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Abstract

Revocable identity-based encryption (RIBE) is an extension of identity-based encryption (IBE) and
it supports efficient revocation of private keys. In the past, many efficient RIBE schemes have been pro-
posed, but research on efficiently delegating the generation of update keys to a cloud server is somewhat
insufficient. In this paper, we newly introduce the concept of delegated RIBE (DRIBE) that can delegate
the generation of update keys to the semi-trusted cloud server and define the security models of DRIBE.
Next, we propose a DRIBE scheme by generically combining a hierarchical IBE (HIBE) scheme, an
identity-based broadcast encryption (IBBE) scheme, and a collision-resistant hash function. In addi-
tion, we propose a DRIBE-INC scheme that generates an occasional base update key and a periodic
incremental update key to reduce the size of update keys in our DRIBE scheme.
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1 Introduction

Revocable identity-based encryption (RIBE) is an extension of identity-based encryption (IBE) in which an
identity string plays the role of a public key and additionally it supports the key revocation functionality
[3, 6]. In a public key encryption (PKE) scheme, a credential of a user can be revoked by using a certificate
revocation mechanism since there is a certificate that binds the public key of a user with the identity of the
user. However, it is difficult to provide the key revocation for an IBE scheme because the IBE scheme does
not have a certificate. In the IBE scheme, there are two methods of revoking the credential of a user: a
direct revocation method in which a sender specifies a receiver set in a ciphertext, and an indirect revocation
method in which a trusted center periodically issues new (updated) keys for non-revoked users. In this paper,
we consider IBE schemes that support the indirect revocation method because the sender does not need to
care about revoked users when generating ciphertexts.

The first revocation method for IBE was presented by Boneh and Franklin [6], but their method has the
disadvantage of requiring a secure channel between a user and the trusted center. An RIBE scheme that
efficiently processes the key revocation of a user’s private key by using a binary tree was first proposed by
Boldyreva et al. [3]. The main idea of their RIBE scheme is that a private key is associated with the path
nodes of the binary tree and an update key is associated with the cover nodes of the binary tree that excludes
leaf nodes that are related to revoked private keys. In this case, a common node exists between the path
nodes and the cover nodes unless the private key is revoked in the update key. If the master key of the RIBE
scheme is separated for each tree node by using a secret sharing scheme, then a decryption key can be derived
by recovering the shared secret for the corresponding common node and this decryption key can be used to
decrypt a ciphertext. After the first construction of an efficient RIBE scheme, various RIBE schemes that
have improved the security or efficiency of the previous RIBE scheme have been proposed [21,24,27,31,34].
The key revocation method of RIBE also can be applied to an HIBE scheme that supports private key
delegation, so various revocable HIBE (RHIBE) schemes have been proposed [19, 22, 29, 30, 32].

As described above, most of the RIBE schemes require a trusted center to generate a user’s private key
and periodically issue an update key for non-revoked users. In order to reduce the load on the trusted center,
we may consider to delegate the generation of update keys to a cloud server. However, the previous RIBE
schemes using a binary tree require the same master key for the generation of private keys and update keys
because the private key generation and the update key generation algorithms use the same state information
of the binary tree. For this reason, if the generation of update keys is simply delegated to the cloud server,
then it is possible for the cloud server to easily derive the user’s private key from the state information.
In order to support secure delegation of update keys, an RIBE scheme that does not use a binary tree has
been proposed [23], but this scheme has the disadvantage such that the update key size is linearly dependent
on the number of non-revoked users in the system. In this paper, we ask whether it is possible to design an
RIBE scheme that can delegate the generation of update keys to a semi-trusted cloud server while supporting
efficient key revocation by using a binary tree.

1.1 Out Contributions

Definition of DRIBE. We first define delegated RIBE (DRIBE) that can delegate the generation of an update
key in RIBE to a semi-trusted cloud server. In DRIBE, a trusted center only generates private keys by using a
master secret key and manages a revocation list RL. For the generation of update keys, a semi-trusted cloud
server periodically generates an update key for the revocation list by using a master update key received
from the trusted center, and then it broadcasts the update key to non-revoked users. At this time, anyone can
publicly verify that the update key generated by the cloud server is valid on the revocation list RL. Similar
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to the security of RIBE, the DRIBE scheme also provides indistinguishability under chosen-plaintext attack
(IND-CPA) security in which an external attacker cannot distinguish between challenge messages. We also
define indistinguishability under update-key attack (IND-UKA) security in which the semi-trusted cloud
server cannot obtain any useful information to distinguish between challenge messages if a private key for a
challenge identity is not given.

Delegated RIBE. Next, we construct a DRIBE scheme that supports the delegation of update keys by
generically combining an HIBE scheme, an IBBE scheme, and a hash function, and then we prove the
security of our construction when a cloud server is semi-trusted. The reason why it is difficult to support
the delegation of update keys in the previous RIBE schemes that use a binary tree is that the same state
information must be shared for the generation of private keys and update keys. To support the delegation of
update keys, we pay attention to the RIBE scheme of Ma and Lin (ML-RIBE) [25] that additionally provides
the decryption key exposure resistance (DKER) property. The ML-RIBE scheme combines an IBE scheme
and an HIBE scheme, and the generation of private keys and the generation of update keys are separated
from each other because the master secret key of HIBE is used to generate private keys and the master secret
key of IBE is only used to generate update keys. The DRIBE scheme proposed in this paper combines an
HIBE scheme, an IBBE scheme, and a hash function, so that the ciphertext size and the secret key size
are compact, and the update key size is proportional to the product of the number of revoked users and the
security parameter.

DRIBE with Incremental Updates. The drawback of our DRIBE scheme is that the update key size is
somewhat large because the depth of a binary tree is set to be proportional to the length of an identity string.
To overcome this shortcoming, we propose a DRIBE-INC scheme that supports the generation of incre-
mental update keys and prove the security when a cloud server is semi-trusted. The concept of incremental
revocation was already used in the form of delta certificate revocation lists (delta-CRLs) when issuing CRLs
for certificate revocation in the public-key infrastructure [11]. The DRIBE-INC scheme separates the update
key into two types, a base update key and an incremental update key. For this, a time step Ts to generate
the base update key is fixed and a time period T is expressed as T = Tb + Tc where T ≡ Tc mod Ts. At
this time, if T is a multiple of Ts (T = Tb), a base update key that considers non-revoked users before Tb is
issued. Otherwise, an incremental update key that considers non-revoked users from Tb to T is issued. When
a ciphertext with an identity ID and time T is given, we can decrypt the ciphertext by combining a private
key with base and incremental update keys if ID is not revoked both the base update key at time Tb and
the incremental update keys at time T . In general, the size of an incremental update key is relatively small
since the number of revoked users during the short period of time is rather small compared to the number
of revoked users in the base update key. To design the DRIBE-INC scheme, we use the DRIBE scheme to
process base update keys, and an HIBE scheme, an IBBE scheme, and hash function to process incremental
update keys.

1.2 Related Work

IBE is an extension of public-key encryption (PKE) that can use the user’s identity string as a public key [33].
The first IBE scheme was proposed by Boneh and Franklin [6], and they constructed their IBE scheme by
using a bilinear map and proved its security in the random oracle model. Since then, various IBE schemes
have been proposed in bilinear maps, quadratic residues, and lattices [4, 10, 13]. In order to use an IBE
scheme in a real application environment, an RIBE scheme that provides the functionality of effectively
revoking a user’s private key is required. An RIBE scheme that provides efficient key revocation using a
binary tree was first proposed by Boldyreva et al. [3]. Since then, various RIBE schemes have been proposed
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to enhance the security or improve the performance [9, 21, 24, 31]. Recently, generic methods for designing
RIBE schemes using binary trees has been proposed [18,25]. A key principle that enables the generic RIBE
design is to make the path of a binary tree associated with a ciphertext instead of associated with a private
key. However, since the generic RIBE design requires a larger binary tree compared to the existing direct
RIBE design method, there is a problem of inefficiency in terms of update key size. In order to reduce the
computational load of a key generation center in RIBE, an RIBE scheme that delegates the generation of
update keys to a cloud server was proposed, but the proposed RIBE scheme has a problem that the size of
an update key increases in proportion to the number of users [23].

HIBE is an extension of IBE that expresses the identity of a user as an hierarchical identity vector string
and provides the functionality of delegating the private key generation to reduce the computational burden
of a key generation center [14, 16]. After the first constructions of HIBE, various HIBE schemes have been
proposed in bilinear maps and lattices [2, 5, 8, 35]. The first RHIBE scheme that provides the revocation of
private keys was proposed by Seo and Emura [30]. In order to design the first RHIBE scheme, they devised
a method similar to the RIBE scheme to support the revocation of private keys by using a binary tree for
each individual user. After that, Seo and Emura also proposed a more efficient RHIBE scheme in which the
private key of an individual user do not need to remember the history of private key delegation [32]. Lee and
Park proposed a new RHIBE scheme that surprisingly reduced the private key size and update key size of
the existing RHIBE scheme [22]. They devised a new type of HIBE scheme to improve the performance so
that the private key and update key size of their RHIBE scheme are not significantly affected by the depth of
an identity string. In addition, other RHIBE schemes with improved security and new functionalities have
been proposed [17, 19, 29]. Recently, Lee and Kim [20] proposed generic RHIBE schemes by extending
the generic RIBE schemes [18,25]. They presented three interesting generic RHIBE schemes with different
combinations of the underlying HIBE schemes and tree-based revocation schemes. However, they did not
consider the security model of delegating the generation of update keys to a cloud server.

2 Preliminaries

In this section, we review the definitions of HIBE, IBBE, hash function, and the complete subtree (CS)
method in a binary tree, which are the building blocks of our DRIBE scheme.

2.1 Hierarchical Identity-Based Encryption

Hierarchical IBE (HIBE) is an extension of IBE, which expresses the user identity as a hierarchical identity
vector and supports the delegation of the generation of private keys [14, 16]. In HIBE, a trusted center
generates the private key of a user by using a master key, and an upper-level user who owns a private key
can issue the private key of a lower-level user. A sender creates a ciphertext by specifying the hierarchical
identity of a receiver. If the hierarchical identity of the receiver’s private key belongs to the prefix set of
the hierarchical identity in the ciphertext, the receiver can decrypt the ciphertext. A more detailed syntax of
HIBE is given as follows.

Definition 2.1 (Hierarchical Identity-Based Encryption, HIBE). An HIBE scheme consists of five algo-
rithms Setup, GenKey, DelegateKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,Lmax). The setup algorithm takes as input a security parameter 1λ and maximum hierarchical
depth Lmax. It outputs a master key MK and public parameters PP.
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GenKey(ID|k,MK,PP). The key generation algorithm takes as input a hierarchical identity ID|k =(I1, . . . , Ik)
∈ Ik, the master key MK, and the public parameters PP. It outputs a private key SKID|k for ID|k.

DelegateKey(ID|k,SKID|k−1 ,PP). The delegation algorithm takes as input a hierarchical identity ID|k, a
private key SKID|k−1 for ID|k−1, and the public parameters PP. It outputs a delegated private key
SKID|k for ID|k.

Encrypt(ID|ℓ,M,PP). The encryption algorithm takes as input a hierarchical identity ID|ℓ = (I1, . . . , Iℓ) ∈
Iℓ, a message M, and public parameters PP. It outputs a ciphertext CTID|ℓ .

Decrypt(CTID|ℓ ,SKID′|k ,PP). The decryption algorithm takes as input a ciphertext CTID|ℓ , a private key
SKID′k

, and public parameters PP. It outputs a message M or ⊥.

The correctness of HIBE is defined as follows: For all MK,PP generated by Setup(1λ ), all ID|ℓ, ID′|k, any
SKID′|k generated by GenKey(ID′|k,MK,PP), it is required that

• If ID′|k ∈ Prefix(ID|ℓ), then Decrypt(Encrypt(ID|ℓ,M,PP),SKID′|k ,PP) = M.

The security model of HIBE is similar to that of IBE except that it additionally considers the delegation
of private keys [14]. In the security model, public parameters are given to an attacker, and the attacker
can query a private key for an hierarchical identity. In the challenge phase, the attacker submits challenge
ID∗, M∗0 , and M∗1 and receives a challenge ciphertext. At this time, there is a constraint that the hierarchical
identities of private keys requested by the attacker do not belong to the prefix set of the challenge ID∗. After
that, the attacker can query additional private keys and finally submits a guess for the challenge ciphertext.
The attacker’s advantage is the value subtracting 1/2 from the probability of guessing the message. An
HIBE scheme is secure if the advantage of all efficient attackers is negligible.

2.2 Identity-Based Broadcast Encryption

Identity-based broadcast encryption (IBBE) is an extension of public-key broadcast encryption (PKBE)
except that individual users are specified as identity strings rather than indexes and it supports exponential
numbers of system users [12]. In IBBE, a trusted center generates a private key for a user’s identity. A
sender creates a ciphertext by specifying a set of receiver’s identities. A receiver can decrypt the ciphertext
if his/her identity of the private key belongs to the receiver’s set in the ciphertext. A more detailed syntax of
IBBE is given as follows.

Definition 2.2 (Identity-Based Broadcast Encryption, IBBE). An IBBE scheme consists of four algorithms
Setup, GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,n): The setup algorithm takes as input a security parameter 1λ and the maximum size n of a
broadcast set. It outputs a master key MK and public parameters PP.

GenKey(ID,MK,PP): The private key generation algorithm takes as input an identity ID ∈ I, the master
key MK, and public parameters PP. It outputs a private key SKID.

Encrypt(S,M,PP): The encryption algorithm takes as input a set S ⊆ I of receivers, a message M ∈M,
and public parameters PP. It outputs a ciphertext CTS.

Decrypt(CTS,SKID,PP): The decryption algorithm takes as input a ciphertext CTS, a private key SKID, and
public parameters PP. It outputs a message M or ⊥.
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The correctness of IBBE is defined as follows: For all MK and PP generated by Setup(1λ ,n), SKID gener-
ated by GenKey(ID,MK,PP) for any ID, and any S and M, it is required that

• If ID ∈ S, then Decrypt(Encrypt(S,M,PP),SKID,PP) = M.

The security model of IBBE is similar to that of PKBE except that it additionally supports the private
key query of an attacker for an identity string [12]. In the security model, an attacker is given public
parameters, and the attacker can query a private key for an arbitrary identity string. In the challenge phase,
the attacker submits a challenge set S∗, challenge messages M∗0 , M∗1 , and receives a challenge ciphertext. At
this time, there is a constraint that the private keys requested by the attacker are not belong to S∗. After that,
the attacker can query additional private keys with the same constraints and finally outputs a guess for the
challenge ciphertext. At this time, the advantage of the attacker is defined as the value subtracting 1/2 from
the probability of guessing the message. An IBBE scheme is secure if the advantage of all efficient attackers
is negligible.

2.3 Collision Resistant Hash Function

A hash function family (HF) H is a set of hash functions H : X → Y where X is an input domain and Y is
an output range. We say that the hash function family H is collision resistant if for all efficient adversaries
A, the advantage of A defined as AdvCR

HF,A(λ ) = Pr[H(x) = H(x′);H←H,(x,x′)←A(H)] is negligible in
the security parameter λ .

2.4 Binary Tree

A perfect binary tree BT is a tree data structure in which all internal nodes have two child nodes and all leaf
nodes have the same depth. Let N = 2n be the number of leaf nodes in BT . The number of all nodes in BT
is 2N−1 and we denote vi as a node in BT for any 1≤ i≤ 2N−1. The depth di of a node vi is the length of
the path from a root node to the node. The root node of a tree has depth zero. The depth of BT is the length
of the path from the root node to a leaf node. A level of BT is a set of all nodes at given depth.

Each node vi ∈ BT has an identifier Li ∈ {0,1}∗ which is a fixed and unique string. An identifier of
each node is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending on whether it is
connected to the left or right child node. The identifier Li of a node vi is obtained by reading all labels of
edges in a path from the root node to the node vi. The root node has an empty identifier ε . For a node vi, we
define Label(vi) be the identifier of vi and Depth(vi) be the depth di of vi.

A subtree Ti in BT is defined as a tree that is rooted at a node vi ∈ BT . A subset Si is defined as a set of
all leaf nodes in Ti. For any two nodes vi,v j ∈ BT where v j is a descendant of vi, Ti, j is defined as a subtree
Ti−T j, that is, all nodes that are descendants of vi but not v j. A subset Si, j is defined as a set of leaf nodes
in Ti, j, that is, Si, j = Si \S j.

For a perfect binary tree BT and a subset RV of leaf nodes, ST (BT ,RV ) is defined as the Steiner Tree
induced by the set RV and the root node, that is, the minimal subtree of BT that connects all the leaf nodes
in RV and the root node.

2.5 Complete Subtree Method

The complete subtree method (CS) is one of the subset cover methods which are used to design symmetric-
key broadcast encryption schemes using binary trees [26]. In the CS method, the assignment algorithm
outputs the path nodes of a leaf node when the leaf node is given as input, and the cover algorithm outputs
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a set of cover nodes that covers all non-revoked leaf nodes when a set of revoked leaf nodes are given as
input. The final matching algorithm outputs one node that is common to each other in the path nodes and
the cover nodes. A more detailed syntax of the CS method is given as follows:

CS.Setup(N): Let N = 2n for simplicity. It first sets a perfect binary tree BT of depth n. Each user is
assigned to a different leaf node in BT . The collection S is defined as {Si} where Si is a set of all
leaves in a subtree Ti with a subroot vi ∈ BT . It outputs the binary tree BT .

CS.Assign(BT ,vID): Let vID be a leaf node of BT that is assigned to the user ID. Let (vk0 ,vk1 , . . . ,vkn) be
the path from the root node vk0 = v0 to the leaf node vkn = vID. For all j ∈ {k0, . . . ,kn}, it adds S j into
PV . It outputs the private set PV = {S j}.

CS.Cover(BT ,RV ): It first computes the Steiner tree ST (RV ). Let Tk1 , . . .Tkm be all the subtrees of BT
that hang off ST (RV ), that is all subtrees whose roots vk1 , . . .vkm are not in ST (RV ) but adjacent to
nodes of outdegree 1 in ST (RV ). For all i ∈ {k1, . . . ,km}, it adds Si into CV . It outputs a covering set
CV = {Si}.

CS.Match(CV,PV ): It finds a subset Sk with Sk ∈ CV and Sk ∈ PV . If there is such a subset, it outputs
(Sk,Sk). Otherwise, it outputs ⊥.

The correctness of the CS method is that if a leaf node is not revoked in the cover nodes, the matching
algorithm outputs one common node. In the CS method, the size of the cover nodes is approximately
r log(N/r) when the number of revoked users is r and the total number of binary tree leaf nodes is N.

3 Revocable IBE with Delegated Update Keys

In this section, we define the syntax and security model of DRIBE and show that a DRIBE scheme can be
generically constructed by combining existing HIBE and IBBE schemes and a hash function.

3.1 Definition

DRIBE is an extension of RIBE that supports user revocation and it can additionally delegate the generation
of update keys to a cloud server. In addition, anyone can publicly verify the update key of DRIBE.

In a DRIBE scheme, a trusted center generates two master keys MSK, MUK, and public parameters
PP, and sends the master update key MUK to a cloud server to delegate the generation of update keys. The
trusted center generates the private key of each user by using the master secret key MSK and maintains a
revocation list RL that records the information of revoked users. The cloud server periodically broadcasts
an update key for non-revoked users by using the master update key MUK and the revocation list RL. If
a user wants to deliver a message securely to another user, the sender creates a ciphertext by specifying a
receiver identity ID and time T . If the private key of the receiver is not revoked in the update key at the
corresponding time, the receiver can decrypt the ciphertext by combining his private key and the update key.
In addition, any user can publicly verify the validity of the update key generated by the cloud server.

Definition 3.1 (Delegated Revocable IBE). A delegated revocable IBE (DRIBE) scheme that is associated
with identity space I, time space T , and message spaceM, consists of eight algorithms Setup, GenKey,
Revoke, UpdateKey, VerifyUK, DeriveKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ): The setup algorithm takes as input a security parameter 1λ . It outputs a master secret key MSK,
a master update key MUK, and public parameters PP.
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GenKey(ID,MSK,PP): The private key generation algorithm takes as input an identity ID, the master
secret key MSK, and public parameters PP. It outputs a private key SKID.

Revoke(ID,T,RL): The revocation algorithm takes as input an identity ID, revocation time T , a current
revocation list RL. It outputs an updated revocation list RL.

UpdateKey(T,RL,MUK,PP): The update key generation algorithm takes as input update time T ∈ T , a
revocation list RL, the master update key MUK, and the public parameters PP. It outputs an update
key UKT .

VerifyUK(UK,T,RL,PP): The update key verification generation algorithm takes as input an update key
UK, update time T ∈T , a revocation list RL, and the public parameters PP. It outputs 1 or 0 depending
on the validity of the update key.

DeriveKey(SKID,UKT ,PP): The decryption key derivation algorithm takes as input a private key SKID, an
update key UKT , and the public parameters PP. It outputs a decryption key DKID,T or ⊥.

Encrypt(ID,T,M,PP): The encryption algorithm takes as input an identity ID, time T , a message M ∈M,
and the public parameters PP. It outputs a ciphertext CTID,T .

Decrypt(CTID,T ,DKID′,T ′ ,PP): The decryption algorithm takes as input a ciphertext CTID,T , a decryption
key DKID′,T ′ , and the public parameters PP. It outputs a message M or ⊥.

The correctness of DRIBE is defined as follows: For all MSK, MUK, and PP generated by Setup(1λ ), SKID

generated by GenKey(ID,MSK,PP) for any ID, UKT generated by UpdateKey(T,RL,MUK,PP) for any
T and RL, CTID,T generated by Encrypt(ID,T,M,PP) for any ID, T , and M, it is required that

• If (ID,T ′′) ̸∈ RL for all T ′′ ≤ T , then DeriveKey(SKID,UKT ,PP) = DKID,T .

• If (ID = ID′)∧ (T = T ′), then Decrypt(CTID,T ,DKID′,T ′ ,PP) = M.

• VerifyUK(UKT ,T,RL,PP) = 1.

The IND-CPA security model of DRIBE is a modification of the IND-CPA security model of RIBE
[3, 31] to consider that all update keys are generated by a semi-trusted cloud server. A semi-trusted cloud
server follows the protocol but is curious and attempts to obtain extra information from the protocol. In this
security model, an attacker can request private key, revocation, update key, and decryption key queries. The
private key, revocation, and decryption key queries are handled by a challenger, but the update key queries
are handled by a semi-trusted cloud server. Note that there is no direct communication between the cloud
server and the attacker. The important restriction of this model is that if the attacker requested a private key
for the challenge identity ID∗, the private key corresponding to ID∗ should be revoked at the update key
of the challenge time T ∗. The goal of the attacker is to distinguish challenge messages when the challenge
ciphertext corresponding to ID∗ and T ∗ is given. A more detailed definition of this IND-CPA security model
is described as follows.

Definition 3.2 (IND-CPA Security). The indistinguishability under chosen-plaintext attack (IND-CPA) se-
curity of DRIBE is defined as the following experiment between a challenger C, a semi-trusted cloud server
SC, and an adversary A:
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1. Setup: C generates a master secret key MSK, a master update key MUK, and public parameters PP by
running Setup(1λ ). It initialize a revocation list RL = /0. It keeps MSK to itself, and gives MUK,PP
to AC and PP to A.

2. Phase 1: A adaptively request a polynomial number of queries. C handles these queries as follows:

• Private key: If this is a private key query for an identity ID, then it creates a private key SKID by
running GenKey(ID,MSK,PP) and gives SKID to A.

• Revocation: If this is a revocation query for an identity ID and time T , then it updates RL by
running Revoke(ID,T,RL).

• Update key: If this is an update key query on time T , then it obtains an update key UKT from
the cloud server SC by providing time T and the revocation list RL. Next, it gives UKT to A if
VerifyUK(UKT ,T,RL,PP) = 1.

• Decryption key: If this is a decryption key query for an identity ID and time T , then it creates a
decryption key DKID,T by running DeriveKey(SKID,UKT ,PP) and gives DKID,T to A .

Note that we assume that revocation, update key, and decryption key queries are requested in non-
decreasing order of time.

3. Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages
M∗0 ,M

∗
1 with equal length. Next, C flips a random coin µ ∈ {0,1} and gives the challenge ciphertext

CT ∗ to A by running Encrypt(ID∗,T ∗,M∗µ ,PP).

4. Phase 2: A may continue to request additional queries subject to the same restrictions as before.

5. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The queries of the adversary in the above experiment should satisfy the following conditions:

1. If a private key query for ID∗ was requested, then a revocation query for ID∗ and T such that T ≤ T ∗

should be requested.

2. A revocation query on T cannot be queried if an update key query on T was already requested.

3. A decryption key query on T cannot be requested before an update key query on T was requested.

4. A decryption key query for ID∗ and T ∗ was not requested.

The advantage of A is defined as AdvIND-CPA
DRIBE,A(λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the experiment. A DRIBE scheme is IND-CPA secure when a cloud server is semi-trusted
if for all probabilistic polynomial-time (PPT) adversary A and all PPT cloud server AC, the advantage of A
in the above experiment is negligible in the security parameter λ .

Remark 1. If a cloud server is trusted in the above IND-CPA security model of DRIBE, then it is the same
as the IND-CPA security model of RIBE since all update keys are generated by a trusted center.

The IND-UKA is a security model that considers the case where a semi-trusted cloud server who can
access to the master update key MUK becomes an attacker. In this security model, an attacker corresponding
to the cloud server can request private key, revocation, and decryption key queries. Since the attacker can
issue an arbitrary update key by using MUK, there is a restriction that the attacker cannot query a private
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key corresponding to the challenge identity ID∗ in order to prevent a simple attack. The goal of the attacker
is to distinguish challenge messages when the challenge ciphertext of ID∗ and T ∗ is given. A more detailed
definition of the IND-UKA security is described as follows.

Definition 3.3 (IND-UKA Security). The indistinguishability under update-key attack (IND-UKA) security
of DRIBE is defined in terms of the following experiment between a challenger C and an adversary A:

1. Setup: C generates a master secret key MSK, a master update key MUK, and public parameters PP by
running Setup(1λ ). It initialize a revocation list RL = /0. It keeps MSK to itself and gives MUK,PP
to A.

2. Phase 1: A adaptively request a polynomial number of queries. C handles these queries as follows:

• Private key: If this is a private key query for an identity ID, then it creates a private key SKID by
running GenKey(ID,MSK,PP) and gives SKID to A

• Revocation: If this is a revocation query for an identity ID and time T , then it updates RL by
running Revoke(ID,T,RL).

• Decryption key: If this is a decryption key query for an identity ID and time T , then it takes an
input UKT fromA and creates a decryption key DKID,T by running DeriveKey(SKID,UKT ,PP)
and gives DKID,T to A.

Note that we assume that revocation and decryption key queries are requested in non-decreasing order
of time.

3. Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages
M∗0 ,M

∗
1 with equal length. Next, C flips a random coin µ ∈ {0,1} and gives the challenge ciphertext

CT ∗ to A by running Encrypt(ID∗,T ∗,M∗µ ,PP).

4. Phase 2: A may continue to request additional queries subject to the same restrictions as before.

5. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The queries of the adversary in the above experiment should satisfy the following conditions:

1. A private key query for ID∗ was not requested.

2. A decryption key query for ID∗ and T ∗ was not requested.

The advantage of A is defined as AdvIND-UKA
DRIBE,A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the experiment. A DRIBE scheme is IND-UKA secure if for all PPT adversary A, the
advantage of A in the above experiment is negligible in the security parameter λ .

3.2 Design Principle

Most of previous RIBE schemes using a binary tree can efficiently process user revocation because the
path of the binary tree is associated with a private key and the cover of the binary tree is associated with
an update key [3, 21, 24, 31]. However, since these RIBE schemes use a secret sharing scheme to share
a master secret key for each node of the binary tree, the private key generation algorithm and the update
key generation algorithm require the same state information. For this reason, these RIBE schemes have a
problem in that it is difficult to separate the private key generation process and the update key generation
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process independently, and thus it is difficult to delegate the update key generation to an external semi-
trusted cloud server. In addition, in the previous RIBE schemes, it is impossible for a user to publicly verify
that the update key has been properly generated without the status information used to generate the update
key.

In order to design a DRIBE scheme that can delegate the update key generation, we pay attention to the
RIBE scheme proposed by Ma and Lin [25]. In terms of using a binary tree, the ML-RIBE scheme is also
similar to the previous RIBE schemes using a binary tree. However, in the previous RIBE schemes, the path
of the binary tree is related to a private key, but the ML-RIBE scheme has a big difference in that the path of
the binary tree is related to a ciphertext. In order to clearly separate the underlying cryptographic primitives
used for private key generation and update key generation, we use the ML-RIBE scheme that provides the
decryption key exposure resistance (DKER) property by combining a two-level HIBE scheme and an IBBE
scheme. In this case, the private key generation is processed by the master key of the HIBE scheme, and
the update key generation is processed by generating key elements for each cover nodes of the binary tree
by using the master key of the IBBE scheme. To provide the public verification of update keys, we perform
verification using the IBBE encryption process using the fact that the update key elements of the ML-RIBE
scheme are all composed of the private keys of the IBBE scheme.

3.3 Construction

A generic DRIBE scheme that uses HIBE, IBBE, and CRHF schemes is described as follows:

DRIBE.Setup(1λ ): Let I = {0,1}n be the identity space.

1. It first obtains MKHIBE ,PPHIBE by running HIBE.Setup(1λ ,2) and obtains MKIBBE ,PPIBBE by
running IBBE.Setup(1λ ,n). It also selects a collision resistant hash function H ∈H.

2. It defines a binary tree BT by running CS.Setup(2n) where an identity ID is uniquely assigned
to a leaf node v such that Label(v) = ID.

3. It outputs a master secret key MSK =MKHIBE , a master update key MUK =MKIBBE , and public
parameters PP = (PPHIBE ,PPIBBE ,H,BT ).

DRIBE.GenKey(ID,MSK,PP): It obtains SKHIBE by running HIBE.GenKey(ID,MKHIBE ,PPHIBE). It
outputs a private key SKID = SKHIBE .

DRIBE.Revoke(ID,T,RL): If (ID,∗) already exists in RL, it outputs RL. Otherwise, it adds (ID,T ) to RL
and outputs the updated RL.

DRIBE.UpdateKey(T,RL,MUK,PP): To generate an update key for T , it proceeds as follows:

1. It initializes RV = /0. For each (ID j,Tj) ∈ RL, it adds a leaf node v j ∈ BT which is associated
with ID j into RV if Tj ≤ T . It obtains CVT by running CS.Cover(BT ,RV ).

2. For each Si ∈CVT , it obtains SKIBBE,Si by running IBBE.GenKey(H(Label(Si)∥T ),MKIBBE ,PPIBBE).

3. It outputs an update key UKT =
(
CVT ,{SKIBBE,Si}Si∈CVT

)
.

DRIBE.VerifyUK(UK,T,RL,PP): Let UKT = (CVT ,{SKIBBE,Si}). To verify an update key for T and RL,
it proceeds as follows:
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1. It initializes RV = /0. For each (ID j,Tj) ∈ RL, it adds a leaf node v j ∈ BT which is associated
with ID j into RV if Tj ≤ T . It obtains CV ′ by running CS.Cover(BT ,RV ) and checks that
CV ′ =CVT .

2. It sets S = /0. For each Si ∈ CVT , it adds a string H(Label(Si)∥T ) to S. It chooses a random
M ∈M and obtains CTIBBE by running IBBE.Encrypt(S,M,PPIBBE).

3. For each Si ∈CVT , it performs the followings:

(a) It retrieves SKIBBE,Si from UKT and obtains M′ by running IBBE.Decrypt(CTIBBE ,SKIBBE,Si ,
PPIBBE).

(b) If M′ ̸= M, then it outputs 0 since UK is invalid.

4. Finally, it outputs 1 since UK is valid.

DRIBE.DeriveKey(SKID,UKT ,PP): Let SKID = SKHIBE . To derive a decryption key for ID and T , it
proceeds as follows:

1. It obtains PVID by running CS.Assign(BT ,vID) where vID is a leaf node such that ID=Label(vID).
If PVID∩CVT = /0, then it outputs ⊥ since ID was revoked in UKT .

2. It obtains DKHIBE by running HIBE.DelegateKey(SKHIBE ,T,PPHIBE).

3. Finally, it outputs a decryption key DKID,T = (DKHIBE ,UKT ).

DRIBE.Encrypt(ID,T,M,PP): To generate a ciphertext for ID and T , it proceeds as follows:

1. It selects random M1 ∈M and sets M2 = M⊕M1. It obtains CTHIBE by running HIBE.Encrypt
((ID,T ),M1,PPHIBE).

2. Let vID be a leaf node associated with ID such that ID = Label(vID). It obtains PVID by running
CS.Assign(BT ,vID).

3. It sets S = /0. For each Si ∈ PVID, it adds a string H(Label(Si)∥T ) to S. It obtains CTIBBE by
running IBBE.Encrypt(S,M2,PPIBBE).

4. Finally, it outputs a ciphertext CTID,T = (CTHIBE ,CTIBBE) by implicitly including ID and T .

DRIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): Let CTID,T = (CTHIBE ,CTIBBE) and DKID′,T ′ = (DKHIBE ,UKT =
(CVT ,{SKIBBE,Si})). It proceeds as follows:

1. It first obtains M1 by running HIBE.Decrypt(CTHIBE ,DKHIBE ,PPHIBE).

2. It obtains PVID by running CS.Assign(BT ,vID) where vID is a leaf node such that Label(vID) =
ID.

3. It finds (Si,Si) by running CS.Match(CVT ,PVID). If it fails to find, it returns ⊥.

4. It retrieves SKIBBE,Si from UKT and obtains M2 by running IBBE.Decrypt(CTIBBE ,SKIBBE,Si ,PPIBBE).

5. Finally, it outputs a message M = M1⊕M2.

3.4 Correctness

In this section we show the correctness of the DRIBE scheme. The ciphertext of our DRIBE scheme consists
of two elements: an HIBE ciphertext and an IBBE ciphertext. First, if the identity ID and time T of the HIBE
ciphertext and the identity ID and time T of the HIBE private key are the same, we can decrypt M1 by the
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correctness of the HIBE scheme. From the correctness of the CS method, a common node v in a binary tree
exists if the path of the binary tree associated with ID is not revoked in the cover of the binary tree. The
IBBE ciphertext sets all nodes in the path as a set of recipients, and the update key consists of the IBBE
private keys associated with the cover nodes of the binary tree. Because of this, the common node v becomes
an element of the path node set, and M2 is decrypted by the correctness of the IBBE scheme. Therefore, we
can derive the correct message with the operation M = M1⊕M2.

The update key of our DRIBE scheme is composed of IBBE private keys for cover nodes related to
leaf nodes excluding all revoked identities obtained from the revocation list RL. Therefore, if an IBBE
ciphertext for these cover nodes as recipients are generated and this IBBE ciphertext is decrypted for each
IBBE private key to verify that the correct message is decrypted, then the update key is verified correctly by
the correctness of the IBBE scheme.

3.5 Security Analysis

In this section, we show that our DRIBE scheme provides the IND-CPA security when a cloud server is
semi-trusted and the IND-UKA security by relying on the security of underlying cryptographic primitives.

Theorem 3.1. The above DRIBE scheme is IND-CPA secure if the underlying HIBE and IBBE schemes are
IND-CPA secure.

Proof. Let ID∗ be the challenge identity and T ∗ be the challenge time. We divide the behavior of an adver-
sary as two types: Type-A and Type-B, which are defined as follows:

Type-A. An adversary is type-A if it requests a private key on an identity ID such that ID ̸= ID∗ for all
private key queries.

Type-B. An adversary is type-B if it requests a private key on an identity ID such that ID = ID∗ for some
private key query. In this case, the identity ID∗ should be revoked on time T such that T ≤ T ∗ by the
restriction of the security model.

Let Ei be the event that A behaves like type-i adversary. From Lemmas 3.2 and 3.3, we obtain the
following result

AdvIND-CPA
DRIBE,A(λ )≤ Pr[EA] ·AdvIND-CPA

DRIBE,A(λ )+Pr[EB] ·AdvIND-CPA
DRIBE,A(λ )

≤ AdvIND-CPA
HIBE,B (λ )+AdvIND-CPA

IBBE,B (λ ).

This completes our proof.

Lemma 3.2. For the type-A adversary, the DRIBE scheme is IND-CPA secure if the HIBE scheme is IND-
CPA secure.

Proof. Suppose there exists a type-A adversary A that attacks the DRIBE scheme with a non-negligible
advantage. An algorithm B that attacks the HIBE scheme is initially given public parameters PPHIBE by a
challenger C. Then B that interacts with A is described as follows:

Setup: B generates MKIBBE ,PPIBBE by running the setup algorithm of IBBE. It initializes RL = /0 and gives
PP = (PPHIBE ,PPIBBE ,H,BT ) to A.
Phase 1: A adaptively requests a polynomial number of queries. B handles these queries as follows:
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• For a private key query on ID, B proceeds as follows: It receives SKHIBE from C by querying a private
key for ID. It gives SKID = SKHIBE to A.

• For a revocation query on ID and T , B updates RL by running the revocation algorithm of DRIBE.

• For an update key query on T , B generates UKT by using RL and MKIBBE and gives UKT to A.

• For a decryption key query on ID and T , B proceeds as follows: It receives DKHIBE from C by query-
ing a private key for ID and T . It generates UKT by using MKIBBE . It gives DKID,T = (DKHIBE ,UKT )
to A.

Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages M∗0 ,M
∗
1 . B

proceeds as follows:

1. It first select a random M2 ∈M and sets M1,0 = M∗0 ⊕M2,M1,1 = M∗1 ⊕M2.

2. Next, it receives CT ∗HIBE from C by submitting ID∗, T ∗, and two challenge messages M1,0,M1,1.

3. It obtains PV ∗ by running CS.Assign(BT ,v∗) where a leaf node v∗ is associated with ID∗. It sets S =
/0. For each Si ∈PV ∗, it adds H(Label(Si)∥T ∗) to S. It generates CT ∗IBBE by running DRIBE.Encrypt(S,
M2,PPIBBE).

4. It gives a challenge ciphertext CT ∗ = (CT ∗HIBE ,CT ∗IBBE) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

In order to analyze the correctness of the simulation described above, we show that it is possible to
process the private key and decryption key query of the DRIBE scheme by using the private key query of the
HIBE scheme. The type-A attacker requests the DRIBE private key query with the restriction that ID ̸= ID∗,
so the DRIBE private key query can be handled by using the HIBE private key query. In the constraints of the
DRIBE security model, the attacker can query the DRIBE decryption key with the restriction that ID ̸= ID∗

or ID = ID∗∧T ̸= T ∗, so the DRIBE decryption key query also can be handled by using the HIBE private
key query. The challenge message selected by the attacker in the challenge phase is linked to the HIBE
challenge message, so the DRIBE challenge ciphertext is linked to the HIBE challenge ciphertext. Thus
the probability of distinguishing the HIBE challenge ciphertext becomes the same as the probability of
distinguishing the DRIBE challenge ciphertext.

Lemma 3.3. For the type-B adversary, the DRIBE scheme is IND-CPA secure if the IBBE scheme is IND-
CPA secure.

Proof. Suppose there exists a type-B adversary A that attacks the DRIBE scheme with a non-negligible
advantage. An algorithm B that attacks the IBBE scheme is initially given public parameters PPIBBE by a
challenger C. Then B that interacts with A is described as follows:

Setup: B generates MKHIBE ,PPHIBE by running the setup algorithm of HIBE. It initializes RL = /0 and gives
PP = (PPHIBE ,PPIBBE ,H,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, revocation, update key, and decryption
key queries.

• For a private key query on ID, B generates SKID by using MKHIBE and gives SKID to A.
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• For a revocation query on ID and T , B updates RL by running the revocation algorithm of DRIBE.

• For an update key query on T , B proceeds as follows:

1. It initializes RV = /0. For each (ID j,Tj) ∈ RL, it adds a leaf node v j ∈ BT into RV if Tj ≤ T . It
obtains CVT by running CS.Cover(BT ,RV ).

2. For each Si ∈CVT , it receives SKIBBE,Si from C by querying a private key for H(Label(Si)∥T ).
3. It creates UKT =

(
CVT ,{SKIBBE,Si}Si∈CVT

)
and gives UKT to A.

• For a decryption key query on ID and T , B proceeds as follows: It generates DKHIBE for ID and T
by using MKHIBE . It receives UKT by querying an update key to its own oracle. It gives DKID,T =
(DKHIBE ,UKT ) to A.

Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages M∗0 ,M
∗
1 . B

proceeds as follows:

1. It first selects a random M1 ∈M and sets M2,0 = M∗0 ⊕M1,M2,1 = M∗1 ⊕M1. It generates CT ∗HIBE by
running HIBE.Encrypt((ID∗,T ∗),M1,PPHIBE).

2. It obtains PV ∗ by running CS.Assign(BT ,v∗) where a leaf node v∗ is associated with ID∗. It sets
S = /0. For each Si ∈ PV ∗, it adds H(Label(Si)∥T ∗) to S.

3. It receives CT ∗IBBE from C by submitting a challenge set S and challenge messages M2,0,M2,1.

4. It gives a challenge ciphertext CT ∗ = (CT ∗HIBE ,CT ∗IBBE) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

In order to analyze whether the simulation described above is correct, we show that it is possible to
process the update key and decryption key queries of the DRIBE scheme by using the private key queries of
the IBBE scheme. From the restriction of a type-B attacker, we have that a private key for ID∗ is revoked
in an update key at time T ∗ if the attacker requested a private key for ID∗. When generating the update key
of the DRIBE scheme, the string H(Si∥T ) is used as the identity of the IBBE scheme. Thus, the update key
at time T ̸= T ∗ can be created by generating IBBE private keys using the fact that H(Si∥T ) ̸= H(Si∥T ∗)
since T ̸= T ∗. The update key at time T = T ∗ also can be created by generating IBBE private keys using the
fact that H(Si∥T ∗) ̸= H(S∗i ∥T ∗) because the path nodes of ID∗ are all removed from the cover nodes at time
T ∗. The decryption key query can also be easily handled by using the update key query in the simulation.
Finally, in the challenge phase, the attacker’s challenge message is linked to the IBBE challenge message,
so the DRIBE challenge ciphertext is linked to the IBBE challenge ciphertext.

Theorem 3.4. The above DRIBE scheme is IND-UKA secure if the underlying HIBE scheme is IND-CPA
secure.

Proof. Suppose there exists an adversaryA that attacks the DRIBE scheme with a non-negligible advantage.
An algorithm B that attacks the HIBE scheme is initially given public parameters PPHIBE by a challenger C.
Then B that interacts with A is described as follows:

Setup: B generates MKIBBE ,PPIBBE by running the setup algorithm of IBBE. It initializes RL = /0 and gives
MUK = MKIBBE , PP = (PPHIBE ,PPIBBE ,H,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, revocation, and decryption key queries.
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• For a private key query on ID, B proceeds as follows: It receives SKHIBE from C by querying a private
key for ID. It gives SKID = SKHIBE to A.

• For a revocation query on ID and T , B updates RL by running the revocation algorithm of DRIBE.

• For a decryption key query on ID and T , B proceeds as follows: It receives DKHIBE from C by
querying a private key for ID and T . Next, it generates UKT by using MKIBBE . It gives DKID,T =
(DKHIBE ,UKT ) to A.

Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages M∗0 ,M
∗
1 . B

proceeds as follows:

1. It first select a random M2 ∈M and sets M1,0 = M∗0 ⊕M2,M1,1 = M∗1 ⊕M2.

2. Next, it receives CT ∗HIBE from C by submitting ID∗, T ∗, and two challenge messages M1,0,M1,1.

3. It obtains PV ∗ by running CS.Assign(BT ,v∗) where a leaf node v∗ is associated with ID∗. It sets S =
/0. For each Si ∈PV ∗, it adds H(Label(Si)∥T ∗) to S. It generates CT ∗IBBE by running DRIBE.Encrypt(S,
M2,PPIBBE).

4. It gives a challenge ciphertext CT ∗ = (CT ∗HIBE ,CT ∗IBBE) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

The restrictions of the attacker in the IND-UKA security model are the same as those of the type-A
attacker in the Lemma 3.2. Thus the correctness of this simulation is the same as that of the simulation in
Lemma 3.2.

3.6 Discussions

Efficiency Analysis. The public parameters of the DRIBE scheme consist of HIBE and IBE public param-
eters. In addition, the public parameters require binary tree information to be used in the DRIBE scheme,
and the binary tree has a depth of 2λ where λ is the security parameter. The DRIBE private key is compact
since it composed of one HIBE private key. The DRIBE update key is related to the number of cover nodes
in the binary tree. If the number of revoked users is r, then the size of the cover nodes is r log(22λ/r). Thus
the update key consists of approximately 2rλ IBBE private keys. The DRIBE ciphertext is compact because
it consists of one HIBE ciphertext and one IBBE ciphertext. The DRIBE encryption algorithm performs one
HIBE encryption and one IBBE encryption, and the decryption algorithm requires one HIBE decryption and
one IBBE decryption. Since the DRIBE update key verification algorithm needs to check all IBBE private
keys in the update key, it requires one IBBE encryption and 2rλ IBBE decryption operations.

Server-Aided Decryption. In order to improve the decryption performance of an RIBE scheme, a server-
aided RIBE scheme, in which a cloud server processes part of the decryption operation, was proposed [28].
Our DRIBE scheme naturally supports the server-aided decryption functionality. That is, a decrypter first
sends the IBBE ciphertext of a DRIBE ciphertext and the DRIBE update key of a DRIBE decryption key
to a cloud server. Then, the cloud server obtains a partial message M2 by decrypting the IBBE ciphertext
using an IBBE private key which is associated to the matching node of a binary tree, and returns it to the
decrypter. Note that the cloud server cannot obtain any information about the original message since M2
was selected as a random value. After that, the decrypter decrypts the HIBE ciphertext to obtain M1, and
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combines M1 with M2 to derive the original message. The decryption process of the decrypter is efficient
since the decrypter needs only one HIBE decryption operation.

Reducing the Update Key Size. In our DRIBE scheme, the path of a binary tree is associated with a
receiver’s identity. Thus the depth of the binary tree should be set to be proportional to the length of an
identity, and the depth should be the output length of a hash function if an arbitrary long string is used for
the identity. That is, when the security parameter of the system is λ , the depth of the binary tree should be
2λ . Since the binary tree is also involved in the generation of an update key, the size of the update key is
r log(22λ/r) where r is the number of revoked users. The problem of our DRIBE scheme is that the depth of
the binary tree should be 2λ , whereas the depth of the previous RIBE schemes is just logN where N is the
number of system users. Specifically, if we set λ = 80 and N = 230, then the update key size of the previous
RIBE schemes is approximately r ∗ 30, but the update key size of our DRIBE scheme is r ∗ 160. Thus the
update key of the DRIBE scheme is 5 times larger than that of the previous RIBE schemes. To reduce the
update key size, we propose a DRIBE-INC scheme in the next section that generates an incremental update
key for revoked users in a short period of time.

4 Delegated RIBE with Incremental Update Keys

In this section, we define the syntax and security model of DRIBE-INC that supports the generation of
incremental update keys. We next propose a DRIBE-INC scheme by generically combining DRIBE, HIBE,
IBBE schemes and a hash function, and prove the security of our construction.

4.1 Definition

A DRIBE-INC scheme is similar to a DRIBE scheme that delegate the generation of update keys to an
external cloud server except that it additionally supports the generation of incremental update keys. To
support incremental update, the DRIBE-INC scheme separates an update key into a base update key and an
incremental update key. If we let Ts be an interval period for generating the base update key, a time period
T is expressed as T = Tb + Tc where Tc = T mod Ts. The cloud server generates a base update key that
includes all users who were not revoked before the time Tb if T = Tb, and generates an incremental update
key that includes all users that were not revoked between time Tb and time T if T ̸= Tb. Similar to the
DRIBE scheme, a sender creates a ciphertext for an identity ID and time T and delivers the ciphertext to a
receiver. The receiver can decrypt the ciphertext if ID is not revoked in both the base update key of Tb and
the incremental update key of T . The detailed syntax of DRIBE-INC is defined as follows.

Definition 4.1 (Incremental Delegated RIBE). An incremental DRIBE (DRIBE-INC) scheme that is as-
sociated with identity space I, time space T , and message space M, consists of eight algorithms Setup,
GenKey, UpdateKey, IncUpdateKey, DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as
follows:

Setup(1λ ): The setup algorithm takes as input a security parameter 1λ . It outputs a master key MSK, a
master update key MUK, and public parameters PP.

GenKey(ID,MSK,PP): The private key generation algorithm takes as input an identity ID, the master key
MK and public parameters PP. It outputs a private key SKID.

Revoke(ID,T,RL): The revocation algorithm takes as input an identity ID and revocation time T , a revo-
cation list RL. It outputs an updated revocation list RL.
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UpdateKey(Tb,RL,MUK,PP): The base update key generation algorithm takes as input base update time
Tb ∈ T , a revocation list RL, the master update key MUK, and the public parameters PP. It outputs a
base update key BUKTb for a base time Tb.

IncUpdateKey(T,RL,MUK,PP): The incremental update key generation algorithm takes as input update
time T ∈ T , a revocation list RL, the master update key MUK, and the public parameters PP. It
outputs an incremental update key IUKT .

VerifyBUK(BUK,Tb,RL,PP): The base update key verification algorithm takes as input a base update
key BUK, base time Tb ∈ T , a revocation list RL, and the public parameters PP. It outputs 1 or 0
depending on the validity of the base update key.

VerifyIUK(IUK,T,RL,PP): The incremental update key verification algorithm takes as input an incre-
mental update key IUK, update time T ∈ T , a revocation list RL, and the public parameters PP. It
outputs 1 or 0 depending on the validity of the incremental update key.

DeriveKey(SKID,BUKTb , IUKT ,PP): The decryption key derivation algorithm takes as input a private key
SKID, a base update key BUKTb , an incremental update key IUKT , and the public parameters PP. It
outputs a decryption key DKID,T or ⊥.

Encrypt(ID,T,M,PP): The encryption algorithm takes as input an identity ID, time T , a message M ∈M,
and the public parameters PP. It outputs a ciphertext CTID,T .

Decrypt(CTID,T ,DKID′,T ′ ,PP): The decryption algorithm takes as input a ciphertext CTID,T , a decryption
key DKID′,T ′ , and the public parameters PP. It outputs a message M or ⊥.

The correctness of DRIBE-INC is defined as follows: For all MSK, MUK, and PP generated by Setup(1λ ),
SKID generated by GenKey(ID,MSK,PP) for any ID, BUKTb and IUKT generated by UpdateKey(Tb,RL,
MUK,PP) and IncUpdateKey(T,RL,MUK,PP) respectively for any T = Tb+Tc and RL, CTID,T generated
by Encrypt(ID,T,M,PP) for any ID, T , and M, it is required that

• If (ID,T ′) ̸∈ RL for all T ′ ≤ T , then DeriveKey(SKID,BUKTb , IUKT ,PP) = DKID,T .

• If (ID = ID′)∧ (T = T ′), then Decrypt(CTID,T ,DKID′,T ′ ,PP) = M.

• VerifyBUK(BUKTb ,Tb,RL,PP) = 1.

• VerifyIUK(IUKT ,T,RL,PP) = 1.

The security models of DRIBE-INC are similar to those of DRIBE, which are the IND-CPA security
model that defines the message hiding against external attackers and the IND-UKA security model that
defines the message hiding against external cloud severs. The only change in the security models is that
an update key is divided into a base update key and an incremental update key. For definitions of security
models, please refer to the security definitions of DRIBE in Section 3.1.

4.2 Construction

To design a DRIBE-INC scheme, we express time T as T = Tb+Tc where Tc≡ T mod Ts. If T ≡ 0 mod Ts,
we use the DRIBE scheme to generate a base update key for non-revoked users before time Tb. If T ̸≡ 0
mod Ts, we use the HIBE and IBBE schemes to generate an incremental update key for non-revoked users
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between time Tb and time T . The method of creating the incremental update key is similar to that in the
DRIBE scheme.

A generic DRIBE-INC scheme that uses DRIBE, HIBE, IBBE, and CRHF schemes is described as
follows:

DRIBE-INC.Setup(1λ ): Let I = {0,1}n be the identity space.

1. It first obtains MSKDRIBE ,MUKDRIBE ,RLDRIBE ,PPDRIBE by running DRIBE.Setup(1λ ). It ob-
tains MKHIBE ,PPHIBE by running HIBE.Setup(1λ ,2) and obtains MKIBBE ,PPIBBE by running
IBBE.Setup(1λ ,n). It also selects a collision resistant hash function H ∈H.

2. It sets a binary tree BT with depth n where an identity ID ∈ I is uniquely assigned to a leaf
node such that Label(v) = ID.

3. It outputs a master secret key MSK = (MSKDRIBE ,MKHIBE), a master update key MUK =
(MUKDRIBE ,MKIBBE), and public parameters PP = (PPDRIBE ,PPHIBE ,PPIBBE ,H,BT ).

DRIBE-INC.GenKey(ID,MSK,PP): To generate a private key of ID, it proceeds as follows:

1. It obtains SKDRIBE by running DRIBE.GenKey(ID,MSKDRIBE ,PPDRIBE). It obtains SKHIBE by
running HIBE.GenKey(ID,MKHIBE ,PPHIBE).

2. It outputs a private key SKID = (SKDRIBE ,SKHIBE).

DRIBE-INC.Revoke(ID,T,RL): If (ID,∗) already exists in RL, it outputs RL. Otherwise, it adds (ID,T )
to RL and outputs the updated RL.

DRIBE-INC.UpdateKey(Tb,RL,MUK,PP): Let Tb be base time such that Tb ≡ 0 mod Ts. If Tb ̸≡ 0
mod Ts, then it returns ⊥ since a base update key will not be generated.

1. It initializes BRL = /0. For each (ID j,Tj) ∈ RL, it adds (ID j,Tj) to BRL if Tj ≤ Tb. It obtains
UKDRIBE by running DRIBE.UpdateKey(Tb,BRL,MUKDRIBE ,PPDRIBE).

2. Finally, it outputs a base update key BUKTb =UKDRIBE .

DRIBE-INC.IncUpdateKey(T,RL,MUK,PP): Let T = Tb +Tc where Tb ≡ 0 mod Ts and 0≤ Tc < Ts.

1. It initializes IRV = /0. For each (IDi,Ti) ∈ RL, it adds vi which is associated with IDi into IRV if
Tb < Ti ≤ T . It obtains ICVT by running CS.Cover(BT , IRV ).

2. For each Si ∈ ICVT , it obtains SKIBBE,Si by running IBBE.GenKey(H(Label(Si)∥T ),MKIBBE ,
PPIBBE).

3. Finally, it outputs an incremental update key IUKT =
(
ICVT ,{SKIBBE,Si}Si∈ICVT

)
.

DRIBE-INC.VerifyBUK(BUK,Tb,RL,PP): To verify the validity of BUK, it returns DRIBE.VerifyUK
(BUK,Tb,RL,PPDRIBE).

DRIBE-INC.VerifyUK(IUK,T,RL,PP): Let IUK = (ICVT ,{SKIBBE,Si}). It proceeds as follows:

1. It initializes RV = /0. For each (ID j,Tj) ∈ RL, it adds a leaf node v j ∈ BT which is associated
with ID j into RV if Tj ≤ T . It obtains CV ′ by running CS.Cover(BT ,RV ) and checks that
CV ′ =CVT .
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2. It sets S = /0. For each Si ∈ CVT , it adds a string H(Label(Si)∥T ) to S. It chooses a random
M ∈M and obtains CTIBBE by running IBBE.Encrypt(S,M,PPIBBE).

3. For each Si ∈CVT , it performs the followings:

(a) It retrieves SKIBBE,Si from UKT and obtains M′ by running IBBE.Decrypt(CTIBBE ,SKIBBE,Si ,
PPIBBE).

(b) If M′ ̸= M, then it outputs 0 since UK is invalid.

4. Finally, it outputs 1 since UK is valid.

DRIBE-INC.DeriveKey(SKID,BUKTb , IUKT ,PP): Let SKID = SKDRIBE , BUKTb =UKDRIBE , and IUKT =
(ICVT ,{SKIBBE,Si}). If T ̸= Tb +Tc for some Tc such that 0 ≤ Tc < Ts, then it returns ⊥ since BUKTb

and IUKT are not a valid update key pair.

1. It obtains DKDRIBE by running DRIBE.DeriveKey(SKDRIBE ,UKDRIBE ,PPDRIBE). If DKDRIBE =⊥,
it returns ⊥ since ID was revoked.

2. It obtains PVID by running CS.Assign(BT ,vID) where vID is a leaf node such that ID=Label(vID).
If PVID∩ ICVT = /0, then it outputs ⊥ since ID was revoked in IUKT .

3. It obtains DKHIBE by running HIBE.DelegateKey(SKHIBE ,T,PPHIBE).

4. Finally, it outputs a decryption key DKID,T = (DKDRIBE ,DKHIBE , IUKT ).

DRIBE-INC.Encrypt(ID,T,M,PP): Let T = Tb +Tc where Tb ≡ 0 mod Ts and 0≤ Tc < Ts.

1. It selects random M1,M2 ∈ M and sets M3 = M⊕M1⊕M2. It obtains CTDRIBE by running
DRIBE.Encrypt(ID,Tb,M1,PPDRIBE). It also obtains CTHIBE by running HIBE.Encrypt(ID,T,
M2,PPHIBE).

2. Let vID be a leaf node associated with ID such that ID = Label(vID). It obtains PVID by running
CS.Assign(BT ,vID).

3. It sets S = /0. For each Si ∈ PVID, it adds a string H(Label(Si)∥T ) to S. Next, it obtains CTIBBE

by running IBBE.Encrypt(S,M3,PPIBBE).

4. Finally, it outputs a ciphertext CTID,T = (CTDRIBE ,CTHIBE ,CTIBBE).

DRIBE-INC.Decrypt(CTID,T ,DKID′,T ′ ,PP): Let CTID,T =(CTDRIBE ,CTHIBE ,CTIBBE) and DKID′,T ′ =(DKDRIBE ,
DKHIBE , IUKT ) where IUKT = (ICVT ,{SKIBBE,Si}). If (ID ̸= ID′)∨ (T ̸= T ′), then it returns⊥. Oth-
erwise, it proceeds as follows:

1. It obtains M1 by running DRIBE.Decrypt(CTDRIBE ,DKDRIBE ,PPDRIBE). It obtains M2 by run-
ning HIBE.Decrypt(CTHIBE ,DKHIBE ,PPHIBE).

2. It obtains PVID by running CS.Assign(BT ,vID) where vID be a leaf node such that Label(vID) =
ID.

3. It finds (Si,Si) by running CS.Match(CVT ,PVID). If it fails to find, it returns ⊥.

4. It retrieves SKIBBE,Si from IUKT and obtains M3 by running IBBE.Decrypt(CTIBBE ,SKIBBE,Si ,
PPIBBE).

5. Finally, it outputs a message M = M1⊕M2⊕M3.
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4.3 Correctness

In this section we show the correctness of the DRIBE-INC scheme. The ciphertext of our DRIBE-INC
scheme consists of three elements: a DRIBE ciphertext, an HIBE ciphertext, and an IBBE ciphertext. First,
if the identity ID of the DRIBE ciphertext is not revoked in a base update key, we can decrypt M1 by the
correctness of the DRIBE scheme. Then, if ID and T of the HIBE ciphertext and ID and T of an HIBE
decryption key are the same, we can decrypt M2 by the correctness of the HIBE scheme. Now, when the
leaf node of a binary tree associated with ID is not revoked in an incremental update key, a common node
v exists by the correctness of the CS scheme. At this time, the IBBE ciphertext sets path nodes as a set of
recipients, and an update key consists of IBBE private keys associated with cover nodes. Because of this,
the common node becomes an element in path nodes, so we can decrypt M3 by the correctness of the IBBE
scheme. Therefore, we can derive the original message by computing M = M1⊕M2⊕M3.

4.4 Security Analysis

In this section, we show that our DRIBE-INC scheme provides the IND-CPA security and the IND-UKA
security by relying on the security of underlying cryptographic primitives.

Theorem 4.1. The above DRIBE-INC scheme is IND-CPA secure if the underlying DRIBE scheme is IND-
CPA secure, HIBE and IBBE schemes are IND-CPA secure.

Proof. Let ID∗ be the challenge identity and T ∗ be the challenge time such that T ∗= T ∗b +T ∗c . We divide the
behavior of an adversary as three types: Type-A, Type-B, and Type-C. These types are defined as follows:

Type-A. An adversary is type-A if it queries a private key corresponding to ID ̸= ID∗ for all private keys.

Type-B. An adversary is type-B if it queries a private key corresponding to ID = ID∗ and the private key of
ID∗ is revoked at some time T such that T ≤ T ∗b .

Type-C. An adversary is type-C if it queries a private key corresponding to ID = ID∗ and the private key
of ID∗ is revoked at some time T such that T ∗b < T ≤ T ∗.

Let Ei be the event that A behaves like type-i adversary. From Lemmas 4.2, 4.3, and 4.4, we obtain the
following result

AdvIND-CPA
DRIBE-INC,A(λ )≤ Pr[EA] ·AdvIND-CPA

DRIBE-INC,A(λ )+Pr[EB] ·AdvIND-CPA
DRIBE-INC,A(λ )+

Pr[EC] ·AdvIND-CPA
DRIBE-INC,A(λ )

≤ AdvIND-CPA
HIBE,B (λ )+AdvIND-CPA

DRIBE,B(λ )+AdvIND-CPA
IBBE,B (λ ).

This completes our proof.

Lemma 4.2. For the type-A adversary, the DRIBE-INC scheme is IND-CPA secure if the HIBE scheme is
IND-CPA secure.

Proof. Suppose there exists a type-A adversaryA that attacks the DRIBE-INC scheme with a non-negligible
advantage. An algorithm B that attacks the HIBE scheme is initially given public parameters PPHIBE by a
challenger C. Then B that interacts with A is described as follows:

Setup: B obtains MSKDRIBE ,MUKDRIBE ,PPDRIBE by running the DRIBE.Setup algorithm. It obtains
MKIBBE ,PPIBBE by running the IBBE.Setup algorithm. It initializes RL= /0 and gives PP=(PPDRIBE ,PPHIBE ,
PPIBBE ,H,BT ) to A.
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Phase 1: A adaptively requests a polynomial number of private key, revocation, base update key, incremen-
tal update key, and decryption key queries.

• For a private key query on ID, B proceeds as follows: It generates SKDRIBE by using MSKDRIBE . Next,
it receives SKHIBE from C by querying a private key for ID. It gives SKID = (SKDRIBE ,SKHIBE) to A.

• For a revocation query on ID and T , B proceeds as follows: It adds (ID,T ) to RL if ID was not
revoked before.

• For a base update key query on Tb, B proceeds as follows: It generates BUKTb by using MUKDRIBE .
It gives BUKTb to A.

• For an incremental update key query on T = Tb +Tc, B proceeds as follows: It generates IUKT by
using MKIBBE . It gives IUKT to A.

• For a decryption key query on ID and T = Tb +Tc, B proceeds as follows: It generates DKDRIBE for
Tb by using MSKDRIBE and MUKDRIBE . It receives DKHIBE from C by querying a private key for ID
and T . Next, it generates IUKT by using MKIBBE . It gives DKID,T = (DKDRIBE ,DKHIBE , IUKT ) toA.

Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages M∗0 ,M
∗
1

where T ∗ = T ∗b +T ∗c . B proceeds as follows:

1. It selects random M1,M3 and sets M2,0 = M∗0 ⊕M1⊕M3,M2,1 = M∗1 ⊕M1⊕M3.

2. Next, it generates CT ∗DRIBE by running DRIBE.Encrypt(ID∗,T ∗b ,M1,PPDRIBE). It receives CT ∗HIBE
from C by submitting challenge ID∗, T ∗, and challenge messages M∗2,0,M

∗
2,1.

3. It obtains PV ∗ by running CS.Assign(v∗) where v∗ is associated with ID∗. It sets S = /0. For each Si ∈
PVID, it adds a string H(Label(Si)∥T ) to S. It creates CT ∗IBBE by running IBBE.Encrypt(S,M3,PPIBBE).

4. It gives a challenge ciphertext CT ∗ = (CT ∗DRIBE ,CT ∗HIBE ,CT ∗IBBE) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

To complete the proof, we analyze the correctness of the simulation. For this, we show that it is possible
to process the private key and decryption key query for the DRIBE-INC scheme by using the private key
query for the HIBE scheme. Similar to analysis of Lemma 3.2, all private key and decryption key queries can
be handled using the HIBE private key query by the restrictions of the type-A adversary and the restrictions
of the decryption key queries in the DRIBE-INC security model. The challenge ciphertext is set so that the
distinction of the DRIBE-INC challenge message is related with that of the HIBE challenge message.

Lemma 4.3. For the type-B adversary, the DRIBE-INC scheme is IND-CPA secure if the DRIBE scheme is
IND-CPA secure.

Proof. Suppose there exists a type-B adversaryA that attacks the DRIBE-INC scheme with a non-negligible
advantage. An algorithm B that attacks the DRIBE scheme is initially given public parameters PPDRIBE by
a challenger C. Then B that interacts with A is described as follows:

Setup: B generates MKHIBE ,PPHIBE by running the HIBE.Setup algorithm and generates MKIBBE ,PPIBBE

by running the IBBE.Setup algorithm. It initializes RL= /0 and gives PP=(PPDRIBE ,PPHIBE ,PPIBBE ,H,BT )
to A.
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Phase 1: A adaptively requests a polynomial number of private key, revocation, base update key, incremen-
tal update key, and decryption key queries.

• For a private key query on ID, B proceeds as follows: It receives SKDRIBE from C by querying a
private key with ID. It generates SKHIBE by using MKHIBE . It gives SKID = (SKDRIBE ,SKHIBE) to A.

• For a revocation query on ID and T , B proceeds as follows: It queries the revocation of ID and T to
C. Next, it adds (ID,T ) to RL if ID was not revoked before.

• For a base update key query on Tb, B proceeds as follows: It receives UKDRIBE from C by querying
an update key with Tb. It gives BUKTb =UKDRIBE to A.

• For an incremental update key query on T , B proceeds as follows: It generates IUKT by using MKIBBE .
It gives IUKT to A.

• For a decryption key query on ID and T , B proceeds as follows: It first receives DKDRIBE from C by
querying a decryption key for ID and Tb. It derives DKHIBE of SKHIBE by using MKHIBE . Next, it
generates IUKT by using MKIBBE . It gives DKID,T = (DKDRIBE ,DKHIBE , IUKT ) to A.

Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages M∗0 ,M
∗
1

where T ∗ = T ∗b +T ∗c . B proceeds as follows:

1. It select random M2,M3 and sets M1,0 = M∗0 ⊕M2⊕M3,M1,1 = M∗1 ⊕M2⊕M3.

2. Next, it receives CT ∗DRIBE from C by submitting ID∗, T ∗b , and two challenge messages M1,0,M1,1. It
obtains CT ∗HIBE by running HIBE.Encrypt(ID∗,T ∗,M2,PPHIBE).

3. It obtains PV ∗ by running CS.Assign(v∗) where v∗ is associated with ID∗. It sets S = /0. For each Si ∈
PV ∗, it adds a string H(Label(Si)∥T ∗) to S. It creates CT ∗IBBE by running IBBE.Encrypt(S,M3,PPIBBE).

4. It gives a challenge ciphertext CT ∗ = (CT ∗DRIBE ,CT ∗HIBE ,CT ∗IBBE) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

To analyze the correctness of the simulation, we show that it is possible to process all DRIBE-INC
queries of the adversary by using DRIBE queries. The private key and base update key queries are handled
correctly using the private key and the update key of DRIBE, respectively. In the case of a type-B adversary,
the decryption key query can be processed under the constraint that if the private key for ID∗ is queried,
then the corresponding ID∗ is revoked before the time T ∗b . For reference, if you query the decryption key
for ID∗ and T ≥ T ∗b , then the simulator simply outputs ⊥ as a decryption key since the decryption key for
ID∗ and T ≥ T ∗b does not exist when ID∗ has already been revoked. The challenge ciphertext is set so that
the DRIBE-INC challenge message is related to the DRIBE challenge message.

Lemma 4.4. For the type-C adversary, the DRIBE-INC scheme is IND-CPA secure if the IBBE scheme is
IND-CPA secure.

Proof. Suppose there exists a type-C adversaryA that attacks the DRIBE-INC scheme with a non-negligible
advantage. An algorithm B that attacks the IBBE scheme is initially given public parameters PPIBBE by a
challenger C. Then B that interacts with A is described as follows:
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Setup: B obtains MSKDRIBE ,MUKDRIBE ,PPDRIBE by running the DRIBE.Setup algorithm. It also obtains
MKHIBE ,PPHIBE by running HIBE.Setup algorithm. It initializes RL = /0 and gives PP= (PPDRIBE ,PPHIBE ,
PPIBBE ,H,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, revocation, base update key, incremen-
tal update key, and decryption key queries.

• For a private key query on ID, B proceeds as follows: It generates SKDRIBE by using MSKDRIBE . Next,
it generates SKHIBE by using MKHIBE . It gives SKID = (SKDRIBE ,SKHIBE) to A.

• For a revocation query on ID and T , B proceeds as follows: It adds (ID,T ) to RL if ID was not
revoked before.

• For a base update key query on Tb, B proceeds as follows: It generates UKDRIBE for Tb by using
MUKDRIBE . It gives BUKTb =UKDRIBE to A.

• For an incremental update key query on T = Tb +Tc, B proceeds as follows:

1. It initializes IRV = /0. For each (IDi,Ti)∈ RL, it adds vi of IDi into IRV if Tb < Ti ≤ T . It obtains
ICVT by running CS.Cover(BT , IRV ).

2. For each Si ∈ ICVT , it receives SKIBBE,Si from C by querying a private key for H(Label(Si)∥T ).
3. It creates IUKT =

(
ICVT ,{SKIBBE,Si}Si∈ICVT

)
and gives IUKT to A.

• For a decryption key query on ID and T = Tb + Tc, B proceeds as follows: It generates DKDRIBE

by using MSKDRIBE and MUKDRIBE . Next, it retrieves IUKT by querying an incremental update
key to its own oracle. It generates a delegated key DKHIBE of SKHIBE by using MKHIBE . It gives
DKID,T = (DKDRIBE ,DKHIBE , IUKT ) to A.

Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages M∗0 ,M
∗
1

where T ∗ = T ∗b +T ∗c . B proceeds as follows:

1. It selects random M1,M2 and sets M3,0 = M∗0 ⊕M1⊕M2,M3,1 = M∗1 ⊕M1⊕M2.

2. Next, it generates CT ∗DRIBE by running DRIBE.Encrypt(ID∗,T ∗b ,M1,PPDRIBE). It generates CT ∗HIBE
by running HIBE.Encrypt((ID∗,T ∗),M2,PPHIBE).

3. It obtains PV ∗ by running CS.Assign(BT ,v∗) where a leaf node v∗ is associated with ID∗. It sets
S = /0. For each Si ∈ PV ∗, it adds H(Label(Si)∥T ∗) to S. It receives CT ∗IBBE from C by submitting a
challenge set S and challenge messages M3,0,M3,1.

4. It gives a challenge ciphertext CT ∗ = (CT ∗DRIBE ,CT ∗HIBE ,CT ∗IBBE) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

To analyze the correctness of the simulation, we show that it is possible to process all DRIBE-INC
queries of the adversary by using IBBE queries. From the restriction of a type-C adversary, we have that
the challenge identity ID∗ is revoked from an incremental update key at time T ∗ if the private key for ID∗

is queried. The incremental update key at time T ∗ is composed of the IBBE private key corresponding
to the cover nodes of a binary tree, and the ciphertext for ID∗ and T ∗ is an IBBE ciphertext that uses the
path nodes for ID∗ as the receiver set. In this case, since the path nodes for ID∗ are removed from the
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incremental update key at time T ∗, the IBBE private key belonging to the recipient set is not created. Thus
the incremental update key can be generated by using the IBBE private key queries. The IBBE decryption
key query can also be generated since the incremental update key is correctly processed.

Theorem 4.5. The above DRIBE-INC scheme is IND-UKA secure if the HIBE scheme is IND-CPA secure.

Proof. Suppose there exists an adversary A that attacks the DRIBE-INC scheme with a non-negligible
advantage. An algorithm B that attacks the HIBE scheme is initially given public parameters PPHIBE by a
challenger C. Then B that interacts with A is described as follows:

Setup: B generates MSKDRIBE ,MUKDRIBE ,PPDRIBE by running DRIBE.Setup algorithm. It also generates
MKIBBE ,PPIBBE by running the IBBE.Setup algorithm. It initializes RL= /0 and gives MUK = (MUKDRIBE ,
MKIBBE), PP = (PPDRIBE ,PPHIBE ,PPIBBE ,H,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, revocation, and decryption key queries.

• For a private key query on ID, B proceeds as follows: It generates SKDRIBE by using MSKDRIBE . It
receives SKHIBE from C by querying a private key for ID. It gives SKID = (SKDRIBE ,SKHIBE) to A.

• For a revocation query on ID and T , B updates RL by running DRIBE.Revoke(ID,T,RL).

• For a decryption key query on ID and T , B proceeds as follows: It receives DKHIBE from C by
querying a private key for ID and T . It generates IUKT by using MKIBBE . It gives DKID,T =
(DKDRIBE ,DKHIBE , IUKT ) to A.

Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages M∗0 ,M
∗
1

where T ∗ = T ∗b +T ∗c . B proceeds as follows:

1. It first select random M1,M3 ∈M and sets M2,0 = M∗0 ⊕M1⊕M3,M2,1 = M∗1 ⊕M1⊕M3.

2. Next, it generates CT ∗DRIBE by running DRIBE.Encrypt(ID∗,T ∗b ,M1,PPDRIBE). It receives CT ∗HIBE
from C by submitting challenge ID∗, T ∗, and challenge M2,0,M2,1.

3. It obtains PV ∗ by running CS.Assign(BT ,v∗) where a leaf node v∗ is associated with ID∗. It sets S =
/0. For each Si ∈PV ∗, it adds H(Label(Si)∥T ∗) to S. It generates CT ∗IBBE by running DRIBE.Encrypt(S,
M3,PPIBBE).

4. It gives a challenge ciphertext CT ∗ = (CT ∗DRIBE ,CT ∗HIBE ,CT ∗IBBE) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

4.5 Discussions

Efficiency Analysis. The private key of our DRIBE-INC scheme is compact because it is composed of a
DRIBE private key which is an HIBE private key and an additional HIBE private key. The ciphertext is also
compact because it consists of a DRIBE ciphertext, an HIBE ciphertext, and an IBBE ciphertext. The base
update key consists of a DRIBE update key and an incremental update key consists of many IBBE private
keys. For concrete analysis of the update key size, the number of revoked users r in the base update key
and the number of revoked users s in the incremental update key must be determined. We set the maximum
number of users in the system to 230, the security parameter to 80 bits, and the hash length to 160 bits. For
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Table 1: Comparison of RIBE schemes in bilinear groups

Scheme PP Size SK Size UK Size CT Size DKER, GC, UKD

BF [6] O(1) O(1) O(N− r) O(1) Yes, Yes, No

BGK [3] O(1) O(logN) O(r log N
r ) O(1) No, No, No

LV [24] O(λ ) O(logN) O(r log N
r ) O(1) No, No, No

SE [31] O(λ ) O(logN) O(r log N
r ) O(1) Yes, No, No

LLP [21] O(1) O(log2 N) O(r) O(1) Yes, No, No

WES [34] O(1) O(logN) O(r log N
r ) O(1) Yes, No, No

ML1 [25] O(1) O(1) O(rn) O(n) Yes, Yes, No

ML2 [25] O(n) O(1) O(rn2) O(1) Yes, Yes, No

Lee [18] O(1) O(1) O(r) O(n2) Yes, Yes, No

DRIBE O(n) O(1) O(rn) O(1) Yes, Yes, Yes

DRIBE-INC O(n) O(1) O( rn
m + sn) O(1) Yes, Yes, Yes

Let λ be a security parameter, N be the number of maximum users, r be the number of revoked users, n be the
depth of a binary tree in generic constructions, m be the interval of base update keys, and s be the number of
revoked users in incremental update keys. We count the number of group elements to measure the size. We use
symbols DKER for decryption key exposure resistance, GC for generic construction, and UKD for update key
delegation.

comparison, consider a scenario in which an RIBE scheme issues a daily update key, and the DRIBE-INC
scheme issues a base update key once a month and a daily incremental update key. In this case, we compare
the update key size of the RIBE scheme and the DRIBE-INC scheme. The update key of the RIBE scheme
which is generated every day consists of r log230 = 30r binary tree nodes. The base update key of the
DRIBE-INC scheme which is generated once a month consists of r log2160 = 160r binary tree nodes. The
incremental update key of the DRIBE-INC scheme is s log2160 = 160s = 160(r/10) = 16r binary tree nodes
if we simply set s = r/10. Therefore, the amortized size of the update key of the DRIBE-INC scheme is
160r/30+16r = 21.3r binary tree nodes, and it is similar to that of the RIBE scheme.

5 Instantiations

In this section, we instantiate our DRIBE schemes by using bilinear groups or lattices.

5.1 DRIBE from Bilinear Maps

We instantiate our DRIBE scheme using pairing-based encryption schemes. First, we consider realizing a
DRIBE scheme that provides the full-model security. For this, we select the HIBE scheme of Waters [35]
that provides full-model security under the standard assumption. We select the IBBE scheme of Gentry and
Waters [15] which has a constant-size ciphertext and a short private key because it provides the full-model
security in the random oracle model. For a cryptographic hash function, we select the SHA256 scheme
and truncate the hash output if necessary. Next, we consider realizing a DRIBE scheme that provides
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the selective security. We select the efficient HIBE scheme of Boneh and Boyen [4] which provides the
selective security under the standard assumption. Alternatively, if we want to reduce the ciphertext size, we
can select the HIBE scheme of Boneh et al. [5] with constant size ciphertext. We select the IBBE scheme
of Delerablee [12] which has a constant size ciphertext and a short private key. We also select the SHA256
scheme as a hash function. The detailed comparison of RIBE schemes in bilinear groups is given in Table 1.

5.2 DRIBE from Lattices

We instantiate our DRIBE scheme using lattice-based encryption schemes. For a lattice HIBE scheme, we
select the efficient HIBE scheme of Agrawal et al. [1] that provides the selective security under the LWE
assumption. For a lattice IBBE scheme, we try to use the IBBE scheme of Brakerski and Vaikuntanathan [7]
which is derived from their ciphertext-policy attribute-based encryption scheme. One drawback of this IBBE
scheme is that it lacks the formal security analysis. Another alternative for the IBBE scheme is to use the
fixed-dimension HIBE scheme of Agrawal et al. [2] with short ciphertexts to replace the IBBE scheme. In
this case, the IBBE encryption is replaced by the HIBE encryption on the path string of a leaf node, and
the IBBE key generation is replaced by the HIBE key generation for cover nodes in a binary tree. The
IBBE decryption is possible by using the private key delegation of the HIBE scheme. Finally, we select the
SHA256 scheme and truncate the hash output if necessary.

6 Conclusion

In this paper, we introduced the concept of DRIBE that delegates the generation of update keys to a semi-
trusted cloud server, and proposed an efficient DRIBE scheme by generically combining an HIBE scheme,
an IBBE scheme, and a hash function. Our proposed DRIBE scheme satisfies not only the IND-CPA but
also the IND-UKA security. In addition, we proposed an DRIBE-INC scheme that supports incremental
update keys to reduce the update key size of our DRIBE scheme. Our DRIBE-INC scheme has the effect of
reducing the overall update key size by issuing a large-sized base update key occasionally and a small-sized
incremental update key periodically.
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