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Abstract. After ratcheting attracted attention mostly due to practi-
cal real-world protocols, recently a line of work studied ratcheting as
a primitive from a theoretic point of view. Literature in this line, pur-
suing the strongest security of ratcheting one can hope for, utilized for
constructions strong, yet inefficient key-updatable primitives – based on
hierarchical identity based encryption (HIBE). As none of these works
formally justified utilizing these building blocks, we answer the yet open
question under which conditions their use is actually necessary.

We revisit these strong notions of ratcheted key exchange (RKE),
and propose a more realistic (and slightly stronger) security definition. In
this security definition, both the exposure of the communicating parties’
local states and the adversary’s ability to attack the executions’ random-
ness are considered. While these two attacks were partially considered in
previous work, we are the first to unify them cleanly in a natural game
based notion.

Our definitions are based on the systematic RKE notion by Poetter-
ing and Rösler (CRYPTO 2018). Due to slight (but meaningful) changes
to regard attacks against randomness, we are ultimately able to show
that, in order to fulfill strong security for RKE, public key cryptography
with (independently) updatable key pairs is a necessary building block.
Surprisingly, this implication already holds for the simplest RKE vari-
ant (which was previously instantiated with only standard public key
cryptography).

Our contributions are thus threefold: (1) We model optimally secure
RKE under randomness manipulation to cover realistic attacks, (2) we
(provably) extract the core primitive that is necessary to realize strongly
secure RKE, and (3) our results indicate under which conditions this
primitive is necessary for strongly secure ratcheting and which relax-
ations in security allow for constructions that only rely on standard pub-
lic key cryptography.

1 Introduction

The term “ratcheting” as well as the underlying concept of continuously updat-
ing session secrets for secure long-term communication settings originates from



real-world messaging protocols [16,18,5,21,17]. In these protocols, first forward-
secrecy [18,5,21] and later security after state exposures [17] (also known as
future secrecy, backward secrecy, or post-compromise security) were aimed to be
achieved as the exposure of the devices’ local states was considered a practical
threat. The main motivation behind this consideration is the typical lifetime
of sessions in messaging apps. As messaging apps are nowadays usually run on
smartphones, the lifetime of messaging sessions is proportional to the ownership
duration of a smartphone (typically several years). Due to the long lifetime of
sessions and the mobile use of smartphones, scenarios, in which the local storage
– containing the messaging apps’ secret state – can be exposed to an attacker,
are extended in comparison to use cases of other cryptographic protocols.

Practical Relevance of Randomness Manipulation
In addition to exposures of locally stored state secrets, randomness for generat-
ing (new) secrets is often considered vulnerable. This is motivated by numerous
attacks in practice against randomness sources (e.g., [11]), randomness genera-
tors (e.g., [23,7]), or exposures of random coins (e.g., [22]). Most theoretic ap-
proaches try to model this threat by allowing an adversary to reveal attacked
random coins of a protocol execution (as it was also conducted in related work
on ratcheting). This, however, assumes that the attacked protocol honestly and
uniformly samples its random coins (either from a high-entropy source or using
a random oracle) and that these coins are only afterwards leaked to the attacker.
In contrast, practically relevant attacks against bad randomness generators or
low-entropy sources (e.g., [11,23,7]) change the distribution from which random
coins are sampled. Consequently, this threat is only covered if an adversary is
also allowed to influence the execution’s (distribution of) random coins. Thus, it
is important to consider randomness manipulation (instead of reveal), if attacks
against randomness are regarded practically relevant.

The overall goal of ratcheting protocols is to reduce the effect of any such
non-permanent and/or non-fatal attack to a minimum. For example, an ongoing
communication under a non-fatal attack should become secure as soon as the
adversary ends this attack or countermeasures become effective. Examples for
countermeasures are replacing bad randomness generators via software updates,
eliminating state exposing viruses, etc. Motivated by this, most widely used
messaging apps are equipped with mechanisms to regularly update the local
secrets such that only a short time frame of communication is compromised
if an adversary was successful due to obtaining local secrets and/or attacking
random coins.

Real-World Protocols
The most prominent and most widely deployed real-world ratcheting protocol is
the Signal protocol (used by the Signal Messenger, WhatsApp, Facebook Mes-
senger, Skype, and others). The analysis of this protocol in a multi-stage key
agreement model1 [8] was the first theoretic treatment of ratcheting in the lit-

1 Please note the distinction between key agreement and ratcheted key exchange proto-
cols. The former is run by parties to obtain a symmetric key for a subsequent session
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erature. Cohn-Gordon et al. [8], however, focus on grasping the precise security
that Signal offers rather than generically defining ratcheting as an independent
primitive. While the security provided by Signal is sufficient in most real-world
scenarios, we focus in this work on the theoretic analysis of the (optimally se-
cure) primitive ratcheting with respect to its instantiability by smaller building
blocks.

Generic Treatment of Ratcheting as a Primitive
In the following we shortly introduce and review previous modeling approaches
for strongly secure ratcheting. We thereby abstractly highlight modeling choices
that crucially affect the constructions, secure according to these models respec-
tively. Specifically, we indicate why some models can be instantiated with only
public key cryptography (PKC) – bypassing our implication result – and others
cannot. In Table 1 we summarize this overview.
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Fig. 1: Conceptual depiction of kuKEM∗ (on the left) and unidirectional RKE (on the
right). ‘$’ in the upper index of an algorithm name denotes that the algorithm runs
probabilistically and ad is associated data.

The initial generic work that considers ratcheted key exchange (RKE) as a
primitive and defines its syntax, correctness, and security (in a yet impractical
variant) is by Bellare et al. [4]. Abstractly, their concept of ratcheted key ex-
change, depicted in the right part of Figure 1, consist of an initialization that
provides two session participants A and B with a state that can then be used by
them to repeatedly compute new keys in this session (e.g., for use in higher level
protocols). In their restricted communication model, A is allowed to compute
new keys with her state and accordingly send ciphertexts to B who can then
compute (the same) keys with his state. During these key computations, A’s and
B’s states are updated respectively (to minimize the effect of state exposures).

protocol. The latter is the session protocol that might utilize the initial key and that
continuously outputs symmetric keys in the session independent of long-term keys.
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As B can only comprehend key computations from A (on receipt of a cipher-
text) but cannot actively initiate the computation of new keys, this variant was
later called unidirectional RKE [20]. Beyond this restriction of the communica-
tion model, the security definition by Bellare et al. only allows the adversary
to expose A’s temporary local state secrets, while B’s state cannot be exposed
(which in turn requires no forward-secrecy with respect to state updates by B).
Following Bellare et al., Poettering and Rösler [20,19]2 propose a revised secu-
rity definition of unidirectional RKE (URKE: allowing also the exposure of B’s
state) and extend the communication model to define syntax, correctness, and
security of sesquidirectional RKE (SRKE: additionally allows B to only send
special update ciphertexts to A that do not trigger a new key computation but
help him to recover from state exposures) and bidirectional RKE (BRKE: de-
fines A and B to participate equivalently in the communication). With a similar
instantiation as Poettering and Rösler, Jaeger and Stepanovs [13] define security
for bidirectional channels under state exposures and randomness reveal.

All of the above mentioned works define security optimally with respect to
their syntax definition and the adversary’s access to the primitive execution
(modeled via oracles in the security game). This is reached by declaring secrets
insecure iff the adversary conducted an unpreventable/trivial attack against
them (i.e., a successful attack that no instantiation can prevent). Consequently,
fixing syntax and oracle definitions, no stronger security definitions exist.

Relaxed Security Notions
Subsequent to these strongly secure ratcheting notions, multiple weaker formal
definitions for ratcheting were proposed that consider special properties such
as strong explicit authentication [10], out of order receipt of ciphertexts [2], or
primarily target on allowing efficient instantiations [15,6].

While these works are syntactically similar, we shortly sketch their different
relaxations regarding security – making their security notions sub-optimal. Du-
rak and Vaudenay [10] and Caforio et al. [6] forbid the adversary to perform
impersonation attacks against the communication between A and B during the
establishment of a secure key. Thus, they do not require recovery from state
exposures – which are a part of impersonation attacks – in all possible cases,
which we denote as “partial recovery” (see Table 1). Furthermore, both works
neglect bad randomness as an attack vector. In the security experiments by Jost
et al. [15] and Alwen et al. [2] constructions can delay the recovery from attacks
longer than necessary (Jost et al. therefore temporarily forbid the exposure of the
local state). Additionally, they do not require the participants’ states to become
incompatible (immediately) on active attacks against the communication.

2 We explicitly cite the extended version [19] for results that are not captured in the
CRYPTO 2018 proceedings [20].

1 ‘Unnecessary’ refers to restrictions beyond those that are immediately implied by
optimal security definitions (that only restrict the adversary with respect to unpre-
ventable/trivial attacks).
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(a) Interaction (b) State Exposure (c) Bad Randomness (d) Recovery
C+ [8] ↔ Always allowed Reveal Delayed
B+ [4] → Only allowed for A Reveal Immediate
PR [20] → Always allowed Not considered Immediate

7→ Always allowed Not considered Immediate
↔ Always allowed Not considered Immediate

JS [13] ↔ Always allowed Reveal Immediate
DV [10] ↔ Always allowed Not considered Partial
JMM [15] → Partially restricted Reveal (Immediate)

7→ Partially restricted Reveal (Immediate)
↔ Partially restricted Reveal (Immediate)

ACD [2] ↔ Always allowed Manipulation Delayed
CDV [6] ↔ Always allowed Not considered Delayed
This work → Always allowed Manipulation Immediate

Table 1: Differences in security notions of ratcheting regarding (a) uni- (→), sesqui-
(7→), and bidirectional (↔) interaction between A and B, (b) when the adversary is
allowed to expose A’s and B’s state (or when this is unnecessarily restricted), (c) the
adversary’s ability to reveal or manipulate algorithm invocations’ random coins, and
(d) how soon and how complete recovery from these two attacks into a secure state
is required of secure constructions (or if unnecessary delays or exceptions for recovery
are permitted).1 Recovery from attacks required by Jost et al. [15] is immediate in so
far as their restrictions of state exposures introduce delays implicitly. Gray marked
cells indicate the reason (i.e., relaxations in security) why respective instantiations can
rely on standard PKC only (circumventing our implication result). Rows without gray
marked cells have no construction based on pure PKC.

Instantiations of Ratcheting
Interestingly, both mentioned unidirectional RKE instantiations that were de-
fined to depict optimal security [4,20] as well as bidirectional real-world exam-
ples such as the Signal protocol (analyzed in [8]), and instantiations of the above
named relaxed security notions [10,15,2,6] only rely on standard PKC (cf. rows
in Table 1 with gray cells).

In contrast, both mentioned optimally secure bidirectional ratcheting vari-
ants (i.e., sesquidirectional and bidirectional RKE [20], and bidirectional strongly
secure channel [13]) are based on a strong cryptographic building block, called
key-updatable public key encryption, which can be built from hierarchical iden-
tity based encryption (HIBE). Intuitively, key-updatable public key encryption
is standard public key encryption that additionally allows to update public key
and secret key independently with respect to some associated data (a conceptual
depiction of this is on the left side of Figure 1). Thereby an updated secret key
cannot be used to decrypt ciphertexts that were encrypted to previous (or dif-
ferent) versions of this secret key (where versions are defined over the associated
data used for updates).

We emphasize a significant difference between key-updatable public key en-
cryption and HkuPke (introduced by Jost et al. [15] and recently used by Alwen
et al. [3,1]): in HkuPke key updates rely on interactive communication between
holders of public key and secret key, and associated data for key updates is not
fully adversary-controlled. These two differences make it strictly weaker, insuffi-
cient for optimal security of RKE (on which we further elaborate in Section 3).
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Necessity for Strong Building Blocks
Natural questions that arise from this line of work are, whether and under which
conditions such strong (HIBE-like) building blocks are not only sufficient but
also necessary to instantiate the strong security of (bidirectional) RKE. In or-
der to answer these questions, we build key-updatable public key cryptography
from ratcheted key exchange. Consequently we affirm the necessity and provide
(sufficient) conditions for relying on these strong building blocks. We there-
fore minimally adjust the syntax of key-updatable key encapsulation mechanism
(kuKEM) [20] and consider the manipulation of algorithm invocations’ random
coins in our security definitions of kuKEM and RKE.2

Bad randomness

HIB-KEMOW-ID-CCA

kuKEM∗KUOWR

KEMIND-1-CCA

kuKEMKUOW

URKEKINDR

URKEKIND

SRKEKIND BRKEKIND

BRKEKINDR

Xx Yy
iff (x-secure X
⇒ y-secure Y)

[20]

ROM

ROM

ROM

[20]
[20]

[20]

Fig. 2: The contributions of this paper (bold arrows) and their connection to previous
work (thin arrows) involving RKE (uni-, sesqui-, and bidirectional) and KEM (stan-
dard, hierarchical-identity-based, and key-updatable) primitives. ROM indicates that
the proof holds in the random oracle model. kuKEM∗KUOWR ⇒ROM SRKEKIND is not
formally proven in this paper, but we point out that the proof of kuKEMKUOW ⇒ROM
SRKEKIND from [20] can be rewound. Gray dashed connections indicate trivial impli-
cations (due to strictly weaker syntax or security definitions).

While, despite these changes of syntax and security towards prior definitions,
we prove that RKE can still be built from kuKEM, we also prove that kuKEM
can be built from RKE (see Figure 2). As a result we show that:
– kuKEM∗ (with one-way security under manipulation of randomness)3⇒ROM

Unidirectional RKE (with key indistinguishability under manipulation of
randomness),

– Unidirectional RKE (with key indistinguishability under manipulation of
randomness)⇒ kuKEM∗ (with one-way security under manipulation of ran-
domness).

2 Recall that randomness manipulation was not considered in a security definition that
aimed for optimal security in the literature of ratcheting yet (cf. Table 1).

3 The asterisk at kuKEM∗ indicates the minimal adjustment to the kuKEM syntax
definition from [20]. For the kuKEM∗ we consider one-way security as it suffices to
achieve strong security for RKE. It is obvious that the same results hold for key
indistinguishability.
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Given the security notions established in honest randomness setting and their
connections to each other, one would also expect
– Group RKE ⇒ Bidirectional RKE ⇒ Sesquidirectional RKE ⇒ Unidirec-

tional RKE

to follow. Hence, our results indicate that stronger RKE variants also likely
require building blocks as hard as kuKEM∗. Furthermore, due to our results,
it becomes clear that: One-way security under manipulation of randomness of
kuKEM∗ ⇒ROM Key indistinguishability of sesquidirectional RKE. Interest-
ingly, these results induce that (when considering strong security) ratcheted key
exchange requires these strong (HIBE-like) building blocks not only for bidi-
rectional communication settings, but already for the unidirectional case. Both
mentioned previous unidirectional RKE schemes can bypass our implication be-
cause they forbid exposures of B’s state [4] or assume secure randomness [20]
(see Table 1). We describe attacks against each of both constructions in our secu-
rity definition in Appendix C. Since the mentioned relaxed security definitions
of ratcheting [8,10,15,2,6] restrict the adversary more than necessary in expos-
ing states, solving (potentially valid) embedded game challenges, manipulating
the communication between the session participants, or attacking invocations’
random coins (and thus violate either of our security definition’s conditions),
it remains feasible to instantiate them with standard public key primitives as
well (see Table 1). Although our analysis was partially motivated by the use of
kuKEM in [20,13], we do not ultimately answer whether these particular con-
structions necessarily relied on it. Rather we provide a clean set of conditions
under which RKE and kuKEM clearly imply each other as we do not consider
the justification of previous constructions but a clear relation for future work
important.

Thus, we show that sufficient conditions for necessarily relying on kuKEM
as a building block of RKE are: (a) unrestricted exposure of both parties’ local
states, (b) consideration of attacks against algorithm invocations’ random coins,
and (c) required immediate recovery from these two attacks into a secure state
by the security definition (i.e., the adversary is only restricted with respect to
unpreventable/trivial attacks).4

Contributions
The contributions of our work can be summarized as follows:
– We are the first who systematically define optimal security of key-updatable

KEM and unidirectional RKE under randomness manipulation (in sections 3
and 4) and thereby consider this practical threat in addition to state expo-
sures in an instantiation-independent notion of RKE. Thereby we substan-
tially enhance the respective models by Poettering and Rösler [20].

4 Note that there may exist further sets of sufficient conditions for relying on kuKEMs
since, for example, sesqui- and bidirectional RKE by Poettering and Rösler [20,19] vi-
olate condition (b) but base on kuKEMs as well. We refer the reader to Appendix B.2
in [19] for a detailed explanation of why their scheme presumably also must rely on
a kuKEM. We leave the identification of further sets of conditions as future work.
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– In Section 5, we construct unidirectional RKE generically from a kuKEM∗
to show that the latter suffices as a building block for the former under
manipulation of randomness.

– To show that kuKEM∗ is not only sufficient but also necessary to build unidi-
rectional RKE (under randomness manipulation), we provide a construction
of kuKEM∗ from a generic unidirectional RKE scheme in Section 6.

With our results we distill the core building block of strongly secure ratcheted
key exchange down to its syntax and security definition. This allows further
research to be directed towards instantiating kuKEM∗ schemes that are more
familiar and easier in terms of security requirements, rather than attempting to
construct seemingly more complex RKE primitives.5 Simultaneously, our results
indicate the cryptographic hardness of ratcheted key exchange and thereby help
to systematize and comprehend the security definitions and different dimensions
of ratcheting in the literature. As a consequence, our results contribute to a
fact-based trade-off between security and efficiency for RKE by providing re-
quirements for relying on heavy building blocks and thereby revealing respective
bypasses.

2 Preliminaries

2.1 Notation

By x← y we define the assignment of the value of variable y to variable x and
thus for a function X, x ← X(y) means that x is assigned with the evaluation
output of X on input y. We define T, F as Boolean values for true and false. The
shortcut notion w ← x ? y : z means that ‘if x = T, then w ← y, otherwise
w ← z’. For a probabilistic algorithm Y, x ←$ Y(y) denotes the probabilistic
evaluation of Y on input y with output x and x ← Y(y; r) denotes the deter-
ministic evaluation of Y on y with output x where the evaluation’s randomness
is fixed to r. For a set X , x ←$ X is the uniform random sampling of value x
from X . We use the shortcut notion X ∪← Y to denote the union X ← X ∪ Y of
sets X and Y.

Symbol ‘ε’ denotes an empty string and symbol ‘⊥’ denotes an undefined
element or an output that indicates rejections (thus it is not an element of
explicitly defined sets).

By X ∗, we denote the set of all lists of arbitrary size whose elements belong
to X . We abuse the notation of empty string ‘ε’ by writing L = ε for an empty
5 For example, the bidirectional channel construction in the proceedings version of [13]
is not secure according to the security definition (but a corrected version is published
as [14]), in the acknowledgments of [19] it is mentioned that an early submitted
version of their construction was also flawed, and for an earlier version of [10] we
detected during our work (and informed the authors) that the construction was
insecure under bad randomness such that the updated proceedings version (also
available as [9]) disregards attacks against randomness entirely. Finally, we detected
and reported that the construction of HkuPke in [15] is not even correct.
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list L. If an element x ∈ X is appended to list L then we denote this by L← L‖x
(or simply L

q← x). Thus, ‘‖’ denotes a special concatenation symbol that is
not an element of any of the explicitly defined sets. We define relations prefix-
or-equal � and strictly-prefix ≺ over two lists. For instance, for lists L,L0 =
L‖x, L1 = L‖y where x, y ∈ X , x 6= y we have that L � L,L 6≺ L,L ≺ L0, L ≺
L1, L0 6� L1, L1 6� L0 meaning that L is a prefix of L0 and L1 but neither of
L0, L1 is a prefix of the other. By X[·] we denote an associative array.

In our security experiments, that we denote with Game, we invoke adver-
saries via instruction ‘Invoke’. These adversaries are denoted byA,B. Adversaries
have access to the security experiment’s interface, which is defined by oracles
that are denoted by the term Oracle. Games are terminated via instructions
‘Stop with x’ (meaning that x is returned by the game) or ‘Reward b’ (meaning
that the game terminates and returns 1 if b = T). In procedures that we denote
by Proc and in oracles, we use the shortcut notion ‘Require x’. Depending on
the procedure’s or oracle’s number of return values n, that means ‘If x = F, then
return ⊥n’.

2.2 Message Authentication Code

We define a message authentication code to be a set of algorithms M = (tag, vfyM)
over a set of symmetric keys K, a message space M, and a tag space T . The
syntax is defined as:
K ×M→ tag→ T
K ×M× T → vfyM → {T,⊥}

Please note that we define the tag algorithm explicitly deterministic.
For correctness of a MAC we define that for all k ∈ K and all m ∈ M it is

required that vfyM(k,m, tag(k,m)) = T.
We define a one-time multi-instance strong unforgeability notion SUF for

MAC security – that is equivalent with standard strong unforgeability – for
which the security game is depicted in Appendix E Figure 14. That is, for a
game in which an adversary can generate instances i (with independent uniformly
random keys ki ←$ K) via an oracle Gen, the adversary can query a Tag oracle
on a message m from message spaceM for each instance at most once to obtain
the respective MAC tag. Additionally, the adversary can verify MAC tags for
specified messages and instances via oracle Vfy and obtain an instance’s key by
querying an Expose oracle for this instance. The adversary wins by providing
a forgery (m, τ) for an instance i to the Vfy oracle if there was no Tag(i,m)
query before with output τ and if i’s key was not exposed via oracle Expose.
We define the advantage of winning the SUF game against a MAC scheme M as
Advsuf

M (A) = Pr[SUFM(A)→ 1].

3 Sufficient Security for Key-Updatable KEM

A key-updatable key encapsulation mechanism (kuKEM) is a key encapsulation
mechanism that provides update algorithms for public key and secret key with
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respect to some associated data respectively. Prior to our work, this primitive
was used to instantiate sesquidirectional RKE. In order to allow for our equiva-
lence result, we minimally adjust the original kuKEM notion by Poettering and
Rösler [20] and call it kuKEM∗. The small, yet crucial changes comprise allowed
updates of public and secret key during encapsulation and decapsulation (in our
syntax definition) as well as the adversary’s ability to manipulate utilized ran-
domness of encapsulations (in our security definition). In Section 6 the rationales
behind these changes are clarified. In order to provide a coherent definition, we
not only describe alterations towards previous work but define kuKEM∗ entirely
(as we consider our changes to be a significant contribution and believe that this
strengthens comprehensibility).

Syntax A kuKEM∗ is a set of algorithms K = (genK,up, enc,dec) with sets of
public keys PK and secret keys SK, a set of associated data AD for updating
the keys, a set of ciphertexts C (with AD ∩ C = ∅), and a set of encapsulated
keys K. Furthermore we define R as the set of random coins used during the
encapsulation:

genK →$ PK × SK
PK ×AD → up→ PK
SK ×AD → up→ SK
PK ×R → enc→ PK×K × C or PK → enc→$ PK ×K × C
SK × C → dec→ (SK ×K) ∪ {(⊥,⊥)}

Please note that the encapsulation and decapsulation may modify the public key
and the secret key respectively – as a result, the kuKEM∗ is stateful (where the
public key is a public state).6

Correctness The correctness for kuKEM∗ is (for simplicity) defined through
game CORRK (see Figure 3), in which an adversary A can query encapsulation,
decapsulation, and update oracles. The adversary (against correctness) wins if
different keys are computed during decapsulation and the corresponding encap-
sulation even though compatible key updates were conducted and ciphertexts
from encapsulations were directly forwarded to the decapsulation oracle.

Definition 1 (kuKEM∗ correctness). A kuKEM∗ scheme K is correct if for
every A, the probability of winning game CORRK from Figure 3 is Pr[CORRK(A)
→ 1] = 0.

Security Here we describe KUOWR security of kuKEM∗ as formally depicted
in Figure 4. KUOWR defines one-way security of kuKEM∗ under randomness
manipulation in a multi-instance/multi-challenge setting.
6 As kuKEM∗ naturally provides no security for encapsulated keys if the adversary
can manipulate the randomness for genK already, we only consider the manipulation
of random coins for enc.
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Game CORRK(A)
00 (pk, sk)←$ genK
01 key[·]← ⊥
02 trs ← ε; trr ← ε
03 Invoke A
04 Stop with 0

Oracle UpS(ad)
05 Require ad ∈ AD
06 pk ← up(pk, ad)
07 trs q← ad
08 Return

Oracle UpR(ad)
09 Require ad ∈ AD
10 sk ← up(sk, ad)
11 trr q← ad
12 Return

Oracle Enc()
13 (pk, k, c)←$ enc(pk)
14 trs q← c
15 key[trs]← k
16 Return (pk, c)

Oracle Dec(c)
17 Require c ∈ C
18 (sk, k)← dec(sk, c)
19 trr q← c
20 If trr � trs:
21 Reward k 6= key[trr ]
22 Return

Fig. 3: The correctness notion of kuKEM∗ captured through game CORR.

Intuitively, the KUOWR game requires that a secret key can only be used
for decapsulation of a ciphertext if prior to this decapsulation all updates of this
secret key and all decapsulations with this secret key were consistent with the
updates of and encapsulations with the respective public key. This is reflected
by using the transcript (of public key updates and encapsulations or secret key
updates and decapsulations) as a reference to encapsulated “challenge keys” and
secret keys.

In order to let the adversary play with the kuKEM∗’s algorithms, the game
provides oracles Gen, UpS , UpR, Enc, and Dec. Thereby instances (i.e., key pairs)
can be generated via oracle Gen and are referenced in the remaining oracles by
a counter that refers to when the respective instance was generated.

For encapsulation via oracle Enc, the adversary can either choose the invoca-
tion’s random coins by setting rc to some value that is not the empty string ε or
let the encapsulation be called on fresh randomness by setting rc = ε (line 16).
In the former case, the adversary trivially knows the encapsulated key. Thus,
only when called with fresh randomness, the encapsulated key is marked as a
challenge key in array CK (line 20).

The variables CK, SK , and XP (the latter two are explained below) are
indexed via the transcript of operations on the respective key pair part. As
public keys and secret keys can uniquely be referenced via the associated data
under which they are updated and via ciphertexts that have been encapsulated
or decapsulated by them, the concatenation of these values (i.e., sent or received
transcripts trs, trr) are used as references to them in the KUOWR game.

On decapsulation of a key that is not marked as a challenge, the respective
key is output to the adversary. Challenge keys are of course not provided to the
adversary as thereby the challenge would be trivially solved (line 36).

Via oracle Expose, the adversary can obtain a secret key of specified instance i
that results from an operation referenced by transcript tr . As described above,
the transcript, to which a secret key refers, is built from the associated data of
updates to this secret key (via oracle UpR) and the ciphertexts of decapsulations
with this secret key (via oracle Dec) as these two operations may modify the
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Game KUOWRK(A)
00 n← 0
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n+ 1
04 (pkn, skn)←$ genK
05 CKn[·]← ⊥; XPn ← ∅
06 trsn ← ε; trrn ← ε
07 SKn[·]← ⊥
08 SKn[trrn]← skn

09 Return pkn

Oracle UpS(i, ad)
10 Require 1 ≤ i ≤ n ∧ ad ∈ AD
11 pki ← up(pki, ad)
12 trsi

q← ad
13 Return pki

Oracle Enc(i, rc)
14 Require 1 ≤ i ≤ n
15 · Require rc ∈ R ∪ {ε}
16 · If rc = ε: mr ← F; rc ←$ R
17 · Else: mr ← T
18 · (pki, k, c)← enc(pki; rc)
19 · trsi

q← c
20 · If mr = F: CKi[trsi]← k
21 · Return (pki, c)

Oracle Solve(i, tr , k)
22 Require 1 ≤ i ≤ n
23 Require tr /∈ XPi

24 Require CKi[tr ] 6= ⊥
25 Reward k = CKi[tr ]
26 Return

Oracle UpR(i, ad)
27 Require 1 ≤ i ≤ n ∧ ad ∈ AD
28 ski ← up(ski, ad)
29 trr i

q← ad
30 SK i[trr i]← ski

31 Return

Oracle Dec(i, c)
32 Require 1 ≤ i ≤ n ∧ c ∈ C
33 · (ski, k)← dec(ski, c)
34 · trr i

q← c
35 · SK i[trr i]← ski

36 · If CKi[trr i] 6= ⊥:
37 · Return
38 · Return k

Oracle Expose(i, tr)
39 Require 1 ≤ i ≤ n
40 · Require SK i[tr ] ∈ SK
41 · XPi

∪← {tr∗ ∈ (AD ∪ C)∗ :
tr ≺ tr∗}

42 Return SK i[tr ]

Fig. 4: Security experiment KUOWR, modeling one-way security of key-updatable
KEM in a multi-instance/multi-challenge setting under randomness manipulation.
Lines of code tagged with ‘·’ are (substantially) modified with respect to KUOW secu-
rity in [19]. Line 41 is a shortcut notion that can be implemented efficiently. CK: chal-
lenge keys, XP: exposed secret keys, trs, trr : transcripts.

secret key. As all operations, performed with an exposed secret key, can be
traced by the adversary (i.e., updates and decapsulations; note that both are
deterministic), all secret keys that can be derived from an exposed secret key
are also marked exposed via array XP (line 41).

Finally, an adversary can solve a challenge via oracle Solve by providing a
guess for the challenge key that was encapsulated for an instance i with the
encapsulation that is referenced by transcript tr . Recall that the transcript,
to which an encapsulation refers, is built from the associated data of updates
to the respective instance’s public key (via oracle UpS) and the ciphertexts
of encapsulations with this instance’s public key (via oracle Enc) as these two
operations may modify the public key for encapsulation. If the secret key for
decapsulating the referenced challenge key is not marked exposed (line 23) and
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the guess for the challenge key is correct (line 24), then game KUOWR stops
with ‘1’ (via ‘Reward’) meaning that the adversary wins.

Definition 2 (KUOWR Advantage). The advantage of an adversary A against
a kuKEM∗ scheme K in game KUOWR from Figure 4 is defined as Advkuowr

K (A) =
Pr[KUOWRK(A)→ 1].

We chose to consider one-way security as opposed to key indistinguishability
for the kuKEM∗ as it suffices to show equivalence with key indistinguishability
of RKE (in the ROM). It is evident that all proofs in this work also hold for
key indistinguishability of kuKEM∗ and one can generically derive key indistin-
guishability for kuKEM∗ via the FO transform by Hofheinz et al. [12].

Differences compared to previous Security Definition In Figure 4 we denote
changes from KUOW security (cf., Figure 1 [19]) by adding ‘·’ at the begin-
ning of lines. Below we elaborate on these differences.

The main difference in our definition of KUOWR security compared to
KUOW security is that we allow the adversary to manipulate the execution’s
random coins. As we define encapsulation and decapsulation to (potentially) up-
date the used public key or secret key, another conceptual difference is that we
only allow the adversary to encapsulate and decapsulate once under each public
and secret key. Thus, we assume that public and secret keys are overwritten on
encapsulation and decapsulation respectively. In contrast to our security defini-
tion, in the KUOW security game only the current secret key of an instance can
be exposed. Even though we assume the secret key to be replaced by its newer
versions on updates or decapsulations, there might be, for example, backups
that store older secret key versions. As a result we view the restriction of only
allowing exposures of the current secret key artificial.7 An important notational
choice is that we index the variables with transcripts trs, trr instead of integer
counters. This notation reflects the idea that public key and secret key only stay
compatible as long as they are used correspondingly and immediately diverge
on different associated data or tampered ciphertexts.

We further highlight the fundamental difference towards HkuPke by Jost et
al. [15]. Their notion of HkuPke does not allow (fully adversary-controlled) asso-
ciated data on public and secret key updates and additionally requires (authen-
ticated) interaction between the holders of the key parts thereby. Looking ahead,
this makes this primitive insufficient for diverging the public key from the secret
key (in the states) of users A and B during an impersonation of A towards B in
(U)RKE (especially under randomness manipulation). This is, however, required
in an optimal security definition but explicitly excluded in the sub-optimal RKE
notion by Jost et al. [15]. Since the syntax of HkuPke is already inadequate to re-
flect this security property, we cannot provide a separating attack. Nevertheless,
we further expound this weakness in Appendix D.
7 It is important to note that the equivalence between KUOWR security of kuKEM∗
and KINDR security of URKE is independent of this definitional choice – if either
both definitions allow or both definitions forbid the exposure of also past secret keys
or states respectively, equivalence can be shown.
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Instantiation A kuKEM∗ scheme, secure in the KUOWR game, can be generi-
cally constructed from an OW-CCA adaptively secure hierarchical identity based
key encapsulation mechanism (HIB-KEM). The construction – the same as
in [19] – is provided for completeness in Figure 5. The update of public keys
is the concatenation of associated data (interpreted as identities in the HIB-
KEM) and the update of secret keys is the delegation to lower level secret keys
in the identity hierarchy. The reduction is immediate: After guessing for which
public key and after how many updates the challenge encapsulation that is solved
by the adversary is queried, the challenge from the OW-CCA game is embedded
into the respective KUOWR challenge.

Proc genK
00 (pk ID, sk ID)←$ genID
01 id ← ε
02 pk ← (pk ID, id)
03 sk ← sk ID
04 Return (pk, sk)

Proc enc(pk)
05 (pk ID, id)← pk
06 (c, k)←$ encID(pk ID, id)
07 id q← c
08 pk ← (pk ID, id)
09 Return (pk, k, c)

Proc up(sk, ad)
10 sk ← delID(sk, ad)
11 Return sk

Proc up(pk, ad)
12 (pk ID, id)← pk
13 id q← ad
14 pk ← (pk ID, id)
15 Return pk

Proc dec(sk, c)
16 k ← decID(sk, c)
17 sk ← delID(sk, c)
18 Return (sk, k)

Fig. 5: Generic construction of a kuKEM∗ from a hierarchical identity based KEM
HK = (genID, delID, encID, decID) (slightly differing from construction in [19] Figure 2 by
adding an internal key update in encapsulation and decapsulation respectively).

Sufficiency of KUOWR for SRKE Before proving equivalence between security
of key-updatable KEM and ratcheted key exchange, we shed a light on impli-
cations due to the differences between our notion of kuKEM∗ and its KUOWR
security and the notion of kuKEM and its KUOW security in [19].

Remark 1. Even though the KUOWR game provides more power to the adver-
sary in comparison to the KUOW game by allowing manipulation of random
coins, exposures of past secret keys, and providing an explicit decapsulation or-
acle (instead of an oracle that only allows for checks of ciphertext-key pairs; cf.,
Figure 1 [19]), the game also restricts the adversary’s power by only allowing
decapsulations under the current secret key of an instance (as opposed to also
checking ciphertext-key pairs for past secret keys of an instance as in the KUOW
game). One can exploit this and define protocols that are secure with respect
to one game definition but allow for attacks in the other game. Consequently,
neither of both security definitions implies the other one.
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Despite the above described distinction between both security definitions,
KUOWR security suffices to build sesquidirectional RKE according to the KIND
definition in [20] – which was yet the weakest notion of security of RKE for which
a construction was built from a key-updatable public key primitive. The ability
to check ciphertext-key pairs under past versions of secret keys of an instance
is actually never used in the proof of Poettering and Rösler [19]. The only case
in which this Check oracle is used in their proof is B’s receipt of a manipulated
ciphertext from the adversary. Checking whether a ciphertext-key pair for the
current version of a secret key of an instance is valid, can of course be conducted
by using the Dec oracle of our KUOWR notion. For full details on their proof
we refer the reader to Appendix C in [19].

Consequently, for the construction of KIND secure sesquidirectional RKE
(according to [20] Figure 8) from Poettering and Rösler [20], the used kuKEM
must either be KUOW secure (see [20] Figure 1) or KUOWR secure (see Fig-
ure 4), which is formally depicted in the following observation. Thus, even though
these notions are not equivalent, they both suffice for constructing KIND secure
sesquidirectional RKE.

Observation 1 The sesquidirectional RKE protocol R from [20] Figure 6 of-
fers key indistinguishability according to [20] Figure 8 if function H is modeled
as a random oracle, the kuKEM∗ provides KUOWR security according to Fig-
ure 4, the one-time signature scheme provides SUF security according to [19]
Figure 22, the MAC scheme M provides SUF security according to Figure 14,
and the symmetric-key space of the kuKEM∗ is sufficiently large.

4 Unidirectional RKE under Randomness Manipulation

Unidirectional RKE (URKE) is the simplest variant of ratcheted key exchange.
After a common initialization of a session between two parties A and B, it
enables the continuous establishment of keys within this session. In this unidi-
rectional setting, A can initiate the computation of keys repeatedly. With each
computation, a ciphertext is generated that is sent to B, who can then com-
prehend the computation and output (the same) key. Restricting A and B to
this unidirectional communication setting, in which B cannot respond, allows to
understand the basic principles of ratcheted key exchange. For the same reasons
we provided the whole definition of kuKEM∗ before (i.e., we see our changes as a
significant contribution and aim for a coherent depiction), we fully define URKE
under randomness manipulation below.

Syntax We recall that URKE is a set of algorithms UR = (init, snd, rcv) de-
fined over sets of A’s and B’s states SA and SB respectively, a set of associated
data AD, a set of ciphertexts C, and a set of keys K established between A
and B. We extend the syntax of URKE by explicitly regarding the utilized ran-
domness of the snd algorithm. Consequently we define R as the set of random
coins rc ∈ R used in snd. To highlight that A only sends and B only receives
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in URKE, we may add ‘A’ and ‘B’ as handles to the index of snd, and rcv
respectively.

init→$ SA × SB

SA ×AD ×R → snd→ SA ×K × C or SA ×AD → snd→$ SA ×K × C
SB ×AD × C → rcv→ SB ×K ∪ {(⊥,⊥)}

Please note that de-randomizing (or explicitly considering the randomness of)
the initialization of URKE is of little value since an adversary, when controlling
the random coins of init, obtains all information necessary to compute all keys
between A and B.

Correctness Below we define correctness for URKE. Intuitively a URKE scheme
is correct, if all keys produced with send operations of A can also be obtained
with the resulting ciphertext by the respective receive operations of B.

Definition 3 (URKE Correctness). Let {adi ∈ AD}i≥1 be a sequence of as-
sociated data. Let {sA,i}i≥0, {sB,i}i≥0 denote the sequences of A’s and B’s states
generated by applying snd(·, adi) and rcv(·, adi, ·) operations iteratively for i ≥ 1,
that is,

(sA,i, ki, ci)←$ snd(sA,i−1, adi)
(sB,i, k

′
i)← rcv(sB,i−1, adi, ci).

We say URKE scheme UR = (init, snd, rcv) is correct if for all sA,0, sB,0 ←$ init,
for all associated data sequences {adi}i≥1, and for all random coins used for snd
calls, the key sequences {ki}i≥1 and {k′i}i≥1 generated as above are equal.

Security For security, we provide the KINDR game for defining key indistinguish-
ability under randomness manipulation of URKE in Figure 6. In this game, the
adversary can let the session participants A and B send and receive ciphertexts
via SndA and RcvB oracle queries respectively to establish keys between them.
By querying the Reveal or Challenge oracles, the adversary can obtain these
established keys or receive a challenge key (that is either the real established
key or a randomly sampled element from the key space) respectively. Finally,
the adversary can expose A’s and B’s state as the output of a specified send or
receive operation respectively via oracles ExposeA or ExposeB.

When querying the SndA oracle, the adversary can specify the random coins
for the invocation of the snd algorithm from the set R or indicate that it wants
the random coins to be sampled uniformly at random by letting rc = ε. By
allowing the adversary to set the randomness for the invocations of the snd
algorithm and exposing past states (which was not permitted in the definition
of Poettering and Rösler [20]), new trivial attacks arise.

Below we review and explain the trivial attacks of the original URKE KIND
game, map them to our version, and then introduce new trivial attacks that arise
due to randomness manipulation.

A conceptual difference between our game definition and the games by Po-
ettering and Rösler [20] is the way variables (especially arrays) are indexed.
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Game KINDRb
UR(A)

00 XPA ← ∅; MR ← ∅
01 KN← ∅; CH← ∅
02 trs ← ε; trr ← ε
03 SA[·]← ⊥; SB [·]← ⊥
04 key[·]← ⊥;
05 (sA, sB)←$ init
06 SA[trs]← sA; SB [trr ]← sB

07 b′ ←$ A
08 · Require KN ∩ CH = ∅
09 Stop with b′

Oracle SndA(ad, rc)
10 Require ad ∈ AD ∧ rc ∈ R ∪ {ε}
11 If rc = ε:
12 (sA, k, c)←$ snd(sA, ad)
13 Else:
14 (sA, k, c)← snd(sA, ad; rc)
15 ◦ MR ∪← {trs‖(ad, c)}
16 ◦ If trs ∈ XPA:
17 ◦ KN ∪← {trs‖(ad, c)}
18 ◦ XPA

∪← {trs‖(ad, c)}
19 trs q← (ad, c)
20 key[trs]← k; SA[trs]← sA

21 Return c

Oracle Reveal(tr)
22 Require key[tr ] ∈ K
23 · KN ∪← {tr}
24 Return key[tr ]

Oracle RcvB(ad, c)
25 Require ad ∈ AD ∧ c ∈ C ∧ sB 6= ⊥
26 · If trr‖(ad, c) 6� trs

∧LCP(trs, trr) ∈ XPA:
27 · KN ∪← {trr‖(ad, c)}
28 (sB , k)← rcv(sB , ad, c)
29 If k = ⊥: Return ⊥
30 trr q← (ad, c)
31 key[trr ]← k; SB [trr ]← sB

32 Return

Oracle ExposeA(tr)
33 Require SA[tr ] ∈ SA

34 · XPA
∪← {tr}

35 ◦ trace ← {tr∗ ∈ T R∗ : ∀tr ′ ∈ T R∗
(tr ≺ tr ′ � tr∗ =⇒ tr ′ ∈ MR)}

36 ◦KN ∪← trace; XPA
∪← trace

37 Return SA[tr ]

Oracle ExposeB(tr)
38 Require SB [tr ] ∈ SB

39 · KN ∪← {tr∗ ∈ T R∗ : tr ≺ tr∗}
40 Return SB [tr ]

Oracle Challenge(tr)
41 Require key[tr ] ∈ K
42 · Require tr /∈ CH
43 k ← b ? key[tr ] : $(K)
44 · CH ∪← {tr}
45 Return k

Fig. 6: Games KINDRb, b ∈ {0, 1}, for URKE scheme UR. Lines of code tagged with
a ‘·’ denote mechanisms to prevent or detect trivial attacks without randomness manip-
ulation; trivial attacks caused by randomness manipulation are detected and prevented
by lines tagged with ‘◦ ’. We define LCP(X,Y ) to return the longest common prefix
between X and Y , which are lists of atomic elements zi ∈ (AD × C). By longest com-
mon prefix we mean the longest list Z = z0‖ . . . ‖zn for which Z � X ∧ Z � Y . We
further define T R = AD×C. Line 39 is a shortcut notion that can be implemented effi-
ciently. XP: exposed states, MR: states and keys affected by manipulated randomness,
KN: known keys, CH: challenge keys, trs, trr : transcripts.

While the KIND games of [20] make use of counters (of send and receive opera-
tions) to index computed keys and adversarial events, we use the communicated
transcripts, sent and received by A and B respectively, as indices. We thereby
heavily exploit the fact that synchronicity (and divergence) of the communica-
tion between A and B are defined over these transcripts, which results in a more
comprehensible (but equivalent) game notation. Please note that, due to our
indexing scheme, it suffices for our game definition to maintain a common key
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array key[·] and common sets of known keys KN and challenged keys CH for A
and B (as opposed to arrays and sets for each party).8

The lines marked with ‘·’ in Figure 6 denote the handling of trivial attacks
without randomness manipulation (as in [20]). Lines marked with ‘◦’ introduce
modifications that become necessary due the new trivial attacks based on ma-
nipulation of randomness.

Trivial attacks without randomness manipulations are:

(a) If the adversary reveals a key via oracle Reveal, then challenging this key
via oracle Challenge is trivial. In order to prevent reveal and challenge of
the same key, sets KN and CH trace which keys have been revealed (line 23)
and challenged (line 44). The adversary only wins, if the intersection of both
sets is empty (line 08). Additionally, a key must only be challenged once as
otherwise bit b can be obtained trivially (line 42).
Example: c← SndA(ε, ε); k ← Reveal((ε, c)); Return k = Challenge((ε, c))

(b) As keys, that are computed by both parties (because ciphertexts between
them have not been manipulated yet), are stored only once in array key
(due to the indexing of arrays with transcripts instead of pure counters), the
adversary cannot reveal these keys on one side of the communication (e.g., at
A) and then challenge them on the other side (e.g., at B). Consequently, this
trivial attack (which was explicitly considered in [20]) is implicitly handled
by our game definition.

(c) After exposing B’s state via oracle ExposeB, the adversary can comprehend
all future computations of B. Consequently, all keys that can be received by
B in the future are marked known (line 39).
Example: sB ← ExposeB(ε); c ← SndA(ε, ε); RcvB(ε, c); (sB , k) ← rcv(sB , ε, c);
Return k = Challenge((ε, c))

(d) Exposing B’s state, as long as the communication between A and B has
not yet been manipulated by the adversary, allows the adversary also to
compute all future keys established by A (which is also implicitly handled
by our indexing of arrays via transcripts).

(e) Exposing A’s state via oracle ExposeA allows the adversary to impersonate
A towards B by using the exposed state to create and send own valid cipher-
texts to B. As creating a forged ciphertext reveals the key that is computed
by B on receipt, such keys are marked known (lines 26-27). The detection of
this trivial attack works as follows: As soon as B receives a ciphertext that
was not sent by A (i.e., B’s transcript together with the received ciphertext
is not a prefix of A’s transcript) and A was exposed after A sent the last
ciphertext that was also received by B (i.e., after the last common prefix

8 This is because a key, computed during the sending of A and the corresponding
receiving of B, only differs between A and B if the received transcript of B diverged
from the sent transcript of A.
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LCP), the adversary is able to create this ciphertext validly on its own.9
Example: sA ← ExposeA; (sA, k, c) ← snd(sA, ε); RcvB(ε, c); Return k =
Challenge((ε, c))

Due to randomness manipulations, the adversary can additionally conduct
the following attacks trivially:

(f) If the randomness for sending is set by the adversary (via SndA(ad, rc),
rc 6= ε) and the state, used for this sending, is exposed (via ExposeA),
then also the next state of A, output by this send operation, will be known
(and marked as exposed) as sending is thereby deterministically computed
on inputs that are known by the adversary (lines 16,18). Since the adver-
sary can also retrospectively expose A’s state, all computations that can be
traced, due to continuous manipulated randomness of subsequent SndA or-
acle queries (unified in set MR) after such an exposure, are also marked as
exposed (lines 35-36).
Example: rc ←$ R; c′ ← SndA(ε, rc); RcvB(ε, c′); sA ← ExposeA(ε); (sA, k

′, c′)←
snd(sA, ε; rc); (sA, k, c) ←$ snd(sA, ε); RcvB(ε, c); Return k = Challenge((ε, c′)‖
(ε, c))

(g) Similarly, if the randomness for sending is set by the adversary and the state
that A uses during this send operation is exposed, then the key, computed
during sending, is known by the adversary since its computation is thereby
deterministic (lines 16-17,35-36).
Example: rc ←$ R; c← SndA(ε, rc); sA ← ExposeA(ε); (sA, k, c)← snd(sA, ε; rc);
Return k = Challenge((ε, c))

Based on this game, we define the advantage of an adversary in breaking the
security of an URKE scheme as follows.

Definition 4 (KINDR Advantage). The advantage of an adversary A against
a URKE scheme UR in game KINDR from Figure 6 is defined as Advkindr

UR (A) =∣∣Pr[KINDR0
UR(A) = 1] −Pr[KINDR1

UR(A) = 1]
∣∣.

We say that an URKE scheme UR is secure if the advantage is negligible for
all probabilistic polynomial time adversaries A.

Please note that KINDR security of URKE is strictly stronger than both
KIND security notions of URKE, defined by Bellare et al. [4] and Poettering
and Rösler [20] (which themselves are incomparable among each other).

9 Please note that we need to detect this trivial attack this way (in contrast to the
game in [20]) because the adversary can forge ciphertexts to B without letting
the communication between A and B actually diverge. It can do so by creating
an own valid ciphertext which it sends to B (via sA ← ExposeA(ε); rc ←$ R;
(sA, k, c) ← snd(sA, ε; rc); RcvB(ε, c)) but then it lets A compute the same cipher-
text (via SndA(ε, rc)). As a result, A and B are still in sync.
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5 kuKEM* to URKE

Since our ultimate goal is to show that existence of a kuKEM∗ primitive is a
necessary and sufficient condition to construct a URKE primitive – albeit requir-
ing the help of other common cryptographic primitives such as hash functions
(modeled as random oracle) and message authentication codes –, we dedicate
this section to proving the latter of these implications.

Construction of URKE from kuKEM∗ We give a generic way to construct a
URKE scheme UR from a kuKEM∗ scheme K with the help of random oracle H
and MAC scheme M. This transformation K→ UR is fully depicted in Figure 7.
Below we briefly describe the algorithms of URKE scheme UR = (init, snd, rcv).

During the state initiation algorithm init, a kuKEM∗ key pair (sk, pk) is gen-
erated such that the encapsulation key pk is embedded into the sender state sA,
and the decapsulation key sk into the receiver state sB . The remaining state
variables are exactly same for A and B. More specifically, two further keys are
generated during initialization: the symmetric state key K and a MAC key k.m.
Furthermore the sent or received transcript (initialized with an empty string ε)
is stored in each state. For brevity, we assume that K, k.m, and the update
key k.u (used during sending and receiving; see below) all belong to the same
key domain K that is sufficiently large.

Proc init
00 (pk, sk)←$ genK
01 K ←$ K; k.m ←$ K
02 t← ε
03 SA ← (pk,K, k.m, t)
04 SB ← (sk,K, k.m, t)
05 Return (SA, SB)

Proc snd(SA, ad)
06 (pk,K, k.m, t)← SA

07 (pk, k, c)←$ enc(pk)
08 τ ← tag(k.m, (ad, c))
09 C ← (c, τ)
10 t

q← (ad, c)
11 (k.o,K, k.m, k.u)←

H(K, k, t)
12 pk ← up(pk, k.u)
13 SA ← (pk,K, k.m, t)
14 Return (SA, k.o, C)

Proc rcv(SB , ad, C)
15 (sk,K, k.m, t)← SB

16 (c, τ)← C
17 Require vfyM(k.m, (ad, c), τ)
18 (sk, k)← dec(sk, c)
19 Require k 6= ⊥
20 t

q← (ad, c)
21 (k.o,K, k.m, k.u)←

H(K, k, t)
22 sk ← up(sk, k.u)
23 SB ← (sk,K, k.m, t)
24 Return (SB , k.o)

Fig. 7: Construction of a URKE scheme from a kuKEM∗ scheme K = (genK, up, enc,
dec), a message authentication code M = (tag, vfyM), and a random oracle H. For
simplicity we denote the key space of the MAC and the space of the symmetric key K
in sA with the same symbol K.

On sending, public key pk in A’s state is used by the encapsulation algo-
rithm to generate key k and ciphertext c. Then, MAC key k.m, contained in the
current state of A, is used to issue a tag τ over the tuple of associated data ad
and encapsulation ciphertext c. The finally sent ciphertext, denoted by C, is a
concatenation of c and τ . The output key k.o, as well as the symmetric keys
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of the next state of A are obtained from the random oracle, on input of the
symmetric state key K, the freshly encapsulated key k, and the history of sent
transcript t. Finally, a kuKEM∗ update is applied on pk under associated data
that is derived from the random oracle output (denoted by k.u). Please note
that the encapsulation algorithm is the only randomized operation inside snd.
Hence the random coins of the latter are only used by the encapsulation.

On receiving, the operations are on par with the sending algorithm. Namely,
the received ciphertext C is parsed as the encapsulation ciphertext c and the
MAC tag τ . The latter is verified with regards to the MAC key k.m, stored in
the state of B. After the key k is decapsulated, the same input to the random
oracle H is composed. The symmetric components of the next state and k.o are
derived from the random oracle’s output. Finally, the secret key sk is updated
with k.u, so that it is in-sync with the update of pk.

We remark that our construction in Figure 7 differs from the unidirectional
RKE scheme by Poettering and Rösler [20] only in the output of the random
oracle and in the subsequent use of the kuKEM∗’s update algorithm (instead
they freshly generated a new KEM key pair from the random oracle output).
These changes are, nevertheless, significant as their scheme is insecure when the
adversary is able to (reveal or) manipulate the random coins for invocations of
the snd algorithm. We give a detailed attack description against their scheme in
our model in Appendix C.

Theorem 1. If kuKEM∗ scheme K is KUOWR secure according to Figure 4,
MAC scheme M is SUF secure according to Figure 14, and H is a hash function
modeled as random oracle, then URKE scheme UR from Figure 7 is KINDR
secure according to Figure 6 with

Advkindr
UR (A) ≤ Advkuowr

K (BK) + Advsuf
M (BM) + qH · (qSndA + qRcvB)

|K|

where A is an adversary against KINDR security, BK is an adversary against
KUOWR security, BM is an adversary against SUF security, K is the key domain
in the construction UR, qSndA, qRcvB, and qH are the number of SndA, RcvB
and H queries respectively by A, and the running time of A is approximately the
running time of BK and BM.

Proof (Sketch, Theorem 1). We here give the sketch of the full proof that is
in Appendix B. Our idea is to design a series of games Game 0-5, in which
differences between subsequent games are only syntactical and the advantage of
the adversary A remains same. From this fifth game we are then ultimately able
to reduce either of the following cases, that are explained below, to one of the
hardness assumptions.

Consider the following scenarios which lead to a win for the adversary A.
Since the challenged keys are derived from the random oracle, we argue that, if A
does not make a random oracle query H(K, k, t) for any of the challenged keys,
then its advantage in guessing the challenge bit correctly remains negligible. We
do not consider random oracle queries to keys that are trivially revealed to the
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adversary, as they do not lead to a win in the KINDR game (e.g., if the exposed
state of B helps the adversary to trivially query H). Therefore, we regard the
following three events in which A makes such special random oracle queries:

– The random oracle query H(K, k, t) belongs to one of the keys derived by the
sender, in which fresh random coins, unknown to the adversary, are used for
sending (and hence for encapsulation). In this case, we can give a reduction
to the KUOWR game with respect to kuKEM∗ scheme K, in which the
reduction wins the KUOWR game by using the encapsulated key k as the
solution.

– The random oracle query H(K, k, t) belongs to one of the keys, derived from
the sender where the used random coins are chosen by the adversary. We
know that A did not expose the respectively used states of A or B as this
leads to a trivial win. Therefore, we can show that the symmetric state
keys K in these cases are independent from the view of A. This implies that
making such special H(K, k, t) query requires a collision in the key domain K,
whose probability is bounded by qH · (qSndA + qRcvB)/|K|.

– The random oracle query H(K, k, t) belongs to one of the keys, derived by the
receiver B, who reaches to an out-of-sync status (if B is still in-sync with A,
then one of the two cases above are relevant). Since each received ciphertext
contains a MAC tag, we can show that the first received ciphertext by B
that is different from the sent ciphertext by A either corresponds to a trivial
impersonation or can be used to reduce this event to a forgery in the SUF
game with respect to MAC scheme M.

Therefore, by bounding the probability of these three cases, we can deduce the
adversary’s advantage (which is negligible under the named assumptions). ut

6 URKE to kuKEM*

In order to show that public key encryption with independently updatable key
pairs (in our case kuKEM∗) is a necessary building block for ratcheted key
exchange, we build the former from the latter. The major obstacle is that the
updates of public key and secret key of a kuKEM∗ are conducted independently
– consequently no interaction between holder of the public key and holder of the
secret key can take place. In contrast, all actions in ratcheted key exchange are
based on interaction (i.e., sent or received ciphertexts). In the following we first
explain this sketched issue (and its origin) in more detail, then describe how we
solve it, and present a reduction of KUOWR security to KINDR security of a
generic URKE scheme.

Crucial Properties of kuKEM∗ Syntax and KUOWR security of kuKEM∗ (as
well as KUOW security of kuKEM) have several implications that we explain
below. As described before, the syntax of kuKEM∗ does not allow interactions
between secret key holder and public key holder(s) to communicate information
for the key parts’ updates (see Figure 1). This condition originates from the
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utilization of kuKEM as a building block for the instantiation of sesquidirectional
ratcheted key exchange (SRKE) [20]. This extended RKE notion requires the
two communication participants’ states to immediately become incompatible
as soon as one of the participants receives a ciphertext that was manipulated
by the adversary. Public key and secret key of the used kuKEM, as part of
the respective state, are therefore updated independently in order to cause an
immediate divergence between these key pair parts.10

A second property that immediately follows from the first one is that, for
all public keys that are updated equally, a compatible secret key can be used to
decapsulate ciphertexts from all these public keys. As a public key update can
also be conducted by an adversary, the computation of this update itself must
not reveal any information on encapsulated keys – especially not on a compatible
secret key. We will further comment on this property when explaining that, even
though KINDR security of URKE implies KUOWR security of kuKEM∗, one can
instantiate URKE KIND securely with standard key encapsulation mechanisms.
In Appendix C, we describe why these prior instantiations of KIND secure URKE
are insecure according to KINDR security.

When deriving the notion of kuKEM∗ and its KUOWR security, we take
these properties into account, as the goal of this work is not to find the minimal
building block for unidirectional RKE, but for RKE in general (e.g., also for
sesquidirectional RKE).

Construction of kuKEM∗ from URKE The weaker KIND security of URKE (as
in [20]) already allows that the sender’s state sA can always be exposed without
affecting the security of any established keys (as long as this exposed state is
not used to impersonate A towards B). Consequently, A’s pure state reveals no
information on encapsulated keys nor on B’s secret key(s). KIND security of
URKE further implies that B’s state only reveals information on keys that have
not yet been computed by B (while earlier computed keys stay secure). One can
imagine A’s state consequently as the public part of a (stateful) key pair and
B’s state as the secret counterpart.

The two above mentioned crucial properties of KUOW(R) security are, how-
ever, not implied by KIND security when using sA as the public key and sB as
the secret key of a kuKEM. Firstly, updating sB (as part of receiving a cipher-
text) requires that the ciphertext, generated during sending of A (and updating
of sA), is known by B but the syntax of kuKEM does not allow an interac-
tion between public key holder and secret key holder. This issue can be solved
by de-randomizing the snd algorithm. If A’s state as part of the public key is
updated via a de-randomized invocation of snd, the secret key holder can also
obtain the ciphertext that A would produce for the same update (by invoking
the de-randomized/deterministic snd) and then update sB with this ciphertext
via rcv (a conceptional depiction of this is in Figure 8). Thus, the secret key is
defined to contain sA in addition to sB .
10 A full description of the attack that is prevented by independent key updates is

in [20] Appendix A.2.

23



gen$
Kinit$

pk = sA

up up

pk (sA, sB) = sk
c

sndR sndR rcv

up up

pk (sA, sB) = sk
c

sndR sndR rcv

enc$ dec

pk (sA, sB) = sk
c

sA
snd$ rcv

c
sndR′

sndR′ rcv

Fig. 8: Conceptual depiction of kuKEM∗ construction from generic URKE scheme.
The symbol in the upper index of an algorithm name denotes the source of random
coins (‘$’ indicates uniformly sampled). R is a fixed value. For clarity we omit ad inputs
and k outputs (cf. Figure 1).

Secondly, in the URKE construction of Poettering and Rösler [20] A also
temporarily computes the updated secret key of B during sending. As a result,
normal KIND security allows that a de-randomized snd invocation reveals the
secrets of B to an adversary if sA is known (see Appendix C for a detailed
description of this attack). In order to solve this issue, the security definition of
URKE must ensure that future encapsulated keys’ security is not compromised
if snd is invoked under a known state sA and with random coins that are chosen
by an adversary (i.e., KINDR security).

Our generic construction of a KUOWR secure kuKEM∗ from a generic KINDR
secure URKE scheme is depicted in Figure 9. As described before, the public key
contains state sA and the secret key contains both states (sA, sB) that are derived
from the init algorithm. In order to update the public key, the snd algorithm
is invoked on state sA, with the update associated data, and fixed randomness.
The output key and ciphertext are thereby ignored. Accordingly, the secret key
is updated by first invoking the snd algorithm on state sA with the same fixed
randomness and the update associated data. This time the respective ciphertext
from A to B is not omitted but used as input to rcv algorithm with the same
associated data under sB .

Encapsulation and decapsulation are conducted by invoking snd probabilisti-
cally and rcv respectively. In order to separate updates from en-/decapsulation,
a ‘0’ or ‘1’ is prepended to the associated data input of snd and rcv respectively.
For bounding the probability of a ciphertext collision in the proof, a randomly
sampled ‘collision key’ ck is attached to the associated data of the snd invocation
in encapsulation. In order to accordingly add ck to the associated data of rcv
as part of the decapsulation, ck is appended to the ciphertext. Since state sA,
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output by the snd algorithm during the encapsulation, is computed probabilisti-
cally, it is also attached to the encapsulation ciphertext, so that (the other) sA,
embedded in the secret key, can be kept compatible with the public key holder’s.
To bind ck and sA to the ciphertext, both are integrity protected by a message
authentication code (MAC) that takes one part of the key from the snd invoca-
tion as MAC key (only the remaining key bytes are output as the encapsulated
kuKEM∗ key). Additionally the whole ciphertext (i.e., URKE ciphertext, colli-
sion key, state sA, and MAC tag) is used as associated data for an additional
‘internal update’ of the public key and the secret key in encapsulation and de-
capsulation respectively. This is done to escalate manipulations of collision key,
state sA, or MAC tag (as part of the ciphertext) back into the URKE states sA

and sB (as part of public key and secret key). For full details on the rationales
behind these two binding steps we refer the reader to the proof.

Proc genK
00 (sA, sB)←$ init
01 pk ← sA

02 sk ← (sA, sB)
03 Return (pk, sk)

Proc up(pk, ad)
04 (pk, , )← snd(pk, (0, ad); 0)
05 Return pk

Proc enc(pk)
06 ck ←$ K
07 (pk, (k, k.m), c′)←$ snd(pk, (1, ck))
08 τ ← tag(k.m, (ck, pk, c′))
09 c← (ck, pk, c′, τ)
10 (pk, , )← snd(pk, (2, c); 0)
11 Return (pk, k, c)

Proc up(sk, ad)
12 (sA, sB)← sk
13 (sA, , c)← snd(sA, (0, ad); 0)
14 (sB , )← rcv(sB , (0, ad), c)
15 sk ← (sA, sB)
16 Return sk

Proc dec(sk, c)
17 (sA, sB)← sk
18 (ck, pk, c′, τ)← c
19 (sB , (k, k.m))← rcv(sB , (1, ck), c′)
20 Require vfyM(k.m, (ck, pk, c′), τ)
21 (sA, , c′′)← snd(pk, (2, c); 0)
22 (sB , )← rcv(sB , (2, c), c′′)
23 sk ← (sA, sB)
24 Return (sk, k)

Fig. 9: Construction of a key-updatable KEM from a generic URKE scheme UR =
(init, snd, rcv) and one-time message authentication code M = (tag, vfyM).

Interestingly, the public key holder can postpone the de-randomized snd in-
vocation for public key updates until encapsulation and instead only remember
the updates’ associated data without compromising security. However, the up-
dates of the secret key must be performed immediately as otherwise an exposure
of the current secret key reveals also information on its past versions. Thereby
the computation of snd in the up algorithm must be conducted during the secret
key update without interaction between public key holder and secret key holder.

Theorem 2. If URKE scheme UR is KINDR secure according to Figure 6, one-
time MAC M is SUF secure according to Figure 14, and for all (k, k.m) ∈ KUR
it holds that k ∈ KK and k.m ∈ KM, then kuKEM∗ scheme K from Figure 9 is
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KUOWR secure according to Figure 4 with

Advkuowr
K (A) ≤ qGenqEnc ·

(
Advkindr

UR (BUR) + Advsuf
M (BM) + 1

|K|

)
≤ qGenqEnc ·

(
2 ·Advkindr

UR (BUR) + 1
|K|

)
where A is an adversary against KUOWR security, BUR is an adversary against
KINDR security of UR, BM is an adversary against SUF security of M, qGen
and qEnc are the number of Gen and Enc queries by A respectively, K is the
space from which ck is sampled, and the running time of A is approximately the
running time of BUR and BM.

In Appendix E we show how to construct an SUF secure one-time MAC from
a generic KINDR secure URKE scheme. We prove Theorem 2 below and depict
the simulation’s game hops in Figure 10.

Proof (Theorem 2).
We conduct the proof in four game hops: In the first game hop we guess for

which instance the first valid Solve oracle query is provided by the adversary;
in the second game hop, we guess for which Enc oracle query of the previously
guessed instance the first valid Solve oracle query is provided; additionally the
simulation aborts in this game hop if the adversary crafts this first valid cipher-
text and provides it to the Dec oracle before it is output by the Enc oracle; in
the third game hop, we replace the key, output by the first snd invocation in
this guessed Enc oracle query by a randomly sampled key (which is reduced to
the KINDR security of UR); in the final game hop, we abort on a MAC forgery,
provided to the Dec oracle, that belongs to the ciphertext that is output by the
guessed Enc oracle query (which is reduced to the SUF security of M).

Game 0 This game is equivalent to the original KUOWR game.
Game 1 The simulation guesses for which instance nGen the first key k∗ is

provided to the Solve oracle such that the secret key for decapsulation is not
marked exposed (i.e., tr∗ /∈ XPnGen) and the provided key equals the indicated
challenge key (i.e., k∗ = CKnGen [tr∗]). Therefore nGen is randomly sampled from
[qGen], where qGen is the number of Gen oracle queries by the adversary. The
reduction aborts if nGen is not the instance for which the first valid Solve oracle
query is provided (see Figure 10 lines 47,50).

Consequently we have AdvG0 = qGen ·AdvG1 .
Game 2 The simulation guesses in which of nGen’s Enc queries the challenge

is created, that is the first valid query to the Solve oracle by the adversary.
Therefore nEnc is randomly sampled from [qEnc] and the simulation aborts if
either the randomness for the nEnc’s Enc query is manipulated as thereby no
challenge would be created (lines 28,29), or the first valid query to the Solve
oracle is for another challenge than the one created by nGen’s nEncth Enc query
(lines 48,50), or a secret key that helps to trivially solve the challenge from nGen’s
nEncth Enc query is exposed (lines 29,81).
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In addition, the simulation aborts if, before the nGen’s nEncth Enc query was
made, Dec was queried on a ciphertext (with the same preceding transcript)
that contains the same URKE ciphertext and ‘collision key’ ck (lines 28,29). As
the probability of a collision in the URKE transcript (i.e., associated data and
ciphertext of the first snd invocation of nGen’s nEncth Enc query were previ-
ously already provided to nGen’s nEncth Dec query under the same preceding
transcript) is bounded by a collision in the the key space K (as thereby ck as
associated data must collide), we have AdvG1 = qEnc ·

(
AdvG2 + 1

|K|

)
.

Game 3 The simulation replaces the output (k, k.m) from the first snd
invocation of nGen’s nEncth Enc query by values randomly sampled.

An adversary that can distinguish between Game 2 and Game 3 can be
turned into an adversary that breaks KINDR security of URKE scheme UR. We
describe the reduction below: The reduction obtains nGen’s public key in oracle
Gen via oracle ExposeA from the KINDR game. Invocations of snd in UpS to
nGen are replaced by SndA and ExposeA queries. Invocations of snd in UpR to
nGen are processed by the reduction itself and the subsequent rcv invocations
are replaced by RcvB queries. The state sB in queries to Expose for nGen is
obtained via ExposeB queries to the KINDR game. For all queries to Enc of
nGen the snd invocations are replaced by SndA and ExposeA queries. kuKEM∗
key and MAC key (k, k.m) for nGen’s Enc oracle queries are obtained via Reveal
– except for nGen’s nEncth Enc query, in which these two keys are obtained from
the Challenge oracle in the KINDR game. Invocations of rcv in the Dec oracle
for nGen are replaced by RcvB queries and Reveal queries (in case the respective
key was not already computed in the Enc oracle). The snd invocation in oracle
Dec is directly computed by the reduction.

In order to show that manipulations of transcripts in the KUOWR game
manipulate equivalently the transcripts in the KINDR game (such that the state
sA in the public key diverges from state sB in the secret key iff the transcripts
trsnGen and trrnGen diverge), we define the translation array TR[·] that maps
the transcript of nGen in the KUOWR game to the according transcripts in the
KINDR game.

As Game 2 aborts if nGen’s nEncth Enc query entails no valid KINDR
challenge, or if the respective ciphertext was already crafted by the adversary
(and provided to the Dec oracle), an adversary, distinguishing the real key pair
(k, k.m) from the randomly sampled one, breaks KINDR security. Formally,
the solution for nGen’s nEncth Enc query to the Solve oracle is compared with
the challenge key k from the KINDR Challenge oracle (which is obtained during
nGen’s nEncth Enc query): If the keys equal, the reduction terminates with b′ = 0
(as thereby the KINDR game’s challenge entailed the real key), otherwise it
terminates with b′ = 1.

Consequently we have AdvG2 ≤ AdvG3 + Advkindr
UR (BUR).

Game 4 The only way, the adversary can win in Game 3, is to keep secret
key and public key of nGen compatible (by updating them equivalently and
forwarding all Enc queries to the Dec oracle) and then forwarding only the URKE
ciphertext c′ of nGen’s nEncth Enc query to the Dec oracle while manipulating
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parts of the remaining challenge ciphertext. Thereby the Dec oracle outputs the
correct challenge key such that the adversary trivially wins.11

In Game 4, a forgery of the MAC tag for the challenge ciphertext conse-
quently lets the simulation abort. Distinguishing betweenGame 3 andGame 4
can hence be reduced to the SUF security of the one-time MAC M. We describe
the reduction below: Instead of sampling k.m randomly, the MAC tag for nGen’s
nEncth Enc query is derived from the Tag oracle of the SUF game. Since the
condition for aborting is that the URKE ciphertext c′ is received in oracle Dec
(and also the transcripts prior to this ciphertext equal for trsnGen and trrnGen),
the URKE key (containing k.m) equals. As a consequence, a different ciphertext
(pk, c′, τ) provided to the Dec oracle is a forgery τ for message (pk, c′) in the
SUF game.

Consequently we have AdvG3 ≤ AdvG4 + Advsuf
M (BM).

As the challenge key from nGen’s nEncth Enc query is randomly sampled and
cannot be derived from any other oracle, the advantage of winning in Game 4
is AdvG4 = 0.

Summing up the advantages above, we have:

Advkuowr
K (A) ≤ qGenqEnc ·

(
Advkindr

UR (BUR) + Advsuf
M (BM) + 1

|K|

)
≤ qGenqEnc ·

(
2 ·Advkindr

UR (BUR) + 1
|K|

)
where the latter follows from a SUF secure one-time MAC construction from a
generic KINDR secure URKE scheme UR (which is described in Appendix E).

ut

7 Discussion

Our results clearly show that key-updatable key encapsulation is a necessary
building block for optimally secure ratcheted key exchange, if the security defi-
nition of the latter regards manipulation of the algorithm invocations’ random
coins. As unidirectional RKE can naturally be built from sesquidirectional RKE,
which in turn can be built from bidirectional RKE (which can be derived from
optimally secure group RKE), our results are expected to hold also for the ac-
cording security definitions under these extended communication settings. In
contrast, security definitions of ratcheting that restrict the adversary more than
necessary in exposing the local state or in solving embedded game challenges
(i.e., by excluding more than unpreventable attacks) allow for instantiations
that can dispense with these inefficient building blocks.
11 Please note that after this manipulation, the states sA and sB in the public key and

secret key respectively diverge, but the key, output by the Dec oracle, still equals
the challenge key. In case, the URKE ciphertext c′ from the challenge ciphertext
is already provided manipulately to the Dec oracle, the challenge key is already
independent from the key, computed in the Dec oracle.
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However, the two previous security definitions fulfilled by constructions that
use kuKEM as a building block (cf. Table 1) consider only randomness reveal [13]
or even secure randomness [20]. This raises the question whether using kuKEM in
these cases was indeed necessary (or not). The resulting gap between the notions
of ratcheting that can be built from only standard PKC and our optimally
secure URKE definition with randomness manipulation, implying kuKEM, will
be discussed in the following.

Implications under Randomness Reveal The core of our proof (showing that
URKE implies kuKEM under randomness manipulation) is to utilize URKE’s
state update in algorithms snd and rcv for realizing public key and secret key up-
dates in kuKEM’s up algorithm. However, in order to remove the otherwise nec-
essary interaction between snd and rcv algorithms of RKE, snd is de-randomized
by fixing random coins to a static value. While this de-randomization trick is not
immediately possible if the reduction to URKE KIND security cannot manipu-
late the randomness of snd invocations, one can utilize a programmable random
oracle to emulate it: instead of fixing the (input) random coins of snd invoca-
tions to a static value, one could derive these coins from the output of a random
oracle on input of the respective update’s associated data (i.e., ad input of algo-
rithm up). Additionally, instead of directly forwarding the update’s associated
data to the associated data input of snd, another random oracle could be inter-
posed between them. The reduction then simply pre-computes all kuKEM up in-
vocations independent of associated data inputs by querying the SndA oracle in
the URKE KIND game on random associated data strings. Then the reduction
reveals all used random coins in the URKE KIND game and programs them
as output into the random oracle lazily (i.e., as soon as the adversary queries
the random oracle on update associated data strings). By correctly guessing,
which of the adversary’s random oracle queries fit its queried kuKEM update
invocations, the reduction can perform the same de-randomization trick as in
our proof. The probability of guessing correctly is, however, exponential in the
number of queried kuKEM updates such that a useful implication may only be
derivable for a constant number of queried updates.

In conclusion, we conjecture that URKE under randomness reveal already
requires the use of a kuKEM-like building block with a constantly bounded
number of public key and secret key updates. Thereby we argue that our proof
approach partially carries over to the case of randomness reveal. This would
indicate that the use of a kuKEM-like building block in the construction of Jaeger
and Stepanovs [13] is indeed necessary. The formal analysis of this conjecture is
left as an open question for future work.

Implications under Secure Randomness For optimal security under secure ran-
domness, Poettering and Rösler [20] show that URKE can be instantiated from
standard PKC only (cf. Table 1). In contrast, their construction for sesquidi-
rectional RKE (SRKE: a restricted interactive RKE variant) uses kuKEM for
satisfying optimal security under secure randomness. Since a reduction towards
SRKE (under KIND security with secure randomness) has no access to ran-
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dom coins respectively used in the RKE algorithms, our de-randomization trick
seems inapplicable. Furthermore, while the RKE algorithms snd and rcv can
use exchanged ciphertexts for their state updates, generically transforming this
state update to realize a ‘silent’, non-interactive key update needed for kuKEM
without our trick appears (at least) problematic.

Nevertheless, it is likely that SRKE KIND security under secure randomness
requires kuKEM-like building blocks. This intuition is based on an example
attack by Poettering and Rösler [19, Appendix B.2]. It illustrates that a key k∗,
computed by any secure SRKE construction under the following attack, needs
to be indistinguishable from a random key according to this security notion.
The attack proceeds as follows: 1. Alice’s and Bob’s states are exposed (sA ←
ExposeA(ε); sB ← ExposeB(ε)), 2. Bob sends update information to Alice (which
is possible in SRKE) to recover from his exposure (c ← SndB(ε, ε); RcvA(ε, c)).
Keys established by Alice after receiving the update information are required
to be secure again. Translated to the kuKEM setting, this step corresponds
to Bob generating a new key pair and publishing the respective public key.
3. Simultaneously Alice is impersonated towards Bob ((s′A, k′, c′)←$ sndA(sA, ε);
RcvB(ε, c′)). This requires Bob’s state to become incompatible with Alice’s state.
In the kuKEM setting, this corresponds to the secret key being updated with c′
as associated data. Note that c′ can be independent of Bob’s state update via c,
and the computation of c′ is controlled by the adversary. 4. Afterwards Bob’s
state is again exposed (s′B ← ExposeB((ε, c)‖(ε, c′))). 5. Finally, Alice sends and
establishes key k∗ which is required to be secure (c′′ ← SndA(ε, ε)). 6. Exposing
Alice’s state thereafter should not harm security of k∗ (s′′A ← ExposeA((ε, c′′))).

We observe that, as with a kuKEM public key, Alice’s state is publicly known
during the entire attack. Only Alice’s random coins when establishing k∗ and
updating her state, and Bob’s random coins when sending, as well as his resulting
state until he receives c′ are hidden towards the adversary. We furthermore note
that, by computing ciphertext c′, the adversary controls Bob’s state update. As
a consequence, Bob’s state update must reach forward-secrecy for key k∗ with
respect to adversarially chosen associated update data c′ and Bob’s resulting
(diverged) state s′B .

All in all, the security requirements highlighted by this attack emphasize the
similarity of kuKEM’s and SRKE’s security. Nevertheless, we note that all our
attempts to apply our proof technique failed due to the above mentioned prob-
lems. Therefore, formally substantiating or disproving the intuition conveyed by
this attack remains an open question for future work.

Open Questions and Impact With our work we aim to motivate research on
another remaining open problem: can key-updatable KEM be instantiated more
efficiently than generically from HIBE? It is, in contrast, evident that equivalence
between HIBE and RKE is unlikely as constructions of the latter only utilize
“one identity path” of the whole “identity tree” of the former.

Defining security for, and constructing schemes of interactive ratcheted key
exchange variants (i.e., under bidirectional communication) is highly complicated
and consequently error-prone.5 By providing generic constructions (instead of
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ad-hoc designs) and grasping core components and concepts of ratcheted key
exchange, complexity is reduced and sources of errors are eliminated. Addition-
ally, our equivalence result serves as a benchmark for current and future designs
of ratcheted key exchange – especially group RKE. For future constructions that
only rely on standard public key cryptography either of the following questions
may arise: how far is the adversary restricted such that our implication is cir-
cumvented, or how far is the construction secure under the respective security
definition?
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A Proof Figure for KUOWR Security under KINDR Security

Simulation S
00 n← 0
01 nGen ←$ [qGen] G≥1
02 nEnc ←$ [qEnc]; e← 0 G≥2
03 tr◦ ← ε; c◦ ← ⊥ G≥2
04 k• ← ⊥; k.m• ← ⊥; ck• ← ⊥; c• ← ⊥ G≥3
05 Invoke A
06 Stop with 0

Oracle Gen
07 n← n+ 1
08 If n = nGen: T[·]← ⊥ G=3
09 (sA, sB)←$ init
10 pkn ← sA; skn ← (sA, sB)
11 CKn[·]← ⊥; XPn ← ∅
12 trsn ← ε; trrn ← ε
13 SKn[·]← ⊥; SKn[trrn]← skn

14 Return pkn

Oracle UpS(i, ad)
15 Require 1 ≤ i ≤ n ∧ ad ∈ AD
16 (pki, k, c)← snd(pki, (0, ad); 0)
17 If i = nGen: G=3
18 T[trsi‖ad]← T[trsi]‖((0, ad), c) G=3

19 trsi
q← ad

20 Return pki

Oracle Enc(i, rc)
21 Require 1 ≤ i ≤ n
22 Require rc ∈ R ∪ {ε}
23 If rc = ε: mr ← F; rc ←$ R
24 Else: mr ← T
25 ck ←$ K
26 (pki, (k, k.m), c′)←$ snd(pki, (1, ck); rc)
27 If i = nGen ∧ e = nEnc: G≥2
28 If mr = T ∨ (∃pk′ ∈ PK, τ ′ ∈ T :

trsi‖(ck, pk′, c′, τ ′) ∈ XPi

∨trsi‖(ck, pk′, c′, τ ′) � trr i): G≥2
29 Abort G≥2
30 (ck•, c•)← (ck, c′) G≥3
31 (k•, k.m•)←$ KUR; (k, k.m)← (k•, k.m•) G≥3
32 τ ←$ tag(k.m, (ck, pki, c

′))
33 c← (ck, pki, c

′, τ)
34 (pki, c

′′, k′′)← snd(pki, (2, c); 0)
35 If i = nGen: G≥2
36 If e = nEnc: G≥2
37 tr◦ ← trsi; c◦ ← c G≥2
38 e← e+ 1 G≥2
39 T[trsi‖c]←T[trsi]‖((1, ck), c′)‖((2, c), c′′) G=3

40 trsi
q← c

41 If mr = F: CKi[trsi]← k
42 Return (pki, c)

Oracle Solve(i, tr , k)
43 Require 1 ≤ i ≤ n
44 Require tr /∈ XPi

45 Require CKi[tr ] 6= ⊥
46 Reward k = CKi[tr ] G<1
47 If i = nGen: G≥1
48 If tr = tr◦‖c◦: G≥2
49 Reward k = CKi[tr ] G≥1,2
50 Else if k = CKi[tr ]: Abort G≥1
51 Return

Oracle UpR(i, ad)
52 Require 1 ≤ i ≤ n ∧ ad ∈ AD
53 (sA, sB)← SK i[trr i]
54 (sA, k, c)← snd(sA, (0, ad); 0)
55 (sB , k)← rcv(sB , (0, ad), c)
56 If i = nGen: G=3
57 T[trr i‖ad]← T[trr i]‖((0, ad), c) G=3

58 trr i
q← ad

59 SK i[trr i]← (sA, sB)
60 Return

Oracle Dec(i, c)
61 Require 1 ≤ i ≤ n ∧ c ∈ C
62 (sA, sB)← SK i[trr i]
63 (ck, pk, c′, τ)← c
64 (sB , (k, k.m))← rcv(sB , (1, ck), c′)
65 If trr i = tr◦ ∧ (ck•, c•) = (ck, c′) 6= (⊥,⊥): G≥3
66 (k, k.m)← (k•, k.m•) G≥3
67 Require vfyM(k.m, (ck, pk, c′), τ)
68 If trr i = tr◦ ∧ c 6= c◦

∧(ck•, c•) = (ck, c′) 6= (⊥,⊥): G≥4
69 Abort G≥4
70 (sA, k

′′, c′′)← snd(pk, (2, c); 0)
71 (sB , k

′′′)← rcv(sB , (2, c), c′′)
72 If i = nGen: G=3
73 T[trr i‖c]← T[trr i]‖((1, ck), c′)‖((2, c), c′′) G=3

74 trr i
q← c

75 SK i[trr i]← (sA, sB)
76 If CKi[trr i] 6= ⊥:
77 Return
78 Return k

Oracle Expose(i, tr)
79 Require 1 ≤ i ≤ n
80 Require SK i[tr ] ∈ PK × SK
81 If tr � tr◦: Abort G≥2
82 XPi

∪← {tr∗ ∈ (AD ∪ C)∗ : tr ≺ tr∗}
83 (sA, sB)← SK i[tr ]
84 Return (sA, sB)

Fig. 10: Games of simulation for proof of KUOWR security for construction from Figure 9.
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B Full Proof of URKE KINDR Security

Below we describe the full proof of Theorem 1 for which a sketch is in Section 5.

Proof (Theorem 1).
The high-level organization of our proof is as follows: We first expand the KINDR security game by

replacing each generic call to URKE’s algorithms with their actual instantiation in the UR construction.
Then, starting from this game, we insert and remove lines of codes in the game, in such a way that the
interaction of A with the game never changes, i.e. the game-hops are merely bridging steps. Therefore, we
define new games that look different in code, but are essentially same, and A’s advantage does not change
from one to another. Our motivation behind these syntactic updates is to prepare the game for reductions
to KUOWR and SUF security games of kuKEM∗ and MAC respectively. Finally, we describe in detail how
these reductions work.

Although, the type of transcripts collected by variables tr ∈ (AD × C × T )∗ (after expansion of the
UR construction w.r.t. the original KINDR definition) and t ∈ (AD × C)∗ (from the UR construction) are
different, tr can be reduced to (AD×C)∗ by removing the tag part τ from each element in the list. Therefore,
t � tr , t ≺ tr and {t} ∈ X ⊆ (AD × C × T )∗ should be interpreted as abuse of notation frequently used
throughout the proof.

Game 0 The original KINDR game of URKE where invocation of UR’s algorithms are expanded according
to Figure 7. We also simulate the random oracle with H as described in Figure 12.

Game 1 In order to prepare the game simulation to the KUOWR reduction, we make few syntactical
modifications in the game which does not affect the advantage of the adversary. Namely, the new simulation
keeps two lists: CK for challengeable keys and NK for non-challengeable keys. Intuitively, CK is synchronized
with CKi list defined in the KUOWR game in Figure 4, therefore any (non-trivial) hash query containing a
key from CK will lead to a win. CK is updated only when the random coins used by the encapsulation are
sampled by the oracle, but not chosen by the adversary. This condition is captured in line 24 in Figure 11.

On the other hand, NK represents the rest of the keys derived in the game and can be thought as
complementary to CK. Although the keys from NK might allow the adversary A to win the KINDR game,
it does not lead to a winning reduction in the KUOWR game, because the latter only rewards keys that
belongs to CK (line 24 in Figure 4).

Game 2 We split the random oracle interfaces into two: H works with input (K, k, t) and G works only
with t. The adversary uses H, and the simulator uses G for hash queries. G allows the simulator to produce
keys (k.o,K, k.m, k.u) by programming the hash output of the yet-unknown key k or even the symmetric
state key K.

More precisely, dictionaries LH, LG are used for bookkeeping, whose all entries are set to ⊥ initially.
Query inputs (K, k, t) and t are directly used as access keys to their corresponding entries in the dictionaries.
For repeating queries, oracles return their previous answer for consistency. Otherwise, when a hash query is
made with input (K, k, t) (resp. t), H (resp. G) checks whether there is a matching entry in LG (resp. LH),
and if so, it copies the key into LH[K, k, t] (resp. LG[t]). Otherwise, a fresh key is sampled for LH[K, k, t]
(resp. LG[t]).

We now focus on keeping G and H in harmony when queries are intertwined. This boils down to deter-
mining whether given (K, k, t) tuple matches a transcript t with respect to the history of states and keys of
the game. This is captured by the Match in Figure 12 which takes (K, k, t) as input and decides whether
(K, k) and t are matching each other, with the help of states SA, SB and derived key lists CK,NK.

Therefore, the game follows exactly same and the advantage of the adversary remains same.
Game 3 We now isolate K, which we call the symmetric state key, that resides in the both states of the

sender and the receiver. Our ultimate goal is to show that the adversary cannot recover the symmetric state
key K, except some trivial state exposures, therefore making a hash query with a matching K requires a
collision on the domain K.

Our argument is that since keys K are never used besides as input to random oracle, the view of A should
be independent of choices of K values, therefore it has no information over them. This independence works
so long as a symmetric state key K is not a part of states known by A which are due to state exposure
queries and malicious random coins connected to these states. However, A’s knowledge is strictly limited
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Simulation KINDRb
UR(A)

00 trs ← ε; trr ← ε; XPA ← ∅
01 MR ← ∅; KN← ∅; CH← ∅
02 SA[·]← ⊥; SB [·]← ⊥; key[·]← ⊥
03 NK[·]← ⊥; CK[·]← ⊥ G≥1
04 TK[·]← ⊥ G≥3
05 MK[·]← ⊥ G≥4
06 kuowr ← F; suf ← F; coll ← F G=5
07 (pk, sk)←$ genK
08 K ←$ K; k.m ←$ K; t← ε
09 sA ← (pk,K, k.m, t)
10 sB ← (sk,K, k.m, t)
11 SA[trs]← sA; SB [trr ]← sB ; b′ ←$ A
12 Require KN ∩ CH = ∅
13 Stop with b′

Oracle SndA(ad, rc)
14 Require ad ∈ AD ∧ rc ∈ R ∪ {ε}
15 (pk,K, k.m, t)← sA

16 pk′ ← pk G≥1
17 If rc = ε: (pk, k, c)←$ enc(pk)
18 Else: (pk, k, c)← enc(pk; rc)
19 k.m ← MK[t] G≥4
20 τ ←$ tag(k.m, (ad, c))
21 C ← (c, τ); t q← (ad, c)
22 (k.o,K, k.m, k.u)← H(K, k, t) G<2
23 (k.o,K, k.m, k.u)← G(t) G≥2
24 If rc = ε: CK[t]← k G≥1
25 Else: (_,NK[t],_)← enc(pk′; rc) G≥1
26 pk ← up(pk, k.u)
27 sA ← (pk,K, k.m, t)
28 If rc 6= ε:
29 MR ∪← {trs‖(ad, C)}
30 If trs ∈ XPA:
31 KN ∪← {trs‖(ad, C)}
32 XPA

∪← {trs‖(ad, C)}
33 trs q← (ad, C); key[trs]← k.o; SA[trs]← sA

34 Return C

Oracle Reveal(tr) (see Figure 6)

Oracle Challenge(tr) (see Figure 6)

Oracle RcvB(ad, C)
35 Require ad ∈ AD ∧ C ∈ C ∧ sB 6= ⊥
36 If trr‖(ad, C) 6� trs

∧LCP(trs, trr) ∈ XPA:
37 KN ∪← {trr‖(ad, C)}
38 (sk,K, k.m, t)← sB

39 (c, τ)← C
40 k.m ← MK[t] G≥4
41 Require vfyM(k.m, (ad, c), τ)
42 If trr‖(ad, C) 6� trs: suf ← t /∈ KN G=5
43 (sk, k)← dec(sk, c)
44 If CK[trr ‖(ad, C)] = ⊥: G≥1
45 NK[trr ‖(ad, C)]← k G≥1

46 Require k 6= ⊥; t q← (ad, c)
47 (k.o,K, k.m, k.u)← H(K, k, t) G<2
48 (k.o,K, k.m, k.u)← G(t) G≥2
49 sk ← up(sk, k.u)
50 sB ← (sk,K, k.m, t)
51 If sB = ⊥: Return ⊥
52 trr q← (ad, C); key[trr ]← k.o; SB [trr ]← sB

53 Return

Oracle ExposeA(tr) (see Figure 6)
54 Require SA[tr ] ∈ SA

55 XPA
∪← {tr}

56 trace ← {tr∗ ∈ T R∗ : ∀tr ′ ∈ T R∗
(tr ≺ tr ′ � tr∗ =⇒ tr ′ ∈ MR)}

57 KN ∪← trace; XPA
∪← trace

58 If TK[t] = ⊥: TK[t]←$ K G≥3
59 SA[tr ][1]← TK[t] G≥3
60 SA[tr ][2]← MK[t] G≥4
61 Return SA[tr ]

Oracle ExposeB(tr)
62 Require SB [tr ] ∈ SB

63 · KN ∪← {tr∗ ∈ T R∗ : tr ≺ tr∗}
64 If TK[t] = ⊥: TK[t]←$ K G≥3
65 SB [tr ][1]← TK[t] G≥3
66 SB [tr ][2]← MK[t] G≥4
67 Return SB [tr ]

Fig. 11: The simulation of KINDR game, extended with regards to UR construction. SA[t][i] refers to i-th element
of SA[t] = (pk,K, k.m, t) tuple where indexing starts from 0, and goes upto 3. Although, the type of transcripts
collected by tr ∈ (AD × C × T )∗ and t ∈ (AD × C)∗ are different, tr can be reduced to (AD × C)∗ by removing the
tag part τ from each element in the list.

to these chains of states. We utilize KN array introduced by the original game definition to keep track of
symmetric state keys K known by A.

In order to show independence of state keys K from rest of the values derived in the game, we use lazy
sampling forK. Initially all values of TK are set to ⊥. Then, we ignoreK that resides in the state information
completely, and always use the corresponding state key from TK[t] for a transcript t. A can receive TK[t]
values either by exposing the state of A or B; or through querying the hash oracle H. Therefore, we return
these symmetric state keys to A by overwriting the values of SA[t],SB [t], in lines 59,65 of Figure 11.
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Oracle H(K, k, t) G≥0
00 (k.o,K, k.m, k.u)←$ K4

01 If LH[K, k, t] 6= ⊥:
02 (k.o,K, k.m, k.u)← LH[K, k, t]
03 Else if LG[t] 6= ⊥ ∧Match(K, k, t): G≥2
04 (k.o,K, k.m, k.u)← LG[t] G≥2
05 K ← TK[t] G≥3
06 k.m ← MK[t] G≥4
07 LH[K, k, t]← (k.o,K, k.m, k.u)
08 Return (k.o,K, k.m, k.u)

Oracle G(t) G≥2
09 (k.o,K, k.m, k.u)←$ K4

10 If LG[t] 6= ⊥:
11 (k.o,K, k.m, k.u)← LG[t]
12 Else if ∃k,K LH[K, k, t] 6= ⊥

∧Match(K, k, t):
13 (k.o,K, k.m, k.u)← LH[K, k, t]
14 Else: MK[t]←$ K G≥4
15 LG[t]← (k.o,K, k.m, k.u)
16 Return (k.o,K, k.m, k.u)

Predicate Match(K, k, t) G≥2
17 If t = ε: Return F
18 t′‖(ad, c)← t
19 If t � trs: K′ ← SA[t][1] G<3
20 Else: K′ ← SB [t][1] G<3
21 If TK[t] = ⊥: G≥3
22 TK[t]←$ K; K′ ← TK[t] G≥3
23 If K′ = K:
24 kuowr ← CK[t] = k ∧ t /∈ KN G=5
25 coll ← t /∈ KN G=5
26 Return CK[t] = k ∨NK[t] = k
27 Return F

Fig. 12: The simulation of the random oracle during KINDR security game of UR construction through separate
interfaces H (accessible by the adversary) and G (accessible by the game oracles). We assume there is mapping from
the type of tr to the type of t, as explained in the caption of Figure 11.

Lastly, before returning TK[t] to A, we also make sure that its value is initialized. This initialization is
handled in lines 58,64 in Figure 11 and line 22 in Figure 12.

These changes are again syntactical and does not affect A’s advantage.
Game 4 We perform the similar changes of Game 3 for MAC keys. We add a new array MK for MAC

keys. In SUF game, we recall that the adversary can request the generation of multiple MAC keys, and
expose a subset of them adaptively. Its final goal is to forge a message and a MAC for one of the unexposed
keys.

For ExposeA and ExposeB, we again overwrite k.m keys from the array MK. For G(t) queries, we treat
k.m keys specially. Namely, for each fresh G(t) query, we initialize a new MAC key as MK[t]. We again use
the array KN to keep track of revealed MAC keys.

Game 5 We introduce three boolean flags, all of which are initially set to F. Conditioned on A making a
special hash query, i.e. a hash query that reveals one of the challengeable keys, then these flags will assume
the following meanings:

– kuowr flag in line 24 of Figure 12 captures whether the adversary made a special hash query, from which
we can recover the key k to win the KUOWR game.

– coll flag in line 25 of Figure 12 captures A’s correct guess on K for one of the states not exposed to A
in one of its hash queries, which leads to a collision in K.

– suf flag in line 42 of Figure 11 captures the RKE ciphertext forgery which contains a MAC forgery, and
leads to a win in the SUF game.

Finally we classify all cases for which A wins the KINDR game by making a special hash query H(K, k, t)
such that its matching G(t) query was made by the game simulation to derive either CK[t] or NK[t] with
t /∈ KN. Suppose that a special hash query is made for one of:

– CK[t] where t � trs. This sets the flag kuowr to T during the game, because the special hash query
provides the correct key k of the underlying encapsulation.

– NK[t] where t � trs. This implies that the last encapsulation query leading to NK[t] used malicious
random coins chosen by A, and t /∈ XPA. This query sets the flag coll to T.
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– NK[t] where t 6� trs. This implies that t � trr and t /∈ KN. Then, either the forgery flag suf or the
collision flag coll is set to T during the game. The reason is that either B receives a MAC whose key is
not exposed (meaning coll = F), or a previous hash query exposed the MAC key (meaning coll = T).
We should treat the ordering of these flags with care, as they will determine the order of abortion.

By the definition of Game 5, since kuowr =⇒ coll (i.e. whenever the former is triggered, the latter
is also triggered), we consider coll ∧ ¬kuowr as collisions over K. Secondly, since a MAC forgery requires
coll = F (otherwise the MAC key is exposed, so the forgery becomes trivial) besides suf = T, we consider
suf ∧¬coll∧¬kuowr for MAC forgeries. Thereby, we bound the probability of events, each of which is disjoint
to the others.
BK: Reduction to KUOWR. We define the reduction BK which replaces kuKEM∗ operations with the oracles
of KUOWR game. More precisely, the difference between BK and G5 are as follows:
– Instead of generating key pairs, BK receives the public key from KUOWR and assigns ⊥ to the secret

key. The line 07 is replaced by sk ← ⊥; pk ← Gen().
– In SndA, encapsulation and key update operations are passed to the KUOWR game. Lines 17,18 are

updated as (pk, c)← Enc(1, rc); and line 26 is replaced with pk ← UpS(1, ku).
– In RcvB, decapsulation and key update operations are passed to the KUOWR game. Line 43 is updated

as k ← Dec(1, c); and line 49 is updated as UpR(1, k.u).
– When A requests ExposeB with tr , Expose(1, tr ′) query is made in KUOWR, where tr ′ is an array of
c and k.u values that matches the corresponding key in KUOWR, and its value is extracted from tr
and the table of internal hash queries LG. BK stores the recovered secret key sk in SA[tr ] (which might
previously contain sk = ⊥).

– The predicate Match is also updated. Specifically, we only expand the condition in line 26 of Figure 12.
If t ∈ KN, BK can compute the key CK[t] by iteratively applying dec algorithm by using the state
information contained in SB . If t /∈ KN, then BK uses the Solve oracle of KUOWR. If Solve does not
abort with rewarding a win, then it can be deduced that CK[t] 6= k.

– If A terminates with failure, BK aborts with failure.

Bounding collisions over K. The total number of keys stored in TK array is bounded by the number of states
that can be generated through send and receive calls, i.e. qSndA + qSndB at most. If A makes qH hash queries,
then the probability of guessing the key TK[t] for some t /∈ KN is bounded by qH·(qSndA+qRcvB)

|K| . If we treat
collision finding over K as a game, then this reduction would abort with failure either if kuowr is triggered
or if A terminates with failure. Therefore the success is captured by coll ∧ ¬kuowr .
BM: Reduction to SUF. We define the reduction BM which replaces MAC key generation, tagging and verifi-
cation operations with the oracles of the SUF game. More precisely, the difference between BM and G5 are
as follows:
– During the initialization, instead of generating a MAC key, the Gen oracle of the SUF game is called,

and ⊥ is assigned to MK[ε].
– In the SndA oracle, the tagging algorithm tag is replaced with a Tag oracle of SUF.
– In the RcvB oracle, the tag verification algorithm vfyM is replaced with a Vfy oracle of SUF.
– In the ExposeA,ExposeB oracles, the MAC keys are first revealed via oracle Expose of the SUF game,

and then the updated state is returned.
– For any update in KN, we also expose the added keys.
– Inside G(t), we request the generation of a new MAC key from the SUF game, instead of sampling a

fresh k.m.
– BM aborts with failure if kuowr ∨ coll is set to T at any point, or A terminates with failure.
Since a special forgery implies kuowr ∨ coll ∨ suf , we conclude that:

Advkindr
UR (A) ≤ Pr[kuowr ] + Pr[coll ∧ ¬kuowr ] + Pr[suf ∧ ¬kuowr ∧ ¬coll]

therefore:
Advkindr

UR (A) ≤ Advkuowr
K (BK) + qH · (qSndA + qRcvB)

|K|
+ Advsuf

M (BM)

ut
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C Insufficiency of Previous URKE Schemes

As described before, both previous unidirectional RKE security definitions are slightly weaker than ours,
allowing the instantiations to bypass our equivalence result. In the following we describe (non-trivial) attacks
according to our security definition against both schemes.

As Poettering and Rösler already described [20], due to only allowing exposures of A in the unidirec-
tional RKE security definition of Bellare et al. [4], no forward secure state update for B is required during
invocations of the rcv algorithm. Accordingly, when exposing the state of B (which contains a static secret
key) in the scheme by Bellare et al., all established keys between A and B become insecure (as opposed to
only keys established with this exposed or future states).
Example: c← SndA(ε, ε); RcvB(ε, c); c′ ← SndA(ε, ε); RcvB(ε, c′); sB ← ExposeB((ε, c)‖(ε, c′)); (X,σ)← c;
(hk, y, i, . . . )← sB ; k ← H(hk, (i, σ,X,Xy)); Return k = Challenge((ε, c))

While allowing the adversary to expose B’s state in their unidirectional RKE security definition, Poet-
tering and Rösler [20] do not consider randomness reveal (nor manipulation of randomness) in their model.
Their unidirectional RKE scheme exploits this in the state update of A and B during the invocation of snd
and rcv respectively. The new state of A during the snd invocation is derived by generating a new KEM
key pair based on the randomness of this invocation together with the secrets in the previous state of A.
The secret key of this KEM key pair is immediately discarded and only the public key is stored in A’s state.
B derives the corresponding secret key from the ciphertext that he receives from A and his previous state
secrets. As a consequence, an adversary obtains B’s current secret key (and thereby all his future secret
keys) as soon as it once knows the current state of A and then manipulates randomness for the subsequent
invocation of snd.
Example: sA ← ExposeA(ε); (rc0‖rc1)←$ R; c′ ← SndA(ε, rc0‖rc1); c← SndA(ε, ε); (pk,K, km,
t) ← sA; (k′e, c′e) ← enc(pk; rc0); t ← (ε, c′) (k′,K, km, sk) ← H(K, ke, t); (ce, τ) ← c; ke ← dec(sk, ce);
t

q← (ε, c); (k,K, km, sk)← H(K, ke, t); Return k = Challenge((ε, c′)‖(ε, c))

D Insufficiency of Weakly Updatable PKE

Apart from the kuKEM notion by Poettering and Rösler [20] (similar to kuPKE by Jaeger and Stepanovs [13])
and our enhanced kuKEM∗ notion, Jost et al. [15] introduced the notion of healable and key-updating public-
key encryption (HkuPke). The former three are instantiated from HIBE and the latter can be derived from
efficient building-blocks based on Diffie-Hellman assumptions.

Intuitively, the key update mechanism in kuKEM∗ (and kuKEM) depicts a one-way function that can be
applied independently on secret key and public key with respect to some associated data. It is yet unclear,
how to implement this mechanism without relying on HIBE primitives.

In contrast, the intuition behind the update mechanism in HkuPke depicts a merging of an old key pair
with some update key pair (implemented via multiplying public Diffie-Hellman shares and adding their secret
exponents respectively), and a deterministic deriving of new key pairs. Problems with this mechanism are
that the merging is not one-way (i.e., it can be inverted) and it either requires interaction from secret key
holder to public key holder (for transmitting the update public key), or the public key holder learns the
secret update exponent during the update (the former is the case for their first public key ekupd which is
transmitted, and the latter is the case for their second public key ekeph which is derived together with its
secret key on the sender side).

Why One-Wayness is Needed in URKE It is essential for KINDR security of URKE that the following attack
is harmless with respect to the security of key k for all random coins rc, rc∗ ∈ R, rc 6= rc∗:
s0

A ← ExposeA(ε); ad ← ε; c1 ← SndA(ad, rc); (s1
A, k

1, c1)← snd(s0
A, ad; rc); (s∗A, k∗, c∗)← snd(s0

A, ad; rc∗);
RcvB(ad, c∗); s∗B ← ExposeB((ad, c∗)); c2 ← SndA(ad, ε); s2

A ← ExposeA((ad, c1)‖(ad, c2)); k ← Challenge(
(ad, c1)‖(ad, c2))

The state updates due to oracle queries SndA(ad, rc) and RcvB(ad, c∗) (i.e., in the respective algorithm
invocations of snd and rcv) must diverge states s1

A and s∗B such that they cannot be used by an adversary
to derive the key encapsulated in c2. Note that the random coins rc∗ can be arbitrarily chosen (e.g., similar
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to rc) in order to let c∗ differ from c1 only in few bits. Since any difference between c1 and c∗ must result in
a divergence of s∗B from a state that can be used to derive the key encapsulated in c2, the secrets in B’s state
must be updated on the entire incoming ciphertext. This requires a ‘one-way’ update of the secrets in B’s
state that takes c∗ as respected (associated) data. Furthermore, all computations for deriving s1

A and s∗A can
be traced and determined by the adversary, since rc and rc∗ are chosen by it. Hence, the public key update
(in this state derivation) is computed publicly (and cannot rely on any inputs from B), and the secret key
update (in the derivation of s∗B) must respect all incoming ciphertext bits.

Consequently, the public key update is deterministic (or probabilistic on adversarially chosen random
coins) and based on public inputs, and a secret key update is based on adversarially chosen (ciphertext as)
associated data, which is what the notion of KUOWR secure kuKEM∗ (and KUOW secure kuKEM) reflects
but the syntax of HkuPku does not allow.

We finally have two remarks: (1) Jost et al. [15] explicitly make it transparent that they do not aim to
protect against such attacks as their main goal is an efficient protocol but not optimal security (hence we
do not label it a weakness of their primitive but only an important and notable difference), but (2) their
construction of HkuPke itself is actually not correct – we reported this problem to the authors.

E One-Time MAC from URKE

Here we describe the construction of a one-time message authentication code from a generic URKE scheme.
The symmetric key can be thought of as the random coins for the state initialization (and the tag algorithm) of
the URKE scheme. A tag is generated by taking the message as associated data for the snd algorithm (which
is invoked on randomness that is derived from key k). The MAC tag then contains the resulting ciphertext as
well as the output key. For verification, the rcv algorithm is invoked on the message as associated data and
the ciphertext from the tag. The resulting key is then compared to the key from the MAC tag. We depict
this scheme in Figure 13.

Proc tag(k,m)
00 rci‖rcs ← k
01 (sA, sB)← init(rci)
02 (sA, κ, c)← snd(sA,m; rcs)
03 τ ← (κ, c)
04 Return τ

Proc vfyM(k,m, τ)
05 rci‖rcs ← k
06 (sA, sB)← init(rci)
07 (κ, c)← τ
08 (sB , κ

′)←$ rcv(sB ,m, c)
09 Require κ = κ′

10 Return T

Fig. 13: One-time MAC scheme M from generic URKE scheme UR = (init, snd, rcv).

Corollary 1. If URKE scheme UR is KINDR secure, then one-time MAC scheme M from Figure 13 is
SUF secure with Advsuf

M (A) ≤ qGenqVfyAdvkindr
UR (B) where qGen is the number of Gen queries and qVfy is the

number of Vfy queries in the multi-instance SUF notion.

Please note that in the proof of Theorem 2, only one instance and one tag verification are necessary,
resulting in a tight proof to URKE KINDR security.

The proof of single-instance SUF security with one Vfy oracle query is immediate: The Tag oracle of the
SUF game is simulated by the KINDR’s SndA and Challenge oracles to produce the MAC tag τ = (κ, c).
When the (successful) adversary eventually provides a valid tag forgery τ∗ = (κ∗, c∗) to the Vfy oracle, two
cases are considered:

1. If c 6= c∗, then the KINDR’s RcvB oracle is invoked on c∗ and the Challenge oracle is queried on the
resulting key. If this challenge key κ′ equals κ∗, then b′ = 0 is returned to the KINDR game. Otherwise
b′ = 1 is returned.

2. If c = c∗ ∧ κ 6= κ∗, then b′ = 1 is returned.
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Please note that the reduction looses tightness linearly in the number of Gen and Vfy queries. As queries
to Vfy either contain a known tag, an invalid tag, or a tag forgery, the simulation is straight forward: the
reduction guesses, which unknown tag is the first correct tag forgery (and uses it to solve the KINDR game)
and treats all remaining queries with unknown tags as invalid tags.

Below in Figure 14 we define the one-time multi-instance strong unforgeability security game SUF (which
is adopted from [19] Figure 20).

Game SUF(A)
00 n← 0; XP← ∅
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n+ 1
04 kn ←$ K
05 mtn ← ⊥
06 Return

Oracle Expose(i)
07 Require 1 ≤ i ≤ n
08 XP ∪← {i}
09 Return ki

Oracle Tag(i,m)
10 Require 1 ≤ i ≤ n
11 Require m ∈M
12 Require mti = ⊥
13 τ ← tag(ki,m)
14 mti ← (m, τ)
15 Return τ

Oracle Vfy(i,m, τ)
16 Require 1 ≤ i ≤ n
17 Require m ∈M∧ τ ∈ T
18 b← vfyM(ki,m, τ)
19 If i /∈ XP ∧ (m, τ) 6= mti:
20 Reward b
21 Return b

Fig. 14: Security game SUF for a MAC scheme M, defining one-time multi-instance strong unforgeability.
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