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Abstract. We remove the so far quadratic bit communication cost of three desirable properties of con-
sensus protocols with leaders: Responsiveness with Optimal latency, Optimistic Fast Track and Strong
Unanimity. No existing consensus protocol with leaders with subquadratic bit complexity has any of
those properties so far. [Hotstuff, Podc’19] has suboptimal latency of two more messages delays, whereas
Hotstuffv1 is not responsive. [SBFT, Dsn’19] has quadratic complexity every time a new leader appears.
Strong Unanimity has equally quadratic complexity so far [Chan et al Podc’19] in this setting. We re-
duce the communication costs of each of these properties down to O(n logn). In addition, we achieve
them simultaneously, with optimal corruption threshold.
To achieve these specifications we use the structure of the consensus of Castro-Liskov / [SBFT, Dsn’19],
in which we use succinct (range-) proofs of knowledge as a drop-in replacement for the forwarding of
many messages. We use the same kind of strategy to enable a Fast Track and Strong Unanimity.
Namely, we incorporate the additional structure of [SBFT, Dsn’19] and of [Chan et al Podc’19] in the
previous protocol. Which we instantiate with proofs of knowledge of: a set of signed messages, from a
threshold number of issuers, in which no value appears in majority. The required proofs of knowledge
can be obtained from any succinct proof system. Of independent interest, we also introduce alternative
elementary proofs, solely based on a black box Threshold Signature Scheme (TSS).
Applied to the state of the art leader-less fully asynchronous consensus protocol [Podc’19], which uses
the [Hotstuff, Podc’19] consensus as baseline, this reduces its latency by 25%. This speedup directly
carries over the state machine replication system [Hotstuff, Podc’19], and thus to Libra. Of independent
interest we maintain linear complexity when requiring both External Validity and Halting in finite
time, in the Amortized regime over long values. Instantiated with the recent unpublished logarithmic
Transparent TSS of Attema et al, none of our protocols requires a trusted setup or a distributed key
generation.

1 Introduction

In §1.1 we identify three complexity limitations in the state of art leader-based consensus protocols [AGM18,
YMR+19, GAG+19, ACD+20]. In §1.2 we present the technical roadblocks to removing these limitations. As
[GAG+19], we use as guiding line a variation on the older [CL99] protocol, denoted “PBFT”, to illustrate our
point. The reason is that, surprisingly, it is on [CL99] that our approach applies naturally. In §1.3 we state
our contributions, and sketch the technical hurdles that remain nontrivial at this point of the exposition.

1.1 Current Limitations in the Complexity of Consensus with Leaders

Let us now consider consensus protocols for n = 3t+ 1 players in an asynchronous communication network.
t are maliciously corrupted, the others are denoted as “honest”.

Definition 1. Let Π be a protocol in which all n players supply an input value and outputs at most one
output value. Then, Π is called a consensus protocol if it satisfies the following properties:

– Consistency: No two honest players output different values;
– Consensus Weak Unanimity (CWU): If all n players are honest and have the same input, then this

is the only value that they can possibly output [Ben83];
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Those conditions are satisfied by the trivial protocol where players do nothing and never output. Addi-
tional requirements that players output in finite time are called Liveness conditions. We will review some,
then, in Definition 4 we state the one that will be considered in our illustration.

CWU has the inherent limitation that, despite all honest players having the same input value, they may
still output another value. Anticipating, this will be clear from Figure 1 1. This is why in the literature,
“consensus” is instead mainly understood as requiring the:
Definition 2 (CSU). A consensus has Strong Unanimity, if as soon as all honest players have the same
input value, then this is the only possible output.

Next, a much investigated additional feature in consensus ([Lam02, Zie06, BIW10, PS18, KAD+09,
ANRS20, MCK20, Ram20]) is to enable players to hope for the best and output sooner if possible. We will
use the canonical measurement [Lam06, §2.3] of time in a message-passing network. Namely, we say that
some event, in some execution of a protocol, happens within d messages delay, if d is the size of the longest
chain of consecutive messages sent-then-received until this event happens.
Definition 3 (Fast Track). We say that a consensus has an (optimistic) Fast Track if we have furthermore
that: if all players are honest and have the same input, then all players output within two messages delay
from the start of the execution.

Under partial synchrony where messages can be lost (§3.3, [DLS88, §3.1]), this holds only if the network
is initially synchronous. Liveness is conditioned to the following abstract entity, denoted as “Pacemaker” in
[YMR+19]. It maintains a monotonically increasing phase counter φ (the terminology of [CS06, §3.1]), along
with the identity of a specific player Lφ per phase. This player Lφ is denoted as the Leader of phase φ. The
Pacemaker sends these informations to players by messages on the network. We say that a player “is in phase
φ” if φ is the highest phase number that he was notified of so far. Then, output is guaranteed if: the leader
Lφ of some phase φ is honest, and if all honest players are simultaneously in this phase for long enough. Or
said otherwise, and if the network is fast enough while all players are in φ. This is captured by the following
Definition (we recall that messages are assumed to be delivered in finite time).
Definition 4 (Optimal Latency). Under this model, we say that a consensus in the sense of Definition 1 has
Optimal Latency if: If the Pacemaker remains blocked on the same phase number φ forever, and such that
the leader of this phase is honest, then, every player is guaranteed to output within 6 consecutive messages
exchanged between himself and the leader, from the point where he is in this phase.

If the consensus has neither Fast Track nor Strong Unanimity, then in addition, the latency is required
to be of 5 messages delays in the first phase φ = 1 specifically (still 6 in higher phases).

The first limitation of the state of the art, is that [YMR+19] has not optimal latency (nor Fast Path nor
Strong Unanimity). Indeed each phase takes 8 messages delay instead of 6). By contrast, [AGM18, v1] suffers
from another limitation, pointed in [YMR+19], which is that it is Not Responsive in the sense below. That
is, the leader of a new phase is instructed to wait for some arbitrary fixed delay ∆ before he can send new
messages. This waiting instruction holds irrespective of the current network delays. It holds in particular
even in some favorable execution in which all messages happen to be actually delivered much faster than ∆
(including those of the Pacemaker).
Definition 5 (Responsiveness). We say that a distributed protocol is Responsive if players have no instruc-
tion to wait for some fixed delay, at any point in the protocol.

Then we will see in §1.2.4 why the protocol of [GAG+19], denoted “SBFT”, which has an alternative
form of Fast Track (see Definition 1 and construction in §8.2.3), has quadratic Ω(n2) bit complexity of
communications in phases higher than φ = 1. Finally the only known consensus (in this model) known
to us with Strong Unanimity, which is [ACD+20, §6.1 long version], is Non Responsive and has Ω(n2)
communication complexity. We now study in more details the roadblocks to removing all the limitations
mentionned.
Definition 6. The bit complexity in a phase is the worst case total number of bits sent by all honest players.
The bit complexity of a protocol is the worst case bit complexity in a phase, over all phases over all executions.
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1.2 Roadblocks to Subquadratic Bit Complexity
1.2.1 Further context on the Definitions of §1.1
About Definition 1. Consistency is implicit, e.g., in the definition of blockchain ([BMTZ17]), since all players
agree on an old enough prefix. CWU is the only guarantee of most protocols [CL99, CM19, DGKR18,
YMR+19, AMN+20, CS20] in which ordered sequences of consensus are considered. This setting is historically
called “BFT” or “state machine replication”.

About Definition 4. It is proven in [FLP85] that no consensus protocol can guarantee that all players out-
put in finite time in every execution (excepted protocols tolerating no corruption). Thus various Liveness
conditions circumventing this impossibility are considered in the literature. One line of work consists in
tolerating a probability of failure, which is exponentially small in the latency and/or communication com-
plexity. However, all such probabilistic protocols achieving quasi linear communication complexity, require
suboptimal adversary bound (see §1.4). The Liveness condition that we consider in this work instead was
initiated concurrently in 1988 by [DLS88, CL99, Lam98]. Their protocol guarantee output in any execution
in which, at some point, the following conditions are matched:
(1) the identity of some specific player, denoted as being the “Leader”, is made known to all honest players

by some mechanism;
(2) after this designation, the network is fast enough.
Or, equivalently, honest players are simultaneously in the same phase with a honest leader, for a time which
is long enough compared to the network delays. Actually, since the network is asynchronous, the notion of
“fast” or “simultaneous” has actually no sense. This is why Definition 4 captures this instead by assuming
that the favorable phase number holds forever. The notion of time before output being then captured by the
maximum number of consecutive messages in this favorable phase. In practical mechanisms, if messages are
delivered too slowly, then the leader is assumed faulty and replaced.

Interest of such protocols with the “honest& timely leader” liveness condition of Definition 4 are multiple:
- they are massively used as such ([Lam98, Lib19, CL99]);
- they are used as a building block in the best-known fully asynchronous probabilistic consensus ([AMS19],
with a quadratic complexity);

- they are finally used as a baseline in committee-based protocols, such as [ACD+19].
In the crash-fault tolerant consensus [Lam98], every player can start to play the role of the leader at any

point. Output is then guaranteed in executions in which exactly one player plays this role from some point.
But as noticed in [Lam11, §8], this condition has an interest only provided additional mechanisms to enforce
that not multiple malicious players designate themselves as leader repeatedly. Therefore, leader designation
and leader replacement are abstracted out by a global Synchronizer entity [NBMS19, NK20, BCG20b]. In
Definition 4 we consider for simplicity the one of [YMR+19], called “Pacemaker”.

Optimality in Definition 4 Optimality of the delay of 6, for protocols in our model that have subquadratic
complexity is proven in [Ram20, C’]. In our same model, optimality of the delay of 5 in the first phase
is proven in [Ram20, A’], both for the class of protocols with linear message complexity. In particular,
[AGM18, v1] has Optimal Latency (6 messages delay, and even 5 in the first phase since it is neither Fast
Path nor Strong Unanimity). Notice that the alternative Fast Track (Definition 1 and construction §8.2.3)
of [GAG+19], in 3 messages delay, circumvents [Ram20, B] and thus [GAG+19] still achieves also 5 messages
in the first phase.

Although not considered in this paper, is one stands for protocols with higher message complexity, then
the optimal is brought down to 4 ([Ram20, C]), and 3 in the first phase (by [Ram20, A], when no fast Track
nor CSU), as achieved in [CL99, DGV05, AGK+15] thanks to all-to-all messages.

About Definition 3. fast track is even possible in 1 message delay, but then this comes at the cost of for
all-to-all communication [Zie06, Kur02] (at least if handling for maximal adversary bound n = 3t + 1).
Being concerned with linear communication complexity, we thus consider Fast Tracks in 2 messages delay in
Definition 3. See Definition 1 and construction §8.2.3 for a variation in 3 messages.
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About Definition 5. For instance, [ACD+20, §6.1 long version] instructs players to wait for an estimate ∆ of
the network delay before sending new messages. Even if this estimate is updated on the fly in loc. cit., this
protocol is thus anyway Not Responsive. Nonetheless, any nontrivial distributed message-passing protocol
does instruct players to wait to receive some messages before they can send new ones. E.g. when players
have finished all instructions that they could perform in a phase, they wait de facto for a message from
the Pacemaker. To be sure, the synchronizers of [NBMS19, NK20, BCG20b] are implemented with waiting
instructions. Using such a Synchronizer model (our “Pacemaker”) enables to abstract out the waiting
instructions in its implementation. Definition 5 being stated in the Pacemaker model, this thus make our
point clearer, e.g., by emphasizing that [AGM18] is Not Responsive even under this abstraction.

About Definitions 6 and 4, stated as a worst case for honest players. An arbitrary number of phases can
happen before the conditions of Definition 4, that guarantee output, are matched (honest leader and a network
fast enough). Likewise for latency, recall that this measurement counts the number of consecutive messages
delivery delays of type leader-to-players then players-to-leader. Thus, we cannot prevent one phase from
taking a long time and a dishonest leader interacting one-by-one with every honest players consecutively.
This is why, instead, Definition 4 defines Optimal Latency only in phases with a honest leader. Let us also
remark nevertheless that the latencies that we claim in our protocols do actually also bound the maximal
number of consecutive interactions of a given dishonest leader and any given fixed honest player.

1.2.2 The So-far Quadratic Cost of Responsiveness with Optimal latency
In short, the current situation is that the only known responsive consensus with worst-case bit complexity
of communications in O(n), which is [YMR+19], has suboptimal latency. As a matter of fact, it is explained
in introduction of [YMR+19] that they opted for two more consecutive round-trips of messages between the
leader and players, compared to the optimal [AGM18], to achieve responsiveness with linear communication
complexity. In what follows we are going to detail the hurdles for achieving simultaneously Responsiveness
with Optimal Latency, while preserving quasi linear communication complexity.

Illustration with the Baseline [CL99, PBFT] Let us illustrate the problem of bit complexity with the baseline
Consensus with Weak Unanimity of [CL99], which is denoted as “PBFT”. In each phase, players follow the
same set of instructions. The first phase φ = 1 distinguishes itself in that the instructions are simpler than
in higher phases φ ≥ 2. So we start by describing φ = 1. To make our point clear, we modify PBFT
by replacing all-to-all messages, by, instead communication patterns of type leader-to-all and all-to-leader.
Indeed otherwise achieving subquadratic complexity would be anyway hopeless. We describe in Figure 1 the
actions that players are instructed to do when they are in φ = 1, of which we note Lφ=1 the leader. The
protocol is responsive (Definition 5): players in phase φ = 1 perform these actions as soon as they can. The
numbered steps do not denote any waiting instruction. The three message types that need to be made explicit
in the specification of the protocol below, are denoted as: propose, lock vote, decision vote. Recall [ACR20,
§5] that for any integer k, a Threshold Signature Scheme (TSS) provides an algorithm k-aggregate that,
on input a set S of k messages of identical content m, signed by any k out of n players, outputs a proof of
knowledge of such a set S. Unless specified differently, we will always consider a threshold k = 2t + 1. For
clarity, we denote as lock certificate the data type output by aggregate on messages of type lock vote, and
decision certificate the data type output by aggregate on messages of type decision vote

Overall complexity of Figure 4 Honest players send a total number of bits equal to O(n) times the size
of a threshold signature. The latter can be implemented constant size assuming a trusted setup ([Sho00,
TCZ+20]), or, log(n) size without ([ACR20]). Thus we have overall (quasi) linear complexity. This variation
on [CL99] that we are considering, with communication pattern “star-shaped” around the leader, has the
same latency of 5 in the first phase as [AGM18]. To be sure, the same star-shaped variation of PBFT [CL99]
is also partially considered in [GAG+19] under the name “linear PBFT”. But they describe only the first
phase, although we are going to see now that the complexity issues appear instead in higher phases φ ≥ 2.
Informally, PBFT enforces that every player casting a “lock vote(v, φ)”, must be “convinced” beforehand
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1 Propose Leader Lφ multicasts propose(vL, φ) where vL is his input.
2 Lock vote Every player, upon receiving propose(v, φ) from Lφ for the first time (whatever v), replies with a
signed “lock vote(v, φ)”.

3 Lock certificate Leader Lφ, upon receiving lock votes for the same (v, φ) from 2t+ 1 distinct players, aggre-
gate them into a “lock certificate(v, φ)”, which he multicasts.

4 Decision vote Every player, upon receiving from Lφ a lock certificate(v, φ) for the first time (whatever v),
replies with a signed decision vote(v, φ).

5 Decision certificate Leader Lφ, upon receiving decision vote(v, φ) from 2t+ 1 distinct players for the same v,
aggregate into a decision certificate(v), which he multicasts.

6 Output Upon receiving a decision certificate for v, a player outputs v.

Fig. 1. PBFT leader-centered: first phase φ = 1, with linear bit complexity

that no decision certificate(vj) for any conflicting vj 6= v, could be formed relatively to a lower phase φj < φ
(and thus possibly output by some isolated player). The first step towards this “convincing” is that we have
the invariant that, as soon as some value vj is output in some phase φj , then there exists at least t+1 honest
players who “saw” a lock certificate(vj , φj), and thus at least one of them will be present in any set of 2t+ 1
players. But still, after many phases, many values vj can possibly have been in lock certificates. The simple
but strict rule chosen by [AGM18],[ACD+20, §6.1 long version] (and [ADD+19, AMN+20]) is that players
lock vote(v, φ) only if the leader exhibits to them a lock certificate(v, φmax), such that they did not see any
lock certificate(vj , φj) for a conflicting value vj in a higher phase φmax < φj . The drawback is that, mechani-
cally, output is then guaranteed in φ only if the leader collected all the highest seen lock certificate(vj , φj) of
all honest players: see the discussion in [YMR+19] (“Livelessness with two-phases”). This is why the leader
must wait for the eventual upper bound on the network delay: ∆, before processing his mailbox. Notice that
[YMR+19] has a related rule, while guaranteeing responsiveness, but at the cost of two extra messages delay.
The rule of PBFT [CL99] is more permissive, since players have the right to lock vote even if they saw a
higher lock certificate for a conflicting value. This is the key to Responsiveness with Optimal Latency. The
counterpart is that the leader must append more justifications to “convince” players to lock vote a value,
which makes the bit complexity explode. Namely, the previous instructions for φ ≥ 2 are modified as de-
scribed in Figure 2: a preliminary Report step is added, then the leader appends extra justifications to his
messages in 1, then players check them in 2.

0 Report Every player Pi sets φi ≤ φ the highest phase up to φ for which he saw a lock certificate, or φi = 0 if
he did not see any so far. He sends to the leader Lφ: a report(φi, φ), appended with a lock certificate(vi, φi) if
φi ≥ 1.

1 Propose The leader Lφ, upon receiving a set R of report messages from 2t+ 1 distinct players, then, letting
φmax be the highest φj in R:
(i) either 0 < φmax, thus he received at least one lcmax := lock certificate(vmax, φmax). Then he multicasts

propose(vmax, φ), appended with the justification {R, lcmax};
(ii) or, he sets vL equal to his own input and multicasts propose

(
vL, φ) appended with the justification R.

2 Lock vote Every player, upon receiving propose(v, φ) from Lφ for the first time (whatever v), appended with
a set R of report messages relative to φ, checks if:
(i) Either the justification comes with some lock certificate(v, φ′) for v, such that φ′ is the highest φj reported

in R;
(ii) Or the justification contains no lock certificate, and all messages in R report φj = 0;
then if the check passes, he replies with a signed lock vote(v, φ).

Fig. 2. PBFT leader-centered: higher phases φ ≥ 2, with quadratic bit complexity in 1
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Since R has size Ω(n), then every propose message has bitsize Ω(n) and thus the whole has quadratic
bit complexity. Although, to be sure, we followed the optimisation (credited to [CL02] in the v2 18 Oct 2018 of
[YMR+19], under the name “Strawberry”) where the leader does not append every reported lock certificate(vj , φj)
to the set R that he forwards to players. Consider any phase satisfying the requirements of Definition 4.
More generally, any phase with a honest leader and such that the network allows for 6 consecutive messages
to be delivered before the Pacemaker issues a new phase. Then all honest players output in this phase. The
intuition of the proof of safety of the consensus of Figure 2 follows from the three following invariants. We
will give a formal proof of our improved protocol, that has the same formal structure, in Lemma 10 and
Proposition 9.
• A set R of report messages from 2t+ 1 distinct players who all claim: to be in phase φ, and to have seen
no lock certificate in a higher phase than φmax ≤ φ; is a proof that strictly less than t+ 1 honest players
did see a lock certificate in a higher phase than φmax ≤ φ while being in a phase up to φ.
• In turn, this proves that no decision certificate is formed relatively to any higher phase φ′ up to φ:
φmax < φ′ ≤ φ, in the whole execution.
• Thus if a lock certificate is formed in φ for some value, then, no decision certificate is formed for any
conflicting value between φmax and φ, in the whole execution. And thus no conflicting honest output is
triggered between those two phases. We repeat the argument with φ := φmax and conclude by backward
induction.

1.2.3 The So-Far Quadratic Cost of Strong Unanimity (CSU)
In the model considered, the only CSU known to us is the [ACD+20, §6.1 long version]. But it is constructed
on the top of [AGM18], so with the aforementionned stricter rule, which is incompatible with Responsiveness
with Optimal Latency. So we will instead use as baseline the variant of PBFT described in §1.2.2. The
modifications to this baseline to achieve CSU are described in Figure 3. First, there is a Report step even
when φ = 1, then an additional justification in 1, then additional check in 2.

0 Report A player Pi, in addition to the report message, sends to the leader Lφ a signed declare(vi) where vi is
his input.

1 Propose The leader Lφ, upon receiving a set R of report messages from 2t+ 1 distinct players, then, letting
φmax be the highest φj in R:
(i) either 0 < φmax, then as in Figure 2 1(i)
(ii) or: let D be the set of 2t + 1 declare messages received. The leader selects any value vL reported in D,

such that no conflicting value v′ 6= vL is reported identically in t + 1 messages of D. Then he multicasts
propose

(
vL, φ) appended with the justification D (in addition to the justification R).

2 Lock vote Is enriched in case (ii): in addition to the previous check on R, every player also checks that no
other value v′ 6= v is reported identically in t + 1 messages or more in the set D. Then if this checks also
passes, he replies with a signed lock vote(v, φ).

Fig. 3. Adding Strong Unanimity: modifications for all φ

So now the leader also forwards to every player a set of messages, D, which is also itself of bitsize Ω(n).
This is the quadratic communication bottleneck of Strong Unanimity, which comes in addition to the previous
one of Figures 1&2, which was due to R. The check performed in 2 guarantees that honest players do not
cast a lock vote for some value v if there exists a conflicting value vun 6= v which is a unanimous input of
all honest players. This is formalized in Definition 11 and in the easy Lemma 25. Thus Strong Unanimity is
guaranteed.

1.2.4 The So-Far Quadratic Cost of a Fast Track
Up to now, even without requiring Responsiveness, the task of having a Fast Track with overall worst-
case subquadratic bit complexity remained an unsolved challenge. This was raized by the authors of the
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nonresponsive [AGM18]1. In this paper we require consensus with linear communication complexity per
leader phase. So for such protocols, then a fast track takes at least 2 rounds (all-to-leader then leader-to-all:
see below or in Lemma 24). Whereas 1 round is achievable without this complexity restriction. Let us also
point the fact that enabling a fast track in consensus, even longer than these optimals (2 resp. 1), poses
challenges: see [AGM+17, SK19a, SK19b] for safety or liveness violations in such published protocols.

The protocol [GAG+19, DSN’19] (“SBFT”), also from authors of [AGM18], is the state of the art among
the ones with a Fast Track with linear communication complexity. Its fast track is in a suboptimal 3 rounds,
instead of the optimal 2. On the other hand, having this suboptimally fast track enables the authors of
[GAG+19] to achieve linear communication complexity in the whole first phase (loc. cit. §E). In short,
referring to Figure 1: this enables to factorize the vote step of 2 for both the fast track and the normal track.
So the two possibly voted values for both tracks are automatically the same, so no extra justification is
required from the leader. This also enables them to achieve latency of 5 rounds in the first phase (as proven
tight in [Ram20, Theorem A’]). But the complexity problem hits in higher phases (loc. cit. §G), which have a
quadratic bit complexity of communications. Namely, a new leader in SBFT forwards a large set of messages
to all players, as in §1.2.3. In any case, their method would not enable to guarantee Strong Unanimity and
preserve the linear complexity in their first phase.

But, building on our CSU (§1.2.3) instead above, then obtaining a fast track with a tight 2 rounds
can be done simply as follows. Upon receiving messages declare(v) for the same v from all the n = 3t + 1
players (denoted “fast quorum” in the folklore), then the leader Lφ (whatever φ) aggregates them with a
(3t + 1)-threshold signature into a fast dec cert(v) that he multicasts to players. This enriched construction
brings no overhead in bit complexity nor latency. To prove safety of it, considering that our baseline con-
struction of §1.2.3 has Strong Unanimity, we are thus brought down to proving that: no (isolated) player
can output some value v from a fast dec cert(v), while another player outputs a conflicting v′ from a (slow)
decision certificate(v′). But a fast dec cert(v) exists only if all 2t + 1 honest players have the same input v.
Thus by CSU of the baseline, no decision certificate(v′) for a conflicting value can ever be formed. So we see
that, having enforced the CSU property previously in §1.2.3 trivializes the problem of the linear complexity
of a Fast Track. See Lemma 24 for a formalization.

To be complete, notice that enforcing Strong Unanimity brings an unavoidable one more message delay
(6) in the first phase ([Ram20, B’]). To be sure, enforcing a plain 2 messages Fast Track in the sense of
Definition 3 would anyway also bring this extra delay ([Ram20, B’]). This explains the Definition 4. However
this extra delay can be circumvented by enforcing instead directly an alternative Fast Track in 3 messages
(Definition 1), as described in §8.2.3 (following [GAG+19]).

1.3 Contributions

1.3.1 Communication Complexity of Consensus
Main Theorem 7. Consider n = 3t+ 1 players of which t are malicious, in the synchronizer model. Then
there exists a consensus which is Responsive with Optimal latency (Definitions 5 and 4), a Fast Track (in
two messages delay), Strong Unanimity; and still: a worst-case O(n logn) total bits sent by all honest players
per phase.

The protocol requires no trusted setup nor distributed key generation.

Of independent interest, our intermediary step, which we build in §2.1 (proven in Proposition 9), is
actually a consensus with standalone Responsiveness with Optimal latency, in the sense of Definition 4,
in that it achieves even 5 messages delay in the first phase. Only then, on the top of this consensus, we
furthermore add the Fast Track and Strong Unanimity, which then increments the latency in the first phase
to 6, so this has still Optimal Latency by Definition 4.

1In [AGM18, v1, March 2018, §8]: “One question left open by this work is whether linear phase-change is possible
for BFT protocols with speculatively fast tracks. In all the known methods [MA05, Kur02, KAD+09, CKL+09,
AGK+15, GV10], we can achieve a linear reduction, either by applying LVC [linear phase change], or by using
threshold signature schemes (as demonstrated in [GAG+19]). However, combining the two to get linear-over-linear
reduction is not obvious.”
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Let us recall and specify the definition of Responsive with Optimal latency, as defined in Definitions 5
and 4. This means that the consensus has the guarantee that, if the leader of some phase is honest and all
honest players are in this phase during long enough (equivalently: if the network is fast enough during this
phase), then, they all output within the actual delay of 3 round trips of messages between the leader and a
quorum of players. For instance, if all messages are actually delivered within δ, then the Latency is 6δ. This
constrasts with the O(∆) of [YMR+19] for some predefined ∆, possibly much larger than the actual network
delay δ.

1.3.2 Sketch of the Consensus of Main Theorem 7

The detailed construction and proofs are done in §2.

Responsiveness with Optimal Latency The solution consists in replacing the setR forwarded in the 1 of Figure
2 of §1.2.2. In place of R, the leader forwards a succinct Proof of Knowledge of a set R of authenticated
messages from 2t + 1 players, such that, all numbers φi reported in these messages are lower than or equal
to the public number φmax. Thus this proof, which we call Proof of NonSupermajority: PnS, enables players
to verify that the claimed set R (which they do not see anymore), has indeed the property required in 2.

We thus obtain Responsiveness with Optimal Latency. In particular, since we are using Figure 1 at this
stage as a baseline for the first phase φ = 1, this yields the claimed 5 rounds of Optimal Latency in the first
phase (Definition 4). A PnS of size log(n) may be constructed from generic proof systems without trusted
setup. Such as the ones [BBHR18] (used to verify transactions in blockchains [Tru20]), or Snarks (as used in
[BCG20a], to aggregate signatures in a distributed way). So the total bitsize of the PnS sent to all players is
n log(n). Then we have remaining messages, of which those sent by the leader in the two last steps contain
threshold signatures. Instantiating with the TSS of [ACR20, Thm 4], which are of size log(n), therefore does
not augment the complexity. Furthermore these TSS do not require any trusted setup no distributed key
generation, which makes our claim. So this concludes our complexity claim. But for sake of illustration, we
will describe anyway an elementary PnS in §6.

Adding Fast Track and Strong Unanimity The solution for Strong Unanimity (and thus Fast Track by Lemma
24) consists in replacing the set D forwarded in the 1 of §1.2.3 Figure 3, by a succinct proof of knowledge of
such suitable set D of authenticated messages from 2t+ 1 players. Namely this proof, which we call Proof of
Exclusivity: PoE, enables players to verify, as in 2 of Figure 3, that the claimed set D (which they do not
see anymore), has indeed the property that no other value v′ 6= v is identically reported t+1 times or more in
D. A PoE of log(n) size may be constructed from generic proof systems, such as [BBHR18, BCG20a, AC20].
But for sake of illustration, we will describe anyway elementary protocols to generate PoE with suboptimal
size in §5 (under a weakened-but-sufficient Definition 15 of a PoE).

1.3.3 Of Independent Interest: Alternative Constructions with Elementary Techniques

We consider an arbitrary Threshold Signature Scheme (TSS), instantiated twice (with threshold t+1 for one
instantiation and 2t+ 1 for the other). Let us denote by

∣∣TSS∣∣ the size of a threshold signature, and V the
size of the inputs range. For instance, the TSS of [ACR20, Thm 4] has

∣∣TSS∣∣ = O(logn) size. For simplicity
we state the complexities below for the case of such a TSS with nonconstant size :

∣∣TSS∣∣ > O(1). We thus
do not specify the other linear terms in n, that are explicit from the subsequent protocols. Instantiating with
optimized elementary techniques of independent interest, introduced below in §1.3.4, §1.3.5, §1.3.6, we have:

Theorem 8. In the same model, there exists a consensus which is Responsive with Optimal latency (Def-
initions 5 and 4), a Fast Track (in two messages delay), Strong Unanimity; with a worst-case O(nφ +
n log V

∣∣TSS∣∣) total bits sent by all honest players in a given phase φ.
Removing Responsiveness, then the bit complexity per phase drops to 7n

∣∣TSS∣∣.
8



Complexity claim of 7n
∣∣TSS∣∣ when removing Responsiveness Anticipating on the details of the next §1.3.4,

§1.3.5 and §1.3.6, the claimed 7
∣∣TSS∣∣ when standing for NonResponsiveness, is achieved by:

– using the NonReponsive consensus of §4.3.3 (which is the one of Hotsuffv1 [AGM18]) as baseline
– Tweak it such that it can be combined with a black box interactive protocol that produces a PoE in 2

round trips. This is specified in Figure 8
– Instantiate the PoE using the NonResponsive interactive protocol presented in §5.2. It has size 5

∣∣TSS∣∣,
to which we add the 2

∣∣TSS∣∣ sent by the leader to each player in a phase (the certificates).

Complexity claims of O(nφ+ n log V
∣∣TSS∣∣) when requiring also Responsiveness Anticipating on the details

of the next §1.3.5 and §1.3.6, the claimed additional cost when standing for NonResponsiveness, is achieved
by:
– Tweak the baseline of Figure 3 such that it can be combined with a black box interactive protocol that

produces a PoE in 2 round trips. This is specified in Figure 8
– Instantiate the PoE using the Responsive interactive protocol presented in §5.1, which produces PoE of

sizes log V
∣∣TSS∣∣.

– Instantiate the PnS using the Responsive elementary protocol presented in §6 (Proposition 22), whose
construction requires players to send a total bitsize O(nφ) and whose bitsize of the PnS produced is in
O(
∣∣TSS∣∣).

1.3.4 Extension: Handling External Validity
We illustrate in §4 and §5 how the techniques extend to the following case of External Validity conditions
(Definition 13) on the inputs & output value. Recall that consensus may be used to provide a functionality
denoted as “state machine replication” ([Lam98, CL99]). For this kind of usage, additional restriction may
be placed on the possible output values. Namely, values are, in addition, to be returned as valid be some
public algorithm. For instance, as bearing the signature of some accredited person, which may be denoted
as a client. This is captured by the “External Validity Condition” of [CKPS01, Def 4.1]. It introduces an
external “external validation entity” “QID”, that may send to players its signature on some values. These
signatures are called “Certificates of validity”. Players can forward these signatures to each other. We then
say that a value is valid for a player, if this player has a Certificate of validity on this value In the External
Validity setting, some players may not have initially an input that comes with a validity certificate. Also,
players may possibly also have no input at all. Optimal Latency of leader-based consensus is then narrowed
(Definition 14) to phases where: either a honest leader knows a valid value, or at least t + 1 honest players
have a valid input (so the leader is guaranteed to be declared one). We handle this extra difficulty in §4 and
§5.

As a slight alternative to these specifications of External Validity, notice that, in some use-cases (e.g.
[CL99]), one could want to guarantee output in finite time in situations where t honest players or less
would have a valid input. We formalize in Lemma 27 a possible add-on to protocols, without communication
overhead, that guarantees the output of a default Nonvalid value in these cases (which then violates External
Validity).

1.3.5 Extension: Preserving Optimal Latency Despite Interactive Proofs
In the baseline Figure 3 (from [GAG+19]), the leader is required to forward the set D of messages in 1,
immediatly after he receives it. To achieve Main Theorem 7, the leader is required to deliver a short proof
(PoE) for the value vL that he proposes, in place of this set D. So the leader does not have the time to
perform further interaction with players before he must issue this proof in 1. Interestingly, a tweak on the
baseline protocol 3, which we describe in 6, enables the leader to use 2 more messages delay to issue this
proof, in 1. We will leverage this extra delay in the alternative elementary interactive protocols, given in
§5.1 and §5.2, which enable the leader to deliver a PoE in 4 messages delay. This tweak however specifies
that the leader must anyway “commit” as soon as in 1, in his proposes message, to the same value vL for
which he is going to deliver a proof in 3.
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Optimization for NonResponsive Protocols The tweak carries over unchanged to Interactive protocols for PoE
which are NonResponsive (Definition 17). But then this makes the overall consensus NonResponsive. So while
we are here, we chose the baseline NonReponsive consensus that offers an (a priori sharper) communication
complexity, which is the one of [AGM18]. Indeed, this baseline does not require a PnS anymore while still
having Optimal Latency. We recall this baseline in Figure 7, then apply the tweak to it in Figure 8.

1.3.6 Of Independent Interest: Elementary (Interactive) PoE and PnS
Weakening of Definition of PoE. To enable efficient elementary protocols, we will weaken the definition of a
PoE(v) (from Equation (2) / Definition 11, into Definition 15). In particular it is not a proof of knowledge
of a set D anymore. Anyway this weakened Definition of a PoE(v) still guarantees that no other value than
v can be the input of all honest players. So is enough for the purpose of guaranteeing Strong Unanimity.

Elementary Responsive 4-move PoE. Then in §5.1 we construct a Responsive 4-move protocol that delivers
PoE of size O(log(

∣∣V∣∣)) threshold signatures (V: the range of possible input values). Applying to the tweak on
the responsive protocol of §2.1, as specified in §4.3.2 gives in addition Responsiveness with Optimal Latency.

Elementary NonResponsive 4-move PoE. In §5.2 we construct alternative short PoE consisting of 5 threshold
signatures. But at the cost of a partially synchronous interactive 4-moves protocol with the signers. So which
is NonResponsive. From which we recover nonetheless a Fast Track (in two messages delay) and Strong
Unanimity in §4.3.3 with same tight latency of 6 rounds, thanks to a tweak to the baseline consensus of
[AGM18].

All those elementary constructions of PoE also handle External Validity, whose Definition is recalled in
§1.3.4.

An Elementary (Non Interactive) Protocol for Producing a PnS, is finally provided in 6. The protocol requires
each player in phase number φ, to send a total O(φ) bits. The PnS output by the leader has size

∣∣TSS∣∣.
1.3.7 Reducing the Latency of the state of the art Leaderless Asynchronous Validated Con-

sensus (“VABA”) of [AMS19].
Their protocol consists in running n instances of a variation of the consensus of [YMR+19] in parallel, one
for each player playing the role of a leader. In detail, our phase of the execution of the protocol is denoted
there as Proposal Promotion, while the local variables denoted φi in [AMS19, Algorithms 5 6] correspond
to our highest lock certificate seen by player i in our notations. Then players elect a leader a posteriori. The
consensus of Theorem 7 can be used as a drop-in replacement for [YMR+19]. This is detailed in 7.1. This
results in a first phase in 5 messages delay (no Fast Track nor Strong Unanimity is needed in their case),
instead of 7. Then is the first elected leader is dishonest or the network not initially fast enough, this results
in higher phases in 6 messages delay instead of 8.

1.3.8 Amortization of Bit Complexity over Multiple (Ordered) Instances In Parallel.
In the use-case of consensus of [CL99], denoted as “state machine”, players are executing an ordered sequence
of consensus instances. But in case where many consecutive leaders do not enforce any output, then pending
executions of these instances pile-up. As a result, a leader of some phase φ in Figure 2 at step 1, receives
not one set R, but as many sets Rj as pending instances of consensus that the players are executing in
parallel. This is handled in [CL99] by having the leader handle separately each instance in step 1 (even if
he concatenates them in a single message for each player). As a result, applying Theorem 7 to this naive
approach in M instances of PnS in parallel, would result in a total O(Mn log(n)) bits sent. However, the
proof system, e.g. the one of [AC20], being in logarithmic size in the circuit, this enables to compress M
instances of proofs in a total bitsize O(n log(Mn)). The only incompressible cost that remains is the public
parameter vmax of each of these M instances, that need to be communicated to players, which represents a
total constant size O(M). The same applies to PoE.
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1.3.9 Ensuring Simultaneously: Halting in Finite Time with Amortized Linear Complexity
Over Long Values, and Requiring External Validity

Halting in Finite Time with Amortization over Long Values, by [NRS+20]. Halting So far our protocols
do not guarantee that players can stop playing protocol (this action being denoted as “Halting”) in finite
time after they all output. Only the latency to when he outputs is guaranteed. Guaranteeing halting would
require that players who received a decision certificate, forward it to all other players, so they can stop taking
part to the protocol. So these all to all messages bring us back to quadratic complexity in n, and linear
in the bitlength ` := log

∣∣V∣∣ of the values. The general tool introduced [NRS+20, Figure 4] compiles any
consensus with output in finite time, into Halting with a cost can be amortized when ` is large, and turned
into: n2O(1) + n`. So that when ` is large we recover our linear n` complexity.

Incompatibility with External Validity However this compilation comes at a cost: if we are not in the situation
where all honest players would have the same input, then this compiler may well force them to output some
default value ⊥. Rephrased in the notations of [NRS+20, Figure 4]: a player is “happy” if value output by
the baseline consensus (performed on hashes) is his input value. Then, if some honest players are not happy,
the compiler may arbitrarily force them to output ⊥. Technically, this is due to a subroutine of Consensus
on being “happy” or not. But ⊥ is not valid. Since this happens even if all players have a valid output,
then, this does not satisfy the traditional “external validity” requirement of [CKPS01, Def 4.1] (or as in
[AMS19, Lemma 23 of full paper]). Recall that this traditional requirement is that players output in finite
time if they all start with valid inputs. As a remark, notice that these traditional requirements for output are
themselves much stronger than our Definition 14. Nevertheless, the compiler is not compatible with these
narrow traditional requirements.

Fortunately, it turns out that leader-based consensus protocols can escape this problem, thanks to a
variation on the compiler of [NRS+20] that we provide in §7.2.

1.3.10 Other Various Extensions and Consequences
Such as for the regime denoted as “state machine replication” (in a historical conception), are provided in
§8.2. In particular we make explicit in §8.2.3 a more tolerant Fast Track in 3 messages delays (Definition 1),
preserving latency of 5 in the first phase, by adapting [GAG+19] with short proofs. We also briefly review
how known optimization techniques apply.

1.4 Related work
Reponsiveness with Optimal Latency, Linear bit complexity in the worst case and Optimal adversary bound.
[YMR+19] is responsive, but at the cost of a worst case latency of 8 messages delay for a honest leader and
timely phase, instead of the optimal 6, so does not satisfy Responsiveness with Optimal Latency.

Fast Track and/or Strong Unanimity. All consensus so far with either a Fast Track, or Strong Unanimity,
have quadratic bit complexity of communications per phase : [Lam02, MA05, Kur02, KAD+09, CKL+09,
AGK+15, GV10, ANRS20]. To be sure, most of them are cast in the “state machine replication” setting,
where the inputs are distributed in a preliminary step by the possibly malicious leader (or an external
“proposer” or “client”). The complexity bottleneck is exactly the same of for Strong Unanimity described in
§1.2.3 It happens when the leader forwards the set of declare messages D to each player. In the traditional
terminology of Fast Tracks, in these declare messages the players testify the (fast) vote they cast in the first
phase. But technically this plays exactly the same role as in §1.2.4.

Transparent setup means that no prior interaction between players nor trusted dealer of keys (as in [KSM20,
Sho00, TCZ+20]) is required before the protocol starts. Recall by contrast that modern efficient random-
ized consensus with subquadratic communication either require correctly generated secret keys ([ACD+19,
CPS19]) and/or a public random string (a.k.a. “genesis block”) appearing after the keys are published
([DGKR18, CM19, CPS19, CKS20, BKZL20]). The only exception is the recent [BCG20a], under synchrony,
which also uses proofs of knowledge of signatures
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Synchronous setting The recent [MR20], under synchrony, achieves amortized linear communication com-
plexity but has suboptimal adversary bound t < n/2−ε. Likewise, the synchronous [BCG20a] has suboptimal
adversary bound t < n/3− ε.

1.5 Roadmap
In §2 we prove Theorem 7 from black box log(n) proofs “PnS” and “PoE”, as announced. In §3 we recall and
details to the model. We then consider extensions, and also the elementary constructions that support our
claims in Theorem 8. From that point, we handle explicitely additional External Validity conditions on the
inputs/output. In §4 we upgrade the previous Consensus of §2 to handle for PoE that may be obtained from
an interactive proof protocol. We also redefine PoE with an alternative weaker definition, which is although
still sufficient for the previous proof of Main Theorem 7. We introduce in §5 elementary interactive protocols
constructing PoE in this weaker definition (a Responsive one, and NonResponsive one). Likewise in §6, we
implement a weaker-but-sufficient version of PnS with an elementary protocol. Finally in §7 we detail more
the other minor contributions. In §8 we provide some easy Lemmas and discuss other various extensions of
the results.

2 Proof of Theorem 7: Consensus, From Black Box Proofs of Knowledge

2.1 Consensus with Responsiveness and Optimal Latency (Definitions 5 and 4) with overall
O(n log(n) log(V )) Bits Sent per Phase

We define a drop-in proof of knowledge of the set R, called “PnS”, specified with the notations of the
protocols of Figures 1 and 2 . We then use it in the aforementionned protocols. We merge their presentation
into a single Figure 4, that both captures φ = 1 and higher phases. Drop-in of the PnS is the only difference
with the baseline Figures 1 and 2. We finally prove safety (and liveness) of the protocol with this drop-in
proof.

2.1.1 Data Structures: Reminders and Complements.
Let us recall the definition of a k-threshold signature scheme (TSS) in the strong sense of [ACR20, §5].
Considering a baseline signature scheme, a k-threshold signature is a proof of knowledge of k signatures from
distinct players on the same message content m. Here we consider a (2t+ 1)-TSS. We use the following data
types:

- for a value v ∈ V and phase number φ ∈ [1, . . . ,∞[, we have messages of type propose(v, φ, justifs),
lock vote(v, φ) and decision vote(v, φ). The justifs are additional data, to be precised below, that are needed
when φ ≥ 2 to make honest players accept the propose message as valid;

- lock certificate(v, φ) is a (2t+1)-threshold signature on lock vote(v, φ), while decision certificate(v) is a (2t+1)-
threshold signature on decision vote(v, φ) for any fixed φ;

- consider 0 ≤ φi ≤ φ. We have messages of type report(φi, φ), such that φi ≤ φ. If 0 < φi, then it is appended
with a lci = lock certificate(vi, φi) for some vi ∈ V;

- Our specialized definition for a proof of Non-Supermajority in this context, is a proof of knowledge of the
following:

(1) PnS(φmax, φ) =
{(

Public Input : φmax ≤ φ ; I Know : I ⊂ {1, . . . , n} of size 2t+ 1

and R =
{

report(φj , φ) signed by Pj , ∀j ∈ I
})

Such That :
{
φj ≤ φmax for all j ∈ I

}}
We denote accordingly the corresponding existential statement: we say that φmax satisfies theNon-Supermajority
Predicate Up To φ, if such a set R exists. So a PnS(φmax, φ) proves in particular that φmax satisfies the
Non-Supermajority Predicate Up To φ. We denote

∣∣PnS
∣∣ the size of a PnS.

- Finally, the justifs mentionned above are: a PnS(φmax, φ), where φmax = 0 iff vmax = ⊥, appended with: a
lci = lock certificate(vmax, φmax) or ⊥ iff φmax = 0.
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2.1.2 Protocol and Proof

0 Report If φ = 1, then skip directly to step 1. Every player Pi sets φi ≤ φ the highest phase up to φ for which
he saw a lock certificate, or φi = 0 if he did not see any so far. He sends to the leader Lφ: a report(φi, φ),
appended with a lock certificate(vi, φi) if φi ≥ 1.

1 Propose The leader Lφ: if φ = 1, then he sets v equal to his own input and multicasts propose
(
v, 1,⊥

)
.

Otherwise, upon receiving valid report messages from 2t+ 1 distinct players, then, letting φmax be the highest
φi received, builds a PnS(φmax, φ) out of them.
(i) either 0 < φmax, thus he received at least one lcmax := lock certificate(vmax, φmax). Then he multicasts

propose
(
vmax, φ,

{
PnS(φmax, φ), lcmax

})
;

(ii) or if 0 = φmax, he sets v equal to his own input and multicasts propose
(
v, φ,

{
PnS(0, φ),⊥

})
.

2 Lock vote Every player P , upon receiving a valid propose
(
v, φ, justifs

)
from Lφ for the first time in φ, replies

with a signed lock vote(v, φ).
3 Lock certificate Leader Lφ, upon receiving 2t + 1 lock votes for the same (v, φ), issues from them a

lock certificate(v, φ), which he multicasts along with v.
4 Decision vote Every player, upon receiving from Lφ a lock certificate(v, φ) for the first time in φ (whatever
v), replies with a signed decision vote(v, φ).

5 Decision certificate Leader Lφ, upon receiving decision vote(v, φ) from 2t + 1 distinct players for the same
value v, issues from them a decision certificate(v), that he multicasts to the players.

6 Output Upon receiving a decision certificate for v, a player outputs v.

Fig. 4. PBFT leader-centered: any phase φ, with bit complexity in O(n
∣∣PnS

∣∣)
Proof of Communication Complexity. since honest leaders send to each player messages containing a constant
number of threshold signatures and of PnS, we have that the worst case bit communication complexity per
phase is in O(n) times the max of the sizes

∣∣PnS
∣∣ and of threshold signatures.

Optimal Latency. Results directly from the ability to build a PnS out of any set R of 2t + 1 well formed
report messages.

Proposition 9. The protocol of Figure 4 has Consistency.

Preliminary remark: no two distinct lock certificate relative to the same phase can be formed. Indeed
honest players send at most one lock vote per phase.

Proof. Consider an execution in which some value v is output by some player. Thus a decision certificate(v)
has been formed in this execution. Thus there exists a phase φv such that 2t+1 distinct players in this phase
signed a decision vote(v, φv). Without restricting generality, one can φv is minimal with this respect. Suppose
that another value v′ is output by another player in the same execution. Then there exists a phase φ′ such
that 2t+ 1 distinct players in this phase signed a decision vote(v′, φ′). By the minimality assumtion, we have
φv ≤ φ′. By the preliminary remark, we thus have φv < φ′. But this is impossible, by Lemma 10.

It remains to prove the following key invariant, which also holds in [CL99].

Lemma 10. Suppose that there exists a phase φv in which 2t + 1 decision vote(v, φv) are sent for some
value v. Then there does not exist any other value v′ 6= v and higher phase φv < φ′ in which some honest
player sends a lock vote(v′, φ′) for v′.

Proof. Now, suppose by contradiction that such a higher phase φv < φ′ exists, and that it is minimal with
this respect. That is: φ′ is the smallest phase number after φv: φv < φ′ in which some honest player sends a
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lock vote for a conflicting value v′ 6= v. This would mean that this honest player receives in φ′: a PnS(φlc′ , φ′)
for some φv < φlc′ < φ′, along with a lock certificate(v′, φlc′).

(i) On the one hand, we cannot have φv < φlc′ (< φ′). Indeed otherwise, we would have that: a
lock certificate is formed in phase φlc′ for the value v′ that conflicts with v, and thus that a lock vote conflicting
with v is sent by some honest player in φlc′ . So this contradicts the minimality of φ′ with this respect.

(ii) So we must have that φlc′ < φv (< φ′). But then, existence of this PnS(φlc′ , φ′), proves by definition
that no possible quorum of t + 1 honest players did observe, before or while they were in phase φ′, some
lock certificate for some locked value (v1, lc1) conflicting with v′: v1 6= v′, relative to some higher phase φ1:
φlc′ < φ1 < φ′. So a fortiori there does not exist any higher phase φ1: φlc′ < φ1 < φ′ in which some honest
player could cast some decision vote for a conflicting v1 6= v′. But this precisely contradicts the assumption
on (v1 := v, φ1 := φv).

2.2 Adding the Fast Track and Strong Unanimity

We now solve the quadratic bottleneck for Strong Unanimity. As we saw in §1.2.4 (or Lemma 24 below),
this will then also solve for free the one of a Fast Track. As in §1.2.3 we introduce the new message type
declare(v). Each (honest) player is asked to issue signed declare(v) messages only for his input value v. Our
specialized definition for PoE(v) in this context is a proof of knowledge:

(2) PoE(v) =
{(
v ; I Know : I ⊂ {1, . . . , n} of size 2t+ 1, and D =

{
declare(vj) signed by Pj , ∀j ∈ I

})
Such That : no value v′ 6= v is such that

{
vj = v′ for t+ 1 or more indices j ∈ I

}}
We denote accordingly the following corresponding existential statement:

Definition 11. We say that a value vun satisfies the Exclusivity Predicate with respect to some execution
of the protocol, if and only if, there exists a set D of 2t+ 1 declare(vi) messages issued by distinct players in
this execution, such that no value v′ 6= v repeats identically more than t + 1 times in these 2t + 1 declared
input values vi.

So a PoE(v) proves in particular that v satisfies the Exclusivity Predicate. Which in turns guarantees
that v is the only possibly unanimous input of all honest players (if any), by the easy Lemma 25. Given
this black box, the protocol of Figure 4 needs only be enriched as in Figure 3, using PoE(vL) as a drop-in
replacement for exhibiting the set D.

0 Report unchanged
1 Propose The leader Lφ, upon receiving a set R of report messages from 2t+ 1 distinct players, then, letting
φmax be the highest φj in R:
(i) either 0 < φmax, then as in Figure 4 1(i)
(ii) or: let D be the set of 2t+ 1 declare messages received. The leader selects any value vL reported in D, such

that no conflicting value v′ 6= vL is reported identically in t + 1 messages of D. He constructs a PoE(vL)
out of D. Then he multicasts propose

(
vL, φ) appended with the justification PoE(vL) (in addition to the

justification PnS(0, φ), as in Figure 4).
2 Lock vote Is enriched in case (ii): in addition to the previous check on R, every player also checks validity of
the PoE(v) for the value v proposed.
(Then if this checks also passes, he replies with a signed lock vote(v, φ), as in Figure 4)

Fig. 5. Adding Strong Unanimity with O(n
∣∣PoE

∣∣) complexity

Proposition 12. The Consensus of Figure 5 satisfies, in addition, Strong Unanimity.
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Proof. Suppose by contradiction that all honest players have (unanimously) the same input vun. Consider
any value v′ 6= vun, let us show that no lock certificate(v′, φ′) can be formed in the execution (and a fortiori
no decision certificate(v′)). Without loss of generality, let us consider φ′ the smallest phase in the execution
where a lock certificate(v′, φ′) is formed for a value v′ different from vun. Thus at least t + 1 honest players
sends a lock vote(v′, φ′) in 2 of phase φ′.

Claim 1 : None of these honest players can be in situation (ii). Proof of claim 1 if such a honest player is
in situation (ii) of 2, then this means he received from the leader a valid PoE(v′). So by the easy Lemma 25
this violates unanimity of vun.

Continuation of the Proof Thus all these t + 1 honest players are in case (i). Thus they received from
the leader a lock vote(v′, φ1) formed in a phase lower or equal φ1 ≤ φ.

Claim 2 : So we have that φ1 < φ. Indeed, otherwise, the lock certificate(v′, φ′) would have been formed
without the lock votes of these players, which is impossible.

End of the Proof This contradicts minimality of φ′.

3 Model: Reminders and Complements

3.1 Reminders

Static malicious (Byzantine) corruptions, with authentication We consider n = 3t + 1 players, which are
polynomial machines with fixed public keys issued by them. They send messages to each other that carry
their digital signatures ([Bol03]), which are thus assumed unforgeable. But the content is read in clear by
the Environment. Each player is being given an input value v in some finite range V = [0, . . . , V ] by the
Environment. For instance, values may be of the size of a hash: V = 2256−1. Up to t players are corrupted by
the polynomial Environment and behave as instructed by him: they are called malicious players. Remaining
players are called “honest”.

Synchronizing phases and leaders There is an entity called “Synchronizer” (in [NBMS19, NK20, BCG20b],
a.k.a. “Pacemaker” in [YMR+19]) which has a local counter: φ, called “phase” (also known as view/epoch/polka
or even “round” used in a nonstandard way), which increases monotonically at various speed. Every time the
local counter φ increases, then the Pacemaker sends messages to players indicating the new value of φ, along
with the identity of (possibly new) specific “leader” player: Lφ. Messages notifying this being sent on the
fully asynchronous network, they arrive with arbitrary delays to players. We say that a player “is in phase
φ” if φ is the highest phase that he was notified of so far.

Worst-case bit complexity of communications We count the total number of bits sent by all honest players
in the same phase. Then take the worst case over all phases, over all executions. Notice that under some
weaker synchronizers than our “Pacemaker”, many players may possibly believe that they are the leader of
the same phase φ. In these cases we would then multiply complexity by the number of those players. But
for simplicity we do not consider such models.

3.2 Messages lost or not, output vs Halting

For Simplicity: Messages are Always Delivered. Recall that Definiton of Optimal Latency (Definition 4) as-
sumes for simplicity an asynchronous network where messages cannot be lost. Main Theorem 7 and Theorem
8 (the Responsive claim) are stated with respect to this Definition 4 in this asynchronous model.

Comment: Adaptations to the Model if Messages Could be Lost. We could alternatively have supposed that
messages sent can be lost, and restricted Optimal Latency (Definition 4) to phases where no message is lost.
The proofs of Main Theorem 7 and Theorem 8 hold unchanged in such an alternative model.
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Halting. Recall that Definition 4, latency is considered only until players output. However we do not guarantee
that they can halt in finite time. In our fully asynchronous where messages are never lost, then one could
enforce halting by having a player which outputs to propagate the decision certificate to all players then halt.
However these additional instructions trigger quadratic message complexity. This is why we do not consider
halting neither in Main Theorem 7 nor Theorem 8. However we will consider halting in §7.2, and consider
the bit comlexity amortized over long values. But we will so only in models in which messages cannot be
lost. Indeed, in models in which messages can be lost, then achieving halting in finite time is anyway not
possible by [DLS88, §4.2 Remark 2].

3.3 Partial Synchrony.

For the specific case of the last NonResponsive claim of Theorem 8, on Nonresponsive protocols (supported by
the protocols §4.3.3 and §5.2), we will depart from our fully asynchronous model and consider instead partial
synchrony. This assumes a publicly known delay ∆, and some unknown time GST, after which messages are
delivered within ∆.

Messages can be Lost. All the partially protocols considered (in §4.3.3 and §5.2) hold even under the specific
model [DLS88, §3.1] where messages can be lost before GST. Thus also our NonResponsive claim of Theorem
8.

Except if halting is required. However, to apply the amortized halting techniques of §7.2, then, as mentionned
in 3.2, one needs to assume in addition that messages are never lost, such as in the model [DLS88, 2.3 3)].

4 Handling External Validity and PoE with Interactions

4.1 Handling for External Validity Conditions

In the remainder of this paper we make the choice to generalize a bit the constructions in order to handle
Consensus with External validity, as defined in [CKPS01, Def 4.1]. That is, we assume that an external
entity QID may deliver to some honest players “certificates of validity” of their inputs values (that they can
forward). We say that a value is valid relatively to a player and some point in time, if at this point of time,
this player has a certificate of validity for this value. We accordingly restrict the Definition 1 of Consensus
to handle External Validity conditions on the output:

Definition 13 (Consensus with External Validity). - Consistency: unchanged
- External Validity: Players do not output a value which is not valid
- Consensus Weak Unanimity (CWU): If all n players are honest and all start with the same initially

valid input; then, this is the only value that they can possibly output;
- Consensus Strong Unanimity (CSU): If all honest players start with the same initially valid input;
then, this is the only value that they can possibly output;

Notice that loosening the CWU and CSU enables players to output some value even if all honest players
have the same Nonvalid input. We will explain after Definition 15 how tolerating this loosening enables in
return better liveness in protocols (Definition 14), compared to in the traditional leaderless External Validity
conceptions ([CKPS01, Def 4.1] or as in [AMS19, Lemma 23 of full paper]). To guarantee External Validity,
all Consensus protocols may be updated by requiring players to ignore any message containing a value not
valid. This is formalized by the easy Lemma 26. In practical use cases, players may possibly gossip validity
certificates they received. Players encode their input by 0 if it is not valid, i.e., if they have not seen so far a
validity certificate for it. They also encode it as 0 if they have no input at all.
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Further Comments on Definition 4.1. The behavior of QID is arbitrary, it may possibly issue certificates
only for a subset of input values. The Lemma 27 provides a path, with linear complexity, to output a default
value in finite time when ≤ t honest players have a valid input. But allowing this path comes at the cost of
possibly violating External Validity.

Restriction of output guarantee (Liveness) under External Validity.

Definition 14 (Optimal Latency). The additional restriction is made to Definition 4 that output is guar-
anteed in a phase only if this phase further satisfies: Either the (honest) leader of this phase knows a valid
value (which holds in particular if his input is valid) Or at least t+ 1 honest players have a valid input.

Notice that this Liveness Definition is more demanding than the traditional requirement ([CKPS01, Def
4.1] or as in [AMS19, Lemma 23 of full paper]), where output is not guaranteed as soon as one player does
not have a valid input. For use cases where an output would be anyway required when the above conditions
(honest leader valid input of t + 1 honest players valid input) are not satisfied, then Lemma 27 brings a
mechanism for output under no additional condition on the inputs (so under plain Definition 4), but at the
cost of possibly violating External Validity when t honest players or less have a valid input.

4.2 Useful Weakening of Exclusivity Predicate. Extension with the Special Nonvalid Value

For our Elementary constructions in §5, we define a new Exclusivity Predicate which is weaker than (or
equal to) the previous one of (2). This new Definition, which we denote Exclusivity-uni, is the property
implied from Equation (2) by Lemma 25. Namely, a value in D satisfies Exclusivity-uni if no other value is
a unanimous input of honest players. However, this weakened (or equal) new Definition of still states exactly
the property of PoE which is used in the proof of Proposition 12. So we can still use PoE satisfying this new
Definition in the protocols. In addition, we also extend this new (a priori weakened) definition to handle
the Nonvalid 0 value, in addition to values in V = [1, . . . , V ]. This results in the following more intrinsic
Definition, that will be of particular help for handling negative statements of players.

Definition 15 (PoE). We say that v ∈ {0} ∪ V satisfies the Exclusivity Predicate, if and only if, no other
value v′ ∈ V is a unanimous input of honest players. A PoE(v) is a proof that v satisfies the Exclusivity
Predicate.

This Definition is none other than the previously mentionned Exclusivity-uni, extended to 0. For simplicity
we dropped the terminology Exclusivity-uni. Indeed we do not consider the previous one (Equation (2))
anymore in the subsequent elementary methods.

Motivation of Definition 15, in link External Validity (Definition 13) Definition 15 concretely enables a
leader who would receive 2t declarations of having 0 input, to nevertheless issue a PoE(vL) on his own (valid)
input. This tolerance in Definition 15 is the key to achieving better liveness in our protocols (Definition 14),
than demanded traditionally ([CKPS01, Def 4.1] or as in [AMS19, Lemma 23 of full paper]). Notice that this
new Definition 15 coincides on V with the previously mentionned Exclusivity-uni. Precisely, the (iii) in the
Lemma below points that we can well have that the value 0 is a unanimous input of all honest players, and
still, this implies that every value v ∈ V also satisfies the Exclusivity Predicate. Protocols below will indeed
allow this situation where a PoE(v) can be formed for v 6= 0 and v output, even if 0 is unanimous among
honest players. Indeed, tolerating this situation does not contradict anymore Weak Unanimity nor Strong
Unanimity, as weakened in the new Definition 13.

Lemma 16. (i) Let v ∈ {0} ∪ V = [0, . . . , V ] be any value. The data, for each value v′ 6= v, of t+ 1 signed
messages from distinct players stating that they do not have input v′ constitutes a PoE(v).

(ii) Let v ∈ {0} ∪ V be any value. The data of t+ 1 signed messages from distinct players stating that they
have input v constitutes a PoE(v).

(iii) A PoE(0) constitutes a PoE(any): that is, that all values in [0, . . . , V ] satisfy Exclusivity (Definition 15)
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(iv) A PoE(w) along with t+ 1 statements of not having input w, constitutes a PoE(any).

Proof. (i): the data implies that for each value v′ 6= v in V, there is at least one honest player who does not
have v′ as input, so v′ cannot be unanimous among honest players. (ii): follows from (i): t + 1 declarations
to have input v also constitute in particular, for every other v′ 6= v, t + 1 declarations of not having input
v′. (iii): Apply (i) to every v ∈ V. (iv) the second data proves that w is not an unanimous input of honest
players, but the first data proves that w is the only possible unanimous honest input. So finally no value can
be a unanimous input. Thus all values satisfy the exclusivity predicate.

4.3 Handling for Interactive 4-move PoE in the Consensus of Main Theorem 7

4.3.1 PoE with 4-move Interaction

We still consider n = 3t+1 players, of which t are maliciously corrupted. We denote L a distinguished player
which we call “prover”. Each player (which includes the prover) starts with an input value vi ∈ {0} ∪ V =
[0, . . . , V ] with respect to this protocol.

Definition 17. We call a 4-move interactive Responsive PoE protocol a protocol between L and the players
(including himself), such that if L is honest and: If Either L knows a valid value Or at least t + 1 honest
players have a valid input, then:

- After a round-trip of messages, L outputs a valid value v. We denote this select(v).
- Then after another round-trip he outputs a PoE(v) in the sense of Definition 15.

We call a 4-move interactive Not Responsive PoE protocol, in the model [DLS88, 3.1], a protocol played
round-by round, and such that the previous properties hold only if it is initiated after GST (that is: if
synchrony holds).

Notice that this implies by construction that the value v that the prover selects, then for which he outputs
a PoE(v), satifies the Exclusivity Predicate (Definition 15).

4.3.2 Adding the Fast Track and Strong Unanimity to Consensus of Figure 4: Figure 6

Overview of the differences with Figure 5. Recall that obtaining Strong Unanimity (and thus subsequently
Fast Track by Lemma 24) in Main Theorem 7, follows from enrichening the baseline Consensus of Figure 4,
with a PoE, as specified in Figure 5.

However to use an interactive 4-move PoE protocol (Definition 17), then the leader cannot deliver anymore
a PoE when at 1(ii) of Figure 4. Thus we make the following alternative enrichening instead. If the leader
is in case (ii) of 1, then he selects the value vL from the ongoing PoE protocol (Definition 17). He then
propose(vL), but is not anymore required to append a PoE(vL) to it. Players then accept a propose(v) at
2(ii) without anymore checking if a PoE for it is attached. This leaves the leader two more rounds to issue
a PoE for the value vL he proposed. This delay corresponds to the two last moves of the interactive 4-move
PoE protocol (Definition 17).

The leader then outputs a PoE at 3, which he appends to the lock certificate(v). Players now accept a
lock certificate(v) in 4 only if it comes appended with a PoE(vL). Likewise, players now report in 0 only
lock certificate(vi) that come appended with a PoE(vi). Subsequently, the leader now takes in consideration
reported lock certificate(vi) in 1 only if they come appended with a PoE(vi).

Formalization: Figure 6. The above additional validity requirement for a lock certificate is incorporated
in the new enriched data structure which we denote as full lock certificate. A full lock certificate(v, φ) is the
concatenation of: a (2t + 1) threshold signature on messages lock vote(v, φ) (which is what was denoted as
lock certificate(v, φ)), and of a PoE(v).
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0 Report Every player Pi sets φi ≤ φ the highest phase up to φ for which he saw a lock certificate, or φi = 0 if
he did not see any so far. He sends to the leader Lφ: a report(φi, φ), appended with a full lock certificate(vi, φi)
if φi ≥ 1. He Initiates an instance of a 4-move PoE (Definition 17) with prover Lφ, with respect to his input
value.

1 Propose The leader Lφ, upon receiving a set R of report messages from 2t+ 1 distinct players, then, letting
φmax be the highest φj in R:
(i) either 0 < φmax, thus he received at least one flcmax := full lock certificate(vmax, φmax). Then he multicasts

propose
(
vmax, φ,

{
PnS(φmax, φ), flcmax

})
;

(ii) or if 0 = φmax, then: If he selects a (valid) value vselect with respect to the ongoing 4-move PoE, then he
multicasts propose

(
vselect, φ,

{
PnS(0, φ),⊥

})
; else does nothing.

2 Lock vote Every player P , upon receiving a valid propose
(
v, φ, justifs

)
from Lφ for the first time in φ, replies

with a signed lock vote(v, φ).
3 Lock certificate Leader Lφ, upon receiving 2t+ 1 lock votes for the same (v, φ),
(i) if L already had a full lock certificate on v when he proposed it in 1, then he extracts from it the PoE(v);
(ii) Else this means that he selected v with respect to the PoE protocol, in 1. Thus, by Definition 17, he now

obtains a PoE(v).
He aggregates the 2t + 1 lock vote (v, φ), and appends them with the PoE(v) obtained in (i) or (ii) above,
into full lock certificate (v, φ) that he sends to the players.

4 Decision vote Every player, upon receiving from Lφ a full lock certificate(v, φ) for the first time in φ (whatever
v), replies with a signed decision vote(v, φ).

5 Decision certificate Leader Lφ, upon receiving decision vote(v, φ) from 2t + 1 distinct players for the same
value v, issues from them a decision certificate(v), that he multicasts to the players.

6 Output Upon receiving a decision certificate for v, a player outputs v (but continues the protocol)

Fig. 6. Adding Strong Unanimity to Figure 4 with 4-move Interactive PoE
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Sketch proof of this alternative enrichening. Responsiveness with Optimal Latency. If in case 1(ii) then it
is guaranteed by Definition 17 that, as soon as the leader has a valid input or t + 1 honest players have a
valid input, then, the leader will be able to select a valid vselect for which he will issue a PoE at step 3, and
thus produce a decision certificate for this value. If in case 1(i), then it is the case that the leader obtained
a set R of report messages containing at least one full lock certificate. Let full lock certificate(vmax, φmax) be
the highest, which he proposes to players, it is then guaranteed that the players will accept it thanks to the
PnS certifying that φmax) as the highest phase reported in R. The leader can then subsequently issue a
lock certificate then a decision certificate.

Consistency is unchanged, since the baseline Figure 4 is unchanged.
Strong Unanimity Results from a adaptation of the proof of Proposition 12. Namely: replacing lock vote(φ′, v′)

by decision vote(φ′, v′) in the proof, then shows that we have the guarantee that a decision certificate(v), is
formed only if v satisfies the Exclusivity Predicate. In the context of the new weakened Definition 15, then this
directly implies that Strong Unanimity holds. [Otherwise if this is a PoE for the old Definition of Equation
2, then this implies a fortioti the new Definition 15 by Lemma 25.]

4.3.3 NonResponsive Consensus with Strong Unanimity Used with Interactive Proofs: Fig. 8

The Baseline NonResponsive consensus of [AGM18]: Figure 7 We still consider a (2t+ 1)-TSS. We consider
the model of [DLS88, 3.1] with parameter ∆.

0 Report If φ = 1, then skip directly to step 1.
Otherwise: Every player Pi sets φi ≤ φ the highest phase up to φ for which he saw a lock certificate, or φi = 0
if he did not see any so far. He sends to the leader Lφ: a report(φi, φ), appended with a lock certificate(vi, φi)
if φi ≥ 1. Leader Lφ Waits for delay ∆.

1 Propose Leader Lφ waits that ∆ finishes to elapse, unless φ = 1. He receives his messages.
(i) If he ever observed so far a lock certificate (w, φ′), then he chooses the one with the highest phase number

φmax and multicasts propose (vmax, φ) for the corresponding value vmax, appended with the lock certificate
(vmax, φmax))

(ii) else if he ever saw a valid value, then he chooses one vL which he multicasts propose(vL, φ). (Else, he does
nothing.)

2 Lock vote Every player P , when in phase φ and upon receiving a propose (v, φ) from Lφ, possibly appended
with a lock certificate (v, φv), then P accepts it if he has not seen any other lock certificate for a different w
with a higher phase number φw > φv (where by convention φv := 0 if no lock certificate is appended). In which
case P sends a signed lock vote (v, φ) to Lφ.

3 Lock certificate Upon receiving 2t+ 1 lock votes for the same (v, φ), the leader Lφ.
4 Decision vote When in phase φ and upon receiving a lock certificate (v, φ) from leader L, a player P answers
by a signed decision vote (v, φP ).

5 Decision certificate Leader Lφ, upon receiving 2t + 1 decision votes for the same (v, φ), aggregates them
into a decision certificate (v, φ), that he multicasts.

6 Output Upon receiving a decision certificate for v, a player outputs v (and continues the protocol).

Fig. 7. Nonresponsive consensus of [AGM18]

Adding Strong Unanimity using Interactive PoE: : Figure 8 We enrich Figure 7 with Strong Unanimity, with
exactly the same tweak (2-message delay before delivering PoE) as in Figure 6.

The only addition to the proof is on Optimal Latency, and consists in noticing that, after GST, then a
leader under the conditions of Definition 17 is indeed guaranteed to select in 1, and to issue a PoE in 3.
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0 Report Every player:
(i) Initiates an instance of a (NonResponsive) 4-move PoE (Definition 17) with prover Lφ, with respect to his

input value.
(ii) If any, sends to Lφ the full lock certificate (w, φ′) on a value w with the highest phase number φ′ that he

received so far;
1 Propose Leader Lφ:
(i) If he ever observed so far a full lock certificate (w, φ′), then he picks the one with the highest phase

number φmax, and multicasts propose(vmax, φ) for the corresponding value vmax, appended with the
full lock certificate (vmax, φmax)

(ii) Else, if in the ongoing execution of the PoE protocol, Lφ selects a (valid) value vselect, then he multicasts
propose(vselect, φ); Else does nothing.

2 Lock vote Every player P , when in phase φ and upon receiving a propose(v, φ) from Lφ, possibly appended
with a full lock certificate (v, φv), then P accepts it if he has not seen any other full lock certificate for a different
w with a higher phase number φw > φv (where by convention φv := 0 if no full lock certificate is appended).
In which case P sends a lock vote (v, φ) to Lφ, signed with τ .

3 Full lock certificate Upon receiving 2t+ 1 lock vote for the same (v, φ), the leader Lφ:
(i) If L already had a full lock certificate on v when he proposed it in 1, then he extracts from it the PoE(v);
(ii) Else this means that he selected v with respect to the PoE protocol, in 1. Thus, by Definition 17, he now

obtains a PoE(v) from this protocol.
He aggregates the 2t+ 1 lock vote (v, φ), and appends them with the PoE(v) obtained in (i) or (ii) above,
into full lock certificate (v, φ) that he sends to the players.

4 Decision vote When in phase φ and upon receiving a full lock certificate (v, φ), PoE(v)) from leader L, a player
P answers by a decision vote (v, φP ) signed with τP .

5 Decision certificate leader Lφ, upon receiving 2t + 1 decision vote (v, φ) for the same value and the current
phase, aggregates them with τ into a decision certificate (v, φ), that he forwards to the players.

6 Output Upon receiving a decision certificate for v, a player outputs v (and continues the protocol).

Fig. 8. Partially synchronous consensus with Strong Unanimity using Interactive PoE
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5 Elementary interactive PoE

5.1 An elementary interactive Responsive PoE of bitsize O(log(V )
∣∣TSS∣∣)

5.1.1 Warmup in the binary case.
If the set of inputs is binary: {0} ∪ V = {0, 1, 2}, then the following is a responsive PoE protocol in one step
between players and a prover L. Let us consider a threshold signature τP with threshold t+ 1.
0 Players send to L: their input xi, with the validity vertificate xi 6= 0, along with testifies signed with τ :
“my input is not 1”, resp, “my input is not 2”, and, accordingly, both testifies when they have input 0.
1 Upon receiving 2t + 1 well-formed messages, then it must be that L received at least more than t + 1
copies of one of those testifies. Without loss of generality, suppose that he received t + 1 copies for not
having the input 1. He aggregates the signatures with τ into what we denote as ¬1.
(i) If he received 2, then by well-formedness of the message, this came with a validity certificate for 2,

thus 2 is valid. Also, ¬1 constitutes a PoE(2) by Lemma 16 (i). The prover then outputs 2 and this
PoE(2).

(ii) Else if he received no 2, then it must be the case that he received 2t+ 1 testifies of not having input 2.
Which we denote ¬2. Along with ¬1, this constitutes a PoE(any). Thus as soon as the prover knows a
valid value (possibly from receiving it from the players, which happens if at least t+ 1 honest players
have a valid input), then, let vL be such a value, he outputs vL.

5.1.2 Protocol and Proof.
Let us consider a threshold signature τP with threshold t+ 1.
1 Report Each player P sends to L his value vP signed with τP , along with a validity certificate if it is not

0; plus, for each bit bi of his value vP , one testify: “my i-th bit is equal to bi”, signed with τP .
2 Early termination or Select and Request Upon receiving 2t+ 1 well formed messages, the prover L:
(i) If he received more than t + 1 times the same value v, then he aggregates those reports. This

constitutes a PoE(v) by Lemma 16 (ii).
(α) either v is valid, in which case he outputs v and the PoE(v);
(β) or v is zero, in which case the PoE(v) constitutes a PoE(any) by Lemma 16(iii). Thus as soon as

L knows a valid value (possibly from receiving it from the players, which happens if at least t+ 1
honest players have a valid input), then, let vL be such a value, he outputs vL and the PoE(any).

(ii) Otherwise he constructs the “Frankenstein” value w = (bi) , such that for every i ∈ [1 . . . log V ], the
i-th bit bi of w is the one which received the majority (so ≥ t + 1) of testifies. He aggregates each
of those majority declarations, with τ , to obtain log V threshold signatures: one for every bit bi of w.
Claim2 : by Lemma 16(i), this constitutes a PoE(w).
(α) If w is a valid value which is reported in one of the 2t + 1 messages, then he directly outputs

w, the validity predicate and the previous PoE(w) then terminates. this constitutes a PoE(w). In
particular if w = 0, then Lemma 16(ii) shows that this then constitutes a PoE(any).

(β) Else, as soon as L knows a valid value (possibly from receiving it from the players, which happens
if at least t+ 1 honest players have a valid input), then, let vL be such a value, he select(vL) and
sends to the players the question: “is w your input value ?"

3 Answer Upon receiving the question, each player P replies to L with the message “my input value is (resp.
is not) w” and signs it with τP .

4 Output Upon receiving 2t + 1 answers of players which do not contradict what they reported in 1. We
have that Claim4 : at least t + 1 of those answers say not to have input w. L then aggregates the
signatures of these t + 1 negative answers. By Lemma 16(iv), the data of these t + 1 negative answers,
along with the previous PoE(w), constitute a PoE(any). L then outputs vL, the validity certificate on vL
and the PoE(any).
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Proposition 18. This is a 4-move interactive PoE protocol (Definition 17), with bit complexity of com-
munication O(log V ) and producing a PoE of size O(log V

∣∣TSS∣∣).
Proof. The communication complexity is straightforward, and the size of the PoE output in 4 consists in:
log(V ) aggregated signatures on bits, plus one aggregated signature of t + 1 players declaring not to have
input w.

Let us now prove that the protocol satisfies Definition 17. We do so by justifying the inline claims in the
protocol that were not yet proven.

We first prove Claim2 made in 2(ii)(α), which is a generalization of the previous warmup. For every
value w′ 6= w, we have that there exists a bit i at which w and w′ differ. The i-th aggregated testify then
proves that bi was present in the input of more than t+ 1 players. So in turn this proves that the i-th bit of
w′: 1− bi, cannot be present in 2t+ 1 input values or more.

Let us finally justify the Claim4 made in 4, which will conclude our proof. What is to be shown is that,
among the 2t + 1 noncontradictory declarations received in 4, we have at most t of them which can claim
to have input w. But remember that none of the 2t + 1 players reporting in 1 declared to have input w:
indeed, otherwise, the prover would have already terminated by 2(ii)(α). So the only players who can report
having input w in 3 without contradicting their Report received in 2, are precisely those whose report was
simply not received by the prover in 2. Since we have no more than t of such players, this is what was to be
shown.

5.2 A three-move PoE under partial synchrony with size in 6
∣∣TSS∣∣

Let vmax be the highest input of honest players.

Theorem 19. The following protocol is a partially synchronous 4-move PoE protocol with overall log(n) log(vmax)
communication, and the PoE output has constant size, in log(vmax)).

Let τ = (τP ) be a t+1 threshold signature scheme. The idea of the protocol is inspired from group testing
[DH93]: after receiving reported input values, the prover L sorts them in consecutive intervals Ij containing
few enough reported values. He then asks players to declare in which set Ij their values are not. Thus, unless
we are in the easy case where some value v was reported more than t+ 1 times, L gathers many statements
of membership in the complementary sets Ij for every j: just as many overlapping negative joint bloodtests.
The statements are hopefully all sufficiently numerous: |Ij | ≥ t+1 for every j to be gathered using threshold
signatures, and yield a PoE(v) for all values v by Lemma 16. But one could consider the bad case where,
e.g. malicious players that reported set membership in the first round may not talk anymore in the second,
to the point that some |Ij | ≥ t+ 1 condition does not hold anymore. Here, the key Claim made in the final
step of the protocol, and proven in Proposition 20 is that, when synchrony holds, then if enough players
escaped from some “fence” |Ij |, then t + 1 must actually have been caught by some singleton “fencepost”
value [aj ] in the first round, yielding a PoE(aj).

1 Report Every player P reports his input vP (so: either valid, or 0) to L signed with τP .
2 Early termination or Select and Request If L receives t + 1 reports for the same value v, then he ag-

gregates those reports. This constitutes a PoE(v) by Lemma 16 (ii).
(α) either v is valid, in which case he outputs v and the PoE(v);
(β) or v is zero, in which case the PoE(v) constitutes a PoE(any) by Lemma 16(iii). Thus as soon as L

knows a valid value (possibly from receiving it from the players, which happens if at least t+ 1 honest
players have a valid input), then, let vL be such a value, he outputs vL and the PoE(any).

Else as soon as L knows a valid value (possibly from receiving it from the players, which happens if at least
t+1 honest players have a valid input), then, let vL be such a value. He select(vL) and continues as follows.
Let vrep be the highest reported input. L partitions the interval [0,∞[ into (at most 5) nonempty consec-
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utive distinct intervals Ij = [aj , bj ] such that: the number |Ij | of values reported in Ij , with repetitions, is
strictly smaller than t+ 1. 2 More details on the construction are given in §5.2.1.

3 Testify Upon receiving the intervals, each P sends to L his input vP (possibly again) signed with τP , plus
for every Ij to which his value does not belong, a testify signed with τP : « my input is in the complementary
Ij ». (For instance if P has input 0, then he testifies for every interval Ij not containing zero.)

4 Output Claim: if synchrony holds from the beginning, and if L did not already terminate in 2, then it
must hold that: for every j, there exists more than t+ 1 declarations of being in the complementary Ij .
Assembling each of these groups of declarations with τ , the prover then obtains in particular a PoE(any)
by the (i) of Lemma 16. [Indeed for every v′ ∈ [1, vmax], he has t+ 1 declarations not to have input in the
interval containing v′.] He then outputs vL along with this PoE(any).
The Claim in 4 directly implies Theorem 19. Indeed either L terminates in 2, in which case he auto-

matically outputs a PoE for the value he selects. Or, he thus outputs in 4 a PoE (any), which constitutes in
particular a PoE for the value that he selected.

Now the Claim remains to be proven. The Claim follows directly from the following Proposition. Indeed
the Claim states that if alternative 1 of the Proposition does not hold, then alternative 2. So only the
Proposition remains to be proven.

Proposition 20. If GST holds from the beginning, then we have the following mutually exclusive alterna-
tives:

1. Either there exists a value aj such that L received more than t+ 1 reports from different players to have
input aj , so that he early selects and outputs in "Select and Request".

2. Or it holds that for all j, L receives more than t + 1 testifies from different players to be in the
complementary Ij .

Proof. Let us assume that the first alternative does not hold: L did not collected t + 1 distinct reports for
any value v. So that he did proceed with constructing intervals Ij and requesting for testifies. Let us assume
by contradiction that the second alternative does not hold either: there exists a j such that in the testify
round, less than t players testified to be in Ij .

Let M be the set of players that L does not hear of in the report round: the “missing” ones, and m their
number. So that L receives 3t + 1 −m reports at the end of the report round. If synchrony holds, then all
players in M must be malicious. Note |Ij | the number of values received by L and reported to be in Ij (of
course, players did not reported explicitly to be in Ij , since the intervals were not constructed before the
request round). And likewise |Ij | the number of values reported to be in the complementary Ij . Thus for
every j, we have

(3) |Ij | = 3t+ 1−m− |Ij |

Let us note Dj the set of departures, that is, the set of players from whom L heard reports to be in Ij ,
but from whom L does not hear of anymore in the testify round. Note dj their number. Then, the asumption
is thus that

(4) dj ≥ |Ij | − t = 2t+ 1−m− |Ij |

Now, observe that under synchrony, all players in Dj are malicious, and that by definition M and Dj are
disjunct, so that

(5) t ≥ dj +m

Combining with the previous inequality, we get

(6) t ≥ dj +m ≥ 3t+ 1− |Ij | − t = 2t+ 1− |Ij |
2Notice that he is always able to do so, because otherwise it must be the case that some value v is repeated t+ 1

times or more, in which case he should have already terminated in 2.
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and thus

(7) |Ij | ≥ t+ 1

which contradicts the rule |Ij | < t+ 1.

5.2.1 Details on the construction (and why the number 5)
The following explicit construction ensures our claim about the log dependency in vmax. Let j = 1: b1 :=∞
and a1 be the smallest integer such that the number |I1| of values reported in Ij := [a1, b1[ is strictly smaller
than t+ 1. In particular a1 ≤ vmax: otherwise this would mean that the number of dishonest reports is t+ 1
or more. Then, repeat for all j ≥ 2 while bj := aj−1− 1 ≥ 0: let aj be the smallest positive integer such that
the number |Ij | of values reported in Ij := [aj , bj ] is strictly smaller than t+ 1.

Let us illustrate a configuration of reported values such that it is necessary to cut it into 5 consecutive
intervals. Assume t = 2t′ ≥ 4, and that the prover received 3t + 1 consecutive reported values (with repeti-
tions), organized as follows.

∣∣I1
∣∣ = t′, I2 = [a2] repeated t′+ 1 times,

∣∣I3
∣∣ = t′, I4 = [a4] repeated t′+ 1 times

and
∣∣I5
∣∣ = t− 1.

6 A PnS with size
∣∣∣TSS∣∣∣, produced with O(nφ) communication

As in §4.2, we make here a weakened and more intrinsic Definition of PnS than Equation (1). It will be more
convenient for elementary constructions, and still, it exactly addresses the property needed in the proof of
Lemma 10 (ii). Precisely, this Lemma (ii) it is the only place where PnS is needed in the proof of Main
Theorem 7, where the property of a PnS(φmax, φ) used, is namely that it guarantees that no set of t + 1
honest players could possibly have seen, up to being in phase φ, a lock certificate in a higher phase than φmax.

Definition 21 (PnS). For every honest player in phase φ , denote φi ≤ φ the highest phase number up to φ
for which he saw a valid lock certificate lci. Then a Proof of non Supermajority: PnS(φmax, φ) for some valid
(φmax, lcmax) is the data of: φmax ≤ φ, along with some data proving that no t+ 1 honest players have their
φi strictly higher than φmax.

Relatively to such a specific set of inputs (φi, lci): a PnS protocol is one in which honest players in phase
φ send one message to a designated prover Lφ among them, such that, upon receiving 2t + 1 well-formed
messages, a (honest) prover is able to output: a phase number φmax ≤ φ, a lock certificate lcmax relative to
this phase, and a PnS(φmax, φ).

We still consider a 2t+ 1-TSS σ. We denote Lφ the prover associated to phase φ.
1 Every player Pi sends to Lφ a report (φi, φ) (along with a lock certificate in φi if 1 ≤ φ) along with, for
each integer value φ′ ∈ [φi, . . . , φ], one testimony signed with σP , of the form: “my locked phase number
up to φ is lower or equal to φ′ ”.

2 Upon receiving from 2t+ 1 players such well formed messages, that is: containing a lock certificate for the
claimed φi, a list of testimonies which is consistent with the claimed φi, and such that all the messages
specify “up to φ” with φ the current phase number. Then, define φmax the lowest value for which there
exists 2t + 1 identical testimonies: “my locked phase number up to φ is lower or equal to φmax ". Leader Lφ
then:
- extracts this φmax and a lock certificate lcmax) relative to φmax from one of the 2t+1 messages received.
Claim1 : he is always able to do so;

- aggregates the 2t+ 1 testimonies with σ. Claim2 : this constitutes a PnS on (φmax, φ).

Proposition 22. The previous protocol is a PnS protocol with respect to the locked phase numbers (φPlock, lc(φPlock))
held by honest players in phase φ. It has overall linear communication bit complexity, precisely in O(nφ),
and the PnS obtained consists of at most φ signatures. In particular, it is of bit size independent of the
number of players.
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Proof. What remains to be shown are Claim2 and Claim1. Together they guarantee that the prover is indeed
able to obtain (i) a locked phase number and (ii) a PnS on it (relative to phase φ), as expected.

Proof of Claim2 : If t+1 honest players have a strictly higher input than φmax, then no t+1 honest players
can possibly testify to have a lower input, thus the leader will never receive 2t+ 1 testimonies claiming so.

Proof of Claim1 : By construction of φmax, there is a player Pj in the set of the 2t + 1 ones who issued
the messages, such he reported a φj ≤ φmax but not φj < φmax. Therefore, this player reported exactly
φj = φmax. Thus, by well formedness of the message, his report must have been appended by a lock certificate
asociated to φmax (unless φmax = 0).

7 Other contributions

7.1 Leaderless asynchronous Byzantine agreement
Recall the structure of the VABA of [AMS19]. Players run n executions in parallel of the first phase of the
consensus of [YMR+19] (with weak unanimity): one for each player playing the role of the leader. After
2t + 1 of them have at least one player which outputs, a leader election is performed to decide a posteriori
which of the n leaders was the “real” one. Players erase from their memories everything related to the other
n − 1 executions. Notice at this point that in 50% of cases, this elected leader is both: honest, and in the
2t+ 1 leaders who enforced an output. In which case, by construction of [YMR+19], a decision certificate will
be ultimately received by all players to output his honest input. In case he was not honest, in order to ensure
liveness, players start n executions in parallel of the second phase of [YMR+19] and repeat. Plugging our
Theorem 7 in place of [YMR+19] reduces the latency of the first phase from 7 to 5 (and of the subsequent
phases from 8 to 6).

7.2 Reconciling Halting in Finite time with no Amortized Overhead, and External Validity
The modifications of [NRS+20, Figure 4] are: players perform as baseline a leader-based consensus with
linear complexity, e.g. the one of §2.1, possibly enriched with Strong Unanimity and a Fast Track as in §2.1.
The data structure of the consensus is enriched in that players perform it simultanesouly on the actual input
values (of which we denote ` = log V the length), along with their hashes. Players refuse any certificate for
a value not externally valid (see Lemma 26 for a formalization). The message complexity of Theorem 7 for
this is thus O(n`). Then: when some player outputs a value v, he generates a Reed Solomon encoding of v of
degree 2t and length n (so with tolerance of up to t erasures). He then multicasts H(v), the decision certificate
for the hash H(v); and sends to each player i a share RS(v)i of this Reed-Solomon encoding of v length n,
along with a succinct proof that the RS(v)i is the correct encoding of the value inside the hash H(v). A
player i receiving such a decision certificate for a H(v), along with his correctly proven share RS(v)i of v,
multicasts this material (the decision certificate, H(v) and RS(v)i).

Proposition 23. The overall bit communication is n2
∣∣H(v)

∣∣∣∣π∣∣ + O(n`), where
∣∣π∣∣ is the (short) size of

the proof. As soon as one honest player outputs, then every honest player outputs in two messages delay.

Proof. The claim on the complexity is by construction.
The key additional invariant compared to [NRS+20] is that any honest player which outputs v has

necessarily received a (short) decision certificate for the hash H(v) of the value, thanks to our double data
structure. And this decision certificate itself is enough to convince any player to output v as soon as he learns
the actual value of v. But by construction, the above protocol guarantees that, as soon as one honest player
outputs, then every player is guaranteed to receive, in two messages delay, both: a decision certificate for H(v),
along with 2t+ 1 distinct shares of v. These shares are enough to reconstruct the actual value of v.

[A simple proof system for the above purpose is proposed in [NRS+20], and consists in replacing hashes by
a Merkle tree of the codewords RS(v)i. Then, instead of the hash of v, a player who output communicates to
each player i the root of this Merkle tree, with the codeword RS(v)i, along with a proof that the codeword is
indeed at place i of the Merkle tree. This simple proof has however logarithmic size in `. Therefore [NRS+20]
consider more generic proof systems for this purpose, denoted as “cryptographic accumulators”.]
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8 Easy Lemmas and Various Extensions

8.1 Lemmas

8.1.1 Deriving a Fast Track from Strong Unanimity for Free

The following Lemma formalizes the trick used in 1.2.4 to compile Strong Unanimity into a Fast Track with
no cost.

Lemma 24. Consider a consensus protocol with Strong Unanimity. Then the following additional instruc-
tions enable, in addition, Optimistically fast output in two steps:

Players initially report their inputs to the leader, signed with threshold n = 3t + 1. Upon receiving
n = 3t+ 1 such reports for the same value v, the first leader aggregates the signatures into a fast output
certificate message for v (possibly with a multi/threshold signature mechanism), which he multicasts. Upon
receiving a fast output certificate for a value w, a player outputs w.

The proof for safety is that if some player fast outputs w, then he must have received a fast output
certificate for this value w. This proves in turn that all honest players have input w. Thus by Strong
Unanimity, no honest player can output a value different from w. Liveness follows from the fact that if all
players are honest, so is the first leader. In particular, every player receives a fast output certificate in two
messages delay.

8.1.2 Exclusivity Implies that No Other Value Can Be Unanimous

Lemma 25. If some value vun is an (unanimous) input of all the 2t+ 1 honest players in some execution
of the protocol of Figures 4 + 5. Then no other value v′ 6= vun can satisfy the Exclusivity Predicate of
Definition 11. In particular no PoE(v′) can ever be formed in the execution.

Proof. By assumption on unanimity of vun, we have that any set D of 2t+ 1 declare messages contains more
than t+ 1 times vun. So this violates the Exclusivity Predicate for v′.

8.1.3 Enforcing External Validity

Consider as in [CKPS01, Def 4.1]: an external entityQID, that may deliver to some honest players “certificates
of validity” to their inputs.

Lemma 26. Then all the protocols in this paper can be modified without any additional cost (not latency
nor bit complexity), such that we have the following additional guarantees:

– in any case: the output of any honest player is valid;
– If in some phase long enough, we have a honest leader who has, in addition a certificate of validity on his

input, then all honest players output in this phase. [This implies that we have the same liveness condition
as in [CKPS01, Def 4.1] & [AMS19, Lemma 23 of full paper]: if all honest players start with a validity
certificate on their input, then liveness condition of the previous protocols is unchanged.]

The only modifications to be made are: 1) a honest player ignore propose messages sent by the leader in
which the value proposed does not come with an external validity certificate, and refuses to output any value
that does not come with a validity certificate. A leader always append the proposed value with a certificate, if
he has any (either he received it at the beginning, of was forwarded some by some previous leader). Likewise
he alwas appends the validity certicate in the lock certificates and decision certificates that he makes.
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8.1.4 Default Output, when t or Less Honest Players Have an Externally Valid Input

The following construction brings the guarantee that players to output a non-valid value in finite time, if not
enough of them have a valid input. This may be of use in some use-cases, e.g. [CL99]. On the other hand
this may then violate the External Validity condition. For simplicity we state it explicitly on the top of the
consensus of Figure 4.

Lemma 27. The following additional specifications to the consensus of Figure 4 guarantee that all players
output a value as soon as: the leader of a phase φ > 1 is honest and the network fast enough. If ≤ t honest
players have a valid input, then, the output may be Non-valid. However if ≥ t honest players have a valid
input, then the output is necessarily valid.

0 a player with no valid input and who has seen no lock certificate so far, sends the signed ⊥ message to
the leader, along with report(0, φ).

1 upon receiving such 2t + 1 ⊥ messages, the leader aggregates them into a threshold signature and
multicasts propose(⊥, φ) along with a PnS(0, φ).

2 a player accepts propose(⊥, φ) if: it comes with a valid threshold signature, and, if the PnS(0, φ) is valid.
The rest carries unchanged.

Proof. If ≥ t + 1 honest players have a valid input: then no set of 2t + 1 messages can exist. On the other
hand, a honest leader will always be reported of a valid value, so at least can propose it if no lock certificate
was reported to him. If ≤ t honest players have a valid input Then a honest leader, out of a set of 2t + 1
well-formed report messages: either he obtains a valid value, or, all these messages must then be equal to
report(0, φ) and come appended with signed ⊥ messages.

8.2 Other Various Extensions

8.2.1 Suboptimal Adversary Thresholds, for More Tolerant Fast Tracks

The constructions we describe are illustrated on the maximal adversary threshold. They can be applied to
the suboptimal threshold n = 3t+ 2c+ 1, with some parameter c > 0, which enables in return a Fast Track
as soon as up to 2c players are malicious. The adaptation to the parameters of: the number of messages
constituting the sets R, D, and the number of signatures needed for a lock certificate and decision certificate,
are given in [GAG+19, DGV05, AGK+15]. The constructions of PoE and PnS (generic, or with the alternative
weaker Definitions 15 & 21) carry unchanged over these new parameters.

8.2.2 State Machine Replication, (of which Possible Improvements to Libra)

In its historical conception ([CL99]), the regime of “state machine replication” may be defined as an ordered
sequence of instances of consensus with Weak Unanimity, where the External Validation entity QID is
embodied by several “Clients” and the leaders denoted as “primaries”. Using the simpler variant (§2.1) of
Main Theorem 7 with plain Responsiveness and Optimal Latency in the transaction system [Lib19], in place
of the consensus of [YMR+19], would result in an Optimal Latency of 6 in higher phases instead of 8 (and
5 in the first phase instead of 7).

Another limitation pointed in the preliminary version of [Lib19], is that this uses threshold signatures of
size Ω(n). Indeed these signatures communicate the identities of the signers. Thus their overall complexity
falls back to quadratic: Ω(n2). This choice was apparently made to avoid a trusted setup. Instantiating Main
Theorem 7 with the Transparent TSS of [ACR20], also removes this limitation, since it does not use any
trusted setup.
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8.2.3 Making Linear an Alternative Fast Track in 3 steps instead, preserving latency of 5 in
the first phase.

Dictatorial Fast Track in 3 messages delay. The following Definition 1 is satisfied by [GAG+19], although
we define it for simplicity: in the maximal adversary threshold (see 8.2.1 for other parameters), for a single
instance, and allows such a Fast Track only in the first phase. This Definition comes on the top of Definition
1 (or alternatively the Consistency and Consensus Weak Unanimity with External Validity of Definition 13)
But is not compatible with Strong Unanimity (Definition 2 or alternatively the one with External Validity
in Definition 13). It also comes at the top of Definition 4, in the strong conception where 5 messages delays
are in addition required in the first phase.

Definition 1 (Dictatorial Fast Track). We say that a consensus has an (optimistic) Dictatorial Fast
Track (in 3 messages delay), if we have furthermore that: if all players are honest, and if the Pacemaker
is forever blocked on the first phase, then, all players output within 3 messages delay from the start of the
execution, and furthermore they output the input of the Leader.

Under partial synchrony where messages can be lost (§3.3, [DLS88, §3.1]), this holds only if the network
is initially synchronous. The reason for requiring here 5 messages delays in the first phase in Definition
4, is that the above fast delay of 3 messages circumvent the impossibility of [Ram20, B’]. Notice also the
Dictatorial Fast tracks in 2 messages of, e.g., [AGK+15, DGV05], there denoted as “very fast learning”.

Construction with Linear Complexity. The following construction uses as baseline Figure 4. We claim no
originality, since it is meant to have the same structure as [GAG+19], with succinct proofs used as drop-in
replacement to forwarding of many messages. Players i who issued a lock vote(vi, φ = 1) the first phase, store
the value vi,fast := vi forever. The additional data structure is added: a fast dec cert(v, 1) for a value v (only
relatively to phase φ = 1) is the aggregate of 3t+ 1 identical lock vote(v, 1) issued by all players.

0 Report If φ = 1, skip. Else, In addition to the report: players send to Lφ a signed declare(vi,fast)
1 Propose If φ = 1: unchanged. Else: The leader Lφ, upon receiving a set R of report messages from 2t + 1
distinct players, then, letting φmax be the highest φj in R:
(i) either 0 < φmax, then as in Figure 4 1(i)
(ii) or: let D be the set of 2t+ 1 declare messages received. The leader selects any value vL reported in D, such

that no conflicting value v′ 6= vL is reported identically in t + 1 messages of D. He constructs a PoE(vL)
out of D. Then he multicasts propose

(
vL, φ

)
appended with the justification PoE(vL) (in addition to the

justification PnS(0, φ), as in Figure 4).
2 Lock vote Is enriched in case (ii): in addition to the previous check on R, every player also checks validity of
the PoE(v) for the value v proposed.
(Then if this checks also passes, he replies with a signed lock vote(v, φ), as in Figure 4)

3 Lock/Fast certificate if φ = 1, In addition: Leader L1, upon receiving 3t+ 1 lock vote(v, 1) for the same value
v aggregates them into a fast dec cert(v, 1), which he multicasts along with v.

4 Decision vote / Fast decision In addition: Players in φ = 1, upon receiving a fast dec cert(v, 1), output v.

Fig. 9. Adding 3-steps Fast Track in O(n
∣∣PoE

∣∣) complexity

Improving the Throughput over Multiple Ordered Instances by “Pipelining” “Throughput”, in the above “state
machine replication” regime, denotes the average number of consecutive instances per phase. Throughput
may be optimized with the so-called “pipelining trick” [BG17, YMR+19, CS20]. Recall that this consists
in having the leader at step 3 of instance i, upon forming a lock certificate(vi, .), start simultaneously an
instance i + 1. The propose(vi+1) of this new instance may then be appended with the lock certificate(vi, .).
Players then accept a propose in instance i+1 only if it comes appended with a lock certificate. An additional
variation in this regime is that leaders may rotate every step, or every two steps, instead of every phase.

29



Weaker Synchronizers. In weaker models, Synchronizers may designate different leaders to different players
in the same phase (in particular multiple players believing themselves to be the leader). The results hold
unchanged. However the Definition 6 of bit complexity would need to be changed accordingly, e.g., by dividing
the bitsize by the number of honest leaders in the same phase).
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