that (π1, . . . , πn) = ΠP,Q(v) = φ−1(Q · φ(v) ·
P ) ∈ (Fqm)n, where for h = 1, . . . , n, πh := β1

∑m
i=1

∑n
j=1Q1,ivi,jPj,h + . . . +

βm
∑m
i=1

∑n
j=1Qm,ivi,jPj,h, with β = {β1, . . . , βm} a basis of (Fq)m.

In [18], it is proved that, for any x, y ∈ (Fqm)n, and any full rank P ∈M∗n,n(Fq)
and any full rank Q ∈M∗m,m(Fq), then ΠP,Q has the rank preserving property,
i.e. wR(ΠP,Q(x)) = wR(x), and is a linear mapping, i.e. aΠP,Q(x) + bΠP,Q(y) =
ΠP,Q(ax+ by). Furthermore, for any x, y ∈ (Fqm)n such that wR(x) = wR(y), it
is possible to find P ∈ M∗n,n(Fq) and Q ∈ M∗m,m(Fq) such that x = ΠP,Q(y).
The last property shows that, given a vector of a certain rank, it is possible to
associate to it any other vector of the same rank by modifying P and Q. This
property will be used in the zero-knowledge proof of the proposed scheme. Notice
also that ΠP,Q is invertible if P and Q are.

We denote by
[
n
s

]
=
∏s−1
i=0

qn−qi
qs−qi the number of s-dimensional vector sub-

spaces of (Fq)n over Fq. A ball BrR(a) in the rank metric of radius r centered
in a vector a ∈ (Fqm)n is the set of all vectors in rank distance at most r from

a. It can be shown [39] that |BrR(a)| =
∑r
i=1

[
m
i

]∏i−1
j=0(qn − qj), which does not

depend on a.

The following bound plays an important role in the choice of the parameters
of our schemes.
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Theorem 1 (q-ary Gilbert-Varshamov Bound in rank metric [15]). Let
ARqm(n, d) be the maximum cardinality of a linear block code over Fqm of length n,

size M , and minimum distance d in the rank metric. Then ARqm(n, d) ≥ qmn

|Bd−1
R (0)|

.

Both in the Hamming and in the rank metric, random codes over Fq asymp-
totically achieve the Gilbert-Varshamov bound [15]. Furthermore, they have
close to optimal correction capability [27]. This result is important for the scheme
that we propose, as it allows to choose random generator (or parity-check) ma-
trices as long as the code parameters respect the bound.

2.2 Rank Decoding problem

We now define the problem upon which the security of the commitment schemes
we present is based. This problem is equivalent to the decoding problem for
random linear codes, which consists of searching for the closest codeword to a
given vector. More precisely, given G, y = xG+e, and the weight w, the decoding
problem consists in finding the pair (x, e), where the weight of e is w. In the case
of linear codes, it can be easily shown that the decoding problem is equivalent to
the problem in which the syndrome s = Hy of the received vector is given instead
of the received vector itself. In this case we use the term Syndrome Decoding
(SD) when referring to linear code in the Hamming metric, and Rank Syndrome
Decoding (RSD) when referring to linear code in the rank metric.

Definition 2 (RSD Distribution). Given the positive integers n, k, and ρ,
the RSD(n, k, ρ) Distribution chooses H ←$M∗n−k,n(Fqm) and x←$ (Fqm)n such

that wR(x) = ρ, and outputs (H,H · xT )

Problem 1 (RSD Problem). On input (H, yT ) ∈M∗n−k,n(Fqm)× (Fqm)n−k from
the RSD distribution, the Rank Syndrome Decoding problem RSD(n, k, ρ) asks
to find x ∈ (Fqm)n such that H · xT = yT and wR(x) = ρ.

The previous problem can be defined correspondingly also in the Hamming met-
ric, in which setting the problem has been proven to be NP-complete [10]. The
RSD problem has recently been proven difficult with a probabilistic reduction
to the Hamming scenario in [1]. By applying the transformation described in [1]
it can be shown that the Decisional version of the RSD problem can be reduced
to a search problem for the Hamming metric, providing some evidence on the
hardness of the problem.

2.3 Commitment schemes

In this section we define a commitment scheme and the properties which are
related to this paper.

Definition 3. A triple of algorithms (Setup,Com,Ver) is called a commitment
scheme if it satisfies the following:
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– On input 1λ, the setup algorithm Setup outputs the public commitment pa-
rameters pp.

– The commitment algorithm Com takes as inputs a message m from a message
space M and a the the public commitment parameters pp, and outputs a
commitment/opening pair (c, d).

– The verification algorithm Ver takes the parameters pp, a message m, a com-
mitment c and an opening d and outputs true or false.

The commitment scheme we describe satisfies these security properties:

– Correctness: Ver evaluates to true if the inputs are honestly computed, i.e.,

Pr[Ver(pp,m, c, d) = true; pp←$Setup(1λ),m ∈M, (c, d)←$Com(m, pp)] = 1

– Perfect binding : With overwhelming probability over the choice of the public
commitment parameters pp←$Setup(1λ), no commitment c can be opened
in two different ways, i.e.,

(Ver(pp,m, c, d) = true) and (Ver(pp,m′, c, d′) = true) =⇒ m = m′

– Computational hiding : A commitment c computationally hides the com-
mitted message if, with overwhelming probability over the choice of the
value pp←$ Setup(1λ), for every m,m′ ∈ M , and for (c, d)←$Com(m, pp)
and (c′, d′)←$Com(m′, pp) the distributions c and c′ are computationally
indistinguishable.

2.4 Zero-knowledge proof of knowledge

A zero-knowledge proof of knowledge is a protocol in which P wants to prove to
a V the knowledge of some secret information without revealing anything about
it, except the fact that he knows it. More formally, in a zero-knowledge proof for
a binary relation R, the two parties have a common input y and P has a private
input w such that (y, w) ∈ R. To be defined as zero-knowledge, the protocol
must then satisfy the following three properties:

– Completeness: for an honest prover, the verifier always accepts.

– Zero-knowledge: for every potentially malicious verifier V′ there exists a PPT
simulator only taking y as an input whose output is indistinguishable from
conversations of V′ with an honest prover.

– Proof of knowledge: from every prover P which can make the verifier accept
with a probability larger than a threshold k (the knowledge error), a w′

satisfying (y, w′) ∈ R can be extracted efficiently in a rewindable black-box
way.

For a more formal definition we refer to Bellare and Goldreich [5].
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3 A commitment scheme in the rank metric

In this section we describe a perfectly binding commitment scheme whose secu-
rity depends on the difficulty of solving the Rank Syndrome Decoding (RSD)
problem. This commitment scheme follows the structure of the commitment
scheme presented [23], based on the LPN problem.

The scheme is parameterized by the following values: the prime characteristic
q (in our implementation we set q = 2) and the degree m of a q-ary extension field
Fqm , the bit length µ of a message m ∈ Fµq , the bit length π of the randomness s ∈
Fπq , the length n of the linear code C, and the rank weight ρ of an error e ∈ Fnqm .
The dimension k of the code C is given by k = (µ+π)/m (we require µ and π to
be both multiples of m, so that (s‖m) can be seen as an element of Fkqm). Notice
also that an instance of the RSD problem is hard if the weight ρ is taken close to
the Gilbert-Varshamov bound. Once the scheme public parameters q,m, µ, π, n, ρ
are chosen accordingly with the security parameter λ (see subsection 5.1 for
an example of actual values), then the commitment scheme is defined by the
following three algorithms (Setup, Com, Ver):

Setup(1λ)

Gm ←$M∗µ
m
,n(Fqm)

Gs ←$M∗π
m
,n(Fqm)

return G = (GT
s ‖GT

m)T

ComG(m)

s←$Fπ2
e←$Fnqm , s.t. wR(e) = ρ

c = (s‖m) ·G+ e

return c, s

VerG(c,m′, s′)

e′ = c + (s′‖m′) ·G
if wR(e′) = ρ return True

else return False

The matrix G is called the public commitment key. We will write Com and
Ver, omitting G, when clear from the context. The second output s of the Com
algorithm is needed by the party generating the commitment, in order to prove
that it was the one generating the commitment.

Theorem 2. Let us fix q,m, µ, π, n, ρ so that the RSD problem is hard. Let
G ∈M∗k,n(Fqm) be the generator matrix of a random linear code C of dimension
k and length n. Then the above defined commitment scheme is perfectly binding
and computationally hiding.

Proof. We first prove that the scheme is perfectly binding. First, let us recall that
random linear codes over Fqm asymptotically achieve the Gilbert-Varshamov
bound. Thus, with overwhelming probability, the code C has minimum rank
distance greater than dC = 2ρ. This means that no codeword in C can have
rank weight less than or equal to dC . Now, let us assume, by contraposition,
that there exists two different openings m,m′ for a commitment c. This means
that e = c+ (s‖m) ·G and e′ = c+ (s′‖m′) ·G are such that wR(e) = wR(e′) = ρ.
Since e + e′ = ((s‖m) + (s′‖m′)) · G ∈ C, and because of the metric properties,
we have that wR(e + e′) ≤ wR(e) + wR(e′) = 2ρ = dC . This means that the
codeword (e + e′) has minimum rank weight less than the code distance. Since
this is impossible, than m must be different from m′.

To prove that the scheme is computationally hiding, we first notice that
c = s · Gs + m · Gm + e. Then we conclude that c is indistinguishable from



10 Bellini et al.

a random vector of the same length, since both s and e are sampled from a
random distribution, and we are assuming that s ·Gs +e is also indistinguishable
from random. ut

4 Zero Knowledge Proof protocols

In this section we describe three Σ-protocol. The first protocol is a proof of
knowledge of a valid opening. It is a variant of Stern protocol [35], or, more
precisely, of the dual of it due to Veron [38]. The second protocol allows to prove
that committed strings satisfy any linear relation. Finally, the third protocol
allows to prove that committed strings satisfy any bitwise relations, as bitwise
AND, NAND, OR, or NOR. Since NAND is functionally complete, using this
protocol we can construct Σ-protocols for any relation amongst committed mes-
sages. For all three protocols, we follow the ideas and proofs of [23], and adapt
them to rank metric.

4.1 Proving knowledge of a valid opening

The following Σ-protocol proves knowledge of a valid opening for commitments
of the form described in section 3, i.e., it shows possession of s,m, e such that
y = (s‖m)·G+e for an error satisfying wR(e) = ρ. For the sake of notation conve-
nience, we will sometimes write x to denote the vector (s‖m). The protocol is de-
scribed in Figure 1. The inputs for P are x ∈ (Fqm)k and e ∈ (Fqm)n s.t. wR(e) =
ρ. The pair (x, e) is the secret P wants to prove the knowledge of. Both P and
V share as input the public parameters: the generator matrix G and the error
rank weight ρ. The function E() takes a sequence of inputs and converts it to a
binary string of size µ (a collision resistant hash or XOF function can be used),
suitable to be used as input message for the Com or Ver algorithm. Notice that,
the protocol uses Π as defined in subsection 2.1 with P and Q being invertible.
This allows us to operate with f and f + e in a way that preserves the rank of
the error but still hides it. The Π operation preserves linearity and is the key
on the adaptation from Hamming to rank metric.

Theorem 3. The protocol described in Figure 1 is a Σ-protocol for the following
relation: RRSD = {((G, y), (s,m, e)) : y = (s‖m) ·G+ e and wR(e) = ρ}

The proof of Theorem 3 can be found in section B.

4.2 Proving linear relations

As it is introduced in Jain et al. paper, our adaptation into rank metric is also
suitable to prove linear relations of several valid openings. The main idea is
to provide a method by which a prover P can prove knowledge of a bitwise
relation between the committed messages without showing the messages. The
whole construction is similar in the sense that the relation is still holding in the
message space of the commitments.
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Prover P Verifier V

Q←$M∗m,m(Fq), P ←$M∗n,n(Fq) invertibles

v ←$ (Fqm )
k

f ←$ (Fqm )
n

y← x ·G+ e

c0, s0 ← Com(E(P,Q, v ·G+ f))

c1, s1 ← Com(E(ΠP,Q(f)))

c2, s2 ← Com(E(ΠP,Q(f + e))) y, c0, c1, c2

ch ch←$ {0, 1, 2}

rP,Q ← (P,Q)

r0 ← v ·G+ f

r1 ← ΠP,Q(f)

r2 ← ΠP,Q(f + e)

if ch = 0
rP,Q, r0, r1,

s0, s1 if


Ver(c0, E(rP,Q, r0), s0)) = true and

Ver(c1, E(r1), s1) = true and

r0 +Π−1
rP,Q

(r1) ∈ Img(G) and

rP,Q ∈ M∗m,m(Fq)×M∗n,n(Fq)

return true

if ch = 1
rP,Q, r0, r2,

s0, s2 if


Ver(c0, E(rP,Q, r0), s0)) = true and

Ver(c2, E(r2), s2) = true and

r0 +Π−1
rP,Q

(r2) + y ∈ Img(G)

return true

if ch = 2
r1, r2,

s1, s2 if


Ver(c1, E(r1), s1)) = true and

Ver(c2, E(r2), s2) = true and

wR(r1 + r2) = ρ

return true

Fig. 1: A Σ-protocol proving valid opening of a commitment in the rank metric.

Given the three q-ary vectors m1, m2, m3 and two q-ary matrices X1, X2 ∈
Mµ,µ(Fq) such that m3 = X1m1 +X2m2, a prover can prove in zero knowledge
the existence of this relation by running the protocol detailed in Figure 2. P
first commits to the values obtaining yi = (si||mi)G + ei, and then generates
v1 and v2 at random to later compute v3 = X1v1 +X2v2. With this second set
of values sharing the same linear relations the prover proceeds by proving valid
opening of the vi values using the proof from subsection 4.1 but now the verifier
validates different computations regarding the linear relation and how it applies
to either vi or vi + mi depending on the challenge. The protocol protects the
values mi by masking them with the random values vi which, given that they
share the linear relations, can be evaluated without disclosing their values. It is
worth noting that, both prover P and verifier V know the public parameters y1,
y2, y3, G, ρ, and the relations X1 and X2. On the other hand, only the prover P
knows x = (si||mi) and e.
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Prover P Verifier V

Q1, Q2, Q3 ←$M∗m,m(Fq)

P1, P2, P3 ←$M∗n,n(Fq)

u1, u2, u3 ←$ (Fπq )

f1, f2, f3 ←$ (Fnqm )

v1, v2 ←$ (Fµq )
v3 = X1v1 +X2v2

ci,0, si,0 ← Com(E(Pi, Qi, (ui||vi) ·G+ fi))

ci,1, si,1 ← Com(E(ΠPi,Qi (fi)))

ci,2, si,2 ← Com(E(ΠPi,Qi (fi + ei)))
ci,0, ci,1, ci,2

ch ch←$ {0, 1, 2}

ri,P,Q ← (Pi, Qi)

ri,0 ← (ui||vi) ·G+ fi

ri,1 ← ΠPi,Qi (fi)

ri,2 ← ΠPi,Qi (fi + ei)

if ch = 0
ri,P,Q, ri,0, ri,1,

si,0, si,1 if



Ver(ci,0, E(ri,P,Q, ri,0), si,0)) = true and

Ver(ci,1, E(ri,1), si,1) = true and

∃ai, bi | ri,0 +Π−1
ri,P,Q

(ri,1) = (ai||bi) ·G and

b3 = b1X1 + b2X2 and

ri,P,Q ∈ M∗m,m(Fq)×M∗n,n(Fq)

return true

if ch = 1
ri,P,Q, ri,0, ri,2,

si,0, si,2 if


Ver(ci,0, E(ri,P,Q, ri,0), si,0)) = true and

Ver(ci,2, E(ri,2), si,2) = true and

∃ci, di | ri,0 +Π−1
ri,P,Q

(ri,2) + yi = (ci||di) ·G and

d3 = d1X1 + d2X2

return true

if ch = 2
ri,1, ri,2,

si,1, si,2 if


Ver(ci,1, E(ri,1), si,1)) = true and

Ver(ci,2, E(ri,2), si,2) = true and

wR(ri,1 + ri,2) = ρ

return true

Fig. 2: A Σ-protocol proving linear relations of valid opening in the rank metric.

4.3 Proving multiplicative relations

When the properties we want to prove are multiplicative such as m3 = m1 ◦m2,
we will follow the original idea and try to reduce the multiplicative relation into a
linear relation in order to use the construction from subsection 4.2. In a nutshell,
the prover P will have the commitments y1 y2, and y3 of the messages m1, m2,
and m3. In order to prove the ◦ relation, P will begin sampling vectors m′i sharing
the same multiplicative relation and adding restrictions to its structure. After
this, P will generate a random permutation matrix R such that R · m′i = mi.
Finally, P will use the proof of linear relation with the linear relation R but, given
that R is not known by V, it will send a commitment to R and also commitments
to m′i for i = 1, 2, 3. The detailed version of the protocol is presented in Figure 3
(commitment) and Figure 4 (challenge and response). The inputs for P are mi ∈
Fµ2 , ei ∈ (Fqm)n s.t. wR(ei) = ρ, and si ∈ Fπ2 for i = 1, 2, 3. Both P and V
share as input the public parameters: the generator matrix G, the error rank
weight ρ, and the commitments yi for i = 1, 2, 3. Besides this, they also share
knowledge of the multiplicative relation ◦. For the purpose of readability, we use
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similar notation to the original Jain et al. protocol, which includes the use of
mj
i to denote the j-th bit block of mi. Following this reasoning, Rj would be the

submatrix resulting from taking only the columns from (j−1)µm+1 to jµm. We
use the same notation for Qi, Q

′
i, Pi, and P ′i . Notice that, the conversion from

Hamming to rank metric, is again made possible by the use of the functions
ΠP,Q, which are linear mappings preserving the rank.

5 Implementation

In the original proposal from Jain et al. [23], no set of parameters was provided,
and consequently no implementation to prove the efficiency of the scheme in
a real scenario. In this section, we first fix a set of parameters for a quantum
security level of 128 bit, and then we provide benchmarks of our implementation
of the commitment schemes in the Hamming and the rank metric.

5.1 Parameters

For the Jain et al. commitment scheme we have to choose a proper set of param-
eters n, k, w such that the syndrome decoding problem in the Hamming metric
can be solved with at least 2128 operations with a quantum or a classical com-
puter. The difficulty of solving the syndrome decoding problem in the Hamming
metric and in the full distance decoding scenario5 and when n ≈ 2k (the hardest
case), is given by 20.097n [30]. For quantum security, the exponent should be
divided by two. To obtain a security level of λ bit in the quantum scenario, then
n = 2λ/0.097. For λ = 128 we obtain n = 2640, k = 1320. Since the Gilbert-
Varshamov bound for the given n, k is d = 294, we choose w close to this value,
e.g. w = 284. We recall that, in [23], the dimension k is split in two values ` and
v (in this paper corresponding to π and µ, respectively), where ` is the security
parameter, resulting in ` = 128 and v = 1192.

For our commitment scheme, we choose a proper set of parameters q,m, n, k, r
such that the SD problem in the rank metric can not be solved with less than 2128

operations using a quantum or a classical computer. To obtain a security level
of λ = 128 bit in the quantum scenario, we selected the following parameters:
q = 2,m = 43, n = 38, k = 17, ρ = 13. Notice that the Gilbert-Varshamov
bound for the given q,m, n, k is d = 15. Finally, we have π = 129 (greater than
λ = 128)and µ = mk − π = 602. The work factor (i.e. the base 2 logarithm of
the attack time complexity) of the known attacks for the chosen parameters is
summarized in Table 2. Since the cheating probability of the scheme is 2/3, to
reach 128 bit of security, we need to repeat the protocol δ times, where δ is the
least integer such that (2/3)δ < 2−128. This gives us δ = 219.

5 In the full distance decoding, the attacker receives an arbitrary point and aims at
decoding the closest codeword. In the half distance decoding, the attacker knows that
the error vector is within the error correction distance, i.e. wH(e) ≤ b(d− 1)/2c. In
this case the decoding complexity is 20.0473n.
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Reference Attack type Complexity Work factor

[13] combinatorial (nρ+m)3q(m−ρ)(ρ−1)/2 207.21

[32] (1) combinatorial (mρ)3q(ρ−1)(k+1)/2 135.38

[32] (2) combinatorial (k + ρ)3ρ3q(m−ρ)(ρ−1)/2 205.82

[17] (1) combinatorial (n− k)3m3qρbk∗m/(2n)c 146.46

[17] (2) combinatorial (n− k)3m3q(ρ−1)b(k−1)m/(2n)c 137.46

[3] combinatorial (n− k)3m3qρd(k+1)m/(2n)e−m 129.46

[17] (3) algebraic ρ3k3qρd((ρ+1)(k+1)−(n+1))/ρe 244.36

[4] algebraic

(
((m+n)ρ)ρ+1

(ρ+1)!

)w
, w = 2.807 292.55

Table 2. Work factor of the known attacks to the rank syndrome decoding problem
for q = 2,m = 43, n = 38, k = 17, ρ = 13.

5.2 Sizes and communication cost comparison

Table 3 shows a comparison of the secret and public parameter sizes and the
average communication cost of one round of the Σ-protocol of Figure 1, for
a quantum security level of 128 bits, for both Hamming and rank metric. In
the rank metric, the average communication cost is about 60% lower, while the
public parameters size is two orders of magnitude smaller. However, the size of
the secret in the ZKP is also 40% smaller. The size of the secret can be evaluated
as both a benefit and a drawback. On one side, the proof is limited on the size of
the secret, therefore, bigger secrets would also require bigger proofs. On the other
side, this also means the proof is able to provide security to a smaller value. A
common application of this last argument is a signature scheme, where the secret
is the private key of the signer. In that case, the size of the private key could
be smaller and, therefore, the scheme would be more efficient in terms of size.
Notice that the communication cost could be reduced by using techniques similar
to the ones presented in [6]. Also, secret and public parameters sizes could be
reduced in both Hamming and rank metric by using ideal or quasi-cyclic codes
instead of random linear codes.

Parameters |Secret| |Public Param.| Average Communication

Hamming [23]
Formula (n, k, w) k + n n+ kn+ log2(w) 5n+ d2/3(n log2(n))e+ 2λ

Bits (2640,1320,284) 3960 3487449 33461

Rank (this work)
Formula (q,m, n, k, ρ) mk +mn mn+mkn+ log2(ρ) 5mn+

⌈
2/3(m2 + n2)

⌉
+ 2λ

Bits (2,43,38,17,13) 2365 29416 10622

Table 3. Communication cost and parameters bit sizes of the Σ-protocol of Figure 1
for a quantum security level of 128 bits.

5.3 Performance comparison

We have implemented both Jain et. al. [23] schemes and ours. In both implemen-
tations we have used the NTL library from Victor Shoup. The implementations
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were written in C++ and the benchmarks were conducted on a 2.9 GHz Quad-
Core Intel Core i7 with 16GB of LPDDR3 RAM clocked at 2133MHz.

Commitment Scheme

Jain et. al. This work

Routine Subroutine Time [ms] Routine Subroutine Time [ms]

Setup Generate matrix A 1.303 Setup Generate matrix G 0.030

Commitment
Generate random vector r negl.

Commitment
Generate random vector s negl.

Generate error vector e 0.168 Generate error vector e 1.800
Compute commitment c 0.029 Compute commitment c 0.025

Total 0.197 Total 1.825

Verification
Recover error vector e 0.029

Verification
Recover error vector e 0.0250

Compute hamming weight of e 0.001 Compute rank of e 0.0160

Total 0.030 Total 0.041

Table 4. Commitment scheme performance comparison.

Table 4 depicts the performance in milliseconds of the two commitment
schemes. In Table 5, we compare the performance of both Hamming and rank
metric variants for the knowledge of a valid opening. Table 6 show the perfor-
mance of the linear and multiplicative relations. For the latter two modes the
comparison is more brief as the subroutines are mostly the same as in Table 5.
The key outcomes of this comparison are the following. For the commitment
scheme, the generation of the commitment is slower in the rank metric because
of the algorithm that generates an error of a given rank. The verification of the
commitment is slower in the rank metric because we have to compute the rank
of a matrix rather than the Hamming weight of a binary vector. The generation
of matrix A is slower than matrix G due to their different size. The generation of
the proof of Knowledge of a Valid opening, Linear relations and Multiplicative
Relations achieve similar timings for both variants. For the verification of the
proofs, the performance of the rank metric is around 100 times better than the
Hamming metric. This happens because of the large linear systems that have to
be solved in the Hamming case.

6 Conclusion

We showed that quantum resistant zero-knowledge proof protocols can be built
upon the Rank Syndrome Decoding problem in an efficient way. In particular, we
implemented the building blocks needed for a zero-knowledge protocol to prove
the relation among two committed values for any circuit. Our protocol is quasi-
linear in the size of the circuit, has a soundness error of 2/3, and is quantum
resistant. We hope this work to be a starting point to build even more efficient
zero-knowledge protocols based on the RSD problem.
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Knowledge of Valid Opening

Jain et.al. This work

Routine Subroutine Time [ms] Routine Subroutine Time[ms]

Proof gen.

Generate π 0.552

Proof gen.

Generate ΠP,Q 0.135
Generate random vectors negl. Generate random vectors negl.

Comm. 0
t0 0.032

Comm. 0
r0 0.020

E(tπ, t0) 0.400 E(rP,Q, r0) 0.035
Com(E(tπ, t0)) 0.200 Com(E(rP,Q, r0)) 1.860

Comm. 1
t1 0.038

Comm. 1
r1 0.044

E(t1) 0.391 E(r1) 0.019
Com(E(t1)) 0.203 Com(E(r1)) 1.809

Comm. 2
t2 0.040

Comm. 2
r2 0.044

E(t2) 0.396 E(r2) 0.018
Com(E(t2)) 0.197 Com(E(r2)) 1.736

Total 1.897 Total 5.585

Proof ver.

Verif. 0
Ver(c0,E(tπ, t0), s0)) 0.423

Proof ver.

Verif. 0
Ver(c0,E(rP,Q, r0), s0)) 0.077

Ver(c1,E(t1), s1) 0.426 Ver(c1,E(r1), s1) 0.064
t0 + π−1(t1) ∈ Img(A) 170.888 r0 +Π−1

r0 (r1) ∈ Img(G) 2.559

Verif. 1
Ver(c0,E(tπ, t0), s0)) 0.424

Verif. 1
Ver(c0,E(rP,Q, r0), s0)) 0.080

Ver(c2,E(t2), s2) 0.444 Ver(c2,E(r2), s2) 0.066
t0 + π−1(t2) + y ∈ Img(A) 175.526 r0 +Π−1

r0 (r2) + y ∈ Img(G) 2.47

Verif. 2
Ver(c1,E(t1), s1) 0.459

Verif. 2
Ver(c1,E(r1), s1) 0.064

Ver(c2,E(t2), s2) 0.446 Ver(c2,E(r2), s2) 0.064
wH(t1 + t2) 0.001 wR(r1 + r2) 0.018

Total 349.037 Total 5.462

Table 5. Knowledge of Valid Opening performance comparison.
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Prover P Verifier V

m
′
1,m

′
2,m

′
3 ←$ F4µ

2 such that

m
′
3 = m

′
1 ◦m

′
2

∀(a, b) ∈ (Fq)2,#[(m
′
1[j],m

′
2[j]) = (a, b)] = µ

R←$Mµ,4µ(Fq) s.t. R ·m′i = mi and Rank(R) = µ

for i = 1, 2, 3

for j = 1, 2, 3, 4

s
′j
i ←$ Fπq

e
′j
i ←$ (Fn2m ) s.t. wR(e

′j
i ) = ρ

y
′j
i = (s

′j
i ||m

′j
i ) ·G+ e

′j
i

Q
′j
i ←$M∗m,m(F2)

P
′j
i ←$M∗n,n(F2)

v
′j
i ←$ Fµ2
u
′j
i ←$ Fπ2
f
′j
i ←$ Fn2m

c′ji,0, s
′j
i,0 ← Com(E(P ′ji , Q

′j
i , (u

′j
i ||v

′j
i ) ·G+ f

′j
i )

c′ji,1, s
′j
i,1 ← Com(E(Π

P
′j
i
,Q
′j
i
(f
′j
i )))

c′ji,2, s
′j
i,2 ← Com(E(Π

P
′j
i
,Q
′j
i
(f
′j
i + e

′j
i )))

endfor

vi =

4∑
j=1

R
j · v′ji

Qi, ←$M∗m,m(F2)

Pi, ←$M∗n,n(F2)

ui, ←$ Fπ2
fi, ←$ Fn2m
ci,0, si,0 ← Com(E(Pi, Qi, (ui||vi) ·G+ fi))

ci,1, si,1 ← Com(E(ΠPi,Qi (fi)))

ci,2, si,2 ← Com(E(ΠPi,Qi (fi + ei)))

endfor

c, s← Com(E(y′1, y
′
2, y
′
3))

cR, sR ← Com(E(R))

c, cR, ci,0, ci,1, ci,2

c′i,0, c
′
i,1, c

′
i,2

Fig. 3: Commitment step of the Σ-protocol proving multiplicative relations in
the rank metric.



Enhancing Code Based Zero-knowledge Proofs using Rank Metric 21

Prover P Verifier V

ch ch←$ {0, 1, 2}

for i = 1, 2, 3

for j = 1, 2, 3, 4

r′j
i,P ′,Q′ = (P

′j
i , Q

′j
i )

r′ji,0 = (u
′j
i ||v

′j
i ) ·G+ f

′j
i

r′ji,1 = Π
P
′j
i
,Q
′j
i
(f
′j
i )

r′ji,2 = Π
P
′j
i
,Q
′j
i
(f
′j
i + e

′j
i )

endfor

ri,P,Q = (Pi, Qi)

ri,0 = (ui||vi) ·G+ fi

ri,1 = ΠPi,Qi (fi)

ri,2 = ΠPi,Qi (fi + ei)

endfor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

if ch = 0

R, ri,P,Q, r
′j
i,P ′,Q′ ,

r′ji,0, ri,0, r
′j
i,1, ri,1,

sR, s
′j
i,0, si,0, s

′j
i,1, si,1

if



Ver(cR, E(R), sR) = true and

Ver(ci,0, E(ri,0), si,0) = true and

Ver(c′ji,0, E(r
′j
i,0), s

′j
i,0) = true and

Ver(ci,1, E(ri,1), si,1) = true and

Ver(c′ji,1, E(r
′j
i,1), s

′j
i,1) = true and

∃ai, b1 | ri,0 +Π−1
ri,P,Q

(ri,1) = (ai||bi) ·G and

∃a′ji , b
′j
i | r

′j
i,0 +Π−1

r
′j
i,P ′,Q′

(r′ji,1) = (a′ji ||b
′j
i ) ·G and

bi =
∑4
j=1 R

j .b′ji and

ri,P,Q, r
′j
i,P ′,Q′ ∈ M

∗
m,m(Fq)×M∗n,n(Fq)

return true

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

if ch = 1

y
′
1, y
′
2, y
′
3,

R, ri,P,Q, r
′j
i,P ′,Q′ ,

r′ji,0, ri,0, r
′j
i,2, ri,2,

sR, s
′j
i,0, si,0, s

′j
i,2, si,2

if



Ver(cR, E(R), sR) = true and

Ver(ci,0, E(ri,0), si,0) = true and

Ver(c′ji,0, E(r
′j
i,0), s

′j
i,0) = true and

Ver(ci,2, E(ri,2), si,2) = true and

Ver(c′ji,2, E(r
′j
i,2), s

′j
i,2) = true and

Rank(R) = µ and wH(Ri) ≤ 1 and

∃ci, d1 | ri,0 +Π−1
ri,P,Q

(ri,2) + yi == (ci||di) ·G and

∃c′ji , d
′j
i | r

′j
i,0 +Π−1

r
′j
i,P ′,Q′

(r′ji,2) + y′ji == (c′ji ||d
′j
i ) ·G and

di ==
∑4
j=1 R

j .d′ji

return true

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

if ch = 2

y
′
1, y
′
2, y
′
3, s
′
1, s
′
2, s
′
3,

m
′
1,m

′
2,m

′
3, e
′
1, e
′
2, e
′
3,

r′ji,1, ri,1, r
′j
i,2, ri,2,

s′ji,1, si,1, s
′j
i,2, si,2

if



Ver(ci,1, E(ri,1), si,1) = true and

Ver(c′ji,1, E(r
′j
i,1), s

′j
i,1) = true and

Ver(ci,2, E(ri,2), si,2) = true and

Ver(c′ji,2, E(r
′j
i,2), s

′j
i,2) = true and

wR(r
′j
i,1 + r′ji,2) = wR(ri,1 + ri,2) = ρ and

wR(e
′j
i ) = ρ and

y′ji = (s′ji ||m
′j
i ) ·G+ e′ji and

m′j1 ◦m
′j
2 = m′j3

return true

Fig. 4: Challenge and response steps of the Σ-protocol proving multiplicative
relations in the rank metric.
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A Sigma Protocol

We give the definition of Σ-protocol, which is the basis of the protocols we
present. This definition might help understanding the security proof in section B.

Definition 4 (Σ-protocol). Let (P,V) be a two-party protocol, where V is
PPT, and let R be a binary relation. Then (P,V) is called a Σ-protocol for
R with challenge set C, public input y and private input w, if and only if it
satisfies the following conditions:

– 3-move form: The protocol is of the following form:
• P computes a commitment t and sends it to V.
• V draws a challenge c←$C and sends it to P.
• P sends a response s to V.

Depending on the protocol transcript (t, c, s), V accepts or rejects the proof.
The protocol transcript (t, c, s) is called accepting, if V accepts the protocol
run.

– Completeness: V accepts whenever (y, w) ∈ R.
– Special soundness: There exists a PPT algorithm E (the knowledge extrac-

tor) which takes a set {(t, c, sc) s.t. c ∈ C} of accepting transcripts with the
same commitment as inputs, and outputs w′ such that (y, w′)R.

– Special honest-verifier zero-knowledge: There exists a PPT algorithm S (the
simulator) taking y and c ∈ C as inputs, and which outputs triples (t, c, s)
whose distribution is (computationally) indistinguishable from accepting pro-
tocol transcripts generated by real protocol runs.

B Proof of Theorem 3

Proof. We need to prove that the protocol is 3-move, complete, sound and zero-
knowledge.

– 3-move: the protocol is 3-move by design.
– Completeness: it is easy to see that the if the protocol is honestly run by a

prover, then it always returns true.
• If ch = 0 then r0+Π−1r0 (r1) = v ·G+f+Π−1P,Q(ΠP,Q(f)) = v ·G ∈ Img(G)

and P,Q are two binary matrices of size m×m and n× n respectively.
• If ch = 1 then r0+Π−1r0 (r2)+y = v ·G+f+Π−1P,Q(ΠP,Q(f+e))+x·G+e =

(v + x) ·G ∈ Img(G).
• If ch = 2 then wR(r1 + r2) = wR(ΠP,Q(f) +ΠP,Q(f + e)) = wR(ΠP,Q(f +
f + e)) = wR(e) = ρ.

– Special soundness: we first assume that the values c0, c1, c2 and openings for
all challenges ch ∈ {0, 1, 2} have been fixed in such a way that that V accepts
on all of them. Since the underlying commitment scheme Com is perfectly
binding and the compression function E collision resistant, then the openings
to identical commitments have to be identical when different challenges are
given, or a collision for E should be found. We have that Π−1P,Q(r1 + r2) + y ∈
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Img(G) thanks to the verification equations for ch = 0 and ch = 1, and thus
that y = x′ ·G+Π−1rP,Q(r1 + r2), where x′ = (s′‖m′) can be easily computed.

Now, a valid witness of (G, y) is given by (s′,m′, Π−1rP,Q(r1+r2)), since wR(r1+
r2) = ρ. It is important to highlight that the input of the commitment scheme
is the result of a collision resistant function, therefore, the probability for
the above mentioned equations to not be correct is negligible, as it is the
probability of a collision in a collision resistant compression function.

– Honest Verifier Zero-knowledge: we need to prove that there exist an efficient
simulator Sim, which, for each challenge ch ∈ {0, 1, 2}, outputs an accept-
ing protocol transcript that is computationally indistinguishable from a real
protocol transcript performed by an honest prover for the given challenge
ch. The simulator can be described as follows:
• ch = 0: Sim computes c0, c1 as in the protocol, and c2 as a commit-

ment to 0. It is straightforward that the distribution of c0, c1, rP,Q, r0, r1
is identical to the one of a real transcript. Furthermore, the fact that
the commitment scheme Com is computationally hiding implies that the
distribution of c2 is computationally indistinguishable from the real pro-
tocol runs.

• ch = 1: Sim selects uniformly at random the values Q←$M∗m,m(Fq),
P ←$M∗n,n(Fq), b←$ (Fqm)k, a←$ (Fqm)n. Then, computes the commit-
ments c0 = Com(E(P,Q, b ·G+ y + a)) and c2 = Com(E(ΠP,Q(a))). The
value of c1 is computed as commitment to 0. The openings of c0, c2 are
verified correctly by the verifier. The distribution of the openings is cor-
rect because of the perfect uniform distribution of r2 in the real protocol
run and ΠP,Q(a) in the simulated run in Fnqm , and of the permutations
in the set of permutations. Regarding the opening of c0, notice that in
the real protocol run, it holds rP,Q = v · G + f , where v is uniformly
at random, and f = Π−1P,Q(r2 + e). In the simulated transcript the con-
tent of c0 is b · G + y + a = (b + x) · G + (a + e). The distributions of
c0 and c2 and their openings are perfectly simulated, since v and b + x
are both uniformly random, and the terms f and a + e are uniquely
determined by the contents of c0 and c2. Finally, the distribution of c1
is computationally indistinguishable by the assumed hiding property of
Com.

• ch = 2: Sim selects uniformly at random a←$ (Fqm)n, b←$ (Fqm)n such
that wR(b) = ρ. It computes c0 as commitment to 0. c1 = Com(E(a))
c2 = Com(E(a+b)). As in the case of ch = 1, the binding property of Com
implies that the distributions of c0 is computationally indistinguishable
from real protocol runs. Furthermore, the behavior of an honest prover
can be perfectly simulated by c1 and c2 and their openings.

ut
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